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ABSTRACT

Modelling of the performance of shale gas reservoirs is known for the presence of

multiple scales. The latter includes pore-scale, fracture scale and field scale. The nature of

flow-mechanisms at various scales is different. Therefore, separate treatment of the phys-

ical processes is required. On the other hand, an integrated approach is highly beneficial

for practical implementation. One of the candidates for seamless integration concerned is

the Lattice-Boltzmann Method. The latter fact together with the demands of the industry

provides the major motivation for the present work.

In this study the novel Lattice-Boltzmann Model for pore-scale simulations has been

introduced. The major advantage of the approach concerned is that the mathematical for-

mulation of the model has a high degree of self-consistency. The latter means that it

does not have an artificially introduced terms like pseudo-potentials, which are common

for conventional Lattice-Boltzmann schemes. Despite the advantages of the approach in

terms of mathematical formulation, there exist certain limitations because of the issues

with numerical stability. One of the most important results of the present work is that the

issues concerned can not be resolved by the reasonable increase of the number of lattice

vectors in the model. The limitations involved make the scheme impractical for field-

scale simulations. Therefore, an alternative formulation of Lattice-Boltzmann method for

reservoir modelling is required.

In the present work, a novel pseudo-potential model for field-scale simulations has

been introduced. The model concerned demonstrates a reasonable agreement with the an-

alytical techniques in the case of steady-state flow. However, further investigation shows

significant deviations because of the numerical diffusion. Moreover, it has been shown that

significant numerical diffusion is a feature of the majority of the existent pseudo-potential
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models. The numerical effect concerned is critically important in the case of the multi-

phase flow, because it can lead to non-physical solutions. In order to resolve the problem

concerned a novel Lattice-Boltzmann Scheme has been introduced. The scheme demon-

strates reasonable agreement with analytical methods and with simulations performed with

trusted programs for reservoir modelling.

Finally, the major contribution of the present work includes the development of self-

consistence approach for simulations at pore-scale, the proof of fundamental limitations

of the model introduced, observation of numerical diffusion in pseudo-potential Lattice-

Boltzmann Methods, and the solution of the latter issue through the development of the

novel Lattice-Boltzmann scheme for field-scale simulations.
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1. INTRODUCTION

At the beginning of the 20th century, the breakthrough in the technology of hydraulic

fracturing has made it possible to produce hydrocarbons from shale reservoirs in the eco-

nomically efficient way. Despite the challenges in the application of the technology con-

cerning hydraulic fracturing and relatively low quality of the shale reservoirs, they are

considered as one of the most important sources of energy in the future. There are two

reasons for that. The first one is the growth of human population [1] and in turn, the in-

crease of the overall energy demands [2] and [3]. The second cause is the depletion of oil

and gas reservoirs of high quality. That latter serves as the backbone to increase the role

of shale reservoirs given that the total amount of hydrocarbons stored in shale reservoirs

is significantly greater if compared with conventional high quality reservoirs [4].

The conclusion of the discussion above is that, despite the recent drop of the oil-price,

the prospects of production from shale reservoirs are still promising. This gives a motiva-

tion for the research in this area, and particularly in the numerical solution of the complex

interplay between the mechanisms of a production in shale reservoirs with further appli-

cation to the problems of the production forecast and analysis of transport phenomena in

such reservoirs.

The main reason why the predictive modelling of shale reservoirs is still challenging

nowadays is the complicated interaction of different scales that represent the structural

features of these rocks. The vast majority of conventional reservoir simulation tools have

not been designed to address the impact of multiple scales. Therefore, a lot of effort have

been taken in order to develop an integrated approach to the modelling of shale reservoirs.

To the best of the author’s knowledge, the issue concerned has been partially addressed.

However, there is a need for the method that allows one to perform this integration seam-
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lessly, i.e. within a single algorithm for the numerical modelling of all of the scales. This

is the first reason that makes the Lattice-Boltzmann Method (LBM) a promising tool for

the simulation of shale reservoirs. In the present work it is shown that the integration con-

cerned can be made naturally with LBM, because of both kinetic nature of the method and

its outstanding flexibility.

The second reason is properties of LBM as an algorithm for numerical simulations.

Various studies indicate that LBM has a remarkable efficiency for GPU-based parallel

computing [5]. From practical point of view, this means that LBM has a potential to work

better for massive calculations if compared with conventional reservoir simulation tools.

The reasoning above shows that LBM has very promising prospects in the integrated

shale reservoir modelling. The investigation of such prospectives is the main motivation

of the present work. For that purpose, a fully-coupled model has been developed. There

are several main issues that has been addressed in the following work. The first one is

the upscaling of PVT properties of the fluid inside the nano-pores. The second issue is

consequent treatment of equation of state for nano-scale simulations. Finally, a new ap-

proach for EOS integration into field-scale simulations has been developed. The need for

two different treatments of EOS at different scales is discussed later. The main scientific

value of the present work is that the tools for EOS modelling preserve the computational

efficiency of the method and significantly improve its stability.

1.1 Challenges in Simulation of Shale Reservoirs and Literature Review

Despite the long history of production from shale reservoirs, there is no universal ap-

proach for the modelling of unconventional oil and gas fields. This may be due to the

higher degree of complexity of physics of shale reservoirs if compared with conventional

ones. In general, a shale gas reservoir is a highly heterogeneous source rock with a well-

developed network of natural fractures. The typical size of the pores in such rocks varies
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from 10 to 100 of nanometers [6], [7]. Because of such small pores, permeability of the

rock is extremely low if compared with conventional reservoirs [8]. The other factor that

has a significant impact on the mechanism of fluid flow is the notable amount of kero-

gen, which affects both connectivity of the pore space and apparent permeability [9]. In

addition, shale reservoirs are well-known for the high degree of heterogeneity of rock

properties [10].

The combination of these factors cause significant difficulties for understanding of

flow mechanism in shales. Nowadays, the majority of engineers believe that in shale

reservoirs hydrocarbons migrate from source rock to the well only through the fracture

network [11]. In other words, the presence and the quality of the fracture network is critical

for the production from shale reservoirs. Creating models for handling this complex flow

mechanism brings several challenges for simulations.

The first challenge is the geometry of such reservoirs. Nowadays, the only economical

way of production from shales is through the use of multiple hydraulic fracturing. Even

with such technology, it is necessary to have a wide network of natural fractures to have

reasonable production rates. Different authors indicate that interaction of natural fractures

with the artificial hydraulic fractures created by the process, can be extremely complicated

and results in a non-trivial geometry of the fracture network [12], [13], [14]. Moreover,

various studies show that conductivity and effective permeability of fracture network is

highly sensitive to the stress pattern. This means that for the accurate simulations, cou-

pling of fluid dynamics with geomechanics is necessary [15]. On the other hand, attention

should be paid to the cross-flow between the fracture network and solid matrix.

The second challenge is caused by the sizes of the pore network, which may be in

the range of nanometers. Actually, it is not a single problem, but a set of problems. To

this end, phase behaviour of fluids in nano-pores that can be different from the traditional

one. Simple calculation shows that there could be around 100 to 10000 molecules in a
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single pore of shale matrix. For such systems, the difference between the fluid and gas

phase can be extremely subtle. Moreover, the interaction of molecules of the fluid with

the surface of the pore becomes more significant if compared with fluid under normal

conditions. In addition, high capillary pressures and interaction with kerogen can cause

significant deviations from the traditional equation of state (EOS). Finally, such effects

like adsorption contribute a lot to the overall flow pattern. The significance of some of

these effects has been studied in [16], [17].

The third challenge that should be addressed is called the Klinkenberg effect [18].

The physics behind the phenomenon concerned is that inside the pores of small diameter,

molecules of the fluid start to interact more intense with the surface in comparison with

fluid in a macroscopic volume. This is due to the fact that the apparent viscosity of the

fluid becomes different from those measured for the flow in traditional experiments.

Summarizing the challenges listed above, it is clear that the problems with simulation

of unconventional reservoirs are caused by two reasons: flow in the network of natural

fractures and physics of fluid behaviour in nano-pores. In order to address the first issue,

standard methods for simulation of fractured reservoirs can be applied. The second issue

can be reformulated in terms of modification of PVT properties. Existent approaches for

simulation of shale reservoirs will be discussed in the next section.

1.2 Present Methodologies of Shale Reservoirs Modelling

The problem of simulation of shale reservoirs is not new to the industry. Therefore, the

presence of great variety of tools for simulation of transport in shale rocks is not surprising.

For the author’s concern, most of the works about shale reservoirs are focused only on

one of the part of problem of simulation of shale reservoirs. For example, only PVT

properties of fluids inside small pores are studied, or only the transport in fractured media

is considered. At the same time, there are studies where all the aspects of simulations
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of shale reservoirs are integrated. The approaches are different in the robustness, in the

type of data required, and in the accuracy of the solution. In the present section the most

well-known techniques are discussed.

Proxy models are one of the popular tools for simulation of unconventional reservoirs

[19], [20]. The foundation of the techniques involved can vary from analytical models

[21], that make an attempt to capture all or at least the most essential physical processes,

to artificial intelligence and machine learning. The obvious advantage of the methods

concerned is absence of need for full 3D reservoir simulations and relatively small com-

putational time as a consequence. By the definition, proxy modelling relies heavily on the

available data. As a consequence, that models have limited application for the prediction

of hydrocarbons production for a new well.

An accurate numerical simulation, which captures multi-scale and multi-physics phe-

nomena, seems to be the most favourable tool for the forecast of the production of a new

well in a field. Nowadays, the commercial reservoir simulators have certain limitations

for applications to multi-scale problems. Therefore, the development of alternative tech-

niques together with the improvement of the present ones is an important problem to be

addressed. For the purposes of addressing the issue concerned, one needs to take into

account the specific properties of shale reservoirs mentioned before. The latter has given

birth to a plenty of excellent works on physics of shale reservoirs. The works concerned

can be roughly divided into two categories: integrated approaches, and studies that are

focused on a particular aspect of the problem, like fluid behaviour inside nano-scale pores

or flow in fractured porous media. Because of this division, it is reasonable to organize the

review with the same principle.

It has been mentioned that fluid properties or PVT properties may differ significantly

from those under conditions of conventional reservoirs. It is well known that PVT has a

significant impact on both reserves and fluid flow. Therefore, accurate representation of
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PVT properties in the numerical scheme is important. The most common way to address

the issue concerned is Klinkenberg’s correction formula and Langmuir’s isotherm [22]. In

general, such methods can make a forecast of the production with reasonable accuracy;

however, under certain conditions the corrections may misrepresent real behaviour of flu-

ids. One of the possible reasons for that is that correction formulas have been derived

under assumptions that might be no longer valid under reservoir conditions. Moreover,

several experimental studies demonstrate the deviation of measured fluid properties from

the computed ones it directly [23].

One of the possible solutions to the problem involved is direct numerical simulation

of processes in nano-scale pores. Typically , slippage effect and adsorption are estimated

independently. For instance, Klinkenberg’s correction can be derived from flow simula-

tions in porous media performed with commercial hydrodynamic simulators COMSOL

[24]. Despite the atomistic level of the effect, conventional approaches for continuous

media simulation can be applied if boundary conditions have been modified properly [25].

Mesoscopic methods or Lattice-Boltzmann Method in particular, are ratther popular [26].

In some cases Molecular Dynamic simulation tools are applicable [27]. For the corrections

to the adsorption isotherm Molecular Dynamic simulations are used predominantly [28],

[29]. However, it is possible to evaluate adsorption and slippage effects within a single

simulation work flow [30]. Therefore, there exist plenty of reliable tools that can represent

pore-scale physics effectively and accurately.

The discussion above can be formulated simply as: apply Klinkenberg’s correction for-

mula together with Langmuir isotherm, because those tools perform well in general. If this

is not the case, then more detailed simulation of physics in small pores gives desired accu-

racy. The situation with simulation of impact of fracture network is not so clear and there is

no widely recognized approach for numerical modelling of the systems concerned. More-

over, motivation for modelling can be different leading to distinct methods. For example,
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a variety of semi-analytical models have been developed in the past for understanding the

key parameters that control the behavior of shale reservoirs [31], [32]. Semi-analytical

and analytical tools can be applied for the production data analysis of shale reservoirs as

well [33]. Despite the advantages of analytical tools, the the applicability is limited by the

complexity of the problem and desired accuracy of the solution.

Because of the present state of mathematics, the only way to avoid the restrictions

concerned is numerical modelling. The great diversity of techniques can be observed in

this field. There exist a variety of approaches that are still simple but expand the horizons

of analytical tools. Typically, such methods are applied to simulations of flow in homo-

geneous reservoirs. The fracture network is represented by the set of straight fractures

that are either parallel or perpendicular to each other. The motivation for applications of

these methods is again understanding of physics in shales and sensitivity analysis for the

relatively small computational price [34]. Because of the complexity of the shale reser-

voirs, there is a variety of studies focused on the particular aspect of flow, like fluid-fluid

interaction. The object of the research in such works is physics of fluid motion. Therefore,

computations are usually made for homogeneous or even one-dimensional reservoirs [35].

It has been mentioned earlier that shale reservoirs are characterized by high level of

heterogeneity. Therefore for the practical purposes more involved techniques should be

used. The most popular tools are Multiple Continuum Models (MCM) and Discrete Frac-

ture Network (DFN). In the first family of methods, reservoir rock is represented by several

porous rocks that can participate into mutual mass exchange. For the shale reservoirs one

porous rock is typically the fracture network itself, and the other continuum is usually

solid matrix with nano-pores. However the total number of medias can vary [36], [37].

In MCM models fracture network is represented as an effective media. Therefore, the

advantage of the method is its relatively small computational cost because fractures are

not resolved by the mesh. In other words, fracture network is upscaled to additional con-
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tinuum. The disadvantage of the approach concerned comes from the coefficients that

describe mass exchange between elements of MCM. Currently, the reasonable determina-

tion of the magnitudes of the coefficients still remains rather involved. In addition, several

studies indicate that MCM models can not capture correct physical behavior in certain

cases [38] and DFN models perform better. The idea behind DFN models is explained

in the name of the method. Fracture network in DFN is given as a finite set of fractures.

The computational mesh is generated in such a way that it is capable for resolving each

individual fracture. Typically, that leads to very tiny mesh. As a result, DFN models typ-

ically have high accuracy but are extremely expensive from computational point of view.

Because of those reasons, DFN models are rarely applied in field-scale calculations [39],

but they are applied in the upscaling calculations for building MCM model [40]. From

the above discussion it follows that DFN and MCM suffer from the classic trade-of in

numerical methods: compromise between accuracy and computational time. As it usually

happens in such cases, the truth is somewhere in the middle. In other words, the modern

tendency in simulation of fractured and shale reservoirs is the combination of DFN and

MCM. The goal is to resolve certain fractures via grid geometry, and simulate others as

effective media [41]. Recent research demonstrates that such techniques have improved

accuracy if compared with pure MCM and lower computational cost of than pure DFN

[42].

1.3 Thesis Scope and Objectives

The main focus of the present study is the modelling of the flow of the fluid with pre-

scribed EOS. Therefore, the EOS is a sort of the input data for LBM simulations presented

here. This is the reason why the EOS is assumed to have a certain degree of generality.

It has been mentioned that the linear EOS is natural for LBM schemes. The treatment of

non-linear in LBM is not a trivial task. Moreover, the strong connection of the EOS with
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the parameters of the spatial resolution has been observed.

The first important result of the present work is the development of the self-consistent

LBM model for the numerical solution of the compressible version of the Navier-Stokes

equations. The model concerned is capable to simulate the flow of the fluid with the

given EOS. The first advantage of the model is the mathematical form of the equations.

There are no artificially introduced terms like pseudo-potentials. This is the reason why

in the present work, this model is referred to as a self-consistent approach. The second

advantage of the developed approach is potential for efficient parallel computing. The

method is self-consistent, therefore, there are no time expenses on sending the values of

pseudo-potentials. This can speed up the simulation in parallel significantly.

The second result of the work is the demonstration of the capability of the novel self-

consistent approach to be applied to the upscaling of PVT properties of the fluid inside the

nano-pores. For the purposes of the proof of concept, corrections to the PVT properties of

methane has been derived through the numerical simulations with LBM.

The third group of the results is related to the stability and to the accuracy of the

method. It has been shown that the the novel self-consistent method has both the upper

and the lower bound for the time step. This situation is unusual for numerical methods. In

the present work it is shown that this issue is inherit for LBM self-consistent schemes and

can not be addressed through the increase of the number of the lattice vectors.

These restrictions on the time step are related to the speed of sound of the fluid. This

leads to the impractically small time steps for reservoir simulations with self-consistent

model. Therefore, the novel pseudo-potential LBM scheme has been introduced. The

model concerned has an acceptable level of accuracy for the simulation of steady-state

flow. The issues with transient processes has been observed. Moreover, it has been demon-

strated that the numerical diffusion is unavoidable for pseudo-potential methods.

Finally, in order to address the issue with the numerical diffusion a conceptually new
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LBM scheme has been proposed for the reservoir simulations at the field scale. The novel

approach is not as flexible as the traditional LBM in the sense that it can be applied only

to the flow governed by the Darcy law. The additional work required to make it capable

for solving of the Navier-Stokes equation. However, the method has a scientific value as a

revision of the foundations of LBM.

1.4 Organization of the Work

This thesis is organized as follows: in chapter 1 the introduction to the present stage of

shale reservoirs simulation together with the literature review of this field is given. Chapter

2 serves as a brief introduction to LBM.

In chapter 3 the model for the pore scale simulations with LBM is derived. The poten-

tial of the application of this model to the upscaling of PVT properties of the fluid inside

the nano pores is demonstrated.

In chapter 4 is devoted to the observation of the capabilities of LBM as a computational

method. First of all, the fundamental limitations of the proposed approach is shown. The

need for pseudo-potential LBM models for field-scale simulations is discussed. A novel

pseudo-potential LBM model is introduced. It is demonstrated, that pseudo-potential LBM

models have certain limitations caused by the numerical diffusion.

In chapter 5 a conceptually new LBM scheme has been presented. The validation of

the new method together with the prospects for further research are discussed.

In chapter 6 the results of the work are analysed. Directions for the future research are

explored.
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2. INTRODUCTION TO LATTICE-BOLTZMANN METHOD

2.1 Modelling of Continuous Media

There is no doubt that numerical simulation of physical systems is highly valuable for

modern industry, especially in the cases when it is either too difficult or too expensive

to make a reliable experimental study. Therefore, a vast majority of approaches have

been developed. Despite the diversity of the methods all of them start from the equations

that describe real physical systems. The appropriate choice of the equations is usually

determined by the desired level of accuracy and by the scale of the system. The most

common model is called continuous media approximation. In this framework, the system

is described by the finite numbers of functions like density, pressure, temperature among

others. The evolution of the system is normally governed by mass, momentum and energy

conservation laws. One of the most popular examples is equations from fluid dynamics

[45]:
∂ρ

∂t
+
∂ρuα

∂xα
= 0

∂ρuα

∂t
+
∂ρuαuβ

∂xβ
+
∂Παβ

∂xβ
= Fα

(2.1)

Here ρ is the density of the fluid, uα is the velocity, Παβ is the stress-tensor, Fα is vector

of forces. In order to make a complete system of equations one should introduce closure

relations. In the case of fluid dynamics it could be the expression for the stress-tensor and

equation of state:

Παβ = Pδαβ

P = P (ρ)

(2.2)

Here P (ρ) is fluid pressure as function of density of the fluid. Physical systems with

the characteristic scale of 1 µm and higher can be simulated with a reasonable accuracy
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with continuous media models. This is the reason why such models are referred to as

macroscopic models.

The other well-known approach that is heavily used in industry is molecular dynamic

simulations or MD [46]. The area of application of the method concerned varies from

the estimation of the energy of a given molecule to simulation of the evolution of the

population of molecules. The governing equation in this case is the Schröedinger equation

[47]:

ih̄
∂Ψ

∂t
= − h̄

2m
∆Ψ+ VΨ (2.3)

Here Ψ is the wave-function, V is the potential energy, m is the mass of the particle, and h̄

is the Plank Constant. In theory, MD is based on the fundamental principles and equations

of molecular motion. Therefore, the set of physical systems that MD can describe contains

the world of macroscopic equations as well. In other words, one can replace the solver for

macroscopic equations by MD simulation with huge amount of particles. Unfortunately,

this is not feasible because the typical number of molecules in macroscopic system is

approximately equal to the Avogadro Constant: NA = 6 · 1023. That is very huge number

and it is beyond the available computational resources. The typical size of the system

for MD simulations varies in the range: 104 − 105 [48]. That means that there is a huge

gap between MD and macroscopic physical systems. In that intermediate case, kinetic

theory approach can be used. The primary object of the theory concerned is a distribution

function f(t, x, v), which is a normalized number of particles that have velocity v at the

point x at moment t. The evolution equation of the system is Boltzmann kinetic equation

[49]:
∂f(t, x, v)

∂t
+ vα

∂f(t, x, v)

∂xα
+
F β

m

∂f(t, x, v)

∂vβ
= Ω(f) (2.4)
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Here F describes external forces and m is the mass of a single particle or molecule. The

special attention is required to Ω(f). This term is called collision integral. Actually, it

is not a function but a functional, because its argument is the distribution function itself.

Ω(f) describes the change of the distribution function due to mutual collisions of particles.

Distribution function can be used for calculation of macroscopic or measurable prop-

erties like density, momentum and stress-tensor:

ρ =

∫
f(t, x, v)dv

ρuα =

∫
f(t, x, v)vαdv

ρuαuβ +Παβ =

∫
f(t, x, v)vαvβdv

(2.5)

Here ρ is the density, u is velocity Παβ is a stress tensor. The latter is related to pressure

and to viscous friction in gases and fluids.

The important concept of the formalism concerned is equilibrium distribution. It is

nothing but the solution for:

Ω(f0) = 0 (2.6)

In this work it is referred to as f eq. Actually, if the system is uniform in space and time and

there are no external forces, than f eq is a solution for (2.4). There are several examples of

equilibrium distribution functions. One of them is Maxwell distribution. The importance

of the equilibrium distribution function comes from the connection between kinetic theory

and thermodynamics. Primary variables in thermodynamic theory are such macroscopic

quantities as density, pressure and temperature. The central concept of thermodynamics

is the idea of equilibrium. That means that all the properties mentioned before should be

measured after all transitional processes have finished. In the present study, this state is

referred to as equilibrium limit. Therefore, equilibrium distribution function corresponds
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to a well-known macroscopic physical system with well-defined densities, pressures etc.

That indicates the importance of f eq and Ω(f): the first one determines a physical system

and the latter describes how the system evolves to its equilibrium state.

Therefore, choice of the numerical method and the set of equations that are planned

to be solved is significantly affected by the scale of the physical system. For instance,

behaviour of small groups of particles is best described by MD macroscopic systems are

represented well with continuous media approach, intermediate or meso-scale systems

could modelled with kinetic equation with reasonable accuracy. The following statement

can be illustrated in Figure (2.1):

Figure 2.1: Diagram of models of media at different scales. The set of primary variables
for each of the model is shown.

2.2 Lattice, Particles and Equations

There are many different ways to think about Lattice-Boltzmann Method (LBM). The

simplest from mathematical point of view, is the interpretation of LBM as the discretiza-

tion of kinetic equation both in velocity and coordinate spaces, therefore the total number
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of velocities available for particles is finite. In such a setting, the primary object is a dis-

tribution function fi(t, x) that is proportional to the number of particles that have velocity

vi at the point x at the moment t. Here i is an index that runs over the whole finite set of

all possible velocities in the model. Elements of the set concerned are denoted as ci. Typi-

cally, the velocities concerned are related to geometric objects, for instance to square in 2D

or the cube in 3D. In this example, lattice velocities are parallel to vectors that connect the

center of the cube with all or some of centers of faces, edges and vertexes. The common

notation for such type of lattices is Dn1Qn2. Here n1 is the dimension of the space and

n2 is the number of selected vectors. For example, the set of lattice velocities for D2Q9

and D3Q27 is shown in Figure (2.2). More details about D2Q9 and D3Q27 lattices can be

found in [50] and [51].

Figure 2.2: Set of lattice velocities for D2Q9 (left) and D3Q27 (right) lattices. Zero ve-
locity vector is not shown.

It is traditionally to work in dimensionless units in LBM. Namely, if ∆X and ∆T are

representative spatial and temporal scale of the system, then lattice velocities are typically

15



expressed in the form of dimensionless vectors ei:

cαi =
∆X

∆T
eαi (2.7)

In this work, eαi can take only one of three values −1, 0,+1. The exact definition of ∆X

and ∆T varies from problem to problem and can be absolutely non-trivial in general.

However, in numerical analysis ∆X and ∆T are simply spatial and temporal time steps

respectively. Here and later in the text, ∆X and ∆T are referred only to spatial and tem-

poral steps. By the analogy with continuous case, it is possible to introduce the evolution

equation:
∂fi
∂t

+ cαi
∂fi
∂xα

+ Fi = Ωi(f) (2.8)

Here again Ωi is a collision integral or collision term. Fi represents external forces. In the

case of discrete kinetic equation Ωi(f) is the finite family of ordinary functions, therefore,

it is no longer a functional [52].

The discretization in velocity space can be considered as the replacement of classic

Boltzmann equation by the discrete analog: Discrete Kinetic Equation (DKE). However,

in order to come up with the LBM scheme an additional step is required: discretization in

space and time. This can be made by setting the whole system on the lattice. This proce-

dure is equivalent to the simplest uniform discretization in space and time. As long as there

is not much sense in having derivatives in discrete space, they should be replaced by the

numerical analog, for instance with finite differences. Therefore, it is possible to consider

LBM as a numerical scheme for DKE with uniform spatial and temporal discretization

and finite difference approximation of derivatives:

fi(t+∆T, x+ ei∆X)− fi(t, x) + Fi∆T = Ωi(f)∆T (2.9)

16



Equation (2.9) and its numerical scheme has a meaningful graphical interpretation.

Namely, the scheme can be divided into two steps. The first one is the evaluation of the

following expression:

f̂i(t, x) = fi(t, x)− Fi∆T + Ωi(f)∆T

This step is called the collision step. The next step is an update of distribution functions

using following rule:

fi(t+∆T, x+ ei∆X) = f̂i(t, x)

This step is called streaming step. It simply states that nodes of the lattice exchange distri-

bution functions with neighbours. The pictorial representation of streaming and collision

steps is shown below (2.3).

This is the mathematical way of thinking about LBM. However, it is useful to look

at LBM from another prospective. According to the definition, distribution functions

in continuous kinetic equation are nothing but averages over samples of distribution of

molecules. Therefore, because of the analogy between discrete and continuous kinetic

equations, LBM can be treated as average of the distribution of artificial particles that live

purely on the cubic grid. Molecules of the gas concerned can propagate through the lattice

and collide with each other. The only difference from real particles is that velocity is par-

allel to lattice directions and there are certain restrictions on its magnitude. The scheme of

lattice gas is presented in the Figure (2.4).

The interpretation concerned is extremely useful for formulation of boundary condi-

tions. The number of degree of freedoms in LBM is usually higher than in macroscopic

system that is described thereof. Therefore, it is typically that that macroscopic bound-

ary conditions do not have enough information for setting correct boundary conditions for
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Figure 2.3: Illustration of each of the terms in the LBM Scheme. One time step is con-
sidered. The first one shows the effect of streaming during the time step concerned. It is
simply propagation to the neighbour. The collision term or integral corresponds to the re-
laxation of particles to the equilibrium distribution and forcing term represents the change
of distributions functions because of interaction with external world. In the given example
the force acts from left to right.

LBM. This means that there are different alternatives for streaming rules at the boundary.

The selection of the correct one is not a trivial problem. In such situations the intuition

about distribution functions as flux of the artificial molecules is extremely useful: the idea

about the interaction of particles with the boundary finally leads to the natural formulation

of boundary conditions.

Historically, numerical methods for simulations of gas of artificial particles have been

developed first. Typically they are referred to as Cellular Automata or Lattice Gas Au-

tomata (LGA) [54]. It can be shown that through appropriate selection of the set of ve-

locities and by setting collision rules correctly, one can model the Navier-Stokes equation.

Some of the advantages like small memory requirements and low computational costs, can

be useful for practical implementations. What is more exciting is that LGA is free from
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Figure 2.4: Schematic picture of lattice gas. Particles of the gas concerned travel with
velocities parallel to lattice direction. They are allowed to move from one node to the
neighbour during the time-step. If to particles come to the same node simultaneously the
collision happens.

round-off errors. Despite the remarkable properties of LGA, high level of noise in the av-

eraged macroscopic properties limits the applicability of the method. Actually, LBM has

been developed as the tool for solving the problem with noises in LGA.

2.3 LBM and Modelling Frameworks

Despite the relatively short history, LBM has been applied to modelling vast variety

of physical systems. The flexibility concerned is provided through the generic form of the

governing equations:
∂fi
∂t

+ cαi
∂fi
∂xα

+ Fi = Ωi

fi(t+∆T, x+∆X)− fi(t, x) + Fi∆T = Ωi(f)∆T

It can be shown that up to issues with numerical stabilities almost any physical system

can be described in terms of LBM if collision and forcing terms Ωi and Fi respectively
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have been chosen in appropriate way. For instance, Jianfeng Lu et al applied LBM for

quantum systems [55]. Ryosuke Yano studied relativistic hydrodynamics with LBM [56].

And of course, a huge amount of works is dedicated to the Navier-Stokes Equation, that

is the original purpose for which the method has been developed, for instance [57]. The

essence of the discussion above is that almost any system from the Schröedinger Equation

and dynamics of the magnetic to the hydrodynamics can be modelled within a unified

numerical algorithm. That feature of the method concerned is remarkable by itself, what

is more important that it gives a basis for seamless integration for problems with multiple

scales. The later has a vital importance for the simulation of shale reservoirs.

Because of the properties of the LBM, there is no surprise that LBM has found its

application in Petroleum Engineering. At the very beginning, LBM has been used as

an auxiliary tool for preparation of data for conventional reservoir simulation. To the

best of author’s knowledge, calculation of permeability of various rock samples has been

the first application of LBM in the field involved. Traditionally, permeability is obtained

from core-flooding experiments. The latter is usually quite expensive and time-consuming.

Because of such reasons, calculation of the rock properties concerned based on numerical

experiments seems to be a prospective alternative to direct measurements. More precisely,

the idea of the approach is to solve Navier-Stokes equations in the porous media with given

geometry and calculate permeability based on results of the simulations. The geometry of

the rock for the calculations can be obtained from the digital model of a real core [58] or

it can be generated artificially [59]. It has happened that boundaries of complicated shape

can be treated in LBM in a relatively simple but effective way. Therefore, LBM has found

its applications in such type of numerical experiments. Permeability has a reasonably good

scaling properties, therefore, there is no need for simulation of flow of real fluid in such

type of problems. This means that one can use fluid with artificial physical properties and

have a correct result after appropriate rescaling procedure, however, actual properties of
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real fluids may be critical in multi-phase flow problems [60].

The less popular area of application of LBM is field-scale simulation, namely solution

for mass and momentum conservation equations linked by Darcy Law. One of the first

works regarding such type of models has been devoted to water-flooding simulations. The

focus of the work concerned is prediction of the watercut curve from numerical simula-

tion, therefore fluids with artificial equation of state have been considered [61]. Despite

the flexibility and potential of the method to implemented for simulation of various phys-

ical systems, it is not quite trivial to introduce a given equation of state for reservoir-scale

simulations, because of the construction of LBM. Therefore, a relatively common situation

is such that various effects like deviations from Darcy Law, stress-dependent permeability

of the rock like are taken into account, although the linear EOS is used, for instance [62].

Here linear means that pressure is proportional to density. By the present moment, there is

a significant fraction of studies of simulation of flow of the fluid with given EOS via LBM.

The most popular one is so-called Shan-Chen model [63]. The major part of such works is

focused on multiphase behavior either in pores or in bulk volumes. That means that such

LBM models are not designed for reservoir scale simulations. Successful attempt of de-

veloping macroscopic LBM model has been made by Q.Liu et al [64]. Finally, despite the

useful features of LBM and advances in its development, the method is not very popular

in field-scale reservoir simulations.
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3. EOS OF THE FLUID IN PORE-SCALE SIMULATIONS

Shale reservoirs provide a typical example of a multi-scale system. One of the most

common ways for modelling multiscale systems is so-called sequential upscaling. In gen-

eral, simulations at fine scale are generalized to effective rock-properties for further appli-

cation in simulations at coarse scale and so on. The present work follows this general idea

in such a way that we look for an upscaling LBM method. In this chapter the upscaling

procedure for the smallest scale or pore scale is discussed. Basically, LBM-scheme for

simulation of fluid flow at the scale concerned is presented. Numerical examples provide

the validation of the method and demonstrate applications of LBM to the problems in-

volved. The novelty of the presented approach is the implicit LBM scheme with density

dependent lattice wrights.

3.1 Problem Setup

The major difference of fluid behaviour inside pores of shale rock in comparison with

the conventional rock comes from the volume-to-surface ratio. Simple calculations can

show that the area of the surface of fluid-rock contact per unit volume of the fluid in-

creases with the decrease of the mean size of the pores. That causes the increase of the

energy of interaction of fluid with solid matrix of the rock leading to the significant impact

on the overall flow pattern. This is known as adsorption and slippage effects. in reser-

voir engineering, the phenomena involved are modelled through Langmuir isotherm and

Klinkenberg correction formula. It has been mentioned in the introduction that the cor-

rections concerned work well in general, however significant deviations with experimental

results have been observed in certain cases. Therefore, there is a need for the improve-

ments of the LBM framework for handling more general phenomena.

One of the options is to upscale high resolution simulations that are based on first prin-
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ciples to correlations similar to Langmuir isotherm or Klinkenberg correction formula.

That is exactly the place where LBM can be applied. LBM has a relatively long history

of application to modelling of slippage effects [67], however adsorption has not been con-

sidered in great details. That is the reason why the main focus of the present work is

adsorption. It is well-known that the physical mechanism of adsorption is an attraction

between molecules of the rock and fluid or gas. The interaction concerned can be repre-

sented through its energy. The latter quantity depends on the type of interacting molecules

and on the distance between them. Therefore, for absolutely accurate simulations the dis-

tribution of all molecules of the rock in the space is required. However, it is not real to

have all this data because of the technical limitations. One of the possible solutions is to

use a relatively simple model for the potential of interaction that describes all the physics

in average. The parameters of the potential can be tuned in order to obtain the agreement

with the experimental data. If the geometry of the porous media is known, then one can

compute the distribution of the potential of the interaction inside the pore space. It is well-

known from high-school physics that the gradient of the field concerned with the inverse

sign is the force of interaction. In other words, the energy of interaction of two molecules

together with the geometry of the pore space gives the forcing field. The latter makes it

possible to implement an LBM scheme with the forcing terms for simulation of adsorption

effects.

The focus of the present work is the development of the LBM scheme that is capable

to capture the effects concerned. To the best of author’s knowledge this is the first work,

where the semi-implicit LBM scheme is used for modelling the adsorption effects, starting

from the first principles. The approach presented here can be applied to the pore network

with real geometry. Therefore, the novel technique presented here can be easily imple-

mented. However, in this work, the major attention is paid to the details of derivations of

the numerical method itself rather then to involved interaction between molecules or com-
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plicated geometry of the porous media. Because of the reasoning above, the step-function

has been chosen as a model for the potential of interaction between molecules:

ϕ(x) =


−ϕ0, if |x| < r0

0, if |x| ≥ r0

(3.1)

The potential concerned depends on two parameters: the overall potential energy of the

interaction ϕ0 and the effective radius of action r0 or investigation radius. One can con-

sider the plane wall of the rock and the single molecule of the gas that interacts with the

molecules of the wall in the form that is prescribed by the potential ϕ(x). The geometry

of the porous media is very simple as well: rectangular channel. The potential (3.1) and

the shape of the channel concerned result in the following force of attraction of molecule

to the wall [70]:

FB = −ρ 3Q

2Mr0

(
1− z2

r20

)
(3.2)

Here Q is the heat of adsorption, ρ is the density of the gas, M is the molar mass, z is the

distance to the wall. The advantage of the present approach is that the magnitude of the

potential ϕ can be expressed in terms of measurable quantities like the heat of adsorption.

Typically, the data on the value of radius of investigation r0 is available from various

physical and chemical measurements.

Finally, the force field (3.2) is incorporated into the LBM scheme through the forcing

term. The exact formulation of collision integral and the forcing term concerned are shown

below. Results of simulations are discussed in the end of the present chapter.

3.2 Chapman-Enskog Expansion

To the best of the author’s knowledge, there is only one way of establishing relations

between DKE and a real physical system: Chapman-Enskog Expansion. The goal of the
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present section is to explain that in the case of LBM with BGK collision term the procedure

concerned is equivalent to the representation of the equilibrium distribution function as a

power series with respect to relaxation time.

The central equation of the present work is a so-called discrete kinetic equation.

∂fi
∂t

+ cαi
∂fi
∂xα

+ Fi = Ωi (3.3)

Here fi are discrete distribution functions, namely mass of the particles that moves with

velocity ci, Fi corresponds to the net forces, Ωi is a collision term. It has been mentioned

in the previous section that the range of systems described by the equation (3.3) is impres-

sively wide. The key role in such flexibility belongs to the collision and the forcing terms.

In the present work, only the BGK model will be considered:

f eq
i − fi
τ

= Ωi (3.4)

Here f eq
i is equilibrium distribution function and τ is a relaxation time. The physical

meaning of relaxation time is the representative time-scale for the process of relaxation

of distribution to equilibrium. Therefore, the following conclusion is valid: for small

relaxation times distribution functions should be close to equilibrium. The mathematical

expression of that statement is that the solution for the (3.3) can be expressed as power

series with respect to the relaxation time:

fi = f eq
i + τ 1f

(1)
i + τ 2f

(2)
i + ... (3.5)

The expression for each of the terms in (3.5) can be derived from the (3.3) with the BGK
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collision term. Namely, simple algebraic manipulations show that:

fi = f eq
i − τ

(
∂fi
∂t

+ cαi
∂fi
∂xα

+ Fi

)
(3.6)

In other words, it is possible to express the solution in the form of its derivatives. The

result of the application of (3.6) to itself is the following equation:

fi = f eq
i −τ

(
∂f eq

i

∂t
+cαi

∂f eq
i

∂xα
+Fi

)
+τ 2

((
∂

∂t
+cαi

∂

∂xα

)2

fi+

(
∂

∂t
+cαi

∂

∂xα

)
Fi

)
(3.7)

Here the following notation is used:

(
∂

∂t
+ cαi

∂

∂xα

)2

fi =
∂2fi
∂t2

+ 2cαi
∂2fi
∂t∂xα

+ cαi c
β
i

∂2fi
∂xα∂xβ

Comparison of (3.5) with (3.7) gives the following expression for the approximations of

various orders in relaxation time:

f
(1)
i = −∂f

eq
i

∂t
+ cαi

∂f eq
i

∂xα
+ Fi

f
(2)
i =

(
∂

∂t
+ cαi

∂

∂xα

)2

fi +

(
∂

∂t
+ cαi

∂

∂xα

)
Fi

(3.8)

Expressions (3.5) - (3.8) are heavily used in the computation of moments of distribu-

tion functions. The latter are defined in the same way as in classic statistic theory;

Mα1...αk
k =

∑
i

fic
α1
i ...c

αk
i (3.9)

Here Mα1...αk
k is a component of moment of the order k, ci is one of the possible

discrete velocities. The summation in (3.9) is over the set of all velocities in the model.

That set is finite as long as discrete kinetic equation is considered. The most important
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moments for the present research are moments of orders 0, 1 and 2.

ρ =
∑
i

fi (3.10)

ρuα =
∑
i

fic
α
i (3.11)

ρuαuβ +Παβ =
∑
i

fic
α
i c

β
i (3.12)

The moments concerned have their own specific names. ρ is the density, uα is average

or macroscopic velocity and in the next section it is shown that Παβ is a stress-tensor.

The approximation for the solution of (2.8) can be used for calculations of moments of

distribution and related quantities via (3.10) (3.11) and (3.12). Therefore, one can show

that the following expression holds for the density, for the average velocity, and for the

stress-tensor:
ρ = ρeq + τρ(1) + τ 2ρ(2) + ...

uα = u(eq),α + τu(1),α + τ 2u(2),α + ...

Παβ = Π(eq),αβ + τΠ(1),αβ + τ 2Π(2),αβ + ...

(3.13)

This way of deriving approximate values for the moments and the distribution function

is referred to as Chapman-Enskog expansion. To be precise, the procedure concerned has

much more involved form in general, but in the case of BGK collision integral or similar

models it becomes the same thing as a power series with respect to the relaxation time. It is

worth to mention that certain degree of simplification of (3.13) without loss of generality

can be achieved. Such systems are considered in the next section.
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3.3 Navier-Stokes Equation for the Free Fluid

A picture paints a thousand words or equivalently the best way to understand subtle

details of mechanics of LBM is to consider one representative example, which is the flow

of the free fluid. In this section it is shown via Chapman-Enskog expansion [54] that LBM

reproduces the Navier-Stokes equation [57] for a compressible fluid if first four moments

of the equilibrium distribution functions coincide with the moments of Maxwell’s distri-

bution:
ρ =

∑
i

f eq
i

ρuα =
∑
i

f eq
i c

α
i

ρuαuβ + P (ρ)δαβ =
∑
i

f eq
i c

α
i c

β
i

ρuαuβuγ + P (ρ)

(
uαδβγ + uβδαγ + uγδαβ

)
=
∑
i

f eq
i c

α
i c

β
i c

γ
i

(3.14)

In other words, it is shown that for the approximation of the flow of the given fluid it is

sufficient to design the equilibrium distribution functions in such a way that the have the

same moments as Maxwell’s distribution. This statement is one of the contributions of the

present work.

It is well-known that in the case of the free-moving fluid the evolution of the system

concerned is governed by mass and momentum conservation laws. Viscosity and equation

of state of the fluid are given:

P = P (ρ)

µ = µ(ρ)

(3.15)

Therefore, all the mathematical manipulations are performed around that equations. Be-

cause the free fluid is studied, there is no need to care about forcing terms in (3.3), because

they are all zero. Therefore, the only undetermined object is the equilibrium distribution
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function. For the simplicity reasons it is assumed that f eq depends only on macroscopic

density and velocity:

f eq
i = f eq

i (ρ, u) (3.16)

The equilibrium distribution is the state, to which the system is evolving with time. There-

fore, it does not have to coincide with the actual distribution of particles. Although, the

moments of equilibrium distribution of order zero and one are defined through the same

moments of the actual distribution of particles. Moreover, those moments coincide in the

case of the free-moving fluid:

∑
i

f eq
i (ρ, u) =

∑
i

fi = ρ

∑
i

f eq
i (ρ, u)cαi =

∑
i

fic
α
i = ρuα

(3.17)

Mass and momentum conservation laws can be derived from the discrete kinetic equation

with the BGK collision term and zero forcing term:

∂fi
∂t

+ cαi
∂fi
∂xα

=
f eq
i − fi
τ

(3.18)

The averaging of both sides of (3.18) gives the following equaiton:

∑
i

(
∂fi
∂t

+ cαi
∂fi
∂xα

)
=
∂
∑

i fi
∂t

+
∂
∑

i fic
α
i

∂xα
=
∑
i

f eq
i − fi
τ

(3.19)

The equation concerned can be simplified if the definition of the equilibrium distribution

is applied (3.17):
∂
∑

i fi
∂t

+
∂
∑

i fic
α
i

∂xα
= 0

Using the definition of the density and the momentum (3.10) and (3.11) one can get a
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well-known continuity equation:

∂ρ

∂t
+
∂(ρuα)

∂xα
= 0 (3.20)

The summary of derivations above is that one can end-up with macroscopic equations with

a two-step procedure: compute distribution moments of both parts of (3.18) and than use

the definition of moments in terms of macroscopic quantities. That logic works well for the

continuity equation as it has been shown above. Therefore, the procedure concerned can

be applied to the momentum conservation equation. Multiplication of both parts of (3.18)

by cβi and together with averaging with respect to lattice velocities gives the following

expression:

∑
i

cβi

(
∂fi
∂t

+ cβi c
α
i

∂fi
∂xα

)
=
∂
∑

i fic
β
i

∂t
+
∂(
∑

i fic
α
i c

β
i )

∂xα
=
∑
i

f eq
i − fi
τ

cβi (3.21)

The only new term in the equation concerned is
∑

i fic
α
i c

β
i . However, it is possible to

rewrite it in the convenient form:

∑
i

fic
α
i c

β
i =

∑
i

fi(c
α
i − uα)(cβi − uβ) +

∑
i

fi(c
α
i − uα)uβ +

∑
i

fiu
α(cβi − uβ)+

+
∑
i

fiu
αuβ = ρuαuβ +

∑
i

fi(c
α
i − uα)(cβi − uβ) = ρuαuβ +Παβ

(3.22)

Here Παβ is simply
∑

i fi(c
α
i − uα)(cβi − uβ). Finally, definitions of the moments and the

equilibrium distribution function give the following expression:

∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
+

∂

∂xβ
Παβ = 0 (3.23)

The latter means that Παβ is nothing but the stress-tensor. Therefore, for the fluids it should
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take the form:

Παβ = Pδαβ − µ

(
∂uα

∂xβ
+
∂uβ

∂xα
− 2

3

∂uγ

∂xγ
δαβ
)

(3.24)

It is important to notice that (3.23) is exact and it looks like classic macroscopic momen-

tum conservation equation. However, the stress tensor is expressed in terms of the distri-

bution functions. That means that the closing relation is missing in general. On the other

hand, it is reasonable to expect that for slow processes the stress-tensor and other moments

of distribution should be close to the macroscopic one. In other words, high order terms

in (3.13) should be negligible. It is worth to emphasize that because of the constraints

on the equilibrium distribution only stress-tensor has non-trivial expansion. Density and

momentum have only zero-order terms.

In other words, Chapman-Enskog procedure for the stress-tensor establishes certain

restrictions on the parameters of the LBM scheme. The rest of the present section is

devoted to the derivation of the first-order expression for the Παβ .

The formula for the second moment of distribution can be transformed as follows:

∑
i

fic
α
i c

β
i =

∑
i

f eq
i c

α
i c

β
i +

∑
i

(fi − f eq
i )cαi c

β
i (3.25)

From (3.3) one can have

f eq
i − fi = τ

(
∂fi
∂t

+
∂cβi fi
∂xβ

)
This means that up to the terms of first order in relaxation time, an actual distribution

function equals to the equilibrium distribution function. Therefore, the following equality

holds: ∑
i

fic
α
i c

β
i =

∑
i

f eq
i c

α
i c

β
i +O(τ)
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That results immediately in a well-known stress-tensor for the fluid with zero viscosity:

Παβ = Pδαβ +O(τ) (3.26)

For the purposes of further derivations, expressions for the time derivative of density and

velocity are required. Actually, there is no need for exact formula: it is enough to keep only

leading term in relaxation time. Equation (3.26) gives Euler equation for compressible

fluid up to higher orders in τ :
∂ρ

∂t
+
∂ρuα

∂xα
= 0 (3.27)

∂(ρuα)

∂t
+

(∂ρuαuβ)

∂xβ
= − ∂P

∂xα
+O(τ) (3.28)

For the purposes of further derivations first derivatives of velocity with respect to time is

needed. It can be obtained from (3.27) - (3.28) with the usage of the following transfor-

mation:

∂(ρuα)

∂t
+
(∂ρuαuβ)

∂xβ
= uα

∂ρ

∂t
+ρ

∂uα

∂t
+uα

∂ρuβ

∂xβ
+ρuβ

∂uα

∂xβ
= ρ

(
∂uα

∂t
+uβ

∂uα

∂xβ

)
(3.29)

Finally,
∂uα

∂t
+ uβ

∂uα

∂xβ
= −1

ρ

∂P

∂xα
+O(τ) (3.30)

With the expressions for first derivatives with respect to time and with formulas for the first

four moments of equilibrium distribution, the Chapman-Enskog expansion for the stress-

tensor can be performed. It has been shown that the part of the stress tensor is nothing but

spherical term that corresponds to the pressure. The remaining part

∑
i

(fi − f eq
i )cαi c

β
i
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can be computed in the following way:

∑
i

(fi − f eq
i )cαi c

β
i = −τ

∑
i

cαi c
β
i

(
∂fi
∂t

+ cγi
∂fi
∂xγ

)
=

= −τ
∑
i

cαi c
β
i

(
∂f eq

i

∂t
+ cγi

∂f eq
i

∂xγ

)
+O(τ 2) = −τ ∂

∂t
(ρuαuβ + Pδαβ)−

−τ ∂

∂xγ

(∑
i

f eq
i c

α
i c

β
i c

γ
i

)
= −τuβ ∂ρu

α

∂t
− τρuα

∂uβ

∂t
− τ

∂

∂xγ

(∑
i

f eq
i u

αuβuγ
)
−

−τ ∂

∂xγ

(∑
i

f eq
i (cαi − uα)uβuγ

)
− τ

∂

∂xγ

(∑
i

f eq
i u

α(cβi − uβ)uγ
)
−

−τ ∂

∂xγ

(∑
i

f eq
i u

αuβ(cγi − uγ)

)
− τ

∂

∂xγ

(∑
i

f eq
i (cαi − uα)(cβi − uβ)uγ

)
−

−τ ∂

∂xγ

(∑
i

f eq
i (cαi − uα)uβ(cγi − uγ)

)
− τ

∂

∂xγ

(∑
i

f eq
i u

α(cβi − uβ)(cγi − uγ)

)
−

−τ ∂

∂xγ

(∑
i

f eq
i (cαi − uα)(cβi − uβ)(cγi − uγ)

)
− τδαβ

∂P

∂ρ

∂ρ

∂t
+O(τ 2) =

= τuβ
(
∂(ρuαuγ)

∂xγ
+
∂Pδαγ

∂xγ

)
+ τρuα

(
uγ
∂uβ

∂xγ
+

1

ρ

∂Pδβγ

∂xγ

)
+ τδαβ

∂P

∂ρ

∂(ρuγ)

∂xγ
−

−τ ∂

∂xγ

(
ρuαuβuγ

)
− τ

∂

∂xγ

(
Puαδβγ + Puβδαγ + Puγδαβ

)
+O(τ 2) =

= τ
∂ρ

∂xγ
uαuβuγ + τρ

∂uα

∂xγ
uβuγ + τρuα

∂uβ

∂xγ
uγ + τρuαuβ

∂uγ

∂xγ
+ τ

∂P

∂xγ
uβδαγ+

+τρuα
∂uβ

∂xγ
uγ + τ

∂P

∂xγ
uαδβγ + τδαβρ

∂P

∂ρ

∂uγ

∂xγ
+ τuγδαβ

∂P

∂ρ

∂ρ

∂xγ
−

−τ ∂ρ
∂xγ

uαuβuγ − τρ
∂uα

∂xγ
uβuγ − τρuα

∂uβ

∂xγ
uγ − τρuαuβ

∂uγ

∂xγ
−

−τ ∂P
∂xγ

uαδβγ − τ
∂P

∂xγ
uβδαγ − τ

∂P

∂xγ
uγδαβ−

−τP ∂u
α

∂xβ
− τP

∂uβ

∂xα
− τPδαβ

∂uγ

∂xγ
+O(τ 2) =

= −τP
(
∂uα

∂xβ
+
∂uβ

∂xα
+ δαβ

(
1− ρ

P

∂P

∂ρ

)
∂uγ

∂xγ

)
+O(τ 2) =

= −τP
(
∂uα

∂xβ
+
∂uβ

∂xα
− 2

3
δαβ

∂uγ

∂xγ

)
− τP

(
5

3
− ρ

P

∂P

∂ρ

)
∂uγ

∂xγ
δαβ +O(τ 2)

(3.31)
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Combining (3.22) and (3.31) one can reformulate the momentum conservation equation in

the following way:

∂
(
ρuα
)

∂t
+
∂
(
ρuαuβ

)
∂xβ

= −∂Pδ
αβ

∂xβ
+

+
∂

∂xβ

(
µ

(
∂uα

∂xβ
+
∂uβ

∂xα
− 2

3
δαβ

∂uγ

∂xγ

)
+ ζδαβ

∂uγ

∂xγ

)
+O(τ 2)

(3.32)

Here µ and ζ are the viscosity and the second viscosity respectively, The expression for

them is the following:

µ = τP (3.33)

ζ = µ

(
5

3
− ρ

P

∂P

∂ρ

)
(3.34)

Typically, viscosity and pressure are given as a functions of density, therefore, equations

(3.33) and (3.34) determine the relaxation time:

τ =
µ

P
(3.35)

The summary of the following section is that with certain restrictions on the moments

of the equilibrium distribution and relaxation time, compressible version of the Navier-

Stokes equations can be reproduced up to the terms of the second order in relaxation

time. Therefore, derivations above give a motivation for using LBM for Computational

Fluid Dynamics (CFD) and demonstrate the work flow of the design of the LBM scheme

in generic case. It should be mentioned that no assumptions regarding the equilibrium

distribution functions have been made, except the expression for the moments. This means

that the problem of the development of the LBM scheme is reduced to the construction

of the equilibrium distribution functions with the specified moments. The proof of this

statement demonstrated above is one of the contributions of the present study.
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3.4 Equilibrium Distribution Functions

The outcome of the previous sections is that the moments of equilibrium distribu-

tion function determine the properties of the macroscopic systems that can be extracted

from the dynamics of the particles. For instance, it has been shown that if first four mo-

ments of equilibrium distribution function coincide with Maxwell’s distribution than the

Navier-Stokes equation can be reproduced up to the terms of second order with respect

to relaxation time. Therefore, the application of Chapman-Enskog expansion to the LBM

systems with the same moments (3.14) of equilibrium distribution function results in the

same macroscopic equations. The results of the present section are presented with the

permission of the Society of Petroleum Engineering.

Equations (3.14) can be satisfied in different ways. The most common approach relies

on the similarity between continuous and discrete kinetic equations. Namely, the equi-

librium distribution in the continuous case is Maxwell’s distribution, which is the prod-

uct of Gaussian distributions for each of the spatial dimensions. Inspired by the analogy

concerned the function similar to Taylor expansion of Maxwell’s distribution has been

suggested for the discrete kinetic equation:

f eq
i (ρ, u) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u2

2c2s

)
(3.36)

Here csi is so-called lattice speed of sound. In standard LBM framework it is constant:

cs =
1√
3

∆X

∆T
(3.37)

Here ∆X and ∆T are representative spatial and temporal scales. In the particular case its

numerical interpretation and as of solution scheme those quantities are simply space and

time steps. Such approach results in the fact that the equation of state becomes similar to
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the ideal gas, which is not very common in the real world. In order to solve this issue,

extra terms are introduced into equation (3.18). In this work the method that allows one

to model correct equation of state without the presence of auxiliary terms is introduced.

The central idea is to follow the route of the continuous theory as far as it possible and

get values for weights and lattice speed of sound in (3.36). The results of the present

section has been shown in [70]. However, the derivations were missing there. Therefore,

the method for the solution of the equations (3.14) is presented first time.

It the previous section it has been shown that macroscopic equations of movement of a

certain fluid are reproduced correctly if the constraints (3.14) on moments of equilibrium

distribution are satisfied. With the given form of f eq
i , each moment is nothing but polyno-

mial function with respect to u. Therefore, applying method of uncertain coefficients, one

can derive the following constraints on weights:

∑
i

wi = 1

∑
i

wic
α
i = 0

∑
i

wic
α
i c

β
i = c2sδ

αβ

∑
i

wic
α
i c

β
i c

γ
i = 0

∑
i

wic
α
i c

β
i c

γ
i c

δ
i = c4s

(
δαβδγδ + δαγδβδ + δαδδβγ

)
(3.38)

And an expression for the lattice speed of sound:

c2s =
P

ρ
(3.39)

Constraints (3.38) is the system of five equations and the number of weights is 27
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for D3Q27 model or nine for D2Q9. Therefore, in theory there are many ways to sat-

isfy (3.38). However, the physical nature of the problem allows one to narrow the set of

possible options for weights. First of all, it can be observed from (3.36) that:

ρwi = f eq
i (ρ, 0)

The latter means that value of weight is proportional to the mass of the particles that

move with a given velocity for the equilibrium distribution function with zero mean veloc-

ity. it is immediately leads to the inequality:

∀i ≥ 0 → wi ≥ 0 (3.40)

More strong restrictions come from the rotational symmetry. It is easy to see that if

lattice velocities ci and cj have the same absolute value than there is exist a rotation A

such that A(ci) = c − j and that maps lattice vectors to lattice vectors. Macroscopic

equations that are modeled preserve rotational symmetry, therefore, that symmetry should

be preserved in LBM scheme. The consequence of the latter is the following statement:

|ci| = |cj| ⇒ wi = wj (3.41)

In the case of D3Q27 model there are only four possibilities for the absolute value of

lattice velocity vector:

i = 0 → |ci| = 0

i = 1...6 → |ci| =
∆X

∆T

i = 7...18 → |ci| =
√
2
∆X

∆T

i = 19...27 → |ci| =
√
3
∆X

∆T

(3.42)
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Up to the coefficient 2∆X
∆T

lattice vectors ci coincide with vectors that connect the center

of unit cube with it’s center, faces, edges and vertexes. Therefore, the following notation

can be introduced naturally:

i = 0 → wi = wc

i = 1...6 → wi = wf

i = 7...18 → wi = we

i = 19...27 → wi = wv

(3.43)

Here indexes wc, wf , we, wv correspond to center, faces edges and vertexes of the cube.

Therefore, rotational symmetry reduces the number of degrees of freedom from 27 to 4.

However, one can show that equations with odd degrees with respect to lattice velocities

are satisfied automatically because of the symmetry of D3Q27 lattice. Therefore, only

three equations remains:

∑
i

wi = 1

∑
i

wic
α
i c

β
i = c2sδ

αβ

∑
i

wic
α
i c

β
i c

γ
i c

δ
i = c4s

(
δαβδγδ + δαγδβδ + δαδδβγ

) (3.44)

The common way to solve the equations (3.44) is to perform the contraction of both parts

of equations with appropriate power of Kronecker tensor in order to end up with scalar

equations:
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∑
i

wi = 1

∑
i

wic
α
i c

β
i δαβ = c2sδ

αβδαβ

∑
i

wic
α
i c

β
i c

γ
i c

δ
i δαβδγδ = c4s

(
δαβδγδ + δαγδβδ + δαδδβγ

)
δαβδγδ

(3.45)

It easy to see that because of the high symmetry of the initial system of tensor equations

(3.38) any solution of contracted system (3.45) is a solution of the initial one. Eventually,

there are only three non-trivial constraints on weights. Therefore, the value of one of them

can be kept arbitrary. in the present work the value of w0 is selected in accordance with

classic LBM models. With such choice of w0 the following expression for weight can be

derived:

wc =
8

27

wf =
1

6

(
3(1− wc)−

15

2

(
cs∆T

∆X

)2

+
15

2

(
cs∆T

∆X

)4)
we =

1

12

(
3(wc − 1) + 12

(
cs∆T

∆X

)2

− 15

(
cs∆T

∆X

)4)
wv =

1

8

(
(1− wc)−

9

2

(
cs∆T

∆X

)2

+
15

2

(
cs∆T

∆X

)4)
(3.46)

3.4.1 Numerical Scheme

The term discrete kinetic equation assumes discretization in the speed of velocities or

momentums of particles. However, the problem is still the system of PDE’s. As it happens

in general, it can not be solved analytically for the majority of the cases. Therefore, the

numerical scheme is required. This leads in turn to the temporal and spatial discretization.

The simplest way to do it is to introduce the cubic lattice with the period ∆X and fix the

time-step ∆T .

The set of velocities of the particles is the same is the set of lattice directions. The

39



geometric way of thinking about D3Q27 model is to consider a cubic discretization of the

space. In this case each of the cubes has 27 neighbors with common face edge or vertex

or the cube itself. Therefore, let Ri is the vector that connects the center of a given cube

with the center of one of his neighbors. If ∆X is the period of the lattice than

Ri = ∆Xei

Here ei is called a lattice vector. It is easy to see that in the case of cubic lattice the absolute

value of each of the coordinates of ei is either one or zero. Having a set of lattice vectors

one can construct the set of lattice velocities ci

ci =
∆X

∆T
ei

It is important to keep in mind that the set of lattice velocities is dependent on the dis-

cretization, therefore, those quantities are not related to physical system directly. However,

such set of lattice velocities results in a very natural discretization:

∂fi
∂t

+ cαi
∂fi
∂xα

=
fi(t+∆T, x+ ei∆X)− fi(t, x)

∆T
+O(∆T,∆X) (3.47)

An alternative form of the approximation of the combination for the derivatives is the

following one:

∂fi
∂t

+ cαi
∂fi
∂xα

=
fi(t, x)− fi(t−∆T, x− ei∆X)

∆T
+O(∆T,∆X) (3.48)

It will be shown later than those two ways of discretization correspond to explicit

and semi-implicit schemes respectively. Approximations (3.47) and (3.48) lead to the
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following numerical schemes, respectively:

fi(t+∆T, x+ ei∆X) = fi(t, x) + ∆TΩi(f(t, x)) (3.49)

fi(t, x)−∆TΩi(f(t, x)) = fi(t−∆T, x− ei∆X) (3.50)

The expression (3.49) represents nothing but the explicit scheme, and equation (3.50) cor-

responds to the implicit scheme. The explicit scheme is traditional for Lattice-Boltzmann

Methods. It is widely used and have a clear mechanistic interpretation as a two-step pro-

cess. The first step is called collision:

f̃i(t, x) = fi(t, x) + ∆TΩ(f(t, x)) (3.51)

And streaming step:

fi(t+∆T, x+ ei∆X) = f̃i(t, x) (3.52)

These two approaches allow the following generalization:

fi(t, x)− fi(t−∆T, x− ei∆X)

∆T
= (1− θ)Ωi(f(t, x)) + θΩi(f(t−∆T, x− ei∆X))

(3.53)

Here θ is a real number from zero to one. To the best of author’s knowledge this is the

first time, when the schemes (3.49), (3.50), and (3.53) are used with density-dependent

weights of the LBM model.

One of the most essential parts of the LBM scheme is forcing term, because it is

usually designed in such a way, that all the physics of the model is hidden in the term

concerned. In the present work the alternative point of view is used: behaviour of the fluid
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is determined by the equilibrium distribution function. Such formulation of the method

allows one to simplify the expression of the forcing term. In the present work external

forces are included through the correction of the equilibrium velocity [72]:

u→ u+ τG (3.54)

Here G is the force acting on the unit mass of the fluid. It can be seen from the Chapman-

Enskog expansion that the replacement (3.54) represents the external forces correctly.

Therefore, the schemes (3.49), (3.50) and (3.53) with modification (3.54) describes the

flow of the fluid subjected to the external forces. It is important to notice, the idea of rep-

resentation of forces through the correction of the mean velocity is not novel. The purpose

of the discussion above is to show that the LBM scheme with density-dependent weights

admits the inclusion of external forces into the model.

The implicit schemes (3.50) and (3.53) do not have such natural interpretation. Ac-

cording to the authors knowledge, they have been published in [68]. However, the tradi-

tional expression for equilibrium distribution functions were considered in that paper. The

novelty of the present work is in the implementation of the schemes (3.50) and (3.53) with

density-dependent weights and presence of the external forces. It is shown that it is possi-

ble to use those numerical schemes without significant increase of computational time and

with improved stability of the simulation.

It is important to keep in mind the difference between the proposed numerical scheme

and common approaches. In the present work lattice weights are expressed as a functions

of the density of the fluid. The density of the fluid can vary both in space and time. Despite

that possibility there is no need for solution of systems of non-linear equations. Because

of the construction of the BGK collision term, the simple averaging of both sides (3.49),
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(3.50), or (3.53) gives the following expression for the density of the fluid at a given node:

ρ(t, x) =
∑
i

fi(t, x) =
∑
i

fi(t−∆, x−∆Xei) (3.55)

The similar equation holds for the mean velocity or for the momentum:

ρuα =
∑
i

fi(t, x)c
α
i =

∑
i

fi(t−∆T, x−∆Xei)c
α
i (3.56)

Expressions (3.55) and (3.56) are valid because moments of order zero and one of the

equilibrium distribution are the same as of the actual one. In the case of the modification

(3.54) the collision term does not cancels out:

∑
i

Ωic
α
i =

∑
i

f eq
i (t, x)cαi − fi(t, x)c

α
i

τ
=
ρuα + τρGα − ρuα

τ
= ρGα (3.57)

Therefore, the calculation of the moments of both parts of the equation (3.50) results in

the following equation:

ρuα − ρ∆TGα =
∑
i

fi(t−∆T, x− ei∆X)cαi (3.58)

Equation (3.55), (3.56), and (3.58) are shown for the semi-implicit scheme. However,

the similar expression can be derived for other types of the schemes. The common feature

of all of the algorithms described here is that density and mean velocity of the fluid can

be determined after the streaming step. As long as both density and mean velocity are

defined, one can compute equilibrium distribution functions and other terms of the model.

The important thing is that all the calculations are performed locally even for the semi-

implicit scheme. That is the reason why the semi-implicit scheme is beneficial in terms

of performance: the improvements in stability are achieved through the minor increase
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of the computational cost. What is more important is that the efficiency for the parallel

computing remains the same as for the explicit scheme. This is the consequent of the

observation that the communication between nodes in both schemes is exactly the same.

The other important property of the scheme with density-dependent weights is the

restriction on the time step because of the issues with numerical stability. It has been men-

tioned in the introduction that the major source of instabilities in LBM is negative value

of distribution function. The latter means that for the stable scheme at least equilibrium

distribution functions should be positive for any possible mean velocity. In the case of

zero mean velocity, equilibrium distribution functions are simply:

f eq
i = wiρ (3.59)

Therefore, for the stability of the scheme it is necessary that lattice weights are positive.

From the plot for lattice weights below it can be seen, that there exist a certain range

for the values of the λ-parameter cs∆T
∆X

such that all of the lattice weights are positive

simultaneously.

Moreover, if the spatial step ∆X is fixed then for a given density of the fluid there

exist a range of time steps [∆Tmin,∆Tmax] for which all the lattice weights are positive.

The presence of the upper bound for the time step is not surprising. The lower bound is

the unusual thing. The existence of lower bound on the time step impacts the overall work

flow of the modelling.

The first feature is the choice of the time step. Actually, the restrictions on the time step

creates certain difficulties. For instance, in traditional simulations one can always reduce

the rime step, preserving the same spatial resolution. In the case of the LBM scheme

one should reduce the spatial step as well. That means that the cost simulations can be

increased dramatically.
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Figure 3.1: Plots of combination of the weights wc, 6wf , 12we, 8wv. Factors 1, 6, 12 and 8
correspond to the number of lattice directions in a given family of weights. It can be seen
that there exist lower and upper bound for the value of the dimensionless λ-parameter.

The more important consequence is that in certain cases it is not possible to run the

simulation. For instance, if the contrast in densities of the fluid is high enough then it

can be impossible to adjust the temporal and spatial resolutions in such a way that the

weights are positive for all possible densities of the fluid. The other example that illustrates

this idea is a multi-phase flow. In this case the presence of two fluids with significant

differences in PVT properties makes it impossible to adjust the size of the mesh and time

step in order to design the stable LBM scheme.

Finally, the constraint on the time step demonstrates that the ratio between spatial

step and temporal step is determined by PVT properties of the fluid. For gases, the ratio

∆X/∆T has the same order of magnitude as the speed of sound. The latter makes the

approach developed impractical for field scale simulations, because it tends to resolve

effects that occur at the temporal scale of sound waves in the gas. The latter is significantly

smaller then the actual time-scale of the processes at the field-scale. The reasoning above

establishes the need for the alternative tool for reservoir simulations via LBM.
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3.4.2 Boundary Conditions

In LBM, the streaming step is defined as follows:

ˆfi(t, x) = fi(t−∆T, x−∆ei) (3.60)

In the equation (3.60) it is assumed both of the nodes concerned are inside the computa-

tional domain. The latter is the case of problems defined in the whole space. However,

the vast majority of problems that are important for practical implementations are formu-

lated for bounded domains. Therefore, the streaming step is not defined for all the nodes.

That means that the streaming step should be redefined for the nodes that are close to the

boundary of the computational domain. The latter can be done through the formulation

of boundary condition (BC). The major challenge in the development of BC is that dy-

namic of the particles on the lattice should be related to a real physical system. The same

statement applies for the BC as well. In other words, BC should be related to the physical

processes that appear on the boundary of the system. In the case of hydrodynamics the

physics concerned is described in terms of the velocity of the fluid. Typically, there are two

possibilities for the speed of the fluid at the boundary: vanishing of only normal compo-

nent of the velocity, and zero velocity. In any case, those two constraints can give only up

to three equations. However, the number of the components of distribution functions that

should be defined can be even 13 for D3Q27 model. The latter means that the formulation

of BC for a given problem is typically not unique. That is the greatttention should be paid

for the formulation of BC for LBM.

In the present work three boundary conditions are used: periodic, reflection and zero-

velocity. The simplest BC to impose is the periodic one. In this case it is possible to

imagine that PDE’s are defined inside the infinite domain, however the solution is periodic

with respect to the spatial coordinates. In other words, the solution satisfies the following
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constraint:

fi(t, x
1, x2, x3) = fi(t, x

1 + n1L
1, x2 + n2L

2, , x3 + n3L
3) (3.61)

Here n1, n2, and n3 are integers. L1, L2, and L3 are referred to as period with respect to

the coordinate axes. The equation (3.61) means that all the information about the solution

in the whole space is contained in the box B = [0;L1] × [0;L2] × [0;L3]. It is simple to

see that for any point in space x, there exist at least one point p(x) inside the block B and

integers n1, n2, and n3, such that:

x− p(x) = n1L
1 + n2L

2 + n3L
3

fi(t, x) = fi(t, p(x))

(3.62)

Equations (3.62) give the rule for the redefinition of the streaming step in the case of

periodic boundary conditions:

ˆfi(t, x) = fi(t−∆T, p(x−∆ei)) (3.63)

From the discussion above it follows that the periodic problem in the infinite domain

is equivalent to the problem in the box B with periodic BC. What is more important is that

the solution for the problem in the infinite domain can be reconstructed from the finite one

with the usage of three affine maps and inverse to them. Those maps are shifts by L1 in

’X’ direction, by L2 in ’Y’ direction, and by L3 in ’Z’ direction, which are referred to as

S1, S2, and S3 respectively. In other words, there are six maps or generators: three shifts

S1, S2, and S3 and three inverse maps S4, S5, and S6. Therefore, for any point x ∈ B, for

any composition of generators A = Si1 ...Sin , the reconstruction procedure can be defined
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as:

fi(t, A(x)) = fi(t, x) (3.64)

The idea of the reconstruction of the solution using a single box and a set of generators

can be applied for the derivation of reflection boundary conditions. In this case the set of

generators is formed by reflections of the box B with respect to its faces. Therefore, there

are six generators R1, R2, R3, R4, R5, and R6 as in the previous case. It is easy to see that

for any point in space x there exist a point y in the box B, such that y = r(x) and r is the

composition of reflections. In other words, it is possible to put the point x in the box B by

the finite number of reflections with respect to the faces of the box B. The latter allows

one to redefine the streaming step as follows:

ˆfi(t, x) = fi(t−∆T, r(x−∆ei)) (3.65)

It can be shown that the result of the operation (3.63) is the same as long as r(x−∆ei) ∈ B.

It can be seen that because of symmetry of the procedure concerned, the component of the

velocity normal to a given face of the boxB vanishes at that edge. Therefore, the reflection

BC is equivalent to the vanishing of normal component of the velocity at the boundary. The

Figure (3.2) illustrates the idea of the implementation of the boundary condition.

Zero-velocity boundary condition is required for the numerical solution of the Navier-

Stokes equation via LBM. The most popular boundary condition for such simulations is

the Bounce-Back boundary condition [57]. The advantage of the BC concerned is that it

is formulated in local terms. Basically, if the node x−∆Xei is outside the computational

domain, then in the case of Bounce-Back boundary condition one should find lattice vector

ej such that ej = −ei. With such ej the streaming step takes following form:

ˆfi(t, x) = fj(t−∆T, x) (3.66)
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Figure 3.2: Illustration of the algorithm for application of the reflection boundary condi-
tion. Particles for the components 1 and 3 are streamed from 2 and 4 respectively.

Despite the simplicity and convenience in terms of implementations, the boundary con-

dition concerned should be used with care. The reason is that it does not guarantee the

vanishing of the tangent component of the velocity at the boundary [51]. Therefore, in the

present work the modified version of Bounce-Back boundary condition is used.

The formulation of modified Bounce-Back rule is inspired by the analogy between

LBM and FV methods. The analogy arises from the fact that LBM is one of the methods

for numerical solution of system of hyperbolic equations, for DKE in particular. For the

equations of that type the direction of the flux is one of the most essential things to take

care about. This is expressed in the fact that the up-winding procedure presents in all of

the FV schemes for hyperbolic equations. Roughly speaking, the idea of the up-winding

procedure can be expressed as follows: fluxes that leave the given cell are computed based

on the properties inside that cell, otherwise parameters of neighbouring grid blocks are

used. The same principle is applicable to the cells on the boundary. In this case, the flux

that leaves the computational domain is computed based on the values of properties inside

that cell. For the flux that is coming from the boundary to the computational domain, the
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boundary condition should be applied. In the case of DKE for D3Q27 model all of the

lattice velocities except zero can be divided in pairs ci and the opposite one cj = −ci.

That means that for the boundary in general position to the lattice velocities exactly 14 can

be computed from the streaming step and for another 13 a boundary condition should be

applied. The latter happens because of the symmetry of the lattice: if particles with the

speed ci leave the computational domain, then the particles with the opposite velocity −cj

should come from the exterior of the domain concerned and vice versa. However, it is very

common in LBM to work with domains that have boundaries parallel to lattice directions.

This situation is referred to as degeneration in the present work. It is worth to notice

that the degeneration concerned can be eliminated by the arbitrary small perturbation of

the shape of the boundary. If the boundary has been deformed, then exactly for the half

of the distribution functions that correspond to the particles that propagate parallel to the

boundary the boundary condition should be applied. However, the perturbation is arbitrary,

therefore, it is not possible to prove which of the distribution functions should be streamed

and which of them shoud be computed through BC. Because of the reasoning above it has

been decided to compute the half of the distribution function via boundary condition and

stream the remaining part:

fi(t, x) =
1

2
fj(t−∆T, x) +

1

2
fi(t−∆T, x−∆Xei) (3.67)

Here j corresponds to the particles with the velocity −ei. The rule (3.68) is applied only

to the particles that have the speed parallel to the boundary. For the remaining distribution

function the standard Bounce-Back boundary condition is applied:

fi(t, x) = fj(t−∆T, x) (3.68)
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It is worth to mention that in the modification concerned affect only the particles that

travel parallel to the boundary. In the classic Bounce-Back scheme components of dis-

tribution functions that correspond to the particles concerned are simply streamed from

the neighbours. Numerical simulations that are discussed below show that the modified

Bounce-Back boundary condition leads to zero mean velocity at the wall. The idea of the

algorithm is illustrated in the Figure (3.3):

Figure 3.3: Illustration of the algorithm for application of the modified Bounce-Back
boundary condition. For the particles 1 and 2 the classic Bounce-Back algorithm is ap-
plied. Distribution function 3 is a weighted sum of distribution functions 4 and 5.

3.5 Numerical Results

In the present section results of series of numerical simulations are presented. First

two subsections are devoted to the validation of the developed approach. The last one

illustrates one of the possible application of LBM to the problem of scale integration.
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3.5.1 EOS Validation

One of the possible tests of the performance of the algorithm is test of the equilibrium

in gravity field. In the present section the gas with the following EOS has been considered:

P = P0

(
ρ

ρ0

)γ

(3.69)

Here P0 and ρ0 are reference pressure and density respectively. P is the value of pressure

for the density ρ. γ is the parameter that controls the features of the EOS. It is simple to see

that γ = 1 represents the ideal isothermal gas, and γ = 7/5 corresponds to the adiabatic

process of the ideal two-atomic gas. For the validation purposes only those values of γ has

been considered. The gas with the EOS described has been placed into the gravity field.

The magnitude of the gravity acceleration has been considered to be constant and equal to

1000m/s2. The overall heights of the system is 100m. The results are compared with the

numerical solution for the following equation:

∂ρ

∂z
= − ρg

∂P
∂ρ

(3.70)

The equation (3.70) has been solved numerically on a tiny mesh. The initial condition for

(3.70) is the following:

ρ(h = 0) = ρ0 (3.71)

In the present work five values of ρ0 has been considered: 1kg/m3, 1.78kg/m3,3.17kg/m3,

5.63kg/m3, 10kg/m3. The Figure (3.4) demonstrates that both solutions are close to each

other. The results of both numerical methods are in the agreement with each other as it is

demonstrated in Figures (3.4) and (3.5):
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Figure 3.4: Validation for the LBM scheme developed for γ = 1. The solution de-
rived through LBM (solid line) almost coincide with the solution obtained by conventional
methods (line with dots).

Figure 3.5: Validation for the LBM scheme developed for γ = 7/5. The solution de-
rived through LBM (solid line) almost coincide with the solution obtained by conventional
methods (line with dots).

3.5.2 Poiseuille Flow

The standard validation test for LBM is flow between parallel planes. The system con-

cerned is modelled via LBM through imposing appropriate boundary conditions. Namely,
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constant pressure or density BC is applied to inlet and outlet. Zero-velocity BC is applied

to the parallel planes or walls. Periodic boundary condition is used in order to model 2D

system using 3D code. In such setting, the driving force for the flow is pressure difference.

In the present work that driving force is replaced by the uniform acceleration parallel to the

walls. The latter is equivalent to the free-falling fluid bounded by parallel vertical planes.

In this case constant pressure BC is replaced by the periodic BC. The main motivation

for the this replacement it is convenience in terms of formulation of boundary conditions:

there are certain difficulties with formulation of BC at the intersection of two surfaces with

boundary conditions of different types in general. However, this procedure is simple for

the case of intersection of surfaces with periodic BC and zero-velocity BC. The difference

in the driving force is important for practical calculations. However, both of the systems

are equivalent for the purposes of the validation of formulation of zero-velocity BC and

for the relation (3.35) between the relaxation time τ and viscosity µ.

It is well-known that for the flow configuration concerned, the velocity field has parabolic

profile:

u =
ρgz(d− z)

2µ
(3.72)

Here ρ is the density of the fluid, u is a velocity of the flow, µ is the viscosity of

the fluid, g is a magnitude of the acceleration field, d is the distance between planes,

and z is the distance to one of the planes. For the purposes of validation, the simulation

of the fluid flow with the following values of the parameters in (3.72): ρ = 1kg/m3,

d = 10−6m, g = 1000m/s2, has been performed. The time step in the simulation is

1.84 · 10−3s, the relaxation time is in the range from 9.4 · 10−4s to 7.36 · 10−3s. Numerical

results demonstrate the agreement with the expression for the viscosity (3.35) and that the

modified Bounce-Back boundary can be applied to the simulation of the fluid flow with

zero velocity at the walls as it follows from the Figure (3.6):
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Figure 3.6: Impact of the relaxation time on the distribution of the velocity. Plots of the
distribution of the velocity of the fluid in the direction normal to the wall are presented.
Simulations have been performed for the following values of relaxation time in the range
from 9.4·10−4s to 7.36·10−3s. Numerical solution (solid line) is in the agreement with the
analytic expression (solid dots). It can be seen that the zero-velocity boundary condition
holds in the simulations.

From the Figure (3.6) it can be seen that both the velocity distribution in the cross-

section between planes and the absolute value of the speed of the fluid are in the reasonable

agreement with the analytic expression. Therefore, the LBM model developed can be

applied to the numerical solution of the Navier-Stokes equations.

3.5.3 Example of Application

In the present section the application of the LBM scheme developed to the simulation

of the fluid flow in shale reservoirs is considered. Basically, it is shown how the method

can be integrated into the sequential upscaling work flow. Numerical simulations with

LBM of the flow of methane between parallel planes are considered as it is shown in the

figure (3.7). It has been assumed that the virial EOS allows one to compute PVT properties

with reasonable accuracy.

It has been mentioned in the introduction to the present chapter that there are many
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Figure 3.7: The schematic representation of the flow geometry. The flow between parallel
planes is considered. The adsorption is represented as the force that pulls molecules of
the gas to the wall. This force is represented via red arrow. The magnitude of the force is
reflected through the lengths of the arrow.

research papers on the simulation of the slippage effects in small pores. The typical ap-

proach is the modification of the boundary conditions in such a way that the velocity of

the fluid at the walls is not zero in general. The focus of the present study is the impact

of the adsorption. Therefore, standard zero-velocity BC are applied. The adsorption is in-

troduced through the force field through (3.2), (3.54), and (3.53). The introduction of the

force concerned results in the redistribution of the fluid in the cross-section of the channel.

Results of the simulations that demonstrate the effect concerned are shown in the Figure

(3.8):

One of the effects of the adsorption is the attraction of some part of the fluid to the

walls of the channel. The latter leads to the non-uniform distribution of the density of the

fluid inside the channel. Moreover, the relation between the average or mean density and

the macroscopic pressure of the fluid can be affected as well. The purpose of the present
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Figure 3.8: Density distribution inside the channel.

work is to compute corrections to the PVT properties of the fluid based on the results of

numeral simulations. Therefore, the following relation is the subject of principal interest:

P = P (ρ,Q, d) (3.73)

Here Q is the heat of adsorption, d is the diameter of the channel. The expression (3.73)

can be used in a reservoir simulation for calculation of pressure or density of the fluid

if the heat of adsorption and representative size of the pores are specified for a given

rock. The more convenient form of the (3.73) is the representation of pressure change as a

multiplication by a certain correction factor:

P = K(ρ,Q, d)P0(ρ) (3.74)
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Here K is the correction factor, and P0 is the pressure of the fluid when the adsorption

is negligible. In the work series of simulations have been performed in order derive a

correlation for the correction factor K. The diameter of the channel d has been varied

from 4 nm to 12 nm. The radius of investigation is assumed to be 1 nm and is the same in

all of the simulations. Heat of adsorption is Q = 1000.0 J/mole.

One can see that because of the geometry of the system concerned, the fluid that is

close to the center or far away from the walls is not subjected to the attraction force. The

latter means that the fluid in the region concerned should follow the standard EOS. More-

over, simple physical reasoning shows that the pressure it the middle of the channel is

exactly the pressure, that can be measured in the experiments. That is the reason why the

pressure that corresponds to the density of the fluid in the center of the channel is consid-

ered as an actual one. Therefore, the algorithm of the calculation of K is the following:

the first step is the computation of the distribution of the density of the fluid in the cross-

section of the channel for the given mean velocity ρ. The second step is the evaluation of

the correction factor using the formula:

K =
P0(ρC)

P (ρ)
(3.75)

Here ρc is the density of the fluid in the center of the channel. The dependency of the

correction factor on the parameters of the adsorption is hidden inside the value of ρC ,

because the latter number is fully controlled by the strength of the interaction.

Finally the coefficient K(Q, d) can be computed based on the series of numerical sim-

ulations. With such coefficient it is possible to derive the effective EOS for the fluid in the

porous media with a given size of the pores. The example of the results of such calcula-

tions for methane with Peng-Robinson EOS is shown in the Figure (3.9):
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Figure 3.9: Plots of the dependency of the density on the pressure are presented for several
values of the diameter of the channel. As expected, the role of the adsorption becomes
more and more important as the diameter of the channel approaches to zero. The other
important observation is that the limit of the infinite diameter of the channel coincides
with the standard EOS for the fluid in a big volume.

3.6 Summary

in the present chapter the approach for the simulation of the fluid flow at the pore-scale

has been presented. Standard numerical tests provide the validation for the developed

technique. The potential of the new LBM scheme for the upscaling of PVT properties of

fluids has been demonstrated. It should be mentioned that the central idea of the technique

has been published as a conference paper [70]. However, several significant improvements

have been introduced.

The first improvement is the replacement of the explicit LBM-scheme by the semi-

implicit one. The latter increases the numerical stability of the method. The second im-

portant thing to mention is the derivation of the expression for weights, for the lattice
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speed of sound and for the relaxation time for the scheme with density-dependent lattice

weights. In the [70] only the central idea regarding the way of how that expressions can

be derived has been presented. The third improvement is modified of the Bounce-Back

boundary condition for the simulation of fluid flow with zero-velocity boundary condition

at the walls of the channel. Finally, validation tests together with the correlation for the

correction factor for the pressure are novel results.

In the present work the limitations of the technique developed are discussed as well.

It has been shown that the issues with numerical stability lead to the strong limitations on

the robustness of the approach. The issues concerned is the major reason for the remaining

part of the work.
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4. FIELD SCALE SIMULATIONS

In the previous section the LBM model for the simulation of fluid flow at the pore-

scale has been developed. It has been emphasized that the approach concerned imposes

severe restrictions on the time-step (4.17). One of the possible interpretations of the con-

straint observed is that the time-step is related to the PVT properties, in particular to the

speed of sound. Simple calculations show that in this case the time-step should be of the

order of seconds for the typical size of the mesh that is used in reservoir simulations. The

latter is not practical because the time scale concerned can be several years. Therefore,

an additional work for the improvement of the method is required. Despite the disad-

vantage in terms of the restriction on the time-step, the approach developed has a self-

consistent mathematical structure. The latter motivates one to continue the development

of the scheme for the field-scale simulations, for example by introducing additional lattice

vectors. Moreover, there are prospectives of the extension of the technique to the irregular

lattices.

The natural way for the generalization involved comes from the similarity between

LBM and standard finite volume methods. One can consider the lattice node as the cube

with the center that coincides with the location of the node. In this case any distribution

function multiplied by the volume of the node is the total mass of particles that move in a

given direction. It is clear that the streaming step is simply mass-exchange between nodes

or between cubic volumes associated with them. Therefore, distribution functions corre-

spond to the fluxes in standard finite-volume schemes. However, the difference from the

finite volume schemes is that in conventional methods pressures and densities are primary

objects. Fluxes are computed based on the values of those primary variables. In LBM, the

inverse situation can be observed. In this approach mass fluxes are primary objects and

61



physical quantities are calculated based on the fluxes, for instance, through the application

of the averaging procedure (3.11). The other important difference is that in LBM the mass

exchange occurs not only between blocks with common faces. Moreover, it is clear from

the Figure (4.1), that lattice vectors correspond to the vectors that connect the centres of

elements with common points:

Figure 4.1: Finite Volume Nature of Lattice Boltzmann Method. Each lattice node can be
considered as the center of the cubic volume. In this case lattice vectors connect centers of
cubes with common points. The mass exchange occurs between the volumes concerned.

Despite the differences mentioned above, the finite-volume interpretation of LBM is

quite useful for the theoretical analysis of the numerical scheme. For example, one of the

benefits of the interpretation concerned is direct translation of the language of finite volume

methods to LBM. For instance, the growth of the instability in the LBM scheme when one

of the components of the distribution function becomes negative, can be explained in terms

of the violation of up-winding procedure in the corresponding finite volume scheme.

The other benefit of the "finite volume" way of thinking about LBM is a natural gen-

eralization of the method to the irregular lattice geometry. The idea is simple: in the case

of the regular mesh geometry nodes correspond to the grid blocks and streaming step is
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equivalent to the mass-exchange or flux. The statement above is a direct sequence of the

formulation of the equations for LBM (3.50). In this case nodes are simply centres of

the grid-blocks and lattice vectors correspond to the vectors that connect centres of the

grid blocks. In other words, lattice vectors can be defined in terms of the grid geometry

in the case of rectangular mesh. The definition concerned can be extended to the case of

the unstructured grid geometry as it shown in the figure (4.1). From the previous section

it follows that as long as lattice velocities are defined, the only missing ingredient of the

LBM scheme is the equilibrium distribution function. Basically, for the simulation of the

Navier-Stokes equations with LBM it is enough to satisfy the constraints for the moments

of the equilibrium distribution functions as it shown in the Figure 3.1. That reduces the

problem to the purely algebraic one. Finally, it can be formalized as the system of linear

equation in the finite dimensional subspace in tensor algebra of R3:

M0 +Mα
1 eα +Mαβ

2 eα ⊗ eβ +Mαβγ
3 eα ⊗ eβ ⊗ eγ =

∑
i

f eq
i ηi (4.1)

Here eα are basis vectors in R3. Mk is the moment of order k. ηi are defined as follows:

ηi = 1 + cαi eα + cαi c
β
i eα ⊗ eβ + cαi c

β
i c

γ
i eα ⊗ eβ ⊗ eγ (4.2)

Finally, the problem of finding appropriate equilibrium distribution functions can be

reduced to the problem of finding the decomposition of the tensor sum of the moments as a

convex combination of vectors ηi. It is worth to mention that the system of equations (4.1)

is not simple for analysis, because the number of equations can be less than the dimension

of space and some of them can be linearly dependent. However, it has a potential to

solve the problem with constraints on the time step that has been indicated in the previous

chapter (4.17). The latter is the main motivation for further investigation.
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Summarizing the discussion above, further development of the approach developed in

the previous section is beneficial in two ways: it makes it possible to extend LBM to the

unstructured grid geometry and gives promise for resolving the issue with the restriction

on the time-step. Unfortunately, the latter is not the case. Detailed analysis shows that the

constraints on the time-step involved are inherit for LBM. This statement is formalized as

a theorem and proved in the present section. The limitations observed make that approach

impractical for reservoirs simulations. Pseudo-potential models can be one of the possible

solutions for the problems concerned. In the present section an LBM scheme for pseudo-

potential models is described. The limitations of the approach are observed.

4.1 Proof of the Limitations

In the previous section the algorithm for the construction of lattice vectors has been

discussed. It has been mentioned that the theoretical analysis can be complicated for the

lattice of general connectivity. Therefore, in the present section the case of the lattice with

high spatial symmetry is studied. The letter means that lattice should preserve its shape

under a given transformation of coordinates. The set concerned should include the central

symmetry with respect to the lattice vector that represents zero velocity. Rotations to 90

degrees with respect to all coordinate axes should preserve the lattice as well. Moreover,

the set of lattice velocities should include D3Q27 lattice. It is possible to show that for

such lattices there is no such choice of equilibrium distribution functions that guarantees

positivity of the latter for any temporal step in the range from zero to a certain positive

critical value.

For the proof of the statement concerned it is enough to construct at least one that

violates the constraint on the time step. The latter can be done directly, however some

preliminary work is required. The first thing that should be done for the simplification of

the analysis is a renormalization of the equilibrium distribution function. Traditionally, the

64



equilibrium distribution is normalized to the density:

ρ =
∑
i

f eq
i

It is convenient to renormalise it to unit. The next step is the reformulation of the con-

straints on the moments of the equilibrium distribution function. It has been mentioned

that for the simulation of the fluid flow governed by the Navier-Stokes equation, it is

enough to have the moments of equilibrium distribution M0,M1,M2,M3 in the form given

by (3.14). Initially, the distribution concerned has only three parameters: density, average

velocity and pressure as function of density. However, after the normalization to unit, only

velocity and so-called lattice speed of sound c2s = P/ρ.

The latter means that renormalized distribution functions should satisfy equations (3.14)

for any average velocity in a reasonable range, and at least for zero mean velocity. The case

of zero velocity is simple for analysis because of the spatial symmetry. As a consequence

on the symmetry concerned, the magnitude of the equilibrium distribution function that

corresponds to the lattice velocity ci depends only on the absolute value of ci. Therefore,

the situation is almost identical to the weights of semi-Gaussian or quadratic equilibrium

distribution. The difference is in the presence of extra terms that correspond to lattice

velocities beyond the D3Q27 model. Because of the symmetry of the lattice, the similar

reasons to (3.44) are applicable. Therefore, one equation on vectors in the subspace in

tensor algebra of R3 can be reduced to the system of three algebraic equations:

∑
i

f eq
i

ρ
= 1

∑
i

f eq
i |ci|2

ρ
= 3c2s∑

i

f eq
i |ci|4

ρ
= 15c4s

(4.3)
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Here dimensionless units can simplify the expression significantly. Namely, lattice veloc-

ities can be expressed through lattice vectors:

ci =
∆X

∆T
ei

Dimensionless speed of sound can be introduced:

λ =
cs∆T

∆X
(4.4)

Moreover, it is convenient to denote normalized distribution functions as ϕi:

ϕi =
f eq
i

ρ
(4.5)

In this case the system (3.44) transforms to:

∑
i

ϕi = 1

∑
i

ϕi|ei|2 = 3λ2

∑
i

ϕi|ei|4 = 15λ4

(4.6)

One can divide summations above into summation over D3Q27 lattice and over the re-

maining part: ∑
i

ϕi =
∑

i∈D3Q27

ϕi +
∑

i ̸∈D3Q27

ϕi = 1

The second term of the summation can be denoted as x1:

x1 =
∑

i ̸∈D3Q27

ϕi
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The similar notation can be introduced for other equations in (4.6):

x2 =
∑

i ̸∈D3Q27

ϕi|ei|2

x3 =
∑

i ̸∈D3Q27

ϕi|ei|4

Eventually, the summation over the lattice velocities has been divided into the summation

over the D3Q27 and over the remaining part of the set. It has been mentioned that because

of the symmetry ϕi = ϕj if and only if |ei| = |ej|. Therefore, the summation over D3Q27

lattice can be transformed to:

∑
i∈D3Q27

ϕi =
∑

i:|ei|=0

ϕi +
∑

i:|ei|=
√
1

ϕi +
∑

i:|ei|=
√
2

ϕi +
∑

i:|ei|=
√
3

ϕi

According to the notations introduced in the previous section for the D3Q27 model, one

can denote terms in the summation above as:

Φc =
∑

i:|ei|=0

ϕi

Φf =
∑

i:|ei|=
√
1

ϕi

Φe =
∑

i:|ei|=
√
2

ϕi

Φv =
∑

i:|ei|=
√
3

ϕi

(4.7)
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The direct substitution shows that constraints (3.44) can be transformed to the form:

Φc + Φf + Φe + Φv + x1 = 1

Φf + 2Φe + 3Φv + x2 = 3λ2

Φf + 4Φe + 9Φv + x3 = 15λ4

(4.8)

The system of equation concerned can be solved with respect to Φf , Φe, Φv:

Φf = 3− 3λ2 +
15

2
λ4 − 3(Φc + x1) +

5

2
x2 −

1

2
x3

Φe = −3 + 12λ2 − 15λ4 + 3(Φc + x1)− 4x2 + x3

Φv = 1− 9

2
λ2 +

15

2
λ4 − (Φc + x1) +

3

2
x2 −

1

2
x3

(4.9)

From the definition of ϕi, ϕi|ei|2, ϕi|ei|4 it follows that all of the terms in(4.9) are positive.

Moreover, the following inequality holds:

0 < Φc + x1 < 1 (4.10)

It has been mentioned that all of the Φf , Φe, Φv should be positive. The latter results in a

system of inequalities:

0 < 3− 3λ2 +
15

2
λ4 − 3(Φc + x1) +

5

2
x2 −

1

2
x3

0 < −3 + 12λ2 − 15λ4 + 3(Φc + x1)− 4x2 + x3

0 < 1− 9

2
λ2 +

15

2
λ4 − (Φc + x1) +

3

2
x2 −

1

2
x3

(4.11)

Standard rules of taking weighted sums of inequalities give the following constraint:

0 <
15

2
λ4 − 3

2
λ2 +

1

2
x2 −

1

2
x3 (4.12)
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The latter can be converted to:

1

2
x3 −

1

2
x2 <

15

2
λ4 − 3

2
λ2 (4.13)

It is easy to see that because of the definition of x2 and x3 the difference x3−x2 is positive,

therefore (4.13) results in the constraint on λ:

0 <
15

2
λ4 − 3

2
λ2 (4.14)

Finally,
1√
5
< λ (4.15)

The latter sets the restriction on the time-step:

∆X

cs
√
5
< ∆T (4.16)

The existence of the upper bound for λ and for ∆T follows the expectations. As long as

only positive distribution functions are of the interest, then each of the variables x1, x2, x3,

Φc,Φf ,Φe,Φv should be in the interval [0; 1]. However for big enough λ or ∆T the value

of Φe becomes negative because of (4.9).

From the discussion above it follows that the only way to keep all the components of

the equilibrium distribution functions positive is to establish an upper and lower bounds

for both λ and ∆T .

λmin < λ < λmax

The values of lower and upper boundary for λ are determined by the connectivity of the

lattice but not by the spatial step. The latter constraint on λ leads to the constraint on the
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time step:

∆Tmin =
∆Xλmin

cs
< ∆T <

∆Xλmax

cs
= ∆Tmax (4.17)

It is important to notice that the ∆Tmin and ∆Tmax are determined both by the size of the

mesh and by the PVT properties of the fluid. The latter imposes severe limitations on the

robustness of the method especially for multiphase flow. If the ranges of time steps for

two fluids do not overlap, then it is not possible to design a stable LBM scheme. The latter

is one of the reasons for the development of the alternative ways of treatment of EOS in

LBM. The second reason comes from the field scale simulations in Petroleum Engineering.

With such incorporation of PVT into the lattice scheme the method becomes sensitive to

what happens at temporal and spatial scales of sound waves in the fluid. The latter is

not the case in reservoir simulations. At that types of problem typical time scales are

significantly higher. With all that reasoning it is clear that an alternative way of modelling

of PVT properties of fluid is highly desired. One of the solutions is discussed below.

4.2 LBM Model for Field-Scale Simulations

The outcome of previous sections is that there exist principal limitations of the method

that result in the severe restriction on the time step. Therefore, an alternative approach

for field-scale or REV-scale simulations is required. The fact that the only impact of PVT

properties on the dynamics of the process is through the viscosity of the fluid, and forces

that appear due to the gradient of the stress-tensor or pressure gradients. Therefore, if

spatial derivatives of pressure can be computed effectively, then it is possible to design

an alternative LBM model that can have more advanced properties in terms of numerical

stability and accuracy. Finally, the central idea is to select lattice speed of sound inde-

pendently from the PVT properties and introduce PVT-data into the scheme through the

appropriate approximation of the gradients. In the present work the magnitude of the
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lattice speed of sound is selected in accordance with the tradition in LBM:

cs =
1√
3

∆X

∆T

Such choice corresponds to the value of λ in the middle of the stability range of the system.

Values of lattice weights are in the agreement with the constraints (3.45). In other words,

weights and lattice speed of sound are standard for D3Q27 model.

Summarizing the discussion above, the LBM scheme for field scale simulations can

be derived from the classic LBM formulation with appropriate calculation of pressure

gradients. The diffusion equation can be used for the purpose concerned. The mathematics

behind the latter statement is explained in the next section.

4.2.1 Diffusion Equation in LBM

In the previous chapter the situation when the first several moments of discrete and

continuous distribution coincide. In that case it is possible to derive Navier-Stokes equa-

tion from the LBM scheme. It is worth to investigate the scenario when the assumption

about the equality of the moments does not hold. The example of such lattice system is

shown below:
∂gi
∂t

+ cαi
∂gi
∂xα

= Ωi

Ωi =
wiψ(t, x)− gi

τg

(4.18)

Here gi is a certain distribution function. ψ is a given function of space and time. The

expected behaviour of the lattice system concerned is the relaxation to wiψ. The char-

acteristic scale of such process is the relaxation time. In this case the Chapman-Enskog

expansion is still applicable. That technique gives the following expression for distribution

functions:

gi = wiψ − τ

(
wi
∂ψ

∂t
+ wic

α
i

∂ψ

∂xα

)
+O(τ 2) (4.19)
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Chapman-Expansion for the distribution functions leads to the expansion for the moments

of the distribution concerned:

∑
i

gi = ψ − τ
∂ψ

∂t
+O(τ 2) (4.20)

∑
i

cαi gi = −
∑
i

τwic
α
i c

β
i

∂ψ

∂xβ
+O(τ 2) = −

∑
i

τc2sδ
αβ ∂ψ

∂xβ
+O(τ 2) (4.21)

The latter formula is of critical importance for the further work, because it relates the

second moment of the distribution gi with the gradient of ψ

∂ψ

∂xβ
= − 1

τc2s
δαβ
∑
i

gic
α
i +O(τ) (4.22)

The equation above tells that for small relaxation times the first moment of distribution

function can be considered as a reasonably good approximation to the gradient of ψ.

One remark should be made. The equation (4.18) does not model the diffusion ex-

actly as it can be concluded from Chapman-Enskog analysis. However, it can be shown

that in the expansion concerned for the zero moment of gi the principal term with spatial

derivatives is proportional to Laplacian of ψ.

4.2.2 Temporal and Spatial Discretization

The numerical scheme for the discrete kinetic equation (4.18) can be developed in

the same way as for (3.18). It has been mentioned earlier that the first moment of the

distribution gi approximates the gradient as long as the relaxation time is small enough.

Therefore, the implicit scheme is of particular interest. That is the reason why only implicit
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scheme is considered here:

gi(t, x)− gi(t−∆T, x− ei∆X) =
∆T
(
wiψ(t, x)− gi(t, x)

)
τ

(4.23)

In this particular case, the equation (4.23) can be solved analytically, therefore there is no

need in Newton-Rapson iterations or similar methods:

gi(t, x) =
∆T

∆T + τ
wiψ(t, x) +

τ

∆T + τ
gi(t−∆T, x− ei∆X) (4.24)

The expression above can be applied recursively:

gi(t, x) =
∆T

∆T + τ
wiψ(t, x) +

τ∆T

(∆T + τ)2
wiψ(t−∆T, x− ei∆X)+

+

(
τ

∆T + τ

)2

gi(t− 2∆T, x− 2∆Xei)

(4.25)

The first moment of distribution gi can be computed directly:

∑
i

gic
α
i =

∑
i

cαi
τ∆T

(∆T + τ)2
wiψ(t−∆T, x− ei∆X) +O(τ 2) =

= −
∑
i

τwic
α
i c

β
i

∆T 2

(∆T + τ)2
∂ψ

∂xβ
+O(∆T 2 + τ 2) = −τc2sδαβ

∂ψ

∂xβ
+O(∆T 2 + τ 2)

(4.26)

The latter means that the expression (4.22) for the gradient of ψ in the case of discrete

kinetic equation is valid up to second order terms in ∆T and first order terms in τ even for

the spatial and temporal discretization. In other words gradients can be expressed through

moments of distribution even in the discrete case.

4.2.3 Reservoir Simulation Model

In the previous section the flow of fluid in a void space has been discussed. In such

situation the evolution of the system is completely determined by the fluid properties. The
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case of the flow in porous media is different because of the obvious reasons. For the sake

of simplicity it is better to introduce two notions of the density of the fluid: the physical

density ρphys and "real" density ρ. ρphys is the quantity that appears in the equation of state

for evaluation of pressure or viscosity of fluid:

P = P (ρphys)

µ = µ(ρphys)

The "real" or apparent density refers to the mass distribution of the fluid. In other words,

the mass of the fluid in domain G is given by the following expression

M(G) =

∫
G

ρdV ≡
∫
G

ρd3x

It is clear that because of the definitions above both densities are related through the poros-

ity ϕ:

ρphys = ϕρ (4.27)

One more remark regarding the terminology. In this work the actual velocity is used

instead of the superficial one. With such notations for actual density and velocity the

continuity equation has the same form as for the fluid without porous media:

∂ρ

∂t
+
∂(ρuα)

∂xα
= 0 (4.28)

It has been shown by Coussy et al [69] that under certain assumptions the momentum

conservation of fluid in the porous media can be described by Brinkman equation:

∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
= −δαβ ∂P

∂xβ
− ϕµ(K−1)αβu

β (4.29)
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Here K is a permeability tensor. Therefore, K−1 is its inverse. The term

−ϕµ(K−1)αβu
β

Is responsible for the viscous friction of fluid and solid matrix that forms porous rock. It

is different from the classic expression for Darcy’s friction because the actual velocity of

the fluid is used instead of the superficial one.

In general, the gravity force should be included into (4.29), but it is not the focus of

the present work. Despite the latter remark, one can see that the approach proposed in the

present work can be naturally generalized to the system with gravity forces.

It has been mentioned that the lattice speed of sound for the field scale simulations is

selected in accordance with temporal and spatial steps only. That means that dimensionless

speed of sound is constant as well as weights of equilibrium distribution. The latter fact in

couple with equation (3.38) gives a natural way of transformations from ordinary vector

in Euclidian Space to lattice particle distributions. Namely, if the vector η is in R3, then

one can construct the following set of distribution functions:

η → wi

c2s
ci · η = Li(η) (4.30)

The transformation Li concerned has certain important properties that follow from (3.38):

∑
i

Liη =
∑
i

(
wi

c2s
ci · η

)
= ηβδαβ

∑
i

wi

c2s
cαi = 0

∑
i

Li(η)c
γ
i =

∑
i

(
wi

c2s
ci · η

)
cγi = ηβδαβ

∑
i

wi

c2s
cαi c

γ
i = ηβδαβδ

αγ = ηγ
(4.31)

From the calculations above, it follows that the transformation (4.30) gives a lattice dis-

tribution or lattice vector that has zero moment of order zero, and that has the moment of
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order one, which is equal to the initial vector in Euclidian space. The same thing can be

done with the scalar function Q:

Q→ wi

c2s
Q = Si(Q) (4.32)

The similar calculation shows that for the transformation of the scalar Si(Q) the following

equalities are valid:

Q =
∑
i

Si(Q) =
∑
i

wiQ

0 =
∑
i

Si(Q)c
α
i =

∑
i

wic
α
i Q

(4.33)

The properties of scalar and vector transformations discussed above give a natural way for

inclusion of forcing terms and sources in the DKE and LBM models:

∂fi
∂t

+ cαi
∂fi
∂xα

=
f eq
i − fi
τ

+ Li(η) + Si(Q) (4.34)

Equations (4.31) and (4.33) can be used in order to derive mass and momentum con-

servation laws from (4.34):

∂ρ

∂t
+
∂(ρuα)

∂xα
= Q

∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
+
∂(Παβ)

∂xβ
= ηα

(4.35)

From the Chapman-Enskog procedure, it follows that if lattice speed of sound is constant,

then the stress tensor is simply:

Παβ = ρc2sδ
αβ +O(τ)
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Finally, if the following condition holds:

ηα = δαβ
∂(ρc2s − P )

∂xβ

then the LBM scheme represents the Brinkman equation up to the terms of order one in

τ . The latter means that the following system of discrete kinetic equations describes the

Brinkman equation up to O(τ):

∂fi
∂t

+ cαi
∂fi
∂xα

=
f eq
i − fi
τf

+ Li

(∑
j gjcj

τgc2s

)
+ Si(Q)

∂gi
∂t

+ cαi
∂gi
∂xα

=
wi(P − ρc2s)− gi

τg

(4.36)

Here τf and τg are relaxation times for distributions fi and gi respectively. The relaxation

times concerned does not have to be equal. Moreover, as long as the desired accuracy is

of zero order with respect to relaxation time, than τf and τg can be chosen to be arbitrary

but sufficiently small numbers. For instance, the degree of freedom in magnitude of the

relaxation time can be used for the control of the stability and convergence of the method.

In the scheme concerned (4.34) Q represents source terms. In the case of reservoir simu-

lation it is responsible for performance of the well. in this work Q is the function of the

density in the cell and bottom-hole pressure:

Q = Q(P, Pbh) = Q(P (ρphys), Pbh) = Q(P (ρ/ϕ), Pbh)

4.2.4 Numerical Scheme

The arguments similar to the case of free moving fluid are applicable for the case of

the system of discrete kinetic equations. It has been mentioned earlier that the implicit

scheme is of particular interest. Therefore, only that scheme is considered in the details
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here. It can be formulated in the same way as (3.48):

fi(t, x)− fi(t−∆T, x−∆Xei) = ∆T
f eq
i (t, x)− fi(t, x)

τf
+

+∆TSi(Q(t, x)) + ∆TLi

(∑
j gj(t, x)cj

τgc2s

)

gi(t, x)− gi(t−∆T, x−∆Xei) = ∆T
wi(P (t, x)− ρ(t, x)c2s)− gi(t, x)

τg

(4.37)

The system of equations (4.37) consists of several non-linear equations coupled with

each other, however, it can be solved even analytically if there is no source term. Other-

wise, the only equation that should be solver numerically is one-dimensional equation for

density or for mass conservation. The algorithm of the solution is described below.

The first step is solving equations for the density based on the equation for the fi.

Namely, one can compute the moment of order zero of both parts of the (4.37):

ρ(t, x)−
∑
i

fi(t−∆T, x−∆Xei) = Q(t, x)

As long as the source term is the function of the pressure and the density of the fluid and

the bottom-hole pressure, one can obtain the following equation for the density:

ρ(t, x)−Q(P (ρ(t, x)/ϕ(t, x)), Pbh) =
∑
i

fi(t−∆T, x−∆Xei) (4.38)

The second step is computation of the pressure using EOS for the fluid. That means that

all of the quantities P, c2sρ, ρ, become known for each of the cell at new time step. It

is simple to see that for known pressures and densities the equation for g-distribution in

(4.37) becomes a simple linear equation and can be easily solved:

gi(t, x) =
∆T

∆T + τg
wi(P (t, x)− c2sρ(t, x)) +

τg
∆T + τg

gi(t−∆T, x−∆Xei) (4.39)
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The latter means that it is possible to solve for the components of the distribution gi. That

means that gradients of the combination P −c2sρ can be computed based on the expression

through the first moments, in other words, the vector η is simply:

η =
1

τgc2s

∑
j

gj(t, x)cj

Finally, it is possible to come back to the equation for f -distribution functions and deter-

mine the first momentum of equilibrium distribution function or mean velocity:

∑
i

fi(t, x)c
α
i −

∑
i

fi(t−∆T, x−∆Xei)c
α
i = ηα

As long as η is known and first moments of both distributions fi and f eq
i are the same by

the definition, then the value of each of the coordinates of the first moment can be deter-

mined. With the knowledge of the density and the mean velocity, Fieq can be computed.

Therefore, the situation is almost the same as with g-distribution functions:

fi(t, x) =
∆T

∆T + τf
f eq
i (t, x) +

τf
∆T + τf

(
fi(t−∆T, x−∆Xei) +Si(Q(t, x)) +Li(η)

)
(4.40)

The important fact regarding that algorithm is that its performance is comparable with the

performance of the explicit scheme. Indeed, there are no matrix-vector multiplications

and all calculations are local, in other words, the efficiency for parallel computing of both

schemes should be comparable. One of the major motivations for the development of such

implicit scheme is that the limit of zero relaxation times is of particular interest for the

field-scale simulations. It is easy to see that the algorithm above is stable as long as τf ≥ 0

and τg ≥ 0.

Together with the stability with respect to the relaxation time, the implicit scheme
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has one more important feature: the numerical solution allows higher density or pressure

contrasts if compared with the traditional explicit LBM scheme.

4.2.5 Grid Geometry for Field-Scale Simulations

In the previous section the numerical LBM scheme for field scale simulations has been

presented. The algorithm concerned can be applied to simulations of realistic models,

however only uniform cubic grid has been considered. The latter is not practical, because

a typical reservoir has a typical contrast in vertical and horizontal scales. Therefore, non-

cubic geometry of the mesh is of important for applications. One of the ways to introduce

more involved grid geometry into LBM has been discussed in the previous section. How-

ever, one of the disadvantages of the approach concerned is the difficulty of solution for

the equation for the equilibrium distribution functions (3.14). In this case an alternative

solution can be found. Instead of deforming the mesh, one can "deform" the equation.

Formally, this means the introduction of another coordinate system, called the reference

one. That coordinates might be non-linear, but the computational mesh should be uniform

and cubic in that coordinates. In other words, the idea is to solve the equations in the ref-

erence coordinate system instead of the original or the natural one. In the present section

specific notations are introduced. The apparent density of the fluid, the value of the a-th

coordinate and the value of the component b of the velocity vector are denoted as r, xa,

ubrespectively. The same quantities can be introduced for the reference system: ρ, ξα and

υβ . The following notations are used for the transformation from natural coordinates to

reference and for the inverse map:

xa = xa(ξ)

ξα = ξα(x)
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The Jacobi matrices of direct and inverse maps are simply:

∂xa

∂ξα
,
∂ξα

∂xa

The rule for the transformation of the velocity vectors is well-known form the calculus:

ua =
∂xa

∂ξα
υα (4.41)

The rule for the transformation of densities can be derived from simple change of variables:

∫
G

rd3x =

∫
Ω

rdet

(
∂x

∂ξ

)
d3ξ =

∫
Ω

ρd3ξ

Therefore:

r = det

(
∂ξ

∂x

)
ρ (4.42)

With the notations introduced, it is possible to study the properties of mass and mo-

mentum conservation equations under the transformation of coordinates:

∂r

∂t
+
∂(ruα)

∂xα
= 0

∂(ruα)

∂t
+
∂(ruαuβ)

∂xβ
= −δαβ ∂P

∂xβ
+ rGα

(4.43)

From the technical point of view it is easier to start with the transformation of the mass

conservation equation using rules of the transformation of densities and velocities (4.41) -

(4.42):

∂

∂t

(
ρ det

(
∂ξ

∂x

))
+
∂ξα

∂xa
∂

∂ξα

(
ρ det

(
∂ξ

∂x

)
υβ
∂xa

∂ξβ

)
=

=

(
∂ρ

∂t
+
∂(ρυα)

∂ξα

)
det

(
∂ξ

∂x

)
+ ρυβ

∂ξα

∂xa
∂

∂ξα

(
det

(
∂ξ

∂x

)
∂xa

∂ξβ

) (4.44)
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Direct calculation of the derivatives of the determinant shows that the last term in the

equation (4.44) vanishes. Therefore, one can end up with the following equation:

Q =
∂r

∂t
+
∂(rua)

∂xa
=

(
∂ρ

∂t
+
∂(ρυα)

∂ξα

)
det

(
∂ξ

∂x

)

Here Q represents the sources. Finally, the equation for mass conservation preserves its

form even in the reference coordinate system:

∂ρ

∂t
+
∂(ρυα)

∂ξα
= Q det

(
∂x

∂ξ

)
(4.45)

The similar arguments can be applied to the momentum conservation equation. Calcula-

tions are more involved in this case, and the form of final equation differs from the initial

one. It is better to consider each of the terms separately:

∂(rua)

∂t
=

∂

∂t

(
ρυα det

(
∂ξ

∂x

)
∂xa

∂ξα

)
=
∂(ρυα)

∂t
det

(
∂ξ

∂x

)
∂xa

∂ξα
(4.46)

The similar expression can be derived for the convection term:

∂(ruaub)

∂xb
=
∂ξγ

∂xb
∂

∂ξγ

(
ρυαυβ

∂xa

∂ξα
∂xb

∂ξβ
det

(
∂ξ

∂x

))
=

=
∂(ρυαυβ)

∂ξβ
∂xa

∂ξα
det

(
∂ξ

∂x

)
+ ρυαυβ

∂xa

∂ξα
∂ξγ

∂xb
∂

∂ξγ

(
∂xb

∂ξβ
det

(
∂ξ

∂x

))
+

+ρυαυβ
∂ξγ

∂xb
∂xb

∂ξβ
det

(
∂ξ

∂x

)
∂2xa

∂ξα∂ξγ
=

=
∂xa

∂ξα
det

(
∂ξ

∂x

)(
∂(ρυαυβ)

∂ξβ
+ ρυβυγ

∂ξα

∂xb
∂2xb

∂ξβ∂ξγ

)
=

=
∂xa

∂ξα
det

(
∂ξ

∂x

)(
∂(ρυαυβ)

∂ξβ
+ ρΓα

βγυ
βυγ

)

(4.47)

Here Γα
βγ is a Christoffel symbol. Using (4.46), (4.47) and (4.43), one can derive the mass
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and momentum conservation equations in the reference coordinate system:

∂ρ

∂t
+
∂(ρυα)

∂ξα
= Q det

(
∂x

∂ξ

)
∂(ρυα)

∂t
+
∂(ρυαυβ)

∂ξβ
+ ρΓα

βγυ
βυγ = −det

(
∂x

∂ξ

)
Θαβ ∂P

∂ξβ
+ ρ

∂ξα

∂xa
Ga

(4.48)

Here Θαβ is a metric tensor. It is defined as follows:

Θαβ =
∂ξα

∂xa
∂ξβ

∂xb
δab (4.49)

It is easy to see that mass conservation equation has not changed at all. There are two

changes in the form of momentum conservation. The first one is the presence of curvature

of the coordinate transformation through the extra forcing term: ρΓα
βγυ

βυγ . The second

change is the factor in front of the gradient term. Acceleration field Ga has changed as

well, but it follows the rule of transformation for vectors. In the case of flow in porous

media, the acceleration or forcing field is simply:

rGa = −ϕµ(K−1)abu
b

The forcing term in the reference coordinate system is given by the following expression:

ρ
∂ξα

∂xa
Ga = −det

(
∂x

∂ξ

)
ϕµ
∂ξα

∂xa
(K−1)ab

∂xb

∂ξβ
υβ

It is easy to see that the latter is equivalent to the replacement of permeability tensor:

Kb
a →

∂ξβ

∂xb
∂xa

∂ξα
Kb

a = κβα

Finally, for the flow in the porous media one can get the equation for momentum conser-
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vation:

∂(ρυα)

∂t
+
∂(ρυαυβ)

∂ξβ
+ ρΓα

βγυ
βυγ = −det

(
∂x

∂ξ

)(
Θαβ ∂P

∂ξβ
+ ϕµ(κ−1)αβυ

β

)
(4.50)

The transformation of time can be considered as well. Basically, the dimensionless time θ

can be introduced in the following way:

t = ∆Tθ (4.51)

The transformation of time impacts the velocity in the following way:

v̂ = v/∆T (4.52)

Here v̂ is a dimensionless velocity. With such notations the equation (4.50) is transformed

as follows:

∂(ρυ̂α)

∂θ
+
∂(ρυ̂αυ̂β)

∂ξβ
+ ρΓα

βγ υ̂
βυ̂γ = −∆T 2det

(
∂x

∂ξ

)
Θαβ ∂P

∂ξβ
+

+∆Tdet

(
∂x

∂ξ

)
ϕµ(κ−1)αβ υ̂

β

(4.53)

It is easy to see that the numerical scheme for LBM (4.37) can be applied for reservoir

simulations at the field scale almost without any changes. The only modification is that the

gradient computed through the moments of g distribution functions should be multiplied

by the metric tensor.

4.2.6 Numerical Diffusion

Classic LBM schemes has demonstrated a reasonable agreement with analytical tools

in the simulation of steady-state flow [71]. Simple simple calculations can show that

the novel LBM model is applicable for such types of simulations as well. Despite this
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advantage of the method, there exist a significant numerical error in the simulation of

transient processes. Namely, the numerical diffusion of the scheme is too high leading to

overestimate of the speed of propagation of the fluid. The latter can be shown with the

one dimensional example problem. One can consider a 1D reservoir of length L, with

permeability k, and porosity ϕ. The viscosity of the fluid is supposed to be constant and

equal to µ. For the purposes of simplicity, an ideal gas can be considered. The EOS of the

fluid is:

P =
ρpRT

M
(4.54)

Here P is the pressure, ρp is a real of physical density of the fluid, T is the temperature,

M is the molar mass. In terms of the notations introduced at the beginning of the present

chapter the EOS can be written in the form:

P =
ρRT

Mϕ
(4.55)

The evolution of the system is determine by the combination of mass conservation equa-

tion and Darcy Law:
∂ρ

∂t
=

∂

∂xα

(
ρk

ϕµ

∂P

∂xα

)
(4.56)

That expression be transformed to the following:

∂ρ

∂t
=

∂

∂xα

(
ρk

ϕ2µ

RT

M

∂ρ

∂xα

)
(4.57)

The equation (4.57) is non linear. However, it can be linearised if the deviation of

the density is small if compared with the mean value. The latter means that terms with

derivatives of the density that have an order higher then two are negligible:
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∂ρ

∂t
=

ρk

ϕ2µ

RT

M
∆ρ (4.58)

This equation is a well-known heat-conductivity equation. In the case of one dimen-

sion, the expression (4.58) is simply:

∂ρ

∂t
=

ρk

ϕ2µ

RT

M

∂2ρ

∂x2
(4.59)

If the initial condition is:

ρ = ρ0 +∆ρ0cos

(
2πx

L

)
(4.60)

then the solution for (4.59) has the following form:

ρ = ρ0 +∆ρ0e
−λtcos

(
2πx

L

)
(4.61)

The physical meaning of the solution concerned is that the small harmonic perturbation of

the initial distribution of density decays exponentially with time. Moreover, the harmonic

shape of the perturbation is preserved and only the amplitude of the perturbation changes.

The latter observation is extremely useful for the analysis of the conversion of the method.

The direct substitution of (4.61) into (4.59) gives the following expression for λ:

λ =
4π2ρ0k

µϕ2L2

RT

M
(4.62)

Finally, equations (4.57) - (4.62) allow one to compare the LBM scheme with analytical

solution. In the present work the following values of the parameters have been used:

It can be seen easily from (4.61) that the perturbation decreases by the factor e−1 after

the period of time of duration 1/λ. The plots of the perturbation at the moment 1/λ are

shown below. The numerical solution is computed for the several values of time steps ∆N
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L, m k, D ϕ ρ0, kg/m3 µ, cP T, K M, kg/mol
2000 1 0.01 1 0.01 350 0.016

Table 4.1: Values of the parameters used in simulations.

in such a way that the final moment of time for all simulations is the same:

1

λ
= ∆N∆T (4.63)

The number of time steps for each simulation is summarized in the table below: It can

Figure 4.2: This figure illustrates the effect of numerical diffusion on numerical results.
Analytical solution is compared with numerical simulations for the same moment of time
but for the different number of time stes

Number of simulation 1 2 3 4
Number of time steps 10000 20000 40000 80000

Table 4.2: Total number of time steps in simulations.
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be seen from the Figure (4.2) that the rate of the decay of the perturbation for numerical

solution is significantly higher then for the analytical one. The latter effect is the evidence

of high numerical diffusion of the scheme. The numerical error can be estimated via

Chapman-Enskog Expansion. For that purpose the term fi(t, x)− fi(t−∆T, x− ei∆X)

in the equation (4.37) can be approximated as a polynomial function through the Taylor

expansion:

fi(t, x)− f)i(t−∆T, x− ei∆X) = ∆T
∂fi
∂t

+∆Tcαi
∂fi
∂xα

−

−∆T 2

2

(
∂2fi
∂t2

+ 2cαi
∂2fi
∂t∂xα

+ cαi c
β
i

∂2fi
∂xα∂xβ

)
+O(∆T 3)

(4.64)

With such expression, the equation (4.37) can be transformed as follows:

∂fi
∂t

+ cαi
∂fi
∂xα

− ∆T

2

(
∂2fi
∂t2

+ 2cαi
∂2fi
∂t∂xα

+ cαi c
β
i

∂2fi
∂xα∂xβ

)
+O(∆T 2) =

= Ωi(t, x) + Fi(t, x)

(4.65)

The summation over the set of lattice velocities of both sides of (4.65) gives the following

equation:

∂ρ

∂t
+
∂(ρuα)

∂xα
− ∆T

2

(
∂2ρ

∂t2
+ 2

∂2(ρuα)

∂t∂xα
+
∂2(ρc2sδ

αβ + ρuαuβ)

∂xα∂xβ

)
= O(∆T 2) (4.66)

One of the outcomes of the expression (4.66) is that material balance in its canonical form

is satisfied up to the terms of order one with respect to the time step ∆T . More precisely,

in the numerical scheme, the mass is conserved up to the round-off errors. The error occurs

in closing relation. In other words, the deviation from the Darcy law is of order one with

respect to the ∆T . The latter observation can be applied to (4.66). First of all, the terms
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with second order derivatives can be grouped as follows:

∂ρ

∂t
+
∂(ρuα)

∂xα
−∆T

2

(
∂

∂t

(
∂ρ

∂t
+
∂(ρuα)

∂xα

)
+
∂2(ρuα)

∂t∂xα
+
∂2(ρc2sδ

αβ + ρuαuβ)

∂xα∂xβ

)
= O(∆T 2)

(4.67)

Here cs = 1/sqrt(3)∆X/∆T is the lattice speed of sound. From the discussion above

it follows that mass conservation equation is satisfied up to the terms of order one with

respect to ∆T . The latter means that the term is of the second order with respect to the

temporal step:
∆T

2

(
∂ρ

∂t
+
∂(ρuα)

∂xα

)
= O(∆T 2) (4.68)

Equation (4.68) tells that the combination of terms with second order derivatives discussed

above can be neglected.

Equation (4.66) allows further simplification that can be derived form the physics of

the process. Typically, the acceleration of the fluid in the case of flow in porous media

is negligible [69]. The mathematical interpretation of the latter statement is that time

derivatives of the velocity of the fluid and together with the absolute value of the velocity

is negligible. With the reasoning above, the equation (4.66) can be transformed as follows:

∂ρ

∂t
+
∂(ρuα)

∂xα
+

∆

2
c2s∇2ρ = O(∆T 2) (4.69)

In the case of the flow in porous media the velocity of the fluid is related to the pressure or

density gradient through the Darcy Law:

rhou = − ρk

ϕµ
∇P = − ρk

ϕ2µ

∂P

∂ρp
∇ρ (4.70)

The last equality in the formula above holds only if the reservoir is uniform. Finally, if

square of the gradient of the density is negligible, then the numerical scheme approximates
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the solution to the following equation:

∂ρ

∂t
=

(
ρk

ϕ2µ

∂P

∂ρp
+

1

6

∆X2

∆T

)
∇2ρ+O(∆T 2) (4.71)

The equation (4.71) is important for understanding of the performance of the LBM. It im-

poses controversial restrictions on the time step. One hand, the small time step results in a

small magnitude of the dimensionless velocity of the fluid. Therefore, all the components

of the equilibrium distribution functions are positive. That means that the numerical solu-

tion is far away from oscillations because of the major source of numerical instability. On

the other hand, small time step results in a high value of numerical diffusion, because the

numerical error occurs because of the term:

1

6

∆X2

∆T
∇2ρ (4.72)

In other words, the situation is similar to what have been observed in the previous section

with the self-consistent LBM model. It is easy to see that the numerical effect concerned

can be fixed if the predictor-corrector LBM scheme is considered at least in the case when

the assumptions regarding the magnitude of the velocity and gradient of the pressure are

valid. However, the reason for the numerical diffusion is fundamental for LBM and it

is caused by the nature of the streaming step in LBM. For example, if the distribution is

close to equilibrium and the velocity of the fluid is small, then each of the distribution

functions fi is approximately equal to wiρ. The latter means tha during each time step,

only a small part of the overall mass of the system remains at rest. Obviously, the mass

fraction of the part concerned is w0. The remaining particles participate in mass exchange.

The fraction of the overall mass that participates in mass exchange concerned does not

depend on the magnitude of the time step. Therefore, the mass exchange between the cells
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can be significant even if the time step is small.

The important conclusion from the discussion above is the presence of significant diffi-

culties of application of LBM to field-scale problems with multiphase flow. For instance, it

is easy to see that because of the numerical diffusion the distribution of phases in the pores

space can appear even if pressure gradient is zero everywhere. The latter reasoning indi-

cate the need for the alternative formulation of LBM scheme for field scale simulations.

The novel LBM scheme is the subject of the discussion of the next chapter.
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5. NOVEL LBM SCHEME FOR FIELD SCALE SIMULATIONS

In the previous chapter the LBM pseudo-potential model for field-scale simulations

has been described. It has been shown that the numerical diffusion introduces a significant

numerical error. It has been indicated that the main reason for such phenomenon is the

form of the equilibrium distribution. Namely, the fraction of the particles that are streamed

to the neighbouring nodes does not depend on the magnitude of the time step. Moreover,

that fraction of the particles is calculated from local quantities. In other words, the total

flux of the particles leaving the given node has no information regarding gradients. This

causes problems for field-scale simulations, where the pressure gradient is the main driving

force. The reasoning above indicates the need for fundamental revisions of the formulation

of LBM models.

In the present chapter an alternative formulation of the LBM scheme is presented.

The novelty of the model is in the expression for the equilibrium distribution functions.

Those functions are designed in such a way that only two moments of the distribution

coincide with the moments of the Maxwell distribution. The immediate consequence of

such formulations is that the LBM scheme can be applied only to field-scale simulations

but not to the numerical solving for the Navier-Stokes equations. However, the novel

approach does not suffer from numerical diffusion if compared with the pseudo-potential

scheme discussed previously.

5.1 Derivation of the Expression for Equilibrium Distribution Functions

The flow in porous media is governed by the Darcy law, that states that the velocity

of the fluid is a linear function of the pressure gradient. That means that zero pressure

gradient results in the absence of any movement of the fluid. Such relation between the

pressure gradient and the velocity of the fluid motivates to design equilibrium distribution

92



functions with similar properties. In other words, components of the equilibrium distribu-

tion that correspond to the particles with non-zero speed should be linear with respect to

pressure gradient and should vanish together with the pressure gradient.

It is important to notice that this formulation leads to the deviations of the second order

moments of the distribution from the Maxwell distribution. Namely, if pressure gradient

and velocity are both equal to zero, then the second moment of the distribution is zero:

∑
i

f eq
i c

α
i c

β
i = f eq

0 c
α
0 c

β
0 = 0 (5.1)

The other important observation that narrows the set of options for equilibrium distri-

bution functions comes from the numerical stability. It has been mentioned previously that

equilibrium distribution functions should be positive for the stability of the LBM scheme.

Therefore, the expression for equilibrium distribution functions can not be a simple linear

function because it changes the sign with change of the sign of the mean velocity. There-

fore, linearity and positivity seems to be controversial requirements. However, this can be

resolved if only convex combination of vectors are considered. To this end, if the density

and the moment or mean velocity are given, then the idea is to select the triplet of lattice

velocity vectors ci1 , ci2 , ci3 in such a way that:

ρuα = fi1c
α
i1
+ fi2c

α
i2
+ fi3c

α
i3

(5.2)

All other equilibrium distribution functions are considered to be zero. The only exception

is the component that corresponds to the particles with zero velocity. It is defined in the

accordance with the given density of the fluid at the point concerned:

f0 = ρ− fi1 − fi2 − fi3 (5.3)
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It is clear that for D3Q27 model it is always possible to find the triplet of lattice veloc-

ities such that all the coefficients in the decomposition (5.2) are non-negative. The only

issue is that the triplet may not be unique. Therefore, the algorithm for the generation of

the triplet is required. Therefore, only specific triplets of lattice vector are considered in

the present work, we refer them as natural. The triplet (ei1 , ei2 , ei3) is called natural if two

conditions are satisfied. The first condition is on the magnitude of the vectors:

|ei1| = 1

|ei2| = 2

|ei3| = 3

(5.4)

The second condition is related to the coordinates of the vectors. The first vector of the

natural triplet is ei1 and it is a face vector. Therefore, only one coordinate of the vector

concerned is non-zero. In this case we denote the coordinate as α1. The second vector

of the natural triplet is ei2 . It is an edge vector. Therefore, exactly two coordinates of the

vector are non-zero. One of them is forced to be α1. In other words, α1 and α2 are two

different coordinates of vector ei2 that are different from zero. The similar construction is

applied to the third vector ei3 . As before, this vector has three non-zero coordinates. Two

of them forced to be α1 and α2. The remaining non-zero coordinate is α3. Finally the

constrained can be formulated as the existence of three distinct coordinate indexes α1, α2,

and α3 such that:

eα1
i1

= eα1
i2

= eα1
i3

eα2
i2

= eα2
i3

(5.5)

There is a convenient way to think about the way of construction of natural triplet.

One can start with the face vector ei1 . This vector has one non-zero coordinate and two

zero coordinates. The vector ei2 is derived from ei1 by the replacement of one of the zero
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coordinates of ei1 by the −1 or +1. ei3 is constructed in the similar way: the remaining

non-zero coordinate of ei2 is replaced by the −1 or +1. Therefore, for every natural

triplet the sequence α1, α2, α3 of three different ordered numbers can be constructed. It

is simple to show, that the inverse statement is valid as well: for each ordered set of three

different numbers the natural triplet can be constructed. In other words, there is a one-

to-one correspondence between natural triplets and ordered combinations of coordinate

indexes.

In the novel LBM model described here, the equilibrium distribution functions are

expressed through the density ρ and mean velocity u. The density is simply a way of

normalization of the equilibrium distribution (3.10). The mean velocity is treated in more

complicated way.

The first step of the evaluation of the equilibrium distribution function is the construc-

tion of the natural triplet. From the discussion above it follows that it is sufficient to gen-

erate the sequence of coordinate indexes. In the present work that sequence is constructed

in such a way that for the given mean velocity the following is valid:

|uα1| ≥ |uα2| ≥ |uα3| (5.6)

The second step is to determine values of distribution functions. From the construction

of the natural triplet of lattice vector velocities, one can derive the following system of

equations:

ρ
∆T

∆X
|uα1| = f eq

i1
+ f eq

i2
+ f eq

i3

ρ
∆T

∆X
|uα2| = f eq

i2
+ f eq

i3

ρ
∆T

∆X
|uα3| = f eq

i3

(5.7)
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The solution for the system (5.7) is given by the expressions below:

f eq
i1

= ρ
∆T

∆X

(
|uα1 | − |uα2|

)
f eq
i2

= ρ
∆T

∆X

(
|uα2 | − |uα3|

)
f eq
i3

= ρ
∆T

∆X
|uα3|

(5.8)

We can see that the components of the equilibrium distribution functions are non-negative

because of (5.6). The zero-velocity component of the distribution is calculated from (5.3).

Therefore, equations (5.3) and (5.8) completely define the equilibrium distribution. More-

over, density and mean velocity obtained through the averaging procedure are the same as

the input values ρ and u.

5.2 Numerical Scheme

In the previous section an algorithm of the calculation of equilibrium distribution has

been proposed. The input for the algorithm is density and mean velocity of the fluid:

f eq
i = f eq

i (ρ, u) (5.9)

In the case of the flow in porous media that velocity is determined by the Darcy Law:

u = − k

µϕ
∇P

The velocity can be substituted into the expression for the equilibrium distribution function

(5.9), as:

f eq
i = f eq

i

(
ρ,− k

µϕ
∇P

)
(5.10)

Therefore, in the case of the flow in the porous media, the equilibrium distribution function
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is determined by the density of the fluid and by the pressure gradient. We can see from

(5.8) that zero value of the pressure gradient results in the absence of the motion of the

fluid. Therefore, such approach for the calculation of the equilibrium distribution functions

is reasonable from the physical point of view.

The moments of the equilibrium distribution are given by the expressions:

ρ =
∑
i

f eq
i

ρuα =
∑
i

f eq
i c

α
i = − ρk

µϕ
∇P

(5.11)

In this case, as long as (5.11) holds, the standard Chapman-Enskog expansion shows that

the DKE or LBM model developed recovers the standard mass conservation law:

∂ρ

∂t
= ∇

(
ρk

µϕ
∇P

)
(5.12)

It readily follows that the DKE model approximates the behaviour of the desired macro-

scopic system. Therefore, the only missing step for the development of the numerical

LBM scheme is spatial and temporal discretization. Approximation of the derivatives of

the distribution functions is the same as in schemes (3.49) or (3.50). The difference from

the previous schemes is that the pressure gradient should be computed numerically. The

latter can be done in a natural way with the standard weights wi for D3Q27 model [51]

based on the values of pressure at neighbouring nodes P (x+ei∆X). Namely, the standard

Taylor expansion together with (3.38) gives the following expression:

∑
i

wiP (x+ ei∆X)eαi =

=
∑
i

wi

(
P (x)eαi +

∂P

∂xβ
∆Xeαi e

β
i

)
+O(∆X2) = c2sδ

αβ ∂P

∂xβ
∆X +O(∆X2)

(5.13)
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In other words, the pressure gradient can be approximated as follows:

∂P

∂xα
= δαβ

1

cs2∆X

∑
i

P (x+ ei∆X)ei (5.14)

The similar formula can be derived for the second derivatives of the pressure:

∑
i

wi(e
α
i e

β
i − c2sδ

αβ)P (x+ ei∆X) =

= ∆X2c4s
1

2
(δαβδγ1γ2 + δαγ1δβγ2 + δαγ2δβγ1)

∂2P

∂xγ1∂xγ2
+O(δX4)

(5.15)

Therefore, the matrix of the second derivatives of the pressure can be approximated as:

∂2P

∂xαxβ
=

1

c4s∆X
2

∑
i

P (x+ ei∆X)eαi e
β
i (5.16)

Expressions (5.14) and (5.16) allow one to compute the pressure gradient at the given

lattice node. Therefore, the velocity of the fluid and equilibrium distribution can be com-

puted as well. In other words, the relation (5.14) can be used in the numerical simulations

with LBM. However, the direct implementation of the approximation of the pressure gradi-

ent can introduce additional numerical noise, since the equilibrium distribution functions

are piece-wise linear with respect to pressure gradient. Moreover, in the case of local

minimum or maximum of the pressure, the application of the expression (5.14) can result

in the significant decrease of the overall flow velocity. This is of critical importance for

the near-well region, where pressure has a local minimum or maximum. In order to re-

solve the issues with the noise and numerical error, the equilibrium distribution function

is averaged over the cell, which is the neighbourhood of the node. For that purposes, the

pressure gradient is approximated by the linear function using the Taylor expansion and

derivatives (5.14) and (5.16). Thus, in the numerical scheme the following replacement
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has been made:

f eq
i →

∫
cell

fid
3x∫

cell
d3x

(5.17)

In the numerical scheme the quadrature rule is used in the numerical integration (5.17).

It should be mentioned the integration should be performed over the subspace of three

dimensional space. In the present work the geometry of the cells is rectangular or cubic.

Therefore, the quadrature rule can be considered as the product of quadrature rules for

one dimensional space. In the present work the quadrature rule for three dimensional

integration is obtained from the one-dimensional rule with three weights and three points.

Therefore, the quadrature rule in 3D has 27 weights and 27 points.

5.3 Numerical Results

The novel approach is validated against a FV reservoir simulator. A rectangular reser-

voir with a single vertical well in the middle has been considered (5.1).

The flow of the gas has been considered. PVT properties of the gas are described by

the following EOS:

P = ρ
P0

ρ0
(5.18)

Here p0 is the pressure of the gas for the reference density ρ0. In this particular section

P0 = 1.0atm for the ρ0 = 1.0. In other words, the gas with the unit density has the

pressure of one atmosphere. The viscosity of the gas is constant and µ = 0.01cP . The

dimensions of the reservoir are the following: 2000m× 2000m× 20m. The permeability

is k = 1mD, the porosity is ϕ = 0.01.

The two-years production from the reservoir has been modelled. Numerical tests has

been made with the following values of the bottom-hole pressure (BHP): 10 atm, 30 atm,

50 atm, 70 atm and 90 atm. Plots of recovery factor vs time have been compared with

each other (5.2). The result of simulations with the novel approach are in the agreement
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Figure 5.1: The scheme of the reservoir model that has been used in simulations. In fact,
the reservoir is 2D despite the fact that the code has been designed for 3D models. The
periodic boundary condition has been applied in the direction parallel to the well. This
trick makes it possible to use 3D code for 2D simulations.

with ones obtained with a conventional FV simulations.

5.4 Properties of the Novel Approach

The first important thing to mention is the constraint on the time step. The equilibrium

distribution is a piece-wise linear function of the pressure gradient as it follows from (5.3),

(5.8) in couple with the Darcy law. This means that for f eq
0 to be positive, there is an upper

boundary for the time step. One can show that the constraint on the time step is the same

as for the explicit numerical scheme for reservoir simulations. Therefore, at the present

stage of the development the method is far away from real implementations because of the

high run-times.

Despite the disadvantage concerned, the method indicates the prospects of the devel-

opment of LBM schemes for reservoir simulations. It is important to keep in mind that in
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Figure 5.2: Plots of the recovery factor vs time for five values of BHP:. The BHP takes the
following values: 10 atm, 30 atm, 50 atm, 70 atm and 90 atm. The production profiles
derived with the novel LBM scheme (solid line) and with the standard FV simulation (solid
dots) are in the reasonable agreement with each other.

the approach discussed the equilibrium distribution functions that correspond to the par-

ticles with non-zero velocity are become zero together with the pressure gradient. This

means a significant reduction of the numerical diffusion if compared with the standard

pseudo-potential LBM schemes. Thus, the feature concerned is beneficial for the accurate

modelling of transient processes.

The other advantage of the novel LBM scheme is a potential for the numerical solution

of the Navier-Stokes equations. The equilibrium distribution of the form (5.3), (5.8) can

be considered as the representation of the pure convection in terms of the distribution of

the particles. In other words, this equilibrium distribution represents the pure convection.

In this case the question arises: is it possible to add the diffusion part so that it is possible

to model the flow of the gas without any porous media? Such separation of the diffusion

and the convection has a potential to represent transport phenomena and EOS separately

from each other. Moreover, the idea of representation of the mean velocity of the fluid as
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the convex combination of lattice velocity vectors has a potential to solve the issue with

the Galilean invariance in LBM, which is of fundamental importance.

Finally, the new approach described here can be applied to the simulation of the reser-

voirs with complex geometry. This happens because all the techniques of formulation of

boundary conditions for LBM schemes can be used in simulations with the novel LBM

scheme. Therefore, the method inherits the remarkable property of the classic LBM

schemes to work with the systems with complex geometry.
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6. CONCLUSION AND FUTURE RESEARCH

The first result of the present work is related to the so-called self-consistent LBM

models. Here self-consistent means that the EOS of the fluid is introduced through the

equilibrium distribution functions in contrast to the conventional LBM models. We have

introduced a new LBM scheme using an implicit solver, which shows good accuracy and

demonstrates the applicability to the modelling of shale reservoirs. This has been shown

through the derivation of the modified EOS for the gas inside the nano-pores as it is illus-

trated with a Figure (3.9). Therefore, the method can be used for integration of various

scales in simulations of shale reservoirs.

The most significant contribution of the present work is the observation of the limita-

tions of the LBM as a computational method. The first restriction on the applicability of

the LBM has been derived for the self-consistent model. It has been shown that for a given

spatial resolution there exist both lower and upper bound for the time step. The upper

bound is common in numerical methods. However, the presence of the lower bound on the

time-step is surprising. This restriction limits the applicability of the method given its nu-

merical stability. Basically, the self-consistent LBM model can be hardly extended to the

multiphase flow, especially for the fluid with high contrast in density. Namely, the ranges

of time steps for which the scheme is stable for each of the fluids may have an empty in-

tersection. Therefore, in certain cases it is not possible to design any self-consistent LBM

system for two-phase flow of fluids with a high contrast in PVT properties. Moreover,

even for the single phase flow, high contrast in pressures within the computational domain

can result in the negative equilibrium distribution functions, which typically leads to the

blow-up of the solution.

The central result of the present work is that that limitations are fundamental for the
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formulation of LBM. It has been shown that the extension of the lattice can not solve the

problem with the existence of the lower bound for the time step. As long as the time step

is related to the ratio between pressure and density, it follows that the self-consistent LBM

scheme can not be applied for reservoir simulations, because of the impractically small

time step.

From the discussion above, it can be concluded that the for the field-scale simulations

a pseudo-potential model should be used. In the present work, a novel pseudo-potential

model has been proposed. The advantage of the model is that it uses the semi-implicit

scheme in the simulations. The feature concerned of the model is beneficial for the numer-

ical stability of the scheme. That pseudo-potential LBM model follows the Darcy Law in

the case of steady-state flow. Significant deviations from the results of simulations with FV

schemes has been observed. In the present work it has been shown that the reason for that

difference is the numerical diffusion. It has been demonstrated that the coefficient of the

diffusion concerned is proportional to ∆X2/∆T . That relation imposes the lower bound

for the time step, however, in the case of the pseudo-potential model the constraint on the

magnitude of the time step comes not only from the stability reasons, but is caused by the

issues with the accuracy. Moreover, it has been indicated that the numerical diffusion is

an inherit property of standard LBM pseudo-potential methods. This happens because the

mass fraction of the particles that participate in the mass exchange process during each

time step does not vanish when the time step is going to zero. The latter causes significant

difficulties in simulations of multiphase flow.

The third important contribution of the present work is the formulation of the alter-

native LBM model for field-scale simulations. The method can be applied to reservoir

simulation as it has been demonstrated through the validation against the FV method. The

major feature of the new approach is that components of the equilibrium distribution that

correspond to the particles with non-zero velocities are proportional to the velocity of the
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fluid or to the pressure gradient in the case of flow in porous media. The latter means that

there is no mass flux, when the pressure gradient is zero, which is reasonable from the

physical point of view. Therefore, the approach concerned has a potential for applications

in reservoir simulations.

The robustness of the novel LBM scheme is comparable with standard FV explicit

schemes for reservoir simulations. Therefore, at the present stage of the research the

method is far away from real reservoir simulations. However, the method has a funda-

mental meaning for the theory of LBM. The central idea of the novel approach can be

formulated as the explicit calculation of the convective part of the fluid motion. In the case

of the flow of the fluid in porous media, the latter is the only available type of motion. It

is worth to explore the possibility of the application of the method to the simulation of

gas flow without any porous media. One of the possible ways is to separate convection

and diffusion parts of the fluid motion and use the developed approach for the calcula-

tion of the convective part. In this case the novel technique is required for the calculation

of the diffusion of the fluid. The research developed here can benefit the solution of the

issue with the EOS in LBM simulations without the introduction of pseudo-potentials of

different types.

Finally, the research concerned can be considered as the revision of the potential of

the LBM for practical simulations. One of the outcomes is exploration of the boundaries

for the applications of LBM, caused by the problems with numerical stability and accu-

racy. However, the conceptually new LBM scheme that has a potential to go beyond the

indicated boundaries has been presented.
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