
TOPICS IN NONSTATIONARY TIME SERIES ANALYSIS

A Dissertation

by

RAANJU RAGAVENDAR SUNDARARAJAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Mohsen Pourahmadi
Co-Chair of Committee, Suhasini Subba Rao
Committee Members, Xianyang Zhang

Natarajan Sivakumar
Head of Department, Valen E. Johnson

August 2018

Major Subject: Statistics

Copyright 2018 Raanju Ragavendar Sundararajan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/187128157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

Several interesting applications in areas such as neuroscience, economics, finance and seis-

mology have led to the collection nonstationary time series data wherein the statistical properties

of the observed process change across time. The analysis of nonstationary time series data is an

important and challenging task with useful applications. In comparison to stationarity, modeling

temporal dependence in nonstationary time series is more non-trivial, and numerous methods have

been proposed to tackle this problem. Stationarity in time series is more coveted than nonstation-

arity and many of the existing techniques attempt to transform the problem of nonstationarity to

a stationary time series setting.

Change point detection is one such method that attempts to find time points wherein the

statistical properties of the time series changed. We develop a nonparametric method to detect

multiple change points in multivariate piecewise stationary processes when the locations and

number of change points are unknown. Based on a test statistic that measures differences in the

spectral density matrices through the L2 norm, we sequentially identify points of local maxima in

the test statistic and test for the significance of each of them being change points. In addition,

the components responsible for the change in the covariance structure at each detected change

point are identified. The asymptotic properties of the test for significant change points under the

null and alternative hypothesis are derived.

Another related method for handling nonstationarity is the recent technique of stationary

subspace analysis (SSA) that aims at finding linear transformations of nonstationary processes that

are stationary. We propose an SSA procedure for general multivariate second-order nonstationary

processes. It relies on the asymptotic uncorrelatedness of the discrete Fourier transform of a

stationary time series to define a measure of departure from stationarity; it is then minimized to

find the stationary subspace. The dimension of the subspace is estimated using a sequential testing

procedure and its asymptotic properties are discussed. We illustrate the broader applicability and

ii



better performance of our method in comparison to existing SSA methods through simulations

and discuss an application in neuroeconomics. Here we apply our method to filter out noise in EEG

brain signals from an economic choice task experiment. This improves prediction performance

and more importantly reduces the number of trials needed from individuals in neuroeconomic

experiments thereby aligning with the principle of simple and controlled designs in experimental

and behavioral economics.
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1. INTRODUCTION

Numerous examples of time series data from the real world exhibit a dynamic behavior in

terms of its statistical properties leading to nonstationarity. Analyzing time series data that

is nonstationary is an important non-trivial problem in statistics that has several interesting

applications in areas such as neuroscience, economics, finance and seismology, to name a few.

Motivated by these real world applications, different techniques have been proposed to handle

problems relating to nonstationarity in time series. In view of modeling temporal dependence and

other related tasks such as forecasting, it is often more desirable to work with stationary time

series and many of the existing methods aim at reducing the problem of nonstationarity to a

stationary time series setting.

The spectral representation of a p-variate stationary time series Xt is given by

Xt =

∫ �

��

A(!) e it! dZ(!); (1.1)

where Z(!) is a zero-mean p-dimensional orthogonal increment process on [��; �] and A(!) for

! 2 [��; �] is a p� p complex valued matrix such that the p� p spectral matrix f (!) of Xt is

given by

f (!) = A(!)A(!)� (1.2)

where A(!)� = A(!)
T denotes the conjugate transpose. The spectral matrix of the stationary

time series contains all the information regarding the covariance structure of the series. An inter-

esting and broad type of nonstationarity is the notion of locally stationary time series developed

and studied by Dahlhaus (1997) which allows for sudden changes in the covariance or spectral

characteristics of a slowly changing nonstationary process. In this situation the matrix A(!)

defined above in (1.1) would be replaced by a time-varying version At(!). Under this assumption
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on the observed process, we propose a change point detection method in Chapter 2 that attempts

to find time points wherein the statistical properties of the time series changed. Change point

detection in nonstationary time series potentially leads to smaller time periods wherein different

stationary models can be fit to the data. In Section 1.1 below we review the relevant literature on

change point detection and introduce our proposed method for detecting change point locations.

Another related technique for handling nonstationarity is transforming the observed multivari-

ate nonstationary time series to a stationary one via instantaneous linear transformations. The

discrete Fourier transform (DFT) of an observed p-variate time series Xt , 1 � t � T; is given by

JX(!k) =
1p
2�T

T∑
t=1

Xt exp(�i t!k); (1.3)

where !k = 2�
T
k , k = 1; 2; :::; T; . Recall that the DFT series is periodic, i.e. JX(!r) =

JX(!T+r). It is also well known that if fXtg has a constant mean and is covariance stationary

i.e second-order stationary, its DFTs are asymptotically uncorrelated when !i 6= !j , i.e.

cov(JX(!i); JX(!j)) = O(
1

T
); (1.4)

See Theorem 4.3.1 and Theorem 4.3.2 of Brillinger (2001). It is because of attractive properties

like the above that many of the time series methodologies are set in the frequency domain as

opposed to the time domain. In Section 1.2 below we introduce stationary subspace analysis

(SSA) and our proposed method for finding stationary linear transformations of the observed

second-order nonstationary process.

1.1 Change Point Detection

Over the past few decades there have been many methods proposed to detect change points

in time series and the literature is rather huge, see Killick et al. (2012) for a reference repos-

itory. Several applications in various fields such as bioinformatics, signal processing, finance

have motivated the use of change point detection methods, see Chen and Gupta (1997), Picard
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et al. (2005), Muggeo and Adelfio (2011) and Kirch et al. (2015) for some applications. Despite

the widespread applicability, many existing methods impose either independence assumption on

the data or allow for dependence and make parametric model assumptions that may lead to

misspecification problems.

In the multivariate setting, Aue et al. (2009) detect changes in the covariance matrix across

observations using a nonparametric CUSUM type test, and Matteson and James (2014) and

Preuss et al. (2015) are two recent methods where the former works with i.i.d data and propose

a bisection type procedure to estimate locations of change points. The method in Preuss et al.

(2015) is nonparametric and in the spectral domain that uses a moving sum type test statistic

involving the infinity norm to quantify differences in spectral matrices in adjacent segments of

the observed process. Their technique to identify the locations of change points is similar to

Last and Shumway (2008) wherein they sequentially find points of local maximal deviation in the

components of their deviance metric. The idea here is to select the point of maximal deviation

from an initial set of points and after a selection, the neighbourhood of the selected point is

removed from the initial set of points. The procedure is repeated, each time with a reduced set

of points, and with suitable stopping criterion the final list of change point locations is determined.

Adak (1998) introduces the notion of piecewise (linear) locally stationary processes which

allows for abrupt changes in the covariance characteristics of a slowly varying nonstationary

process. We adhere to this type of nonstationarity in the multivariate context and propose a

nonparametric method to detecting change point locations. The key features of our method are:

(1) Quantifying differences in the spectral matrices between two candidate segments using the

integrated squared Euclidean norm (L2 norm) as opposed to the infinity norm used in Preuss

et al. (2015). (2) Sequentially identifying points of local maxima in the test statistic. At each

identification, we test for the significance of the point being a change point. (3) Relying on the

stationary block bootstrap procedure in Politis and Romano (1994) to obtain critical values of

the test statistic under the null hypothesis as opposed to the autoregressive bootstrap used in
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several other methods including Preuss et al. (2015). The block bootstrap avoids the Gaussian

assumption on the observed process, and problems like order selection and fitting high order

autoregressive models with a large number of parameters. After detecting change points, we

present a new ratio type estimator to identify the components responsible for the change. In

addition, a Monte Carlo type construction of confidence intervals for the change points is provided.

In Section 2.8.1, we compare the performance of our method to other recent methods through

a simulation study. In Section 2.8.2, we apply our method to identify change points in strong

motion seismograph data viewed as a tri-variate time series and also identify the components

responsible for significant seismic activity.

1.2 Stationary Subspace Analysis (SSA)

The problem of linearly transforming a multivariate nonstationary time series to a stationary

time series is of fundamental importance in application areas such as neuroscience and economics.

For example, Lemm et al. (2011) and von Bünau et al. (2010) point out that electroencephalo-

gram (EEG) and fMRI signals measuring brain activity appear often as nonstationary time series.

Removing the nonstationarity from the observed process is extremely useful for classification

purposes in Brain-Computer Interface experiments. In economics one often has to deal with

nonstationary data and the powerful idea of cointegration analysis, introduced and developed by

Granger (1981), Engle and Granger (1987), Johansen (1991), is concerned with finding station-

ary linear transformations of a unit-root nonstationary time series within the parametric classes

of vector-AR (VAR) models. Another related technique in the context of dimension reduction

and factor analysis is that of identifying common factors in multivariate time series where the

factors could be either stationary or nonstationary. Peña and Poncela (2006) and Nieto et al.

(2016) discuss this framework where the observed multivariate process is assumed to be linearly

generated by unobserved factors following seasonal VARIMA type models. Other applications

include geophysics Hara et al. (2012) and wind energy mitigation Cardinali and Nason (2011).

Stationary subspace analysis (SSA), introduced by von Bünau et al. (2009a), attempts to
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find stationary transformations, in lower dimensions, of multivariate nonstationary time series

(independent, non-identically distributed random vectors). The model setup for SSA is that

the observed p-variate time series is a linear transformation of (unobserved) d stationary and

p � d nonstationary sources. The notions of nonstationarity and stationarity used in von Bünau

et al. (2009a) and subsequent papers are rather restrictive. The former refers to independent

heterogeneous observations and the latter to the time-invariance of the first two moments or the

mean and lag-0 covariance of the data; Panknin et al. (2016) allows for stationarity with respect

to the first four moments at each time point. The matrix of the linear transformation in SSA

is found by dividing the observed time series data into N segments and minimizing a Kullback-

Leibler (KL) divergence between Gaussian distributions measuring differences in the means and

covariances across these segments.

In Chapter 3 we describe a frequency domain SSA method for the general class of multivariate

second-order nonstationary time series; see Brockwell and Davis (1991), Pourahmadi (2001). The

key tools and steps are:

(i) We rely on near uncorrelatedness of the discrete Fourier transform (DFT) of a second-order

stationary time series at unequal Fourier frequencies and a test for second-order stationarity , see

Dwivedi and Subba Rao (2011) and Jentsch and Subba Rao (2015a), gauging the size of the

estimated covariances of the DFTs at various lags. A discrepancy measure is constructed and the

demixing matrix is obtained by optimizing this measure.

(ii) In the SSA, von Bünau et al. (2009a), Blythe et al. (2012), a sequential likelihood ratio

test is used to determine the dimension of the stationary subspace d when the observations are

independent and normally distributed. We rely on a sequential test of second-order stationarity

to determine d without the independence assumption, and study the consistency of the estimated

d using the asymptotic distribution of the test statistic under the alternative hypothesis of local

stationarity of the time series (Dahlhaus (1997), Dahlhaus (2012)).

Section 3.3 includes a simulation study wherein the performance of our method is compared
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to that of SSA.

In Section 3.4 an application of our SSA method in neuroeconomic experiments. An emerging

literature in neuroeconomics uses brain signals to directly explain choice behavior. One of the

models used to explain decision making is the neural random utility model - NRUM; Webb et al.

(2013). EEG data have been used to predict purchase decisions Ravaja et al. (2013), consumer’s

future choices Telpaz et al. (2015), predict preferences Khushaba et al. (2013, 2012) and response

to advertisements Boksem and Smidts (2015); Venkatraman et al. (2015).

EEG signals from different electrodes measuring brain activity have, in the past, been regarded

as a multi-dimensional nonstationary time series; see Ombao et al. (2005), von Bünau et al. (2010)

for examples. Kaplan et al. (2005) regard the nonstationarity as the ”unavoidable noise” in the

brain signal. Here the nonstationary sources in the brain signal contributes to the noise in the

EEG data and removing this nonstationarity is extremely useful for prediction purposes in brain

related experiments. We use the words noise and nonstationarity interchangeably because in our

setup the nonstationary sources contribute to parts of the signal that are unrelated to the task

related activity in the experiment. Hence eliminating nonstationarity reduces noise in the brain

signal. See Section 3.4.2 and Figures 3.1, 3.2 for illustrations of the signal before and after noise

reduction. von Bünau et al. (2009a) and von Bünau et al. (2010) associate alpha oscillations in

the data as a nonstationary source. These oscillations appear usually in the range of 8-12 Hz

and are associated with blinking, fatigue or tiredness. Over the course of the experiment such

changes in the EEG time series are unrelated to the experimental task and corrupt the signal.

We employ the DSSA technique from Section 3.2, as a noise reduction step to separate

stationary (useful signal) and nonstationary sources to reduce noise in the EEG brain signal. This

is important because using this process may move neurophysiological responses to become more

aligned with the design of traditional economics experiments. In other words the nonstationary

sources in the brain signal are associated with variations in the mental state that are unrelated to

the experimental task at hand. Hence the DSSA technique can be useful in reducing the number
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of trials needed from each participant in neuroeconomic experiments. More importantly, the

technique greatly improves the prediction performance of an incentivized economic food choice

task.

The rest of the report is organized in the following way: Chapters 2, 3 describe in detail

the two methodologies, change point detection and stationary subspace analysis, for handling

nonstationary time series. Simulation studies are presented and real data applications of the two

techniques are discussed. Chapter 4 provides a summary of the proposed methods and lists some

of the ongoing and future works.
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2. CHANGE POINT DETECTION IN PIECEWISE STATIONARY TIME SERIES

In this chapter we describe our nonparametric change point detection method from Sundarara-

jan and Pourahmadi (2018a). We locate points of local maxima in the deviance measure and

test for the significance of each of them being change points. Finally, we detect the components

responsible for the change at each change point location. The method is developed within the

framework of piecewise stationary processes. To begin with, we state the working model which

follows a multivariate version of the piecewise stationary processes in Adak (1998).

2.1 Working Model and the Approach in Preuss et al. (2015)

Let Xt;T , 1 � t � T , be a p-dimensional zero-mean piecewise stationary time series with

piecewise constant spectral density matrix corresponding to break point locations, rescaled to the

unit interval, 0 = b0 < b1 < ::: < bK < bK+1 = 1 where K is assumed fixed but unknown. Let

Ik = (bk ; bk+1] for k = 0; 1; :::; K, then we have

Xt;T =

∫ �

��

At;T (!) e
it! dZ(!); (2.1)

where (a). Z(!) is a zero-mean p-dimensional orthogonal increment process on [��; �] and

(b). There exists constants c1 � 0, 1=2 < c2 < 1 and a 2�-periodic matrix valued function

A : [0; 1]� [��; �] ! C with A(u; !) = A(u;�!) and A(u; !) =
∑K

k=0 I(u 2 Ik)Ak(!) such

that

max
t:(t=T )2Ik

sup
!

j At;T (!)i ;j � Ak(!)i ;j j � c1T
�c2;

for i ; j = 1; 2; :::; p. Ak(!) is the p � p transfer function matrix corresponding to the interval

Ik and sup
!
jAk(!)j < 1 8 k . The time-varying spectral matrix that is piecewise constant w.r.t
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time is defined as

f (
t

T
; !) =

K∑
k=0

I(
t

T
2 Ik) Ak(!) Ak(!)

� =

K∑
k=0

I(
t

T
2 Ik) fk(!);

where Ak(!)
� = Ak(!)

T denotes the conjugate transpose and fk(!) = Ak(!)Ak(!)
�. The

model in (2.1) has an equivalent linear process representation with time-varying coefficients, see

Remark 2.2 of Dahlhaus (2000).

For any point b 2 (0; 1), �b > 0; � 2 [0; 1], Preuss et al. (2015) defined a measure of local

change by the p � p matrix

Dp(b; �) =
1

�b
[

∫ ��

���

∫ b+�b

b

f (u; �)dud��
∫ ��

���

∫ b

b��b

f (u; �)dud�]:

Their global measure of discrepancy is defined as the supremum of the measure of local change

over (b; �):

Dp = sup
b;�

jjDp(b; �)jj1; (2.2)

with jj:jj1 denoting the infinity norm of the matrix. They utilize a sample version of Dp based

on periodogram matrices as the test statistic for testing the existence of change points. Critical

values of the test statistic under the null are obtained by a vector-autoregressive (VAR) bootstrap

where the order increases with increasing sample size. Once there is a rejection for this test,

the locations of change points are determined by setting thresholds for the entries of the matrix

sup�2[0;1] jDp(b; �)j. This is done by first identifying an initial set of candidate points and picking

a subset of points for which the entries of the discrepancy matrix exceed a prescribed threshold,

N sup
�2[0;1]

j(Dp(b; �))(i ;j)j > �(i ;j)(b); (2.3)

for some point b, where N is the size of a local neighbourhood around b,  is a tuning parameter

and �(i ;j)(b) is the threshold.
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2.2 An Alternative Measure of Local Change

We propose a measure of local change around a point, say b, by quantifying the vectorized

(vec) form of the difference of the spectral density matrices of the data on either side of the point

using integrated squared Euclidean norm (L2 norm). More precisely, we use the metric

D(b) =
1

2�

∫ �

��

jj vec[fL(b; !)� fR(b; !)] jj2 d!; (2.4)

where jj:jj is the Euclidean norm and fL(b; !) and fR(b; !) are spectral matrices over the left

and right neighborhoods of b, i.e (bbT c � N; bbT c] and (bbT c; bbT c + N], respectively, and

N > 0 determines the length of a local neighbourhood.

In our preliminary data analysis we had noticed that the squared Euclidean norm in (2.4) was

able to distinguish actual change point locations in a more decisive way than the statistic in (2.2)

for small sample sizes . In addition, spectral density based test statistics involving the L2 norm

have been shown to be consistent; see Paparoditis (2000), Eichler (2008), Dette and Paparoditis

(2009), Jentsch and Subba Rao (2015a) where hypothesis tests about spectral densities are carried

out. Simulation techniques are implemented to obtain critical values of the tests to overcome

the slow rate of convergence of such test statistics to a normal distribution. See Sundararajan

and Pourahmadi (2018a) for additional details.

2.2.1 Estimating the Measure of Local Change

In this section we present an estimated form of the metric in (2.4) that will be used in our

method for an arbitrary point b 2 (0; 1) .

Recall that the discrete Fourier transform (DFT) and the periodogram of a p-variate series

X1; X2; :::; XN are defined as

J(!) =
1p
2�N

N∑
t=1

Xtexp(�i t!); IN(!) = J(!)J(!)�;
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where J(!)� denotes the conjugate transpose, and the estimated p � p spectral density matrix,

for ! 2 [��; �] is given by

f̂ (!) =
1

N

bN
2
c∑

j=�bN�1
2
c

Kh(! � !j) IN(!j);

where !j =
2�
N
j and Kh(�) = 1

h
K( �

h
) where K(�) is a nonnegative symmetric kernel function and

h denotes the bandwidth. The regularity conditions on the kernel and bandwidth are enforced

as in Eichler (2008) to ensure uniform consistency in ! 2 [��; �] of the estimated spectral

matrices, and is further discussed in Section 2.7. Thus, an estimate of the metric in (2.4) is given

by

D̂(b) =
1

2�

∫ �

��

jj vec[f̂L(b; !)� f̂R(b; !)] jj2 d!; (2.5)

where f̂L(b; !k), f̂R(b; !k) are the estimated spectral density matrices using the data over the

two local neighborhoods (bbT c � N; bbT c] and (bbT c; bbT c+ N], respectively.

We choose N = 2g(T ) as a dyadic positive integer where g(T ) is an integer sequence monotone

in the sample size T . This choice of N is helpful in faster computations through the fast Fourier

transform. A discretized version of (2.5) is

D̂(b) =
1

N

N∑
k=1

jj vec[f̂L(b; !k)� f̂R(b; !k)] jj2; (2.6)

where !k = (2�=N)k , k = 1; 2; :::; N, are the fundamental Fourier frequencies.

2.3 Finding Change Point Locations

To locate significant change points we first compute D̂(u) for every u 2 fN=T; (N +

1)=T; :::; (T �N)=Tg where N determines the size of a neighbourhood around potential change

points. Then the point, say u�, giving the maximum value of D̂(�) over the set fN=T; (N +

1)=T; :::; (T � N)=Tg is located and tested for significance using the test described in Sec-

tion 2.4. If found significant u� is included as a significant change point and D̂(u) for every
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u 2 (u� � N=T; u� + N=T ) is set to zero. This procedure is repeated until the identified point

u� is found insignificant or when D̂(u�) = 0. This technique to estimate the location of change

points is given below in Algorithm 1.

Algorithm 1: Detecting locations of change points
Result: Output P : the set of significant change points
Initialize P = NULL, Flag=0;
while Flag=0 do

Find u� where u� = arg. max
u2C

D̂(u) where C = fN=T; (N + 1)=T; :::; (T � N)=Tg;

Test whether u� is significant change point;

if D̂(u�) = 0 or u� is NOT significant then
Flag=1;

else
Set D̂(u) = 0 for u 2 (u� � N=T; u� + N=T );
P = P [ u�;

end
end

2.3.1 Choice of N: Length of Local Neighborhood

The choice of N depends on the nature of changes in the covariance. Smaller changes require

large values of N to get identified while larger changes can be detected with smaller values of

N. As pointed out by a referee, we adopt a multiscale procedure to select the appropriate value

of N. Following the technique given in Section 4.2 of Messer et al. (2014), we consider a set

of n choices for N given by
p
T < N1 < N2; ::: < Nn < T 5=6. In addition, each choice Ni ,

i = 1; 2; ::; n, is dyadic and we have

Ni = 2li where li = blog2(
p
T )c+ i (2.7)
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for i = 1; 2; :::; n � 1 and ln = blog2(T 5=6)c. Let Pi denote the set of change points estimated

using Algorithm 1 with neighborhood length choice Ni . Set P = P1 where P denotes the final

set of estimated change points by our method. For any point v 2 P2, v is added to the set P

only if it does not belong to a N2-neighborhood of any of the existing points in the set P . The

procedure is successively moved forward till neighborhood choice Nn.

The above technique is utilized while determining the change point locations for the various

models simulated in Section 2.8.1.1 and also in the application discussed in Section 2.8.2.

For a single neighborhood length choice N, we take the largest value of N 2 fN1; N2; :::; Nng
for which there is an addition of a point to the set P in the procedure described above. More

precisely N = Ni� where i� is the largest value in the set f1; 2; :::; ng for which the iterative pro-

cedure described above adds a point to the set P during iteration i� (i.e with neighborhood length

choice Ni�). In case there is no point added to the set P for any choice Ni , i = 1; 2; :::; n, we set

N = Nn. This technique leading to a single neighborhood length is utilized while constructing

confidence intervals for change points in Sections 2.6, 2.8.1.4 and also in Sections 2.8.1.2, 2.8.1.3

that involve estimation of the empirical size and power of the test for various simulation examples.

2.4 Testing for Significant Change Points

Here we describe a test procedure for deciding the significance of a change point.

Given any b 2 (0; 1), a point of local maxima, we consider the statistic in (2.6) which serves

as the test statistic. Under the null hypothesis H0 that b is away from the neighbourhood of

any of the true change points, the theoretical properties of the test statistic are spelled out in

Section 2.7. The limiting distribution of D̂(b) under the null is derived assuming that N=T ! c

for some 0 < c < 1 as T !1. It will also be shown that under the alternative hypothesis, the

test based on D̂(b) is consistent i.e P (D̂(b) > A) ! 1 for some A > 0.

We use the block bootstrap technique for stationary processes in Politis and Romano (1994)

to obtain the p-value of the test and this is discussed in the next subsection. Here, we avoid the

use of autoregressive bootstrap and the associated problem of order selection which may involve
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estimation of a large number of parameters.

2.4.1 Block Bootstrap for Stationary Processes

Methods for generating realizations of a stationary process include the autoregressive boot-

strap Kreiss (1992); Meyer and Kreiss (2015), spectral density based techniques Sun and Chaika

(1997); Hu and Schiehlen (1997); Azimmohseni et al. (2015) and the circulant embedding method

Percival and Constantine (2006); Helgason et al. (2011), to name a few. We rely on the block

bootstrap technique of Politis and Romano (1994) for generating observations from a stationary

process. This procedure does not assume Gaussianity in the observed process and involves the

choice of one tuning parameter namely the block length.

Given T0 observations X1; X2; :::; XT0 , let Bi ;L = fXi ; Xi+1; :::; Xi+L�1g denote a block of

length L. Note that when j > T0, Xj = Xj(mod T0). Let Li , i = 1; 2; :::, be i.i.d random variables

from a geometric distribution with mean 1=q i.e P (Li = a) = q(1� q)a�1 for a = 1; 2; :::, and

let Uk , k = 1; 2; :::, be i.i.d random variables from a discrete uniform distribution over the set

f1; 2; :::; T0g. Now the r th bootstrap sample, r = 1; 2; :::; B, is given by fXr;�
1 ; X

r;�
2 ; :::; X

r;�
T0
g

where the first L1 observations are given by block BU1;L1
, the next L2 observations are given by

block BU2;L2
and so on. The procedure is terminated once T0 observations are obtained in the

bootstrap sample. After obtaining B such bootstrap samples, we compute the p-value of the test

as 1
B
#fD̂�

r (b) > D̂observed(b) ; 1 � r � Bg where D̂�
r (b) and D̂observed(b) are estimates of

D̂(b) based on the r th bootstrap sample and the original sample respectively.

The choice of the random block lengths is determined by the probability q of the geometric

distribution. Here we resort to the procedure in Politis and White (2004); Patton et al. (2009)

where under certain mixing conditions on the observed process, the empirical block length selection

is shown to be optimal. However, this procedure is for the univariate case. Hence we apply it to

each component of the multivariate process and obtain the block length as the average over all

components as in Jentsch and Subba Rao (2015b).
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2.5 Identifying the Components Responsible for the Change

Once the break point locations fb̂1; b̂2; :::; b̂K̂g are estimated, the components responsible for

the change in the covariance structure are identified as follows. For any b̂ 2 fb̂1; b̂2; :::; b̂K̂g, we

consider the p � p matrix

Mb̂ =
1

N

N∑
k=1

[f̂L(b̂; !k)� f̂R(b̂; !k)]: (2.8)

where !k = 2�
N
k . For i � j , we arrange the absolute value of the entries given by

∣∣∣Mb̂;i j

∣∣∣ in

descending order, say E1 � E2 � ::: � Ep0 , where p0 = p(p + 1)=2. Finally we conclude that

the components corresponding to the first r entries have a significant contribution to the change

where

r = arg. max
1�j���p0

Ej

Ej+1

(2.9)

where 0 < � < 1 is chosen to avoid small values of Ej resulting in large values of the ratio. An

illustration of this can be seen in our application presented in Section 2.8.2 with � = 0:6.

2.6 Constructing Confidence Intervals for Change Points

Constructing confidence intervals for change points has been discussed recently in Yau and

Zhao (2015) for univariate time series. Here, simultaneous confidence intervals for multiple

change points under a piecewise autoregressive process assumption on the observed data are

constructed. They utilize a likelihood ratio based statistic defined over local neighborhoods for

measuring the discrepancy at candidate points and implement a minimum description length

based model selection approach to estimate change points. Here we propose a Monte Carlo type

construction of confidence intervals for true change points.

Let P = fb̂1; b̂2; :::; b̂K̂g be the set of estimated change point locations and let b̂0 = 1 and

b̂K̂+1 = T . For any point b̂j 2 P , the consistency results along with the assumptions given in

Section 2.7 imply that there is only one change point in (b̂j � N=T; b̂j + N=T ]. We now define
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�bj as

�bj = arg. max
v2I

b̂j

D̂(
v

T
); (2.10)

where Ib̂j = Ib̂j ;L
∪
Ib̂j ;R. Here Ib̂j ;L and Ib̂j ;R denote two intervals corresponding to bb̂jT c �N �

t � bb̂jT c and bb̂jT c + 1 � t � bb̂jT c + N respectively. We now construct B intervals as

follows

X�
t;b̂j

= I
(
t 2 Ib̂j ;L

)
U�
t;b̂j

+ I
(
t 2 Ib̂j ;R

)
V �
t;b̂j

for bb̂jT c � N � t � bb̂jT c + N. Here U�
t;b̂j

, t 2 Ib̂j ;L, constitutes a block bootstrap sample

generated from observations in Ib̂j ;L using the technique described earlier in Section 2.4.1. Simi-

larly we have V �
t;b̂j

, t 2 Ib̂j ;R, constituting a block bootstrap sample generated from observations

in Ib̂j ;R.

We thus obtain �b
(s)
j , s = 1; 2; :::; B, where �b

(s)
j denotes �bj for the s th simulated interval.

Using this we obtain the 100(1 � �)% confidence interval for the true change point bj as

[�bj;�=2; �bj;1��=2] where �bj;�=2 denotes the (�=2)th sample quantile of �b(1)j ; �b
(2)
j ; :::; �b

(B)
j .

Regarding the choice of N used for constructing these intervals, we refer back to the procedure

described in Section 2.3.1 and select the largest value of N 2 fN1; N2; :::Nng for which there is

an addition of a point to the set P in the iterative procedure.

2.7 Theoretical Properties

In this section we establish the asymptotic properties of the test statistic D̂(b) for b 2 (0; 1)

and show that the corresponding test is consistent. The key assumptions are that N = O(T )

and for some 0 < c < 1, consecutive change points are at least c units apart on the rescaled

time interval of [0; 1].

Let S1;b = (bbT c �N; bbT c], S2;b = (bbT c; bbT c+N] and Y (b)
t = (Z

(b)
1;t ; Z

(b)
2;t )

T where for

i = 1; 2, fZ(b)
i ;1 ; Z

(b)
i ;2 ; :::; Z

(b)
i ;Ng = fXt : t 2 Si ;bg. Now for Y (b)

t 2 R2p, the 2p � 2p partitioned

spectral matrix is
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f (b)(!) =

f (b)11 (!) f
(b)
12 (!)

f
(b)
21 (!) f

(b)
22 (!)

 ;
where f (b)11 (!) = fL(b; !) and f (b)22 (!) = fR(b; !), fL(b; !) and fR(b; !) defined earlier, are

the p � p spectral matrices of Xt over the intervals S1;b and S2;b, respectively, and f (b)12 (!) is

the cross-spectrum of Z(b)
1;t and Z(b)

2;t . It must be noted that joint stationarity of (Z(b)
1;t ; Z

(b)
2;t )

T

will hold due to linearity of the observed process fXtg. The choices of the kernel function and

bandwidth for obtaining a consistent estimator f̂ (b)(!) of f (b)(!) is the same as in Section 2.2

satisfying Assumption 2 below.

We now introduce the assumptions necessary for obtaining the results.

Assumption 1. Let fY (b)
t g; t 2 Z be a 2p-variate zero-mean stationary process. For any k > 0,

the k th order cumulants of Y (b)
t satisfy

∑
u1;u2;:::;uk�12Z

[ 1 + juj j2 ] jca1;a2;:::;ak (u1; u2; :::; uk�1)j <1

for j = 1; 2; :::; k � 1 and a1; a2; :::; ak = 1; 2; :::; 2p where ca1;a2;:::;ak (u1; u2; :::; uk�1) is the k th

order joint cumulant of Y (b)
a1;u1; :::; Y

(b)
ak�1;uk�1; Y

(b)
ak ;0

as defined in Brillinger (2001).

This is the same as Assumption 3.1 of Eichler (2008) and requires existence of all order moments

of Y (b)
t .

Assumption 2. (a). The kernel function K(�) is bounded, symmetric, nonnegative and Lipschitz-

continuous with compact support [��; �] and

∫ �

��

K(!)d! = 1:

where K(!) has a continuous Fourier transform k(u) such that

∫
k2(u)du <1 and

∫
k4(u)du <1:
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(b). The bandwidth h is such that h9=2N ! 0 and h2N !1 as N !1.

This assumption is needed to ensure uniform consistency of the estimated spectral matrices

and ensure sufficient reduction in the bias to not affect the asymptotic convergence of the test

statistic; see Assumption 3.3 of Eichler (2008) for details.

Now, let the true change point locations be given by 0 < b1 < b2; ::: < bK < 1. We define

P as the set of all points in the immediate neighbourhoods of the K change points,

P =

K∪
i=1

fbi � N=T; :::; bi + N=Tg: (2.11)

We will now establish two results that describe the behaviour of D̂(b) when b 2 P or P where

P = fN=T; (N + 1)=T; :::; (T � N)=Tg nP.

Theorem 2.7.1. (Asymptotic Normality) Suppose that Assumptions 1,2 are satisfied. Then for

b 2 P with N=T ! c for some 0 < c < 1 as T !1 we have

2�Nh1=2D̂(b)� �0p
h

D�! N(0; �20) (2.12)

where
�0 = AK

∫ �

��

( 2∑
j1;j2=1

( � 1 + 2�j1j2
)jtr(f (b)j1j2

(!))j2
)
d! (2.13)

and

�20 = BK

∫ �

��

( 2∑
j1;j2;j3;j4=1

( �1 + 2�j1j2 ) ( �1 + 2�j3j4 )jtr( f (b)j1j3
(!)f

(b)
j2j4

(!)
T

)j2
)
d!: (2.14)

where D�! denotes convergence in distribution, AK =
∫ �

��
K2(!)d!, BK = 4

∫ 2�

�2�

( ∫ �

��
K(!)K(!+

�)d!
)2

d�, �rs = I(r = s) is the Kronecker delta and tr(�) denotes the trace of a matrix.

Proof. See Appendix A for details of the proof.

The entities �0 and �20 are unknown and consistent estimators of both can be obtained by

substituting f (b)i j ; i ; j 2 f1; 2g with f̂ (b)i j ; see Remark 3.7 of Eichler (2008). Note that f̂ (b)i j can be
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treated as mean square consistent estimators with rate
p
Nh; see Equation 5 of Eichler (2008).

Thus we have �̂ and �̂2 where �̂ P�! �0 and �̂2 P�! �20. Then by Slutsky’s theorem we have with

N=T ! c as T !1,

QN =
2�ND̂(b)� �̂=h

�̂=
p
h

D�! N(0; 1) (2.15)

when b 2 P. Consistent estimators �̂ and �̂2, under the data distribution, are required to study

the properties of the test statistic when b 2 P. Now we establish consistency of the test as a

consequence of the following theorem.

Theorem 2.7.2. (Consistency) Suppose that Assumptions 1,2 are satisfied. Then for b 2 P

with N=T ! c for some 0 < c < 1 as T !1 we have

QN

N
p
h

P�! A1 and 2�D̂(b)
P�! A2 (2.16)

where P�! denotes convergence in probability, A1 and A2 are positive constants.

Proof. See Appendix A for details of the proof.

A direct consequence of 2�D̂(b)
P�! A2 for some A2 > 0 is that when b 2 P,

lim
N!1

P (D̂(b) > A) = 1 for some A > 0. This implies rejecting the null hypothesis for large

values of the test statistic D̂(b) will result in a consistent test. Also, if there are multiple change

point locations fb1; b2; :::; bKg, Theorem 3.2 implies that P (
∩K

i=1 fD̂(bi) > A1g ), for some

A1 > 0, converges to 1 as N !1.

It follows from Theorems 2.7.1, 2.7.2 mean that D̂(b) = op(1) if b 2 P, and D̂(b) > A for

some A > 0 if b 2 P. Recall that the true measure of local change D(�) attains local maxima

at the true change points fb1; b2; :::; bKg and equals 0 for points away from the neighbourhoods

of change points. Thus we have

sup
b2(0;1)

jD̂(b)�D(b)j = op(1) (2.17)
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Therefore, by similar arguments from Theorem 3.6 and Property 3.9 of Preuss et al. (2015), the

property given above in (2.17) will imply that b̂i P�! bi for i = 1; 2; :::; K and we will also have

K̂ �! K.

2.8 Illustrative Examples

2.8.1 Simulation Study

In this section we illustrate the performance of our method in comparison to other recent methods

through a few simulation examples, analyze the power of the proposed test and also illustrate

the construction of confidence limits for change points. The length of the series is taken as

T = 256; 512; 1024. The probability parameter q for generating the random block lengths

in the bootstrap procedure from Section 2.4.1 is taken according to Politis and White (2004);

Patton et al. (2009). The number of bootstrap replications B is set to 500. For the estimated

spectral matrix, our method was implemented using the Bartlett-Priestley kernel with bandwidth

h = N�0:4 and the Daniell kernel, see Example 10.4.1 in Brockwell and Davis (1991) with

m =
p
N. Similar results were obtained for the two kernel choices and only the results from the

latter are presented. The significance level for testing for significant change points is set at 1%.

A correction could be applied to the choice of significance level as the method involves multiple

tests with the number of tests depending on the unknown number of change points. Controlling

the overall error rate in this multiple testing scenario requires further theoretical investigation.

First we investigate the ability of our method in detecting actual change point locations as

compared to recent methods of Preuss et al. (2015) and Matteson and James (2014). The

latter work includes a change point detection method for multivariate piecewise i.i.d data. Here a

bisection type procedure that uses a characteristic function based divergence measure is proposed.

2.8.1.1 Example 1: Change Point Detection Accuracy

We conducted 500 simulation runs of each model given below and a histogram of detected

change points based on our method is obtained and presented on a 0-100 scale. Likewise, a
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similar histogram is constructed for each of the competing methods. In our method, for the

length of the dyadic neighbourhood N, we use the technique in Section 2.3.1.

(a). A bivariate piecewise i.i.d model with one change point at b1 = f0:5g

Xt;T = I(t=T � 0:5)ut + I(t=T > 0:5) vt (2.18)

where ut and vt are i.i.d N(0; I2) and N(0; 3I2) respectively.

(b). A bivariate piecewise i.i.d model with two change points at b1 = 0:3; b2 = 0:75

Xt;T = I(t=T � 0:3)ut + I(0:3 < t=T < 0:75) vt + I(t=T > 0:75) wt (2.19)

where ut , vt and wt are i.i.d N(0; I2), N(0; 2I2) and N(0; 3I2), respectively.

(c). A bivariate AR(1) model with two change points at b1 = 0:5; b2 = 0:75

Xt;T = I(
t

T
� 0:5)

0:1 0

0 0:1

Xt�1;T + I(0:5 <
t

T
� 0:75)

0:4 0

0 0:4

Xt�1;T

+ I(
t

T
> 0:75)

0:8 0

0 0:8

Xt�1;T + �t

(2.20)

where �t are i.i.d N(0; I2).
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(d). A bivariate MA(1) model with two change points at b1 = 0:5; b2 = 0:75;

Xt;T = I(
t

T
� 0:5)

1:4 0

0 0:9

Zt�1 + I(0:5 <
t

T
� 0:75)

0:5 0

0 0:5

Zt�1

+ I(
t

T
> 0:75)

 2:2 0:1

�0:3 1:3

Zt�1 + Zt

(2.21)

where Zt are i.i.d N(0; I2).

(e). A bivariate AR(2) model with two change points at b1 = 0:5; b2 = 0:75;

Xt;T = I(
t

T
� 0:5)f

1:1 0

0 1:1

Xt�1;T +

�0:7 0

0 �0:7

Xt�2;Tg

+ I(0:5 <
t

T
� 0:75)f

0:4 0

0 0:4

Xt�1;T +

�0:7 0

0 0

Xt�2;Tg

+ I(
t

T
> 0:75)f

0:9 0

0 0:9

Xt�1;T +

0 0

0 �0:7

Xt�2;Tg+ �t

(2.22)

where �t are i.i.d zero-mean Gaussian with cov(�t1; �t2) = 0:5.
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(f). A tri-variate MA(1) model with three change points at b1 = 0:25; b2 = 0:5; b3 = 0:75;

Xt;T = I(
t

T
� 0:25)


1 �1 �1
1 1 �1
1 1 1

Zt�1 + I(0:25 <
t

T
� 0:5)


1 �1 �1
1 �1 �1
1 1 1

Zt�1

+ I(0:5 <
t

T
� 0:75)


1 �1 �1
1 1 1

1 1 1

Zt�1 + I(
t

T
> 0:75)


1 �1 �1
1 1 �1
1 �1 1

Zt�1 + Zt

(2.23)

where Zt are i.i.d N(0; I3).

(g). Finally, we consider a bivariate time-varying coefficients AR(1) model similar to Preuss et al.

(2015) with one change point at b1 = 0:5 wherein the model assumptions in (2.1) and the

assumptions for the theoretical results in Section 2.4 are violated:

Xt;T = I(
t

T
� 0:5)

0:8� 3:2(t=T ) 0:3

�0:6 0:1

Xt�1;T + I(
t

T
> 0:5)

2:4� 3:2(t=T ) 0:1

�0:6 0:1

�
Xt�1;T + �t

(2.24)

where �t are i.i.d zero-mean Gaussian with cov(�t;1; �t;2) = 0:5.
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Figure 2.1: Change point at f0:5g. (a),(d) is the histogram of detected change point locations
(presented on a 0-100 scale) of the model in (2.18) using Preuss et al. (2015) and (b),(e) is the
same histogram using our method at 1% level and (c),(f) is the same histogram using Matteson
and James (2014).
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Figure 2.2: Change points at f0:3; 0:75g. (a),(d) is the histogram of detected change point
locations (presented on a 0-100 scale) of the model in (2.19) using Preuss et al. (2015) and
(b),(e) is the same histogram using our method at 1% level and (c),(f) is the same histogram
using Matteson and James (2014).
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Figure 2.3: Change points at f0:5; 0:75g. (a),(d) is the histogram of detected change point
locations (presented on a 0-100 scale) of the model in (2.20) using Preuss et al. (2015) and
(b),(e) is the same histogram using our method at 1% level and (c),(f) is the same histogram
using Matteson and James (2014).
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Figure 2.4: Change points at f0:5; 0:75g. (a),(d) is the histogram of detected change point
locations (presented on a 0-100 scale) of the model in (2.21) using Preuss et al. (2015) and
(b),(e) is the same histogram using our method at 1% level and (c),(f) is the same histogram
using Matteson and James (2014).
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Figure 2.5: Change points at f0:5; 0:75g. (a),(c) is the histogram of detected change point
locations (presented on a 0-100 scale) of the model in (3.20) using Preuss et al. (2015) and
(b),(d) is the same histogram using our method at 1% level.
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Figure 2.6: Change points at f0:25; 0:5; 0:75g. (a),(c) is the histogram of detected change
point locations (presented on a 0-100 scale) of the model in (2.23) using Preuss et al. (2015)
and (b),(d) is the same histogram using our method at 1% level.
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Figure 2.7: (a),(c) is the histogram of detected change point locations (presented on a 0-100
scale) of the model in (2.24) using Preuss et al. (2015) and (b),(d) is the same histogram using
our method at 1% level.

In the panel histograms provided in Figures 2.1–2.4, plots (a),(c) is the histogram of detected

change point locations using Preuss et al. (2015) and (b),(d) is the same histogram using our

method and (c), (f) is from the method in Matteson and James (2014). From Figures 2.1–2.7 we

notice that our method results in more locations being identified as change points in comparison

to Preuss et al. (2015). In all models, the number of discoveries at the actual change point

locations increases as the sample size increases. It can be seen that for the piecewise i.i.d models

(a) and (b), at both the sample sizes 256 and 512, our method performs better than Preuss

et al. (2015) in terms of detecting the change points with more accuracy. We also have the

comparison with Matteson and James (2014) as this model satisfies their piecewise i.i.d working

model assumption. Our method is slightly inferior to their method in results based on model

(a) but performs better in results based on model (b) with two change points. This is also

the case when some dependence is introduced through a VAR(1) model (c) and the VMA(1)

model (d) wherein our method performs better than the competing methods. For the remaining

data examples with more dependence, we only present comparisons with Preuss et al. (2015).
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The results for the VAR(2) model (e) also indicate better performance of our method with the

number of change points estimated at f0:5; 0:75g increasing significantly with increasing series

length. For the three dimensional MA(1) model (f) with three change points, the performance is

comparable with Preuss et al. (2015) at T = 256, but it gets better for the larger series length

512. In contrast to earlier examples, the number of change point discoveries is seen to have a

significant increase at the location 0:75 but not so much at the other change points. Finally, for

the locally stationary bivariate AR(1) model (g), our method has a slightly inferior performance

to Preuss et al. (2015) for T = 256; 512.

Next, in Table 2.1 we present results on the mean number of change points detected per run.

Here out of 500 runs of the 7 models discussed above we obtain the average number of change

points detected per run. Also reported is the percentage of times the correct number of change

points was identified by the 3 competing methods. A detection of a point, say b̂, is considered

correct if b̂ is in a N-neighborhood (within N units) of the actual change point location b. The

value of N here is taken as follows: for any detected point b̂, N is taken as the smallest value in

the set fN1; N2; :::; Nng that led to the addition of b̂ to the set P ; refer back to Section 2.3.1

for details. For models (a) and (b), we see that our method performs better than Preuss et al.

(2015) in terms of identifying the true number of change point locations. For models (c)-(f)

with increasing series length, it can be observed that in Preuss et al. (2015), the improvement in

detection accuracy i.e % of times the true number of change points is detected is lesser than the

proposed method. In model (g) however the method in Preuss et al. (2015) performs better than

the competing methods. We notice that the method from Matteson and James (2014) does not

perform well for models (b)-(g).

Model M1 M2 M3

Sec. 2.8.1.1 T Mean % Correct Mean % Correct Mean % Correct

a (K=1)

256 0.78 75 0.82 76 0.94 94

512 0.79 76 1.05 85 0.95 95
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1024 0.87 85 1.10 94 0.99 99

b (K=2)

256 0.26 9 0.88 28 1.10 14

512 0.489 25 1.76 85 1.38 16

1024 0.791 42 2.08 90 2.95 24

c (K=2))

256 0.22 10 0.48 8 1.72 11

512 0.38 16 0.683 19 3.85 8

1024 0.72 34 1.08 41 4.55 6

d (K=2)

256 0.34 10 0.585 19 1.39 9

512 0.40 15 0.95 34 2.84 6

1024 0.85 35 1.52 58 4.02 9

e (K=2)

256 0.08 3 0.5 20 1.41 8

512 0.18 7 0.88 34 2.85 9

1024 0.45 20 1.45 56 3.90 10

f (K=3)

256 0.38 7 0.45 8 0.74 4

512 0.72 14 0.802 14 1.18 7

1024 1.39 36 1.93 47 3.48 20

g (K=1)

256 0.19 15 0.18 14 0.2 5

512 0.54 48 0.23 21 0.2 5

1024 0.78 77 0.40 35 0.4 7

Table 2.1: The mean number of change points detected per simulation run of the 7 models in
Section 2.8.1.1 for the 3 competing methods M1 (Preuss et al. (2015)), M2 (proposed method)
and M3 (Matteson and James (2014)). K denotes the actual number of change points. The %
Correct column lists the percentage of runs the correct number or change points was reported by
the methods. Results are based on 500 simulation runs of all 7 models.
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2.8.1.2 Example 2: Empirical Size of the Test

As pointed out by a referee, we investigate the empirical size of the proposed procedure in

time series with no change points. We consider 3 stationary models with series length T =

128; 256; 512. First, a bivariate i.i.d model

Xt;T = �t (2.25)

with �t � N(0; I2). Second, a bivariate AR(1) model

Xt;T =

1:4 0

0 0:9

Xt�1 + Zt (2.26)

where Zt are i.i.d N(0; I2). Third, tri-variate MA(1) model

Xt;T =


1 �1 �1
1 1 �1
1 1 1

Zt�1 ++Zt (2.27)

where Zt are i.i.d N(0; I3). The true level of significance (size) was fixed at 1%. In addition, we

provide the results for our method but with the 1-norm replacing the L2 norm for the measure

of local change given in (2.4). From Table 2.2, a slightly higher estimate of the true size of the

proposed test can be seen in the L2 norm in comparison to the 1-norm. This could be viewed

as a factor in the higher rate of detection of locations by the proposed method in Section 2.8.1.1

in comparison to the method in Preuss et al. (2015).
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Norm i.i.d Model VAR(1) VMA(1)

T=128
L2 norm 0.02 0.016 0.02

1-norm 0.018 0.02 0.018

T=256
L2 norm 0.012 0.016 0.018

1-norm 0.008 0.014 0.018

T=512
L2 norm 0.008 0.012 0.012

1-norm 0.008 0.008 0.01

Table 2.2: The empirical size of the proposed procedure based on two norm choices (L2 and 1)
used in the test statistic in (2.4). Results are based on 500 simulation runs of the 3 models in
Section 2.8.1.2. The true level of significance (size) was fixed at 1%.

2.8.1.3 Example 3: Impact of Dimension

We investigate the impact of dimension of the input series on the power of the test for

significant change points. For this we consider the following two models with one change point

Xt;T = I(1 � t � T=2)f�t +�1
1�t�1g+ I(T=2 < t � T )f�t +�2

1�t�1g (2.28)

and

Xt;T = I(1 � t � T=2)f�t + �1
1�t�1g+ I(T=2 < t � T )f�t + �2

1�t�1g (2.29)

where �t are i.i.d N(0; Ip). For g 2 f1; 2g, the matrices �g
1 and �g

1 are each p�p with (�1
1)i j =

�
ji�j j
1 I(ji � j j � p=2), (�2

1)i j = (1+ �1)
ji�j jI(ji � j j � p=2) and (�1

1)i j = �
ji�j j
2 I(ji � j j � p=2),

(�2
1)i j = (0:5 + �2)

ji�j jI(ji � j j � p=2). In our simulation we fix �1 = 0:5, �2 = 0:3 and

repeat the simulation 500 times. We consider dimensions p = 4; 6; 8; 10 and sample sizes

T = 256; 512; 1024. Tables 2.3 and 2.4 present the empirical power estimated over the 500

simulation runs of the two models at various significance levels of the test.
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Model (2.28) Model (2.29)

�(size) T p=4 p=6 p=8 p=10 p=4 p=6 p=8 p=10

0.01

128 0.3620 0.48 0.5035 0.5487 0.1235 0.2160 0.2998 0.3860

256 0.4752 0.5766 0.5877 0.6088 0.2464 0.3442 0.4068 0.4550

512 0.8244 0.9109 0.9205 9262 0.4610 0.6042 0.7071 0.7247

1024 0.9907 1 1 1 0.7745 0.9010 0.9508 0.9734

0.05

128 0.6280 0.70 0.7257 0.7461 0.3005 0.5126 0.5906 0.6587

256 0.7533 0.8291 0.8548 0.8625 0.4949 0.6123 0.6920 0.7135

512 0.9591 0.9877 0.9890 0.9850 0.7136 0.8215 0.8940 0.9025

1024 1 1 1 1 0.9251 0.9412 0.9792 0.9850

0.10

128 0.75 0.8133 0.8465 0.8921 0.5039 0.5994 0.6870 0.77

256 0.8655 0.9072 0.9126 0.9155 0.6267 0.7038 0.8155 0.8461

512 0.9856 0.9960 1 1 0.8188 0.9005 0.9370 0.9655

1024 1 1 1 1 0.9654 0.9875 1 1

Table 2.3: (Based on L2 norm) The size (first column) and the empirical power (body of the
table) of the proposed test against dimension (p) of the input series from 500 simulation runs of
the two models given in Section 2.8.1.3.
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Model (2.28) Model (2.29)

�(size) T p=4 p=6 p=8 p=10 p=4 p=6 p=8 p=10

0.01

128 0.2645 0.3086 0.40 0.4510 0.0875 0.1328 0.1542 0.2168

256 0.4520 0.5020 0.59 0.5831 0.1950 0.2831 0.3012 0.3235

512 0.8432 0.8922 0.9320 0.9162 0.4080 0.5911 0.7085 0.7077

1024 0.99 1 1 1 0.7942 0.9105 0.9508 0.9588

0.05

128 0.5129 0.6042 0.6415 0.6729 0.1891 0.3995 0.4383 0.5527

256 0.7520 0.7647 0.8133 0.8610 0.4021 0.5322 0.6128 0.6641

512 0.9321 0.9643 0.99 0.993 0.6560 0.85 0.9053 0.9325

1024 1 1 1 1 0.9356 0.9421 0.9830 1

0.10

128 0.6628 0.7105 0.76 0.8085 0.3511 0.4874 0.5782 0.6801

256 0.8435 0.8840 0.9057 0.9252 0.5835 0.7172 0.7638 0.8017

512 0.98 0.9980 1 0.998 0.7698 0.9260 0.9518 0.9696

1024 1 1 1 1 0.97 0.99 1 1

Table 2.4: (Based on 1-norm) The size (first column) and the empirical power (body of the
table) of the proposed test against dimension (p) of the input series from 500 simulation runs of
the two models given in Section 2.8.1.3.

We notice from Table 2.3 that for all dimensions, the power increased as the sample size

increases as per the asymptotic theory described earlier in Section 2.7. Comparing the results

from Tables 2.3,2.4, we notice that for smaller sample sizes the procedure based on the L2 norm

performs better than when replaced by the 1-norm. Also at a given level of significance, the

power of the test increases as the dimension of the input series increases from 4 to 10. Based on

the models described above, this behavior can be attributed to the addition of components that

also contain a change point. By adding such components, we notice that our measure of local
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change using the L2 norm on the spectral matrices is such that the signal part (the part that

reflects the size of change) increases at the rate p2 and the noise part at rate p. Recent methods

in Wang and Samworth (2017); Cho and Fryzlewicz (2015) discuss change point methodologies

in high-dimensional settings by identifying a sparse subset of components that contribute to the

change.

2.8.1.4 Example 4: Confidence Intervals for Change Points

Here we study the construction of confidence intervals (CI) using the technique proposed in

Section 2.6. We consider the 7 models from Section 2.8.1.1 with series lengths T = 256; 512.

Out of 500 simulations for both sample sizes, we consider instances where K̂ = K, where K is

the true number of change points in the model. For the choice of N used for constructing these

intervals, we refer back to the procedure described in Section 2.3.1 and select the largest value of

Ni , i = 1; 2; :::; n for which there is an addition of a point to the set P in the iterative procedure.

In Table 2.5, the mean and median of the estimate �b from (2.10) over 500 runs is listed. The

90% mean lower and upper limits of the confidence intervals along with the coverage probability

is also provided. For all models, we notice the increase in coverage probability as series length T

increases from 256 to 512.

Model Change Pt. T Mean Median Mean 90% CI limits Coverage Probability

(a) 0.5
256 0.523 0.507 [0.498 , 0.551 ] 86.55

512 0.510 0.502 [0.491 , 0.521 ] 89.56

(b)

0.3
256 0.335 0.321 [0.282 , 0.397 ] 81.29

512 0.320 0.307 [0.289 , 0.364 ] 86.25

0.75
256 0.7656 0.7539 [0.746 , 0.805 ] 83.11

512 0.760 0.753 [0.744 , 0.779 ] 87.54

(c)

0.5
256 0.550 0.535 [0.452 , 0.569 ] 84.72

512 0.511 0.505 [0.466 , 0.576 ] 90

34



0.75
256 0.781 0.762 [0.743 , 0.796 ] 80.50

512 0.780 0.762 [0.738 , 0.801 ] 91.04

(d)

0.5
256 0.492 0.484 [0.435 , 0.537 ] 80.67

512 0.488 0.468 [0.414 , 0.502 ] 85.08

0.75
256 0.785 0.769 [0.752 , 0.809 ] 84.17

512 0.761 0.770 [0.748 , 0.802 ] 86.95

(e)

0.5
256 0.496 0.480 [0.429 , 0.527 ] 89.53

512 0.489 0.475 [0.418 , 0.501 ] 90.10

0.75
256 0.757 0.757 [0.726 , 0.793 ] 82.60

512 0.773 0.757 [0.742 , 0.805 ] 87.25

(f)

0.25
256 0.248 0.225 [0.203 , 0.286 ] 82.17

512 0.245 0.240 [0.224 , 0.278 ] 86.20

0.5
256 0.488 0.476 [0.429 , 0.574 ] 86.67

512 0.490 0.484 [0.414 , 0.558 ] 89.11

0.75
256 0.743 0.734 [0.715 , 0.783 ] 83.34

512 0.746 0.746 [0.722 , 0.781 ] 89.85

(g) 0.5
256 0.528 0.507 [0.449 , 0.585 ] 91.42

512 0.515 0.502 [0.482 , 0.588 ] 92.33

Table 2.5: Mean and Median of �b from (2.10) over 500 runs. Mean 90% CI limits and estimated
coverage probability is listed for the 7 models (a)-(g) from Section 2.8.1.1

.

2.8.2 Application to Seismic Data

Nonstationary time series models have been used to model earthquake data, see Last and

Shumway (2008); Ombao et al. (2004) for univariate examples. Strong motion data are mea-

surements over time of ground displacements measured in orthogonal directions. Strong-motion

accelerographs are located in major centres of population, near significant faults, or in different
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types of building structures and are capable of measuring very strong shaking associated with

damaging earthquakes. Ellis and Cakmak (1987); Ellis et al. (1990); Ellis and Cakmak (1991)

discuss the advantages of modeling strong motion data in multivariate form and fit VARMA

models to the data. We utilize the strong-motion accelerograph data measured in three orthog-

onal directions, two directions for movement along the ground and one for vertical movement.

The data observed over time for the three directions at a given location constitute a tri-variate

time series and we aim to capture earthquake occurrences by detecting change points around the

earthquake incidents. At all the detected change points, we will also identify the components

responsible for seismic activity.

We look at data from the Dannevirke (New Zealand) earthquake of 1975 1 which recorded

5.9 on the Richter scale and had an epicenter about 15km south of Dannevirke. The shocks

were felt towards the evening of June 10 and we consider 400 observations from that period of

the day. This acceleration data is from the Palmerston North Telephone Exchange station. The

three components of the multivariate series are the three orthogonal directions namely N30W,

S60W and UP.

We set the level of significance at 5% for the test. For the length of the dyadic neighbourhood

N, we implement the technique in Section 2.3.1 to obtain the change point locations. Our method

estimates 4 significant change points given as the dashed lines in Figure 2.8 below. The data

reports from Geonet indicate a peak 384.6 m/s/s that can be seen in Figure 7 and list the duration

of the shock as 15.9 seconds. Our method rightly detects two change points at time points 287

and 322 which covers the period of peak acceleration for the first two components. For these two

points the method also rightly identifies the first two components responsible for the change, see

Figure 2.9 for the components contribution plot, where 1, 2, 3 corresponds to components N30W,

S60W and UP respectively. In addition it also detects a similar region of peaked acceleration in the

first two components between time points 128 and 162 and rightly detect these components as
1GeoNet(http://info.geonet.org.nz/display/appdata/Strong-Motion+Data) is the official source of

geological hazard information for New Zealand.

36



significant towards contributing to seismic activity. The UP component behaves differently with

disturbances around time points 225 and 100, but is not deemed as significant by our method.

The method in Preuss et al. (2015) detects 6 change points, two of which includes the points 73

and 101 that deems the disturbance in the vertical component as significant. The other detected

points are 143, 184, 224 and 300. The method from Matteson and James (2014) estimates

change points at 39, 75, 126, 156, 198, 230, 287, 337.
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Figure 2.8: T = 400 observations of the Acceleration(m/s/s) readings during the evening of
Jun 10, 1975 at Palmerston North Telephone Exchange. Measurements are presented in three
orthogonal directions. Dashed lines are change points detected by our method.
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Figure 2.9: Components contribution plot: jMb̂;i j j; i ; j = 1; 2; 3 (y-axis) from (2.8) for time
points (x-axis) 51,52,...,350.
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3. STATIONARY SUBSPACE ANALYSIS OF NONSTATIONARY PROCESSES

In this chapter we begin by describing the SSA model setup and the technique in von Bü-

nau et al. (2009a) for independent random vectors. Then, we present our SSA method from

Sundararajan and Pourahmadi (2018b) of finding the stationary subspace of a second-order non-

stationary process. Procedures for testing stationarity and determining the dimension of the

stationary subspace are presented 1. Finally, we discuss an application of the proposed method

in improving prediction accuracy in neuroeconomic experiments 2.

3.1 The SSA Setup

Let fXtg be an observed p-dimensional nonstationary time series that is a linear combination

of d stationary sources Y s
t 2 Rd and p � d nonstationary sources Y n

t 2 Rp�d . More precisely,

Xt = AYt =

[
As An

] Y s
t

Y n
t

 ; (3.1)

where A is the unknown p � p (invertible) mixing matrix, As and An are p � d and p � (p � d)
matrices, respectively. In SSA, the observed vectors are independent and the notion of stationarity

is with respect to the first two moments, that is the mean and lag-0 covariance are required to

be time-invariant. It is further assumed that no linear transformation of Y n
t is stationary. The

spaces generated by the columns of As and An are referred to as the stationary and nonstationary

subspaces of the observed process, respectively.

The objective of SSA is to estimate the demixing matrix B = A�1 so that Yt = BXt is

naturally partitioned into its stationary and nonstationary sources. Due to the multiplicative
1*Reprinted with permission from “Stationary Subspace Analysis of Nonstationary Processes” by Raanju Ra-

gavendar Sundararajan and Mohsen Pourahmadi, 2018. Journal of Time Series Analysis, 39 (3), 338-355, Copy-
right [2018] by John Wiley and Sons.

2*Reprinted with permission from “Reducing Brain Signal Noise in the Prediction of Economic Choices: A
Case Study in Neuroeconomics” by Raanju R. Sundararajan, Marco A. Palma and Mohsen Pourahmadi, 2017.
Frontiers in Neuroscience, 11, 704, Copyright [2017] by Frontiers.
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form of (3.1), the matrix B is not unique but taken to be an orthogonal matrix. In von Bünau

et al. (2009a), the matrix B is found by dividing the time series data into N time frames called

epochs (segments), and then minimizing as a function of B the Kullback-Leibler (KL) divergence

between Gaussian distributions with given means and covariances across these segments. Let

�̂i , �̂i , i = 1; 2; :::; N, be the sample mean and covariance of the data for the i th segment,

respectively. Consider the d � p matrix B1 as the first d rows of the p � p matrix B, i.e.

B =

B1

B2

 (3.2)

where B1 2 R
d�p and B2 2 R

(p�d)�p. For a given B1 it follows that the sample mean and

covariance of a candidate stationary source Y s
t = B1Xt on the i th segment are

�̂si = B1�̂i and �̂s
i = B1�̂iB

>
1 ; i = 1; 2; :::; N: (3.3)

The matrix B is then chosen so that the means and covariances in (3.3) vary the least across all

segments. A natural objective function is the sum of the Kullback-Leibler (KL) divergences be-

tween the N(�̂si ; �̂s
i ); i = 1; : : : ; N; on each epoch and the grand normal distribution N(�s ;�s)

where �s = 1=N
∑N

i=1 �̂
s
i and �s = 1=N

∑N
i=1 �̂

s
i :

L(B) =

N∑
i=1

DKL[ N(�̂
s
i ; �̂

s
i ) jj N(�s ;�s) ]

= �
N∑
i=1

(
log det �̂s

i + (�̂si � �s)>(�̂si � �s)
)
: (3.4)

Then, B is estimated by minimizing L(B) using a conjugate gradient descent technique; see von

Bünau et al. (2009a), Panknin et al. (2016) for more details. It should be noted that lack of

convexity of the objective function may result in many local optima.

Due to the multiplicative form of (3.1), the matrix B and the latent process are unique up
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to scaling, sign and linear transformations within the stationary and nonstationary subspaces.

However, even though As and An are not unique, their column spaces denoted by C (As) and

C (An) are uniquely determined. Interestingly, it is shown in von Bünau et al. (2009a), von

Bünau et al. (2009b) that the stationary source in SSA, namely fY s
t g is identifiable up to linear

transformations provided the number of segments (epochs) N satisfies,

N >
p � d + 1

2
+ 1: (3.5)

A negative consequence of the condition (3.5) is that a larger number of nonstationary sources

p � d forces the number of segments N to be potentially larger, and hence leads to poorer

estimates of the means and covariances, �̂si , �̂s
i , i = 1; 2; :::; N, across the segments.

In what follows we refer to the method above as independent-SSA or ISSA, for short. There

is also the alternative analytic-SSA (ASSA) proposed in Hara et al. (2012) which reduces solving

the challenging non-convex optimization problem in ISSA to a simpler generalized eigenvalue

problem, but under the additional assumption that Y s
t and Y n

t are uncorrelated.

It will be seen later in Section 3.3 that SSA and ASSA are not robust to the choice of

N. Another potential problem in dividing the time series into N segments is that when the

nonstationary sources Y n
t is periodically stationary with period T=N, then the method would not

be able to detect the nonstationarity.

3.2 Dependent-SSA (DSSA)

In this section we develop an SSA method for finding stationary subspaces of multivariate

second-order nonstationary processes satisfying (3.1) using its discrete Fourier transform. In ad-

dition to extending ISSA to the dependent data situation, the proposed DSSA method avoids

dividing the data into several segments, and is based on a test of stationarity for determin-

ing whether the estimated transformation (source) is stationary. A technique to determine the

dimension d of the stationary subspace is given along with some asymptotic properties. See
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Sundararajan and Pourahmadi (2018b) for more details.

3.2.1 DSSA for Constant Mean Processes

Following the definition in (1.3), we denote discrete Fourier transform (DFT) of a zero-mean

d-variate second-order stationary time series Y s
t , 1 � t � T; as JsY (!k) where !k =

2�
T
k , k =

1; 2; :::; T;. Viewing this DFT series as a time series indexed by k , its lag-r sample autocovariance

is the p � p complex valued matrix given by

�̂Y
s

r =
1

T

T∑
k=1

JY s (!k)JY s (!k+r)
�; (3.6)

where JY s (�)� denotes the complex conjugate transpose and r = 0; 1; : : :. Recall from (1.4) that

the DFT series is asyptotically uncorrelated at unequal frequencies. The covariance of the DFTs

defined above exhibits a very different behavior when Y s
t is second-order nonstationary. Lemma

A.8 in Jentsch and Subba Rao (2015a) describes the behavior of this quantity when Y s
t is a locally

stationary vector time series.

Note that �̂Y s

r denotes the lag-r sample DFT autocovariance of Y s
t = B1Xt . For a given

positive integer m, based on the magnitudes of the first few autocovariances of the DFTs of Y s
t ,

we construct the following objective function as a measure of departure from stationarity:

DY (B) =

m∑
r=1

jj Re
(
�̂Y

s

r (B)
)
jj2F + jj Im

(
�̂Y

s

r (B)
)
jj2F ; (3.7)

where for a matrix A 2 R
d�d , jjAjjF =

√∑d
i;j=1 ja2i j j denotes its Frobenius norm, Re(�) and

Im(�) denote the real and imaginary parts, respectively. The number of lags m is recommended to

be small as larger values could result in loss of power of a stationarity test used in our procedure.

For convenience in notation, we drop B in �̂Y s

r (B) and use �̂Y s

r as the lag-r sample autocovariance

of the DFTs.

A solution B̂ is obtained by minimizing DY (B) subject to the assumption of orthogonality,
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BB> = Ip. Since the objective function in (3.7) is non-convex it could have many local optima.

Hence different starting values can be used to obtain a set of solutions. Since the set of orthogonal

matrices with determinant 1, namely SO(p), constitutes a connected Lie group (see Section 6 of

Plumbley (2005)), they can be parametrized as matrix exponentials of skew-symmetric matrices.

While restricting the search to SO(p) results in searching only half the possible permutations of

stationary sources, we notice that any permutation and sign change combination of stationary

sources is still stationary. In our optimization we focus on the first d rows of B and hence any

permutation of the d stationary sources is as good as the other.

The solution can then be obtained using a gradient descent technique by making multiplicative

updates. Starting with an orthogonal matrix B0, iterative updates of the form B̂ = eHB0 are

made where H is a skew-symmetric matrix. The exact expressions of the gradient and the update

steps needed to solve this optimization problem are provided in the Appendix B.1.

3.2.2 DSSA for Time-Varying Mean

In the development of DSSA so far it was assumed that the mean of the observed process

is zero. We now discuss the ability of the proposed DSSA in handling nonstationarity when the

observed process has a time-varying mean. The key observation is that the components of �̂Y s

r

has a non-zero limit or is op(1) depending on whether the mean is time-varying or constant.

Let �(t=T ) 2 Rd be the time-varying mean of a d-variate series fY s
t g, 1 � t � T; then

E
(√2�

T
JsY (!k)

)
= E

( 1
T

T∑
t=1

Y s
t exp(�i t!k)

)
�

∫ 1

0

�(u) exp(�i2�uk) du = �k ; (3.8)

where �k is the d-vector of Fourier coefficients of the mean function. It is known that j�k;i j ! 0

as k ! 1 if the i th component �i(�) 2 L2[0; 1], where �k;i is the i th component of �k ,
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i = 1; 2; :::; d . Hence, for any a; b = 1; 2; :::; d and lag r , we have

�̂Y
s

r;a;b �
T∑

k=1

�k;a�k+r;b = O(1): (3.9)

On the other hand, if �(t=T ) = c for some constant vector c , then E(JY s (!k)) = 0 for k 6= TZ

and we have �̂Y s

r;a;b = op(1).

We see that minimizing the left hand side of (3.9) over m lags results in a stationary subspace

where the mean function is nearly constant. However under a time-varying mean, the properties

of the test of stationarity described in Section 3.2.4 requires further investigation.

In order to find stationary subspaces of multivariate processes that are both first and second-

order nonstationary, a two-stage testing procedure can be employed. For an estimated source

Y s
t , the first stage tests for constancy of the mean and the second stage, as described in Section

3.2.4, tests for second-order stationarity. Testing for constancy in the mean can be carried out

using the fact that under the null hypothesis that Y s
t is first and second-order stationary,

 Re( JY s (!k) )

Im( JY s (!k) )

 D�! N

 0 ;

 fY s (!k) 0

0 fY s (!k)


 (3.10)

where fY s (!k) is the d�d spectral matrix of Y s
t . Under the alternative hypothesis that the mean

is time-varying, we already saw that JY s (!k) �
p
T�k which supports the use of k << T in the

test. Note that to estimate the spectral matrix above it is necessary to either demean the time

series or to use JY s (!k) for k relatively far from zero in the estimation.

3.2.3 Identifiability of the Stationary Subspace

Similar to the ISSA, our DSSA method faces the problem of non-uniqueness in the estimated

stationary source. In ISSA the condition on the number of epochs given in (3.5) ensures that

C (As) from (3.1) is uniquely determined. In our case, the orthogonality constraint BB> = Ip

( or B1B
T
1 = Id) alone is not sufficient to ensure that C (As) is uniquely determined. Here we
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discuss additional quadratic constraints on B1 to overcome this problem.

Let B � R
d�p be the set of feasible solutions for optimizing (3.7). To have stationarity

in the estimated source fY s
t g, we search for d orthonormal vectors so that the magnitude of

the DFT covariances of each component of fY s
t g is small. More precisely, the orthonormal row

vectors (b1; b2; :::; bd) of B1 2 R
d�p are chosen to minimize jRe(bj �̂Xr b>j )j + jIm(bj �̂Xr b>j )j

for r = 1; 2; :::; m, where m is the number of DFT lagged covariances under consideration and

j = 1; 2; :::; d . Here �̂Xr is the p � p lag-r DFT covariance of fXtg as in (3.6).

Let UR
r and UI

r be the real and imaginary parts of the p � p matrix �̂Xr . We thus have, for

r = 1; 2; :::m and j = 1; 2; :::; d ,

jRe(bj �̂Xr b>j )j + jIm(bj �̂Xr b>j )j = jbjUR
r b

>
j j + jbjUI

rb
>
j j

� bjVrb
>
j

where j � j denotes the absolute value and the expression for Vr is given in Section B.2. Now using

the above inequality, for any row vector bj of B1, j = 1; 2; :::d , in addition to the orthonormality

constraint, we impose the following m quadratic constraints,

bjVrb
>
j = �(T ); (3.11)

for r = 1; 2; :::; m, for a non-negative function �(T ) that decays to 0 as T !1. The constraint

on the p-vector bj in (3.11) forces the upper bound of jRe(bj �̂Xr b>j )j+ jIm(bj �̂Xr b>j )j to be small.

Next, we provide a lower bound on the number of lags m required to uniquely identify C (As).

Theorem 3.2.1. Let B � R
d�p be the space of feasible solutions of (3.7), satisfying the

constraints in (3.11) and the orthonormality constraint B1B
T
1 = Id for B1 2 B. Then, in order

to uniquely identify C (As) the number of DFT covariance lags m must satisfy the inequality

m > p � d: (3.12)
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Proof. See the Appendix A.

The condition on m in Theorem 3.2.1 is similar to that on the number of epochs N in (3.5)

in the ISSA setup. Our simulation study reveals the sensitivity of ISSA and ASSA to the choice

of N, and the less sensitive nature of DSSA to the choice of m.

3.2.4 Testing for Stationarity

In this section we provide details of a test of second-order stationarity given in Dwivedi and

Subba Rao (2011) and Jentsch and Subba Rao (2015a) using the asymptotic uncorrelatedness

of the DFTs of a second-order stationary time series.

Given Y s
t = B̂1Xt 2 R

d , let f̂ (!) be an estimated d � d spectral matrix and L̂(!) be

the Cholesky factor of its inverse at frequency !. The weighted DFT covariance (Jentsch and

Subba Rao, 2015a, Eq. 2.7) is given by

�̂(r; `) =
1

T

T∑
k=1

L̂(!k)J(!k)J(!k+r)
�L̂(!k)

� exp(i `!k) (3.13)

for r = 1; 2; :::m and ` = 0; 1; :::; n � 1 where J(�)�; L̂(�)� denote the complex conjugate

transpose. Their test statistic for stationarity is

T (m; n; d) = T

m∑
r=1

jj W�1=2
n Re

(
K̂(r)

)
jj2F + jj W�1=2

n Im
(
K̂(r)

)
jj2F (3.14)

where K̂(r) =
(
vech(Ĉ(r; 0)); vech(Ĉ(r; 1)); :::; vech(Ĉ(r; n � 1)

)>
, vech(Ĉ(r; `)) is the

vectorized form of the lower triangular part of the d � d matrix �̂(r; `), and Wn is a n d(d+1)
2

�
n d(d+1)

2
scaling matrix (Jentsch and Subba Rao, 2015a, Eq. 2.14).

The asymptotic distribution of the test statistic under the null hypothesis that fY s
t g is a

Gaussian stationary time series is given by

T (m; n; d) D�! �2
mnd(d+1); as T !1; (3.15)
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where D�! denotes convergence in distribution. The null hypothesis is then rejected if T (m; n; d) >
c1��d

where c1��d
denotes the (1� �d)

th percentile of the �2
mnd(d+1) distribution. Also, under

the assumption that fY s
t g is locally stationary (alternative hypothesis), T (m; n; d) = Op(T ),

where m; n are assumed to be fixed positive integers.

Remark 1: The conditions to be imposed on the lag-window function �(�) and bandwidth b

while estimateting the d � d spectral matrix f̂ (!) are further discussed in Section 3.2.6.

3.2.5 Estimation of d : Dimension of the Stationary Subspace

Here we present a sequential technique for estimating the dimension of the stationary sub-

space. This is analogous to that in ISSA using a likelihood ratio test as in von Bünau et al.

(2009a), Blythe et al. (2012), but without requiring independence of the observations over time.

Given data from the observed p-variate series fXtg the sequential search for the dimension d

is as follows. Starting from d = 1, the demixing matrix B̂ is obtained as a solution by optimizing

the discrepancy measure in (3.7). Then the estimated Y s
t = B̂1Xt is tested for stationarity using

the test described in Section 3.2.4. The procedure terminates if there is a rejection of stationarity.

Otherwise d is increased and the steps are repeated. Finally, d is taken as the largest value for

which the test does not reject the null hypothesis of stationarity.

3.2.6 Asymptotic Properties of the Estimated d

Next, we study some asymptotic properties of the estimated d using the theoretical properties

of the test of stationarity in Section 3.2.4.

For ~d = 1; 2; :::; p, let
(
T (m; n; ~d); c(� ~d)

)
denote the test statistic and the critical value at

level � ~d . Let d̂ be the estimated dimension of the stationary subspace from Section 3.2.5. Note

that d̂ can also be written as

d̂ = minf ~d = 1; 2; :::; p : T (m; n; ~d) > c(� ~d) g � 1: (3.16)

We now list the assumptions required for deriving the results.
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Assumption 3. (A) (i).The observed process fXt;Tg, 1 � t � T , is a zero-mean locally sta-

tionary linear p-variate time series,

Xt;T =

1∑
j=0

	t;T (j)"t�j (3.17)

where "t are i.i.d Np(0; Ip). Let  j : [0; 1] ! R
p�p be a sequence of functions such that for

any a; b = 1; 2; :::; p,

j	t;T;a;b(j)�  j;a;b(t=T )j � K

T l(j)
;

where 	t;T;a;b(j) and  j;a;b(t=T ) denote the (a; b)th component of 	t;T (j) and  j(t=T ) re-

spectively. fl(j)�1g is a monotonically decreasing sequence such that
∑

j j
2l(j)�1 <1.

(ii). supu j j(u)j � K=l(j) and for i = 1; 2 , supu j @
i

@ui
 j(u)j � K=l(j). Also, supu

∑
j j @

2

@u2
 j(u)j <

1.

(iii). The time-varying p � p spectral matrix of fXt;Tg is defined as

f (u; !) =
1

2�

1∑
r;s=0

 r(u) s(u)
>e�i(r�s)! (3.18)

and for ! 2 [��; �], ∫ 1

0
f (u; !)du is non-singular.

(B). The lag-window function � : [�1; 1] ! R used for estimating the spectral matrix in

Section 3.2.4 is continuous, symmetric about 0 with bounded first derivative. The bandwidth

b 2 (T�1=2; T�1=4).

(C). The number of lags m; n, used for the test of stationarity in Section 3.2.4 are bounded

positive integers.

Assumptions A(i)-A(iii) are fairly standard in the literature of locally stationary linear time

series. Next, we state the asymptotic properties of d̂ in estimating the true dimension d0 of the

stationary subspace.

Theorem 3.2.2. Suppose that Assumption 1 is satisfied and B, the space of feasible solutions
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for optimizing (3.7), is defined by the constraints in (3.11) and the orthonormality constraint

B1B
T
1 = Id for B1 2 B. Then, as T !1 we have,

(a). (Consistency) P
(
d̂ = d0

)
! 1 if d0 = 0.

(b). P
(
d̂ = d0

)
� 1�∑d0

j=1 �j if d0 2 f1; 2; :::; pg.

(c). P
(
d̂ > d0

)
! 0 if d0 2 f1; 2; :::; p � 1g.

Proof. See the Appendix A.

Theorem 3.2.2 (a) establishes consistency of the estimator in the absence of stationary sources;

an example of this situation is given in our simulation study for model (3.23) in Table 3.5.

Theorem 3.2.2 (b) provides a lower bound for the probability of correct selection that depends on

the asymptotic levels �1; �2; :::; �d0 , and (c) shows that with high probability it underestimates

the true dimension d0.

Remark 2 : The presence of multiple tests in the method to detect the dimension requires

choice of the rejection levels that balances type I and type II errors. While a small value of

rejection levels controls false rejections of the true null and bodes well with the result in Theorem

3.2.2 (b), the rate of false negatives among true alternative hypotheses increases. Implementing

a correction to the rejection levels that optimizes both types of errors in our methodology requires

further investigation.

3.3 Simulation Study

We compare the performance of our DSSA in detecting the actual number of stationary

sources to the ISSA in von Bünau et al. (2009a) and ASSA in Hara et al. (2012) using a few

simulation studies.

We compare the performance of our DSSA in detecting the actual number of stationary

sources to the ISSA in von Bünau et al. (2009a) and ASSA in Hara et al. (2012) using a few

simulation studies. For ISSA and ASSA, a sequential likelihood ratio test as in Blythe et al.
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(2012) is implemented to select d . Their sensitivity to the choice of number of epochs N is also

illustrated.

Study 1: We begin by considering an i.i.d Gaussian model wherein each component of the

stationary sources in Y s
t 2 R

d is generated as independent N(0; 1) random variables. The

nonstationary sources are generated using a piecewise i.i.d. Gaussian where for i = 1; 2; :::; p�d ,

Y n
i;t =

K∑
j=1

I(t 2 Ij) Y (j)
i ;t (3.19)

is the i th component of Y n
t , Ij denotes the j th interval among K equal partitions of the interval

(1; T ) and Y (j)
i ;t � N(0; �2j ) with �2j chosen randomly from the set V = f0:1; 0:5; 1; 2; 3; 4; 4:5g.

Choices for the dimension of the input series are p 2 f3; 5g. For each p, we generate models with

d stationary sources and p � d nonstationary sources where d is allowed to vary from 1; :::; p.

For every pair of (p; d), we generate 100 time series samples of Yt , each of length T = 400,

comprising of stationary and nonstationary sources based on the model in (3.19) with K = 2.

A p � p orthogonal matrix is randomly generated using the technique from Stewart (1980) and

we obtain Xt = AYt . Hence for every true pair of (p; d), we apply our method to obtain the

average p-value from the test of stationarity over 100 simulation runs as in Blythe et al. (2012),

and the choice of significance level is avoided. In addition, examining the p-values for the various

choices of d sheds more light on the behavior of the selection procedure rather than just looking

at the selected d . The choice for m, the number of DFT covariance lags in (3.7), was taken as

5 and 10, but we only present the results from the latter due to similar results for both choices.

Similarly, average p-values are obtained using ISSA and the ASSA. The number of epochs, N,

used were 4, T=12 and T=16, but we only present the best result which was N = 4. Tables

3.1, 3.2, 3.3, 3.4 provide the performance of our method in detecting the dimension d of the

stationary subspace in comparison to the competing methods.
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True d
Estimated d

1 2 3

DSSA

1 0.4170 0.1012 0

2 0.4112 0.3542 0

3 0.5854 0.3446 0.4429

ISSA

1 0.2288 0.1035 0

2 0.6593 0.7611 0

3 0.6371 0.7291 0.8159

ASSA

1 0.0002 0 0

2 0.0001 0 0

3 0.2193 0.2786 0.8212

Table 3.1: Study 1: p = 3, Independent Sources: Average p-values of test of stationarity for
d=1, 2, 3 for the three competing methods. True values of d are given in second column.

51



True d
Estimated d

1 2 3 4 5

DSSA

1 0.4263 0.0510 0.0231 0 0

2 0.3825 0.3733 0.0311 0 0

3 0.5490 0.4631 0.4467 0.1001 0

4 0.5090 0.5203 0.4586 0.4590 0.0503

5 0.5270 0.4876 0.5784 0.6179 0.5110

ISSA

1 0.5497 0.0622 0 0 0

2 0.5644 0.3941 0.0278 0 0

3 0.6830 0.7244 0.7002 0.1020 0

4 0.6992 0.8064 0.8852 0.8770 0.2129

5 0.6908 0.8483 0.8759 0.9400 0.9433

ASSA

1 0.0007 0 0 0 0

2 0.0041 0.0001 0 0 0

3 0.0037 0.0045 0 0 0

4 0.0159 0.0029 0.0122 0.0236 0.0457

5 0.1190 0.1655 0.3693 0.6380 0.7765

Table 3.2: Study 1: p = 5, Independent Sources: Average p-values of test of stationarity for
d=1, 2, 3, 4, 5 for the three competing methods. True values of d are given in second column.

From Tables 3.1 and 3.2 we see that in some instances DSSA has inferior performance than ISSA

in terms of the estimated average p-values. However, the ASSA technique does not perform very

well, as it results too often in a rejection of the test of stationarity.

Next we allow some dependence between the sources by considering the same i.i.d. Gaussian

model but the covariance between any two components in Yt is randomly chosen from (�0:4; 0:4).
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The procedure as described earlier is repeated resulting in Tables 3.3 and 3.4 given below. We

notice that in a number of instances for the dependent case, DSSA performs better than the

ISSA and the ASSA for both dimensions 3 and 5. As an example for p = 5 and true d = 1; 3; 4,

it is seen that DSSA identifies the true dimension d in a more decisive manner than ISSA. Here

again the ASSA results in a large number of incorrect rejections.

True d
Estimated d

1 2 3

DSSA

1 0.3603 0.1028 0

2 0.4687 0.4583 0

3 0.6422 0.4578 0.5470

ISSA

1 0.6393 0.0105 0

2 0.6581 0.7008 0

3 0.6351 0.7200 0.8072

ASSA

1 0.0402 0 0

2 0.0002 0 0

3 0.2451 0.4542 0.7981

Table 3.3: Study 1: p = 3, Dependent Sources: Average p-values of test of stationarity for d=1,
2, 3 for the three competing methods. True values of d are given in second column.
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True d
Estimated d

1 2 3 4 5

DSSA

1 0.5091 0.0500 0.0131 0 0

2 0.4236 0.3910 0.0511 0 0

3 0.5289 0.5139 0.5498 0.0601 0

4 0.5247 0.5127 0.4965 0.5066 0.0700

5 0.5959 0.4808 0.5316 0.6437 0.5178

ISSA

1 0.5091 0.1966 0.0083 0 0

2 0.6260 0.5980 0.0178 0 0

3 0.6368 0.7117 0.6742 0.1720 0

4 0.6292 0.8165 0.9052 0.8945 0.3824

5 0.6635 0.8356 0.9121 0.9535 0.9511

ASSA

1 0.0004 0 0 0 0

2 0.0001 0.0001 0 0 0

3 0.0003 0 0 0 0

4 0.0001 0.0002 0 0 0

5 0.1357 0.1553 0.3425 0.6563 0.8382

Table 3.4: Study 1: p = 5, Dependent Sources: Average p-values of test of stationarity for d=1,
2, 3, 4, 5 for the three competing methods. True values of d are given in second column.

Study 2: In this study we compare the number of times the correct dimension d is selected for

the two extreme cases of multivariate stationary (d = p) and nonstationary (d = 0) processes

and other classes in between (d = 1; 2; :::; p � 1). We simulate from the following three classes

of models:
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Bivariate Stationary VAR(2) Model:

Xt =

 0:2 0:3

�0:6 1:1

Xt�1 +

0:5 0:2

0:1 0:6

Xt�2 + "t (3.20)

where "t are i.i.d. N(0; I2).

Nonstationary Unit Root VAR(1) Model: Consider bivariate autoregressive models

Xt = �Xt�1 + "t (3.21)

where "t are i.i.d. N(0;�) and the polynomial I � �L has a unit root corresponding to the

following cases; see Ahn and Reinsel (1990) and Li et al. (2001):

�1 =

 0:6 1

0:12 0:7

 ; �2 =

0:75 0:25

0:25 0:75

 ; �3 =

0:9 0:1

0:1 0:9

 ; � =

25 5:4

5:4 9

 : (3.22)

Note that the matrices I � �j , j = 1; 2; 3, have rank 1 and the eigenvalues of �1;�2;�3 are

(1; 0:3), (1; 0:5) and (1; 0:8), respectively. We refer to these models as (�i ;�); i = 1; 2; 3 in

Table (3.5), where � is as above or the identity matrix I2. Hence the stationary subspace has

dimension 1.

Trivariate Nonstationary MA(1) Model:

Xt = �t"t�1 + "t ; (3.23)
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where where "t are i.i.d. N(0; I3) and �t is given by

�t = I(
t

T
� 0:25)


1 �1 �1
1 1 �1
1 1 1

+ I(0:25 <
t

T
� 0:5)


1 �1 �1
1 �1 �1
1 1 1



+ I(0:5 <
t

T
� 0:75)


1 �1 �1
1 1 1

1 1 1

+ I(
t

T
> 0:75)


1 �1 �1
1 1 �1
1 �1 1

 :

We generate the time series fXtg of lengths T = 400; 800, for each of the above models

and compare the performances of DSSA, ISSA and ASSA by the number of times the true

dimension was detected out of 100 replications. The significance level for the tests used was

fixed at 0.01. From Table 3.5 we see that DSSA more accurately detects the true dimension

than ISSA and ASSA in all the cases. The sensitivity to the choice of N, the number of epochs

in ISSA and ASSA, can be seen and the lack of sensitivity to the choice of m, the number of

DFT covariance lags in DSSA, is witnessed. For the DSSA, it can also be seen that the number

of times the true dimension was detected increases with increasing sample size. The results

from the unit root autoregressive models in (3.22) indicate the poor performance of ISSA and

ASSA as opposed to the heteroscedastic type models given in (3.19). This could be due to their

requirement of independent observations for the likelihood ratio test. In contrast, the DSSA

performs much better in these models mainly because it is developed to work for the general

class of multivariate second-order nonstationary time series without imposing any independence

assumption. Comparing the percentages in the third and fourth rows of Table 3.5 also reveals

the negative impact of the dependence in the noise "t on the correct selection of the true d .
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DSSA DSSA ISSA ISSA ISSA ASSA ASSA ASSA

Model T m = 5 m = 10 N = 5 N = 10 N = 30 N = 5 N = 10 N = 30

VAR(2)
400 96 94 81 62 23 56 29 9

800 97 98 78 61 11 48 40 87

(�1;�)
400 74 73 1 7 5 7 1 0

800 80 82 11 13 2 11 12 1

(�1; I2)
400 81 83 3 8 3 4 12 3

800 89 89 10 4 10 2 5 3

(�2; I2)
400 76 76 4 2 11 4 10 0

800 80 79 6 3 10 6 6 2

(�3; I2)
400 82 82 4 9 2 7 6 10

800 85 86 5 10 4 8 1 2

VMA(1)
400 99 100 55 40 19 94 95 92

800 99 99 98 66 10 99 98 98

Table 3.5: Study 2: Number of times the true dimension d was detected by DSSA, ISSA and
ASSA for the models (3.20), (3.22) and (3.23).

3.4 A Case Study in Neuroeconomics

A total of 181 right-handed students participated in a food snack choice decision experiment

conducted in the Texas A & M Human Behavior Laboratory. The sample consisted of about 50

% females and 50% males. The subjects were presented with 10 food choice task questions (10

trials). Each choice consisted of two food products, product A and product B. The two products

within each alternative had the same features relative to brand, price, packaging and flavor. The

only difference between each pair of products was that one of them had fewer calories, making it
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a healthier choice. For example: original strawberry Jello –70 calories– (vs) sugar-free strawberry

Jello –10 calories. See Table 3.6 below for the list of product choices. The focus of this paper is

reducing EEG noise to improve the prediction of which of the two food snacks participants would

choose, irrespective of the product’s identity. Subjects were asked to fast for three hours prior

to the experiment, and received a compensation fee of $20 in exchange for their participation.

In order to incentivize and make the food choice task real, one of the 10 tasks was randomly

selected to be binding and participants had to eat the food snack before being paid and leaving

the laboratory. The displayed picture of each item was the actual photo available for purchase in

Walmart’s website; however, the participants were not aware that the products were purchased

in Walmart. The above case study and the description of the analysis provided in the next few

sections in this chapter are adapted from Sundararajan et al. (2017).

The experimental design proceeds as follow. At the beginning of the experiment, a blank slide

with a fixation point in the middle of the computer screen was presented for 2 seconds. Then,

for each food choice task, the actual product images were presented in the following screen for

8 seconds. A separate decision slide asked participants which of the two food snacks they prefer

to eat. After each decision, an inter-stimulus slide was presented for 0.75 seconds. The order

of the products was randomized across trials in the experimental design; however, all subjects

completed the task in the same order.

3.4.1 Data Acquisition

The participant was fitted with a proper size EEG headset (B-Alert X10, Advanced Brain

Monitoring, Inc.) with 9 electrodes to record brain activity from the pre-frontal (F3, F4, FZ),

central (C3, C4, CZ), and parietal (P3, P4, POZ) cortices and a linked mastoid reference. An

electrode impedance test was performed to ensure proper conductivity of the electrodes. The

impedance level threshold was 20k
. An EEG calibration procedure was implemented before the

data collection. The EEG calibration incorporated choice tasks (unrelated to the study), psy-

chomotor, and auditory psychomotor vigilance tasks. The EEG data was collected at a sampling
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Choice Product A Product B
1 Low calorie Jell-O (10 cal.) Original Jell-O (70 cal.)
2 Oven baked Lays Chips (120 cal.) Classic Lays Chips (160 cal.)
3 No sugar Dole peaches (25 cal.) Original Dole peaches (70 cal.)
4 Light Yoplait (90 cal.) Original Yoplait (150 cal.)
5 Fat free Pringles (70 cal.) Original Pringles (150 cal.)
6 Sugar free Snack Pack (70 cal.) Original Snack Pack (110 cal.)
7 Reduced fat Sargento cheese (50 cal.) Original Sargento cheese (80 cal.)
8 Non-fat Greek yogurt (120 cal.) Original Greek yogurt (150 cal.)
9 Reduced fat Cheez-It (130 cal.) Original Cheez-It (150 cal.)
10 Diet Lipton tea (0 cal.) Traditional Lipton tea (100 cal.)

Table 3.6: Food Snack Choice Questions

rate of 256Hz. The experiment was presented using the iMotions software platform.

3.4.2 Data Analysis

For any given food choice task, say product A vs product B, we gathered the 9-dimensional

EEG signal from the 9 electrodes from the start of the stimuli when the product images are

shown to 2.5 seconds after the start. On the digital signal scale, this constitutes 640 observations

(2:5 � 256). More precisely, for each subject j = 1; 2; :::; 181, the data comprises of 640

observations across time.

Given the raw 9-dimensional EEG time series obtained in this case study, we proceed according

to the following algorithm to obtain the prediction results:

The Prediction Algorithm:

Step 1: Filter the raw 9-dimensional signal using a 0.5 Hz high-pass and 45 Hz low-pass filter.

Denote the filtered series as fXt;jg where j = 1; 2; :::; 181 and t = 1; 2; :::; 640.

Step 2: Pre-whiten fXt;jg. For convenience in notation, we denote Xt;j as the band-pass filtered

signal that has been pre-whitened.

Step 3: Noise reduction: Apply SSA to fXt;jg to obtain fYt;jg (Section 3.2 or 3.2).
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Step 4: Feature Selection and Prediction Models (Section 3.4.3)

Step 5: Assessing Prediction Performance (Section 3.4.3.1)

In Step 2 we pre-whiten fXt;jg before further analysis by computing the 9� 9 sample covari-

ance matrix Sj and then transform the data to (Sj)
�0:5Xt;j . This standardization reduces the

cross-sectional correlation in fXt;jg.

3.4.2.1 Noise Reduction via SSA

It is common to treat data like fXt;jg as a nonstationary time series; see Ombao et al.

(2005),Park et al. (2014) for examples. The words noise and nonstationarity are used inter-

changeably because in our setup the nonstationary sources contribute to parts of the signal that

are unrelated to the food choice task. Hence eliminating nonstationarity reduces noise in the

brain signal. As an illustration, we make a plot of the 9-dimensional EEG signal Xt;j (before noise

reduction) in Figure 3.1. In Figure 3.2, we then plot a 3-dimensional stationary subspace process

obtained after application of SSA. The presence of nonstationarity (noise) in Xt;j was confirmed

by carrying out formal tests of stationarity; Jentsch and Subba Rao (2015a). Hence we resort

to the SSA technique for removing this nonstationarity from the signal and this is described in

Sections 3.1, 3.2.
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Figure 3.1: Band-Pass filtered 9-dimensional EEG signal fXt;j : t = 1; 2; :::; 640g (before noise
reduction) gathered from subject # 31 while responsing to food-choice question number 9.
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Figure 3.2: 3-dimensional stationary subspace process fYt;j : t = 1; 2; :::; 640g (after noise
reduction) gathered from subject #31 while responsing to food-choice question number 9.

As a pre-processing technique to reduce noise, we apply DSSA and ISSA described in Sections

3.1, 3.2 to obtain a d dimensional stationary subspace process where d < 9, denoted by fYt;jg.
Since the actual dimension d is unknown, we present the results for d = 4; 5; 6; 7; 8. We also

applied the sequential technique in Sundararajan and Pourahmadi (2018b) to detect d for each

subject and each food choice task. Here we obtained a mode of d = 8 as an estimate of the

dimension of the stationary subspace.
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3.4.3 The Prediction Models

We discuss three prediction models based on logistic regression with different derived features.

The aim of the prediction models discussed below is to fit a model to predict product choice (A

or B) based on the input signal. While building prediction models M1 and M2, only Step 2 of the

algorithm is used, for prediction model M3 both Steps 2 and 3 are needed. Note that model M2

assumes that fXt;jg is stationary whereas model M3 assumes that fXt;jg is nonstationary and

applies SSA before extracting features and estimating the prediction model.

Model M1: A standard model similar to Telpaz et al. (2015) is based on the importance of the

pre-frontal EEG channels in explaining choice behavior in individuals. Following their aggregation

technique to reduce the noise when computing preference scores for products, we take average of

the signals from the 3 pre-frontal channels (F3, F4, FZ) over the 2.5 seconds. The signal here is a

3-dimensional band-pass filtered signal that was pre-whitened (Step 1). The average is taken per

subject per food choice question (say product A vs product B). For subject j , j = 1; 2; :::; 181

, this average denoted by the scalar X j is used as a feature in the following logistic regression

model:

P
(
cj;AB = 1

∣∣∣ X j

)
=

exp(a0X j)

1 + exp(a0X j)
; (3.24)

for j = 1; 2; :::; 181. In the model above we have denoted 1 for product A and 0 for product B

and the model predicts the class (0 or 1) based on the derived feature X j .

Model M2: In this approach, to distinguish between the two classes denoted as 1 for product

A and 0 for product B, we take fXt;jg the pre-whitened 9-dimensional band-pass filtered signal.

We then focus on the covariance structure of Xt;j for each of the two classes (0 and 1). The

aim is to derive features that bring out the differences between the two classes based on the

covariance structure of the signal. This is achieved by computing the average spectral density
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matrices for the two classes over the Fourier frequencies:

g i(!k) =
1

ni

∑
j2Class i

gj(!k); i = 0; 1; (3.25)

where gj(!k) is the estimated 9 � 9 spectral matrix for subject j using observations fXt;jg, ni
for i = 0; 1 is the number of subjects in the two classes and !k =

2�k
640

, k = 1; 2; :::; 640, are the

fundamental Fourier frequencies. The spectral matrix was estimated using a Daniell kernel with

smoothing window length 25 (approximately
p
640); see Example 10.4.1 in Brockwell and Davis

(1991).

In order to train the classifier, for every subject j 2 f1; 2; :::; 181g, a distance vector pj;AB =

(p0;j;AB; p1;j;AB) is computed where

pi ;j;AB =
1

640

640∑
k=1

jj gj(!k)� g i(!k) jj2F i = 0; 1:

and jj � jjF is the Frobenius norm of a matrix. It measures the distance to the center of each of the

two classes and serves as our two-dimensional feature vector used in constructing the following

logistic regression model (prediction model):

P
(
cj;AB = 1

∣∣∣ pj;AB) =
exp(�0p0;j;AB + �1p1;j;AB)

1 + exp(�0p0;j;AB + �1p1;j;AB)
; (3.26)

for j = 1; 2; :::; 181 and cj;AB is the class indicator (1 for product A or 0 for product B) for

subject j .

Model M3: Here we apply Step 2 on the raw 9-dimensional EEG signal to obtain fXt;jg.
Then we obtain on the d-variate stationary subspace processes, fYt;jg, using DSSA/ISSA (Step

2). Similar to the approach in model M2, we aim to capture the differences between the two

classes based on the covariance structure of the signal. Unlike model M2, we apply DSSA and

ISSA described in Sections 3.1, 3.2 to obtain a d-dimensional stationary subspace process where
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d < 9, denoted by fYt;jg. Features to be fed into the prediction model will be based on fYt;jg as

opposed to model M2 wherein fXt;jg was used. Then, proceeding as in model M2, we compute

the average spectral density matrices for the two classes over the Fourier frequencies:

f i(!k) =
1

ni

∑
j2Class i

fj(!k); i = 0; 1; (3.27)

where fj(!k) is the estimated d � d spectral matrix for subject j using observations fYt;jg, ni
for i = 0; 1 is the number of subjects in the two classes and !k =

2�k
640

, k = 1; 2; :::; 640 are the

fundamental Fourier frequencies. The spectral matrix was estimated using a Daniell kernel with

smoothing window length 25 (approximately
p
640).

In order to train the classifier, for every subject j 2 f1; 2; :::; 181g, a distance vector dj;AB =

(d0;j;AB; d1;j;AB) is computed where

di ;j;AB =
1

640

640∑
k=1

jj fj(!k)� f i(!k) jj2F i = 0; 1:

and jj � jjF is the Frobenius norm of a matrix. It measures the distance to the center of each of the

two classes and serves as our two-dimensional feature vector used in constructing the following

logistic regression model (prediction model):

P
(
cj;AB = 1

∣∣∣ dj;AB) =
exp(�0d0;j;AB + �1d1;j;AB)

1 + exp(�0d0;j;AB + �1d1;j;AB)
; (3.28)

for j = 1; 2; :::; 181 and cj;AB is the class indicator (1 for product A or 0 for product B) for

subject j .

3.4.3.1 Prediction Performance

We asses the performance by computing the overall prediction accuracy and the average sen-

sitivity and specificity. Using the confusion matrix given in Table 3.7, we compute two prediction
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accuracy measures given by

A1 =
CA + CB

TA + TB
; A2 =

CA

TA
+ CB

TB

2
; (3.29)

where A1 is the overall prediction accuracy of the model and A2, in a binary classification context,

is the average of sensitivity (true positive rate) and specificity (true negative rate) of the prediction

models.

Prediction

Product A Product B Total

Actual
Product A CA IB TA

Product B IA CB TB

Table 3.7: Confusion matrix

Finally, we present an estimate of the AUC: area under the ROC curve (LeDell et al. (2015))

for the 10 food choice questions for each of the 3 models and this measure is denoted as A3.

The ROC curve plots the true positive rate against the false positive rate and is a useful measure

of model performance. The area under the ROC curve (known as AUC) varies between 0-100%

with a value of 50% as baseline (uninformative classifier).

In Table 3.8, we shuffle the class labels randomly and fit the prediction models and assess the

performance measures. The shuffling of labels is done 500 times, each time fitting the prediction

models, and the average performance measure over the 500 runs across the 10 food choice

questions is presented. This enables us to identify a baseline for the 3 performance measures

(70% for performance measure A1 and 50% for performance measures A2 and A3).
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Model Overall Accuracy - A1 Avg. of Sensitivity and Specificity - A2 AUC - A3

M1 69.54 48.97 53.26

M2 69.05 51.81 53.25

M3 - DSSA 69.12 51.34 54.20

M3 - ISSA 69.51 51 52.08

Table 3.8: Prediction performance of the 3 models with shuffled labels: the average of the 3
performance measures A1, A2 and A3 (AUC) taken across the 10 food choice questions for the
three competing models M1, M2 and M3. For model M3 the choice of d is taken as 8.

These accuracy rates are computed using a 10-fold cross-validation technique where the data

is randomly divided into 10 nearly equal parts. Each part is removed, in turn, while the remaining

data are used to fit the prediction models M1;M2;M3 and the predictions are carried out for

the left out part. More precisely, the computed accuracy rates are the out-of sample estimates

wherein for any given pair of products A and B, the prediction model is fit based on roughly 90%

of the subjects and the predictions are carried out for the remaining subjects.

The overall accuracy rate (A1) for models M1 and M2 computed and plotted in Figure 3.3

shows that it varies between 69-72% for both models. Next, we look at the performance measure

A2 as an average of the sensitivity and specificity of models M1 and M2. We notice from

Figure 3.4 that both methods perform poorly with accuracy rates around 50%. Note that as

opposed to averaging over the signal across the 3 channels in model (3.24), we also assessed

the performance of the logistic regression models fitted individually with each of the pre-frontal

channels. We obtained rates (not presented here) similar to that seen in Figures 3.3 and 3.4 in

terms of overall prediction accuracy and average of sensitivity and specificity.
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Figure 3.3: Overall prediction accuracy rate (A1), in %, based on a 10-fold cross-validation for
the 10 food choice tasks for the two mdoels M1 and M2. Approximate 95% confidence intervals
included for each accuracy estimate.
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Figure 3.4: Prediction accuracy rate as average of sensitivity and specificity (A2), in %, based
on a 10-fold cross-validation for the 10 food choice questions for the two models M1 and M2.
Approximate 95% confidence intervals included for each accuracy estimate.

Next, we study the overall prediction accuracy (A1) after applying the pre-processing tech-

niques DSSA and ISSA and removing the nonstationarity (noise) in the EEG signal, and fitting

the prediction model (3.28) (model M3). Since the actual dimension of the stationary subspace

is unknown, in Table 3.9 we present the results for dimensions d = 4; 5; 6; 7; 8, which show that

DSSA performs better than ISSA in most cases. The average overall accuracy rate based on

the 10 food choice tasks for each value of d is given in Figure 3.5. It is seen that the 10-fold

cross-validation accuracy rate is around 80% for each of the 10 tasks when the dimension d = 8.
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This rate is roughly 10% more than the accuracy rate from Figure 3.3 wherein no SSA-type

pre-processing technique is applied. We also notice that as the dimension of the stationary sub-

space d increases, the accuracy rate also increases. This phenomenon was also observed in von

Bünau et al. (2010) and confirms the improvements in prediction accuracy when there are fewer

nonstationary sources (noise) in model (3.1). The DSSA/ISSA turns out to be a very useful tool

for reducing the noise (nonstationarity) in the EEG signal.

d Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

4
DSSA 72.80 73.65 74.22 71.53 74.00 73.83 73.48 71.38 74.50 72.97

ISSA 69.60 71.20 75.10 71.40 66.50 76.20 70.18 68.45 72.37 73.13

5
DSSA 73.50 73.21 75.76 73.00 68.30 77.85 73.55 72.40 74.60 78.75

ISSA 74.00 75.48 71.80 71.80 75.10 75.10 75.20 74.62 72.40 70.70

6
DSSA 74.65 75.00 78.46 72.85 77.35 75.10 75.70 74.52 77.45 78.61

ISSA 71.94 77.30 74.00 79.62 78.50 73.50 75.70 76.80 74.00 74.25

7
DSSA 76.12 80.27 78.56 79.15 79.20 76.15 79.65 80.11 79.12 80.50

ISSA 75.70 74.00 76.20 81.80 80.12 79.80 78.50 80.80 77.90 76.80

8
DSSA 78.98 81.35 81.52 84.12 80.24 79.11 82.30 80.58 80.13 81.94

ISSA 76.90 75.10 80.16 79.60 75.10 79.00 79.00 84.75 82.00 75.68

Table 3.9: 10-fold cross-validation overall prediction accuracy (in %) for the 10 questions Q1-Q10
corresponding to d= 4, 5, 6, 7, 8 for DSSA and ISSA (model M3). Significant results (instances
of at least a 1% improvement in DSSA) are highlighted in bold.

We then asses the performance measure A2 which is an average of the sensitivity and specificity

for model M3. We set the dimension of the stationary subspace at d = 8. Figure 3.6 shows

that DSSA performs slightly better than ISSA in most cases. More importantly, we note that in

comparison to Figure 3.5, DSSA has roughly a 20% increase in the performance measure A2.
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Figure 3.5: Average 10-fold cross-validation overall accuracy rate (in %) for the 10 food choice
questions (y-axis) versus dimension of the stationary subspace (x-axis). Approximate 95% confi-
dence intervals included for each accuracy estimate.
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Figure 3.6: Prediction accuracy rate: average of sensitivity and specificity (A2), in %, based on
a 10-fold cross-validation for the 10 food choice questions. Model M3 was used with d = 8.
Approximate 95% confidence intervals included for each accuracy estimate.

Finally, we present a cross-validation estimate of the AUC for the 3 competing models in

Figure 3.7. We again notice roughly a 20% increase when using DSSA/ISSA (Model M3) as a

noise reduction technique before constructing the prediction model.
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Figure 3.7: Cross-validation estimate of the AUC in % (Area under the ROC curve) for the
3 models M1 M2 and M3. Approximate 95% confidence intervals included for each accuracy
estimate. For model M3 we take d = 8.

The average of the 3 performance measures A1, A2 and A3(AUC) taken across the 10 food

choice questions for the three competing models M1, M2 and M3 is reported in Table 3.10. We

note that for models M1 and M2 the overall prediction accuracy (A1) is roughly 70% which is

treated as a baseline for this measure. However, the performance measures A2 and A3 (AUC) are

only around 50% which suggests a poor performance. In contrast for model M3, overall accuracy

rate increased by roughly 10%, the measure A2 is higher by around 20% and measure A3 (AUC)

is significantly higher (increase of roughly 30%) than models M1 and M2.
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Model Overall Accuracy - A1 Avg. of Sensitivity and Specificity - A2 AUC - A3

M1 70.04 48.97 53.26

M2 70.52 52.17 59.31

M3 - DSSA 81.02 71.23 82.75

M3 - ISSA 78.73 67.61 81.72

Table 3.10: The average of the 3 performance measures A1, A2 and A3 (AUC) taken across the
10 food choice questions for the three competing models M1, M2 and M3. For model M3 the
choice of d is taken as 8.
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4. SUMMARY AND CONCLUSIONS

In Chapter 2, we have proposed a new method to detect multiple change points in multivari-

ate nonstationary time series. Our method focuses on identifying changes in the second-order

properties of the process and estimates change point locations by quantifying changes in the spec-

tral matrices through a squared Euclidean norm. The numerical, methodological and theoretical

advantages of our method has been presented. The procedure is completely nonparametric with

only a few tuning parameters to be chosen.

The presence of multiple tests in our method potentially causes an increase in the overall

error rate and the critical values in our procedure are obtained pointwise. Obtaining critical

values to control the overall error requires further theoretical investigation. Also of interest would

be controlling the uniform type-I error rate of our test statistic while testing for existence of at

least one change point in the time series. The construction of simultaneous confidence intervals

for multiple change points can also be studied with Bonferroni-type corrections on the confidence

levels. Change point detection for infinite variance processes is another interesting problem that

is currently being pursued.

In Chapter 3, we have proposed an SSA method for finding stationary linear transforma-

tions of multivariate nonstationary processes. As opposed to much of the SSA literature that

consider nonstationarity based on the mean and lag-0 covariance, we take up second-order non-

stationary processes that includes the entire covariance structure. The DSSA method exploits

the near-uncorrelatedness of the DFT of a second-order stationary time series. A sequential test-

ing procedure is proposed to select the dimension of the stationary subspace and its asymptotic

properties are discussed. A case study in neuroeconomics is presented wherein we illustrate the

usefulness of our method in improving prediction accuracy in neuroeconomic experiments.

This work also leads to a number of interesting research problems that are worth studying:

1. The theoretical properties established for the estimator of dimension d implicitly assume
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that our procedure obtains an estimate B̂1 where B̂1 2 C (Âs) and C (Âs) ! C (As) as

T ! 1. This requires establishing consistency in the estimated column space C (Âs)

which is postponed for future work.

2. The result in Theorem 3.2.2 (b) establishes a lower bound on the probability of correct

dimension selection. Constructing estimators of the true dimension that improve this lower

bound is of practical and theoretical importance.

3. Under the setup in (3.1), the problem of finding the stationary subspace can be examined

using a factor model approach with the dimension of the subspace now treated as the

number of factors.

4. ISSA analogue of DSSA for the broad class of second-order nonstationary processes would

be of great interest.
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APPENDIX A

TECHNICAL PROOFS

Proof of Theorem 2.7.1. Under Assumptions 1,2 we can apply Theorem 3.5 of Eichler (2008)

to establish asymptotic normality. It can also be seen that the required Assumption 3.2 of Eichler

(2008) is also satisfied by our test statistic D̂(b). We now obtain the mean and variance of the

test statistic.

Firstly, we write 2�Nh1=2D̂(b) as

2�Nh1=2
∫ �

��

jj vec
(
f̂L(b; !)� f̂R(b; !)

)
jj2d!

= 2�Nh1=2
∫ �

��

jj vec
(
f̂
(b)
11 (!)� f̂ (b)22 (b; !)

)
jj2d!

= 2�Nh1=2
∫ �

��

jj vec
( 1

N

bN=2c∑
k=�b(N�1)=2c

Kh(! � !k)f I(b)11 (!k)� I(b)22 (!k) g
)
jj2d!

where I(b)11 (!k) and I(b)22 (!k) are the p � p periodogram matrices at frequency !k of the series

fY (b)
1;t g and fY (b)

2;t g respectively.

Now, for the expectation we have

E
(
2�Nh1=2D̂(b)

)
=

2�h1=2

N

∫ �

��

p∑
i ;j=1

∑
k1;k2

Kh(! � !k1)Kh(! � !k2)�

E
[
( I

(b)
11;i j(!k1)� I(b)22;i j(!k1) )( I

(b)
11;i j(!k2)� I(b)22;i j(!k2) )

]
d!

where for m1; m2 = 1; 2, Im1m2;i j denotes the (i ; j)th entry of the p � p matrix Im1m2
. Under H0

it can be seen that the expectation term on the right hand side vanishes if !k1 6= !k2 . So the
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expected value becomes

E
(
2�Nh1=2D̂(b)

)
=

2�

Nh3=2

∫ �

��

p∑
i ;j=1

∑
k

K2(
! � !k

h
) E

[
I
(b)
11;i j I

(b)
11;i j +

I
(b)
22;i j I

(b)
22;i j � I

(b)
11;i j I

(b)
22;i j � I

(b)
22;i j I

(b)
11;i j

]
d!

=
2�

Nh3=2
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��

p∑
i ;j=1

∑
k

K2(
! � !k

h
) E

[
f
(b)
11;i i f

(b)
11;j j +

f
(b)
22;i i f

(b)
11;j j � f

(b)
12;i i f

(b)
12;j j � f

(b)
21;i i f

(b)
21;j j

]
d! + o(1)

where for m1; m2 = 1; 2, f (b)m1m2;i j
denotes the (i ; j)th entry of the p � p matrix f (b)m1m2

.

The expression on the right hand side is asymptotically equivalent to

1

h1=2

∫ �

��

K2(�)d�

∫ �

��

2∑
i1;i2=1

(�1 + 2�i1i2)jtr
(
f
(b)
i1i2

(!)
)j2 d! =

�0

h1=2

For the variance we have

V ar
(
2�Nh1=2D̂(b)

)
= 4�2N2h V ar

(
D̂(b)

)
=

4�2h

N2

∫ �

��
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��

p∑
i ;j;k;l=1

∑
k1;k2;k3;k4

Kh(! � !k1)Kh(! � !k2)Kh(�� !k3)Kh(�� !k4)�{
E
[
( I

(b)
11;i j(!k1)� I(b)22;i j(!k1) ) ( I

(b)
11;i j(!k2)� I(b)22;i j(!k2) )�

( I
(b)
11;kl(!k3)� I(b)22;kl(!k3) ) ( I

(b)
11;kl(!k4)� I(b)22;kl(!k4) )

]
�

E
[
( I

(b)
11;i j(!k1)� I(b)22;i j(!k1) ) ( I

(b)
11;i j(!k2)� I(b)22;i j(!k2) )
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�

E
[
( I

(b)
11;kl(!k3)� I(b)22;kl(!k3) ) ( I

(b)
11;kl(!k4)� I(b)22;kl(!k4) )

]}
d! d�

For a given i ; j; k; l , the difference in expectations will result in an asymptotically non-zero term

only when !k1 = !k3 6= !k2 = !k4 , !k1 = �!k3 6= !k2 = �!k4 , !k1 = !k4 6= !k2 = !k3 ,

!k1 = �!k4 6= !k2 = �!k3 . In all the 4 cases, the product of expectation terms vanishes and

each case case results in the same contribution. Considering only the first case with a factor of
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4 we have

V ar
(
2�Nh1=2D̂(b)

)
=

16�2h

N2

∫ �

��

∫ �

��

∑
k1;k2

p∑
i ;j;k;l=1

1

h4
K(
! � !k1

h
)K(

�� !k1

h
)�

K(
! � !k2

h
)K(

�� !k2

h
)
[
f
(b)
11;i l(!k1) f

(b)
11;jk(!k1) + f

(b)
22;i l(!k1) f

(b)
22;jk(!k1) �

f
(b)
12;i l(!k1) f

(b)
12;jk(!k1) � f (b)21;i l(!k1) f

(b)
21;jk(!k1)

]
�
[
f
(b)
11;i l(!k2) f

(b)
11;jk(!k2)

f
(b)
22;i l(!k2) f

(b)
22;jk(!k2) � f

(b)
12;i l(!k2) f

(b)
12;jk(!k2) �

f
(b)
21;i l(!k2) f

(b)
21;jk(!k2)

]
d! d� + o(1)

=
16�2h

N2h4

∑
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( ∫ �

��

K(
! � !k1

h
)K(

! � !k2

h
)
)2

p∑
i ;j;k;l=1

[
f
(b)
11;i l(!k1) f

(b)
11;jk(!k1) +

f
(b)
22;i l(!k1) f

(b)
22;jk(!k1) � f (b)12;i l(!k1) f

(b)
12;jk(!k1) � f (b)21;i l(!k1) f

(b)
21;jk(!k1)
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�[

f
(b)
11;i l(!k2) f

(b)
11;jk(!k2) + f

(b)
22;i l(!k2) f

(b)
22;jk(!k2) �

f
(b)
12;i l(!k2) f

(b)
12;jk(!k2) � f (b)21;i l(!k2) f

(b)
21;jk(!k2)
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d! d� + o(1)

and this is asymptotically equivalent to

4

∫ 2�

�2�

(∫ �

��

K(�)K(� + z) d�
)2

dz

2∑
i1;i2;i3;i4=1

(�1 + 2�i1i2) (�1 + 2�i3i4)�

jtr(f (b)i1i3
(!) f

(b)
i2i4

(!)
T

)j2 d! = �20

Proof of Theorem 2.7.2. With the standardized entityQN and Assumption 2 on the bandwidth
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h we have, following Theorem 5.1 of Eichler (2008),

QN

Nh1=2
P�! A1 for some A1 2 R+

) 2�ND̂(b) � �̂=h

�̂=
p
h

P�! A1

) 2�D̂(b)
P�! A2 where A2 2 R+

Proof of Theorem 3.2.1. Let fXtg be the observed p-variate process generated by d stationary

and p � d nonstationary sources as in (3.1). We have B � R
d�p as the space of solutions for

optimizing (3.7). Recall from (3.11) the constraints defining B are given by

bjVrb
>
j = �(T ); (A.1)

B1B
>
1 = Id

where bj , j = 1; 2; :::; d , denotes the row vectors of any B1 2 B and r = 1; 2; :::; m and

�(T )! 0 as T !1. Now, in order to uniquely identify C (As), we need for any W1;W2 2 B,

C (W>
1 ) = C (W>

2 ): (A.2)

Following the proof of identifiability in von Bünau et al. (2009a), von Bünau et al. (2009b) and

Theorem 4 in Hara et al. (2012), (A.2) holds if any p-vector w 2 C (W>
1 ) has degrees of freedom

less than d . The m quadratic constraints in (A.1) account for reduction of m degrees of freedom.

Hence the degrees of freedom of w = p �m < d . This implies m > p � d .

Proof of Theorem 3.2.2. Let d0 be the true dimension of the stationary subspace and we have
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from (3.1)

Xt = AsY
s
t + AnY

n
t

where As is d0 � p and An is (p � d0) � p. Let d̂ be the estimated dimension given by (3.16)

and B̂1 2 R
d̂�p be the estimated transformation matrix. Here B̂1 2 B, the space of feasible

solutions defined by the constraints in (3.11) and the orthonormality constraint B̂1B̂1
>
= Id̂ .

Now with B̂1, the estimate of the stationary source can be expressed as,

B̂1Xt = B̂1AsY
s
t + B̂1AnY

n
t : (A.3)

To determine the probability P (d̂ = d0) as T !1, we look at various cases when d̂ 6= d0, and

determine their probabilites as T ! 1. More precisely, we look at the probabilites P (d̂ = ~d)

when ~d = 1; 2; :::; d0 � 1; d0 + 1; :::; p as T ! 1. Also, recall that for ~d = 1; 2; :::; p,(
T (m; n; ~d); c(� ~d)

)
denotes the test statistic and critical value at level � ~d for the test of

stationarity from Section 3.2.4. The critical value, c(� ~d), for a given ~d is the (1 � � ~d)
th

percentile of the �2
mn ~d( ~d+1)

distribution.

(i). First, we consider the simplest case with d0 = 0. Here for any ~d > 0 we have,

P
(
d̂ = ~d

)
= P

( ~d∩
i=1

fT (m; n; i) < c(�i)g
∩

fT (m; n; ~d + 1) > c(� ~d+1)g
)

(A.4)

� P
(
T (m; n; 1) < c(�1)

)

Now if d0 = 0, B̂1Xt 2 R
~d�p, where r > 0, is nonstationary and under Assumption 1 that

fXtg is a locally stationary Gaussian time series we have T (m; n; 1) = Op(T ); see (Jentsch and
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Subba Rao, 2015a, Section 5). Hence, when m; n are bounded positive integers, we have

lim
T !1

P
(
T (m; n; 1) < c(�1)

)
= 0

=) lim
T !1

P
(
d̂ > d0

)
= 0

=) lim
T !1

P
(
d̂ = d0 = 0

)
= 1 (A.5)

and this establishes part (a).

(ii). Next we take the case d0 2 f1; 2; :::; p � 1g. Here for any ~d > d0 we have,

P
(
d̂ = ~d

)
= P

( d0∩
i=1

fT (m; n; i) < c(�i)g �
~d∩

j=d0+1

fT (m; n; j) < c(�j)g (A.6)

∩
fT (m; n; ~d + 1) > c(� ~d+1)g

)
� P

(
T (m; n; d0 + 1) < c(�d0+1)

)
:

When ~d > d0, it can be seen that B̂1An 6= 0 as the row vectors in B̂1 include some orthonormal

vectors from the space orthogonal to C (As). Hence B̂1Xt is nonstationary and under Assumption

1 we have T (m; n; d0 + 1) = Op(T ). Therefore for ~d > d0,

lim
T !1

P (T (m; n; d0 + 1) < c(�d0+1)) = 0

=) lim
T !1

P
(
d̂ > d0

)
= 0

=) lim
T !1

P
(
d̂ � d0

)
= 1 (A.7)

and this establishes part (c).

(iii). Next we take the case d0 2 f1; 2; :::; pg, and case (b) applies. Now for ~d < d0 we have,

P
(
d̂ = ~d

)
= P

( ~d∩
i=1

fT (m; n; i) < c(�i)g
∩

fT (m; n; ~d + 1) > c(� ~d+1)g

� P
(
T (m; n; ~d + 1) > c(� ~d+1)

)
: (A.8)
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Now if ~d < d0, B̂1Xt 2 R
~d�p, is stationary and T (m; n; ~d) D�! �2

mn ~d( ~d+1)
. Therefore for

~d < d0,

lim
T !1

P
(
d̂ = ~d

)
� lim

T !1
P
(
T (m; n; ~d + 1) > c(� ~d+1)

)
= � ~d+1

=) lim
T !1

P
(
d̂ = d0

)
= 1� lim

T !1

d0�1∑
j=0

P
(
d̂ = j

)

� 1�
d0∑
j=1

�j ; (A.9)

and this establishes part (b).

90



APPENDIX B

B.1 Optimization Details from Section 3.2.1

Here we provide more details on the optimization problem formulated in Section 3.2. We

begin by deriving the expression of the gradient matrix. We denote Id as a d � p matrix with

rows from the first d rows of a p � p identity matrix Ip.

Recall that the lag-r DFT covariance from (3.6) of the series Y s
t = B1Xt = IdBXt can be

written as

�̂Y
s

r =
1

T

T∑
k=1

J(!k)J(!k+r)
� =

1

T

T∑
k=1

( 1p
2�T

T∑
t=1

Y s
t exp(�i t!k)

)
�

( 1p
2�T

T∑
t=1

Y s
t exp(�i t!k+r)

)�
=

1

2�T 3

T∑
k=1

( T∑
t=1

IdBXt exp(�i t!k)
)
�

( T∑
t=1

IdBXt exp(i t!k+r)
)�

=
1

2�T 3

T∑
k=1

T∑
t1;t2=1

IdBXt1X
>
t2
B>(Id)> exp(�i t1!k) exp(i t2!k+r)

= B1

( 1

2�T 3

T∑
k=1

>∑
t1;t2=1

Xt1X
>
t2
exp(�i t1!k) exp(i t2!k+r)

)
B>

1

= B1(Ur)B
>
1 = B1(U

R
r + iUI

r )B
>
1

where B1 = IdB. Let UR
r , UI

r are the real and imaginary parts of Ur respectively. Our objective
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function defined in (3.7) can be written as

DY (B) =

m∑
r=1

jjB1U
R
r B

>
1 jj2F + jjB1U

I
rB

>
1 jj2F

=

m∑
r=1

tr(B1(U
R
r )

>B>
1 B1U

R
r B

>
1 ) + tr(B1(U

I
r )
>B>

1 B1(U
I
r )B

>
1 )

=

m∑
r=1

tr(IdB(UR
r )

>B>(Id)> IdBUR
r B

>(Id)>) + tr(IdB(UI
r )
>B>(Id)> IdBUI

rB
>(Id)>)

where tr(�) denotes trace of a matrix. In order to take the derivative of the above expression with

respect to B we make use of some results on derivatives of the trace in Petersen and Pedersen

(2012). First, for a given r , we consider the first term tr(IdB(UR
r )

>B>(Id)> IdBUR
r B

>(Id)>)

and denote it as D1;r(B) and the corresponding p � p gradient matrix as G1;r . We have

G1;r = (Id)>IdB(UR
r )

>B> (Id)>IdBUR
r + (Id)>IdBUR

r B
> (Id)>IdB(UR

r )
>

+ (Id)>IdBUR
r B

> (Id)>IdB(UR
r )

> + (Id)>IdB(UR
r )

>B> (Id)>IdBUR
r

Similarly, the second term D2;r(B) = tr(IdB(UI
r )
>B>(Id)> IdBUI

rB
>(Id)>) has a gradient

G2;r . Hence the gradient for DY (B) is given by @DY (B)
@B

= G =
∑m

r=1 (G1;r + G2;r). Now, with

the space of orthogonal matrices being parameterized as matrix exponentials of skew-symmetric

matrices, we have B = ec�H where H is a skew-symmetric matrix and c 2 R. The gradient

descent algorithm to obtain a solution for the optimization problem in (3.7) involves the following

steps:

1. Initialize B0, a random p � p orthogonal matrix with positive determinant using the tech-

nique from Stewart (1980).

2. Find the next search direction as H = GB>
0 � B0G

>.

3. Optimize DY (e
c�HB0) w.r.t c where c 2 R.
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4. Obtain B(n) as B(n) = ec�HB0 and check for convergence by examining values of successive

iterates.

5. Set B0 = B(n) and repeat Steps 2,3,4 until convergence.

The presence of the constant c above ensures that during iterations, larger steps are taken in the

Lie algebra of skew-symmetric matrices thereby speeding up the iterative process; see Section 8.1

of Plumbley (2005).

Note that in Step 1 we consider 10 different initial guesses of random orthogonal matrices

and determine the final solution that yields the least objective function value.

B.2 Details from Section 3.2.3

Recall that UR
r and UI

r are the real and imaginary parts of the p � p matrix �̂Xr . We now

write for j = 1; 2; :::; d ,

jRe(bj �̂Xr b>j )j + jIm(bj �̂Xr b>j )j = jbjUR
r b

>
j j + jbjUI

rb
>
j j

= jbj( PR
r D

R
r (P

R
r )

> )b>j j + jbj( P I
rD

I
r(P

I
r )
> )b>j j

where j � j denotes the absolute value and,

UR
r = PR

r D
R
r (P

R
r )

> and UI
r = P I

rD
I
r(P

I
r )
> (B.1)

denotes the eigen decomposition of the p � p symmetric matrices UR
r and UI

r respectively.

We write this decomposition as a difference of non-negative definite matrices i.e

PR
r D

R
r (P

R
r )

> = PR
r D

R+
r (PR

r )
> � PR

r D
R�
r (PR

r )
>

P I
rD

I
r(P

I
r )
> = P I

rD
I+
r (P I

r )
> � P I

rD
I�
r (P I

r )
>
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where for i = 1; 2; :::; p, the p � p diagonal matrices DR+
r ; DR�

r and DI+
r ; D

I�
r are defined as

DR+
r;i i =


DR

r;i i ; if DR
r;i i > 0:

0; otherwise:
; DI+

r;i i =


DI

r;i i ; if DI
r;i i > 0:

0; otherwise:

DR�
r;i i =


�DR

r;i i ; if DR
r;i i < 0:

0; otherwise:
; DI�

r;i i =


�DI

r;i i ; if DI
r;i i < 0:

0; otherwise:

(B.2)

Hence we have, for r = 1; 2; :::m and j = 1; 2; :::; d ,

jRe(bj �̂Xr b>j )j + jIm(bj �̂Xr b>j )j = jbj( PR
r D

R+
r (PR

r )
> )b>j � bj( P

R
r D

R�
r (PR

r )
> )b>j j +

jbj( P I
rD

I+
r (P I

r )
> )b>j � bj( P

I
rD

I�
r (P I

r )
> )b>j j

� jbj( PR
r D

R+
r (PR

r )
> )b>j j + jbj( PR

r D
R�
r (PR

r )
> )b>j j +

jbj( P I
rD

I+
r (P I

r )
> )b>j j + jbj( P I

rD
I�
r (P I

r )
> )b>j j

= bjVrb
>
j : (B.3)

where Vr =
(
PR
r D

R+
r (PR

r )
> + PR

r D
R�
r (PR

r )
>
)
+

(
P I
rD

I+
r (P I

r )
> + P I

rD
I�
r (P I

r )
>
)

.
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