
RESIDUAL AND GOAL-ORIENTED H- AND HP -ADAPTIVE FINITE ELEMENT;

APPLICATION FOR ELLIPTIC AND SADDLE POINT PROBLEMS

A Dissertation

by

AREZOU GHESMATI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Wolfgang Bangerth
Committee Members, Jean-Luc Guermond

Andrea Bonito
Jean C. Ragusa

Head of Department, Emil J. Straube

May 2018

Major Subject: Mathematics

Copyright 2018 Arezou Ghesmati

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/187127711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

We propose and implement an automatic hp-adaptive refinement algorithm for the Stokes

model problem. In this work, the strategy is based on the earlier work done by Dörfler at al.

in 2007 for the Poisson problem. Similar to any other adaptivity approach, an a posteriori estima-

tor is needed to control the error in areas with high residuals. We define a family of residual-based

estimators ηα, α ∈ [0, 1] for the hp-adaptive finite element approximation of the exact solution.

Moreover, we show the reliability and efficiency of the estimators ηα. Finally, numerical examples

illustrate the exponential convergence rate of the hp-AFEM in comparison with the h-AFEM.

In many applications, such as analysis of fluid flows in our case, we are not interested in com-

puting the solution itself, but instead the aim is finding a good approximation for some functional

of interest. In these cases, the idea is to develop some a posteriori error estimates to generate a se-

quence of h- or hp-adaptive grids that minimize the error in our goal functional with respect to the

problem size. In this work, we apply local averaging interpolation operators such as Scott-Zhang

and Clément type operators to formulate the dual weight of our proposed goal-oriented error es-

timator. This idea was recently used in an application to the Poisson problem. We extend those

results to saddle-point problems and provide a dual-weighted goal estimator for each cell. The reli-

ability of the goal estimator is proved and numerical examples demonstrate the performance of the

locally defined dual-weighted goal-estimator in terms of reliability, efficiency, and convergence.

Another important aspect of this research is providing a goal-oriented adaptive finite element

method for symmetric second-order linear elliptic problems. We prove that the product of primal

and dual estimators, which is a reliable upper bound for the error in the goal functional, decays at

the optimal rate. The results reported in the numerical experiments confirm the quasi-optimality

behavior of our goal-oriented algorithm.
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1. INTRODUCTION

1.1 Motivation and background

We consider the Stokes equations as an example of saddle point problems. The Stokes flow

models the motion of fluid when the inertia effects can be neglected. We assume the fluid is

incompressible and give the formulation for the stationary flow. Given f ∈ L2(Ω)2 , ν > 0, the

momentum and the mass equations are formulated as follows: Find velocity, u : Ω → R2, and

pressure, ϱ : Ω → R, such that

−2ν∇ · ε(u) +∇ϱ = f in Ω

−∇ · u = 0 in Ω

u = 0 on Γ.

(1.1)

Where we define the symmetric gradient as ε(u) = 1
2
[(∇u)+(∇u)T ]. The main technical difficulty

in dealing with the Stokes problem is that unlike linear elliptic problems it does not satisfy the co-

ercivity property and is not a definite problem. The pressure can be seen as the Lagrange multiplier

associated with the constraint on the velocity. As a quick note on discretization, the velocity and

pressure as two dependent variables with different roles leads us to formulate these equations into

a category of finite element method, namely the mixed finite elements approximations. Therefore,

in creating the weak formulation for the mixed finite element method, the corresponding spaces

are the Cartesian products of the appropriate Sobolev spaces associated with the velocity and the

pressure variables. In chapter 2, we will discuss on the necessary and sufficient condition, namely

the inf-sup condition, to ensure the mixed finite element formulation is well-posed.

In the previous application of adaptive finite element methods for the Stokes equations in the

deal.ii library, the error estimator has been defined by applying the so-called Kelly error estimator

1



to the velocity. In this method, one computes the error estimator ηK for cell K as:

η2K :=
∑

e∈E(K)

Ce

∥∥∥∥[∂uFE

∂nK

]∥∥∥∥2
e

.

The problem with this method is that even though it gives good hints for the mesh refinement,

the error estimator is not to be trusted. For example, in using higher order polynomial spaces,

the estimator computed here tends to zero even faster than the actual error itself. Therefore, we

consider the need to define a residual based estimator containing both cell and jumped residuals.

While investigation through references related to a posteriori error estimator, and learning about

exponential convergence rate using the hp-AFEM, the article by Melenk et al. [2] inspired us

to define a residual based a posteriori error estimator in conforming hp-AFEM for the Stokes

problem:

η2K := η2K;R + η2K;B,

where ηK;R denotes the cell residual-based term and ηK;B indicates the jump-based term. In Chap-

ter 3, we introduce hp-residual-based error estimator for the Stokes equations in the context of

conforming finite elements. We also prove the most important property of a posteriori estimators

– the reliability and the efficiency – for a family of weighted error estimators ηα, α ∈ [0, 1]. The

numerical results reported in that chapter verify the capability of our hp-estimator and also the

exponential decay rate of the energy error and error estimator is observed in our test cases.

Meanwhile, working on the aforementioned residual estimator, we use the proposed hp residual-

based a posteriori error estimator to define a new local dual-weighted h- and hp-goal-oriented es-

timator for the Stokes equations. It is important to mention that in many real world applications,

such as working on fluid structure iterations, the primary goal is not finding the solution to a prob-

lem in every single point. Most of the time, the main aim is being able to recover stresses or forces

with high accuracy in some specific sub-areas of the problem domain. When this is the goal of

interest, then applying uniform refinement or traditional adaptive strategies using the energy error

estimator may not be effective enough to achieve high accuracy in that quantity of interest. In
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2015, Bürg and Nazarov in [1] defined a new reliable and efficient goal-oriented estimator for the

Poisson equation, and in their numerical examples they showed the optimality in decay rate in

the goal-oriented mesh refinement procedure. Based on this work, we define a new goal oriented

dual-weighted error estimator for the Stokes model problem. For each cell K, we consider the cor-

responding patch cells ωK , and then apply Clément and Scott-Zhang type interpolation operators

on ωk to get the dual-weight in our goal-oriented estimator definition. The details of the proof of

the reliability and efficiency of the goal-oriented estimator are given in Chapter 4. In this study,

we tried to obtain close to optimal meshes to calculate the specified quantity of interest. In the

benchmark numerical examples, the exponential convergence rate for the goal-oriented hp-AFEM

is presented. The optimal error decay rate, as is expected for (u, z) ∈ As × At is achieved in

our numerical test cases which were close to O(DOFs+t). Where As and At are the standard ap-

proximation classes, and DOF presents the number of degrees of freedom. In our attempt to prove

optimal decay rate in the error of goal-functional, we consider class of general second-order elliptic

problems, and propose a goal-oriented marking strategy that will be described in Chapter 5. In the

spirit of Feischl et al. [3], we prove our primal and dual estimators satisfy the well-known axioms

of adaptivity that were first introduced in 2008 by Cascon et al. [4] and then enhanced in 2014 by

Carstensen et al. [5]. As our main result in this chapter, we prove the product of primal and dual

estimator, which is a reliable upper bound for error in the goal functional, decays in optimal rate

as a function of number of degrees of freedom. Our numerical test cases validate our analytical

discussion and the corresponding plots visualize the aforementioned results. Finally we conclude

and summarize our findings of these three studies in Chapter 6.

1.2 Overview on related work on adaptivity and objectives

Adaptive approaches for the numerical solution of PDEs are now standard tools in both science

and engineering of phenomena modeled by PDEs. The idea of adaptivity goes back to the history

of enhancements of the solution for PDEs by the classical finite element method. In that approach,

if the accuracy of the approximated finite element solution did not satisfy a pre-defined tolerance,

then the whole triangulation was refined to smaller cells. In 1970, Babǔska [6] showed that the
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existence of singularities such as singularity at corners of the boundary has great influence on the

convergence rate of finite element methods. It was shown that proper local refinement of the finite

element mesh near the singular part of the domain leads to the expected convergence rate. Based

on this, the h-adaptive finite element method was born. By developing the idea of a posteriori

error estimation, its application extended to a wide variety of model problems [7, 8]. Babuška

in [9] showed that the p-version of the finite element method is another approach to increase the

accuracy of the finite element solution. In 1981, Babǔska et al. [10] showed the approximation

order depends on the both mesh size h and its element degrees p, and they introduced the idea of

combining h and p versions of the finite element method. It was shown that the hp-adaptive FEM

can achieve exponential rates of convergence with respect to the number of degrees of freedom

[11, 12, 13, 14].

Continuing the idea of adaptivity, now the question is how to identify the corresponding re-

gions to be refined such that the overall accuracy remains optimal. To answer this question, the

concept of a posteriori error estimation came into play [15]. Most of the time, a priori estimators

require regularity properties of the solution, which are not satisfied in the presence of singulari-

ties, and provide information on the asymptotic behavior of the error and do not help us estimate

the concrete error on the current mesh. Therefore, the need for error indicators, which can be

extracted a posteriori from the data and the approximate solution, was considered. By defining

such an estimator, an adaptive algorithm can be designed for the h and p-adaptive finite element

method by refining the cells where the a posteriori estimated error is large. In the hp-AFEM,

however, a single error estimate cannot simultaneously determine whether it is better to do the

refinement by h or p. Several strategies for making this determination have been proposed over

the years. In [16, 17] the idea of testing the smoothness of the solution is investigated, in [18, 19]

the global interpolation error is minimized, and in [20, 21, 22] local boundary value problems are

solved. Historically, despite uniform refinement in FEM and its well-understood analysis using a

priori error estimators, adaptive FEMs were used for more than three decades without being sure

whether those methods converge and if so, do they converge at the optimal rate or not. The lack
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of understanding in convergence analysis of AFEMs could be due to the fact that compared with

standard FEM and the role of a priori estimates in there, the tools required to apply the convergence

analysis in AFEMs are different and were not well-understood at the time. The adaptivity analysis

started with the work by Dörfler [23] in 1996, where he introduced a crucial bulk marking criterion

and also proved error reduction for the Poisson equation. A few years later, Morin, Nochetto, and

Siebert in [24, 25] introduced the concept of data oscillation and the interior property, and they

proved the convergence of AFEM. Binev et al., in 2004 [26], proved a quasi-optimal convergence

rates for the AFEMs. In 2005, Mekchay and Nochetto [27] introduced the concept of total error

and gave convergence analysis for second order elliptic problems. The proof of contraction for the

total error was another major result in that paper. Stevenson in 2007 [28], constructed an AFEM

for more applicable and realistic elliptic PDEs with optimal convergence rate. Cascon, Kreuzer,

Nochetto, and Siebert [4], inspired by Morin’s work [29] on the convergence analysis of AFEMs,

provide a very comprehensive convergence analysis for linear and symmetric elliptic problems.

Later on, because of its generality, the framework was applied to other problems and adaptive re-

finement methods. It is remarkable that in all the aforementioned results on the analysis of optimal

rate for AFEM, the refinement algorithm is designed based on estimating the energy error. We also

can refer to the book by Bangerth and Rannacher [30] and the article [31] as a good survey for

adaptive finite element methods.

In our study of the analysis of AFEMs, we are more interested in the analysis of convergence

rate in goal-oriented AFEMs, where the error estimator is not defined for the energy error, but

instead is specified so as to control the error in the quantity of interest. As some early works on

the goal-oriented AFEM, we can mention to [32, 33, 34, 35, 30, 36]. Even though some of these

works address to the analysis of convergence, but none of them provide any proof on that regard.

As some early discussions on the optimal convergence rate in the concept of goal-oriented we can

mention [37]. Moon et al. in [38] imposed strong regularity assumption on the solution of primal

and dual problem and then proved the convergence and optimality of the dual-weighted adaptive

algorithm. In 2009, Mommer and Stevenson [39] proved the convergence and the optimality in
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the context of their proposed goal-oriented refinement algorithm for the Poisson equation. In

their approach, at each refinement cycle, the Dörfler marking is applied for both primal and dual

estimators separately and then between these two marked sets they choose the one with the smallest

cardinality. The drawback of this goal-oriented refinement algorithm is that even though the decay

rate of goal-error in this algorithm has been proven to be quasi-optimal, due to the fact that at each

iteration step the error reduction happens by either the primal or dual estimator, this leads to slow

convergence. The weighted marking algorithm for the goal-oriented AFEM by Becker et al. in

2011 [40], overcomes the issue described in Mommer and Stevenson’s work while retaining the

quasi-optimality. The most recent and interesting article in this regard is the one by Feischl et al.

[3]. In this work, inspired by the comprehensive paper on axioms of adaptivity [5], they proved

the optimal decay rate for the product of primal and dual estimators in the Mommer-Stevenson

marking strategy, and showed their convergence proof extends beyond just the Poisson equation

and is applicable for any general second order elliptic PDEs. Moreover, in this recent study on

the general second order linear elliptic PDEs, Feischl et al. proved the quasi-optimality in the

estimators’ product for the weighted marking proposed by Becker et al. in [40].
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2. PRELIMINARIES

In this chapter, we will introduce function spaces that play a significant role in the theory of

finite element approximation. Then we will describe the most important concepts, namely the

finite element spaces and also the approximation spaces needed in the analysis of finite element

methods. We also discuss interpolation operators for adaptive methods, mainly for the hp-AFEM

which map functions from the L2 and H1 spaces into the corresponding discrete finite element

spaces.

2.1 Function spaces

In this section we start with recalling the Lebesgue space, that plays a significant role in the

weak or variational formulation of differential equations. We refer the interested readers for the

extended view and definitions in this regard to the book by Rudin [41].

2.1.1 The Lebesgue integration theory

Lebesgue integration theory implies for any real-valued function u : Ω −→ R, whereΩ ∈

Rd, d ∈ N, the Lebesgue space Lp(Ω), p ∈ [1,∞] is given as

Lp(Ω) := {u : ∥u∥Lp(Ω) <∞},

such that the norm for p ∈ [1,∞) is defined

∥u∥Lp(Ω) :=

(∫
Ω

|u|p
) 1

p

and for the case p = ∞ is

∥u∥L∞(Ω) := sup
x∈Ω

|u(x)|.

Below we mention some well-known inequalities that are widely used for functions in these spaces

and so we do further on in the next chapters. The first one is the triangle inequality for Lp spaces
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reads as follows:

Lemma 2.1.1 (Minkowski’s Inequality). For u, v ∈ LP (Ω) and p ∈ [1,∞] we have

∥u+ v∥Lp(Ω) 6 ∥u∥Lp(Ω) + ∥v∥Lp(Ω).

The next inequality which has significant application in the analysis of functions in Sobolev

space is the Hölder inequality, which was introduced by Hölder in 1889.

Lemma 2.1.2 (Hölder Inequality}). Let u ∈ Lp(Ω) and v ∈ Lq(Ω), for p, q ∈ [1,∞], 1
p
+ 1

q
= 1 .

Then uv ∈ L1(Ω) such that

∥uv∥L1(Ω) 6 ∥u∥Lp(Ω)∥v∥Lq(Ω),

for the special case when p = q = 2, this inequality is called the Cauchy-Schwarz inequality.

2.1.2 The Sobolev spaces

Including weak derivatives into the definition of Lebesgue norm and Lebesgue spaces we

present the standard Sobolev spaces Hα, for α > 0. It should be noted that the L2 spaces are

the foundation of finite element analysis and the Hα spaces are subspaces of L2 space with some

additional regularity properties. Moreover, the boundary condition notations is associated with

these spaces. To start, we give the definition of weak derivatives which are significant in the theory

of Sobolev spaces [42]:

Definition 2.1.3 (Weak Derivative). Let u ∈ L1
loc(Ω) and n ∈ Nd

0, where d is the space dimension.

Then the weak derivative ∂nu is defined

∫
Ω

∂nuv = (−1)|n|
∫
Ω

dnv

dxn
u, ∀v ∈ C∞

c (Ω).

The standard Sobolev space Hα for α > 0 and u ∈ L2(Ω) is given as

Hα(Ω) := {u ∈ L2(Ω) : ∥u∥Hα(Ω) <∞}
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where

∥u∥Hα(Ω) :=

{ ∑
|k|16α

∥∂ku∥2L2(Ω) +
∑

|k|1=α

∫
Ω

∫
Ω

|∂ku(x)− ∂ku(y)|
|x− y|d+2(α−⌊α⌋) dxdy

} 1
2

.

2.1.3 Basic concepts of finite element spaces

In this section we define the finite element space which we mainly use in the next chapters, the

H1 conforming spaces.

Definition 2.1.4 (H1-Conforming Finite Element Spaces). TheH1-conforming finite elements that

are often called continuous Galerkin finite elements provide continuity across cell boundaries.

All the basic notions to construct meshes, approximation spaces, and introducing the shape

functions as the basis for the polynomial space can be found in [43, 42, 44, 45, 46, 11].

2.2 Stokes model problem and basic assumptions

Let Ω ∈ R2 be an open and connected domain with smooth boundary Γ such that it satisfies a

Lipschitz condition. u(x) is the velocity and ϱ(x) be the pressure of the fluid at some point x ∈ Ω,

respectively. Given body force f ∈ L2(Ω)2 and the constant viscosity parameter ν > 0, consider

stationary incompressible fluid flows as our model problem: For the Stokes equations as described

below we are interested in finding u : Ω → R2 and ϱ : Ω → R such that

−ν∆u+∇ϱ = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on Γ.

(2.1)

Since similar results are valid for other type of boundary conditions, here we made the choice of

homogeneous boundary condition for the ease of presentation. As shown here, we impose the no

slip boundary condition on the velocity field, and to ensure uniqueness of solution, we apply the

vanishing mean for pressure field such that
∫
Ω
ϱ = 0. Because the solution of Stokes, namely
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the velocity and pressure have different regularity properties, we will approximate them in two

different finite element spaces.

We denote the standard Sobolev spaces by Hm(Ω) for m ∈ N0. In particular, the norm and the

scalar product of L2(Ω) = H0(Ω) are denoted by ∥ · ∥Ω and (·, ·)Ω, respectively. To account for

homogeneous Dirichlet boundary conditions, we set

H1
0 (Ω) := {v ∈ H1(Ω) : φ = 0 on Γ}.

Further, we denote the space containing all functions from L2(Ω) with zero mean value by

L2
0(Ω) := {v ∈ L2(Ω) : (φ, 1)Ω = 0}

and define

H(Ω) := H1
0 (Ω)

2 × L2
0(Ω).

Then, we introduce the bilinear form L : H(Ω)×H(Ω) → R by

L([u, ϱ]; [v, q]) := (ν∇u,∇v)Ω − (ϱ,∇ · v)Ω − (∇ · u, q)Ω. (2.2)

The standard weak formulation of problem (2.1) is: Seek [u, ϱ] ∈ H such that

L([u, ϱ]; [v, q]) = (f, v)Ω ∀[v, q] ∈ H(Ω). (2.3)

Due to the continuous inf-sup condition

inf
[u,ϱ]∈H

sup
[v,q]∈H

L([u, ϱ]; [v, q])
(∥∇u∥Ω + ∥ϱ∥Ω) (∥∇v∥Ω + ∥q∥Ω)

≥ κ > 0,

where κ is the inf-sup constant depending only on Ω, the weak problem is well-posed and has a

unique solution, see [47] and [48] for more details on the solution of the Stokes equations. Now,
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assume T = {K} is a triangulation of domain Ω. For each element K, we associate an element

map TK : K̂ → K where K ∈ T is the image of the reference element K̂ where K̂ = [0, 1]2.

Further, we define the mesh size vector h := (hK)K∈T , where hK := diam(K). With each

element K ∈ T , we associate a polynomial degree pK ∈ N and collect them in a polynomial

degree vector p := (pK)K∈T . Throughout this work, we assume that the discretization (T , p) of Ω

is (γh, γp)-regular [11].

Definition 2.2.1 ((γh, γp)-Regularity). A sequence of meshes (T , p) is called (γh, γp)-regular if

and only if there exist constants γh, γp > 0 such that for all K,K ′ ∈ T with K ∩K ′ ̸= ∅ it holds

γ−1
h hK ≤ hK′ ≤ γhhK (2.4)

and

γ−1
p pK ≤ p′K ≤ γppK . (2.5)

The aforementioned regularity implies the element sizes and also the polynomial degrees of

neighboring elements are comparable for every mesh in the sequence.

To define the discrete solution space, for arbitrary elementK ∈ T we denote F(K) as the set of all

interior faces of cellK. Then, hf := diam(f) is the diameter of face f ∈ F(K) and its polynomial

degree pf is given by pf := min {pK , pK′} for K,K ′ ∈ T with f = K ∩K ′. Further, the problem

is discretized by the standard (pk, pk−1) Taylor-Hood finite element. The corresponding spaces for

velocity and pressure are as follows,

V p
u (T )2 :=

{
u ∈ H1

0 (Ω)
2 : u|K ◦ TK ∈ Q2

pK

(
K̂
)

for all K ∈ T
}
, (2.6)

and

V p
ϱ (T ) :=

{
ϱ ∈ L2

0(Ω) : ϱ|K ◦ TK ∈ QpK−1

(
K̂
)

for all K ∈ T
}
. (2.7)

Here, Qr is the tensor-product polynomial space of complete degree at most r ∈ N0 defined on
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the quadrilateral reference cell K̂,

Qr = span
{ 2∏

i=1

xji , 0 ≤ j ≤ r

}
. (2.8)

To simplify notations, we set

Vp(T ) := V p
u (T )2 × V p

ϱ (T ) ⊆ H(Ω). (2.9)

Then, the discrete approximation to (2.3) consists of seeking [uFE, ϱFE] ∈ Vp(T ) such that

L ([uFE, ϱFE] ; [vFE, qFE]) = (f, vFE)Ω ∀ [vFE, qFE] ∈ Vp(T ). (2.10)

From [49], due to using stable Taylor-Hood finite elements, the discrete space satisfies the Babuska-

Brezzi condition, which implies that the following discrete inf-sup inequality holds

inf
[uh,ϱh]∈H

sup
[vh,qh]∈H

L([uh, ϱh]; [vh, qh])
(∥∇uh∥+ ∥ϱh∥) (∥∇vh∥+ ∥qh∥)

≥ κd > 0,

where the constant κd is independent of cell size h and polynomial degree p. It also can be shown

that the following Galerkin orthogonality holds:

Lemma 2.2.2 (Galerkin Orthogonality). Let [u, ϱ] ∈ H be the solution of (2.3) and [uFE, ϱFE] ∈

Vp(T ) be the solution of (2.10). Then, the following holds

L ([u− uFE, ϱ− ϱFE] ; [vFE, qFE]) = 0 ∀ [vFE, qFE] ∈ Vp(T ). (2.11)

2.2.1 Interpolation

The approximability property or the the interpolation capability of the finite elements is one

of the main factors in the efficiency of the finite element method. In this section we discuss some

interpolation operators used in the analysis of our h and hp- adaptive finite element method. Essen-
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tially, the interpolation operators map the continuous space, in our application the H1-conforming,

into the corresponding space of continuous Galerkin finite elements. The different mapping meth-

ods between the continuous and the discrete space produce different interpolation methods. In

some situations that functions are not regular enough to be in the domain of nodal-based or the

Lagrange interpolation operator, the local averaging operators such as Clément or Scott-Zhang

type of interpolation operators introduced [50, 51] are applicable; for example when interpolat-

ing discontinuous functions in H1(Ω) or L2(Ω)-conforming for Ω ∈ Rd, d > 2. Moreover, in

[52, 53] the projection-based interpolations introduced, where some local minimization problems

are solved to evaluate the function in degrees of freedom. In our work, we limit ourself to just the

H1-conforming interpolation operators.

2.2.1.1 H1-conforming finite element interpolation

A Clément-type interpolation is a H1-conforming interpolation operator which replaces the

point evaluation of the interpolated function by some local average [50]. This procedure does not

require the extra regularity of the point evaluation, and is consequently well-defined for functions

from the space H1(Ω). In [51], this interpolation operator was modified in such a way that it

also preserves polynomial boundary conditions. In [54], Melenk extended this H1-conforming

interpolation to the context of hp-adaptive finite element spaces. In our definition of hp-Clément

interpolation operators, we consider T as a (γh, γp)-regular triangulation of Rd, such that T |Ω

is a triangulation of Ω. Moreover, we require our triangulation be compatible with the Dirichlet

boundary ΓD, so that we can represent the collection of all faces of T as ∪K∈T ∂K ∩ Γ̄D. For some

arbitrary cell K ∈ T and for all faces f ∈ F(K) we define the patch sets

ωK :=
∪

{K ∪ L ∈ T : K and L share a common edge}, (2.12)

ωf :=
∪

{K̃ ∪K ∈ T ; such thatK ∩ K̃ = f ;where f is a face of K}. (2.13)

The following result from [2], gives us an estimate for the interpolation error in terms of the

gradient of the interpolated function.
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Theorem 2.2.3 (H1-Conforming Interpolation). Let T be (γh, γp)-regular sequence of meshes and

K ∈ T be arbitrary. Then, there exists a bounded linear operator Πhp : H1
0 (Ω)

2 → Vp(T ), and a

constant C > 0 independent of mesh size h and polynomial degree p such that,

∥∥u− Πhpu
∥∥
K
≤ C

hK
pK

∥∇u∥ωK
(2.14)

and ∥∥u− Πhpu
∥∥
f
≤ C

√
hf
pf

∥∇u∥ωf
(2.15)

for all u ∈ H1
0 (Ω) and all f ∈ F(K).

Proof. Following the lines of [11], one can find proofs for 2D in [54, Theorem 3.3], and for 3D in

[55, Theorem 2].

Remark 2.2.4. If the polynomial degrees are fixed, then the above results on H1-conforming finite

elements stay valid for the h-adaptive finite element, as well.

2.2.2 Auxiliary notations and results

We provide some auxiliary results that we use later in this work. Now, we want to present

some polynomial smoothing estimates, which are widely used in the error estimator analysis of

many numerical methods for partial differential equations and integral equations [56, 2]. Here we

require them in proving the upper and the lower bounds of our error estimator.

We define the smoothing weight functions ΦK : K ⊂ R2 → R+ and Φωf
: ωf ⊂ R2 → R+ by

ΦK(x) :=
1

hK
dist (x, ∂K) (2.16)

and

Φωf
(x) :=

1

diam(ωf )
dist(x, ∂ωf ), (2.17)

Lemma 2.2.5. Let δ ∈ [0, 1], a, b ∈ R such that −1 ≤ a ≤ b, and consider ΦK as the smoothing

function given in (2.16). Then, for any πp ∈ Qp (K), there exists some constantC > 0 independent
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of mesh size vector h and polynomial vector p ∈ N such that

∥πp (ΦK)
a ∥L2(K) ≤ C(a, b)p(b−a)∥πp (ΦK)

b ∥L2(K) (2.18)

and

∥∇πp (ΦK)
δ ∥L2(K) ≤

C(δ)p(2−δ)

hK
∥πp (ΦK)

δ
2 ∥L2(K) (2.19)

Proof. The proofs of these estimates for one-dimensional case on the reference cell K̂ are given in

[56, Lemmas 4, 5]. Following the lines of [2, Lemma 2.5], applying a map from reference cell K̂

to the cell K, and using (γh, γp)-regularity assumptions (2.4) and (2.5) we find the desired results

for the two and three dimension cases.

The next lemma gives some results for the extension of a polynomial from an edge to a domain.

These estimates are used in the efficiency analysis of our error estimator.

Lemma 2.2.6. Let f ∈ ∂K be a face of cell K ∈ T , Φωf
be the smoothing function from (2.17)

and α ∈
(
1
2
, 1
)
. Then, for any πpf ∈ Qp (f) from (2.8) and every δ ∈ (0, 1], there exists some

extension vf ∈ H1
0 (ωf ) and constants Ctr > 0 and Cinv > 0 independent of mesh size vector h,

and polynomial degree vector p ∈ N such that:

(i) v|f = πpΦ
α
f ;

(ii) ∥vf∥2ωf
≤ Ctr

hf

p2
∥πpΦα

f ∥2f ;

(iii) ∥∇vf∥2ωf
≤ Cinv

(p2(2−α)+δ−1)
hf

∥∥πpϕα
f

∥∥2
f

Proof. See [2, Lemma 2.6].
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3. A RESIDUAL BASED A POSTERIORI ERROR ESTIMATOR IN HP -AFEM FOR THE

STOKES EQUATION

3.1 Introduction

h-adaptive finite element methods in which the mesh size is adjusted to resolve features of the

solution, have been known to be efficient tools for solving partial differential equations since the

late 1970s [7, 8]. The development of practical and efficient estimators of the local error over the

past 25 years [57, 30, 15] has made them a standard tool in the finite element analysis of many

equations.

On the other hand, the p or hp versions of adaptive finite element methods – in which one

adjusts either the polynomial degree of the approximation on every cell, or both the polyno-

mial degree and the mesh size – has seen much less practical attention. Originally, introduced

in [10, 9, 58], it is known that the hp-adaptive FEM can achieve exponential rates of convergence

with respect to the number of degrees of freedom [59, 60, 14, 12, 13, 11]. However, it is technically

much more complicated to derive reliable and efficient estimates of the error for hp approxima-

tions. Furthermore, even if estimates for the error on each cell are available, one is faced with the

decision whether increasing the polynomial degree p of the approximation or reducing the mesh

size h is more likely to reduce the error, measured with regard to the computational cost of the

two possible resulting meshes (e.g., see [20, 21, 18, 16, 22, 19, 17]). Finally, the implementation

of algorithms and data structures for conforming hp finite element methods is complex in practice

[61].

Because of these difficulties, much less is known about efficient ways to derive hp adaptive

finite element methods. Moreover, despite its known superiority in terms of computational effi-

ciency, its practical impact has not been add profound as h-adaptive refinements. In particular,

published theoretical considerations of error estimates and optimality of refinement strategies are

largely confined to the Laplace equation.
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In this contribution, we advance the state of the art by deriving residual-based a posteriori esti-

mates for conforming hp discretization of the Stokes equation. This work is inspired by previous

work for the Laplace equation [21, 62, 2]. However, it has to address the key difficulty of the Stokes

equation that the solution is not the unconstrained minimizer of an energy. Therefore, the Stokes

operator is not positive definite, so that working with it is not as straightforward as for example the

elliptic operators with their implied coercivity condition.

In particular, we present the following results:

• We derive estimates for the error between the finite-dimensional hp approximation and the

continuous solution of the Stokes equation.

• As in similar approaches for the Laplace equation, it is not easily possible to show that

these estimates are reliable and efficient, i.e., that the true error is bounded from above and

below by our estimator up to a constant that does not depend on h or p. This is so because

the inverse estimates that are used to derive reliability and efficiency statements typically

involve the polynomial degree p. To overcome this deficiency, we instead introduce a whole

family of estimates ηα parameterized by an index α ∈ [0, 1]. For a fixed α, we can not

show that an estimator is both efficient and reliable; on the other hand, we can show that for

some members of this family, either one or the other property hold. We demonstrate through

numerical experiments that the estimator η0 is, in practice, both reliable and efficient.

• Based on the idea proposed for 1D problems in [23], we devise a strategy to mark cells for

either h or p refinement based on criteria for a systematic reduction of the error.

• Although we make no claims about the optimality of this strategy – i.e., we can not prove

that among all strategies it leads to the greatest error reduction – we show numerical results

that suggest that the strategy can achieve the desired exponential convergence rate for the

hp-adaptive refinement.

To the best of our knowledge, none of these properties have previously been derived or demon-

strated for the Stokes equation using continuous hp- adaptive finite element method.
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3.1.1 Outline

The remainder of this chapter is organized as follows. First in section 3.2 the required defini-

tions and corresponding literature review on the error estimator is given. Residual-based a poste-

riori error estimator and its analysis on the proof of reliability and efficiency is presented in 3.2.3.

The hp-adaptive refinement algorithm and the related discussion on h- or p-marking criterion is

given in section 3.3. Finally section 3.4 contains the numerical results to illustrate the performance

of our hp-estimator.

3.2 Error estimation

3.2.1 A priori error estimation

Since the inception of theoretical study of finite element methods in the late 1960’s and early

1970’s a priori estimators have been studied and established for a wide range of problems and

methods. A priori error estimates give estimation of the finite element error in terms of the un-

known solution u and the mesh parameter h or p. A very standard information that one can get

from a priori error estimates is the expected convergence rate for solutions that are regular enough

on a smooth domain, for example

∥u− uh∥H1
0 (Ω) 6 C hr|u|Hr+1(Ω).

3.2.2 A posteriori error estimation

The idea behind a posteriori error estimation is to assess the error between the exact solution, in

our case for the Stokes problem, [u, ϱ] ∈ H and its finite element approximation [uFE, ϱFE] ∈ Vp(T )

only in terms of known quantities [63, 46, 64], such as problem data, the approximate solution,

mesh, and the finite element space. As an early study of a posteriori error estimation we can men-

tion to the work by Babuska and Rheinboldt [7]. Many innovations and improvements occurred in

this regard over the years. Meanwhile, the adaptivity based on the a posteriori error estimation was

developed by Babuska and Vogelius [65], where they provided a convergence analysis of adaptive
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FEM for one-dimensional problems. The article by Dörfler in 1996 [23] was one of the major

works by that time to reveal and present the most critical ideas for the rigorous study of adaptive

finite element method. In 2004, Binev, Dahmen, and Devore [26], starting from ideas of nonlinear

approximation theory, provide a very fundamental notion on the concept of optimality in adaptive

finite element method. There is a variety of methods proposed to a posteriori estimating of the

energy error. Here we name the most frequent useful ones. Explicit estimators [66, 67, 68], only

require the evaluation of an explicit formula involving the approximate solution. Another type of

a posteriori error estimator is the implicit error estimators [69, 70, 7] that require some auxiliary

boundary value problems be solved. To formulate the equilibrated a posteriori error estimators we

need to solve the adjoint of the problem [71, 72]. These are the major types of a posteriori error

estimators for the energy error. Of course for the case that some specific physical quantity is of

interest, then one can estimate and refine based on those quantities of interest, not just the energy

error [36, 73, 74, 33]. It should be noted that all a posteriori error estimators can be formulated

for the hp-adaptive refinement methods. However, for our hp-AFEM algorithm we stick with the

explicit hp-residual based a posteriori error estimation.

Definition 3.2.1 (A Posteriori Error Estimator). A functional η (uFE, ϱFE, f) is called an a poste-

riori error estimator for the Stokes equation, if and only if there exists a constant C > 0 such

that

∥∇ (u− uFE)∥Ω + ∥ϱ− ϱFE∥Ω ≤ Cη (uFE, ϱFE, f) . (3.1)

Furthermore, if η (uFE, ϱFE, f) can be decomposed into localized quantities ηK (uFE, ϱFE, f), K ∈

T , such that

η(uFE, ϱFE, f)
2 =

∑
K∈T

ηK (uFE, ϱFE, f)
2 , (3.2)

then ηK (uFE, ϱFE, f) is called local error indicator.

Estimate (3.1) is usually called a reliability estimate, since it guarantees that the error of the

finite element approximation [uFE, ϱFE] in the natural energy norm is controlled by the error estima-

tor η (uFE, ϱFE, f) up to a constant independent of mesh size h and polynomial degree p. Further,

19



the local error indicators ηK (uFE, ϱFE, f) given in identity (3.2) provide the most important tool

for adaptive mesh refinement by identifying those cells K ∈ T where the error is large and conse-

quently, the mesh has to be refined locally. This procedure can be repeated several times until the

error estimator η (uFE, ϱFE, f) is smaller than a prescribed tolerance.

Obviously, computational efficiency requires that the local error estimators also satisfy some effi-

ciency property guaranteeing that the upper bound (3.1) is sharp enough and does not overestimate

the true error. To this end, we would like to derive a local lower bound for the energy error

ηK (uFE, ϱFE, f) ≤ C
(
∥∇ (u− uFE)∥ωK

+ ∥ϱ− ϱFE∥ωK

)
∀K ∈ T . (3.3)

The Effectivity Index is a tool to show the quality of the proposed error estimator η, given as

Eff. Index :=
error estimator

energy error
=

η (uFE, ϱFE, f)

∥∇ (u− uFE)∥Ω + ∥ϱ− ϱFE∥Ω
. (3.4)

Ideally we want to have Eff. Index = 1, however in practice will only happen as Eff. Index −→ 1,

while h −→ 0. Other error estimators guarantee that C1 6 Eff. Index 6 C2 for some C1, C2 > 0.

3.2.3 Residual-based a posteriori error estimator and error analysis

In this section, we define a residual-based a posteriori error estimator for the Stokes problem

(2.1) and derive upper and lower bounds for this error estimator in terms of the energy error of the

approximated solution. Following the steps of [2], we define a family of error estimators ηα for

α ∈ [0, 1]. In the analysis of hp a posteriori error estimator, neither an upper nor a lower bound

can be proved for any fixed α ∈ [0, 1]. As given in identity (3.2), the a posteriori error estimator

ηα shall be the sum of local error indicators ηα,K :

η2α :=
∑
K∈T

η2α;K
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for α ∈ [0, 1]. The local error indicator ηα;K can be decomposed into a cell and interface contribu-

tion:

η2α;K := η2α;K;R + η2α;K;B, (3.5)

where ηα;K;R denotes the residual-based term and ηα;K;B indicates the jump-based term. These

terms are defined as

η2α;K;R :=
h2K
p2K

∥∥∥(IKpKf + ν∆uFE −∇ϱFE
)
Φ

α
2
K

∥∥∥2
K
+
∥∥∥(∇ · uFE) Φ

α
2
K

∥∥∥2
K

(3.6)

where IKpKf denotes the local L2-projection of f into the space of piecewise vector-valued polyno-

mials of degree less or equal than pK , and

η2α;K;B :=
∑

f∈F(K)

hf
2pf

∥∥∥∥[ν ∂uFE

∂nK

]
Φ

α
2
ωf

∥∥∥∥2
f

. (3.7)

Here hf , is the length of face f and for every two cells K, K ′ which share face f , let pf :=

min(pK , pK′). The [·] notation is the jump across the edge and nK is the outward pointing unit

normal vector of cell K for each face f . The interface contribution of error estimator in (3.7) is the

summation over all faces of K that are not on the domain boundary ∂Ω. Now, let us begin with the

error analysis of the a posteriori error estimator ηα. First, we derive an upper bound for the energy

error, that is the reliability estimate.

Theorem 3.2.2 (Reliability). Let [uFE, ϱFE] ∈ Vp(T ) be the solution of discrete problem (2.10) and

[u, ϱ] ∈ H be solution of weak problem (2.3). Further, let α ∈ [0, 1] and assume that triangulation

T is (γh, γp)-regular. Then, there exists some constant Crel > 0 independent of mesh size vector h

and polynomial degree vector p such that

∥∇ (u− uFE)∥2Ω + ∥ϱ− ϱFE∥2Ω ≤ Crel

∑
K∈T

(
p2αK η

2
α;K +

h2K
p2K

∥∥IKpKf − f
∥∥2
K

)
.
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Proof. Set eFE := u− uFE and ϵFE := ϱ− ϱFE. From Lemma 2.2.2, we have

L ([eFE, ϵFE] ; [v, q]) =
(
ν∇eFE,∇

(
v − Πhpv

))
Ω
−
(
ϵFE,∇ ·

(
v − Πhpv

))
Ω

− (∇ · eFE, q)Ω

=
∑
K∈T

((
ν∇eFE,∇

(
v − Πhpv

))
K
−
(
ϵFE,∇ ·

(
v − Πhpv

))
K

− (∇ · eFE, q)K

)
,

where Πhp : H1
0 (Ω)

2 → Vp(T ) denotes the H1-conforming interpolation operator from Theorem

2.2.3. Using integration by parts and also the incompressibility condition ∇ · u = 0 yields

L ([eFE, ϵFE] ; [v, q]) =
∑
K∈T

((
f + ν∆uFE −∇ϱFE, v − Πhpv

)
K
− (∇ · uFE, q)K

+
∑

f∈F(K)

([
ν
∂uFE

∂n

]
, v − Πhpv

)
f

)

and by applying the continuous Cauchy-Schwarz inequality, we have

L ([eFE, ϵFE] ; [v, q]) ≤
∑
K∈T

(∥∥IKpKf + ν∆uFE −∇ϱFE
∥∥
K

∥∥v − Πhpv
∥∥
K

+ ∥∇ · uFE∥K ∥q∥K +
∥∥f − IKpKf

∥∥
K

∥∥v − Πhpv
∥∥
K

+
∑

f∈F(K)

∥∥∥∥[ν ∂uFE

∂nK

]∥∥∥∥
f

∥∥v − Πhpv
∥∥
f

)
.

With Theorem 2.2.3, we obtain

L ([eFE, ϵFE] ; [v, q]) ≤ C
∑
K∈T

(
hK
pK

∥∥IKpKf + ν∆uFE −∇ϱFE
∥∥
K

+ ∥∇ · uFE∥K +
hK
pK

∥∥f − IKpKf
∥∥
K

+
∑

f∈F(K)

√
hf
pf

∥∥∥∥[ν ∂uFE

∂nK

]∥∥∥∥
f

)
(∥∇v∥ωK

+ ∥q∥K)
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and, with the discrete Cauchy-Schwarz inequality, this implies

L ([eFE, ϵFE] ; [v, q]) ≤ C

(∑
K∈T

(
η20;K +

h2K
p2K

∥∥f − IKpKf
∥∥2
K

)) 1
2 (

∥∇v∥2Ω + ∥q∥2Ω
) 1

2

≤ C

(∑
K∈T

(
η20;K +

h2K
p2K

∥∥f − IKpKf
∥∥2
K

)) 1
2 (

∥∇v∥2Ω + ∥q∥2Ω
) 1

2

for some constant C > 0 independent of mesh size vector h and polynomial degree vector p.

Moreover, for (eFE, εFE) ∈ H we have

(
∥∇eFE∥2Ω + ∥ϵFE∥2Ω

) 1
2 ≤ C sup

[v,q]∈H

L ([eFE, ϵFE] ; [v, q])

(∥∇v∥2Ω + ∥q∥2Ω)
1
2

,

for some constant C > 0. The result follows for α = 0. Using the inverse estimates given in

Lemma 2.2.5, we can bound η0;K in terms of ηα;K for α ∈ (0, 1] from above. Therefore, set a := 0

and b := α in Lemma 2.2.5 and we get

(
∥∇eFE∥2Ω + ∥ϵFE∥2Ω

) 1
2 ≤ Crel

(∑
K∈T

(
p2αK η

2
α;K +

h2K
p2K

∥∥f − IKpKf
∥∥2
K

)) 1
2

which concludes the proof.

Next, we derive an upper bound for the a posteriori error estimator ηα;K in terms of the energy

error ∥∇ (u− uFE)∥2ωK
+ ∥ϱ− ϱFE∥2ωK

defined on the patch ωK around cell K. Therefore, we

consider the residual-based term ηα;K;R and the jump-based term ηα;K;B separately and combine

the derived efficiency estimates later to obtain an upper bound for the residual-based a posteriori

error estimator in equation (3.5).

Note that for α = 1, the following lemma provides a p-independent upper bound in terms of the

finite element energy error for the residual part of estimator ηα;K;R.

Lemma 3.2.3. Let [u, ϱ] ∈ H be the solution of weak problem (2.3) and [uFE, ϱFE] ∈ Vp(T )

be the solution of the discrete problem (2.10). Further, we assume that sequence of meshes in
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triangulation T be (γh, γp)-regular and let α ∈ [0, 1] be arbitrary. Then, there exists some constant

C > 0 independent of the mesh size vector h and polynomial degree vector p such that

η2α;K;R ≤ C

(
p
2(1−α)
K

(
ν2 ∥∇ (u− uFE)∥2K + ∥ϱ− ϱFE∥2K

)
+
h
2+α

2
K

p1+α
K

∥∥f − IKpKf
∥∥2
K

)
.

Proof. For simplicity, we can write the residual-based term ηα;K;R as

η2α;K;R = η2α;K;R1
+ η2α;K;R2

,

where ηα;K;R;1 and ηα;K;R;2 are defined as follows:

η2α;K;R1
:=

h2K
p2K

∥∥∥(IKpKf + ν∆uFE −∇ϱFE
)
Φ

α
2
K

∥∥∥2
K
,

η2α;K;R2
:=
∥∥∥∇ · uFEΦ

α
2
K

∥∥∥2
K
.

(3.8)

Using the idea in [15] and [2] to build the test functions, for 0 < α ≤ 1, we define the cell residual

term RK as, RK :=
(
IKpKf + ν∆uFE −∇ϱFE

)
Φα

K ∈ H1
0 (K) and obtain

∥∥∥RKΦ
−α

2
K

∥∥∥2
K
= (f + ν∆uFE −∇ϱFE, RK)K +

(
IKpKf − f,RK

)
K
. (3.9)

With equation (2.3) and applying integration by parts, the first term reads

(f + ν∆uFE −∇ϱFE, RK)K = (ν∇ (u− uFE) ,∇RK)K − (ϱ− ϱFE,∇ ·RK)K

− (∇ · u, q)K

and inserting into (3.9) and using the incompressibility condition ∇ · u = 0, implies

∥∥∥RKΦ
−α

2
K

∥∥∥2
K
= (ν∇ (u− uFE) ,∇RK)K − (ϱ− ϱFE,∇ ·RK)K

+
(
IKpKf − f,RK

)
K
.
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Then, by using the Cauchy-Schwarz inequality, we get

∥∥∥RKΦ
−α

2
K

∥∥∥2
K
≤
(
ν ∥∇ (u− uFE)∥K + ∥ϱ− ϱFE∥K

)
∥∇RK∥K

+
∥∥∥(IKpKf − f

)
Φ

α
2
K

∥∥∥
K

∥∥∥RKΦ
−α

2
K

∥∥∥
K
.

(3.10)

Now, let us derive an upper bound for the H1-seminorm of RK . Using equations (2.18) and (2.19)

in Lemma 2.2.5, we can see

∥∇RK∥2K =

∥∥∥∥∇((IKpKf + ν∆uFE −∇ϱFE
)
Φα

K

)∥∥∥∥2
K

≤ 2
∥∥∇ (IKpKf + ν∆uFE −∇ϱFE

)
Φα

K

∥∥2
K

+ 2
∥∥(IKpKf + ν∆uFE −∇ϱFE

)
Φα−1

K ∇ΦK

∥∥2
K

≤ C

(
p
2(2−α)
K

h2K

∥∥∥RKΦ
−α

2
K

∥∥∥2
K

+
C

h2K

∥∥∥(IKpKf + ν∆uFE −∇ϱFE
)2

Φ
2(α−1)
K

∥∥∥
K

)
,

where C > 0 denotes some constant independent of mesh size vector h and polynomial degree

vector p. For the second term, we have to distinguish between two cases. Assuming α > 1
2
, we set

a := 2(α− 1) and b := α in Lemma 2.2.5 to get

∥∥(IKpKf + ν∆uFE −∇ϱFE
)
Φα−1

K

∥∥
K
≤ Cp

1−α
2

K

∥∥∥RKΦ
−α

2
K

∥∥∥
K

and inserting into the estimate above yields

∥∇RK∥K ≤ C
p2−α
K

hK

∥∥∥RKΦ
−α

2
K

∥∥∥
K
. (3.11)

Inequality (3.10) then reads as

∥∥∥RKΦ
−α

2
K

∥∥∥
K
≤ C

p2−α
K

hK

(
ν ∥∇ (u− uFE)∥K + ∥ϱ− ϱFE∥K

)
+ h

α
2
K

∥∥IKpKf − f
∥∥
K
,
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and, after multiplying both sides by hK

pK
and using definition (3.8), we have

ηα;K;R1 ≤ Cp1−α
K

(
ν ∥∇ (u− uFE)∥K + ∥ϱ− ϱFE∥K

)
+
h
1+α

2
K

pK

∥∥IKpKf − f
∥∥
K
. (3.12)

Now, let us consider the case 0 ≤ α ≤ 1
2
. Therefore, let β := 1+α

2
. Again, using the smoothing

estimates given in Lemma 2.2.5 and considering the fact that β > α, we find

∥∥∥RKΦ
−α

2
K

∥∥∥
K
≤ Cpβ−α

K

∥∥∥∥(IKp f + ν∆uFE −∇ϱFE
)
Φ

β
2
K

∥∥∥∥
K

= C
p1+β−α
K

hK
ηβ;K;R1

and estimate (3.12) implies

∥∥∥RKΦ
−α

2
K

∥∥∥
K
≤ C

(
p2−α
K

hK
(ν ∥∇ (u− uFE)∥K + ∥ϱ− ϱFE∥K)

+
h

β
2
K

pα−β
K

∥∥IKpKf − f
∥∥
K

)
.

Then, the definition of β yields

ηα;K;R1 ≤ C

(
p1−α
K (ν ∥∇ (u− uFE)∥K + ∥ϱ− ϱFE∥K)

+
h

5+α
4

K

p
1+α
2

K

∥∥IKpKf − f
∥∥
K

)
.

(3.13)

To obtain the upper bound for η2α;K;R2
, we observe

ηα;K;R2 =
∥∥∥(∇ · uFE)Φ

α
2
K

∥∥∥
K
≤ h

α
2
K ∥∇ · uFE∥K .

Since ∇ · u = 0, we have ∇ · uFE = ∇ · (u− uFE) and, hence,

ηα;K;R2 ≤ h
α
2
K ∥∇ (u− uFE)∥K . (3.14)
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Finally, combining estimates (3.12)-(3.14) gives the desired result.

Now, let us consider the jump-based term ηα;K;B from equation (3.7). In order to derive an

upper bound for this term, we use the same ideas as in Lemma 3.2.3.

Lemma 3.2.4. Let [u, ϱ] ∈ H be the solution of weak problem (2.3) and [uFE, ϱFE] ∈ Vp(T ) be

the solution of discrete problem (2.10). Further, we assume that the family of triangulation T is

(γh, γp)-regular. Then, there exists some constant C > 0 independent of mesh size vector h and

polynomial degree vector p such that

η2α;K;B ≤ C

(
p

3−α
2

K

(
ν2 ∥∇ (u− uFE)∥2ωK

+ ∥ϱ− ϱFE∥2ωK

)
+

h2K

p
3+α
2

K

∥∥IKpKf − f
∥∥2
ωK

)

for all α ∈ [0, 1].

Proof. For given element K ∈ T and interior face f ∈ F(K), there exists some K1 ∈ T such that

f = ∂K ∩∂K1; For each face f , we then consider the face patch set ωf given in (2.13). Moreover,

by Lemma 2.2.5 there exists an extension function Rf ∈ H1
0 (ωf ) such that Rf |f =

[
ν ∂uFE

∂n

]
Φα

ωf
.

The unit normal vector n and the jump term [.] are the same as in (3.7). Rf is continuous on K and

vanishes on ∂ωf . We can extend Rf by zero to Ω\ωf which gives us Rf ∈ H1
0 (Ω). Now, to derive

an upper bound for the jump-based term η2α;K;B, we use integration by parts to get

∥∥∥RfΦ
−α

2
ωf

∥∥∥2
e
= (ν∆uFE, Rf )ωf

+ (ν∇uFE,∇Rf )ωf
,
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and, from the weak formulation (2.3), we have

∥∥∥RfΦ
−α

2
ωf

∥∥∥2
f
= (ν∆uFE, Rf )ωf

− (ν∇ (u− uFE) ,∇Rf )ωf
+ (f,Rf )ωf

+ (ϱ,∇ ·Rf )ωf
+ (∇ · u,Rf )ωf

= (ν∆uFE, Rf )ωf
− (ν∇ (u− uFE) ,∇Rf )ωf

+ (f,Rf )ωf

+ (ϱFE,∇ ·Rf )ωf
+ (ϱ− ϱFE,∇ ·Rf )ωf

by incompressibility condition ∇ · u = 0. Then, performing integration by parts gives

∥∥∥RfΦ
−α

2
ωf

∥∥∥2
f
=
(
IKpKf + ν∆uFE −∇ϱFE, Rf

)
ωf

− (ν∇(u− uFE),∇Re)Ke

+ (ϱ− ϱFE,∇ ·Rf )ωf
+
(
f − IKpKf,Rf

)
ωf

and applying the Cauchy-Schwarz inequality yields

∥∥∥RfΦ
−α

2
ωf

∥∥∥2
f
≤
(∥∥IKpKf + ν∆uFE −∇ϱFE

∥∥
ωf

+
∥∥f − IKpKf

∥∥
ωf

)
∥Re∥ωf

+ ν ∥∇(u− uFE)∥ωf
∥∇Rf∥ωf

+ ∥ϱ− ϱFE∥ωf
∥∇ ·Re∥ωf

.

(3.15)

Now, we have to distinguish between two cases. First, let us assume α > 1
2

and use Lemma 2.2.6,

we obtain the following upper bounds for ∥Rf∥ωf
and ∥∇Rf∥ωf

on face f :

∥∇Rf∥2ωf
≤ C

δp
(2(2−α))
K + δ−1

hK

∥∥∥∥[ν ∂uFE

∂n

]
Φ

α
2
ωf

∥∥∥∥2
f

,

∥Rf∥2ωf
≤ CδhK

∥∥∥∥[ν ∂uFE

∂n

]
Φ

α
2
ωf

∥∥∥∥2
f

.
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Knowing that ∥∇ ·Rf∥ωf
≤ ∥∇Rf∥ωf

, estimate (3.15) yields

∥∥∥∥[ν ∂uFE

∂n

]
Φ

α
2
ωf

∥∥∥∥
f

≤C
(
(δhK)

1
2

(∥∥IKpKf + ν∆uFE −∇ϱFE
∥∥
ωf

+
∥∥f − IKpKf

∥∥
ωf

)

+

√
δp

2(2−α)
K + δ−1

hK

(
ν ∥∇ (u− uFE)∥ωf

+ ∥ϱ− ϱFE∥ωf

))

and it follows that∥∥∥∥[ν ∂uFE

∂n

]
Φ

α
2
ωf

∥∥∥∥
f

≤C
(
(δhK)

1
2

(
p2K
hK

(
ν ∥∇ (u− uFE)∥ωf

+ ∥ϱ− ϱFE∥ωf

)
+ p

1
2
K

∥∥f − IKpKf
∥∥
ωf

)

+

√
δp

2(2−α)
K + δ−1

hK

(
ν ∥∇ (u− uFE)∥ωf

+ ∥ϱ− ϱFE∥ωf

))

with Lemma 3.2.3. By squaring both sides and summing over all edges f ∈ F(K), we get

η2α;K;B ≤ C

(
δ
(
p3K

(
ν2 ∥∇ (u− uFE)∥2ωf

+ ∥ϱ− ϱFE∥2ωf

)
+ h2K

∥∥f − IKpKf
∥∥2
ωf

)
+
δp

2(2−α)
K + δ−1

pK

(
ν2 ∥∇ (u− uFE)∥2ωf

+ ∥ϱ− ϱFE∥2ωf

)) (3.16)

and setting δ := p−2
K gives the desired result.

Now, let 0 ≤ α ≤ 1
2
. Similar to the proof of Lemma 3.2.3, we set β := 1+α

2
and apply Lemma
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2.2.5 to get ηα;K;B ≤ pβ−α
K ηβ;K;B. Then, using estimate (3.16) gives

η2α;K;B ≤ C

(
δ

(
p

7−α
2

K

(
ν2 ∥∇ (u− uFE)∥2ωf

+ ∥ϱ− ϱFE∥2ωf

)
+

h2K

p
α−1
2

K

∥∥f − IKpKf
∥∥2
ωf

)

+
δp

2(2−α)
K + δ−1

p
1+α
2

K

(
ν2 ∥∇ (u− uFE)∥2ωf

+ ∥ϱ− ϱFE∥2ωf

))

and setting δ := p−2
K concludes the proof.

By combining the results from Lemmas 3.2.3 and 3.2.4, we can derive an upper bound for the

residual-based a posteriori error estimator η in terms of the quasi-local energy error.

Theorem 3.2.5. Let [uFE, ϱFE] ∈ Vp(T ) be the solution of discrete problem (2.10) and [u, ϱ] ∈ H

be solution of weak problem (2.3). Further, we assume that the triangulation T is (γh, γp)-regular

and let α ∈ [0, 1] be arbitrary. Then, there exists some constant Ceff > 0 independent of mesh size

vector h and polynomial degree vector p such that

η2α;K ≤ Ceff

(
pkK
(
ν2 ∥∇ (u− uFE)∥2ωK

+ ∥ϱ− ϱFE∥2ωK

)
+

h2K
p1+α
K

∥∥IKpKf − f
∥∥2
ωK

)

for all K ∈ T , where k := max
{
2(1− α), 3−α

2

}
.

Proof. The result follows from Definition 2.2.1 and Lemmas 3.2.3 and 3.2.4.

3.3 hp-Adaptive refinement

The fully automatic hp-AFEM proposed here is based on the residual type estimator introduced

in section 3.1, and consists of standard adaptive loops of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (3.17)
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The procedures SOLVE and REFINE are essentially the same in all AFEM algorithms. Therefore,

the distinction between different adaptive approaches comes from the procedures ESTIMATE and

MARK. Our automatic hp-AFEM strategy follows from [55, 21].

In Section 3, a reliable and efficient residual based a posteriori error estimator has been de-

veloped. Module ESTIMATE computes the accuracy of the finite element solution obtained from

module SOLVE. In order to enhance the finite element space, a local procedure called adaptive

refinement is applied. In module estimate, in order to compare the error estimations for each cell

K we apply h and p-refinement and then we calculate the error estimate for both refinements. In

h-adaptive refinement, we use equal size bisection in each coordinate direction. Through this pro-

cedure we need to make sure that no new hanging nodes appear at the edge of the refined cell. If

the current cell already has a hanging node, we have to consider all the neighboring cells, namely

patch cells ωK around the cell K, and refine all of them. For the quadrilateral cells this refinement

pattern on patch ωK is shown in Fig. 3.1, left. Similarly, for p-refinement we want to assure that

no new constrained degrees of freedom are created due to enriching the polynomial degrees on

the current cell K. The right graph in Fig. 3.1 shows we increase the polynomial degrees cor-

responding to all neighboring cells in patch ωK . Module MARK determines which cells are the

best candidates for h- or p-refinement. Unlike the pure h- or p-refinement, for the hp-refinements,

the information given from ESTIMATE is not sufficient to choose the cells with the biggest error

contribution to be refined. The reason comes from the fact that in hp-refinements, one also needs

to determine which refinement patterns should be applied on the selected cells. Therefore, besides

the error estimator given from ESTIMATE, some extra indicators have to be defined to determine

the best refinement strategy on the candidate refined cells. We will develop that in the next section.

3.3.1 Convergence indicator

Let j ∈ {1, 2, · · · , n}, where n indicates the number of different h and p refinement patterns,

and consider K ∈ TN be an arbitrary cell during the N-th cycle of refinement. Following the

idea of [62] we define a quantity named the “convergence indicator" kK,j ∈ R+ that shows the

error reduction of cell K refined by refinement pattern j. For the Stokes problem similar to [57],
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we establish an equivalent norm for the energy norm defined on the space H in domain ωK . Let

e := u − uFE and E := ϱ − ϱFE such that (e, E) ∈ H. Considering the residual of the Stokes

problem on the local patch domain ωK and the bilinear notation from (2.2), ∀(v, q) ∈ H we have:

∫
ωK

vf −
∫
ωK

∇v : ∇uFE +

∫
ωK

(∇ · v)ϱFE +

∫
ωK

q∇ · uFE = L([v, q]; [e, E])ωK
.

Integration by parts gives:

∫
ωK

v (f + ν∆uFE −∇ϱFE)−
∫
ωK

q (∇ · uFE) = L([v, q]; [e, E])ωK
.

The pair (wu, wϱ) ∈ H is defined to be the Ritz projection of the residual, as follows:

(∇v,∇(wu))ωK
+ (q, wϱ)ωK

= L([v, q]; [e, E])ωK
, ∀(v, q) ∈ H. (3.18)

The existence and uniqueness of the pair (wu, wϱ) is concluded from the continuity of the operators

in the definition of the bilinear form (2.2). In particular, this pair of functions can of course not be

found analytically. Consequently, we approximate it by solving a discrete problem using either a

finite element space with a higher polynomial degree, or a finer mesh. The energy norm of errors

can be defined as

|||(e, E)|||2ωK
= ∥∇(wu)∥2ωK

+ ∥wϱ∥2ωK
. (3.19)

For cell K refined by pattern j, we combine the idea of the convergence estimator in [62] and the

above discussion on the Ritz representation of the residual (3.18) and get the following definition:

kK,j =
1

ηK(uFE, ϱFE)

(∥∥∇wj
u

∥∥2
ωK

+
∥∥wj

ϱ

∥∥2
ωK

) 1
2
. (3.20)

The convergence estimator kK,j as defined in (3.20), indicates which refinement pattern j ∈

{1, 2, · · · , n} provides the biggest error reduction on every cell. In order to choose the most effi-

cient refinement pattern, we would like to define another parameter namely the workload number
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Figure 3.1: Classical h- and p-refinement in 2-dimensions for patch cells corresponding to the
marked cell K shown in red.

ϖK,j ∈ R+. This parameter indicates the required work for the achieved error reduction kK,j on

cell K. Different definitions of the workload number are possible. Here, we take it as the number

of degrees of freedom in the local finite element space Vp
K,j(TN |ωK

). The advantage of locally de-

fined convergence indicators is that they can be computed in parallel. In calculating convergence

indicators on the patch cells ωK , associated with each cell K, there are number of local variational

equations that can be treated as independent tasks. In such cases in our implementation using

deal.II, we use the software design pattern called the WorkStream [75].

3.3.2 Marking

In our hp-adaptive finite element method, we decide between two refinement patterns, j ∈

{1, 2}: the classical h-refinement, where one does equal weight bisection, and the classical p-

refinement, where one increases the polynomial degree on the marked cell by one. Figure 3.1

shows the graphical representation of the classical h- and p-refinement for the patch cells corre-

sponding to marked cell K in d = 2.

With the aforementioned two quantities, namely the error reduction kK,j and the workload

number ϖK,j , we can mark cells for h- or p-refinement by exploring a solution (M, (jK)K∈M)
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where M ⊆ T comes from the following constraint setting. For every cell K we assign integer

jK ∈ {1, 2, · · · , n} such that
kK,jK

ϖK,jK

= max
j∈{1,2,··· ,n}

kK,j

ϖK,j

(3.21)

under the constraint ∑
K∈M

k2K,jk
η2K ≥ θ2η2 (3.22)

where M ⊆ T is a set with minimal cardinality. Before we go to the next section and discuss

numerical results, it is important to mention the criterion on choosing the parameter θ ∈ (0, 1] in

Dörfler marking in equation (3.22). Dörfler and Heuveline in [62] provided some results indicating

that it might not be guaranteed that the above constraint maximization problems (3.21) and (3.22)

has a solution for any chosen θ ∈ (0, 1]. As they discussed in the section 3.6 of that paper, if the

parameter θ is chosen such that it always is in the interval

θ ∈ (0, min
K∈TN

kK,jK ), (3.23)

then they showed that the constraint maximization problem (3.21) is solvable.

Algorithm 1 Adaptive hp-refinement

• Initialization: Set N = 0, a coarse mesh T0, θ ∈ (0, 1] and also tolerance TOL.

• SOLVE: Find the solution (uFE, ϱFE) of discrete problem (2.10).

• ESTIMATE: Compute a posteriori error estimation given by equation (3.5), if ηK < TOL
then STOP the algorithm.

• MARK: For all cells K ∈ TN and all refinement patterns j ∈ {1, 2, · · · , n}, compute the
convergence estimator kK,j and the work-load number ϖK,j . Then approximate the solution
of constraint maximization problem given in equations (3.21) and (3.22)

• REFINE: Given (MN , (jK)K∈MN
), we refine the cells contained in set MN with refine-

ment patterns jK corresponding to each cell. Then set N = N + 1 and go to step SOLVE.
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Figure 3.2: Graphical illustration of building triangulation from an irregular patch cells.
(Left) patch ωK ; (Middle) extension of ωK to the coarsest common level of refinement with no
hanging node; (Right) retrieve again patch ωK from the created triangulation as shown in blue,
and assign FE-Nothing to the rest of this triangulation.

3.4 Numerical results

The numerical implementation is performed in the differential equation analysis library, deal.II,

[76]. As presented in sections 3.3.1 and 3.3.2, in order to implement our proposed refinement

strategy, for each cell K, we need to solve some local variational problems on the patch ωK cor-

responding to that cell. For that reason, first of all we need to build a triangulation out of each

patch. This task for the patches with no hanging node is straight forward and easy to implement.

However, for the cases in which the patch cells around cell K are not at the same refinement level,

we need to design an algorithm to handle this situation. Figure 3.2 graphically visualizes how we

used the existing tools in the deal.II library, namely FE-Nothing and Material-Id, in order to build

a triangulation for any given patch of cells.

In this section, we try to illustrate the computational performance of our hp residual-based a

posteriori error estimator. In order to have an appropriate observation for the proposed estimator,

within the automatic hp-adaptive refinement Algorithm 1, we consider some test cases in two

dimensions. The important thing is that we want to keep track of the reduction rate in our proposed

residual based estimator and demonstrate that it decreases with the same asymptotic rate as the

actual error in the energy norm on a sequence of non-uniform hp-adaptive refined cells. Moreover,
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Figure 3.3: Example-1, Analytical solution to the y-component of the vector valued velocity field,
Vy.

the effectivity index, which is defined as the ratio of the residual a posteriori error estimator and

the energy error, remains bounded around a constant number.

3.4.1 Example-1

Let Ω ∈ R2 be L-shaped domain,

Ω = (−1, 1)2\([0, 1]× [−1, 0]).

We enforce appropriate inhomogeneous Dirichlet boundary conditions for velocity u on Γ such

that the analytical solution u : Ω → R2 and ϱ : Ω → R are given as in [77].

u =

−ex(y cos(y) + sin(y))

exy sin(y)

 , ϱ = 2ex sin(y)− (2(1− e)(cos(1)− 1))/3.

The right hand side f(x, y) is set such that the Stoke equation 2.1 holds. We set the initial
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Figure 3.4: Example-1. (Left) Final mesh generated after 11 hp-adaptive refinement steps (Right)
Mesh generated after 7 h-adaptive refinement steps.

Table 3.1: Example 1. Number of h and p refined cells per refinement level.

refinement level # cells #h #p
0 12 0 8
1 12 0 6
2 12 0 5
3 12 0 7
4 12 0 6
5 12 0 4
6 12 0 3
7 12 0 4
8 12 0 6
9 12 0 3

10 12 0 7
11 12 0 5
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triangulation T0 to consist of 12 uniform cells, the initial polynomial degree p3− p2, and θ = 0.75.

In order to get an idea about how the exact solution looks like, the y-component of vector valued

velocity field is presented in Figure 3.3. Figure 3.4 shows the h- and hp-adaptive refined meshes

with almost the same number of degrees of freedom generated using our hp and h residual based

estimator. Table 3.1 presents the history of mesh and polynomial refinements in our hp-refinement

algorithm. As we can see in this example, based on the marking decision algorithm described in

detail in Section 3.3.2, the hp-adaptive algorithm chooses p-refinements over the h-refinement and

for this example performs as adaptive p-refinement. The convergence graph in Figure 3.5a presents

the decay rate in the energy error and the hp residual based a posteriori error estimator as a function

of number of degrees of freedom. The graph indicates the exponential convergence rate and also

shows the hp-error estimator as a sharp upper bound for the energy error which validates this as an

efficient and reliable a posteriori error estimator. From Figure 3.5b we observe that the effectivity

indices remains bounded between the range 5.4 6 Eff. Indices 6 8.1. We present the comparison

between the energy norm of the error for both h- and hp-adaptive refinement in Figure 3.6. This

convergence plot clearly shows the superiority of hp-AFEM over the h-AFEM. As we can observe

from this plot, with the same number of degrees of freedom, the energy norm of the error using

the hp-refinement is over 8 order of magnitude smaller than the energy norm of the error in the

h-refinement for the same number of unknowns.

3.4.2 Example 2

In this example we consider a singular solution for Stokes problem in two dimensions in a

L-shaped domain

Ω := (−1, 1)2\([0, 1]× [−1, 0]).

The exact velocity u and pressure ϱ are given in polar coordinates as in [78]:

u(r, φ) = rα

cos(φ)ψ′
(φ) + (1 + α) sin(φ)ψ(φ)

sin(φ)ψ
′
(φ)− (1− α) cos(φ)ψ(φ)

 ,
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(a) (b)

Figure 3.5: Example 1. (Left) Comparison of the energy error and the error estimator, (Right)
Effectivity indices.

Figure 3.6: Example 1. Comparison between the actual energy error in h- and hp- adaptive mesh
refinements.
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and

ϱ(r, φ) = −rα−1 (1 + α)2ψ
′
(φ) + ψ

′′′
(ϕ)

1− α
,

where ψ(φ) is as follows:

ψ(φ) =
sin((1 + α)φ) cos(αω)

1 + α
− cos((1 + α)φ)

− sin((1− α)φ) cos(αω)

1− α
+ cos((1− α)φ),

ω =
3π

2
.

Here α is the smallest positive solution of

sin(αω) + α sin(ω) = 0, α ≈ 0.54448373678246.

We set the initial triangulation T0 to consist of 12 uniform cells, the initial polynomial degree

p2 − p1, and θ = 0.85. The pressure is shown in Figure 3.7. This example is a typical test

case for the Stokes problem where the solution (u, ϱ) is analytic in Ω, but the gradient of the

velocity, ∇u, and the pressure ϱ itself are both singular at the re-entrant corner (0, 0). In our

computational results, we will see the singular behavior of the solution in the vicinity of the re-

entrant corner. Figure 3.8 shows h and also the hp-adaptive refined mesh generated by our residual

based estimator. As we can see the h-refinement algorithm does largely refinement around the

origin and the area adjacent of this re-entrant corner. The hp-refined mesh on the other hand,

shows how the algorithm performs in both capturing the singularity around the re-entrant corner

by applying the h-refinement, and the polynomial enrichment happens for the cells away from the

origin and the areas that the underlying solution is smooth. Table 3.2 presents the history of our

hp-refinement algorithm. The comparison of the energy error and the proposed residual based a

posteriori error estimator is shown in Figure 3.9a. In the right 3.9b, we can see that the effectivity

indices oscillate from one hp refinement cycle to another, but these indices remain bounded around

the range 1.2 6 Eff. Indices 6 2.2. Figure 3.10 presents the comparison between the energy norm
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Figure 3.7: Example 2. Analytic solution corresponding to the pressure.

of the error for h- and hp-adaptive refinements.

3.4.3 Example 3

Let Ω = (−1, 1)× (−1, 1) be a square domain and the velocity field u and pressure ϱ be given

[79] by

u =

 2y cos(x2 + y2)

−2x cos(x2 + y2)

 , ϱ = e−10(x2+y2) − pm

where the quantity pm is such that
∫
Ω
ϱ = 0, and the data is computed as f = −∆u + ∇ϱ.

We set the initial triangulation T0 to consist of 16 uniform cells, the initial polynomial degree

p3 − p2, and θ = 0.85. Figure 3.11, shows the exact pressure solution. The hp and also the h-

adaptive refined mesh generated by our residual based estimator is shown in Figure 3.12. Table

3.3 presents the history of our hp-refinement algorithm. As we can see due to the smoothness

of solution on a regular square domain Ω, at each refinement step, the hp-adaptive refinement

algorithm between h-refinement and p-enrichment chooses to increase the polynomial degree. The
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Figure 3.8: Example 2. (Left) Mesh generated after 10 hp-adaptive refinement steps; (Right) Mesh
generated after 12 h-adaptive refinement steps.

Table 3.2: Example 2. Number of h and p refined cells per refinement level.

refinement level # cells #h #p
0 12 6 2
1 30 6 7
2 48 20 25
3 108 15 31
4 153 14 21
5 195 23 33
6 264 16 42
7 312 16 15
8 360 19 32
9 417 28 39

10 501 30 12

(a) (b)

Figure 3.9: Example 2. (Left) Comparison of the energy error and the error estimator, (Right)
Effectivity Indices.
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Figure 3.10: Example 2. Comparison between the actual energy error in h- and hp- adaptive mesh
refinements.

exponential convergence rate, the comparison of the energy error and the proposed residual based a

posteriori error estimator are shown in Figure 3.13. On the right, the effectivity indices are shown

which remain bounded around 6.0 6 Eff. Indices 6 10.1. Figure 3.14 shows the comparison

between the energy norm of the error for both h- and hp-adaptive refinement.

3.4.4 Example 4

For the last example, we consider the Stokes fluid flows through a pipe with a bend. We

prescribe the homogeneous Dirichlet boundary condition on the walls. For the inlet and outlet we

set parabolic boundary condition. The exact solution of the problem is not in hand. However,

the solution on a very fine grid is given in Figure 3.15. In our h- and hp-adaptive algorithms

we set θ = 0.75 and we start with 28 equally sized cells. The meshes generated by h-adaptive

refinement are shown in Figure 3.16. As the h-adaptive refinement shows in this figure, more

local h-refinement happens in the vicinity of the re-entrant corners, where the solution gets larger

residual values. Figure 3.17 presents the triangulation and the corresponding polynomial degree

distribution for the hp-adaptive refinement strategy. The history of the hp-refinement is given in
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Figure 3.11: Example 3. Analytic solution corresponding to the third component of solution (pres-
sure).

Figure 3.12: Example 3. (Left) Mesh generated after 7 hp-adaptive refinement steps; (Right) Mesh
generated after 8 h-adaptive refinement steps
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Table 3.3: Example 3. Number of h and p refined cells per refinement level.

refinement level # cells #h #p
0 4 0 4
1 4 0 4
2 4 0 4
3 4 0 3
4 4 4 0
5 16 0 10
6 16 0 9
7 16 0 12
8 16 0 11

Figure 3.13: Example 3. (Left) Comparison of the energy error and the error estimator, (Right)
Effectivity Indices
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Figure 3.14: Example 3. Comparison of the actual error with h- and hp- adaptive mesh refinement

Table 3.4. Finally, we present comparison plots between the energy estimators for both h- and

hp-refinement in Figure 3.18.
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Figure 3.15: Example 4. Analytic solution corresponding to the velocity components

Figure 3.16: Example 4. Mesh generated after 12 h-adaptive refinement steps
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Figure 3.17: Example 4. Mesh generated after 16 hp-adaptive steps

Table 3.4: Example 4. Number of h and p refined cells per refinement level.

refinement level # cells #h #p
0 28 15 1
1 91 15 3
2 141 15 11
3 181 15 23
4 226 35 47
5 352 15 66
6 397 14 73
7 442 22 101
8 505 27 101
9 592 16 117
10 637 18 129
11 697 21 147
12 745 26 103
13 811 19 157
14 868 18 135
15 929 17 156
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Figure 3.18: Example 4. Comparison of the energy error estimator with h- and hp-adaptive mesh
refinement.
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4. DUAL-WEIGHTED GOAL-ORIENTED A POSTERIORI ERROR ESTIMATION IN H-

AND HP -ADAPTIVE FEM FOR THE STOKES PROBLEM

4.1 Introduction

When one has a specific goal in mind, such as evaluating the stress, the pressure, or temper-

ature at a given critical point in the domain, then the energy norm of the error itself brings very

little relevant information about the accuracy of the prescribed quantity of interest. Therefore, the

adaptive refinement strategy must be defined in a way that captures the error for that feature of

solutions. The goal-oriented adaptive refinement is an approach to deal with the described situa-

tion. The aforementioned quantity of interest, which represents physical or practical meaning for

engineers, can be expressed in terms of some functional of the solution and the whole idea of goal-

oriented adaptivity is based on minimizing the error in that quantity of interest [80, 34, 81, 39].

Additionally, the main concept in the definition of goal-oriented estimators is creating a relation

between the residual, which is considered the source of the error, and the error in the quantity of

interest. This requires finding the solution of the adjoint of the primal problem, which indicates

how the information from the residual as a source of error propagates to the error in the prescribed

quantity of interest. Therefore, the error in the functional of interest can be considered as a product

of residual of the primal problem and the solution of the corresponding adjoint problem. Know-

ing this fact, the idea of dual-weighted a posteriori error estimates was used in earlier works in

[80, 34, 32, 81] and later on was successfully applied to a variety of problems [82, 83] with com-

putationally efficient and accurate results. Before the work in [38] by Moon, the analysis and the

convergence rate of goal-oriented adaptivity was not proven. In that paper, convergence and op-

timality of the adaptive algorithm were proven by making strong smoothness assumptions about

the solution of the primal and adjoint problem. Later on, Mommer and Stevenson [39] considered

the scaled Poisson problem as their model problem, and for that they proved convergence of their

proposed goal-oriented adaptive algorithm. Moreover, they provide a reasonable upper bound for
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the convergence rate of their GOAFEM strategy. Using the contraction framework described in [4],

Holst et al. [84] proved the convergence of their proposed goal-oriented adaptive algorithm applied

to nonsymmetric elliptic problems. [85, 86] are examples of h-adaptive goal-oriented adaptivity

for the Stokes problem. Their numerical results and the comparison plots confirm the efficiency of

applying the goal-oriented error estimator in controlling the error in the quantity of interest rather

than standard h-adaptive refinement.

4.1.1 Outline

Our study in this chapter continues as follows. First, the primary tools, namely the primal and

dual contributions of the goal estimator, are presented in section 4.2. In section 4.3, in continua-

tion of earlier work on goal-oriented error estimators for elliptic problems [1], we study a locally

defined dual-weighted goal-oriented error estimator for the Stokes problem. The error in the func-

tional of interest is estimated as a sum of errors for each cell, which are defined as the product

of primal and dual error contributions. Despite the energy error in the quantity of interest, there

are no complete two-sided upper and lower bounds. Knowing this, we prove that our proposed h

and hp dual-weighted goal-oriented estimator is an upper bound of the error in the functional of

interest. Then we show that the goal-estimator is a lower bound for the product of energy errors

in both primal and dual problems. The goal-oriented h- and hp-AFEM refinement algorithms are

presented in section 4.4. Finally, in section 4.5 the implementation is tested on a couple of stan-

dard benchmark numerical problems. We demonstrate the exponential convergence rate of the hp

goal-oriented adaptivity and compare it with the h goal-oriented estimator. Moreover, the close-

to-optimal expected convergence rate in the h-AFEM goal-oriented algorithm is observed in our

numerical test cases.
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4.2 Primal and dual contributions of the goal estimator

Given j ∈ H−1(Ω) as a goal functional defined on the velocity space, the corresponding adjoint

problem for the primal equation (2.1) consists of seeking (zu, zϱ) ∈ H(Ω) such that

−∆zu +∇zϱ = j in Ω,

−∇ · zu = 0 in Ω,

zu = 0 on Γ.

(4.1)

The standard weak formulation of equation (4.1) is: find [zu, zϱ] ∈ H(Ω) such that

L([φ, q]; [zu, zϱ])Ω = (φ, j)Ω ∀[φ, q] ∈ H(Ω), (4.2)

where the bilinear form L : H(Ω)×H(Ω) → R is defined as

L([φ, q]; [zu, zϱ])Ω := (∇φ,∇zu)Ω − (∇ · φ, zϱ)Ω − (q,∇ · zu)Ω. (4.3)

The discrete approximation to (4.2) is obtained by finding [zuFE , zϱFE ] ∈ Vp(T ) such that

L ([φFE, qFE] ; [zuFE , zϱFE ])Ω = (φFE, j)Ω ∀ [φFE, qFE] ∈ Vp(T ), (4.4)

where T is a triangulation of Ω.

Note that the dual problem (4.1) is simply the same Stokes problem as (2.1) except for the

different right hand side. Therefore, existence and uniqueness in solution of the dual problem

follows directly from the same properties of the primal setting. Since the system matrix for the

dual problem is identical to the system matrix for the primal problem, the dual can be solved

almost for free if the matrix is factorized or a good preconditioner is available when solving the

original problem.

This section relies on the general idea of goal oriented error estimation, which implies to de-
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fine a dual-weighted residual estimator as being the product of local error indicators for primal

and adjoint problem. The definition of goal-oriented error estimator for the Stokes model problem

is initiated by the goal-oriented estimator introduced in [1] for the Poisson problem, that itself is

a combination of the ideas of weighted a posteriori error in [87] and the hp-adaptive refinement

algorithm based on the energy norm for the Poisson problem [21]. In section 4.2.1, first we in-

troduce the residual weight which comes from the primal problem for the Stokes equation, and

which is used in the definition of our goal-oriented estimator. Then in section 4.2.2, we discuss

how to derive the dual weight term. Finally, the primal and dual weights introduced in these two

sections will be used further in section 4.3 to formulate our locally defined dual-weighted h and

hp goal-oriented a posteriori error estimator.

4.2.1 Residual-based a posteriori error estimator (primal weight)

In this section we consider some other auxiliary results that we need to formulate our goal-

oriented a posteriori error estimator. First, we define the residual-based a posteriori error estimator

for the Stokes problem (2.1) in hp-adaptive finite element method. This estimator η, is decomposed

into a sum of local error indicators ηK :

η2 :=
∑
K∈T

η2K .

The local error indicator ηK can be decomposed into a cell and an interface contribution, as follows:

η2K := η2K;R + η2K;B, (4.5)

where ηK;R denotes the residual-based term and ηK;B indicates the jump-based term. These terms

are defined by

η2K;R :=
h2K
p2K

∥∥(IKpKf +∆uFE −∇ϱFE
)∥∥2

K
+ ∥(∇ · uFE)∥2K , (4.6)
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and

η2K;B :=
∑

e∈E(K)

he
2pe

∥∥∥∥[∂uFE

∂nK

]∥∥∥∥2
e

. (4.7)

Here, IKpKf denotes the local L2-projection of f onto the space of vector-valued polynomials of

degree less or equal than pK . Here he, is the length of edge e and for every two cells K, K ′ which

share edge e, let pe := min(pK , pK′). The [·] notation is the jump across the edge and nK is the

outward pointing unit normal vector of cell K for each edge e. The interface contribution of the

error estimator in (4.7) is the summation over all edges of K that are not on the domain boundary

∂Ω. We derive an upper bound and a lower bound for the energy error, i.e. reliability and efficiency

estimates, respectively.

Theorem 4.2.1 (Reliability & Efficiency). Let [uFE, ϱFE] ∈ Vp(T ) be the solution of discrete prob-

lem (2.10) and [u, ϱ] ∈ H be solution of weak problem (2.3). Further, assume that triangulation T

is (γh, γp)-regular then:

• there exists some constantCrel > 0 independent of mesh size vector h and polynomial degree

vector p such that

∥∇ (u− uFE)∥2Ω + ∥ϱ− ϱFE∥2Ω ≤ Crel

∑
K∈T

(
η2K +

h2K
p2K

∥∥IKpKf − f
∥∥2
K

)
. (4.8)

• there exists some constant Ceff > 0 independent of mesh size vector h and polynomial

degree vector p such that

η2K ≤ Ceff

(
p2K
(
∥∇ (u− uFE)∥2ωK

+ ∥ϱ− ϱFE∥2ωK

)
+
h2K
pK

∥∥IKpKf − f
∥∥2
ωK

)
,

(4.9)

for all K ∈ T .

Proof. The proof is given in Theorems 3.2.2 and 3.2.5.
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4.2.2 A posteriori error estimator for the local patch problems (dual weight)

In the goal-oriented adaptive refinement, we try to formalize the estimator in such a way that it

takes into account the impact of the introduced functional of interest J ∈ L2(Ω)
′ . In this method,

we want to assess the accuracy of the finite element solution (uFE, ϱFE) ∈ Vp(T ) in measure of

some quantity of interest other than the classical energy norm of the error itself. Before we propose

the formulation for the goal-oriented a posteriori error estimator, we need some preliminary results.

Let (ed, Ed) ∈ Vp(T ) be the error of the solution of the adjoint problem (4.4) where ed := zu−zuFE

and Ed := zϱ − zϱFE . Considering the residual of the dual problem on the local patch ωK,2 and the

bilinear notation introduced in (4.3), we have

∫
ωK,2

ϕj −
∫
ωK,2

∇ϕ∇zuFE +

∫
ωK,2

(∇ · ϕ)zϱFE

+

∫
ωK,2

q(∇ · zuFE) = L([ϕ, q]; [ed, Ed])ωK,2
.

(4.10)

Integration by parts gives:

∫
ωK,2

ϕ (j +∆zuFE −∇zϱFE) +

∫
ωK,2

q (∇ · zuFE) = L([ϕ, q]; [ed, Ed])ωK,2
. (4.11)

such that ϕ ∈ H1
0 (ωK,2) and q ∈ L2(ωK,2), where ωK,2 is a two layer patch around cell K. The

pair (wu, wϱ) ∈ H(ωK,2) is defined to be the Ritz representation of the residual, as follows:

(∇ϕ,∇(wu))ωK,2
+ (q, wϱ)ωK,2

= L([ϕ, q]; [ed, Ed])ωK,2
, ∀(ϕ, q) ∈ H(ωK,2). (4.12)

Therefore we may define the energy norm of errors in the solution of the dual problem as

|||(ed, Ed)|||2ωK,2
= ∥∇wu∥2ωK,2

+ ∥wϱ∥2ωK,2
. (4.13)
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To obtain (wuFE , wϱFE) as the solution of discrete system of equations, we solve equation (4.12)

with a higher order space. We seek for (wuFE , wϱFE) ∈ Vp+1(TωK,2
) such that

(∇ϕ,∇wuFE)ωK,2
+ (q, wϱFE)ωK,2

= L([ϕ, q]; [ed, Ed])ωK,2
, ∀(ϕ, q) ∈ Vp+1(TωK,2

). (4.14)

The energy error corresponding to the above variational equations can be estimated by a residual

based a posteriori error estimation, as follows in the next definition.

Definition 4.2.2 (A Posteriori Error Estimation on patch ωK,2). Let K ∈ T be an arbitrary cell.

Further assume (wuFE , wϱFE) ∈ Vp+1(ωK,2) be a solution of (4.14) and (zuFE , zϱFE) ∈ Vp(T ) be the

solution of (4.4). Then the residual based a posteriori error estimator for local patch problems on

ωK,2 is given by

η̃(K)2 :=
∑

L∈TωK,2

η̃L(K)2,

where the local estimator η̃L is expressed as

η̃2L = η̃2R,L + η̃2B,L ∀L ∈ TωK,2
(4.15)

In (4.15), the residual based term η̃R,L is defined as

η̃2R,L(K) :=
h2L
p2L

∥∥ILpLj +∆zuFE −∇zϱFE +∆wuFE

∥∥2
L
+ ∥∇ · zuFE − wϱFE∥2L, (4.16)

and the jump based term η̃B,L as

η̃2B,L :=
∑

e∈E(ωK,2∩L)

he
2pe

∥∥∥∥[∂zuFE + ∂wuFE

∂nL

]∥∥∥∥2
e

. (4.17)

Here ILpLj is the L2-projection of functional j into the finite element space, and he, is the length of

edge e. For every two cells L, L′ which share edge e, let pe := min(pL, pL′). The [·] notation is the

jump across the edge and nL is the outward pointing unit normal vector of cell L for each edge e.
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Now, we provide the efficiency of the above residual estimator. First we find an upper bound for

the residual based term η̃2R,L(K) given in (4.16).

Lemma 4.2.3 (Efficiency-Dual-1). Let (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T and

L ∈ ωK,2 be arbitrary. Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and

(wuFE , wϱFE) ∈ Vp+1(ωK,2) be the solution of (4.14). Then for all δ ∈ (0, 3) there exists some

constant C(δ) > 0 independent of mesh size hL and polynomial degree pL such that:

η̃2R,L(K) ≤ Cp
3−δ
2

L

(
∥∇(wu − wuFE)∥2L + ∥wϱ − wϱFE∥2L +

h2L
p2L

∥j − ILpLj∥
2
L

)
.

Proof.

η̃2R,L(K) := η̃2R1,L
(K) + η̃2R2,L

(K), (4.18)

where

η̃2R1,L
(K) =

h2L
p2L

∥∥ILpLj +∆zuFE −∇zϱFE +∆wuFE

∥∥2
L
, (4.19)

and

η̃2R2,L
(K) = ∥∇ · zuFE − wϱFE∥2L. (4.20)

Let res1 := ILpLj +∆zuFE −∇zϱFE +∆wuFE . By equation (2.18) of Lemma 2.2.5 we get

∥res1∥L ≤ C1p
1+δ
4

L ∥Φ
1+δ
4

L res1∥L, δ > 0. (4.21)

Then we define a function

w∗
L,1 : ωK,2 −→ R, as w∗

L,1 :=

{
Φ

1+δ
2

L res1 inL,

0 otherwise.
.

Here ΦL is the smoothing weight function as defined in equation (2.16). With the usage of the stan-

dard polynomial inverse estimate introduced in lemma 2.2.5, knowing that the smoothing functions

ΦL are bounded, and also the fact that ∥∇ΦL∥L ≤ C
hL

, for some C > 0, it follows w∗
L,1 ∈ H1

0 (L).
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Integration by parts and using (4.12) and (4.14) gives

∥Φ
1+δ
4

L res1∥2L =

∫
L

w∗
L,1res1 =

∫
L

w∗
L,1j +

∫
L

w∗
L,1(j − ILpLj)

+

∫
L

w∗
L,1(∆zuFE +∆wuFE)−

∫
L

w∗
L,1∇zϱFE

=

∫
L

w∗
L,1(j − ILpLj) +

∫
L

w∗
L,1(j +∆zuFE −∇zϱFE)−

∫
L

∇w∗
L,1∇wuFE

=

∫
L

w∗
L,1(j − ILpLj) +

∫
L

∇w∗
L,1∇(wu − wuFE).

(4.22)

Using the L2 property of projection operator ILpL , where Πhp is the Scott-Zhang interpolation oper-

ator Πhp : H(ωK,2) −→ Vp(T ∩ ωK,2)

∫
L

w∗
L,1(j − ILpLj) =

∫
L

(w∗
L,1 − Πhpw∗

L,1)(j − ILpLj).

For the first term on the right-hand-side of equation (4.22), using the Cauchy-Schwartz inequality

and also the approximation results given in Theorem 2.2.3 gives

∣∣∣∣∣
∫
L

w∗
L,1(j − ILpLj)

∣∣∣∣∣ ≤ ∥w∗
L,1 − Πhpw∗

L,1∥L∥j − ILpLj∥L

≤ CSZ
hL
pL

∥∇w∗
L,1∥L∥j − ILpLj∥L.

(4.23)

For the second term on the right-hand-side of equation (4.22), using Young’s inequality, and also

inverse estimates (2.18) and (2.19) given in Lemma 2.2.5, we have

∥∇w∗
L,1∥2L =

∥∥∥∥∇(Φ 1+δ
2

L

(
ILpLj +∆zuFE −∇zϱFE +∆wuFE

))∥∥∥∥2
L

≤ 2

∫
L

Φ1+δ
L |∇(res1)|2 + 2

∫
L

|∇Φ
1+δ
2

L |2|res1|2

≤ C

(
p3+δ
L

h2L

∫
L

Φ
1+δ
2

L res21

)
.

(4.24)
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By (4.23) and (4.24), equation (4.22) reads as

∥Φ
1+δ
4

L res1∥2L ≤CSZ
hL
pL

∥j − ILpLj∥L · p
3+δ
2

L

hL
∥Φ

1+δ
4

L res1∥L

+ ∥∇(wu − wuFE)∥L · Cp
3+δ
2

L

hL
∥Φ

1+δ
4

L res1∥L.

(4.25)

From (4.21), multiply by p
1+δ
4

L for δ > 0

∥res1∥L ≤ p
1+δ
4

L (∥Φ
1+δ
4

L res1∥L) ≤CCSZp
1+δ
4

L p
1+δ
2

L ∥j − ILpLj∥L

+ p
1+δ
4

L C
p

3+δ
2

L

hL
∥∇(wu − wuFE)∥L

(4.26)

Let Cmax = max(CCSZ , C), then by equation (4.19)

η̃2R1,L
(K) =

h2L
p2L
res21 ≤ C̃maxp

3+δ
2

L

(
∥∇(wu − wuFE)∥2L +

h2L
p2L

∥j − ILpLj∥
2
L

)
. (4.27)

Now let res2 := ∇ · zuFE − wϱFE . Similarly, by lemma 2.2.5 we get

∥res2∥L ≤ C2p
1+δ
4

L ∥Φ
1+δ
4

L res2∥L, δ > 0. (4.28)

Then we define a function w∗
L,2 : ωK,2 −→ R as w∗

L,2 :=

{
Φ

1+δ
2

L res2 inL

0 otherwise
. By equation

(4.12)

∥Φ
1+δ
4

L res2∥2L =

∫
L

w∗
L,2res2 =

∫
L

w∗
L,2∇ · zuFE −

∫
L

w∗
L,2wϱFE

=

∫
L

w∗
L,2wϱ −

∫
L

w∗
L,2wϱFE =

∫
L

w∗
L,2(wϱFE − wϱ).

(4.29)

Therefore, after cancellation from both sides, we will get

∥Φ
1+ϵ
4

L,2 res2∥L ≤ ∥wϱ − wϱFE∥L, (4.30)
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multiply by p
1+δ
4

L and taking square of both sides

η̃2R2,L
(K) ≤ Cp

1+δ
2

L ∥wϱ − wϱFE∥2L, (4.31)

adding up the results in (4.27) and (4.31) gives

η̃2R,L(K) ≤ p
3+δ
2

L

(
∥∇(wu − wuFE)∥2L + ∥wϱ − wϱ,FE∥2L

)
+
h2L
p2L

∥j − ILpLj∥
2
L. (4.32)

Lemma 4.2.4 (Efficiency-Dual-2). Let (zuFE , zϱFE) ∈ Vp(T ) be solution of (4.4), K ∈ T and

L ∈ ωK,2 be arbitrary. Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and

(wuFE , wϱFE) ∈ Vp+1(ωK,2) be solution of (4.14). Then for all δ ∈ (0, 3) there exists some constant

C > 0 independent of mesh size hL and polynomial degree pL such that

η̃2B,L(K) ≤ Cp
3+δ
2

L

(
∥∇(wu − wuFE)∥2ωL,1

+ ∥wϱ − wϱFE∥2ωL,1

)
+

h2L

p
5−δ
2

L

∥j − ILpLj∥
2
ωL,1

.

Proof. First set the jump term as

J :=

[
∂

∂nL

(zuFE + wuFE)

]
.

Again using Lemma 2.2.5 gives

∑
e∈E(ωK,2)

he
2pe

∥J∥2e ≤ C
∑

e∈E(ωK,2)

he

2p
1−δ
2

e

∥J Φ
1+δ
4

e ∥2e. (4.33)

For any arbitrary edge e ∈ E(ωK,2) ∩ L there exists some cell L̃ ∈ ωK,2 such that e = L ∩ L̃.

veu ∈ H1
0 (ωK,2)

2 is defined as veu = Φ
1+δ
2

e J on edge e. Moreover, the function ṽeu : ωK,2 −→ R can
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be set as

ṽeu :=

{
veu inL ∪ L̃

0 otherwise
.

In order to make an upper bound for right hand side of equation (4.33), with integration by parts

we get

∥Φ
1+ϵ
4

e J∥2e =
∫
e

ṽeu

(
∇(zuFE + wuFE)|L −∇(zuFE + wuFE)|L̃

)
nL

=

∫
L∪L̃

ṽeu(∆zuFE +∆wuFE) +

∫
L∪L̃

∇ṽeu(∇zuFE +∇wuFE).

The fact that (wu, wϱ) ∈ H(ωK,2) is solution of equation (4.12) implies

∥Φ
1+ϵ
4

e J∥2e =
∫
L∪L̃

(ILpLj +∆zuFE +∆wuFE)ṽ
e
u +

∫
L∪L̃

∇ṽeu · ∇wuFE

−
∫
L∪L̃

∇zϱFE ṽ
e
u +

∫
L∪L̃

(j − ILpLj)ṽ
e
u

=

∫
L∪L̃

(ILpLj +∆zuFE +∆wuFE −∇zϱFE)ṽ
e
u

−
∫
L∪L̃

∇wu∇ṽeu +
∫
L∪L̃

∇wuFE∇ṽeu +
∫
L∪L̃

(j − ILpLj)ṽ
e
u

(4.34)

In order to derive an upper bound for the equation (4.34) we categorize the above obtained terms

as follows and work on them separately. First,

I :=

∣∣∣∣ ∫
L∪L̃

(ILpLj +∆zuFE +∆wuFE −∇zϱFE)ṽe

∣∣∣∣.
Then, using the Cauchy-Schwarz inequality, trace inequality, and then using the equation (4.24)

from Lemma 4.2.3 implies

|I| ≤ ∥ILpLj +∆zuFE +∆wuFE −∇zϱFE∥(L∪L̃)∥ṽe∥L2(L∪L̃)

≤ Ctr

√
he
pe

∥ILpLj +∆zuFE +∆wuFE −∇zϱFE∥(L∪L̃)∥Φ
1+δ
4

e J∥e
(4.35)
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To continue, we let

|II| := |
∫
L∪L̃

∇(wu − wuFE)∇ṽe|.

Again by using the Cauchy-Schwartz, Lemma 4.2.3 and the trace inequality we will get

|II| ≤ Ctr
pe√
he

∥∇(wu − wuFE)∥L∪L̃∥Φ
1+δ
4

e J∥e (4.36)

Finally, we set

III :=

∫
L∪L̃

(ILpLj − j)ṽe.

The L2 property, and again Cauchy-Schwartz, Lemma 4.2.3 and the trace inequality gives

|III| =
∫
L∪L̃

(ILpLj − j)(ṽe +Πhpṽe)

≤ C̃tr

√
he
pe

∥ILpLj − j∥L∪L̃∥Φ
1+δ
4

e J∥e.
(4.37)

Adding up equations (4.35), (4.36) and (4.37), we have

∥Φ
1+δ
4

e J∥e ≤ C̃tr

(√
pL
hL

∥∇(wu − wuFE)∥L∪L̃
)
. (4.38)

Using the result derived in equation (4.33) we have

η̃2B,L(K) ≤ C
∑

e∈E(ωK,2)

he

2p
1−δ
2

e

(
pL
hL

∥∇(wu − wuFE)∥2L∪L̃

+
hL
pL

∥ILpLj − j∥2
L∪L̃

)
≤ CP

3
2
+ δ

2
L

(
∥∇(wu − wuFE)∥2ωL

+ ∥wϱ − wϱFE∥2ωL

)
+

h2L

p
5
2
− δ

2
L

∥ILpLj − j∥2ωL
.

(4.39)

Theorem 4.2.5 (Efficiency Dual). Let (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T and
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L ∈ ωK,2 be arbitrary. Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and

(wuFE , wϱFE) ∈ Vp+1(ωK,2) be the solution of (4.14). Then for all δ ∈ (0, 3) there exists some

constant CRitz
eff > 0 independent of mesh size hL and polynomial degree pL such that:

η̃2L(K) ≤CRitz
eff p

3+δ
2

L

(
∥∇(wu − wuFE)∥2ωL,1

+ ∥wϱ − wϱFE∥2ωL,1

)
+

h2L

p
1+δ
2

L

∥j − ILpLj∥
2
ωL,1

.

Proof. Proof follows directly from lemmas 4.2.3 and 4.2.4.

Theorem 4.2.6 (Reliability Dual). Let (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T and

L ∈ ωK,2 be arbitrary. Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and

(wuFE , wϱFE) ∈ Vp+1(ωK,2) be solution of (4.14). Then there exists some constant CRitz
rel > 0

independent of mesh size hL and polynomial degree pL such that:

∥∇(wu − wuFE)∥2ωK,2
+ ∥wϱ,K − wϱFE,K∥2ωK,2

≤CRitz
rel

(
η̃2L(K)

+
∑

L∈ωK,2

h2L
p2L

∥j − ILpLj∥
2
L

)
.

Proof. First we set the error terms corresponding to the equations (4.12) and (4.14) as eRitz :=

wu − wuFE and ϵRitz := wϱ − wϱFE . Remember that wu and wϱ are the solution of the following

variational problem

(∇ϕ,∇wu)ωK,2
= (ϕ, j)ωK,2

−
[
(∇ϕ,∇zuFE)ωK,2

− (∇ · ϕ, zϱFE)ωK,2

]
, (4.40)

(q, wϱ)ωK,2
= (q,∇ · zuFE). (4.41)

Let Πhp : H1
0 (ωk,2) −→ Vp+1(T |ωk,2

) be a bounded linear interpolation operator from Theorem
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2.2.3. By Galerkin-orthogonality, we get

∫
ωk,2

∇eRitz · ∇ΠhpeRitz = 0.

Therefore

∥∇eRitz∥2ωK,2
= ∥∇(wu − wuFE)∥2ωK,2

=

∫
ωK,2

∇eRitz · ∇(eRitz − ΠhpeRitz).

From (4.40) we get

∥∇eRitz∥2ωK,2
=
∑

L∈ωK,2

((
j, (eRitz − ΠhpeRitz)

)
L

−
(
∇zuFE ,∇(eRitz − ΠhpeRitz)

)
L

+

(
zϱFE ,∇ · (eRitz − ΠhpeRitz)

)
L

−
(
∇wuFE ,∇(eRitz − ΠhpeRitz)

)
L

)
=
∑

L∈ωK,2

∫
L

j(eRitz − ΠhpeRitz)−
∫
L

∇(zuFE + wuFE)∇(eRitz − ΠhpeRitz)

+

∫
L

zϱFE∇ · (eRitz − ΠhpeRitz).

(4.42)

Using integration by parts and letting j = j − ILpLj + ILPL
j we will get

∥∇eRitz∥2ωK,2
=
∑

L∈ωK,2

(∫
L

(j − ILpLj)(eRitz − ΠhpeRitz)

+

∫
L

(ILpLj +∆zuFE +∆wuFE −∇zϱFE)(eRitz − ΠhpeRitz)

+
1

2

∑
e∈(ωK,2,L)

∫
e

(
∂wuFE

∂nL

+
∂zuFE

∂nL

)(
eRitz − ΠhpeRitz

))
.

(4.43)

To get the upper bound of (4.43) by using Theorem 2.2.3 we will get

|I| :=
∣∣∣∣∫

L

(j − ILpLj)(eRitz − ΠhpeRitz)

∣∣∣∣ ≤ CSZ
hL
pL

∥∥j − ILpLj
∥∥
L
∥∇eRitz∥ωL,1

, (4.44)
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|II| :=
∣∣∣∣∫

L

(ILpLj +∆zuFE +∆wuFE −∇zϱFE)(eRitz − ΠhpeRitz)

∣∣∣∣
≤ CSZ

hL
pL

∥∥ILpLj +∆zuFE +∆wuFE −∇zϱFE

∥∥
L
∥∇eRitz∥ωL

,

(4.45)

1

2
|III| := 1

2

∣∣∣∣∣∣
∑

e∈(ωK,2,L)

∫
e

(
∂wuFE

∂nL

+
∂zuFE

∂nL

)(eRitz − ΠhpeRitz)

∣∣∣∣∣∣
≤ 1

2
CSZ

∑
e∈(ωK,2,L)

√
he
pe

(∥∥∥∥[∂wuFE

∂nL

]∥∥∥∥
e

+

∥∥∥∥[∂zuFE

∂nL

]∥∥∥∥
e

)∥∥∥∥∇eRitz

∥∥∥∥
ωL

.

(4.46)

Adding the above equations together and put in equation (4.43) gives

∥∇eRitz∥2ωK,2
≤C
(
hL
pL

∥ILpLj +∆zuFE +∆wuFE −∇zϱFE∥L

+
1

2

∑
e∈(ωK,2,L)

√
he
pe

(∥∥∥∥[∂wuFE

∂nL

]∥∥∥∥
e

+

∥∥∥∥[∂zuFE

∂nL

]∥∥∥∥
e

)

+
hL
pL

∥∥∥∥j − ILpLj∥L∥∇eRitz∥ωL,1

)∥∥∥∥∇eRitz

∥∥∥∥
ωK,2

.

(4.47)

Similarly for the second error term we have

∥ϵRitz∥2ωK,2
= ∥wϱ − wϱFE∥2ωK,2

=

∣∣∣∣∣
∫
ωK,2

ϵRitz · ϵRitz

∣∣∣∣∣
=

∣∣∣∣∣
∫
ωK,2

∇ · zuFEϵRitz − wϱFEϵRitz

∣∣∣∣∣
=

∣∣∣∣∣
∫
ωK,2

(∇ · zuFE − wϱFE)ϵRitz

∣∣∣∣∣
≤ ∥∇ · zuFE − wϱFE∥ωK,2

∥ϵRitz∥ωK,2
.

(4.48)

Adding up equations (4.47) and (4.48) and by definition of the residual estimator

∥∇e∥2ωK,2
+ ∥ϵ∥2ωK,2

≤ CRitz
rel

(
η̃2L(K) +

∑
L∈ωK,2

h2L
p2L

∥j − Πj∥2ωK,2

)
. (4.49)
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4.3 Goal-oriented a posteriori error estimator

Similar to the the a posteriori error estimator for the primal problem, the goal-oriented a poste-

riori error estimator ζ can also be decomposed into local error estimators on each cell ζK :

ζ2 :=
∑
K∈T

ζ2K .

The goal-oriented local error estimators ζ2K are defined as

ζ2K := ρ2K η2K , (4.50)

where the local weight ρK is given by

ρ2K := η̃(K)2 + ∥∇wuFE∥2ωK,2
+ ∥wϱFE∥2ωK,2

. (4.51)

Here η̃(K) is derived from variational equation (4.12), and (∇wuFE , wϱFE) are the solutions of the

discrete variational equation (4.14), where we took the energy norm of those solutions. Before

showing the reliability and efficiency of the proposed goal-oriented a posteriori error estimator, the

following lemmas give some auxiliary results which will be used later in the proof of reliability

and efficiency for the goal-oriented error and estimator.

Lemma 4.3.1. Let (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T and L ∈ ωK,2 be arbitrary.

Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and (wuFE , wϱFE) ∈ Vp+1(ωK,2) be

the solution of (4.14). Then there exists some constant C > 0 independent of mesh size hL and

polynomial degree pL such that:

∥∇(zu − zuFE)∥2ωK,1
+ ∥zϱ − zϱFE∥2ωK,1

≤ C(∥∇wu∥2ωK,2
+ ∥wϱ∥2ωK,2

). (4.52)

Proof. The Proof easily follows from theorem 6.1 of [57] by Ainsworth and Oden.
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Lemma 4.3.2. Let (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T and L ∈ ωK,2 be arbitrary.

Moreover assume (wu, wϱ) ∈ H(ωK,2) be the solution of (4.12) and (wuFE , wϱFE) ∈ Vp+1(ωK,2) be

the solution of (4.14). Then there exists some constant C > 0 independent of mesh size hL and

polynomial degree pL such that:

∥∇(wu − wuFE)∥2ωK,2
+ ∥∇wuFE∥2ωK,2

+ ∥wϱ − wϱFE∥2ωK,2
+ ∥wϱFE∥2ωK,2

≤ C∥∇(zu − zuFE)∥2ωK,2
+ ∥zϱ − zϱFE∥2ωK,2

.

(4.53)

Proof. Consider the solution of equations (4.12) and (4.14) and using the triangle inequality, for

some C1 and C2 > 0 we have

∥∇(wu − wuFE)∥2ωK,2
≤ C1(∥∇wu∥2ωK,2

+ ∥∇wuFE∥2ωK,2
) (4.54)

and

∥wϱ − wϱFE∥2ωK,2
≤ C2(∥wϱ∥2ωK,2

+ ∥wϱFE∥2ωK,2
). (4.55)

By equation (4.13) and also from norm equivalence given in equation (6.15) of [57] we get

(∥∇wu∥2ωK,2
+ ∥wϱ∥2ωK,2

)
1
2 = |||(ed, Ed)|||ωK,2

≤ C(∥∇ed∥2ωK,2
+ ∥Ed∥2ωK,2

)
1
2

= C(∥∇(zu − zuFE)∥2ωK,2
+ ∥zϱ − zϱFE∥2ωK,2

)
1
2 .

(4.56)

Using the results given in Theorems 3.1 and 3.2 and equations (3.14) and (3.15) of [81] we have

(∥∇wuFE∥2ωK,2
+ ∥wϱFE∥2ωK,2

)
1
2 ≤ (∥∇(zu − zuFE)∥2ωK,2

+ ∥zϱ − zϱFE∥2ωK,2
)
1
2 . (4.57)

The proof completes by combining equations (4.54)-(4.57).
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Theorem 4.3.3 (Reliability of Goal-Oriented A posteriori Error Estimation). Let (u, ϱ) ∈ H be

the solution of (2.3) and (uFE, ϱFE) ∈ Vp+1 be the solution of (2.10). Further let (zu, zϱ) ∈ H be

the solution of (4.2) and (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T be arbitrary, then

there exists a constant C > 0 independent of mesh size hK and polynomial degree vector pK such

that

|J(u, ϱ)− J(uFE, ϱFE)|2 ≤ Crel

∑
K∈T

(
η2K(uFE, ϱFE, I

K
pK
f) +

h2K
p2K

∥f − IKpKf∥
2
K

)
(
ρ2K +

h2K
p2K

∥j − IKpK∥
2
ωK,2

)
.

Proof. By definition given in (4.3) and (4.4)

J(u, ϱ)Ω = (∇u,∇zu)Ω − (∇ · u, zϱ)Ω − (ϱ,∇ · zu)Ω, (4.58)

and

J(uFE, ϱFE)Ω = (∇uFE,∇zu)Ω − (∇ · uFE, zϱ)Ω − (ϱFE,∇ · zu)Ω. (4.59)

Subtracting equations (4.58) and (4.59) gives

J(u, ϱ)Ω − J(uFE, ϱFE)Ω =(∇(u− uFE),∇zu)Ω − (∇ · (u− uFE), zϱ)Ω

− (ϱ− ϱFE,∇ · zu)Ω.
(4.60)

The error terms corresponding to the solution of dual problem (4.2) are defined as ed := zu − zuFE

and Ed := zϱ − zϱFE . By Galerkin orthogonality we have

L([u− uFE, ϱ− ϱFE]; [zuFE − Πhped, zϱFE ]) = 0. (4.61)
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Inserting (4.61) into (4.60) we will get

J(u, ϱ)Ω − J(uFE, ϱFE)Ω = (∇(u− uFE),∇(ed − Πhped))Ω

− (∇ · (u− uFE), zϱ − zϱFE)Ω

− (ϱ− ϱFE,∇ · (e− Πhped))Ω.

(4.62)

Using integration by parts gives

|J(u, ϱ)Ω − J(uFE, ϱFE)Ω| ≤
∑
K∈T

(∫
K

−∆(u− uFE)(e
d − Πhped)

+

∫
K

∇(ϱ− ϱFE)(e
d − Πhped)

−
∫
K

∇ · (u− uFE)(zϱ − zϱFE)

+
∑

e∈E(T )

∫
e

[
∂uFE

∂nK

](
ed − Πhped

))

=
∑
K∈T

(
(f +∆uFE −∇ϱFE, e

d − Πhped)K

+ (∇ · (u− uFE), zϱ − zϱFE)K

+
∑

e∈E(T )

([
∂uFE

∂nK

]
, ed − Πhped

)
e

)

=
∑
K

(
(IpKK f +∆uFE −∇ϱFE, e

d − Πhped)K

+ (f − IpKK f, ed − Πhped)K

+ (∇ · (u− uFE), zϱ − zϱFE)K

+
∑

e∈E(T ;K)

([
∂uFE

∂nK

]
, ed − Πhped

)
e

)
.

(4.63)

|J(u, ϱ)Ω − J(uFE, ϱFE)Ω|2 ≤ C
∑
K

(T 2
1 (K) + T 2

2 (K) + T 2
3 (K) + T 2

4 (K)). (4.64)
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Using the Cauchy-Schwarz inequality and also Scott-Zhang interpolation, Theorem 2.2.3 gives

|T 2
1 (K)| := |(IpKK f +∆uFE −∇ϱFE, e

d − Πhped)K |2

≤ CSZ
h2K
p2K

∥IpKK f +∆uFE −∇ϱFE∥2K · ∥∇(zu − zuFE)∥2ωK,1
.

|T 2
2 (K)| := |(f − IpKK f, ed − Πhped)K |

≤ CSZ
h2K
p2K

∥f − IpKK f∥2K∥∇(zu − zuFE)∥2K .

|T 2
3 (K)| := |(∇ · (u− uFE), zϱ − zϱFE)K | ≤ ∥∇ · uFE∥2K∥zϱ − zϱFE∥2K .

|T 2
4 (K)| :=

∣∣∣∣ ∑
e∈E(T ;K)

([
∂uFE

∂nK

]
, ed − Πhped

)
e

∣∣∣∣
≤ 2CSZ

∑
e∈E(T ;K)

he
2pe

∥∥∥∥[∂uFE

∂nK

]∥∥∥∥2
e

∥∇(zu − zuFE)∥2ωK,1
.

|J(u, ϱ)Ω − J(uFE, ϱFE)Ω|2 ≤ C

(
η2K,R + η2K,B +

h2K
p2K

∥f − IpKK f∥2K
)

(
∥∇(zu − zuFE)∥2ωK,1

+ ∥zϱ − zϱFE∥2ωK,1

)
.

(4.65)

By Lemma 4.3.1, for some C > 0 we have

∥∇(zu − zuFE)∥2ωK,1
+ ∥zϱ − zϱFE∥2ωK,1

≤ C(∥∇wu∥2ωK,2
+ ∥wp∥2ωK,2

). (4.66)

The triangle inequality then gives

∥∇wu∥ωK,2
+ ∥wϱ∥ωK,2

≤∥∇(wu − wuFE)∥ωK,2
+ ∥∇wuFE∥

+ ∥wϱ − wϱFE∥ωK,2
+ ∥wϱFE∥ωK,2

= (∥∇(wu − wuFE)∥ωK,2
+ ∥wϱ − wϱFE∥ωK,2

)

+ (∥∇wuFE∥ωK,2
+ ∥wϱFE∥ωK,2

).
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By Theorem (4.2.6), and equations (4.50) and (4.51) we have

∥∇wu∥2ωK,2
+ ∥wϱ∥2ωK,2

≤Crel

(
η̃(K)2 +

∑
K

hK
pK

∥j − IpKK j∥2ωK,2

)
+ ∥∇wuFE∥2ωK,2

+ ∥wϱFE∥2ωK,2

= C

(
ρ2K +

h2K
p2K

∥j − IpKK j∥2ωK,2

)
.

(4.67)

The final reliability result comes by letting the equation (4.67) into (4.65).

Theorem 4.3.4 (Efficiency of Goal-Oriented A posteriori Error Estimation). Let (u, ϱ) ∈ H be the

solution of (2.3) and (uFE, ϱFE) ∈ Vp+1 be the solution of (2.10). Further let (zu, zϱ) ∈ H be the

solution of (4.2) and (zuFE , zϱFE) ∈ Vp(T ) be the solution of (4.4), K ∈ T be arbitrary, then there

exists a constant C > 0 independent of mesh size hK and polynomial degree vector pK such that

ξ2K ≤Ceff

(
p2K(∥∇(u− uFE)∥2ωK,1

+ ∥ϱ− ϱFE∥2ωK,1
) +

h2K
pK

∥f − Πf∥ωK,1

)
×(

p
3+ε
2

K (∥∇(zu − zuFE)∥2ωK,3
+ ∥zϱ − zϱFE∥2ωK,3

) +
h2K

p
1+ε
2

∥j − IpKK j∥2ωK,2

)

Proof. By equation (4.50) we know that ζ2K := ρ2K η2K . Equation (4.9) of Lemma 4.2.1 implies

η2K ≤ Ceff

(
p2K
(
∥∇ (u− uFE)∥2ωK

+ ∥ϱ− ϱFE∥2ωK

)
+
h2K
pK

∥∥IKpKf − f
∥∥2
ωK

)
, (4.68)

also from equation (4.51) we have

ρ2K := η̃(K)2 + ∥∇wu,FE∥2ωK,2
+ ∥wϱ,FE∥2ωK,2

, (4.69)
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using the efficiency results given in Lemma 4.2.5

η̃2(K) =
∑

L∈ωK,2

η̃2L ≤Ceff p
3+ϵ
2

K

(
∥∇(wu − wuFE)∥2ωK,3

+ ∥wϱ − wϱFE∥2ωK,3

)
+

h2L

p
1+ϵ
2

L

∥j − ILpLj∥
2
ωK,3

.

Therefore equation (4.51) reads as

ρ2K ≤Cd
eff

(
p

3+ϵ
2

L

(
∥∇(wu,K − wuFE,K)∥2ωK,3

+ ∥wϱ,K − wϱFE,K∥2ωK,3

)
+ ∥∇wu,FE∥2ωK,3

+ ∥wϱ,FE∥2ωK,3
+

h2L

p
1+ϵ
2

L

∥j − ILpLj∥
2
ωK,3

)
.

(4.70)

By Lemma 4.3.2

ρ2K ≤ C

(
p

3+ϵ
2

L

(
∥∇(zu − zuFE)∥2ωK,3

+ ∥zϱ − zϱFE∥2ωK,3

)
+

h2L

p
1+ε
2

L

∥j − ILpLj∥
2
ωK,3

)
. (4.71)

The result immediately follows by multiplying equations (4.68) and (4.70).

4.4 Goal-oriented h- and hp-AFEM refinement strategy

We present a fully automatic h- and hp-adaptive refinement strategy using the proposed goal-

oriented error estimator. The algorithm relies on the standard adaptive refinement loop of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (4.72)

4.4.1 GO-h-AFEM algorithm

The fully automatic goal-oriented h-AFEM is shown in Algorithm 2.

4.4.2 GO-hp-AFEM algorithm

Algorithm 3 shows the fully automatic goal-oriented hp-AFEM as follows.
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Algorithm 2 Goal-oriented h-AFEM algorithm

• Initialization: Set N = 0, a coarse mesh T0, θ ∈ (0, 1] and also tolerance TOL.

• SOLVE primal: Find the solution (uFE, ϱFE) of primal problem (2.10).

• SOLVE dual: Find the solution (zuFE , zϱFE) of dual problem (4.4).

• SOLVE local problems: Find the solution (wuFE , wϱFE) of local variational problem (4.12)
for each cell K.

• ESTIMATE: Compute goal-oriented a posteriori error estimation given by equation (4.50),
if ζK < TOL then STOP the algorithm.

• MARK: Find set of marked cells M ⊆ T with minimal cardinality such that the following
fixed fraction property holds: ∑

k∈M

ζ2K ≥ θ2ζ2 (4.73)

• REFINE Refine the marked cells and set N = N + 1 and go to step SOLVE primal.

Algorithm 3 Goal-oriented hp-AFEM algorithm

• Initialization: Set N = 0, a coarse mesh T0, θ ∈ (0, 1] and also tolerance TOL.

• SOLVE primal: Find the solution (uFE, ϱFE) of primal problem (2.10).

• SOLVE dual: Find the solution (zuFE , zϱFE) of dual problem (4.4).

• SOLVE local problems: Find the solution (wuFE , wϱFE) of local variational problem (4.12)
for each cell K.

• ESTIMATE: Compute goal-oriented a posteriori error estimation given by equation (4.50),
if ζK < TOL then STOP the algorithm.

• MARK: For each cell K ∈ TN and for all refinement patterns j ∈ 1, 2, 3, · · · , n, compute
the convergence indicator kK,j based on the formulation given in equation (3.20).

• REFINE: Refine set of marked cells M ⊆ T with minimal cardinality such that the follow-
ing fixed fraction property holds: ∑

k∈M

k2K,jζ
2
K ≥ θ2ζ2, (4.74)

set N = N + 1 and go to step SOLVE primal.
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4.5 Numerical results

All the numerical experiments are implemented in R2, we also set the viscosity ν = 1, and

consider Taylor-Hood finite elements pk+1 − pk. We want to illustrate the performance of our lo-

cally defined dual-weighted goal-oriented error estimator for both h- and hp-adaptive refinement

strategy. Instead of newest vertex bisections, which is the ordinary mesh refinement method for

triangles, we use the quadrilateral refinement strategy as its refinement rules and the computa-

tional complexity is well studied in [88]. Therefore, the initial triangulation T0 of Ω ∈ R2 and

its corresponding refinements are made of quadrilaterals. As implemented in deal.II [76], we let

at most one hanging node per edge exists. For the marking strategy in our goal-oriented adaptive

refinement we implement exactly the algorithms proposed as Algorithm 2 and Algorithm 3 for the

h- and hp-refinement, respectively. In this section, all convergence plots represent the average or

asymptotic convergence rates with black dashed and solid lines. As we know from a priori error

analysis of finite elements, typically O(hp) is the expected convergence rate in the energy norm,

where h denotes the diameter of elements. Since in the error analysis of adaptive refinements one

ends up to adaptive refinements with non-uniform mesh sizes, it does not make too much sense to

use this notation for convergence lines. Instead, we draw the dashed lines with O(N− p
d ), where

N shows the number of degrees of freedom and d is the space dimension, in our case d = 2. It

is also important to mention both dual and primal solutions live at the same finite element space.

Therefore, it is computationally cheap to compute the solution in this finite element setting. All

the implementations are done in the open source finite element library deal.II [76].

Example 1 - Smooth solution in two dimensions

Let Ω = (−1, 1)× (−1, 1) be a square domain and the velocity field u and pressure ϱ be given

[79] by

u =

 2y cos(x2 + y2)

−2x cos(x2 + y2)

 , ϱ = e−10(x2+y2) − pm,
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(a) Magnitude of the velocity component of the primal
problem. (b) Pressure component of the primal problem.

(c) Magnitude of the velocity component of the influ-
ence function associated with the average of velocity
on Ω1 ⊂ Ω. (d) Pressure component of the dual problem.

Figure 4.1: Example-1-a: velocity magnitude and pressure associated with primal and dual prob-
lems.

where pm is defined such that
∫
Ω
ϱ = 0, and the data is computed as f = −∆u +∇ϱ. In the first

example, we are interested in computing two functionals as follows:

4.5.1 Example 1-a : Average of velocity values over Ω1 ⊂ Ω

The first functional of interest is J(u) =
∫
Ω1
(1, 1) · u, where Ω1 = [0.5, 1]× [0.5, 1] and u de-

notes the velocity vector. The exact solution of primal and dual problem are shown in Figure 4.1.

Figure 4.2 shows both h- and hp- adaptive meshes generated by our locally defined dual-weighted
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(a) Goal-oriented hp-AFEM (b) Goal-oriented h-AFEM

(c) hp-AFEM using Energy-estimate (d) h-AFEM using Energy-estimate

Figure 4.2: Example-1-a: (First row) triangulation produced by h- and hp-GO-AFEM; (Second
row) h, hp-AFEM with almost the same number of degrees of freedom.

goal-oriented error estimator namely GO-AFEM and also using the energy error estimator, AFEM.

As we can see in 4.2c and 4.2d for the standard AFEM triangulation, the adaptive refinements are

made where the energy error estimator captures the largest error in the primal solution. Whereas,

in the goal-oriented AFEM in Figures 4.2a and 4.2b, the local refinements appears in areas where

the dual solution is non-smooth. For the convergence rate in h-GO-AFEM, it is important to men-

tion that using the p2 − p1 Taylor-Hood finite elements for smooth primal and dual solutions, their

solutions are in nonlinear approximation class A p
d
= 2

2 . Therefore, we expect the decay rate in the
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(a) hp-Goal-oriented
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(b) h-Goal-oriented

Figure 4.3: Example-1-a: Convergence of goal estimator and the goal-functional error for both h-
and hp-GO-AFEM.
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Figure 4.4: Example-1-a: Convergence rate comparison between h- and hp-GO-AFEM.
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(a) GO-hp- vs. hp- error estimator
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(b) GO-h- vs. h- error estimator

Figure 4.5: Example-1-a: Goal-oriented error estimator convergence rate using GO-AFEM and
AFEM for both hp and h-adaptive refinement.

functional error is O
(
#T −#T0

)−2

≈ O(N−2), where N denotes the number of degrees of free-

dom. Figure 4.3 presents the convergence plots between the functional error and the goal-oriented

estimator for both h- and hp-GO-AFEM. Figure 4.4 shows the convergence rate comparison be-

tween h- and hp goal-oriented adaptive refinement for the goal-oriented error estimator. We reach

to the exponential convergence rate for the hp-GO-AFEM. Moreover, the refinement by h-GO-

AFEM converges with expected optimal rate O(N−2). Finally, the last Figure 4.5 demonstrates

the convergence rate in the goal-estimator using both goal-oriented and also the energy estimator.

We give the results for both h- and hp-adaptive refinements. The solid lines corresponding to the

convergence rate in Figures 4.5a and 4.5b are shown to give the measure of convergence rate in

both h- and hp-GO-AFEM. Due to the knowledge we have on the convergence rate for the h-GO-

AFEM we can claim that our goal-oriented AFEM converges with quasi-optimal rate as expected

for the Stokes problem using p2 − p1 finite elements. From the blue line corresponding to the non

goal-oriented h-AFEM in Figure 4.5b, we see its convergence rate is slower than O(N−2).
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(a) Magnitude of the velocity component of the influ-
ence function associated with the point-wise error at
(0.5, 0.5). (b) Pressure component of the dual problem.

Figure 4.6: Example-1-b: Exact solutions in dual problem.

4.5.2 Example 1-b : Point-wise value

For the second case, we are interested in the point-wise error at some given point. Therefore,

we set the delta function at point (x0, y0) = (0.5, 0.5) as the right hand side of the dual problem.

j(x, y) =

e−µ((x−0.5)2+(y−0.5)2)

e−µ((x−0.5)2+(y−0.5)2)

 , (4.75)

where µ = 10−4. The influence function would converge to the corresponding green’s function as µ

tends to zero. The goal here is to get the least possible point-wise error using both hp and h adaptive

refinement strategy. The exact solutions corresponding to the dual problem are shown in Figure

4.6. Figure 4.7 shows both the h- and hp- adaptive meshes generated by using the locally defined

dual-weighted goal-oriented error estimator namely the GO-AFEM. the adaptive triangulations

generated by GO-AFEM confirm that the local refinements appears in areas where the dual solution

is non-smooth. The convergence plots for both functional error and the goal-oriented estimator in

h- and hp-refinements can be seen in Figure 4.8. As the plots in this figure show, the locally defined
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(a) Goal-oriented hp-AFEM (b) Goal-oriented h-AFEM

Figure 4.7: Example-1-b: Triangulation produced by h- and hp-GO-AFEM.
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(a) hp-Goal-oriented
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(b) h-Goal-oriented

Figure 4.8: Example-1-b: Convergence of goal estimator and the goal-functional error for both h-
and hp-GO-AFEM.
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Figure 4.9: Example-1-b: Convergence rate comparison between h- and hp-GO-AFEM.

dual-weighted goal-oriented estimator for both h- and hp- is a reliable estimator for the error in the

corresponding functional of interest. Figure 4.9 shows the convergence rate comparison, for the

goal-oriented error estimator between h- and hp goal-oriented adaptive refinement. We observe

the exponential convergence rate in the hp-GO-AFEM compared with h-GO-AFEM. It is also

interesting to see the goal-estimator using h-GO-AFEM decays with the optimal rate O(N−2).

The last Figure 4.10 demonstrates the convergence rate in the goal-estimator using GO-AFEM and

the traditional AFEM by the energy estimator. We give the results for both h- and hp-adaptive

refinements.
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(a) GO-hp- vs. hp- error estimator
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(b) GO-h- vs. h- error estimator

Figure 4.10: Example-1-b: Goal-oriented error estimator convergence rate using both GO-AFEM
and AFEM.

4.5.3 Example 2 - Singular solution in two dimensions

In this example, we consider the singular solution to the Stokes problem in an L-shaped domain

in two-dimensions

Ω := (−1, 1)2\([0, 1]× [−1, 0]).

The exact velocity u and pressure ϱ are given in polar coordinates by [78, 64] as follows:

u(r, φ) = rα

cos(φ)ψ′
(φ) + (1 + α) sin(φ)ψ(φ)

sin(φ)ψ
′
(φ)− (1− α) cos(φ)ψ(φ)

 ,
and

ϱ(r, φ) = −rα−1 (1 + α)2ψ
′
(φ) + ψ

′′′
(ϕ)

1− α
,
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(a) Pressure component of the primal problem

(b) Magnitude of the velocity component of the influ-
ence function associated with the average of velocity
on Ω1 ⊂ Ω

Figure 4.11: Example-2: Exact solution of the primal problem, and the influence function of the
dual problem.

where ψ(φ) is as follows:

ψ(φ) =
sin((1 + α)φ) cos(αω)

1 + α
− cos((1 + α)φ)

− sin((1− α)φ) cos(αω)

1− α
+ cos((1− α)φ),

ω =
3π

2
,

and parameter α is the smallest positive solution of

sin(αω) + α sin(ω) = 0, α ≈ 0.54448373678246.

Here we consider the quantity of interest J(u) =
∫
Ω1
(1, 1)·u as the average value of velocity on Ω1,

where u denotes the vector of velocity and Ω1 = [0.5, 1]× [0.5, 1]. The exact solution of primal and

dual problem that we are interested in, both are shown in Figure 4.11. Figure 4.12 shows both h-

and the hp- adaptive refinements generated by using locally defined dual-weighted goal-oriented

error estimator namely GO-AFEM and also using the energy error estimator in AFEM. As the
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(a) Goal-oriented hp-AFEM (b) Goal-oriented h-AFEM

(c) hp-AFEM using Energy-estimate (d) h-AFEM using Energy-estimate

Figure 4.12: Example-2: (First row) triangulation produced by h- and hp-GO-AFEM; (Second
row) h, hp-AFEM with almost the same number of degrees of freedom.

refinements show in that figure, the energy error estimator tries to refine the areas with large error

contribution caused by singularities from the primal problem, whereas the triangulations generated

by goal-oriented estimator captures the error in the area where the influence functional is large.

The corresponding convergence plots between the functional error and the goal-oriented estimator

for both h- and hp-adaptive cases can be seen in 4.13. As we can see in this figure, for both

h and hp refinements, the goal-oriented estimator shows a reliable a posteriori estimator for the

functional errors. Figure 4.14 shows the convergence rate comparison for the goal-oriented error
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(a) hp-Goal-oriented
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(b) h-Goal-oriented

Figure 4.13: Example-2: Convergence of goal estimator and the goal-functional error for both h-
and hp-GO-AFEM.

estimator between h- and hp goal-oriented adaptive refinement. The last Figure in this example

4.15, demonstrates the convergence rate in the goal-estimator using GO-AFEM and AFEM by

energy estimator. We give the results for both h- and hp-adaptive refinements. Considering the

discussion on a priori error estimation for primal problem using p2 − p1 Taylor-Hood elements we

expect the energy error converges with rate O(h2) = O(N−1), where N denotes the number of

degrees of freedom. Therefore the expected optimal convergence rate for the goal oriented error

would be O(N−2). We refer to [89] and [90] for deeper discussion in this regard. In this example,

we solve the Stokes problem on an L-shape domain, the situation is different and we want to

briefly discuss the expected error rate for problems on the L-shape domain. The L-Shape domain

is a polyhedral domain with maximum edge opening angle ω = 3π
2

. The re-entrant corner gives

a corners singularity of the form ρ
π
ω
edge = ρ

2
3 , such that ρedge is the distance to the given edge. In

general, an adaptive method is called optimal, if it achieves the best possible convergence rate with

respect to the polynomial degree that is O(N− p
d ), where d = 2 in our case. So that we expect in

this example using p2−p1 elements for the primal or dual problem we achieve the rate O(DOF−1).
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Figure 4.14: Example-2: Convergence rate comparison between h- and hp-GO-AFEM.

However, in our numerical experiments we observed using any pk − pk−1 finite elements the error

rate did not go any better than O(h
2
3 ) = O(N− 1

3 ). In this case, using shape-regular finite elements

of any higher degree won’t improve the convergence rate, and it is just computational waste for no

gain. To justify this result, it is important to remember that on a polyhedral domain with maximum

edge opening angle ω, in this case the L-shape domain with ω = 3π
2

, we will achieve a convergence

rate of

∥∇(u− uh)∥L2(Ω) + ∥ϱ− ϱh∥L2(Ω) . O(N
−s
2 ), s = min(

p

2
,
π

ω
). (4.76)

Therefore based on the results in equation(4.76), the best possible convergence rate for the primal

and dual problem is O(N− 1
3 ). For the goal-oriented h-AFEM error estimator, we expect to achieve

the optimal convergence rate of O(N− 2
3 ). Our observation for both hp-AFEM and GO-hp-AFEM

shows nice exponential convergence rate is achieved. Again as we expect in both figures 4.15a and

4.15b the values of functional error using the GO-AFEM is smaller than the AFEM. This is due
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(a) GO-hp- vs. hp- error estimator
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(b) GO-h- vs. h- error estimator

Figure 4.15: Example-2: Goal-oriented error estimator convergence rate using both GO-AFEM
and AFEM.

to the fact that the goal-oriented refinement performs in such a way that it captures large errors in

the vicinity of influence function domain, but standard AFEM refines just to minimize the error

caused by the primal problem.

4.5.4 Example 3 - Fluid runs through a bent pipe

In this example, we consider the Stokes flows through a bent pipe. We prescribe the homoge-

neous Dirichlet boundary condition on the walls. For the inlet and outlet we set Parabolic profile.

We are interested in computing the average values of velocity components over the sub-domain

Ω1 = [2, 2.5] × [−1,−0.5]. The exact solution of primal and dual problem are shown in Figure

4.16. Figures 4.17- 4.20 show both the h- and hp- adaptive refinement generated by using the

locally defined dual-weighted goal-oriented error estimator, namely the GO-AFEM, and also us-

ing the energy estimator AFEM. Figure 4.21 presents the convergence rate comparison, for the

goal-oriented error estimator between h- and hp goal-oriented adaptive refinements. The next Fig-

ure 4.22, demonstrates the convergence rate in the goal-estimator using GO-AFEM and AFEM by
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(a) Magnitude of the velocity component of the primal
problem

(b) Magnitude of the velocity component of the influ-
ence function associated with the average of velocity
on Ω1 ⊂ Ω

Figure 4.16: Example-3: Exact solution of primal problem and the influence function of the dual
problem.

energy estimator. In this example, we give the results for both h- and hp-adaptive refinements.
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Figure 4.17: Goal-oriented hp-AFEM

Figure 4.18: Goal-oriented h-AFEM
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Figure 4.19: hp-AFEM using the energy error estimator

Figure 4.20: h-AFEM using the energy estimator
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Figure 4.21: Example-3: Convergence rate comparison between h- and hp-GO-AFEM.
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(a) GO-hp-AFEM vs. hp-AFEM
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Figure 4.22: Example-3: Goal-oriented error estimator convergence rate using both GO-AFEM
and AFEM.
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5. ANALYSIS OF GOAL-ORIENTED H-AFEM WITH QUASI-OPTIMAL

CONVERGENCE RATE FOR SYMMETRIC SECOND-ORDER LINEAR ELLIPTIC

PDES

5.1 Introduction

In this chapter, we analyze a goal-oriented adaptive finite element method (GO-AFEM) for

symmetric second-order linear elliptic PDEs as our model problem. For the marking in our pro-

posed goal-oriented AFEM in Algorithm 5, we take the union of marking sets as a result of Dörfler

marking on primal and dual problems. As we show in section 5.2.3 the primal and dual estimator

product controls the error in the functional of interests in the goal-oriented adaptivity. Following

the idea of Carstensen et al. [5], in section 5.3.3, we demonstrate these two estimators for primal

and dual problems will satisfy the so-called axioms of adaptivity as the abstract properties needed

to prove the optimal convergence rate. With the aforementioned tools in hand, and following the

leads of Feischl et al. [3], we can establish a framework to show the linear convergence with

optimal rate in primal and dual estimator products for our proposed goal-oriented adaptive finite

element method.

5.1.1 Outline

In section 5.2, we present our model problem and its dual setting. Then in 5.2.1 and 5.2.2, we

introduce the error estimators corresponding to the primal and dual problems. In section 5.2, we

present both the goal-oriented algorithm proposed in [39], and our goal-oriented algorithm. Some

preliminary definitions and required tools are presented in section 5.3. The important auxiliary

results which provide us with an abstract framework for the optimality analysis are given in 5.3.3.

In section 5.4, we apply the tools and results of the previous sections to prove the main result

which is the optimality in our proposed goal-oriented marking strategy. Finally in section 5.5,

we present some numerical examples showing that our goal-oriented algorithm is optimal, and we

also compare our results with both dual-weighted goal-oriented algorithm introduced in [1], and
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the standard AFEM using the energy error estimator.

5.2 Goal-oriented error estimator and GO-AFEM refinement algorithm

For the polygonal domain Ω ⊂ R2 and the given data f ∈ L2(Ω), let u : Ω̄ −→ R be the

solution of the following elliptic model problem, which we consider through this work,

−∆u = f in Ω,

u = 0 on ∂Ω.

(5.1)

For simplicity we impose the zero boundary conditions, but the results hold for any type of bound-

ary settings. Multiply by a test function ϕ ∈ H1
0 (Ω) := V and applying integration by parts, the

weak formulation for (5.1) reads as follows: find u ∈ V such that

a(ϕ, u) :=

∫
Ω

(∇ϕ)T∇u =

∫
Ω

ϕf, ∀ϕ ∈ V. (5.2)

In the goal-oriented adaptive finite element method for the given linear bounded functional J ∈

H−1(Ω) := V ∗, the goal is to best approximate the function of interest J (u). Following the Riesz

representation theorem, there exists some function j ∈ L2(Ω) such that

J (ϕ) =

∫
Ω

jϕ ∀ϕ ∈ L2(Ω). (5.3)

We find z ∈ V as solution of the dual problem

a(z, ϕ) :=

∫
Ω

(∇z)T∇ϕ = J (ϕ), ∀ϕ ∈ V. (5.4)

Now, assume T = {K} is family of triangulation associated with the problem domain Ω ∈ R2.

Further, we define the mesh size vector h := (hK)K∈T , where hK := diam(K). For the conform-

ing finite element space VT ⊂ V , let uFE ∈ VT be the unique Galerkin solution to

a(ϕFE, uFE) = (ϕFE, f) ∀ϕ ∈ VT . (5.5)
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Then let zFE be the Galerkin solution to

a(zFE, ϕFE) = (j, ϕFE) ∀ϕ ∈ VT . (5.6)

The error in the functional of interest follows as

|J (u)− J (uFE)| = |a(z, u− uFE)| 6 |z − zFE|1|u− uFE|1. (5.7)

Here |.|1 denotes the H1-seminorm and zFE is the Ritz projection of z. Before we move to the

details of our algorithm and its related discussion, we present some preliminary results needed

further on to demonstrate the results in the following sections.

5.2.1 A posteriori error estimator (Primal Problem)

Definition 5.2.1. Consider uFE ∈ VT as the solution of (5.5), the primal residual-based a posteriori

error estimator η is decomposed into a sum of local error indicators ηK ,

η2 :=
∑
K∈T

η2K . (5.8)

for each ηK it is decomposed into a cell and an interface contribution:

η2K := η2K;R + η2K;B, (5.9)

where the residual-based term ηK;R and the jump-based term ηK;B are defined as follows:

η2K;R := h2K∥IKf +∆uFE∥2L2(K)

η2K;B :=
1

2

∑
e∈E(K)

he

∥∥∥∥[duFE

dne

]∥∥∥∥2
L2(e)

,
(5.10)

where IKf denotes the local L2-projection of f on cell K. he is the length of edge e and the [·]

notation is the jump across the edge and ne is the outward pointing unit normal vector of cell K
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for each edge e. As it is proven in [68], the estimator is a reliable and also an efficient upper and

lower bound for the energy error of the primal problem.

The following theorem states the aforementioned upper and lower bounds, typically referred to

as the reliability and efficiency estimates.

Theorem 5.2.2. Let u ∈ H1
0 (Ω) be solution of (5.2) and uFE ∈ VT be the solution of (5.5). Then

there exists some constant Crel > 0 independent of mesh size vector h, such that

∥∇(u− uFE)∥2L2(Ω)2 6 Crel

(
η2 +

∑
K∈T

h2K∥f − IKf∥2L2(K)

)
, (5.11)

η2 6 Ceff

(
∥∇(u− uFE)∥2L2(Ω)2 +

∑
K∈T

h2K∥f − IKf∥2L2(ωK,1)

)
(5.12)

Proof. See [68, Proposition 4.2].

5.2.2 A posteriori error estimator (Dual Problem)

Continuing, we state some auxiliary results from [1] which are used to define the error estimator

for the energy error in the dual problem (5.4).

Lemma 5.2.3. Let zFE ∈ VT be solution of (5.6) and consider λFE as solution of the following

local variational equation

∫
ωK,2

(∇λFE)
T∇ϕ =

∫
ωK,2

jϕ− (∇zFE)
T∇ϕ ∀ϕ ∈ H1

0 (ωK,2), (5.13)

then we have

sup
ϕ∈H1

0 (ωK,2)

∫
ωK,2

jϕ− (∇zFE)
T∇ϕ

∥∇ϕ∥L2(ωK,2)

= ∥∇λK∥L2(ωK,2)

Proof. See [1, Lemma 1].

Following, we define the a posteriori error estimator for the patch problem associated with each

cell K (5.13).
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Definition 5.2.4. Let λKFE be the finite element solution associated of equation (5.13) and zFE is the

solution of (5.6), then the a posteriori error estimator η̃(K) for each cell K is defined as follows:

η̃(K)2 :=
∑

T∈ωK,2

η̃2T (K), (5.14)

where each local estimator is defined as:

η̃2T (K) := h2T∥IT j +∆zFE +∆λKFE∥2L2(T ) +
1

2

∑
e∈E(T )

he

∥∥∥∥[dzFE

dne

+
dλKFE

dne

]∥∥∥∥2
L2(e)

, (5.15)

and IKj denotes the local L2-projection of j on cell T . he is the length of interior edge e, the [·]

notation is the jump across the edge and ne is the outward pointing unit normal vector of cell K

for each edge e.

It has been proven in [1] that the above residual based error estimation is a reliable and efficient

estimate for the energy error of equation (5.13).

Lemma 5.2.5. Let z ∈ H1
0 (Ω) and zFE ∈ VT be the solution of (5.4) and (5.6), respectively.

Furthermore, for each cell K ∈ T consider λK ∈ H1
0 (ωK,2) as the solution of (5.13) and λKFE ∈

VT be its finite element approximation, then there exists constants Cpatch
rel > 0 and Cpatch

eff > 0

independent of mesh size hT , so that the following reliability and efficiency estimates hold:

∥∇(λ− λFE)∥2L2(ωK,2)
6 Cpatch

rel

(
η̃(K)2 +

∑
T∈ωK,2

h2T∥j − IT j∥2L2(T )

)
, (5.16)

η̃(K)2 6 Cpatch
eff

(
∥∇(λK − λKFE)∥2L2(ωT,1)

+ h2T∥j − IT j∥2L2(ωK,1)

)
. (5.17)

Proof. See [1, Proposition 1].

Next, we define an a posteriori error estimator for the dual problem, which is used later on

through our goal-oriented refinement algorithm 5, and also in the corresponding analysis therein.
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Definition 5.2.6. The associated error estimator for the dual problem (5.4) is defined as follows:

ξ2 :=
∑
K∈T

ξ2K ,

ξ2K := η̃(K)2 + ∥∇λKFE∥2L2(ωK,2)
, ∀K ∈ T .

(5.18)

The next two theorems demonstrate the upper and the lower bounds for the energy error in the

dual problem, which are the so-called reliability and efficiency estimates.

Theorem 5.2.7. Let z ∈ H1
0 (Ω) be solution of (5.4) and zh ∈ Vh is solution of discrete problem

(5.6), then the dual estimator introduced in (5.18) is a reliable error estimator for the energy error

of the dual-problem, where there exists a constant Cdual
rel > 0 independent of mesh size hk such

that:

∥∇(z − zFE)∥2Ω 6 Cdual
rel

(
ξ2 +

∑
K∈T

h2K∥j − IKj∥2L2(ωK,2)

)
. (5.19)

Proof. Proof follows exactly the lines of [1, Proposition 1, Theorem 3 and Lemma 5].

Theorem 5.2.8. Let z ∈ H1
0 (Ω) be the solution of (5.4) and zFE ∈ VT the solution of discrete

problem (5.6). Then the dual estimator introduced in (5.18) is an efficient error estimator for the

energy error of the dual-problem where there exists a constant Cdual
eff > 0 independent of mesh size

hk such that:

ξ2 6 Cdual
eff

(
∥∇(z − zFE)∥2L2(Ω) +

∑
K∈T

hK∥j − IKj∥2L2(ωK,3)

)
(5.20)

Proof. See equation (5.17) in Lemma 5.2.5, and also [1, Lemma 6 and Theorem 3].
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5.2.3 Goal-oriented adaptive algorithms

Additionally, from now on we assume some saturation assumption on data such that there exists

some τp, τd ∈ (0, 1]

∑
K∈T

h2K∥f − IKf∥2L2(K) 6 τ 2p η
2,

∑
K∈T

h2K∥j − IKj∥2L2(K) 6 τ 2d ξ
2,

(5.21)

where f and j are the data given for the primal and dual problems, respectively. η and ξ are

the residual estimators for the primal and dual problems. From the upper bound for the error in

the functional of interest given in (5.7), and the reliability estimates for both the primal and dual

problem as given in Theorems 5.2.2, 5.19, and 5.20 the following holds:

|J (u)− J (uFE)| 6 ∥∇(u− uFE)∥L2(Ω)∥∇(z − zFE)∥L2(Ω) . ηξ, (5.22)

where . denotes 6 up to a constant C > 0 independent of the mesh size h. We want to propose

a suitable marking strategy for our goal-oriented adaptive algorithm such that it gives us the tools

to prove that the right hand side of (5.22) which is the product of primal and dual estimators ηξ,

converges to zero with an optimal rate.

In order to set the preliminary and required tools for the analysis of optimal convergence rate,

we consider two goal-oriented algorithms. The first one, Algorithm 4, is the goal-oriented re-

finement algorithm in [39] introduced by Mommer and Stevenson (MS). The second one is our

proposed goal-oriented refinement strategy given in Algorithm 5, for which we aim to prove that

the product of the primal and the dual estimators converges to zero with optimal rate.

It is important to mention that in [84], the article by Holst et al., the proposed goal-oriented

algorithm follows exactly the adaptive Algorithm 4, except for the step MARK, where instead of

taking the marking set with the smallest cardinality at each iteration step n, they consider the goal-

oriented marked elements as being the union of primal and dual marking sets: Mn = Mu
n ∪Mz

n.
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Algorithm 4 Mommer-Stevenson (MS) goal-oriented algorithm, [39]
(Initialize): Set n = 0, a coarse mesh T0, θ ∈ (0, 1] and also tolerance TOL > 0. For all refinement
cycles n = 0, 1, 2, · · ·

• SOLVE: Find the finite element solutions (unFE, z
n
FE) of equations (5.5) and (5.6), respec-

tively.

• ESTIMATE: For all elements K ∈ Tn, compute the residual-based primal and dual refine-
ment indicators ηu,n(K) and ηz,n(K).
If ηu,n(K)ηz,n(K) < TOL, then STOP the algorithm.

• MARK: Find a set of marked elements Mn ⊆ Tn such that #Mn = min{#Mu
n,#Mz

n},
where the following Dörfler markings hold:

η2u,n(Mu
n) > θη2u,n, and η2z,n(Mz

n) > θη2z,n. (5.23)

• REFINE: Refine all the marked elements K ∈ Mn, such that Tn+1 := refine(Tn,Mn).

Algorithm 5 Goal-oriented adaptive algorithm
(Initialize): Set n = 0, a coarse mesh T0, θ ∈ (0, 1] and also tolerance TOL > 0. For all refinement
cycles n = 0, 1, 2, · · ·

• SOLVE: Find the finite element solutions (unFE, z
n
FE, λ

n
FE) of equations (5.5), (5.6) and (5.13),

respectively.

• ESTIMATE: For all elements K ∈ Tn, compute the primal and dual refinement indicators
ηK,n and ξK,n, as is defined in (5.10) and (5.18).
If ηK,nξK,n < TOL, then STOP the algorithm.

• MARK: Find a set of marked elements Mn ⊆ Mu
n

∪
Mz

n such that

η2n(Mn)ξ
2
n(Mn) > θ2η2nξ

2
n, (5.24)

where that the Dörfler marking holds for both our primal and dual estimator

η2n(Mu
n) > θη2n, and ξ2n(Mz

n) > θξ2n. (5.25)

• REFINE: Refine all the marked elements K ∈ Mn, such that Tn+1 := refine(Tn,Mn).
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In that article, Holst et al. showed that while the estimator product is linearly convergent, but in

[84, Sec. 4] they could only prove a suboptimal convergence rate min{s, t}, where s and t are

used to show the approximation rate in primal and dual solutions. In this work, for my proposed

primal and dual estimators, and the marking strategy in Algorithm 5, I prove that the decay rate in

the estimators product happens with an optimal convergence rate s+ t.

5.3 Preliminary definitions and tools for optimality analysis

In this section, we try to assemble all the required definitions and lemmas to set the ground in

order to use them effectively for representing our main results in the next section.

5.3.1 Introduction to approximation class

As we will show further on in Theorem 5.4.3, even though the linear convergence shows the

reduction in quasi-error and therefore in the error estimator, but despite of a priori error estimators

discussed in section 3.2.1, here nothing is noted about the regularity of solution nor about the poly-

nomial degree used for approximation. The optimality analysis tries to make a relation between the

smoothness of the solution and the optimal decay rate in the adaptive finite element refinement. The

idea of optimality in the standard AFEM is showing that the proposed adaptive refinement algo-

rithm constructs a set of triangulations such that error reduction happens in optimal rate. Consider

T := refine(T0) as the set of all triangulations that can be obtained from T0, where T0 is the initial

triangulation for both aforementioned Algorithms 4 and 5. Let TN := {T ∈ T|#T −#T0 6 N},

be the set of all conforming triangulations generated from T0 which have at most N elements more

than T0. In order to be able to demonstrate the quality of the adaptive refinement algorithm, we

need to introduce the approximation class As for some s > 0.

Definition 5.3.1. The nonlinear approximation class As, for some s > 0 is defined as

As :=

{
u ∈ H1

0 (Ω) : ∥u∥As := sup
N>0

(
(N + 1)s min

T ∗∈Tn

η∗u

)
<∞

}
,

here η∗u denotes the primal or dual error estimator associated with the conforming triangulation
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T ∗ ∈ Tn. The finite norm ∥u∥As <∞ means that, if we find the optimal conforming triangulation

T ∗, the algebraic convergence rate for the error estimators would be O(N−s).

5.3.2 Assumption on mesh refinement

In the analysis of optimal convergence rates, the refinement procedure has an important impact

on discussion therein. For any triangulation T of Ω and any set of marked elements M ⊂ T

in both Algorithms 4 and 5, the notation T∗ = REFINE(T ,M) implies at least all the marked

elements M are refined.

Lemma 5.3.2 (Complexity of REFINE). Consider the initial conforming triangulation T0. For

n > 0 let {Tn} be a sequence of refinements of T0 such that Tn+1 := REFINE(Tn,Mn), where

Mn ⊂ Tn. Then there exists a constant Ccomplex > 0 that only depends on T0 such that

#Tn −#T0 ≤ Ccomplex

n−1∑
j=0

#Mj ∀n > 1.

Proof. The above complexity condition, for conforming triangulations using bisection methods is

well known due to work done by Binev et al. [26, 89] for d = 2, and Stevenson [91] for d > 2.

More specifically for our refinement on quadrilaterals, Bonito and Nochetto in [88, Lemma 6.5]

provide the proof of complexity of REFINE.

Lemma 5.3.3 (Mesh overlay). For any conforming triangulations T1, T2 ∈ T of initial triangula-

tion T0, the overlay is the smallest conforming triangulation T : T1

⊕
T2 that satisfies

#T 6 #T1 +#T2 − T0

Proof. See [4, Lemma 3.7].

5.3.3 Auxiliary results

Lemma 5.3.4 (Stability of energy estimators on non-refined elements). Let wFE ∈ {uFE, zFE} be

the solution of primal equation (5.2) or dual problem (5.4). Consider ŵh ∈ V̂T and wFE ∈ VT
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be the finite element solutions such that T̂ := REFINE(T ). Then for all sets of non-refined cells

Υ ⊂ T ∩ T̂ there exists a constant Cstab > 0 such that

∣∣∣∣(∑
K∈Υ

η2K(ŵFE, T̂ )

) 1
2

−
(∑

K∈Υ

η2K(wFE, T )

) 1
2
∣∣∣∣ 6 Cstab∥∇(ŵFE − wFE)∥L2(Ω) (5.26)

Proof. The result follows by using the triangle inequality |∥ · ∥ − ∥ · ∥|2 6 ∥ · − · ∥2, and also

the efficiency estimate which holds for both estimators for primal and dual equations in (5.12) and

(5.20), respectively.

Lemma 5.3.5 (Error estimator reduction for primal problem). For T ∈ T and M ⊂ T , let T̂ ∈ T

be the conforming refinement of T such that T̂ := REFINE(T ,M) and also uFE ∈ VT , ûFE ∈

V̂T be the finite element solutions of (5.5). Assume that there exists some constant 0 < ρ < 1

independent of the mesh size vector h so that for all refined cells K̃ ∈ T and all K ∈ T̂ with

K ⊆ K̃, we have hK 6 ρhK̃ . Moreover, assume there exists some τ ∈ (0, 1] such that

∑
K∈T

h2K∥f − IKf∥2L2(K) 6 τ 2η(u, T ). (5.27)

Then for all δ > 0 it holds

η2(ûFE, T̂ ) 6(1 + δ)

{(
1 +

ρ2τ 2

2δ

)
η2(uFE, T )− (1− ρ2)η2(uFE,M)

}
+ (1 + δ−1)∥∇(ûFE − uFE)∥2L2(Ω)2 .

(5.28)

Proof. The proof is inspired by the proof of [92, Lemma 3.18]. By Definition 5.2.1 we have

η2(ûFE, T̂ ) =
∑
K∈T̂

(
η2K;R(ûFE, T̂ ) + η2K;B(ûFE, T̂ )

)
. (5.29)

From (5.10) the cell contribution is defined as:

ηK;R(ûFE, T̂ ) = hK∥IK̂f +∆ûFE∥2L2(K). (5.30)
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Then the Minkowski inequality yields

ηK;R(ûFE, T̂ ) 6 hk

(
∥IKf +∆uFE∥L2(K) + ∥IK̂f − IKf∥L2(K) + ∥∆(ûFE − uFE)∥L2(K)

)
. (5.31)

Consider R := {K ∈ T : K is refined}, it is clear that M ⊆ R. First suppose there is some

K̃ ∈ R such that K ⊆ K̃, then it yields the followings

hK∥IKf +∆uFE∥L2(K) ≤ ρhK̃∥IKf +∆uFE∥L2(K), (5.32)

hK∥IK̂f − IKf∥L2(K) 6 ρhK∥f − IKf∥ 6 ρhK̂∥f − IKf∥. (5.33)

Now, let us consider there exists no K ∈ R, then for K̂ ∈ T it holds

hK̂∥IKf +∆uFE∥L2(K) = ηK;R(uFE, T ), (5.34)

and of course

∥IK̂f − IKf∥L2(K) = 0. (5.35)

The inverse estimate implies

∥∆(ûFE − uFE)∥L2(K) 6 Cinv∥∇(ûFE − uFE)∥L2(K)2 . (5.36)

By using equations (5.32)-(5.36) in (5.31), for the case that there exists such a cell K̃ ∈ R where

K ⊆ K̃, we get

ηK;R(ûFE, T̂ ) 6ρhK̃
(
∥IKf +∆uFE∥L2(K) + ∥f − IKf∥L2(K)

)
+ Cinv∥∇(ûFE − uFE)∥L2(K)2 .

(5.37)
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And if there exists no such cell in the set of refined elements R, the following holds

ηK;R(ûFE, T̂ ) 6 ηK;R(uFE, T ) + Cinv∥∇(ûFE − uFE)∥L2(K)2 . (5.38)

For the edge contribution of error estimator defined in (5.10) we get

η2K;B(ûFE, T̂ ) =
1

2

∑
e∈E(K)

he

∥∥∥∥[dûFE

dne

]∥∥∥∥2
L2(e)

61

2

∑
e∈E(K)

he

∥∥∥∥[dûFE

dne

]∥∥∥∥
L2(e)

(∥∥∥∥[duFE

dne

]∥∥∥∥
L2(e)

+

∥∥∥∥[d(ûFE − uFE)

dne

]∥∥∥∥
L2(e)

)
.

(5.39)

The Cauchy-Schwarz inequality gives

η2K;B(ûh, T̂ ) 6 ηK;B(ûFE, T̂ )(T1 + T2), (5.40)

where T1 and T2 are given as

T 2
1 :=

1

2

∑
e∈E(K)

he

∥∥∥∥[duFE

dne

]∥∥∥∥2
L2(e)

,

T 2
2 :=

1

2

∑
e∈E(K)

he

∥∥∥∥[d(ûFE − uFE)

dne

]
.

∥∥∥∥
L2(e)

.

(5.41)

If there exists some K̃ ∈ R such that K ⊆ K̃, then

T 2
1 6 ρ

2

∑
e∈E(K)

he

∥∥∥∥[duFE

dne

]∥∥∥∥2
L2(e)

, (5.42)

and else

T 2
1 6 η2K;B(uFE, T ), (5.43)

Using the trace inequality, for T2 we get the following upper bound for either or not there exists a

K̃ ∈ R so that K ⊆ K̃,

T 2
2 6 Ctrace∥∇(ûFE − uFE)∥2L2(K)2 . (5.44)
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Insert equations (5.42)-(5.43) into (5.40) for the case that there exists some K̃ ∈ R such that

K ⊆ K̃, and we will get

ηK;B(ûFE, T̂ ) 6
(
ρ

2

∑
e∈E(K)

he

∥∥∥∥[duFE

dne

]∥∥∥∥2
L2(e)

) 1
2

+ C
1/2
trace∥∇(ûFE − u)∥L2(K)2 (5.45)

and if there is no such a cell K̃ ∈ R

ηK;B(ûFE, T̂ ) 6 ηK;B(uFE, T ) + C
1/2
trace∥∇(ûFE − uFE)∥L2(K)2 (5.46)

Now, applying equations (5.37), (5.38), (5.45) and (5.46) to (5.29) and using Young’s inequality

completes the proof:

η(ûFE, T̂ ) 6(1 + δ)

((
1 +

ρ2τ 2

2δ

)
η2(uFE, T )− (1− ρ2)η(uFE,M)

)
+

(
1 +

1

δ

)
∥∇(ûFE − uFE)∥2L2(Ω)2 .

(5.47)

Lemma 5.3.6 (Error estimator reduction for dual problem). For T ∈ T and M ⊂ T , let T̂ ∈ T be

the conforming refinement of T such that T̂ := REFINE(T ,M) and also zFE ∈ VT , ẑFE ∈ V̂T be

the finite element solution of (5.5). Consider there exists some constant ρ > 0 independent of mesh

size vector h so that for all refined cells K̃ ∈ T and all K ∈ T̂ with K ⊆ K̃, we have hK 6 ρhK̃ .

Moreover, assume there exists some τ ∈ (0, 1] such that

∑
K∈T

h2K∥j − IKj∥2L2(K) 6 τ 2ξ(u, T ). (5.48)

Then for all δ > 0 it holds

ξ2T̂ \T (ẑFE, T̂ ) 6(1 + δ)

{(
1 +

ρ2τ 2

2δ

)
ξ2(zFE, T )− (1− ρ2)ξ2(zFE,M)

}
+ (1 + δ−1)∥∇(ẑFE − zFE)∥2L2(Ω).

(5.49)
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Proof. The proof starts with Definition 5.2.6 for the dual-error estimator, and follows exactly the

same discussion as described in the proof of the error reduction in primal estimator given in Lemma

5.3.5.

To provide the main result regarding the optimality of our goal-oriented estimator, for both

primal and the dual problems, we need to demonstrate that the energy error between the solution

of two iterative refinements can be estimated by using the error indicators of the set of refined

elements, namely R ⊆ T .

Lemma 5.3.7 (Discrete reliability for primal problem). Let T , T̂ ∈ T such that T̂ be the conform-

ing refinement of T , T̂ := REFINE(T ,M). Consider the set of refined elements R = RT −→T̂ .

For discrete solutions uFE ∈ VT and ûFE ∈ V̂T of (5.5), there exists constant C local
rel for which

following discrete reliability holds,

∥∇(ûFE − uFE)∥2L2(Ω)2 6 C local
rel η2(uFE,R). (5.50)

Proof. See [4, Lemma 3.6] for a complete proof for elliptic problems.

Lemma 5.3.8 (Discrete reliability for the dual problem). Let T , T̂ ∈ T such that T̂ be the conform-

ing refinement of T , T̂ := REFINE(T ,M). Consider the set of refined elements R = RT −→T̂ .

For discrete solutions zFE ∈ VT and ẑFE ∈ V̂T of (5.6), there exists constant C local
rel for which

following discrete reliability holds,

∥∇(ẑFE − zFE)∥2L2(Ω)2 6 C local
rel ξ2(Z,R). (5.51)

Proof. The dual problem is again a symmetric elliptic PDE. Therefore, again following the lines of

discussion on localized upper bound or discrete reliability in [4, Lemma 3.6], the proof completes.

The next lemma is an important statement which we use in the next section for the proofs of

the main theorems on optimality.
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Lemma 5.3.9 (Orthogonality). Let wh ∈ {uh, zh} be the finite element solution of primal (5.5) or

dual (5.6) problems, and T , T̂ ∈ T such that T̂ := REFINE(T ). Then the following orthogonality

condition holds:

∥w − wFE∥2H1
0 (Ω) = ∥w − ŵFE∥2H1

0 (Ω) + ∥ŵFE − wFE∥2H1
0 (Ω). (5.52)

Proof. The nestedness of finite element spaces VT ⊂ V̂T and the Galerkin orthogonality a(w −

ŵFE, ŵFE) = 0, ∀ŵFE ∈ V̂T , implies

∥w − wFE∥2H1
0 (Ω) = a(w − wFE, w − wFE)

= a(w − ŵFE, w − wFE) + a(ŵFE − wFE, w − wFE)

= a(w − ŵFE, w) + a(ŵFE, w − wh)− a(wFE, ŵFE − wFE)

= a(w − ŵFE, w − ŵFE) + a(ŵFE, ŵFE − wFE)− a(wh, ŵFE − wFE)

= a(w − ŵFE, w − ŵFE) + a(ŵFE − wFE, ŵFE − wFE)

= ∥w − ŵFE∥2H1
0 (Ω) + ∥ŵFE − wFE∥2H1

0 (Ω).

(5.53)

5.4 Main results

In this section, we strongly rely on the auxiliary tools presented as Lemmas 5.3.4-5.3.9 in

section 5.3.

Proposition 5.4.1 (Quasi-Monotonicity of Primal and Dual Error Estimator). LetwFE ∈ {uFE, zFE}

be the finite element solution of primal (5.5) or dual (5.6) problems, and T , T̂ ∈ T such that

T̂ := REFINE(T ). Assuming that the following properties hold: the stability of energy estimators

on non-refined elements (Lemma 5.3.4), error estimator reduction for primal and dual problems

(Lemmas 5.3.5 and 5.3.6), and finally the discrete reliability for primal and dual problems (Lemmas

5.3.7 and 5.3.8). Then the quasi-monotonicity of the estimator holds, which implies there exists a
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constant Cmono such that

η̂(ŵFE, T̂ ) 6 Cmono η(wFE, T ). (5.54)

Proof. The proof follows [5, Lemma 3.5]. The stability of energy estimator Lemma 5.3.4, and the

error estimator reduction Lemmas 5.3.5 and 5.3.6 imply

η̂(ŵFE, T̂ ) 6Cred1

∑
K∈T \T̂

η2K(wFE, T ) + Cred2∥∇(ŵFE − wFE)∥2L2(Ω)

+
∑

K∈T ∩T̂

η2K(wFE, T ) + Cstab∥∇(ŵFE − wFE)∥2L2(Ω) := RHS,
(5.55)

where 0 < Cred1 < 1. Now after using the results on local upper bound in Lemmas 5.3.7 and 5.3.8

we get

RHS 6Cη2(wFE, T ) + (Cred2 + Cstab)C
local
rel η2(wFE, T )

= Cmonoη
2(wFE, T ),

(5.56)

where Cmono := C + (Cred2 + Cstab)C
local
rel for some constant C > 0.

The following Proposition demonstrates a relation between error estimator reduction from T

to its refinement T̂ and AFEM through the Dörfler marking. The statement simply says if the

estimator reduces after refinement, then the error indicators on the set of refined elements RT −→T̂

should satisfy the Dörfler property.

Proposition 5.4.2 (Optimal Marking). Let wFE ∈ {uFE, zFE} be the finite element solution of pri-

mal (5.5) or dual (5.6) problems, and T , T̂ ∈ T such that T̂ := REFINE(T ). Moreover, assume

the stability condition in Lemma 5.3.4 and the discrete reliability noted in Lemmas 5.3.7 and 5.3.8

hold. Then for any 0 < µ < 1, there exists 0 < θ0 < 1 such that for all 0 < θ < θ0 the following

holds

η̂(ŵFE, T̂ )2 6 µ η(wFE, T )2 =⇒
∑
K∈R

ηK(wFE, T )2 > θ η(wFE, T )2 (5.57)

where θ0 depends only on constants µ, Cstab and C local
rel .
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Proof. The proof follows the line of [5, Proposition 4.12]. From the stability in Lemma 5.3.4 and

applying the Young inequality for any δ > 0 we have

η(wFE, T )2 =
∑

K∈T \T̂

ηK(wFE, T )2 +
∑

K∈T ∩T̂

ηK(wFE, T )2

6
∑

K∈T \T̂

ηK(wFE, T )2 + (1 + δ)
∑

K∈T ∩T̂

ηK(ŵFE, T̂ )2

+ (1 + δ−1)C2
stab∥∇(wFE − ŵFE)∥L2(Ω) := RHS

(5.58)

where T ∩T̂ is the set of unrefined elements and T \T̂ ⊆ R. Now from the assumption η̂(ŵFE, T̂ )2 6

µ η(wFE, T )2 and Lemmas 5.3.7 and 5.3.8 on discrete reliability we get

RHS 6 µ(1 + δ)η(wFE, T )2 + (1 + CstabC
local
rel (1 + δ−1))

∑
K∈R

ηK(wFE, T )2, (5.59)

which implies

(
1 + CstabC

local
rel (1 + δ−1)

)∑
K∈R

ηK(wFE, T )2 > (1− (1 + δ))µη(wFE, T )2 (5.60)

where for 0 < µ < 1 and δ > 0 small enough, we get 0 < θ = (1−(1+δ))µ

1+CstabC
local
rel (1+δ−1)

< 1 which

completes the proof.

In the analysis of optimality, it is essential to find an appropriate error quantity and define

its associated approximation class As. It is beneficial to demonstrate the relation between the

frequently used error quantities. The reliability and efficiency properties of the error estimator

imply the following equivalent results for the total error that is a measure of approximability for

both data and solution, which is described as ∥u− uh∥2H1
0 (Ω)

+ osc2:

(
Error Estimator

)2

:= η2 ≈ ∥u− uFE∥2H1
0 (Ω) + osc2 =:

(
Total Error

)2

. (5.61)

It is important to recall that all the decisions made in module MARK in any adaptive refinement
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strategies, depend on the error estimator η. Moreover, based on the above equivalence relation the

convergence rate for the total error is also closely related to the error estimator. On the other hand,

the error estimator is equivalent to the sum of the energy error and the scaled error estimator which

is called the quasi-error. In [4, Theorem 4.1] the contraction property is proved that guarantees the

reduction of quasi-error at each refinement cycle in the adaptive refinement strategy:

(
Error Estimator

)2

:= η2 ≈ ∥u− uFE∥2H1
0 (Ω) + γη2 =:

(
Quasi Error

)2

, for some γ > 0.

(5.62)

The following theorem is an important consequence of using the aforementioned lemmas about the

reliability of estimators, the error estimator reduction for both primal and dual settings, and finally

the orthogonality condition, to prove the following contraction property.

Theorem 5.4.3 (Contraction for Quasi-Error). Assuming the reliability assumption in Lemmas

5.11 and 5.19, error estimation reduction described in Lemmas 5.3.5 and 5.3.6, and finally the

orthogonality property in Lemma 5.3.9 hold. Then we can prove the quasi-error decreases at each

refinement step of AFEM, which implies there exists a contraction constant 0 < Ccontraction < 1 and

γ > 0 such that

∥w − wn+1
FE ∥2H1

0 (Ω) + γ η2(wn+1
FE ) 6 Ccontraction

(
∥w − wn+1

FE ∥2H1
0 (Ω) + γ η2(wn

FE)

)
(5.63)

where wFE ∈ {uFE, zFE} is the finite element solution of the primal (5.5) or dual (5.6) problems,

and Tn+1 be a refined triangulation such that Tn+1 ∈ REFINE(Tn).

Proof. See [4, Theorem 4.1].

As we showed in (5.22), the product of primal and dual estimators η ξ is a quantity to control the

error in the goal-oriented adaptive refinement. Therefore, it is important to prove the contraction

property for both primal and dual error estimators. In this regard, the next proposition implies if

the Dörfler marking is used, then we can prove the contraction property for the error estimator and

therefore we can get limn−→∞η(wFE, T ) = 0, where n denotes the refinement cycle and wFE ∈
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{uFE, zFE} is the solution of the primal or dual problem.

Proposition 5.4.4 (Linear Convergence for Error Estimator). Let wFE ∈ {uFE, zFE} be the finite

element solution of the primal (5.5) or dual (5.6) problem, and Tn is a sequence of refined triangu-

lation such that Tn ∈ REFINE(Tn−1). Assume that all the auxiliary results introduced in Lemmas

5.3.4 to 5.3.8 and the orthogonality condition in Lemma 5.3.9 hold. Let 0 < θ 6 1 be the param-

eter in Dörfler marking. Then there exists C > 0 and a convergence factor 0 < µconv < 1 such

that if for n, k ∈ N0 there exists at least k′ 6 k indices n 6 n1 < n2 < n3 < · · · < nk′ < n + k

satisfying the following Dörfler property

ηnj
(wFE, Tnj

\Tnj+1)
2 > θη2(wFE, Tnj

), j = 1, 2, · · · , k′, (5.64)

then the following linear convergence holds for the error estimator

η2(wFE, Tn+k) 6 Cµk′

convη
2(wFE, Tk). (5.65)

Proof. See [5, Proposition 10].

This theorem guarantees the linear convergence for the product of primal and dual error esti-

mators.

Theorem 5.4.5 (Linear Convergence for the Estimator Product). Assume all the auxiliary results

stated in Lemmas 5.3.4 to 5.3.8, and the orthogonality condition 5.3.9 hold, then there exist con-

stants 0 < µlin < 1 and Clin > 0 such that the product of primal and dual error estimators are

linearly convergent so that

η(uFE, Tn+k) η(zFE, Tn+k) 6 Clin µ
k
lin η(uFE, Tn) η(zFE, Tn), (5.66)

where uFE and zFE are the finite element solutions of primal and dual equations (5.5) and (5.6).
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Proof. First consider the Mommer-Stevenson (MS) algorithm 4, which implies at each itera-

tive step the marked elements in Mj either satisfy the Dörfler marking for the primal estimator

η(uFE, Tj), or for the dual estimator η(zFE, Tj). Moreover, we have Mj ⊆ Tj\Tj+1 as relation

between the set of marked elements and the set of refined elements. The set of marked elements

in the MS-algorithm implies, for any k successive triangulations Tj , that Tj\Tj+1 ⊆ R satisfies k′

times Dörfler marking for the primal estimator η(uFE, Tj) and k− k′ times Dörfler marking for the

dual estimator η(zFE, Tj). Therefore Proposition 5.4.4 shows after k refinement steps the following

linear convergence for primal and dual error estimators:

η2(uFE, Tn+k) 6 Cµk′

conv η
2(uFE, Tn), η2(zFE, Tn+k) 6 Cµk−k′

conv η
2(zFE, Tn) (5.67)

which implies

η2(uFE, Tn+k) η
2(zFE, Tn+k) 6 C2µk

conv η
2(uFE, Tn)η

2(zFE, Tn). (5.68)

That completes the proof for MS-algorithm 4.

Now it is time to prove the linear convergence in the estimators product for our proposed goal-

oriented algorithm 5. As we presented in equation (5.24) in module MARK, we have Mn ⊆

Mu
n

∪
Mz

n:

η2n(Mn) ξ
2
n(Mn) > θ2 η2n ξ

2
n, (5.69)

where

η2n(Mn) > θη2n, and ξ2n(Mn) > θξ2n. (5.70)

In other words, the algorithm enforces that in each iteration step n, the Dörfler marking holds for

both primal and the dual estimators. Hence, by assumption of Proposition 5.4.4 we conclude that

at each iterative step n we have the linear convergence for both our primal and the dual estimators.

This concludes the linear convergence for the product of estimators.

The following lemma gives an important tool to prove the next two theorems associated with the
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optimal convergence rate for both MS algorithm 4 and also our goal-oriented algorithm presented

in Algorithm 5.

Lemma 5.4.6. Suppose there exists 0 < θ < θ0 := 1
1+CstabC

local
rel

, and Tn, T̂ ∈ T such that T̂ is a

conforming refinement of Tn, T̂ := REFINE(Tn,M). Moreover, consider the refined sets Ru
Tn−→T̂

and Rz
Tn−→T̂ that satisfy the discrete reliability property noted in Lemmas 5.3.7 and 5.3.8. For all

t, s > 0 such that (u, z) ∈ As × At, the following holds

max

{
#Ru

Tn−→T̂ ,#Rz
Tn−→T̂

}
6 C1(C2∥u∥As∥z∥At)

1
s+t (η(uFE, Tn)η(zFE, Tn))

−1
(s+t) , (5.71)

where C1, C2 depend on θ and also on the stability constant Cstab in Lemma 5.3.4, estimator reduc-

tion constants in Lemmas 5.3.5 and 5.3.6, and finally depend on the discrete reliability constant

C local
rel introduced in Lemmas 5.3.7 and 5.3.8. Further we can prove that the sets Ru

Tn−→T̂ and

Rz
Tn−→T̂ satisfy the Dörfler marking

η2(uFE,Ru
Tn−→T̂ ) > θη2(uFE, Tn),

η2(zFE,Rz
Tn−→T̂ ) > θη2(zFE, Tn).

(5.72)

Proof. See [5, Lemma 15].

The next is the main theorem which shows optimal decay rate for the estimator product in the

Mommer-Stevenson (MS) algorithm 4. The reason that first we bring Theorem 5.4.7, is because

we will use the result of this theorem in the last theorem of this section to prove the optimal

convergence rate for our goal-oriented Algorithm 5.

Theorem 5.4.7 (Optimal convergence rate, for Algorithms 4 and 5). Assume our conforming mesh

refinement satisfies both complexity of refinement 5.3.2 and the mesh overlay 5.3.3, and 0 < θ <

θ0 := 1
1+CstabC

local
rel

. Moreover let all the auxiliary results discussed in section 5.3, namely Lemmas

5.3.4 to 5.3.8 and Lemma 5.3.9 on orthogonality, hold. Then for all s, t > 0 where (u, z) ∈ As×At,

applying the MS-algorithm guarantees there exists an optimality constant Copt which depends only

113



on θ and Ccomplex such that for all iterative cycles n ∈ N0,

η(uFE, Tn)η(zFE, Tn) 6
C1+s+t

opt(
1− q

1
s+t

lin

)s+t ∥u∥As ∥z∥At

(
#Tn −#T0

)−(s+t)

. (5.73)

Proof. See [3, Theorem 13].

Theorem 5.4.8 (Optimal convergence rate, our goal-oriented Algorithm 5). Let 0 < θ < θ0 :=

1
1+CstabC

local
rel

and assume all the auxiliary results discussed in section 5.3, namely Lemmas 5.3.4 to

5.3.8 and the orthogonality condition 5.3.9 hold. Then for our goal-oriented Algorithm 5, we can

show the optimal convergence rate for the primal and dual estimator product in our goal-oriented

algorithm 5,

η(uFE, Tn)ξ(zFE, Tn) 6
C1+s+t

opt(
1− q

1
s+t

lin

)s+t ∥u∥As ∥z∥At

(
#Tn −#T0

)−(s+t)

. (5.74)

where η and ξ denote the primal and dual estimators, and all other notations are exactly the same

as been defined in Theorem 5.4.7.

Proof. As the proof of [3, Theorem 13] shows, the only missing part that we need to prove is

showing that at each iterative cycle, the set of our marking cells Mn will satisfy

#Mn 6 Cmax

{
#Ru

Tn−→T̂ ,#Rz
Tn−→T̂

}
. (5.75)

for some C > 0, and the rest is the direct use of the Lemma 5.4.6. To show equation (5.75), we

start with the result of Lemma 5.4.6 as it implies

η2(uFE,Ru
Tn−→T̂ ) > θη2(uFE, Tn)

η2(zFE,Rz
Tn−→T̂ ) > θη2(zFE, Tn).

(5.76)
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Let RTn−→T̂ =

(
Ru

Tn−→T̂

∪
Rz

Tn−→T̂

)
, which gives

η2(uFE,RTn−→T̂ ) η
2(zFE,RTn−→T̂ ) > θ2 η2(uFE, Tn) η

2(zFE, Tn), (5.77)

according to the module MARK in our goal-oriented Algorithm 5,

#Mn 6 C#Rn 6 2Cmax{#Ru
Tn−→T̂ ,#Rz

Tn−→T̂ }. (5.78)

Now that equation (5.78) holds for our goal-oriented algorithm, the rest follows exactly the lines

of proof [3, Theorem 13] which guarantees the existence of an optimality constant Copt, and con-

sequently the optimal decay rate for the estimator products.

5.5 Numerical experiments

We consider the Poisson model problem with finite element space of continuous piecewise

polynomials of degree p = 1. All the goal-oriented adaptive algorithms described in this section

are implemented within the deal.II library [76]. In test cases we consider three adaptive refinement

strategies and compare their h-refinement patterns, and more importantly we show their corre-

sponding convergence plots. In summary, the first refinement is done based on the energy error

estimator, for the second one we consider the locally defined dual-weighted goal-oriented estimator

as introduced in [1] for the Poisson problem. Finally, we compare the results of these two methods

with our goal oriented strategy presented in Algorithm 5. In the analysis of optimal convergence

rate demonstrated in section 5.4, we proved in our goal-oriented strategy using linear polynomials

to approximate finite element solutionsQ = 1, the product of primal and dual estimators η ξ attains

the optimal convergence rate of order O(N−( 1
d
+ 1

d
)), where d denotes the space dimension, and N

is the number of degrees of freedom. It is also notable that we use the same order of finite element

space for the solution of primal and dual problems.
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Example 1 - Square annulus

Consider the Poisson problem described in equation (5.1) on square annulus domain Ω =

[−1, 1] × [−1, 1]\[−0.5, 0.5] × [−0.5, 0.5]. We set the data function f(x, y) and the Dirichlet

boundary values such that the exact solution is

u(x, y) =
sin(πx)sin(πy)

(x− 0.2)2 + (y − 0.2)2 + 10−10
. (5.79)

In our numerical experiments we are interested in the average functional in two sub-domains

Ω1,Ω2 ⊂ Ω as we describe in the following two examples.

5.5.1 Example 1-a : Average value over sub-domain Ω1

For the first case, we are interested in the average of solution values on sub-domain Ω1 =

[0.5, 1]× [0.5, 1]. The exact solution of primal and dual problem is shown in Figure 5.1. Figure 5.2

visualizes the meshes generated by the three aforementioned adaptive refinement strategies. As

we can see the standard adaptive algorithm using the energy error estimator can not successfully

capture the singularities for the primal and dual problems at the same time. The convergence

plot for the goal error against the number of degrees of freedom is presented in Figure 5.3. Here

we can see the linear reduction of goal error with respect to the number of degrees of freedom.

In this example, the influence function applies to the top right area of the domain in the close

vicinity of the region where the primal solution itself is non-smooth. Therefore, one can see that

the standard AFEM strategy that uses the energy error estimator performs good and is able to

resolve the singularities close to the sub-domain Ω1 ⊂ Ω where the influence function is imposed.

However, still we observe AFEM got larger error values and does not exactly decrease linearly.

The other two plots in this figure are associated with the goal-oriented refinements. One is the

locally defined dual-weighted goal-oriented error estimator introduced by Bürg-Nazarov (BN) in

[1], and the third plot in this figure is our proposed goal-oriented strategy in Algorithm 5. As the

convergence plots in this figure show, the goal-oriented algorithms perform better than standard

AFEM in terms of value and also the rate such that they both decrease linearly. The last Figure 5.4,
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(a) Primal solution (b) Dual solution on Ω1

(c) Dual solution on Ω2

Figure 5.1: Analytic solutions for primal and dual problems.

illustrates how nicely the product of our primal and dual estimators η ξ gives a reliable upper bound

for the error in the goal functional. The dashed line in these two figures represents the optimal

convergence rate expected for the goal-oriented AFEM using Q1 shape-regular finite elements,

namely O(DOF)−( 1
2
+ 1

2
) = O(DOF)−1.

5.5.2 Example 1-b : Average value over sub-domain Ω2

For the second test case, we are interested in the average of solution values on the sub-domain

Ω2 = [−1,−0.5]× [−1,−0.5]. The exact solution of primal and dual problem is shown in Figure

5.1. Figure 5.5 visualizes the meshes generated by the three aforementioned adaptive refinement

strategies. As we can see the standard adaptive algorithm 5.5a using the energy error estimator
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(a) Standard AFEM, using energy estimator. (b) GO-AFEM, using BN estimator [1].

(c) GO-AFEM, using the union of primal and
dual marking sets (Algorithm 5).

Figure 5.2: Triangulations generated using different error estimators and marking strategies.
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Figure 5.3: Error in the functional vs. number of DOFs. The plots represent the convergence rate
for the following: 1) AFEM refinement using energy estimators, 2) the GO-AFEM using local
dual-weighted estimator introduced in [1], and 3) our proposed goal-oriented strategy given in
Algorithm 5.
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Figure 5.4: Product of primal and dual estimators ηξ, as well as goal error J(u− uh) as output of
Algorithm 5.
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can only resolve the singularities in the areas with high primal residual and is not able to do more

local refinements on the bottom left sub-domain Ω2 ⊂ Ω where the influence function is imposed.

In the locally defined dual-weighted goal-oriented estimator Figure 5.5b refinement happens in

the areas with larger residual associated with dual problem. In our goal-oriented refinement 5.5c

the refinement is done for both cells with the largest primal and dual residuals. The convergence

plots corresponding to these methods for the goal-oriented error against the number of degrees

of freedom is presented in Figure 5.6. As we expect the AFEM does not perform well both in

terms of error values and the rate which is due to the fact that it just focuses on the large residuals

for the primal problem. As the figure shows, both goal-oriented strategies decrease linearly. The

last Figure 5.7 illustrates how nicely the estimator product gives a reliable upper bound for the

error in the goal functional. The dashed line in these two figures represents the optimal conver-

gence rate expected for the goal-oriented AFEM using Q1 shape-regular finite elements, which is

O(DOF)−( 1
2
+ 1

2
) = O(DOF)−1.
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(a) Standard AFEM, using energy estimator. (b) GO-AFEM, using BN estimator [1].

(c) GO-AFEM, using the union of primal and
dual marking sets (Algorithm 5).

Figure 5.5: Triangulations generated using different error estimators and marking strategies.
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Figure 5.6: Error in the functional vs. number of DOFs. The plots represent the convergence
rate for the following: 1) AFEM refinement using energy estimators, 2) the GO-AFEM using local
dual-weighted estimator introduced in [1] , and 3) our proposed goal-oriented strategy in Algorithm
5.
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Algorithm 5.
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6. CONCLUSIONS

In this dissertation, we focused on the development and application of h- and hp-adaptive

refinement strategies for the Stokes and Poisson problems. We devoted separate chapters for each

study, and extensively discussed their corresponding analysis, and results of numerical examples.

In the following, all the main achievements for each chapter are shortly summarized.

First, in the spirit of Melenk [54, 2], we introduced a residual based a posteriori error estimator

for the Stokes problem for hp-adaptive finite elements. In this work, we presented a family ηα, α ∈

[0, 1] of residual based error estimators for the hp-AFEM. We proved upper and lower bounds for

the estimators applied to the Stokes problems. We were inspired by Dörfler and Heuveline’s work

[62] for one-dimensional problems and the later works on higher space dimensions by Bürg [?].

Following the aforementioned works, we established the hp-adaptive refinement algorithm for our

application. In order to decide which refinement gives the best possible hp-refinement, in terms of

the largest error reduction, we solve local patch problems in parallel for each individual cell. The

numerical examples demonstrate the exponential convergence rate for hp-AFEM in comparison

with h-AFEM.

The next chapter was devoted to presenting our analytical and numerical results on investigating

a new approach for the goal-oriented AFEMs. This idea in 2015 was introduced for the Poisson

equation in [1]. Here, we considered the Stokes problems. The idea of Clément and Scott-Zhang

interpolation operators is used. The novelty in this work is the definition of locally formulated error

estimators for the goal-oriented refinement. Moreover, we proved the reliability and efficiency of

the goal estimator for the Stokes model problem. In the numerical experiments, we compared

the h- and hp-AFEM using the energy estimators with the goal-oriented h- and hp-refinement.

The comparison of convergence rates confirms our goal-oriented strategy is a promising method to

capture the singularities in the areas of influence function. The numerical examples illustrate the

expected optimal convergence rate using Taylor-Hood P2 − P1 elements in the h-GO-AFEM, and

the results on the hp-GO-AFEM show the exponential convergence rate.
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The last chapter of this dissertation is about applying an abstract framework introduced in [5]

to prove the optimality of goal-oriented adaptive refinement. We set the groundwork and demon-

strate that all the requirements being noted as the “axioms of adaptivity” hold for our proposed

goal-oriented refinement strategy. Next, inspired by the approach of Feischl et al. [3], we prove

that the decay rate in the product of the primal and dual estimators is optimal for our goal-oriented

refinement algorithm. Numerical experiments show the optimal convergence behavior of the algo-

rithm.
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