
FPGA SPIKING NEURAL PROCESSORS WITH SUPERVISED AND UNSUPERVISED

SPIKE TIMING DEPENDENT PLASTICITY

A Thesis

by

SAI SOURABH YENAMACHINTALA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li
Co-Chair of Committee, I-Hong Hou
Committee Member, Rabi N. Mahapatra
Head of Department, Dr.Miroslav M.Begovic

December 2018

Major Subject: Computer Engineering

Copyright 2018 Sai Sourabh Yenamachintala

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/187127895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

Energy efficient architectures for brain inspired computing have been an active area of research

with recent advances in the field of neuroscience. Spiking neural networks (SNN) are a class of

artificial neural networks in which information is encoded in discrete spike events, closely resem-

bling the biological brain. Liquid State Machine (LSM) is a computational model developed in

theoretical neuroscience to describe information processing in recurrent neural circuits and can be

used to model recurrent SNNs. LSM is composed of an input, reservoir and output layers. A major

challenge in SNNs is training the network with discrete spiking events for which traditional loss

functions and optimization techniques cannot be applied directly. Spike Timing Dependent Plas-

ticity (STDP) is an unsupervised learning algorithm which updates synaptic weights based on time

difference between spikes of pre synaptic and post synaptic neurons. STDP is a localized learning

algorithm and induces self organizing behaviors resulting in sparse network structures making it

a suitable choice for low cost hardware implementation. SNNs are hardware friendly as presence

or absence of a spike can be encoded using a binary digit. In this research, SNN processor with

energy efficient architecture is developed and is implemented on Xilinx Zynq ZC706 FPGA plat-

form. Hardware friendly learning rules based on STDP are proposed and reservoir and readout

layers are trained with these learning algorithms. In order to achieve energy efficiency, sparsifica-

tion algorithm utilizing STDP rule is proposed and implemented. On chip training and inference

are carried out and it is shown that with the proposed unsupervised STDP for reservoir training

and supervised STDP for readout training, classification performance of 95% is achieved for TI

corpus speech data set. Classification performance, hardware overhead and power consumption of

the processor with different learning schemes are reported.
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NOMENCLATURE
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background and Motivation

Computational power is one of the major requirements in a data centric era. Recent advances in

science and technology have revolutionized the way computations are being performed. Zillions

of bytes of data is being collected across the globe every second and various applications rely

on this data to solve several complex problems. Processing high volumes of data requires high

computational capability. Traditional Von-Neumann architectures are turning out to be inefficient

and usage of large number of devices is resulting in high costs. Semiconductor industry is moving

towards the end of Moore’s law. Increasing computational power through an increase in the number

of processors on a chip is no longer a feasible solution. Transistor sizes are being pushed to

their fundamental physical limits and increase in the number of transistors on a chip results in an

increased power consumption. These factors motivated researchers to search for alternate ways to

efficiently handle large volumes of data. One such motivation is obtained from biological brain

and its computational efficiency. Brain is one of the most complex organs known and is highly

efficient in processing large volumes of data at a very high speed, consuming low energy. These

properties of biological brain inspired development of computational units capable of processing

data similar to biological nervous system.

Processing huge volumes of data requires dedicated hardware platforms functioning at high

speed with high degree of accuracy. Hardware architects have been developing high speed com-

puting systems with a goal to keep Moore’s law alive by overcoming power walls to a great extent.

However, a general purpose processor is not very efficient to carry out specific set of computations.

Recent era has witnessed an increase in the use of graphic processing units (GPUs) to deploy sev-

eral neural network tasks as these dedicated highly parallel architectures can process large amounts

of data at a very fast rate. Researchers employ a large number of GPUs to train their neural net-

work models to achieve a high degree of efficiency. As the number of computing systems increase,
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power consumption will increase which will in turn result in an increasing need for cooling sys-

tems. Even with such high computing power, a GPU is still inferior compared to biological brain in

terms of both size and speed. Power consumption by a biological brain does not require a cooling

system inside living organisms. An insect whose brain is similar to the size of a pea is able to

perform tasks with greater degree of accuracy compared to the current computing platforms. This

motivates the need to develop specialized architectures which can mimic computational efficiency

of biological brain. Two brain inspired computing paradigms have emerged in the field of artificial

intelligence(AI), namely artificial neural networks (ANN) and spiking neural networks.

The idea of brain inspired computing dates back to over fifty years. The first generation of

ANNs consisted of a simple computational model proposed by MuCulloch-Pitts. According to

this model a neuron, fundamental information processing unit of a neural network, sends out an

output signal if the sum of its input signals exceeds a threshold. The output from the neuron is

binary. Although this model is very simple, it has been used to construct some powerful neural

networks like multi layer perceptrons capable of performing complex tasks. In the second gen-

eration of ANNs, the threshold function is replaced by a continuous activation function allowing

continuous input and output. Some of the most commonly used activation functions are sigmoidal

function, rectified linear unit etc. Feed forward and recurrent neural network architectures have

been developed using these activation functions. The first two generations of neural networks em-

ploy rate encoding scheme. In such an encoding, if a neuron fires N spikes in a time interval T

then the output of neuron is proportional to N
T

. Several architectures such as convolutional neu-

ral networks, recurrent neural networks, support vector machines etc have been proposed to solve

increasingly complex tasks with high degree of accuracy. Inspite of high degree of complexity,

these architectures are functionally very distinct from biological brain and consume high amount

of power.

Advances in the field of computational neuroscience and neurobiology indicated spatio-temporal

information encoding in biological systems in contrast to rate encoding. This led to the develop-

ment of spiking neural networks, a class of bio-inspired computational models where neurons

2



communicate with each other through a sequence of spikes. This third generation of neural net-

works consider spatio temporal information to process the input signals. Research in neuroscience

has demonstrated that humans respond to any changes in input at a very fast rate. It takes less than

100ms to recognize a change and take an appropriate action. For example, to detect a visual change

a signal has to travel from retina through optic nerve to reach temporal lobe during which a signal

goes through atleast ten stages of processing leaving about 10ms for each stage. This time window

is too small to employ an averaging mechanism like rate coding which motivates the presence of

temporal encoding in biological brain [3].

Fundamentally, ANNs and SNNs differ in the way information is encoded. However, SNNs

have high biological plausibility compared to ANNs owing to the way in which information is

processed. This biological plausibility can achieve energy efficiency while providing high com-

putational ability. In terms of performance, ANNs are superior compared to SNNs owing to the

complex encoding and learning mechanisms of SNNs along with lack of efficient computing archi-

tectures. Computing in SNNs is achieved using a reservor computing model. Liquid State Machine

is a class of reservoir computing which operates on spiking neurons. The architecture of LSM is

highly efficient for hardware implementation and provides a good trade off with computing power

of SNN. This research utilizes computing capability of spiking neurons combined with hardware

efficiency of LSM to develop energy efficient neuromorphic architectures.

1.2 Neurons in Silicon

Human brain is the most complex and a fascinating organ to study. With all the advancements

in the field of neurosience and neurobiology, very little is known about the way in which brain

processes information. Several attempts have been made to mimic architecture of biological brain

on silicon. Caver Mead at California Institute of Technology developed the first silicon architec-

ture capable of processing visual information and coined the term neuromorphic systems [4]. Ever

since tremendous efforts have been made to develop efficient hardware systems capable of repli-

cating biological architectures. Developing energy efficient neuromorphic processors has been an

active area of research for past few years. With spatio temporal information processing, SNNs

3



became a promising class of ANNs capable of providing energy efficient solution to the field of

neuromorphic systems. Application of SNNs to solve various real world applications is currently

limited by complex learning mechanisms and lack of efficient processor architectures. It is diffi-

cult to develop efficient techniques capable of processing information in time domain compared to

techniques which can process information in frequency domain. Spatio-temporal information pro-

cessing of SNNs makes it a suitable architectural choice for applications such as speech processing.

Data sets available today have been captured by digital systems which work with a completely dif-

ferent mechanism compared to biological systems. Processing in biological systems happens in a

continuous domain while almost all the data sets available today have been captured and are being

processed in digital domain. It is a great challenge to mimic a biological system processing data

in continuous domain to a digital system. Lack of standard data sets is another limiting factor for

the ability of SNNs to solve several real world tasks. IBM TrueNorth, Stanford Neurogrid, Intel

Lohihi are some of the recent VLSI implementations of spiking neural networks. Several SNN

architectures are targeted towards FPGA implementation. Perceptron readout layer with delta prop

trained reservoir layer based VLSI architecture is also implemented [5]. Most of these processors

support off-line training and on chip inference, owing to the complexity associated with training

a neural network. As SNNs are biologically plausible it is feasible to develop low power on chip

training processors with an increased speed of learning resulting from parallel processing of spikes

by all neurons in a layer. [6] introduces unsupervised STDP training which is used to tune reservoir

synapses while read out synapses are trained using change in calcium concentration of synapses.

This approach restricts STDP only to reservoir layer and also requires full connectivity between

reservoir and readout layer synapses. [7] introduces sparsification of synapses in readout layer but

does not maintain a good performance-sparsification trade off and no STDP in readout layer. [6]

introduces a calcium modulated supervised STDP in readout layer and STDP based sparsification.

This method offers a good trade off between hardware cost and classification performance making

it a good choice for hardware implementation.
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1.3 Challenges in SNNs

Several challenges need to be addressed to develop an efficient hardware architecture for a

spiking neural network. Learning mechanisms involved are complex and are in continuous domain.

It is essential to develop hardware friendly learning mechanisms which are feasible for digital

architectures. Achieving high computational power with low energy consumption is one of the

major challenges which needs to be addressed. Existing architectures implementing SNNs do

not support learning on the chip. On-chip learning improves efficiency and speed of learning by

utilizing parallel computing structures. These challenges are addressed in this research.

Primary goal of this research is to develop an energy efficient neural network processor em-

ploying principles of biological information processing. To achieve this goal, hardware friendly

STDP learning algorithm is used to train neural network architecture. A major component of a

nervous system responsible for transmitting information from one neuron to another is a synapse.

There exists several billions of synapses in biological brain interconnecting neurons in complex

ways. As these synapses are abundant in existence, energy efficient hardware architectures can

be developed by disabling those synapses which are irrelevant to the tasks under consideration.

To achieve high performance and energy efficiency, a supervised learning algorithm along with a

sparsification algorithm is proposed. This supervised learning algorithm, termed as calcium mod-

ulated learning based on supervised STDP (CaL-S2TDP) employs a supervisory signal to help the

neural network learn the features in the input patterns accurately and thus make a correct inference.

Synapse weights are limited to have small bit resolutions to achieve small hardware overhead and

low energy due to which possibility of weight saturation is high. To avoid this problem, a stochas-

tic weight update scheme is proposed. In order to disable synapses which do not affect learning

performance and thus achieve energy savings, calcium modulated sparsification algorithm based

on supervised STDP (CaS-S2TDP) is proposed. A unified training mechanism is described to train

neural network using both CaL-S2TDP and CaS-S2TDP.
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2. SPIKING NEURAL NETWORKS

Spiking neural networks and their computational models are based on several complex mech-

anisms involved in the functioning of biological brain. Brain is composed of millions of informa-

tion processing units called neurons, forming an intricate network. It is essential to understand the

structure and function of neurons to develop computational models for modeling spiking neural

networks. This section begins with describing the structure and function of a spiking neuron and

its computational models. An SNN is developed by a random interconnection of these neurons and

liquid state machine, a computational model for SNNs is also discussed in this section.

2.1 Spiking Neurons

A neuron is a fundamental information processing unit in biological brain. Figure 2.1 shows

the structure of a neuron. Physiologically, a neuron can be divided into three distinct regions

namely, dendrites, soma and axon. A neuron receives input signals from its neighbors through

dendrites. These signals are processed in the cell body, soma which is a non-linear processing

system. The incoming signals from dendrites change the membrane potential of neuron and if

the membrane potential exceeds certain threshold then neuron generates a spike, known as action

potential. Action potential traverses down the axon which branches out in several directions. There

are some neurons whose axonal lengths are in the order of hundreds of meters. These branches

come in contact with adjacent neurons through a junction called synapse. It is through synapse,

electrical signals are transmitted from one neuron to another. Thus, a neuron can be visualized as

a system consisting of an input (dendrites), processing unit (soma) and an output (axon). A neuron

which transmits action potential is known as presynaptic neuron while a neuron which receives

action potential is known as postsynaptic neuron. A neuron at rest is associated with a membrane

potential known as resting potential, Vrest. Figures 2.2 and 2.3 show a simplified view of a neuron

and interaction between presynaptic and postsynaptic neurons through synapse respectively.

Generation and propagation of an action potential depends on the exchange of various ions
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Figure 2.1: Structure of a neuron. Reprinted from [1]

Figure 2.2: Simplified view of a neuron

Figure 2.3: Interaction of presynaptic and postsynaptic neurons

such as sodium, potassium, calcium, chlorine etc across neuronal membrane. An ion of interest,

responsible for transfer of action potential across neuronal synapse is calcium. Voltage sensitive
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calcium ion channels present on presynaptic neuronal membrane open due to change in membrane

potential. Concentration gradient of calcium ions across plasma membrane results in calcium ions

rushing into pre-synaptic terminal. These calcium ions then bind to proteins such as synapto-

tagmin which promote fusion of synaptic vesicles (organelles responsible for release of chemical

substances known as neurotransmitters) and thus, release of neurotransmitters into synaptic cleft.

If intra-cellular calcium concentration is high, it results in over excitation of neural circuits as

synaptic vesicles continuously fuse with plasma membrane releasing neurotransmitters. Thus, the

dynamics of calcium ion concentration plays an important role in the generation of spike by a neu-

ron. This property of calcium ion concentration is used in this research to control the spiking rate

of a neuron.

A neuron can be modeled as either excitatory or inhibitory depending on whether it excites or

inhibits a postsynaptic neuron from firing an action potential. Biologically speaking, this behav-

ior is attributed to different types of neurotransmitters. Certain neurotransmitters like dopamine

allow ion channels on neuronal membrane to open, aiding in generation of action potential while

neurotransmitters like gamma amino butyric acid close ion channels on neuronal membrane in-

hibiting postsynaptic neuron activity. This property of neurotransmitters is taken into account in

this research and is reflected in the neuron and synapse models discussed in the sections below.

2.2 Action Potentials or Spikes

Action potential or spike generated by a neuron is a voltage signal which is typically 100mv

in amplitude and 1-2ms in duration. Ion channels spread across axonal membrane act as repeaters

ensuring signal fidelity along the length of axon. As the shape of all spikes generated by neurons is

identical, information is encoded in the timing and number of spikes generated. A neuron will not

be able to generate spikes continuously. Minimum amount of time required for a neuron between

generation of consecutive spikes is known as absolute refractory period. Hence, spikes are discrete

events and a sequence of spikes generated by a neuron constitutes a spike train.

Shape of an action potential or spike can be described using changes in the properties of neu-

ronal membrane. Figure 2.4 depicts the shape of an action potential. A neuronal membrane un-
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dergoes several changes when an action potential is generated. These changes can be divided into

several stages such as:

1. Rising Phase - Nerve membrane is depolarized to an extent that membrane potential starts to

become positive with respect to external medium.

2. Overshoot Phase - During this phase, neuronal membrane potential is positive with respect to

outer membrane. After reaching a peak value, action potential eventually enters into falling phase

due to change in permeability of membrane to specific ions.

3. Falling Phase - During this phase, membrane potential is repolarized to a value lower than rest-

ing potential.

4. Undershoot Phase - Membrane potential slowly returns to resting potential during this phase.

Figure 2.4: Shape of action potential. Reprinted from [2]
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2.3 Computational Models

Computational models at different levels of abstraction are available to model a spiking neu-

ron. As discussed in section 2.1, an action potential is a result of currents passing through ion

channels resulting in changes in membrane potentials. Hodgkin and Huxley [8] performed a series

of experiments on giant squid axon and developed a model describing the dynamics of ion channel

currents in terms of differential equations. These models can replicate the behavior of neuron with

high degree of accuracy but are too complex to analyze and implement in hardware. As a result,

several simple models have been proposed which abstracts the dynamics of ion channels using

resistive and capacitive elements. The neurons in this research are modeled using leaky integrate

and fire (LIF) model.

2.3.1 Leaky Integrate Fire Model

A spiking neuron in LIF model is described as an RC circuit consisting of a capacitor in paral-

lel to a resistor as shown in figure 2.5. Using this model, dynamics of membrane potential can be

Figure 2.5: Neuron in LIF model
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described by the following equation

dvm
dt

= −vm
τm

+
I(t)

C
(2.1)

The above equation models an isolated neuron stimulated by an external current I(t). However,

in a network of neurons, each neuron is connected to several neighboring neurons with synapses.

Current I(t) will be a summation of all pulses received from each of the presynaptic neurons. Let

tij represent jth time instant during which a spike is received from a presynaptic neuron through

a synapse of synaptic weight wmi and let di denote delay associated with synaptic transmission

and S(.) be synaptic transformation function. Current pulse received from presynaptic neuron i is

described by the following equation

Ii(t) =
∑
j

wmis(t− tij − di) (2.2)

Integrating the current from all the pre-synaptic neurons, dynamics of membrane potential varia-

tion can be described by the following differential equation

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmis(t− tij − di) (2.3)

Supervised learning is a form of learning mechanism in which information about the output is

provided to the learning element in the form of a teacher signal. In the case of spiking neurons,

this teacher signal is a current induced into the neuron from an external source. Let it(c) denote

the current induced by teacher signal into the neuron. This current is expressed as a function of

calcium concentration c. Including this term in the equation (2.3) gives

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmis(t− tij − di) + it(c) (2.4)

Equation (2.4) can be expressed in the form of a difference equation to make it compatible for

hardware implementation. The resulting equation is expressed as follows
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V n
m = V n−1

m − V n−1
m

τm
+
∑
i

∑
j

WmiS(T
n, Ti,j +Di) + In−1

t (2.5)

The subscripts indicate discrete time steps.

A neuron fires when its membrane potential exceeds threshold voltage Vt, after which its mem-

brane potential is reset to Vrest. Neuron goes through an absolute refractory period τrefrac after

each spike is fired during which it cannot fire a new spike. The dynamics of calcium concentration

c is modeled by the following equation

dc

dt
= − c

τc
+
∑
i

δ(t− ti) (2.6)

where τc is the time constant for first-order dynamics of calcium concentration c and i is the index

of spikes emitted from the neuron itself.

2.3.2 Synapse Models

A synapse is a computational unit responsible for transferring a spike from presynaptic to

postsynaptic neuron. Each synapse has an associated weight which influences the decision of a

neural network. Combined weight of all the synapses in a neural network is an abstraction for

memory of the network. Choice of synapse model has a great influence on memory of the network

and thus, overall performance. It has been shown in [9] that a second order synapse model yields

good performance compared to a first order and an impulse synaptic response. Moreover, [9]

shows that second order model is hardware friendly in terms of its implementation. Equation

2.7 describes the dynamics of neuronal membrane voltage using dynamic second order synaptic

model.

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmie
t−tij−dij

τs1 H(t− tij − dij)

τ s1 − τ s2
+−

∑
i

∑
j

wmie
t−tij−dij

τs2 H(t− tij − dij)

τ s1 − τ s2
(2.7)
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where τ s1 and τ s2 are time constants of second order response. The values of time constants are

chosen to be a power of 2, for the ease of hardware implementation.

Equation 2.7 can be optimized as described in [9] and is reduced to a simpler form for hardware

implementation.

Vm(t) = Vm(t− 1)− Vm(t− 1)

τ
+

EP − EN

τEP − τEN

− IP − IN

τIP − τIN
(2.8)

where EP , IP , EN and IN are state variables of second order responses and τEP , τIP , τEN ,τIN

are their corresponding time constants respectively. A second order variable X is modeled by the

following equation

X(t) = X(t− 1)− X(t− 1)

τX
+
∑

wiY (i) (2.9)

for X = {EP,EN, IP, IN}

In equation 2.9, wi is the weight of the ith synapse and Y (i) is 1 if presynaptic neuron fires a spike

at time t and 0 if there is no spike.

2.4 Liquid State Machine

Liquid state machine is a computational model proposed in [10] to model spiking neural net-

works. An LSM consists of an input layer, reservoir layer and an output or readout layer. The

number of neurons in the reservoir are much higher compared to the neurons in input layer. As a

result, input spike train is projected into a high dimensional space by the reservoir layer. Reservoir

layer is composed of a recurrent network of neurons randomly connected to each other. A spike

from the input layer creates a disturbance in the reservoir layer which is propagated from the point

of disturbance towards readout layer, just as a ripple propagates in a pond from the point of distur-

bance. Readout layer is fully connected to the reservoir layer and the number of neurons in readout

layer is equal to the number of input classes. Figure 2.6 depicts a model of LSM.

Neurons in the reservoir are arranged in the form of a grid of size l ∗ b ∗ h and each neuron

is randomly connected with other neurons through synapses such that neurons which are closer
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together have a higher probability to be connected. The probability of a synapse between two

reservoir neurons Na and Nb is given by

Psynapse(Na, Nb) = kexp(
−D2(Na, Nb)

m2
) (2.10)

where k and m are appropriately chosen constants.

Figure 2.6: A model of liquid state machine
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3. LEARNING IN SPIKING NEURAL NETWORKS

Learning is a process of adjusting the synaptic weights in order to optimize the performance

of neural network for a given task. A procedure used to achieve such an optimization process

is known as learning rule. There exists different kinds of learning in the theory of AI such as

supervised, unsupervised, reinforcement learning etc. Simplest form of learning in SNNs are a

result of large set of experiments carried out by Hebb on synaptic plasticity. According to Hebb,

when a neuron A continuously excites a neuron B, then the synaptic strength between these two

neurons increases such that neuron A develops to be a potential neuron responsible for firing neuron

B. This principle is known as Hebbian learning. Long term potentiation (LTP), a persistent increase

in synaptic strength and long term depression (LDP), a persistent decrease in synaptic strength are

enhancements over basic Hebbian learning rule. This section describes spike timing dependent

plasticity learning mechanism along with several enhancements and hardware optimizations to

this learning rule.

3.1 Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity is an unsupervised Hebbian based learning rule which con-

trols the plasticity of synapses based on temporal difference in spiking events of pre-synaptic and

post-synaptic neurons [11]. A post-synaptic neuron, j is connected to several pre-synaptic neurons.

For a given pre-synaptic neuron, i synaptic weight update ∆wji is a function of temporal difference

∆tji = tj − ti between the spike pair. If a pre-synaptic neuron fires before post-synaptic neu-

ron, synaptic weight increases (LTP). If a post-synaptic neuron fires before a pre-synaptic neuron,

synaptic weight decreases (LDP).Thus, the strength of synaptic weight is a function of correlation

between firing activities of presynaptic and postsynaptic neurons. The weight update in STDP

learning can be expressed mathematically as

∆w+
ji = A+(w).exp(−

|∆tji|
τ+

) (3.1)
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∆w−
ji = A−(w).exp(−

|∆tji|
τ−

) (3.2)

where ∆w+
ji and ∆w−

ji indicate change of synaptic weights due to LTP and LDP respectively, τ+,τ−

are time constants, A+ and A− determine strength of LTP and LDP respectively.

STDP has an inherent self-organizing behavior capable of inducing sparsity in the network

topology through introduction of competition among synapses [12]. This sparse nature of the net-

work is utilized to construct energy efficient processor architectures described in section 4. Figure

3.1 plots STDP characteristics. To maintain stable network dynamics, only excitatory synapses are

tuned.

Figure 3.1: STDP characteristics

3.2 Calcium modulated learning in readout neurons

A readout neuron is expected to fire maximum number of spikes if it is a representative of input

class while the remaining readout neurons are expected to have as low activity as possible. If an

undesired neuron generates a spike, its activity can be reduced by reduction of synaptic weight.

On the other hand, if a desired neuron does not generate a spike its activity can be increased by

synaptic potentiation. Let up and ud represent the present and desired activity of a readout neuron

and uT be the threshold firing activity which determines the firing rate of a readout neuron. If

the readout neuron is a desired neuron and its current activity is less than the threshold, synaptic
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potentiation must occur. If the neuron is not a representative of input class and its firing activity is

above threshold, synaptic depression must occur. Expressing this mathematically

wi → wi +∆w if up < uT +∆u and ud > uT (3.3)

wi → wi −∆w if up > uT +∆u and ud < uT (3.4)

where ∆u is a threshold which allows the learning process to be driven by correctly classified data.

For hardware implementation, discrete synaptic weights of finite resolution are used. To avoid

saturation of weights during learning process, effective learning rate is reduce by introduction of

stochastic weight update scheme.

wi → wi +∆w with prob p+ if up < uT +∆u and ud > uT (3.5)

wi → wi −∆w with prob p− if up > uT +∆u and ud < uT (3.6)

As discussed in section 2, calcium ion concentration of a neuron is a good indicator of its firing

activity. Replacing firing activity u with calcium concentration c, learning rule can be restated as

wi → wi +∆w with prob p+ if cp < cT +∆c and cd > cT (3.7)

wi → wi −∆w with prob p− if cp > cT +∆c and cd < cT (3.8)

Learning in a practical neural network depends only on the present firing rate and is indepen-

dent of desired firing rate. To further inhibit synaptic saturation, two stop learning regions are pro-

posed based on calcium concentration. These regions are cp > cT+∆c and cp < cT−∆c. Learning

occurs only when calcium concentration of a neuron is in the region cT−∆c < c < cT+∆c. Synap-

tic potentiation occurs when cT < c < cT + ∆c and depression occurs when cT −∆c < c < cT .

Figure 3.2 shows various learning regions based on calcium ion concentration. Improved learning

rule can be expressed mathematically as follows
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wi → wi +∆w with prob p+ if cT < cp < cT +∆c (3.9)

wi → wi −∆w with prob p− if cT < ∆c < cp < cT (3.10)

Figure 3.2: Learning regions based on calcium concentration

A teacher signal is provided to the readout neurons which will further increase the firing activity

of desired neurons and inhibit the activity of undesired neurons. This teacher signal modulates

the activity of readout neurons such that for a desired neuron calcium concentration is driven to

[cT , cT +∆c] and for an undesired neuron calcium concentration is driven to [cT −∆c, cT ].

3.3 Unsupervised STDP for reservoir training

Energy efficiency can be achieved by utilizing self-organizing behavior of STDP algorithm in

training of reservoir neurons. However, continuous nature of STDP characteristics and correspond-

ing weight updates are not suitable for realization in digital hardware. A major challenge involved

in discritization of these parameters is the choice of bit resolution. Having a higher resolution

closely approximates continuous domain, but is not energy efficient. On the other hand, low bit

resolution can hurt the learning performance.In this research, a data-centric approach is adopted to
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discritize STDP characteristics and weight updates. The data-centric discritization approach aims

Figure 3.3: Proposed data centric approach to hardware friendly STDP

to discritize continuous weights such that their equilibrium distribution is maintained. Given tem-

poral difference ∆tji and continuous weight change ∆wc
ji, discritized STDP characteristics have

to match the corresponding synaptic weight update in the continuous domain. The procedure for

discritization can be divided into four stages as shown in Figure 3.3.

Simulation of Continuous STDP: Reservoir is simulated with given set of inputs and observed
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weight changes and spike events are recorded as a set of four values: (∆tk,∆wc
k, w

c
prev,k, w

c
next,k).

k ∈ [1, N ] . N such observations are recorded.

Weight Discritization: Given B bits to represent discritized weights, it is necessary to minimize

the representation error of each continuous weight wc
i . For a given continuous weight wc

i and a

set of discrete weights D = {wd
l }, l ∈ [1, 2B], the goal is to choose a value from the set D which

minimizes squared error between wc
i and a given wd

l . This minimization is carried out over all

values of wd
l . This can be mathematically expressed as follows

min
wd

l

∑
l minwd

l
(wc

k − wd
l )

2

subject to wd
l ∈ [wmin, wmax],∀l ∈ [1, 2B]

(3.11)

As the search space is small for smaller values of B, the above optimization problem can be solved

easily.

Discritizing STDP: After obtaining optimal discrete weights, STDP curve has to be discritized

to obtain discrete levels of time and weight updates. This is achieved by mapping {∆tk, w
d
prev,k}

directly to a new weight wd
next using a look up table (LUT) approach. An appropriate value of time

step is chosen for the network and LUT is indexed by ∆t and wd
prev to obtain new weight, where

∆t is a multiple of chosen time step. Each entry in the LUT serves as a discritized weight obtained

under proposed STDP rule. Optimal LUT entries are obtained as follows. Using the quantized

weights obtained from weight discritization step, {∆t, wc
prev, w

c
next} are mapped to {∆t, wd

prev, w
c
next}

by choosing wd
prev close to wc

next. Let Lmn be the corresponding entry of wc
next in the LUT which is

indexed by (∆t, wd
prev). The goal is to discritize the LUT entries so as to minimize the aggregated

error over all wc
next in Lmn. This optimization problem can be mathematically expressed as :

min
Lmn

∑
k(w

c
next,k − L− ij)2

subject to Lmn ∈ [wd
1, w

d
2B ]

(3.12)
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3.4 Supervised STDP for readout training

A supervised learning algorithm provides information about the corresponding class label,

through a teacher signal aiding in the classification process. In case of spiking neural networks,

a neuron with highest firing frequency indicates the corresponding class label of input. As such,

the job of teacher signal is to maximize the firing frequency of desired neuron while inhibiting the

activity of undesired neurons. This problem can be expressed mathematically as follows :

max
f i
j

∑n
i=1(f

i
c(i)(Xi,W )−

∑C
j ̸=c(i) f

i
j(Xi,W ))

subject to f i
j ≥ 0

(3.13)

where N is the total number of input samples, C is the total number of input classes, Xi is the ith

sample with c(i) being its class label. f i
j is the firing frequency of jth readout neuron under ith

input and W is the weight vector of readout synapses.

Equation 3.5 tries to maximize the distance of firing rate between desired and undesired neu-

rons so as to minimize the classification error over the entire training set. The above optimization

problem appears to be complex to solve mathematically. It can be avoided by exploiting local

weight update characteristics of STDP algorithm. Based on this approach, deterministic super-

vised STDP algorithm (D-S2TDP) is proposed.

The motivation for D-S2TDP algorithm is from the learning mechanism of STDP rule which

tries to strengthen or weaken synaptic strength between two neurons based on their relative firing

time. This can be used to control the firing activity of desired neurons through an introduction of

a classification teacher (CT) signal which serves as supervisor. The function of this signal is to

induce enough current into the desired neuron so that it can fire more frequently. This increases

the number of causal firing events for the desired neuron. As such, STDP strengtens the synaptic

weight. Due to higher synaptic weight, firing activity of desired neuron will further increase. CT

signal also helps in making learning process robust by increasing the synaptic weight of desired

neuron quickly, thereby reducing the classification error.

Figure 3.4 and 3.5 show the learning process of desired and undesired neurons in D−S2TDP .
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Figure 3.4: Training of desired neurons using D-S2TDP

Figure 3.5: Training of undesired neurons using D-S2TDP

Positive correlation between presynaptic and postsynaptic spiking events results in increase of

synaptic weight and introduction of current through teacher signal invokes an additional spike

which further increases synapse strength. A negative correlation will reduce synaptic strength.
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In case of undesired neurons, a positive or negative correlation results in reduction of synaptic

strength with teacher signal trying to inhibit firing activity.

It is equally important to suppress the firing activity of undesired neurons to achieve a good

classification performance. A novel depressive STDP rule is proposed which reduces the synaptic

weight of undesired neuron when it fires a spike. This reduces the probability of firing of an

undesired neuron in future.

3.4.1 CaL-S2TDP Training algorithm

D-S2TDP algorithm establishes the key idea behind supervised STDP learning in readout neu-

rons. However, deterministic weight update causes several problems such as poor memory reten-

tion, weight saturation and large power consumption. To overcome these problems, Cal-S2TDP

algorithm is proposed.

Poor memory retention and weight saturation are attributed by the discrete levels of weights

available when implementing in hardware. Frequent firing of desired neuron continuously in-

creases the synaptic weight, resulting in weight saturation. No future weight updates are allowed,

failing to capture information in the incoming spikes. This also results in high power consump-

tion due to high rate of switching activity of several signals involved in various logic cells when

a neuron fires frequently. To overcome this problem, a probabilistic weight update scheme is

adopted which slows down the learning process providing a better learning performance. Satu-

ration of weights during training is avoided by deactivating weight updates when a neuron either

fires continuously or remains inactive. Activity of a neuron is determined by its internal calcium

ion concentration. Calcium concentration of a neuron can be mathematically modeled as follows:

dc(t)

dt
= −c(t)

τc
+
∑
i

δ(t− ti) (3.14)

where τc is the time constant and ti is the time at which neuron spikes.

Based on the above considerations, CaL-S2TDP algorithm is proposed as follows. Let CT

indicate calcium concentration threshold which separates an active neuron from an inactive one.
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Figure 3.6: Training of desired neurons using CaL-S2TDP

Let δ denote an activation margin. Synaptic potentiation is allowed if current calcium concentration

of neuron lies in the range, cT < c < cT + δ and synaptic depression is allowed if internal calcium

concentration lies in the range cT − δ < c < cT . The weight updates are probabilistic with

probability proportional to weight adjustments ∆w. Following equation describes CaL-S2TDP

approach.

w = w + d, prob ∝ ∆w+, if ∆t > 0 and cT < c < cT + δ (3.15)

w = w − d, prob ∝ ∆w−, if ∆t < 0 and cT − δ < c < cT (3.16)

Figures 3.6 and 3.7 show the above learning process for desired and undesired neurons using

CaL-S2TDP. Positive correlation between presynaptic and postsynaptic spiking events strengthens

synaptic weight and current induced through teacher signal invokes an additional spike. How-

ever, this does not allow increase in weight due to stochastic nature of the algorithm. A negative
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Figure 3.7: Training of undesired neurons using CaL-S2TDP

correlation will reduce synaptic strength. In case of undesired neurons, a positive or negative cor-

relation results in reduction of synaptic strength with teacher signal trying to inhibit firing activity.

Decrease in synaptic strength is again stochastic in nature and thus, a decrease of weight is not

observed in figure 3.7. Stochastic nature of the algorithm thus promotes a slow learning rate and

prevents synaptic weight saturation.

3.4.2 Sparsification algorithm

The term sparsification, in this context, refers to reduction in the number of synapses between

reservoir and readout neurons. Output layer in LSM is fully connected i.e each readout neuron is

connected to every reservoir neuron. As the number of reservoir neurons are more compared to

readout layer, reducing the synapses in a constructive way results in significant amount of energy

savings. Having more number of synapses than required is also a sign of over-fitting. Thus,

sparsification not only results in energy efficient architecture but also overcomes any possibility of
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over-fitting the model. Sparsification can be achieved by allowing the readout synapses to compete

among themselves based on the input firing patterns. This competition eliminates those synapses

which are insignificant and because this elimination is based on input firing patterns, it will not

have a significant affect on classification performance. Such competition can be induced by STDP

learning rule. As each readout neuron is associated with a class label, it is only necessary to instruct

each readout neuron to learn the sparse structure of input subset of its associated class. This leads

to maximum sparsity and the information from other classes will not be mistakenly learned through

the sparsification process.

CaS-S2TDP algorithm for sparsification of readout synapses is proposed as follows. A spar-

sification teacher signal (ST) is introduced in the readout layer to bring up the firing activity of

desired readout neuron so that initial random synaptic weight initialization will not affect spar-

sification process. ST signal also allows only synapses of desired readout neuron to participate

in the sparsification process. A stop learning mechanism is also included similar to CaL-S2TDP

algorithm to avoid poor memory retention. CaS-S2TDP algorithm can be summarized as follows:

w = w + d, prob ∝ ∆w+, if ∆t > 0 and c < cT + δ (3.17)

w = w − d, prob ∝ ∆w−, if ∆t < 0 and cT − δ < c (3.18)

The bounds on calcium concentration are relaxed in order to maximize sparsity as well as to avoid

unnecessary bias in calcium regulation.

3.4.3 Two step training using sparsification and supervised STDP

Sparsification using CaS-S2TDP and learning using CaL-S2TDP are carried out in two steps.

The network is first trained using CaS-S2TDP algorithm which results in zero weight synapses in

the readout layer. These synapses are removed and the remaining synapses are trained using CaS-

S2TDP algorithm starting with synaptic weights after sparsification training. As sparsification

of synapses is carried out using input patterns, neural network captures spatio-temporal patterns

in the input data set and hence using synaptic weights which are a result of sparsification, as
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initial weights for classification results in a good performance. The weight update probability

for supervised STDP learning algorithm is implemented using a look up table approach, similar to

reservoir training. To minimize hardware overhead, same logic elements are used for sparsification

and supervised STDP learning as they are carried out in non-overlapping time intervals. Detailed

architectural details are discussed in Section 4.
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4. HARDWARE ARCHITECTURE

This section describes the overall hardware architecture of an SNN processor along with im-

plementation details of reservoir and readout layers.

4.1 Hardware architecture of SNN processor

Spiking neural network processor IP is developed on a Field Programmable Gate Array (FPGA).

SNN IP is realized in the programmable fabric of FPGA which is interfaced with embedded ARM

Cortex processors. It constitutes the processing sub system. IP communicates with processing sub

system through ARM AMBA AXI ports. Data required for training and inference are provided

to the processor IP through ARM interface. The control signals are used to control flow of data

between processing subsystem and programmable fabric. Figure 4.1 shows the system architec-

ture of SNN processor developed. Communication between ARM core and SNN IP is achieved

through a handshake communication protocol. ARM processor transfers input spikes to SNN IP

when the IP asserts a req_input signal. After a successful transfer of spikes, ARM core asserts an

input_vld signal which indicates the IP that a new set of spikes are available for processing. IP

then deasserts req_input signal after which the ARM processor deasserts input_vld signal. When

SNN has processed input spikes and is ready to transfer these spikes to processing system, the IP

asserts a spike_ready signal. When this signal is asserted, ARM core begins to receive data from

SNN. When all the data has been received, ARM processor asserts read_ack signal. SNN IP then

deasserts spike_ready signal and ARM processor then deasserts read_ack signal. After receiv-

ing output spikes from neural network,ARM processor determines which output neuron generated

maximum number of spikes for a given input sample. The label associated with this neuron will

be the inference made by neural network and this is compared with the ground truth.

Input spikes received from ARM processor are fed into reservoir layer. Each input spike is fed

to a fixed number of reservoir neurons chosen in a random fashion. SNN IP consists of an input

layer, reservoir layer and output layer. The section below describes reservoir architecture.

28



Figure 4.1: SNN Architecture

4.2 Reservoir Architecture

Reservoir is composed of randomly connected neurons resembling a liquid propagating distur-

bance originating at the input. Thus, these neurons are also called as liquid elements (LE). Each

liquid element is composed of three modules, namely:

1. Reservoir neuron module

2. Reservoir synapse module

3. Reservoir learning module

Second order neuron and synapse models as described in Section 3 are implemented in neuron

and synapse modules. Architecture of learning module varies in accordance with the learning

mechanism used. Processing of an input spikes by a LE occurs in several stages which spans across

several clock cycles. The number of clock cycles needed is a function of number of input as well as

feedback connections to a reservoir neuron. The function of neuron module is to update membrane

potential of neuron based on the state variables received from synapse and generate a spike if

the integrated membrane potential exceeds threshold voltage (VT ). The spike thus generated is

sent to readout layer, fed back to other reservoir neurons and is also buffered in a shift register
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Figure 4.2: Reservoir Layer

for synapse weight updates. Figure 4.3 shows reservoir neuron architecture. The state variables

EN,EP, IP, IN are received from synapse module. They are shifted right by an amount of time

constant and then fed to an arithmetic unit along with current membrane potential. Arithmetic

unit computes new membrane potential using updated state variables according to equation 2.8.

This updated membrane potential is then compared with threshold voltage. If the new membrane

potential is greater than threshold voltage, neuron generates logic 1 as its output. This bit is sent to

the readout layer and is also buffered in shift register SR0.

A reservoir synapse module takes as input, spikes from input layer along with reservoir feed-

back spikes and synaptic weight. This module updates state variables of neuron based on the

equations described in section 2. This update of state variables also depends upon whether a spike

received is from an excitatory or an inhibitory neuron. Figure 4.4 represents synapse module ar-

chitecture. In this figure, X can be any one of the four state variables. In hardware implementation,

there will be four such architectures, one for each of the state variables. The control signal spike

represents a spike coming from either an input neuron or one of the reservoir neurons.

Learning module implements an unsupervised STDP learning rule as described in Section 3.
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Figure 4.3: Reservoir neuron architecture

Synaptic weight update is based on a look up table which is indexed by the time difference be-

tween firing of pre-synaptic and post-synaptic neurons.Learning module provides updated synap-

tic weights to the synapse during learning phase. During inference, it is only neuron and synapse

which remain active. Detailed description of learning module implementation is presented below.

Figure 4.4: Synapse architecture
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4.3 Readout Layer

The neurons in readout layer are termed as output elements (OE) as they are responsible for

classifying input data and providing an inference. A major architectural difference between LE

and OE is in the learning module, bit resolutions of synapses, state variables and memory to store

synapse weights. Each OE uses a block memory (BRAM) to store weights of synapses associated

with each of the reservoir neurons. LEs on the other hand make use of flip flops because of less

number of synapses and lower bit resolutions. Similar to reservoir neuron, a readout neuron also

consists of three modules:

1. Readout neuron module

2. Readout synapse module

3. Readout learning module

Figure 4.5: Readout neuron architecture

Figure 4.7 shows readout neuron architecture. Membrane potential of neuron is updated based

on synapse state variables received from synapse module and current membrane potential of neu-
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ron. Based on the calcium concentration of neuron and the refractory period, teacher signal adds

additional voltage to the membrane potential. If the resulting voltage is greater than certain thresh-

old, neuron generates a spike. Readout synapse module is similar to synapse module in reservoir

and its architecture is same as shown in figure 4.6. Here spike control signal corresponds to a spike

coming from a reservoir neuron. Detailed architectures of readout neuron and learning module are

described below in section 4.5.

4.4 Implementation of unsupervised STDP

Learning module in LEs is responsible for tuning of plastic synapses between reservoir neu-

rons. This module computes the time difference ∆tji of spiking events between pre-synaptic and

post-synaptic neurons utilizing shift registers. A post-synaptic neuron with m synapses tracks pre-

synaptic events from m pre-synaptic shift registers SR1, ...SRm. The post-synaptic neuron itself

has a shift register SR0 in order to track the post-synaptic events. The depth of shift registers

depend on the choice of time windows considered for LTP and LDP.

The neuron module updates the output shift register SR0 when the post-synaptic neuron fires a

spike. This spike is positioned at the MSB of the shift register as bit 1 and the remaining contents

are shifted to the right by one position. In the absence of a spike, bit 0 is pushed into the MSB

of the shift register. The contents of SR0 are shifted right at each time step. The learning module

calculates ∆t by comparing the positions of the first spike from MSB in presynaptic and post-

synaptic shift registers. Synaptic weight is updated only when there is a bit 1 in the MSB position

of either presynaptic or post-synaptic shift register because it is an indication of a spike being fired

by one of the neuron at that particular time step. For example, if shift register SR0 has a spike in

its MSB position and a presynaptic shift register SRi has a spike in second position from MSB,

then ∆t = 2. On the other hand, if presyanptic register has a spike in MSB while there is a spike

in second position from MSB in SR0, then ∆t = −2. Value of ∆t calculated in this way is used

to index LUT along with synaptic weight value. The value stoed in LUT location indexed by

(∆t, wprev) is used to compute new weight value wnext. This new synaptic weight value is then

stored in weight memory and is provided to synapse module to update state variables.
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Figure 4.6: Unsupervised STDP Learning module

4.5 Implementation of supervised STDP

CaL-S2TDP and CaS-S2TDP learning and sparsification algorithms are fundamentally similar,

although their function in the training process is different. Both these algorithms are based on

STDP learning, involve probabilistic weight updates and calcium modulated stop-learning mech-

anism. The readout layer is trained with these algorithms in two separate phases and there is no

overlap between their execution times. This gives an opportunity for sharing of resources across

these two learning mechanisms leading to lower logic resource utilization and power consumption.

Figure 4.6 describes architecture of a readout neuron. Learning module of OEs has a simi-

lar architecture to the learning module of LEs that compute spike timing differences using shift

registers. SR0 is the output shift register of readout neuron and SR1 to SRm are pre-synaptic

shift registers belonging to reservoir neurons. Due to full connectivity in the readout layer, the

number of pre-synaptic shift registers connected to a readout neuron are high. sel signal selects

one of the presynaptic shift register in each clock cycle and continues learning process until spikes

from all presynaptic neurons have been processed, updating the weights associated with each of
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the synapse. The sign bit of computed ∆t determines if a potentiation or depression resulted. LTP

and LDP look up tables store weight update probabilities. These probabilities are related to ∆t. A

smaller value of ∆t indicates a high correlation between pre-synaptic and post-synaptic neurons

and hence has a higher weight update probability. The entries in look up tables are hyperparame-

ters which are tuned offline to improve performance. The LUTs are implemented with distributed

RAM on FPGAs with zero read latency. The output from look up table is compared with the output

of a pseudo random number generator. If the generated random number is smaller than the prob-

ability threshold in LUT, then weight is updated if the calcium concentration of readout neuron is

in the range that allows learning. During readout sparsification, only synapses of readout neuron

associated with class label participate in STDP tuning. In figure 4.6, signal CaS/CaL determines

if the training phase is sparsification or supervised learning. During sparsification, path containing

signal ST will be active and weights are updated only if signal ST is 1. In other words, sparsifi-

cation takes place to the synapses associated with desired neurons. During learning phase, path

containing signal CT is active and the weight update value is determined by the value of signal CT.

In other words, classification teacher signal determines if a synapse weight has to be increased or

decreased.
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Figure 4.7: Learning in supervised STDP with sparsification
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5. RESULTS AND CONCLUSIONS

5.1 Experimental Settings and dataset

SNN processor described in Section 4 is designed and synthesized using Xilinx Vivado tool and

targeted towards Zynq ZC706 FPGA board. Zynq ZC706 has an on chip ARM cortex processor

which is used to provide data set to SNN processor along with control signals which are used

to control different learning and testing phases. Data used to train and test performance of the

developed processor is stored in an SD card which is interfaced to FPGA board. ARM processor

receives data from SD card and provides to the neural network.

LSM architecture considered in this work has 78 neurons in the input layer, 135 neurons in the

reservoir layer and 26 neurons in the output layer with each neuron being a representative of an

input class. 80% of reservoir neurons are excitatory while remaining 20% are inhibitory. Reservoir

synaptic weights are set to 2 and time window considered for weight updates in reservoir is 3. Table

5.1 shows look up table used for reservoir weight updates.

wprev = 0 wprev = 2 wprev = 6 wprev = 8
∆t = −3 0 2 6 8
∆t = −2 0 0 2 6
∆t = −1 0 0 0 2
∆t = 0 0 2 6 8
∆t = 1 6 8 8 8
∆t = 2 2 6 8 8
∆t = 3 0 2 6 8

Table 5.1: LUT for unsupervised STDP in reservoir layer

Readout layer has synaptic weight resolution of 10 bits for all the learning rules used in this

research to achieve optimal performance at low hardware overhead. These synaptic weights are

initialized to random values in the range [−29, 29−1]. The depth of both LTP and LTD LUTs is set
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to 16 and the entries of these LUTs are hyperparameters which are tuned offline to achieve good

classification performance.

The architecture is trained and tested using a subset of TI Speech Corpus data set. This data

set is a collection of utterances of 26 alphabets in English language. Each alphabet has a set of 10

different utterances with a total of 260 samples recorded from a single speaker. The speech signals

obtained in time domain are first processed using Lyon’s passive ear model [13] and then encoded

into 78 spike trains using BSA algorithm [14]. Presence of a spike at a particular time instant is

represented using logic 1 while absence of a spike is represented using logic 0. This data set is

stored as a set of ASCII files on an SD card which is interfaced to FPGA board. A set of 8 ASCII

characters represent the input spikes to 78 neurons in one time step.

Reservoir layer utilizing unsupervised STDP algorithm is trained using 20 iterations. It is ob-

served that the learning process saturates after 20 iterations and they are sufficient for obtaining

an optimal performance. Synaptic weights of reservoir layer obtained after 20 iterations are re-

tained during training of readout layer. Readout synapses are trained using 250 iterations under

different learning algorithms. Sparsification phase is carried out before readout training for 20 iter-

ations. Zero weight synapses obtained after 20 iterations are disabled before moving on to readout

training.

5.2 Classification performance

Classification performance is measured by determining the class of readout neuron which gen-

erated maximum number of spikes for given input pattern during testing phase. The spikes received

from each of the readout neurons at every time step are received by the ARM processor which keeps

a count of the spikes received so far from each neuron. Once a particular input class is completely

processed, class inferenced by neural network is determined by the class of neuron with maximum

activity. If this inferred class matches with the ground truth, it is counted as a success else a failure.

Five fold cross validation technique is used for training and testing the architecture developed.

In this technique, a given dataset is divided into five groups and the whole process of training and

testing is carried out five times. In each round, one group of data among 5 is used to test while
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remaining four groups are used for training. A different group of data is used for testing the learned

architecture in each round. Reported performance is an average achieved over all five rounds.Table

5.2 gives the classification performance of SNN processor employing different set of learning

rules on TI Speech Corpus data set with 10 bit synapses in the readout layer. Figure 5.1 shows

performance improvement achieved by different learning algorithms over baseline algorithm. In

Learning rule Performance
Fixed + Base Line 91.53 %
Unsupervised STDP + Base line 93.46 %
Fixed + CaL-S2TDP 94.23 %
Unsupervised STDP + CaL-S2TDP 95 %
Fixed+ CaL-S2TDP + CaS-S2TDP 91.92 %
Unsupervised STDP + CaL-S2TDP + CaS-S2TDP 93.84 %

Table 5.2: Classification performance with 10-bit readout synapses

Figure 5.1: Performance improvement of various learning algorithms over baseline

table 5.2, the term fixed indicates that the reservoir synapses are fixed to +1 for excitatory synapses

and -1 for inhibitory synapses. There are not trained using unsupervised STDP learning. Base line
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indicates non-STDP supervised algorithm. Unsupervised STDP is the proposed hardware friendly

algorithm as described in section 3. Sparsification achieved using CaS − S2TDP is about 25%.

From table 5.1, it can be observed that having supervised STDP in the readout layer and unsu-

pervised STDP in the reservoir improves classification accuracy compared to having only fixed or

unsupervised STDP in the reservoir. This performance benefits can be attributed to the tuning of

synaptic weights based on correlations captured between presynaptic and postsynaptic neurons in

both reservoir and readout layers. Hardware friendly unsupervised STDP over baseline provides

a performance boost of 1.93 %. This indicates that STDP algorithm and LSM architecture are

suitable for hardware implementation and provide good performance benefits in an optimally dis-

critized environment. Having only supervised STDP in the readout layer provides a performance

boost of 2.70 % over the base line. Turning the reservoir synapses plastic and training them using

unsupervised STDP improves classification performance further providing 3.47% improvement

over the base line. Upon the introduction of sparsification in the readout to improve energy effi-

ciency, classification accuracy comes down by 2.31 % for the case of fixed reservoir and 1.16 %

for the case of tunable reservoir. This decrease in performance can be attributed to reduction in

number of synapses in readout layer making the network to over see some features in the input

pattern. Given that performance degradation is not drastic, it can be concluded that these features

are not crucial and can be ignored for lower power consumption. However, sparsification with

fixed and tunable reservoirs provide higher performance compared to baseline processor. Having

higher performance compared to baseline in the presence of sparsification indicates that removing

synapes based on input patterns is more efficient compared to random removal of synapses.

Table 5.3 indicates classification performance of various learning algorithms with 8-bit synapses

in the readout layer. From the results obtained, it can be observed that having a low bit resolution

in the readout layer will have a degrading affect on the classification performance. It can also

be observed from the table supervised STDP with fixed reservoir provides slightly higher perfor-

mance compared to tunable reservoir. This can be attributed to the early saturation of weights in

the readout layer due to lower bit resolution with reservoir layer trying to capture more features in
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the input patterns through tuning of synapses using unsupervised STDP rule.

Learning rule Performance
Fixed + Base Line 88.48 %
Unsupervised STDP + Base line 89.32 %
Fixed + CaL-S2TDP 92.68 %
Unsupervised STDP + CaL-S2TDP 91.534 %
Fixed+ CaL-S2TDP + CaS-S2TDP 90.38 %
Unsupervised STDP + CaL-S2TDP + CaS-S2TDP 90.76 %

Table 5.3: Classification performance with 8-bit readout synapses

Classification performance of processor is also determined by increasing synaptic weight reso-

lution in readout layer to 16. However, it has been observed that the results are similar to processor

with 10 bit weight resolution indicating that 10 bit is an optimal choice in terms of both classifica-

tion performance and power consumption.

5.3 Hardware overhead

Tables 5.4-5.7 indicates hardware overhead involved in implementing each of the learning

rules. The reported hardware utilization is of LSM processor alone. It does not include AXI

FFs utilization 12694 (2.90%)
LUT Utilization 43975 (20.18%)
BRAM 13(2.38%)
IO 90(24.86%)

Table 5.4: Hardware overhead for fixed + baseline

interface as the hardware overhead contributed by this interface is negligible. From the tables it

can be observed that high performance of supervised STDP comes at a higher hardware overhead

compared to rest of the learning algorithms. This hardware overhead is attributed to the use of
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FFs utilization 12717 (2.91%)
LUT Utilization 45785 (20.95%)
BRAM 13(2.38%)
IO 90(24.86%)

Table 5.5: Hardware overhead for unsupervised STDP + baseline

FFs utilization 19841 (4.54%)
LUT Utilization 57581 (26.34%)
BRAM 13(2.38%)
IO 90(24.86%)

Table 5.6: Hardware overhead for unsupervised STDP + CaL-S2TDP

FFs utilization 19844 (4.54%)
LUT Utilization 57788 (26.43%)
BRAM 13(2.38%)
IO 90(24.86%)

Table 5.7: Hardware overhead for unsupervised STDP + CaL-S2TDP + CaS-S2TDP

additional registers in the readout layer to compute spike timing difference for supervised STDP.

The time window in the reservoir layer is set to 3 while that of read out has a time window of 12

to achieve reasonable performance gains. The depth of a shift register is equal to the time window

and as there is a full connectivity between reservoir and readout neurons, the number of flip flops

utilized is also higher in case of supervised STDP. These hardware overheads are not very high and

are affordable for the performance gains achieved. Introduction of sparsification during learning

reduces power consumption and also the increase in hardware overhead is very small. As the

performance degradation is not very high, supervised STDP with sparsification provides a energy

efficient solution to the development of spiking neural network architectures. Hardware utilization

is only reported for 10 bit synaptic weight architecture in readout neurons as this architecture

delivers good performance compared to and eight bit architecture.
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5.4 Power Consumption

Tables 5.8 and 5.9 show dynamic power consumption for different learning algorithms for

10-bit an 8-bit readout synapse resolutions during training phase. These values are estimated

using Xilinx Power Analyzer given activity based simulation results. The clock frequency used for

calculating power is 100MHz consistent with the frequency of operation. From the tables it can

be observed that training the processor with both unsupervised STDP in reservoir and supervised

STDP in readout layer consumes highest amount of power compared to other learning mechanisms.

Introduction of sparsification into this learning scheme reduces power consumption during training

to 229mW from 237mW. This increase in power consumption is due to use of additional shift

registers to train readout synapses using supervised STDP. However, use of sparsification reduces

power consumption due to an increase in the number of inactive synapses that needs to be trained.

This value includes some additional power consumed during sparsification of readout synapses. As

logic elements are shared during sparsification and learning phases, power gains are achieved with

the proposed architectural scheme. Lower power consumption values for 8-bit readout synapses

are attributed to less number of flip flops needed to implement 8-bit shift registers in comparison

to 10-bit shift registers. This reduces the number of bit toggling events leading to lower power

consumption compared to 10 bit resolution of readout synapses.

Architecture Power(mW)
Fixed + Base Line 181
Unsupervised STDP + Base line 195
Fixed + CaL-S2TDP 210
Unsupervised STDP + CaL-S2TDP 237
Fixed+ CaL-S2TDP + CaS-S2TDP 195
Unsupervised STDP +CaL-S2TDP + CaS-S2TDP 229

Table 5.8: Dynamic Power Consumption with 10 bit readout synapses
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Arhitecture Power(mW)
Fixed + Base Line 140
Unsupervised STDP + Base line 185
Fixed + CaL-S2TDP 193
Unsupervised STDP + CaL-S2TDP 220
Fixed+CaL-S2TDP + CaS-S2TDP 151
Unsupervised STDP + CaL-S2TDP + CaS-S2TDP 212

Table 5.9: Dynamic Power Consumption with 8 bit readout synapses

5.5 Conclusions

In this research, a hardware architecture with on chip learning capability is developed for im-

plementing a spiking neural network processor. An efficient hardware platform using Xilinx Zynq

ZC-706 FPGA is built to deploy neural network processor. Hardware friendly learning mechanism

based on spike timing dependent learning plasticity is introduced. Supervised STDP for training

readout synapses along with sparsification of readout synapses to achieve an energy efficient pro-

cessor are incorporated into the processor architecture. Developed hardware is trained and tested

using TI Speech Corpus dataset and performance of 95% is achieved without sparsification. It has

been shown that sparsifying readout synapses using input features gives a reasonable performance

with energy benefits and minimal hardware overhead.
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