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ABSTRACT

Mathematical expressions (ME) are critical abstractions for technical publications.
While the sheer volume of technical publications grows in time, few ME centric
applications have been developed due to the steep gap between the typesetting data in post-
publication digital documents and the high-level technical semantics. With the acceleration
of the technical publications every year, word-based information analysis technologies are
inadequate to enable users in discovery, organizing, and interrelating technical work
efficiently and effectively.

This dissertation presents a modeling framework and the associated algorithms,
called the mathematical-centered post-publication content analysis (MECA) system to
address several critical issues to build a layered solution architecture for recovery of high-
level technical information. Overall, MECA is consisted of four layers of modeling work,
starting from the extraction of MEs from Portable Document Format (PDF) files.
Specifically, a weakly-supervised sequential typesetting Bayesian model is developed by
using a concise font-value based feature space for Bayesian inference of ME vs. words for
the rendering units separated by space. A Markov Random Field (MRF) model is designed
to merge and correct the MEs identified from the rendering units, which are otherwise
prone to fragmentation of large MEs.

At the next layer, MECA aims at the recovery of ME semantics. The first step is the
ME layout analysis to disambiguate layout structures based on a Content-Constrained
Spatial (CCS) global inference model to overcome local errors. It achieves high accuracy at

low computing cost by a parametric lognormal model for the feature distribution of
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typographic systems. The ME layout is parsed into ME semantics with a three-phase
processing workflow to overcome a variety of semantic ambiguities. In the first phase, the
ME layout is linearized into a token sequence, upon which the abstract syntax tree (AST) is
constructed in the second phase using probabilistic context-free grammar. Tree rewriting
will transform the AST into ME objects in the third phase.

Built upon the two layers of ME extraction and semantics modeling work, next we
explore one of the bonding relationships between words and MEs: ME declarations, where
the words and MEs are respectively the qualitative and quantitative (QuQn) descriptors of
technical concepts. Conventional low-level PoS tagging and parsing tools have poor
performance in the processing of this type of mixed word-ME (MWM) sentences. As such,
we develop an MWM processing toolkit. A semi-automated weakly-supervised framework
is employed for mining of declaration templates from a large amount of unlabeled data so
that the templates can be used for the detection of ME declarations.

On the basis of the three low-level content extraction and prediction solutions, the
MECA system can extract MEs, interpret their mathematical semantics, and identify their
bonding declaration words. By analyzing the dependency among these elements in a paper,
we can construct a QuQn map, which essentially represents the reasoning flow of a paper.
Three case studies are conducted for QuQn map applications: differential content
comparison of papers, publication trend generation, and interactive mathematical learning.
Outcomes from these studies suggest that MECA is a highly practical content analysis
technology based on a theoretically sound framework. Much more can be expanded and

improved upon for the next generation of deep content analysis solutions.
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CHAPTER I

INTRODUCTION

1.1 Background on the importance of mathematics, publishing, and automation
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Figure 1 Trends and driving force for the booming of academic publishing

Empowered by information technology, the publishing industry has experienced an
exponential accumulation of knowledge in the past few decades as shown in Figure 1. Authoring
tools and the Internet allow authors to produce sophisticated content and publish/transmit
conveniently. Information technologies such as search engines and automated citation extraction
tools lead to very large-scale digital library systems for the indexing and searching of intellectual
work. The existing systems are mostly based on the plaintext words. However, the large number

of mathematical expressions (MEs) are less studied with few successful applications.
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Figure 2 Publication Statistics

Though there are a large number of mathematical contents, they are mostly unstructured
and could not be processed by automated computer algorithms. Statistics in Figure 2.a from
Microsoft Academic Graph (MAG) [1] show that over three-quarters of the publications are from
the Science, Technology, Engineering, and Mathematics (STEM) domains. In STEM,
mathematical expressions (MEs) are widely adopted, because they provide a standard medium
for formalizing, exchanging, and accumulating knowledge concisely and efficiently. Even
though MEs are composed using alphanumerical and special symbols, their content analysis does
not enjoy the same level of automation as that of the plaintext-based content. The existing efforts
for ME analysis primarily covers two aspects: formal symbolic computing such as auto-proofing
systems [2], [3] and formula search engines [4], [5], [6], [7], [8]. The inputs are in a structured
format such as presentational and content MathML [9]. However, as shown in Figure 2.b, only
1.4M files in Latex/ XML format [10] are annotated for their ME content in a structured format.
Over 100M articles are only available in Portable Document Format (PDF), where the MEs are

not explicitly marked, and their layout and semantic structure are unavailable. ME-based data



models and their processing algorithms are highly valuable for researchers to facilitate access to

the vast number of technical articles in STEM (about 79 million (M) out of 127M in MAG).
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Figure 3 The writing-reading process: conceptual graph model <=> sequential paper,
illustrated with the event co-reference resolution paper, parts of this figure are adopted
from [11]

Besides the extraction and analysis of the ME content, the neighbor words also play
important roles in enhancing the semantics of MEs and connecting the logic among ME:s.
Together, the ME and words serve as the bridge to connect the writers and authors. Technical
writing can be characterized as a collaborative divide-and-conquer process between authors and

readers. Authors divide the complex technical concepts into a sequence of self-contained yet
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interconnected reasoning blocks (RB), and readers conquer the RBs in the reading process to
rebuild the technical concept. Authors and readers rely on a combination of community-specific

99 ¢c

technical dialects (“jargon,” “terminology”) and MEs, as well as lower level gluing words, to
ensure the correct understanding of the substance.

It is challenging to recover high-level semantics of technical materials from low-level
digit files using computer algorithms, which involve PDF parsing, document layout analysis, ME
layout/semantics parsing, and mixed word-ME mining. First, the typesetting information in PDF
files is transformed into a layout structure such as columns and lines and grouped into logical
structures such as paragraphs and MEs. For the MEs, their semantics will be understood through
layout and semantic analysis. Further, the external meaning of MEs is recovered through the

bonding with words. Finally, the logic flow should be discovered through dependency analysis at

the semantic level as the technical essence, which will be the basis for high-level applications.

System model and solution

. Reasoning flow
Problem setting ME Dependency
Declaration ME Semantics
RT3 ME Layout
t ’L RT2
Document - RT4
Sections
njo % Ealoiad Sentences
il ME Words Embedded ME
x T w7

PD F Vector Typesetlting:
Graphics font, symbols, spatial arrangement

Figure 4 Research framework of MECA



A long chain of solutions is required to recover high-level semantics of technical
materials from low-level digit files using computer algorithms. In this dissertation, a
Mathematical Expression Content Analysis (MECA) system is proposed to support layered ME
content extraction and recovery of their semantics. MECA is organized into the following layers:
ME extraction, ME layout/semantics parsing, and mixed word-ME (MWM) mining. As shown in
Figure 4, the dissertation is organized into five research tasks (RT), RT1-RT4 to implement and
test modeling work and their associated algorithms for these layers. In RT1, the typesetting
information in PDF files is transformed into layout structure such as columns and lines and
grouped into logical structures such as paragraphs and MEs. In RT2, the ME semantics is
recovered through layout analysis and then represented by an ME semantics taxonomy data
structure. RT3 focuses on the prediction of the bonding between MEs and their word based
declarations. RT4 uses the outputs generated from RT1-R3 to recover the reasoning flow of a
paper based on the dependency analysis of declarations (qualitative descriptors) of MEs
(quantitative descriptors). And the result is a novel abstraction called the QuQn map' to
represent the technical essence of a paper. At last, three different case studies were conducted to
validate the usefulness of QuQn graphs for real-world applications. The first use case is for
supporting the mathematical learning of a high school summer camp. The second use case is for
publication trend analysis based on the ME declarations. The last use case is for differential

content analysis of technical papers.

!QuQn graph is an alternative name.



1.2 State of the arts and challenges in the automated processing of mathematical documents

As the MECA analytical framework in Figure 4 shows, the MECA system involves
multiple components ranging from document processing, layout analysis, semantic analysis,
natural language processing, and high-level math-centered applications. The related work and
open challenges will be introduced individually in the following sections.

1.2.1 Digital document analysis
1.2.1.1 State of the arts of digital document analysis

Digital files are mostly designed for the ease of editing and dissemination. There is a
trend of machine-readable publishing [12], and open document standard supporting semantic
tags such as Office Open XML [13]. But PDF [14] is still the de facto standard for publishing.
PDF files only contain a sequence of rendering units (RU) containing the typesetting
information. Digital document analysis aims at recovering the document layout and logical
structure from the rendering units [15].

The document layout structures refer to the hierarchy of documents, including pages,
columns, lines, and tokens separated by space. There is no one-to-one correspondence between
RUs and layout structures. One token might be split into multiple RUs. The RUs could be
merged into higher-level layout elements based on overlapping in a bottom-up fashion or a top-
down split based on Projection Profiling Cutting (PPC) could be applied to identify the high-
level structures such as column first. The PPC technique is a widely adopted technique for
document layout analysis [16] and mathematical analysis [17]. The PPC works by projecting the
pixels or shapes onto either the vertical or the horizontal direction and detect the change of
element distribution for the segmentation boundary. Regardless of processing in a bottom-up or a

top-down fashion, it is crucial to obtain the exact position of each character.
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It has already been observed and verified that the raw bounding box (bbox) of the
characters read from the PDF file is not accurate for all the existing PDF processing toolkits,
including PDFMiner [18], PDFBox [19], Multivalent [20]. Additional processing is required to
account for the extra space and shifting of the bounding box for the big operators. Baker [21]
tried to overcome this problem by matching the bbox with the pixels. However, this is
computationally costly and cannot resolve the shifting of the parsed bbox comparing with the
perceived bbox. TextStripper [22] from PDFBox is the best at the recovery of the tight bounding
box. Further, the accurate bbox is also crucial to improve the discrimination ability of features
for ME layout analysis. Finally, some big math characters such as the fence for matrices are
composed of multiple glyphs, and additional pre-merging is necessary [21].

In addition to the accurate position estimation of each character, layout analysis gets even
more challenging for documents containing complex MEs due to the two-dimensional nature of
ME, where one ME is commonly split into multiple rendering blocks and might split into
multiple vertical ranges. It has been previously observed that the quality of text line
segmentation has a direct impact on the performance of Isolated ME (IME) detection [23].
Special processing is needed to merge the accent and under/upper parts of big operators, where
the semantic information of the character values is required. Normalization of the character
values in PDF is highly desired as the value might be ASCII, Unicode, or manifested as the
glyph name in the font resources.

On the other side, the logical structures refer to semantic meaning segments, such as title,
header, paragraph, figure, table, sentence, word and ME. The target of this dissertation, ME, will
be elaborated in the next section. Only the identification of other logical structures will be

introduced here, which also play an important role in filtering out negative candidates. Similar to
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the discrepancy between rendering units and physical layout, one major challenge for logical
structure analysis is the discrepancy between physical layout units and logical structures. A
figure might be composed of multiple vector graphics, and an ME might be separated into
multiple layout units, causing partial matching and over matching issues in existing ME
Extraction systems [24]. Due to their simple layout structure, the heading information (title,
authors, and abstract) and references/citations are accurately extracted based on the conditional
random field (CRF) [25]. The Parcit system [26] has reached production level and to be deployed
in digital libraries such as Citeseerx [27], Google Scholar, Microsoft academic search [1],
semantic scholar. The figure/table [28] and their caption/reference metadata [29] could also be
extracted by regular expression (regex) patterns.

Most existing PDF analysis tools do not have special processing for MEs, including the
official Adobe Acrobat DC and the Phantom PDF editor from Foxit. Maxtract [30] is the first
and only attempt to convert PDF to Latex, which could be considered recovery at the logical
structure level. However, Maxtract has limited applicability as it only uses the font to
discriminate between ME and words.

Though publications in markup languages are much less in comparison to PDF, they are
still large in quantity. The Arxiv [10] pre-print service hosts about 1.4 million documents as of
August 2018, occupying about 1% of all publications based on statistics from the Microsoft
Academic Graph [1]. Much more insights about the nature of technical expressions could be
discovered even if a fraction of the papers could be analyzed. The Arxiv data has been
successfully used in the KDD cup 2003 for citation prediction [31] and the NTCIR mathematical
information retrieval task [5]. LaTeX source can be converted to a semantic level by Late XML

[32] for both text and MEs with limited accuracy. For transformation among markup languages,
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the Pandoc Project [33] is the most active and mature, covering most existing file formats,
including Latex and Docx.
1.2.1.2 Challenges of digital document processing

In summary, the critical challenges for digital document processing arise from two
discrepancies: the discrepancy between the rending units with layout structure and the
discrepancy between the layout structures with logical units. Accurate recovery of the physical
layout structures and logical structures is the foundation for all later steps. Also, there are two
engineering challenges in the normalization of the character information: character value
normalization and tight bounding box recovery. The normalized values play crucial roles in the
layout and semantical analysis for MEs.

1.2.2 ME extraction
1.2.2.1 State of the arts for ME extraction

ME is a particular type of logical structure, which faces the same challenge of the
discrepancy between the physical layout and the logical structure as elaborated in the document
logical structure analysis and the identification of ME. Additionally, the ME extraction task has
its unique properties and challenges.

ME extraction has been studied since 2011 [34], [35], [23], [24]. An ME can be
embedded (EME) among plaintexts or isolated ME (IME) from them in a standalone line. The
IMEs are easier to detect as they often have formula serial number [34] with distinct layout [36],
[34], [23]. Spatial layout features include line height, space above/below, left/right indent [21],
line centeredness, the variation of line width [34], the sparseness of chars, the variance of

baseline and the bounding box size [37].



EME extraction is still an open problem due to the unrestricted use of fonts and the fuzzy
boundary with words caused by the discrepancy between physical layout analysis and logical
units. Besides the above-mentioned spatial layout features for IME detection, the following
aspects are also explored: 1) math element, 2) fonts, 3) linguistics. Math elements include named
functions [34], fraction/radical structure [37], and special characters for operations, relations,
Greek, delimiters, integrals, etc. [34], [38]. The italic font and the irregular size are also indicator
[37],[39] and [21] also used the particular font name to extract MEs. Linguistics features include
the purity of words [37] and letters ratio [40]. Past methods mostly model the EME identification
problem as a classification problem using the Support Vector Machine to train the discriminant
model. For non-ME (NME) detection, a set of customized regular expressions to detect figure,
table and equation references are developed based on [29].

There is a trend of using adaptive features besides the general features mentioned above.
To accommodate the writing habits of each user, [40] proposed to use the local features based on
the identified isolated mathematical expression (IME). However, the mixed usage of general
features and customized features still hinder the correct decision as will be elaborated in this
dissertation.

In addition to typesetting, neighbors of MEs may also provide useful detection clues. For
example, [35] used the label of neighbors as a feature and [38] used the context as semantic
constraints and made an assessment of the relationship between connected characters [38].
Iwatsuki [40] is the only work which systematically models the neighbor information for

decision making based on the conditional random field [25].
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1.2.2.2 Challenges for ME extraction

As a particular type of logical structure, the ME extraction module inherits all the
challenges of digital document processing. More specifically, the errors in layout analysis cause
partial matching and over-matching issues. The variety of writing habits might violate the
assumption of global training, leading to degradation of performance. There is a need for the
design of adaptive feature to capture the writer habits.

1.2.3 ME layout analysis

1.2.3.1 State-of-the-arts for ME layout analysis

Given the identified MEs, represented as typesetting, i.e., a collection of characters with
value, font, and positional information, the ME layout must be recovered to understand the
semantics. The existing methods for ME layout analysis can be grouped into divide-and-conquer
approaches and integrated methods based on the survey by Chan [41] and Zanibbi [42], [43].

Characters are atomic building units. The character value and bounding box (bbox) are
critical information in predicting the ME layout. The bbox must be accurately adjusted to reflect
the tight bounding box, as elaborated in the digital document analysis section. Many
characteristics only apply to a subset of the characters. First, the value of accent, radical, and
binding operators are reliable indicators of possible affiliated children [44], [45]. Second, for
alphabets and digits, the baseline can be identified to organize the characters into a recursive
structure which is then transformed into ME layout using tree transformation [46]. Besides the
baseline, the normalized height, i.e., the distance between the ascender line and the descender
line can be recovered for more accurate super/subscript classification [47], [48]. Third, besides
the characters mentioned above, there are large quantities of characters remaining, including

operators, relations, arrows, etc. Typically, the tight bounding box top/bottom boundary of their
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glyphs does not align with the typographic reference lines such as baseline or midline. However,
some are vertically asymmetric and have the vertical center estimated reliably for the assessment
of vertical relationship [45].

For the divide-and-conquer approach, decision rules for different structures are proposed
based on the aforementioned character dominance [45] and the relative spatial position [42].
Since the super/subscript relationships are widely used, many studies focused on them alone.
Okamoto [49] used fixed thresholds to search for the SUP/SUB. Aly [48] used relative size and
relative position features calculated from normalized bounding box to predict the relation
between a pair of alphanumeric character as HOR/SUP/SUB. But alphanumeric characters only
cover about 57% of all characters and 26.5% of all pairs of characters in dominance relationship.
Ling [50] and Zanibbi [51] proposed features in the log-polar space and PCA is adopted for
dimension reduction and improved discriminant ability for layout recovery of hand-written MEs.
A similar feature was introduced by Fotini [52] to capture the angle. Generally, if the characters
are not correctly processed to recover their normalized height and vertical center, there will a
significant overlapping on the distribution of the feature, leading to a degradation of the
discrimination ability. The methods mentioned above only apply to each pair of characters
locally, but the local decision might introduce error and also lead to inconsistency globally.

Integrated model-based approaches [53], [47] are proposed to overcome local decision
error. Wang [53] treated the layout of ME together as the event space, and the dominance
relationships of all the characters are inferred simultaneously to reach global optimality. Suzuki
[47] formulated the layout identification problem as a minimal cost spanning tree problem.
However, the cost/score for each local linkage is set manually, which might not attain the best

performance. Alvaro [48] expanded the stochastic context-free grammar and incorporated spatial
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relationship assessment into the grammar. Although the incorporation of the semantic grammar
brings some benefits, it also limits the applicability because of the difficulty in capturing the
flexible representation and customization of ME fonts. Okamoto [49] used projection profiling
cutting to produce a hierarchical grouping of symbols, which is then traversed and transformed
into a mathematical layout using re-writing rules. The PPC method is sensitive to the
overlapping of the characters, and there are no systematical solutions about the order to apply
vertical/horizontal cutting, which will affect the final results. Raja [54] adopted graph grammar
rewriting over the neighbor graph of symbols by minimizing conflicts.
1.2.3.2 Challenges for ME layout analysis

First, the recovery of the hierarchical ME layout faces the ambiguity in create blocks.
Further, the identification of the characters on the main baseline is required rather than treating
the ME block as a whole unit, and the characters must be normalized concerning the reference
lines to precisely assess the relative spatial relation between ME blocks. Second, there are many
rules to recover a portion of the ME structures. It is necessary to recover the partial structure in
the correct order so that the partial structures do not interfere with each other and can cover all
situations. At last, the local greedy decision method suffers from error propagating, but the
global inference is computationally costly. Further, given that new layout conventions might be
introduced, a generative model is preferred over the discriminative model, since generative
models have a clear system boundary.

1.2.4 ME semantics analysis

1.2.4.1 State-of-the-arts for ME semantics analysis

The “ME semantics” and the “semantic taxonomy” mentioned in this work are similar to

the concepts Operator Tree [42], OpenMath [55] and Content MathML [9]. However, the
13



operator tree does not adequately express the semantics yet. The superscript might be represented
as a character ‘“*’ in operator tree, but it can have different meanings, such as superscript,
function inverse, exponential, function differentiation. It is also a non-trivial task to convert
between different standards [56].

Different ME-semantics parsing systems have different assumptions about input. Some
works [57], [58] assume the inputs as images with the need of an OCR module. Some make the
assumptions that the layout is correctly recovered and only the semantics is left to resolve [59],
[32]. The second approach with a modularized design is adopted in this work, which is also
suggested in the survey paper [42].

Early works on ME semantics parsing are mostly rule-based systems. Andrea [60] used a
top-down syntax grammar to build the operator tree. This top-down way has the advantage of
using the target tag as the context to guide the meaning of the dominated symbols. But the top-
down schema has the disadvantages of exponential complexity and could not pinpoint the error
when parsing failed. This early work only showed the feasibility with a limited grammar for
basic algebra. Similarly, a recursive descent method is adopted with the assumption that the ME
is already segmented into meaningful semantic blocks [57].

Graph re-written is another popular rule-based approach [61]. Spatial and content type
conditions trigger rules to re-write the graph. These rules are applied to the graph iteratively until
the stop conditions are met. One challenge for the graph-based method is the rule selection when
multiple rules are satisfied. Lavirotte [59] used the context to make sure there is no ambiguity.
One equivalent explanation for adding the context is to enforce the order of execution.

Practically, graph search is time-consuming for the subgraph matching.
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Miller from NIST developed the LateXML [32] system to convert from Latex into the
Content MathML representation using Context Free Grammar. It is the state-of-the-art for ME
semantic parsing. However, it has been reported above 41% of the notations did not have their
semantic role resolved [62], where the role attribute is set to ‘unknown.’

The rule-based parsing mainly uses the context and manually defined rules for the
resolution of ambiguity. Another direction for the ambiguity resolution is using stochastic
grammar to resolve the ambiguity statistically, where the probability could either be trained
using the unsupervised Inside/Outside algorithm [63] or supervised probability estimation from
ground truth data [64].

Except for the LaTeXML [32], the works above only cover the basic math concepts. As
more math dialects are considered, more ambiguities will be introduced, which is the main
challenge for ME semantics understanding. Youssef [65] enumerate five types of ambiguities
that might happen during the semantic analysis, which could be grouped into three major
categories: tokenization, scoping, and interpretation. The tokenization refers to the process of
segmenting an ME into atomic building units such as operators, relations, and identifiers (which
might be a single character or multiple characters). As such, there is an ambiguity that the
consecutive characters could either mean an identifier or the multiplication of multiple variables.
Second, for the convenience of writing, the grouping fences could be omitted, causing various
possible ways to interpret the operation order. For the last interpretation layer, one needs to
resolve the actual meaning given the same physical layout structure. The accent might mean
conjugation for complex number or differentiation of a function. The superscript could indicate

an exponent component or an index.
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1.2.4.2 Challenges for ME semantics analysis

First, to cover a wide spectrum of applicability for different math dialects, a general
extendable framework is necessary to add new rules when necessary. Second, during the parsing
phase, the semantic analysis faces the ambiguities for tokenization, abstract syntax tree (AST)
construction, and the AST interpretation. The tokenization challenges come from two aspects.
On the one hand, one character might have multiple meaning, which will lead to entirely
different ASTs. On the other hand, the consecutive alphabets might mean multi-character
identifiers or multiplication by omitting the operators. Second, the AST might not be correctly
recovered. At last, the same structure might also different interpretation. For example, the
superscript component could be index or exponents.

1.2.5 Declaration extraction
1.2.5.1 State-of-the-arts for declaration extraction

ME-declaration extraction belongs to the domain of information extraction, but it differs
from the traditional natural language processing (NLP) due to the elaboration of mixed Word-
ME (MWM) sentences. Additional taxonomy and customization are necessary to analyze the
syntactic role of ME and its interaction with neighbor plaintext.

First, the ME could be more complicated than simple plaintext words, acting as a
sentence or subordinate clause. The existing convention [66] for the part-of-speech (PoS) of ME
contains three categories: S for a sentence or subordinate clause, NP for a noun or noun phrase,
NML for a noun modifier. None of the existing PoS taggers pays particular attention to the ME.
Current works [67], [68], [69] process MWM sentences by treating the MEs as ordinary words
and directly apply the existing PoS tagger [70], [71]. The special syntactic role of ME could not

be covered, and the degradation of the PoS tagging for other words was also observed. An F1
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score of 0.936 is obtained using the Stanford MaxEnt tagger in comparison with 0.96 F1 score
non-MWM corpus in our study.

In traditional NLP domain, the PoS tagging task has been considered an almost solved
problem using statistical machine learning models. Features are the most critical aspect of
machine learning based methods. The standard features for PoS tagging include the
value/prefix/suffix of the current token or its neighbors [70]. The machine learning methods that
capture the interaction among neighbors also helped improve the performance such as the Tri-
gram HMM model [71]. One challenge issue in PoS tagging is the parameter estimation for the
out of dictionary words, which is commonly attacked by back off interpolation [71]. As for ME
specific PoS tagging, our previous statistical ME-PoS tagging model [72] based on the format
complexity of ME, neighbors PoS prediction, and the syntactic properness of the sentence
reached an accuracy of 75% for three classes classification of the PoS of the MEs. However, it
did not predict the PoS of other words, which is not accurately predicted by existing toolkit
because of the ME neighbors.

Due to the particular PoS of ME and the difference in the interaction of ME with
plaintext, a traditional constituent or dependency parser will fail to analyze the syntactical
structure of the MWM sentence related to ME part and even propagate the error to the plaintext
parts. The existing solution for parsing MWM sentences are based on brittle grammar, including
the combinatorial category grammar [73] and the typed PCFG [74]. They both require the
semantic analysis of ME, which itself is still a challenge. On the other hand, a data-driven
training approach might not be feasible due to the scarcity of dependency parsing tree data for
MWM sentences. Though it is reasonable to directly extract relation using the dependency

parsing structure as done in the protein interaction extraction [75], the errors accumulate at both
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the PoS and parsing steps. Besides, the dependency/constituent parsing face the challenge in the
multi-word expression [76], the special punctuation [77], and prepositional phrase attachment
and coordinate conjunction attachment ambiguity [78], [79], [80] even for the regular languages.
Nevertheless, features will be extracted from the dependency parsing tree generated from the
existing dependency parser and the training process to determine weight assignments to the
dependency tree related features.

The declaration extractor will be built on the information from the above low-level
processing. The declaration extraction gets attention starting from the NTCIR competition of
math understanding [4]. Existing work [81], [67], [68] formulated the declaration extraction
problem into two phases: NP candidate pair generation and ME-NP pair classification. From the
view of the candidate generation, these existing methods are all using the traditional NLP tools
for PoS tagging and NP extraction, where errors were introduced for the MWM sentences
processing. From the view of feature engineering for the classification, the features of the
classification cover: common declaration patterns, punctuation, word distance, occurrence order
of ME vs. the declaration candidate, surface text/PoS of two previous/subsequent words of
declaration candidate and ME, uni/bi/tri-gram of the definition candidate, and the surface text of
the verb between the ME and candidates. Among all the features, the declaration patterns play
the most critical roles. However, the patterns manually enumerated are not complete and it is
highly desirable to have an automated or semi-automated method to collect the declaration
patterns.
1.2.5.2 Challenges for declaration extraction

In summary, the challenges for declaration extraction comes from two aspects. First, the

MEs in MWM sentences have special PoS tags that do not fit into existing categories. The
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special PoS tags lead to degradation of the NP extraction as the declaration candidates. Second,
the declaration patterns are the features with the most significant weight, but the manual
enumeration process might miss many patterns. It is necessary to train a customized MWM
processing toolkit and have a (semi-)automated way to collect the declaration patterns.
1.2.6 High-level Application of Mathematical Analysis

1.2.6.1 State-of-the-art for math-centered applications

Similar with the search engine to query by keywords, there have been more than ten years
of research and many online systems [82], [83] on the retrieval of mathematical expression using
mathematical expressions and a mixture of words as inputs. The layout structures of ME
variables and operators can support novel approaches for presentation-based IR systems [84],
[85], [86], [87], and the semantic structures of MEs, as well as the declaration words, will
support semantic-level IR systems [6], [88], [89], [90], [8]. Normalization and approximation of
polymorphic forms of MEs are critical to the performance outcomes [7]. Common normalization
procedures include the removal of structures (mrow, parentheses, attachment, right-hand side
ME), and case normalization. The notation differences are also alleviated by matching MEs with
explicit declaration [8]. There are two standard techniques for the indexing term generation:
vector space model (VSM) and the suffix tree path. VSM treat the symbols in the MEs are tokens
and build a vector space model, while the substation tree indexing [91] will transform each ME
into a set of paths. After the term generation, traditional information retrieval technology could
be applied for indexing and retrieval, including the language model, the binary model, the BM25
[92]. There are some other MathIR techniques are also design for tree/graph matching. However,
as pointed in [7], the systems that support querying by formulae are “perceived as not very useful

yet?” Traditional search engines mostly depend on the word matching to locate specific topics or
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questions. On the other side, the users need a math search engine are solving problems which
require the transformation and derivation from some facts to others. The symbolic computing
and proving assistant might be what they want on this aspect.

The MathlR is also highly related with the proving assistant system Mizar [2], theorem
prover Coq [3], and mathematical knowledge management system such as Mathematica [93].
Started 45 years ago, the Mizar system is the largest collection strictly formalized mathematical
knowledge, containing more than 12, 274 definitions and 59, 706 theorems [94]. Though the
formalization is very helpful in organizing the mathematical knowledge for abstract inference,
they are less useful for applied mathematics and engineering.

From the view of improving the readability of mathematical intensive papers/books, there
is limited research work on ME. There have been attempts to recover the structure of the
mathematical discussion within a paper through extraction of the math block and links them
using explicit reference based on pattern matching for math terms such as definition, theorem,
lemma [95], [96]. But many implicit linkages among the ME are still not recovered yet. For non-
mathematical content, the Utopia project [97] enhanced the reading experience of the medical
domain by matching external resources such as terminology dictionaries.
1.2.6.2 Challenges for math-centered applications

The desired math-centered user experiences are still under exploration. The systems that
support searching by MEs are perceived as not very useful [7]. Auto-proving [3] and proof-
checker [2] could not scale up due to the massive manual labor efforts and only targeting at pure

mathematics. Recovery of logic flow by the reference could not cover the implicit dependency.
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Figure 5. Research Scope for MECA: Analytical framework
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1.3 Overview of the dissertation

In this dissertation, the Mathematical Expression centered publications Content Analysis
system (MECA) is proposed for the large-scale post-publication technical material analysis.
Elements of the MECA system, organized by the chapters, are illustrated in Figure 5.
Correspondingly, the software architecture and workflow is shown in Figure 6. A complete
elaboration of the software system could be found in Appendix C.

Our study starts with Chapter II, which analyzes the logical structure of documents and
identify the MEs. A weakly-supervised sequential model to extract MEs from the typesetting of
PDF files is proposed to overcome the discrepancy between physical layout and the logical
structure and alleviate the difference in writing habits. The essence of this typesetting-based
modeling is the consistency of the font usage patterns for MEs and NMEs, either explicit
selected by the author or implicitly chosen by the document processing system. Based on the
weakly-supervised heuristic rules using the particular symbol values or external dictionary, a
significant portion of the ME and NME characters could be identified with high precision. The
recognized high confident ME/NME characters could build a reliable estimation of the posterior
probability of the character label as ME/NME given its font-value pair. Then, the char-level
posterior probability is used for the inference of each physical layout unit (non-separable
character sequence) to identify potential EME segments. At last, a Markov Random Field based
sequential modeling is applied to remove the local errors to reach global optimality. This
weakly-supervised approach based on typesetting provide a simple yet efficient way for the
adaptation to the font usage of each writer. The MRF based sequential tagging offers a
systematical way to overcome the discrepancy between the physical layout analysis and the

logical structure identification.
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After the identification of ME represented as typesetting, the next task elaborated in
Chapter III is the recovery of the layout structure of ME, which is crucial for the understanding
of ME semantics. The ME layout organizes the ME characters into a hierarchical of MEblocks
with specific relative spatial relationships. The key to accurate ME layout analysis is the
modeling of the typographical system for precise decision-making. A systematic categorization
of the characters based on their glyph design is summarized to estimate their normalized height
and vertical center reliably. Further, parametric modeling for the height ratio and the normalized
vertical center difference (PHN) could be used reliably for the identification of the relative
spatial relationships, sub/superscript. The typographic and PHN model provide a solid
foundation for the tradeoff between the precision and recall for predictive analysis. The above
foundations are deployed into a divide-and-conquer content-constrained spatial (CCS) layout for
ME:s. First, rules are applied to identify MEBlocks based on the symbol value indicator and the
dominated regions. Second, a global inference model is applied for the super/subscript
identification that could overcome local errors. The typographic and PHN model are succinct
with powerful discriminating ability. The CCS ME layout analysis module on top of them
outperforms state of the art with fast execution speed.

The ME layout already encodes lots of semantics manifested as the hierarchical grouping
of characters into blocks. But more semantics information is left to explore. The chapter IV
presents the systematic modeling and ambiguity resolution techniques to recover the ME
semantics. First, a semantic taxonomy of ME is summarized according to the current standard
OpenMath [55] and MathML [9]. The ME semantics taxonomy provides a guideline for the
semantics parsing and a convenient framework to operate on the MEs. Second, a systematical

review of the ambiguity during the ME semantics understanding process is presented. Then, a tri-
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phase ME semantics understanding framework is proposed. The first phase is the preprocessing
for character semantics disambiguation and characters grouping. The second phase is the PCFG
parsing tree construction to find the correct hierarchical scoping. The last phase is the context-
dependent ME object generation through tree rewriting. Experiments on a preliminary dataset
show that the proposed method could achieve similar ME Semantics to the ground truth.

Besides the MEs, the bonding words around also play important roles. In chapter V, the
extraction of declaration for MEs is elaborated, which is very important in linking the
mathematical abstraction with the physical worlds. The core for successful identification of ME-
declaration is at two aspects: the low-level processing of the mixed Word-ME (MWM)
sentences, and the high-level features/patterns for declaration. A customized PoS tagger and NP
chunker for the MWM sentences are trained to avoid the degradation that harms the declaration
candidate enumeration. Further, a semi-automated weakly-supervised method is developed to
gather a variety of patterns for ME declaration. Experiment results showed a significant
improvement in the F1 score for ME-declaration identification.

At last, given the rich analytics of the ME semantics from the quantitative aspect and the
ME-declaration from the qualitative perspective, these metadata are integrated to create a unified
qualitative-quantitative (QuQn) mapping by recovering the dependency and pruning redundancy.
The QuQn mapping of a publication provides a concise representation of the technical essence of
a publication, with redundant information consolidated and dependency highlighted. A high
reduction ratio of around 1:4 is reached. The QuQn map is integrated into a web-based reading
assistant system as the graphical organizer of the technical essence with rich interactive features

to explore the dependency among factors. The synchronization between the QuQn map and the
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original materials make it very easy to switch between the high-level abstraction and low-level
detail.

Three application scenarios concerning education and knowledge mapping are explored.
A user study during a high school summer camp shows that the QuQn map could help the
students understand the dependency among different factors and boost their confidence to learn
complex systems. The declaration-based topic clustering captures the technical essence behind
the variety of the research task. The paper difference analysis shows the potential of MECA for

cross-paper analysis.
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CHAPTER 1II

ME EXTRACTION FROM PDF FILES*

ILI.1 Overview of the chapter

The ability to locate Mathematical Expressions (ME) from digital files is the entry for
math-centered publication analysis. Given that over 90% papers published in Portable Document
Format (PDF) according to the statistics from Microsoft Academic Graph [1], this chapter
focuses on the extraction of ME from PDF files, which only contains typesetting information.
ME:s can be further divided into Isolated MEs (IME), which are explicitly separated from the
plaintext part, and the Embedded MEs (EME), which are usually treated as a form of technical
entity being blended into plaintext sentences for reasoning, explanation, or association of the
mathematical notions with the subject under discussion. It is relatively easy to extract IME
because of their highlighted spacing. On the other hand, EME extraction is much more
challenging due to its resemblance with words and the customize font style outside of the
training dataset. The best performance for EME extraction has a false negative rate of 15.9% and
a false positive rate over 20% [24].

As IME:s are particular types of physical layout lines and the EMEs are embedded into
lines, the accurate physical layout analysis, especially the recovery of the lines, is the foundation
for the ME extraction. In this chapter, the document layout analysis is first presented. The

Projection Profiling Cutting (PPC) based algorithm for the Line-Column Generation (LCG)

*Reprinted with permission from “A Font Setting Based Bayesian Model to Extract
Mathematical Expression in PDF Files” by Wang, Xing and Liu, Jyh-Charn, 2017. /4th [APR
International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp.
759-764. Copyright 2017 IEEE.
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according to the bounding box position of the characters in PDF. Each physical layout line is
tokenized based on spacing into non-separable character sequence (NSCS) using the built-in
tokenizer of PDFBox and PDFMiner. But when apparent errors are detected, a word matching
based tokenizer will be applied.

Then, the IME and EME will be identified from the lines and NSCSes. We observe that
authors tend to express MEs in particular styles repeatedly in a paper. This observation leads to a
succinct feature space for the labeling of NSCS for EME. Multiple semantic resources that
include natural language corpus, citation style, headings, highlighting words, math symbols, and
math function names, are used to construct heuristic rules for detecting anchoring MEs and non-
MEs (NME), which represent the entities that can be recognized with negligible error. The
anchoring ME and NME are used to estimate the probability of a character as ME conditional on
its font name and value, which will then be used to extract ME for NSCSes based on the
Bayesian inference technique. This weakly-supervised EME identification method is called
typesetting-based Bayesian (TSB) model.

Though the TSB model provides a succinct representation and outperforms the state-of-
art [24], it could not discriminate well on the characters that are commonly used in both ME and
non-ME (NME), such as digits and punctuations. Further, the discrepancy between the physical
layout and the logical structure might split one ME into multiple rendering units. These two
factors together cause the partial matching problem. Given that these ambiguous characters have
a similar probability as ME or NME, their label might be able to be corrected by the label of
neighbor NSCSes. This idea is formalized into a Markov Random Field (MRF-TSB) based

sequential tagging problem.
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The TSB and MRF-TSB models are evaluated on the public dataset Marmot [24]. The
TSB outperforms state of the art by 10% for both the miss and false rate. Results show that the

proposed sequential techniques could reduce the incorrect split by 1/3, together with a slight

improvement on the miss and false rate.

In the following of this chapter, the document layout analysis module is first introduced.

Then the TSB and MRF-TSB model will be elaborated. Experiment and result analysis will be

given at last.

I1.2 Document layout analysis

11.2.1 Document layout model

Non-separable Character Sequence (NSCS)

__________________________________________________

_Eparameters. -
= With this assumption, we introduce the notation [0(/ )] to mean the proba-
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Figure 7 Document layout analysis from the Typesetting and font resources of PDF file,

parts of this figure are adapted from “Lecture Notes 11: The Good-Turing Estimation”
[98]
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ME identification is a particular type of document logical structure. The accurate logical
structure analysis depends on the precise physical layout recovery as shown in Figure 7. In this
work, our Line-Column Generator (LCG) module is designed to produce columns and lines of a
page layout in academic publications, which are mostly formatted into single or double columns.
For double-column pages, they might also have a single-column header, footer or images/tables.
Unlike general document layout analysis where the page orientation can be skewed, in this work,
It is assumed that the page orientations of technical papers are either vertical or horizontal. Based
on this observation, columns and lines are detected using the concept of Projection Profiling
Cutting (PPC) on the converted binary image I from PDF shown in the lower part of Figure 7. A
pixel is black if it lies in the character bounding boxes extracted from the typesetting of the PDF
files. Formally, for each character ¢ € n, it is associated with the glyph name value v,, font f_, a
tight bounding box rectangle b.. Note that some big visual elements such as the open fence for
matrix might be split into multiple characters and a pre-merging based on the character value is
required [21].

After the LCG processing, a document D; consists of pages {P; ;}, where the page P; ; is
composed of columns {C; j x}. A column C; j  contains lines {L; ; x;}, where each line could
stand for an IME or mixed Word-EME line. Each line L; ; . ; is composed of characters which

could be organized as a sequence of non-separable character sequences (NSCS),
(N4 j k1,10 M, j ke 1,20 -)» Which could be either a plaintext word or part of an embedded ME. IMEs

are identified by a classification of the lines. EMEs are identified from the sequence of NSCS

separated by space (marked by red dashed rectangles) from the PDF parsing system.
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11.2.2 Line-Column Generator

The procedure for Line-Column-Generator (LCG) is illustrated in Figure 8. The PDF
files are first fed into the PDF parser [19], [18] to get the tight bounding box for each character
for better column/line detection. The TextStripper function in PDFBox could correctly segment
lines so that each NSCS corresponds to a word most of the time. Failures are detected when long
words are observed. The failure cases will be processed by the PDFminer and a customized
tokenizer to maximize the matching of words. After the characters and NSCSes are obtained, a
top-down procedure first segments the page into columns as illustrated in Figure 8. After the
columns are detected, a bottom-up approach will merge the NSCSes into lines for each column
based on the vertical overlapping. Special procedures are designed for the merging of a
decorative structure such as the accent and upper/under parts of binding operators.

The column detection procedure follows a two-step approach based on the projection
profiling (pp), which first decides whether double columns exist, then identifies the double
column region. A pp is obtained by projecting the black pixels onto an axis and do a cumulative
counting on each position on the axis. The horizontal and vertical profiles for a PDF page are
shown in Figure 8 using the test document 10.1.1.58.6850 6 in [24].

A page is detected as double column format if there are at least five lines for the double
column region between row pixel index i% and i, s.t. i® — il > 85;;,0, and there exist a central
gap in the corresponding horizontal PP pp,, (I[it: i?, :]), where I[iL:i?, :] means cropping the
image between low boundary row i% to high boundary row i”. The center gap is defined as an

empty region of at least §e, pixels around the center of the horizontal pp of text body region.
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Figure 8 Column Detection Illustration, parts of this figure are adopted from paper
10.1.1.58.6850 from CiteseerX [99]

The column range (i2, i¢) of the text body is obtained by removing the empty margin.
From the column range, the central region (i%, i) is estimated with a width that is in ratio a of
the text body. Then, &, consecutive empty pixels are found in the horizontal projection profile
of the center region, ppy, (I[it: il i2.:i&]), where I[iL: i", i%.: i¢.] means the cropped image from

the beginning column iZ, to the ending column i¢..
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If the double column format is detected, one can find the largest |i* — il|, iL < i?, with
the constraint that the horizontal PP of I[iL: i, :] has a central gap. Each column is passed to the
line segmentation algorithm, which detects lines based on the zero gaps in the vertical pp. By the

end, for each LTTextLine [,4¢ extracted from PDF file, a line region Lli’ ik 1s detected from PPC
such that the overlapping area is at least half of the area of [,4¢. Then enumerate through

{Lli‘ j k}ij in page j of document D;, and merge the associated [,4r set to construct the lines.

The center gap ratio a is set to 0.1. The & 1s set to 5. And §5jipes 1S set empirically to
400 pixels. By manually checking the line detection results, there is only one failure case where
there is an embedded figure. There is one limitation of the PPC based line detection algorithm
that it will split the under/over part of IME into separate lines.

Upon the result from document physical layout analysis, the typesetting-based Bayesian
model that extracts IMEs from lines and EMEs from NSCSes are introduced in the following
subsections.

I1.3 Typesetting-based Bayesian model for ME extraction

Different authors have different document processor environment, and they have free
choice in choosing the fonts and layouts for MEs. But the mathematical notations are usually in
separate fonts than the words. Given the assumption and observations, a weak-supervised
adaptive typesetting-based Bayesian (TSB) model is developed. First, heuristic rules derived
from the knowledge of math usage and writing practices are employed to identify the seed set of
ME characters Cy and the seed set of NME characters Cyz With high confidence. Then, the

character-level posterior probability Pr, (L|F, V), conditional upon the font F and value
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information V, is estimated. These posterior probabilities will be used during the inference of the
NSCS-level classification as ME or NME.
11.3.1 Heuristic rules to identify ME/NME characters and their quality

MEs can be treated as a form of text blended with plaintext words into regular sentences.
Some MEs may become reserved, de facto terminologies to represent sophisticated abstractions.
In technical writing, important issues are often highlighted in different forms. Several rules are
proposed for the partial identification ME and NME characters at the levels of symbols, NSCSes,
NSCS sequences, and lines. NME could be the heading of theorems, lemmas and the caption of

figures and tables.

[3.1 Feature Adaptation/«— Struture WO rd
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Figure 9 Heuristics to identify partial ME/NME, parts of this figure are adapted from the
“residual transfer networks [100]”

Table 1 The rules to match document structures

Element Regex Example
Citation \[\d+(, \d+)*\] “11, 1717
\((\D)*(181920)\d\d\) (Tracy, 2000)
Figure/Table | (figure|fig.|table[tbl.)[ ]* \d(\.\d)*[ 1*(\([a-zA-Z]\)\[[a-zA-Z]\]) | “Fig. 1a”,
Equation (equationegn.eq.formula)[ 1*(\d+(\.\d+)*\(\d+(\.\d+)*\)) “Equation 1”
Theorem (theorem | definition |example|corollary)[ ]*\d+(\.\d+)* Theorem 1
Heading (chapter|section)[ ]*\d+(\.\d+)* “Chapter 2”
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Table 2 Performance of the Heuristics to identify ME/NME

Func. | Math Sym. | IME | Word | Acronym | Citation | Intra | Structure
NME 67 3849 9 68570 1147 687 998 416
ME 190 26842 1409 | 555 300 40 7 0
Precision | 0.739 0.875 0.994 | 0.991 0.793 0.94 |0.939 1

For non-mathematical elements, plaintext words, acronyms, citations, intra document
references, and structure indicators such as headings are matched out. The matched words based
on natural language corpus covers a lot of characters at a high precision of 0.991. The NSCSes
with less than three characters are filtered out to reduce the false positive. The NSCSes are
normalized using the Wordnet lemmatizer [101] into its root form and match against the word
corpus [101]. The regex rules for matching such elements are summarized in Table 1. An
acronym is typically formed from the first letter of multiple word sequence. Acronyms are
detected by checking the capitalization and the first letter of surrounding NSCS. Except for the
acronym, the other rules for NME all achieve over 90% accuracy as shown in Table 2. As will be
discussed later, it is hard to recognized MEs from acronym is hard because the related characters
are both used in ME and NME. Further, the human annotation is not consistent either. Based on
Unicode value and glyph names, math characters and function names are extracted as MEs.
Greek characters, operators, relations [35] are selected as ME symbols. A simple rule is designed
for IME detection. If a line contains math elements, but no plaintext words, it will be predicted as
Isolated Mathematical Expression (IME), with a precision of 0.994, a recall rate of 0.889 and an
F1 score of 0.939. It is slightly better than the best experiment setting of previous work [24]. The

first cause of missed IME detection is that the common words for both ME and NME, such as
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“for,” “and,” “otherwise,” “super.” The other reason is the failure of line extraction and
corrupted font resources from PDF parsing.
11.3.2 Bayesian Inference for EME identification

At the NSCS-level where most EME belongs to, there are no silver bullet rules that
distinguish ME from NME accurately. Some exception situations include italic fonts for both
acronyms and ME and natural language words as variables. But it is observed that authors tend
to express MEs in a particular font style repeatedly in a paper. The heuristic rules derived from
common writing practice are with high precision at the character level and line level for IME
identification. The statistics from the characters identified by heuristic rules will be useful for the
likelihood ratio test Li (1) at the NSCS level as the workflow shown in Figure 10. At last, a post
processing step will reject detected EME that overlaps with IME and merge consecutive EME
into one ME.

The document elements, characters/NSCS/line, are first pipelined to the rule-based
ME/NME identification module, which will produce high confidence character set Cyg and
CnMmEe for ME and NME, respectively. These two sets will be used to estimate the char level
posterior probability P.(L|C) is based on the co-occurrence statistics between font-value and
ME/NME label, where L € {ME, NME} is the label and C € C is the char set. Let Hyg and Hymg
respectively denote the font-value co-occurrence matrices, where Hyg(f, v) and Hyme(f, v) as
the count of co-occurrence of font f and value v for ME and NME.

Then P (L = ME|C = c) is estimated as:

Hug(fe ve)

Pf(LZME|F=f,V=U)=
v ¢ “ Humg(f.,v.) + Hame(for ve)
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, where F € F and V € V be random variables of font and value defined over the C. If the char

¢ & Cyig, Pc(L = ME|C = c) is estimated by the marginal font conditional probability

Pi(L = ME|F = f.).

The inference of the label L fora NSCS N € N is realized through the likelihood ratio

test which is transformed using the Bayesian rule as follows:

Lr(n) =

P(L=ME|N =n) _ P(N =n|L=ME)P(L = ME)

P(L=NME|N=n) P(N =n|L = NME)P(L = NME)

ME/NME identification

@ NS*C" * ’%\ Line
Plain words, Heading, Theerem, ME i

Acronym, Figure/Table/Caption,
Function name ||Citation, Ref
ME histogram
CMBXR1D
CMCSC10
sl .
CMMIT ™
ol v
CMRT
CMSY10
oisY7
Mo
MEBM1G
abcdefghikImnopgrstuvwayz{|}arics-a]-1
NME histogram
CMBX10
EMESC10
CMiMIL
CMMIS
CMMi?
QMRLO
CMRS
CMAT
510
syl
CMTI10
BM10
abcdefghik Imnopqrstuvwxyz{|jatdce=pl=g
'r Char level posterior estimation v'v
P.(L = ME|C) Po(L = NME|C)
NSCS == NCSC Level Assessment

(™)

l_[ P(L = ME|C = ¢)

cEn CEN

Bayesian Rule

P(NIL =

/!

Equal ME/NME Prob.

P(L = NME|C = ¢)

M Conditional indenpendel‘lt"’—rﬂf‘, = NME)

4

P(L = ME|N) P(L = NME|N)
abels merger
EME Labels IME Labels

Figure 10 The workflow for the Typesetting-based Bayesian model, reprinted with
permission from [102]
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Given that the combinatorial space for NSCS N is too large for probability estimation, the
assumption of conditional independence is made here, where the P(N|L) in (2) could be
decomposed as follows:

P(N = n|L) = ﬂpc(c = ¢|L)
cen
The Bayesian rule to transform the char level likelihood P;(C|L) to posterior Pc(L|C):

P(N = n|L) = HPC(LIC = ¢)P(C = ¢)/P(L)

CEN

It is further assumed the equal prior probability of ME vs. NME, i.e., P(L = ME) = P(L =
NME). Then plug in the expansion based on conditional independency into the likelihood ratio

test and cancel out P(C = c), leading to:

Lo TP =MEIC=0)
R = [ =wmEIC=0

cen

However, errors occur frequently for the punctuation and digits, leading to the split of one ME
into multiple parts. This problem will be elaborated in the next sequential EME extraction
section.
I1.4 An MRF-based sequential modeling for EME extraction

Labeling of EME is still a problem not fully solved due to the fuzzy boundary. For
instance, many EMEs are incorrectly split due to misidentification of a few characters. As shown
in Figure 11, the fuzzy boundary is mainly due to the discrepancy between the physical layout
units separated by the red lines and the logical structures, causing errors in the EME prediction
marked in the blue shaded area. Existing work and my TSB model only use information within

NSCS without systematic incorporation of neighboring information.
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By further exploring the log of the posterior probability of each NSCS as ME and NME
in Figure 11, the observation to correct the NSCS label prediction by its neighbors is shown. The
plaintext words (“for,” “so,” “that”) have large log probability as NME compared with ME. For
most of the ME parts, they have large log probability as ME compared with NME. However,
there are less determinant zone such as punctuations and digits, causing the over split of ME.

However, the label of their direct neighbors could play an important role in predicting the right

label.
for t = 1,.., T —[. so that w € B, ry.
sequence of the nscs
0.0 1
_25_
_5.0_
.g —7.5 1
%—10.0—
-12.5
~15.07 . ME
-17.5 4 BN NME
for t =1, . . . T - | sothatw \n B | [ 1 , Tl

Figure 11 The motivation for sequential tagging and the related posterior probability

log(P(ME|n%)) and log(P(NME|n')), parts of this figure are adapted from
10.1.1.6.2281 9 in Marmot dataset [24]
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Inspired by the pair-wise potential concept commonly used in the Markov Random Field
algorithm, an MRF based extension to the existing TSB model for sequential prediction is
proposed, which incorporates neighbor constraints in labeling of EME vs. plaintext.
Experimental results show that this technique significantly reduces splitting of EMEs, with small
gains in the false and miss rate.

The rest of this section is organized in the following order: In this section, the MRF-TSB
pair-wise potential model for sequential EME prediction is first presented. Then, an example is
used to illustrate how MRF-TSB works as well as a sensitivity analysis for the parameter settings
is given. At last, the optimization solver design is presented.

11.4.1 Problem formulation of MRF-TSB model

The embedded mathematical expression identification will be on the lines not identified
as IME. Given such a line L composed as a NSCS sequence {n,, ...,ny, }, the goal is to predict
EME label sequence y = {1, ..., Yy, }, where the superscript is omitted for convenience, Ny, is
the number of elements in the line. y; € {0,1}, where 0 indicates plaintext and 1 indicates EME.
From the view of the pointwise decision process, the existing TSB model could be modeled as
posterior probability maximization. It is equivalent to minimizing the negation of summation of

log probability — Xier1,n,1log (P(yiln:)))), ie.,

UG) == yilog(P(L = MEIN = ) + (1 = y)log(P(L = NMEIN = 1))

, where P(L = [N]ME|N = n;) is cacluated from TSB model. For convenience, let U(y) denote
—Yivilog(Lr(n;)), where Lg(n;) = P(L = ME|N =n;)/P(L = NME|N = n;).
Given this observation, a heuristic is proposed, which prefers the label of y; to be similar

with the label of its neighbors y;_; and y;,; . Mathematically, a penalty is added for the
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difference in the consecutive labels, i.e., P(¥) = Xiep1,n,) |¥i — Yi+1]- By merging the above two

factors, we have the following minimization objective function U(y) + AP(y), where A > 0 is a
weight parameter.
11.4.2 How MRF-TSB model works and the parameter setting

We will study two scenarios based on the above example. For the latest quadruple
sequential of [“[”, “17, «“,”, ”T]”]. The values of objective function under different predicted
labels are enumerated in Table 3. From the table, we can see that, if we assign the less-
determinant NSCS as NME (label 0) between highly determinant ME, penalty 21 will be
introduced, which is consistent with the requirement A > 0 for our formulation to help alleviate

the over split issue.

Table 3 Objective value table for the case [“[”, “1”, “,”, ”T|”]
Label Objective value Reduced

[1,0,0,1] | 1*-14+0*0+0*0+1*-15+22 | -29+21
[1,0,1,1] | 1*-14+0*0+1*0+1*-15+21 | -29+24
[1,1,1,1] | 1*-14+1*0+1*0+1*-15 -29

Table 4 Objective value table for the case [“that”, “w”]
Label | Objective value | Reduced

[0,0] | 0*13+0*-12 0
[0,1] | 0*13+1*-12+4 | -12+4
[1,0] | 1*13+0*-12+1 | 13+4
[1,1] | 1%13+1*-12 1
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% < 2

On the other hand, we should not set A too high. For example, [“that”, “w”], we
enumerate the objective function value under different labeling situation in Table 4. The
objective value of the ground truth is -12+A. However, if we set the A > 12, then the best
prediction will be [0,0]. More analysis will be presented in the experiment section on how the
parameter setting for A will affect the final decision.

The parameter A should be larger than 0 to penalize the difference in consecutive labels.
But, it should not be too large, so that it has more effect than the unary potential, leading to false
negatives. From the statistics of negative log likelihood ratio - log(LR(ni)) in Figure 12, we can
see that most of the false-negative samples causing the over split are with 0 value. The false
negative means that they should be ME but predicted as NME, like the case in Table 3. While to
avoid over-correction that label ME as NME illustrated by the case in Table 4, A should be
smaller than the absolute value of the true positive statistics in the first row. This parameter
setting is in accordance with the general performance to be presented in the experiment section,

where smaller A leads to better performance.

True Positive Cases

100 4 I
0 T —_——

T T T T
—60 —40 —20 0 20 40 60

False Negative Cases

50 A

0 S— 5 T T

T T T
—60 —40 -20 0 20 40 60

True Negative Cases

25 IIH
0 T T T

—60 —40 —20 0 20 40 60

Figure 12 Statistics of the negative log-likelihood ratio for “10.1.1.6.2281_9 [103]”
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11.4.3 Solver design
The condition y; € {0, 1} indicates the optimization as a mixed integer programming
(MIP) problem. However, the absolute value lead to non-linearity. It is transformed in the
following way: for each absolute value |y; — V11|, i € [1, N}), two auxiliary variables z;" and
z; are introduced with the following constraint set C: z; + z;” = |y; — Yiq1l, 2z — 27 = y; —
Vi1, Zi»z; € {0,1}. Then the optimization goal is transformed into the following MIP problem:
minimize

fo. == ) logla@))yi+2 ) (G +7)
]

i€[1,N,, i€[1,NL)
, subject to the constraint set C and y* € {0, 1}.
IL.5 Performance and analysis for ME extraction

The dataset and the evaluation criteria will be introduced first. Then, the experiment
settings for compared methods are presented. At last, I will show the performance statistics for
the TSB, MRF-TSB model, and other comparison models, followed by some case studies.

11.5.1 Dataset and evaluation criteria

In this paper, the Marmot dataset and the criteria in [24] are used. The dataset contains

400 papers with additional 1888 ME labeled in [104]. MEs in figures were mostly not labeled in

the previous work. Thus also do not consider them in the evaluation process. The ME in caption

and footnote are kept as the original ground truth.
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Figure 13 The criteria for the performance evaluation of ME Extraction

The evaluation is challenging given the possibility of only partial element extracted. All
possible matching situation between the ground truth and the prediction is illustrated in Figure
13. Given a set of ground truth ME Mg and a set of predicted ME Mpq. First, an ME in M is
missing if it does not overlap with any predicted MEs. For a predicted ME m,4 could be one of
the seven relations: Correct, Expanding, Merging, Partial, Split, Partial & Expanding(PAE), and
False . Correct means fully are overlapping. Expanding (Exp) means that the m,q contains only
one ground truth ME my, and expanding and merging (Mer) mean that m,q is equal the merge
of multiple ground truth MEs. Partial and Split (Spl) mean the predicted ME is only partial of an
ME myg in ground truth, where the partial (Par) indicates only the predicted ME is contained in
the mg.. The remaining overlapping situation is marked as PAE. In addition to the detail number

in each matching category, three coarse level measurements are adopted: the miss rate 1, =

#(Mis)

pYe— #ral) _ 2O-rm-rp)
#(Total)—#(Fal)’ and F1

the false rate 1y = F(Total)—#(Mis)’ = Qor+(-rp)

, where #(Total) is

the number of processed MEs in prediction or ground truth.
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11.5.2 Experiment settings for comparison CRF based method
The CRF based EME sequential labeling system [40] is used for comparison. Given the

line, L = {ny, ..., ny, }, the desired label sequence of {“B”, “I”, “O”} need to maximize:
Po(y1) o exp() () 2ifi e + ) higi(ni,y0))
i K

The label “B” indicates the beginning of math, “I”” for in math, and “O” for out of math. f] (e;)1s
the j-th feature defined on the edge e; = (v;_1,¥;) and g (n;, y;) is the k-th feature define over
the NSCS n; together with the label y;. Features {g,} are the same with previous work except for
the block feature covering the font, word, and character. Further, to avoid information inequality
between the CRF based method and TSB/MRF-TSB, three features are added, including
plaintext words, citations, and reference to figures and tables used in our TSB model. Since CRF
is supervise training model, a 5-folder cross-validation is adopted. Python-CRFSuite toolkit
[105] is used for training.
11.5.3 Performance

The TSB and MRF-TSB are compared against two state-of-the-art systems. Lin [24] is
the baseline. TSB is the font-setting based Bayesian Model. The CRF1 is the same with [40], and
CRF2 is enhanced with the features used in the TSB model. The performance at the macro-level
is shown in Table 5. First, our TSB model outperforms the state-of-art method Lin for both the
missing rate and false rate, corresponding to a 0.1 increase in the F1 score. Further, when the
1888 ME samples that were identified in, the performance of earlier work may need to be

adjusted.
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Table 5 Coarse performance statistics for EME detection

m | Tr | F1 T | F1
Lin [0.159 | 0.23 | 0.804 | SEQs | 0.0782 | 0.079 | 0.921
FSM | 0.083 | 0.089 | 0.916 | SEQ: | 0.0975 | 0.074 | 0.914
CRF1 | 0.206 | 0.049 | 0.87 | SEQ, | 0.111 | 0.070 | 0.909
CRF2 | 0.217 | 0.050 | 0.858

The TSB model along also outperform the CRF model on the F1 measurement. CRF is
with a lower false rate at the cost of high miss rate, which might be due to its sensitivity to
training data. The Marmot data is randomly selected from Citeseerx and has more noise than the
ACL repository in [40]. Adding the information in FSB model into the CRF model is not helpful,
which will be explained in the following CRF case study.

By extending the TSB model with sequential modeling, the MRF-TSB outperforms the
baselines, TSB and CRF. The performance is high when the 4 is set to a smaller value with the
reason discussed in pthe arameter selection section.

The most common false cases are the section numbers, reference to the equation and
some plaintext words connected with bracket. A particular example is a file with square brackets
surrounding the reference. As for the missing part, single char variables are the common cause.
The capitalized variables are also confused with acronyms.

Besides the miss rate and false rate, the over split issue is another principal target of this
paper with the result shown in Table 6. The MRF-TSB model alleviates the over split problem
by over 1/3 and reduces the false cases. When the parameter A is set to a high value, it will have

lower false and partial rate, at the cost of increased miss and expansion cases.
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Table 6 Detail Performance statistics for EME detection
Cor |Mis |Fal |Par | Exp | Pae | Mer | Spl

TSB | 4906 | 762 | 921 | 3091 | 841 | 580
SEQs | 4418 | 872 | 773 | 1887 | 2000 | 717
SEQ: | 4393 | 964 | 714 | 1820 | 1999 | 701
SEQ:, | 4336 | 1088 | 664 | 1728 | 1996 | 684
CRF1 | 4029 | 1981 | 396 | 1461 | 1605 | 559
CRF2 | 4071 | 1945 | 404 | 1447 | 1605 | 570

WiwWw w w w ik
oO|loo|lOo|OC|O |+

11.5.4 Case study for CRF model to show its drawback

block. Formally, for any block B, the equation defining the function B is, for any w:

Figure 14 Example to show the fallacy of the CRF model, parts of this figure are adapted
from 10.1.1.6.2308_3 in Marmot dataset [24]

The CRF method has a high miss rate. The reason is explained using one case study
shown in Figure 14. The ground truth is that “B” and “w” marked in the light blue background
are mathematical notations. But they are not predicted as ME. We study the unary probability for
the token “w” in Figure 15. Given the conflicting situation, the linear summation of the
coefficient given the math label “B” (0.632) is smaller than the plaintext label “O” (2.87). The
main contributing factors for this wrong prediction are a few general features: only contain

letters, no Greek symbols, no math symbols. These global features are mostly reverse sufficient

condition. Here, reverse sufficient means when the value switched, they are good sufficient
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indicator. For example, if “greek=T,” i.e., there exist greek symbols, it is very likely that the

NSCS is EME. But, no greek symbol “greek=F” in this case does not mean it will not be EME.

word=w, B:0.341769, 0:-0.21002
font=DKFYPO+CMTT10, B:nan, O:nan
fontsuffix=CMTTI10, B:0.081808, 0:0.276641
length=1, B:-0.058035, 0:0.022353
samew=T, B:0.201584, 0:0.138891
samef=T, B:0.258952, 0:0.059454
samewf=T, B:0.251179, 0:-0.004849
alpha=T, B:-0.057297, 0:0.906074
greek=F, B:-0.146672, 0:0.397723
math=F, B:-0.687054, 0:1.553613
single=T, B:-0.058035, 0:0.022353
mainfont=F, B:0.503912, 0:-0.28969
gd sum:0.632111, pd sum:2.872543

Figure 15 The feature weight for CRF based EME identification

Another issue is that the parameter is sensitive the training dataset. This case is in the fold
3 experiment. The weight of “fontsuffix=CMTI10” is with low weight for “B” in comparison
with “O,” which is not true for the parameter of the fold 1 experiment shown in top parameter
weight.

11.5.5 Computational cost

The average execution time (Python code based) for one PDF page is decomposed as
follows: 1.89 seconds for layout analysis, 2.25 seconds for heuristic rule matching and font
statistics, 0.22 seconds for IME identification, and 0.12 seconds for EME identification. In
comparison, the supervised machine learning methods would take about 1 second to predict a
line, 10 seconds to predict a word. It took 12 and 763 seconds to train line and word classifiers,

respectively. The enhanced MRF-TSB is slower because it will call an external MIP solver.
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I1.6 Conclusion

In this section, two open problems in the extraction of ME are attacked and partially
solved: the customized font usage and the EME-splitting problem due to the discrepancy
between the physical layout units and semantic logical structure. The ME extraction is a complex
task involving many processing steps for PDF parsing, document layout analysis and
construction of resources. A weak supervised typesetting-based Bayesian (TSB) model is
proposed first by leveraging on knowledge about the natural language, technical publication
practice, and probabilistic models. The TSB model could adapt to the input PDF about the font
usage based on elements extracted from heuristic rules. Then a Bayesian inference is conducted
for each NSCS. Second, a Sequential EME extraction model is developed to incorporate the
neighbor information during the decision-making. Results show that the TSB outperformance
state of the art by 10% regarding missing and false rate. The sequential modeling can
significantly reduce the over split issue, which is very important in the later stage of ME parsing.

Both TSB model and MRF-EME model are explainable and easy to be interpreted and intervene.
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CHAPTER III

CONTENT CONSTRAINED SPATIAL MODEL FOR ME LAYOUT ANALYSIS*

II1.1 Overview of the chapter for ME layout analysis

Representing MEs at the semantic level is the basis for high-level task information
retrieval [42], machine reading [106], and even auto-proofing [3]. ME could be treated as a type
of visual language [107], and the semantics of MEs is manifested by both the particular values of
the characters {c;} in an ME such as operators/alphabets and the ME layout as illustrated in
Figure 16. The ME layout is a hierarchical grouping of the characters and the relative spatial
relationships among blocks. It could be transformed into equivalent character-level dominance
shown in Figure 16.b. This chapter focuses on recovering the ME layout from typesetting

information in PDF, where the typesetting only contains the symbol value and their size/position.

(2) BindvarBlock UPPER

@ FenceBlock @Accenta\ock HOR Lo Jion N\ e
=2 Cpgag 0= RO,

(a) Hierarchy of ME Layout (b) Character-level dominance

Figure 16 Example of ME layout

*Reprinted with permission from “A content-constrained spatial (CCS) model for layout
analysis of mathematical expressions” by Wang, Xing and Liu, Jyh-Charn, 2017. Twelfth
International Conference on Digital Information Management (ICDIM), Fukuoka, 2017, pp.
334-339. Copyright 2017 IEEE.
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The composition of MEs covers the following two aspects: the atomic building units of
characters and the hierarchical spatial arrangement. First, the characters are the atomic building
units of an ME. The character values are indicators of their semantics. Alphabets and Greeks are
commonly used as variables and operations/relations are expressed by values such as summation,
less than, etc. Some special character values are indicators to look for particular layout
structures. For example, the accents, binding operators, and fraction line are indicators to look
for the upper/under associated elements. The challenge from the first aspect is that the same
character might have different semantic meanings and layout convention. Take ‘*’ sign in Figure
19.b for example. When used as a binary operator, it is in a horizontal relationship with the left
operand and the right operand. When used as identifier decorator, it is commonly placed at the

superscript of an identifier.

Ascender line
Mid line v '( < ’(
Center line ‘ "
Base line ¥ l
Descender line

Figure 17 The challenge from the glyph of the characters

Besides the meaning ambiguity for the same character, the glyph design also need to be
normalized carefully to assess the relative spatial relationship. At each layer of the hierarchy, the
characters are commonly arranged from left to right on several baselines, which could also be
placed at the super/subscript and upper/under position for different decorative purposes. Smaller

glyph sizes and a shift in vertical direction indicate being dominated such as sub/superscript or
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under/over parts, playing decorative roles. But it is non-trivial to resolve the relative spatial
relationship due to the difference in the glyph design, visual appearance and placement for each
character as shown in Figure 17. Even with the same font size, the glyphs of some characters are
designed smaller than others for ease of reading. For example, the character ‘i’ is higher than the
character ‘n’ in function name ‘min’ in Figure 19.b. Although most of the alphabets, digits and
Greek letter are aligned with the typographic reference lines, there are half of the mathematical
operators (43% of all ME characters in [47]) not aligned with the reference line. It is difficult to
estimate the baseline for the non-aligned characters directly. Further, there are special symbols
that are usually small such as the punctuation and accent characters, and there are many big
operator and fence characters with varying size. The varying and small size leads to the
challenge in recovering the normalized height from the ascender line to descender line to judge
whether two characters on the same baseline level based on the size. If not normalized, there will
be significant overlapping in the distribution, limiting the upper bound of the discrimination

performance shown in Figure 18.

All pairs All pairs

6 —— HORIZONTAL —— HORIZONTAL
RSUP ] RSUP
—— RsUB

- RSUB

-1.00 -0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

(a) Probability density function for HR (b) Probability density function for NVCD

Figure 18 Degraded discrimination performance
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(a) Left or right (b) The scope of the (c) The scope of binding
superscript under/upper operations

Figure 19 Examples to illustrate the ME layout and challenges, parts of the figure are
adapted from Infty-CDB [47]

Second, the characters are grouped into a hierarchical structure as illustrated in Figure
16.a. The hierarchy origin from ME semantics from a top-down decomposition. Partial of the
structure could be recovered based on symbol dominance of the binding operator/accent/fence or
the matching of common practice such as the function “min.” But the loss of the grouping
information leads to the ambiguity that one character could be interpreted to be affiliated with

__9

many neighbors. In Figure 19.a, the superscript “t” should be attached to the left operator or
the right variable “x.” In Figure 19.b, “1” could be interpreted as the under part of “=" or the left
part of “<.” In Figure 19.c, there are two consecutive summation binding operators, and the
algorithm needs to make sure the “j” is grouped to the under parts of the second binding operator
rather than the first one. Another challenge brought by the hierarchical structure is the
degradation of feature discrimination ability. A common way to calculate features between
blocks [64] is to use the whole block, but the whole block might not reflect the real baseline such
as the “min” structure in Figure 19.b and the bind operators in Figure 19.c.

Though there are only limited relationships types between blocks, the possible

combination will explode when building the hierarchy bottom-up for many characters. Local

greed approach [46], [45] face the challenge of error propagation especially when a
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misprediction is inevitable based on the feature distribution as shown in Figure 18. On the other
hand, the global inference faces the challenge high computational cost. The PCFG based method
[64] has a complexity of O(n3lgn|P|), where P is the set of derivation rules. Further, the method
heavily depends on the grammar rules [64] or the symbol dominance rules [45] will fail when
there is out of rule situation when the author develop their notation and layout system.

Given the natural of intertwining between the semantic and layout, a content-constrained
spatial (CCS) model is proposed to solve the challenges of the ME layout prediction. The
following issues will be explored:

e Formalize the typographic model and the recovery of the perceived normalized height
and vertical center.

¢ Enumerate the ME Layout hierarchy systematically and partially recovery structure based
on character dominance and high confidence spatial relationships.

e Design discriminative features capturing the long-distance dependency relationship and a
parametric approximation for fast inference

This chapter is organized as follows. Before going into details of the proposed method,
the background knowledge about the typographic design and a few critical reference lines are
introduced. Next, we present ME layout taxonomy, which is the basis of our divide-and-conquer
approach. In the first phase, the rule-based approach will identify the partial ME Blocks based on
the symbol dominance and high confident spatial analysis. In the second phase, a global
inference model is proposed to identify the super/subscripts among horizontally arranging ME
blocks. For the efficient inference of the best ME layout using the CCS model, a parametric
approximation of the probability density function is developed for the features to discriminate

the relative spatial relationship by modeling the relative sizing and shifting of the
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super/subscripts. Experiment evaluation and analysis are conducted on the public InftyCDB
dataset by the end.
II1.2 Typographic System

The digital typographic system arranges the glyph of characters in 2D space. The
perceived height and vertical center difference are very important for the baseline assessment. In
this section, the reference lines to place characters will be introduced first. Then, categorization
of characters based on the alignment to the reference lines is presented, together with the models
to recover the perceived normalized height.

1I1.2.1 Typographic lines

In the typographic system, the glyph of characters is placed based on the five reference
lines (RL) used in typography systems are illustrated in Figure 20. Most characters use the
baseline as their anchoring level, upon which letters may extend downward (upward) to reach the
descender (ascender) line. The midline is meant to be the middle point between the baseline and
the ascender line, which is the upper boundary for characters such as “o0.” The centerline is the

midpoint between the descender and ascender line.

Ascender line

Mid line }X

Center line }y
Base line
Descender line - ] z

Figure 20 The typographic reference lines

55



111.2.2 Categorization of characters and recovery of the normalized height

When only considering the tight bounding box (bbox) of each character, one might get

the wrong conclusion. For example, in Figure 20, “p” might be misidentified as the subscript of

“H.” For this reason, it is necessary to recover the normalized height, or equivalently recover the

ascender line and descender line from the tight bbox. Based on how the elements are aligned

with the reference lines, the characters are organized based on their glyph as shown in Table 7.

Table 7 Glyph types and categorized of the characters

Glyph Type Characters
RL aligned +EFx AR TEOCEKCCEEE<I<ELLEEEE>2>0
2333>223pF 222+ | L1 LS

Narrow, width stable
centered, varying size

Narrow centered

special characters

I 27Nv noogrOmwflfffihdIVIV
Greek, Alphabets, Digits

. _- = e o— L
= =N B R

uY [FTTUNuNUAUMUVAVANN/\fELF#4E4
FEfxcnEo@Qe@0uPHoO1ddrDbEAT VO
o[+ () [T{I(TT]

'*'--**hua.o@*—*.‘:i—l—}i—‘i—'{:l—rﬁk—)v:b—r—}

= e e = e e = o = —p

v/-""..... LT

[

Given the five types for the glyphs, only the characters that are RL aligned or width

stable as illustrated in Figure 21 could have their normalized height recovered reliably. Given a

character ¢, denote v}, y2, xL, and xI as the top, bottom, left and right of the tight bounding box.

For a character c that is aligned with reference lines vertically, its ascender line c. ascender is

calculated as the y! + ht X ur?, where hf is the tight height of character ¢ and ur? is the ratio

between the ascender line - glyph top gap c. ascender — y! and the tight height hf. Similarly,
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the descender line is recovered as c. descender as y? — c. ht X dr”. The ascender/descender
line derivation for the narrow and width-stable characters is illustrated on the right of Figure 21.
Though there are a few special characters having neither the normalized height nor vertical
center, their semantics is a strong indicator of the possible layouts. For example, the punctuation

is in horizontal with its right neighbor, and the prime symbols is attached as the right superscript.

Ascender line

Lt v M
Mid line — hc xur _— _Wg x urh
) ¢ S
Center line _hc —a—
) t t h
Base line = — W, - — W. X dT'
| Lt v c c
Descender line hc X dr —

Figure 21 Recover the ascender/descender line and the normalized height for height stable
or width stable characters

The statistics in Figure 22 show the necessity of categorizing the characters based on
their glyphs. The first two columns show the histogram statistics of the vertical adjustment ratio
ur? and drV for height stable character “A” and varying size character “sum.” The second two

(1313

columns show the horizontal adjustment ratio ur® and dr" for width stable character “-* and
speicial character “,.” From the statistics, the adjustment ratio for height stable and width stable
characters are mostly concentrated in a small region near the peak, showing a distribution like a
normal distribution. On the other side, the adjustment ratios for the varying size character

summation shows two peaks. The horizontal adjustment ratio for the special characters, comma,

show a scattered distribution cover a large value range.
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Figure 22 Histogram of the vertical adjustment upper/under ratio for “A” and “sum” and
horizontal adjustment upper/under ratio for “-* and “,”

In summary, after grouping the characters by their glyph type, the difference in the glyph
design for different values are normalized. The characters, for which the normalized height and
vertical center could be accurately recovered, are enumerated. The recovered normalized height
and vertical center are the same as human readers perceive. These observations lay a solid
foundation for the later stage of relative spatial relationship assessment.

II1.3 Hierarchical ME layout taxonomy

As MEs are organized hierarchically, a complete enumeration of the possible ME layout

structures is the guideline for a systematic solution for the ME layout recovery. In this section,

the taxonomy for ME Layout and the common properties for the building blocks are elaborated.
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111.3.1 ME layout taxonomy

Different types of ME Blocks as the taxonomy of ME layout are presented using Unified
Model Language (UML) in Figure 23. Each rectangle could be an interface if there is a
description “<<interface>>" at the top or a class otherwise. The class name or interface is placed
on the top, and the member variables and functions are listed in the following rows. Each row is
in the format of “name: type,” and the parentheses in the name indicate that the line describes a
function. The type after the colon of each row indicates the type of a member or the return type
of a function.

The ME Blocks are composed of atomic building units such as MESymbol and MEPath.
The MESymbol covers all characters, including alphabets, Greeks, operation, relations, and
accent. The MEPath are horizontal lines that play as fraction line or top line of a radical
structure. Each MEBlock has its members, which are the MEBlocks being dominated. Next, the
ME blocks are elaborated based on the processing sequence to be elaborated later. Firstly, the
MEAccentBlock, MERadicalBlock, MEFractionBlock, MEBindVarBlock, and MEFenceBlock
are structures that could be identified by the particular characters. The second groups of
MEBIlock are related to the vertical relationship, including the MESupSubBlock and MEUnder/
Upperblocks related with vertical under/upper relation. At last, the MEHorBlock, MESupBlock,

and MESubBlock describe with horizontally arranged blocks.
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Figure 23 The taxonomy of ME Layout
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Table 8 Illustration of ME blocks and the baseline character, parts of this table are adapted
from InftyCDB [47]

Types [lustration [lustration
1~ |12
Accent dCJ Radical \/1 C I
il b(j)
Fraction SCk Bind Op jepz(k: i)
b
SupSub ha Fence 1
: ?
N Res(fow-w)  ASB
nder pper -
k,q+1 o
UpperUnder Aﬂ Hor 1 1 m
A, r?
Sub Sup

Besides, there are three types of intermediate MEBlock type. The UnorganizedBlockPath
is generated in the beginning without any information about the relationship among the children
ME blocks. The HS&SBlock might contain an MEBlock with both superscript and subscript,
while an MEBIlock could only have superscript or subscript in HS|[SBlock. Examples of each
type of ME Blocks could be found in Table 8. Note that there is a special MEBlock called
EmptyBlock. It is used when the accent symbol did not see the expected base part, or the fence

did not see the contained part, they should be filled with EmptyBlock.
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SUP

_1)j+1

Attacher object/ Attached object

Figure 24 Illustration of attacher and attached object, parts of this figure are adapted from
InftyCDB [47]

111.3.2 Common interface for ME layout blocks
Besides these ME block classes and their members, their common interface will also be
presented. The ME Object interface describes common functions about the geometric measures
of the tight bounding box and height-adjusted bounding box. The tight bounding box is the
minimal rectangle that contains all the pixels of glyphs. When the normalized height of a glyph
could be estimated, the adjusted bounding box is obtained with the top and bottom aligned with
the ascender and descender line. Extending ME Object interface, the MEBlock is an abstract
interface about the common operations/properties that an ME layout structure could have. The
interface is illustrated in Figure 24.
*  Children: The ability to access all the children is necessary as some transformations are
recursively applied to all the children/descenders. For the base ME block “(—1)” in Figure
24, it has a child ME Block which is of type MEHorBlock containing two MESymbol, “-”
and “1.”
»  Attacher and attached object. These two concepts are essential to recover the attachment

tree structure so that the evaluation could be done against the InftyCDB dataset [47]. An
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example is given in Figure 24. There are two MEBlocks where the HorBlock “j + 17 is the
superscript of the FenceBlock “(—1)”. When recovering the attachment tree is defined at
the character level, the attacher object of the superscript MEBlock (character “j”) is
attached to the attached object of the base MEBlock (character «)”).

*  Baseline character is a very important concept to determine the relative spatial relation
among MEBIlock according to the height, baseline and center line. The baseline symbol for

different types of ME Block is illustrated in Table 8.

For the fraction block, a fake MESymbol is created with value “/,” Its bounding box
is the same size of the primary baseline character but shifted vertically to be
centered at the fraction line.
—  The baseline symbol of an accent/radical/fence block is the same as the baseline
symbol of the dominated block.
—  For binding variable blocks, the baseline symbol is the binding operator.
—  The baseline symbol of the UpperBlock, UnderBlock, and UpperUnderBlock is the
baseline symbol of their baseMEBIlock.
I11.4 Two-phase ME layout analysis architecture
In this work, a two-phase architecture is proposed as shown in Figure 25. In the first
phase, heuristic rules are applied to identify vertical, enclosed and some horizontal structures, so
that the characters are organized into a hierarchical of horizontally arranged blocks. Then, in the
second phase, the super/sub-script relationship for the horizontally arrange blocks of each layer
in the hierarchy are resolved using the proposed global spatial inference model. As both phases
use the character content either as constraints or clues for spatial relation identification, this

model is named as content-constrained spatial (CCS) model. These two phases will be elaborated
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in detail in the next two sections. One example will be given next to illustrate the processing and

the rationality of the execution order.

Rule-based MEBlock

Identification b Super/Subscript resolution

4 \ Accent Processing | Layout candidates generation
‘ Merge Alphabets | . . Horizontal chain
- - Dominance Constraints generation
< ‘ Radical Processing | Same baséline Cofist. Recursive sub
[ Fraction Processing | [ |8 config gen.
| BindVar Processing |

SUP&SUB Processing | tayout candidates Ranking

| Under/Upper Detection | P(L|HR, NVCD)
-

| Fence/Matrix Processing |

| Character values | | Vertical relation | | Centerline | |  PHN

Parametric Typographic modeling

Figure 25 Two-phase ME layout analysis architecture, parts of this figure are adapted with
permission from [108]

For the example in Figure 16.a, an MESymbolBlock is created for each symbol (marked
in grey dashed rectangles) and an MEPath for each horizontal vector graphic line in the
beginning. The MESymbolBlocks and MEPaths together form an UnOrganizedBlockPath
(UBP). The elements in UnOrganizedBlockPath will be processed sequentially in seven steps to
identify the accent, radical, fraction, binding operators, both superscript and subscript, fence, and
upper/under structures. After the above mentioned six steps of processing, the UBP is
transformed into a hierarchy of horizontally arranged blocks. With each group of horizontally

arranged blocks, the only possible relationships between the blocks are same baseline (HOR),
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superscript (SUP), and subscript (SUB), which will be resolved through our Content-constrained
spatial model to be explained in next section.
The execution order does matter. Another execution sequence might lead to the wrong

results. The accent structure processing is adopted as an example.

hw = w + 22

Figure 26 Merging alphabetic MEHorBlocks after the accent analysis, parts of this figure
are adapted from ME 28016825 in InftyCDB [47]

First, identifying other structures first might hurt the accent structure. If the ‘merging
consecutive alphabets’ procedure is executed before the identification of accent structure, the
symbols dominated by accent and symbols not dominated by the accent might be merged such as
‘h’ and ‘w’ in Figure 26. But only ‘h’ belongs to the accent structure.

Second, identifying the accent structure first will not affect the identification of other
structure. By the nature of the hierarchical structure, one character will be assigned to only one
MEBIlock in the hierarchy. And if by further assuming that the procedure to find the dominated
blocks of MEAccentBlock is accurate. The way to prove that the accent identification does not
hurt other ME structures is as follows: 1) the symbols not belonging to the accent block are not
touched so that other structure will not have missing symbols. 2) the symbols belonging to the
accent struct are all extracted so that they will not be assigned to other structures.

Note that similar elaborations could be found for accent processing, radical, fraction and

consecutive alphabetic HorBlock. There are a few rare cases where the accent symbols are not
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used conventionally, which will violate our assumption above. As for the binding variable
processing, both superscript and subscript, and general upper/under structure, the decision
boundary for their vertical decorative parts is not clear. The evaluation section also confirms
with this observation.
I11.5 Rule-based MEBIlock identification

The rule-based MEBIlock identification targets at the recovery of MEBlocks with
indicators, vertically stacked structures, and pre-merging of MEHorBlocks. It consists of
sequential processing of seven steps shown to the left of Figure 25. The details of each
processing will be given one by one.

111.5.1 Accent Structure

The accent processing is an iterative process described in Figure 28 and illustrated by the
example in Figure 27. In each iteration, the smallest accent symbol is identified first, which does
not contain other accent symbols horizontally. The list of accent values is predefined as: "acute",
"grave", "hat", "tilde", "check", "breve", "overline", "dot", "ddot", "vec", "dddot", "underline",
"underbrace". In this example, it is the smaller hat character c; that is closer to y in the first
iteration. After the identification of the smallest accent symbol, c3, the iterativeExpand
procedure in Figure 29 is used to find the blocks dominated by the accent symbol based on the
following assumptions: 1) The elements dominated by the accent symbol overlap vertically; 2)
The dominated blocks should be horizontally overlapping with the accent block. For the hat
character c3, the dominated MEBIlock is only the MESymbolBlock for c, of value ‘y’. In the
second iteration, the hat character ¢, is identified and the dominated blocks includes the
MESymbolBlock for open fence c,, the MEAccentBlock b; constructed in previous iterathe tion,

and the MESymbolBlock for the close fence cs.
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Figure 27 Illustration of the iterative accent structure analysis, parts of this figure are
adapted from ME 28008501 of InftyCDB [47]

i|input: UnorganizedBlockPath m

;) Identify the smallest accent symbol block a

if not found:
return m

if isOverAccent(a): % Group the dominated symbols/paths
ubp = iterativeExpand(a, m. up)

else:

o wbp = iterativeExpand(a, m. down)

a' = createAccentBlock (a, ubp)

11| newMbs = (m.mbs ~ ubp.mbs)u{a'}

m.mbs = newMbs

slre—iterate from line 3

Figure 28 Accent structure processing

1|9 This 1s used in the accent, fraction analysis

;| function iterativeExpand
input: MEObject a, UnorganizedBlockPath m, DirectiontoExpand d

if d == down:
b* = argmax  dist(a,b) % find the nearest under the object
bem.mbs,a.over(b)
else:
o b= argmax  dist(a,b) % find the nearest above the object
bern.mbs,a.under(b)
blist = {b*}

1| bbox = b.bbox
while true:
b’ = {bla.hQverlap(b) A bwQuerlap(bbox)} % find the block horizontally overlapping
with symbol and vertically overlapping with existing dominated blocks
bbor = mergeBbox(bbox,b') % update the bbox of dominated blocks

Figure 29 Iterative expanding procedure
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111.5.2 Pre-merging of consecutive alphabets on the same baseline
Some consecutive alphabets placed in the horizontal line, such as the function names
‘min’, should be merged before the vertical structure analyses. The normalized vertical center
difference measurement is used to detect the characters in HOR relationship. The center line,
instead of the baseline, is used for such analysis because there are more characters with estimable
vertical center compared with the characters aligned with the reference lines to recover the
baseline, shown in the typography knowledge section. In this work, two characters c; and ¢; are

asserted to have the same center line based on the following criteria: g — n; * @ < g]C- < gf+

n; * a, where 1; and g{ are the normalized height and vertical center of the character c;. This
rule is valid subject to the condition HorByCenter, which requires ¢; with estimable normalized

height 7; and ¢; with estimable vertical center g; .

] 1.00 {
Lo —— Precision _—

Recall

0.9

0.8 4
0.85

0.7 4

m
performance

performance

0.6 1
0.5

0.4 —— Precision
0.60 4 Recall

034 . . , . ] 0.0 0.1 0.2 03 0.4 0.5
0.0 0.1 0.2 0.3 0.4 0.5 threshold
threshold

(a) all pairs satisfying HorByCenter (b) alphabetic characters

Figure 30 The tradeoff between the precision and recall for centerline-based analysis

For the InftyCDB-I dataset [47], all pairs of characters that should lie on the same

baseline are gathered first. The precision for the identified pairs lying on the same baseline is
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drawn in blue curve against the threshold « in Figure 30. The corresponding recall is in the
dashed orange curve. When the threshold gets larger, more same baseline pair could be
discovered, but the precision degrades very faster. The recall rate reaches a plateau of 0.6 after
a > 0.2. The plateau is reached because of our rule is applied when the condition HorByCenter
is satisfied. Though only covering 0.6 of all pairs, it is much better than alphabets pairs only,
which only occupy about 26% of all pairs. This is very important for our later stage analysis of
content-constraint HOR/SUB/SUP discrimination. When considering alphabets only, this rule
could achieve a high precision and recall 0.97 at the same time as shown in Figure 30.b.
111.5.3 Fraction

The fraction processing procedure in Figure 31 is similar to the accent processing. The

only difference is that, given an identified fraction line with the smallest horizontal span, the

iterative expansion in Figure 29 should be conducted for both the upper and under part.

input: UnorganizedBlockPath m

Identify the smallest horizontal path p

if not found:
return m

s|upperUBP = iterativeExpand(p, m, up)
underUBP = iterativeExpand(p, m, down)
| f = createFractionBlock(p. upperUBP. underUBP)
newMbs = (m.mgs ~ (upperlU BP.mbs u underU BP.mbs)) u { f}
wjm.mbs = newMbs
re—iterate from line 3

Figure 31 Fraction structure processing
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111.5.4 Big operator structure
The binding operation processing here mainly refers to the binding operator with under
and/or upper part as shown in Figure 32. If the scope of the binding operation is manifested as
super/subscript, it will be processed in the later stage processing of both superscript and

subscript.

IEt_k| =2 Z Z b(j) W = qqukz_l Cijggk_iggk__ll-j

i#£—1jeP(k;i)

i=1|j=1
(a) Binding operator with under parts, (b) Binding operators with both upper
ME 28008168 and under parts, ME 28004533

Figure 32 Example of big operator structures, parts of this figure are adapted from
InftyCDB [47]

The bind operation processing constructs a BindVarBlock for each big operator, together
with the horizontally overlapping component as UBPs over and under it, such as the example in
Figure 32.b. One particular situation is the consecutive binding operation with upper/under parts
exceeding the horizontal range of the binding operator as the example in Figure 32.a shows.
Currently, our solution is to treat the consecutive binding operator as a whole to discover the
upper and under parts. Then the characters between the binding operators are segmented based

on the largest gap, such as the gap between “1” and *j” in Figure 32.a.
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111.5.5 Fence, matrix, piecewise processing

The paired fences are strong indicators both at the layout level and the semantic level. At
the layout level, the left fence symbol is in a horizontal relationship with its right direct
neighbors and the right fence symbol. More beneficially, it could divide a long structure into
smaller units, thus reducing the computation complexity. The fence characters considered in this
work include parenthesis “()”, square bracket “[]”, curve bracket “{}”, and vertical bar “|.” Note
that there might be nothing between the paired fence.

After the identification of the paired fence, the content in the fence might be just one
MEs or multiple MEs such as a matrix and a vertical vector. For the unmatched fence starting
with curve bracket, it could be the piecewise ME with different values under different conditions.
To detect the grid of elements in matrix or lines in the piecewise ME, projective-profile cutting
technique is used to detect the vertical overlapping and horizontal overlapping region.

111.5.6 Element with both superscript and subscript

After the previous processing, an MEBlock might still be associated with both the super-
and subscript components. Structures with both super and subscript are identified first to reduce
the complexity for the super/subscript resolution. Both sup/sub structure identification run in
iterations. In each iteration, UBP in the existing MEBIlock hierarchy is recursively traversed and
processed. Within each UBP, the first MEBlock s,, are located with two direct right up or down
MEBIlocks s,,, s4 that do not overlap vertically. The superscript parts s,, is expanded with
vertically overlapping MEBIlocks on its right that does not overlapping with s;. Similar
processing is applied to the subscript part. Each expansion step will create an UBP, and together
with the base MEBlock s;,, they will construct an SSB. The process terminates when no SSB can

be generated from an iteration.
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111.5.7 General Upper/Under

sup loglog ||(M — T)7'|| ¢=(0,...,0, 1, .--, 1) k,q+1
d(2,0(A))=3835 N - _ ~ o~ 4 A
S-—-
q q )
(a) function decorator (b) Under accent decorator (c) Operator
decorator

Figure 33 The semantics related with upper/under structure, parts of this figure are
adapted from InftyCDB [47]

Example of general upper/under relationship is shown in Figure 33. The under and over
parts might play as the decorator of the function, operators, or accent. The procedure to recover
the upper/under structure is shown in Figure 34. It is an iterative procedure until there is no
upper/under structure. First, among all sub MEblocks under m, an MEBlock m. mbs(i] is
identified to horizontally overlapping but not vertically overlapping with the next. Then, the
upper and under part are expanded based on vertically overlapping. The next step will decide
which part is the base and which is the decorator mainly based on two clues. The first clue is that
some indicator such as function name or operator are the base part. The second clue is that the
characters on the same baseline with the neighbors are the base part. If there are no special

indicators, the default option is to choose the under pa