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ABSTRACT 

 

In the US Southern Great Plains (SGP), projections of changes in rainfall under future 

warming scenarios differ greatly in their sign and intensity. The lack of continuous, well-dated 

paleoclimate records before the Last Glacial Maximum (LGM) hinders a comprehensive 

understanding of past variability in regional hydroclimate patterns. We present three absolutely 

U/Th-dated oxygen and carbon isotope records from a calcite stalagmite collected near 

Georgetown, Texas (Cobbs Cavern at 30°N, 98°W), spanning 350 to 3800 years before present 

(BP), 98 to 130 kyr BP, and 179 to 208 kyr BP. Based on our two-year dataset of central Texas 

precipitation and Cobbs Cavern dripwaters, we interpret the oxygen isotopic composition of the 

stalagmite to reflect variability in regional rainwater δ18O composition through time, which we 

determine is largely driven by amount of precipitation and storm structure. There is no evidence 

for kinetic isotope effects in the stalagmite, so we conclude that more negative δ18O values 

reflect wetter conditions with larger and more organized storms, whereas more positive δ18O 

values reflect drier conditions with unorganized, sporadic storms. Stalagmite δ13C variations may 

be driven by shifts in overlying vegetation type, soil bioproductivity, karst flow rate variability, 

and prior calcite precipitation such that more negative δ13C values reflect increased moisture 

availability in the region. The stalagmite records include Marine Isotope Stage (MIS) 5e, a 

period where global temperatures may have been as much as 2°C warmer and sea level 4-6 m 

higher than present. Thus, our δ18O record provides context for how SGP hydroclimate may 

respond to future warming. Prominent features in the δ18O record, including a wet MIS 5e appear 

to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that 

of maxima (minima) in summer insolation at 30°N. Our SGP stalagmite records shed light on the 
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fundamental character of SGP hydroclimate response to glacial-interglacial forcings, and provide 

evidence for increased precipitation and persistent convective storm activity under past warming 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

DEDICATION 

 

To Grandmama, who taught me how to balance grit with grace. 

 



 

 v 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Brendan Roark, and my committee 

members, Dr. Franco Marcantonio and Dr. Robert Korty, for their guidance and support 

throughout the course of this research. I would also like to thank Dr. Chris Maupin for teaching 

me everything I know about isotope geochemistry and patiently helping me through my many 

questions along the way. 

Thanks to my friends and colleagues and the department faculty and staff for making my 

time at Texas A&M University an invaluable experience.  

Finally, thanks to my mom and dad for their unwavering support, their unfailing ability to 

make me laugh, and their contagious drive to live a meaningful life. 

  



 

 vi 

CONTRIBUTORS AND FUNDING SOURCES 

 

This work was supported by a committee consisting of Professor Brendan Roark of the 

Department of Geography, Professor Franco Marcantonio of the Department of Geology, and 

Professor Robert Korty of the Department of Atmospheric Sciences. 

The data analyzed for Chapter II and Chapter III was provided by the Stable Isotope 

Geosciences Facility (SIGF) at Texas A&M University. The dating analyses in Chapter III were 

conducted in part by the High-Precision Mass Spectrometry and Environmental Change Lab 

(HISPEC) at the National Taiwan University. All other work conducted for the thesis was 

completed independently by the student. 

Graduate study was supported by a merit fellowship from Texas A&M University 

College of Geosciences.  



 

 vii 

NOMENCLATURE 

 

SGP Southern Great Plains 

BP Before Present 
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CHAPTER I  

INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

In the US Southern Great Plains (SGP), long-term rainfall variability beyond the 

instrumental record remains poorly understood due to a lack of regional paleoclimate archives. 

The future health and success of this region, which is home to a substantial number of major 

metropolitan areas as well as important agricultural and grazing lands, depends on a clearer 

understanding of the mechanisms driving regional hydroclimate variability. Water stress is 

already an imminent threat to the region due to rapid depletion of aquifers and the limited 

irrigation systems already in place (Kunkel et al. 2013). Understanding crop sensitivity to a range 

of climatic conditions requires a better grasp of regional climate patterns to avoid economic 

disaster and mitigate the potentially deleterious effects of a changing climate. The last ~150 

years of the instrumental climate record do not provide enough data to fully understand regional 

hydroclimate variability over decadal and longer time scales. Furthermore, the scarcity of 

paleoclimate information from the SGP that is available before the Last Glacial Maximum 

(LGM) limits our understanding of regional climate responses to changes in mean climate state 

and forcing. Despite the socio-economic significance of the SGP, changes in precipitation 

patterns resulting from variations in mean state and anthropogenic climate change are not well 

constrained, yet the sustained ecological and economic success of this region depends on a better 

understanding of natural variations in the region’s climate. 

Based on the Palmer Drought Severity Index, in 2011 the Great Plains region experienced 

the most severe drought ever recorded in the region (NOAA 2011), and the 2011 summer in 
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Texas was the warmest and driest on record (Kunkel et al. 2013). The SGP often experiences 

intense flooding, often a result of hurricane systems from the Gulf of Mexico or major 

convective storms that release huge amounts of precipitation in a short amount of time, thus 

overwhelming infrastructure (Kunkel et al. 2013). Texas averages about 0.8 tropical storms on its 

coastline each year; half of which are hurricane systems, and the other half are tropical storms 

(Roth 2010). These tropical cyclone systems that originate from the Gulf of Mexico can 

penetrate into the Great Plains region and trigger massive rainfall events over large areas 

(Kunkel et al. 2013). Flooding can also result from winter snowmelt or long-lasting heavy 

precipitation that induces river overflow (Kunkel et al. 2013). These flood events are costly, as 

Wang et al. (2015) attributed over $45 million in property and agricultural damages to the 2015-

2016 SGP floods. From 1980 to 2003, six major drought and flooding events in the Great Plains 

contributed to a total loss of $131.7 billion (Basara et al. 2013). These weather events triggered 

price surges ultimately borne by American consumers. Understanding climate variability in this 

region is vital to preparing for a safe, stable, and productive future. 

Studying the stable oxygen isotopic makeup of rainfall can reveal information on past 

variability in the hydrologic cycle of a region (Dansgaard 1964; Merlivat and Jouzel 1979). A 

plethora of potential climate-based proxy archives exist, ranging from tree rings to sediment 

cores to speleothem records. The karst geology present throughout the SGP lends itself to the use 

of cave deposit records as a means of studying past hydroclimate patterns in the region. 

Uranium-thorium (U/Th) dating can be used to date speleothems, and the isotopic composition of 

these cave deposits can then be tied to a high-resolution chronology to reveal past variations in 

climate conditions (Lachniet 2009; Shen et al. 2002).  
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We have generated a long-term speleothem record in tandem with complementary local 

rainfall records in order to fill the long-term paleorainfall data gap that exists in the SGP region. 

In Chapter 2, we present an oxygen (δ18O) and deuterium (δD) stable isotope analysis of Cobbs 

Cavern dripwater and ~2 years of rainwater from nearby Austin to constrain the climatic 

interpretation of our speleothem record. We used the Austin precipitation dataset to investigate 

the relationship between δ18O and δD to air temperature and the amount of precipitation. This 

allowed us to determine what is a principal driver of large changes of δ18O variability in Texas 

rainwater, and ultimately, speleothem-forming dripwater. 

In Chapter 3, we examined the paleoclimate history of the SGP using three U-series dated 

speleothem oxygen and carbon records from an undisturbed, closed-system cave, Cobbs Cavern, 

nestled in the Edwards Plateau limestone of central Texas. The U/Th dates indicate speleothem 

growth from 350 to 3800 years before present (BP), from 98,000 to 130,000 years BP, and from 

179,000 to 209,000 years BP. In this study we chose to emphasize the Eemian Interglacial, 

known as Marine Isotope Stage 5e (MIS 5e), which peaked ~125,000 years BP. During MIS 5e, 

global temperatures were as much as 2°C warmer, (Shackleton 2002), sea level was 4-6m higher 

(Bard et al. 1990), and ice sheets were less extensive (Cuffey and Marshall 2000) than present. 

MIS 5e could thus serve as an analogue for future warming scenarios, highlighted in the Fifth 

IPCC Report (IPCC 2014) in the SGP region. We used our long-term, paleorainfall speleothem 

record to compare past rainfall variability during interglacial conditions to modern climate 

conditions to contribute to the body of knowledge that may aid climate modelers as they work to 

generate models on how SGP hydroclimate may vary under future conditions of climate change. 
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1.2 Research objectives 

Three temporally distinct stalagmite records from Cobbs Cavern in the central Texas are 

used in this project. The first, oldest record extends from 209 to 179 kyr BP, the second spans 

130 to 98 kyr BP while the youngest record is from the late Holocene and extends from ~3800 to 

350 yrs BP. The stalagmite isotopic records, complemented by a 2-year record of local rainfall 

analysis, are generally interpreted within the context of variations in climate, such that the 

speleothem oxygen isotopic composition reflects variations in precipitation. 

In Chapter 2, we identified what drives δ18O variability in Texas rainwater and determine 

if cave dripwater isotopic makeup reflects that of the local precipitation. We also worked to 

clarify modern hydroclimate dynamics of the SGP and the potential isotope effects that may 

influence δ18O variability in Texas precipitation, including the amount of rainfall, air 

temperature, altitude, continentality, seasonality, storm type, and global ice volume effects. In 

Chapter 3, we first ensured that our stalagmite calcite is reliably recording dripwater δ18O and 

ultimately rainwater δ18O values. We then investigated the potential controls on variability in the 

δ18O of our speleothem record and how this variability has changed throughout different 

temporal intervals over the last 209 kyr BP. Finally, we compared modern conditions (~350 yr 

BP) to past interglacial (MIS 5e) conditions in order to consider how rainfall variability may 

change in the region in response to predicted anthropogenic warming and calculated rises in 

Northern Hemisphere (NH) insolation. 
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CHAPTER II 

MODERN TEXAS RAINWATER AND CAVE DRIPWATER RECORDS 

 

2.1 Introduction 

Oxygen and hydrogen isotopes in water leave an identifiable signature on water mass 

movement, and can be used as natural tracers of the hydrologic cycle. Cave deposits, known as 

speleothems, can serve as recorders of past rainfall isotope variability because speleothem calcite 

δ18O values are controlled by dripwater δ18O under conditions of equilibrium deposition. 

Consequently, cave dripwater isotopic composition is a reflection of rainwater isotopic 

composition influenced by identifiable isotope effects. Clarifying the potential isotopic effects, 

including amount, temperature, seasonality, and continentality, that are at play in a particular 

region can help identify what drives local precipitation δ18O variability. In mid-latitudes such as 

the Southern Great Plains (SGP), the amount of precipitation in a particular rain event is a known 

driver of δ18O isotope variability in rainfall (Wong et al. 2015). This study seeks to further 

investigate drivers of δ18O variability in central Texas rainwater. 

Longitudinal stable isotope studies of rainfall are needed to constrain how the hydrologic 

system of the SGP has changed in the past. This data will reinforce paleoclimate interpretations 

by establishing a link between the modern and the past. Here we analyze ~2 years of collected 

rainfall data from Austin, Texas, a location that acts as a good analog for rainfall at the nearby 

Cobbs Cavern. Furthermore, this chapter complements the next chapter (“Late Pleistocene and 

Holocene Climate Inferred from Stable Isotopes in a Texas Stalagmite”), because rainwater 

percolates through the overlying karst area to ultimately form speleothem calcite, which then 

reflects the isotopic makeup of the precipitation (Lachniet 2009). Therefore, speleothem records 
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are an important paleoclimate archive that, when paired with a high-resolution time series, allow 

for the long-term reconstructions of hydroclimate variability. 

Our Austin rainfall and Cobbs Cavern dripwater data is used to interpret the climatological 

controls on variability in rainfall δ18O at the study site. By clarifying what drives δ18O variability 

in Texas and the greater SGP region rainfall, we can then provide a more detailed and robust 

interpretation of past SGP hydroclimate variability from our speleothem record. Elucidating past 

variability of rainfall patterns in this region of tremendous economic and agricultural importance 

will improve predictions of future extreme weather events in a changing climate. 

 

 

2.2 Background and setting 

2.2.1 Texas setting and hydroclimate 

 Both Cobbs Cavern and our Austin rainfall collection site are located on the Edwards 

Plateau in Central Texas, which forms the base of the SGP. The entire Great Plains region 

experiences a wide range of precipitation variability, with the southern half experiencing greater 

precipitation variability than the northern half of the Great Plains (Kunkel et al. 2013). In Texas, 

there is a general pattern of seasonality in rainfall amount despite a high degree of interannual 

rainfall variability. Likewise, Texas temperatures generally peak in the late summer months and 

are distinctly seasonal; peak precipitation occurs in late boreal spring (May) and fall (Sept to 

Oct) (Figure 2.1). 

Bimodal peaks in rainfall amount generally occur in rainy years, but are not typically 

observed in dry or drought years (Figure 2.2). In rainy years, rainwater soaks into the ground 

and eventually makes its way down into the karst system. The isotopic makeup of speleothems is 
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likely driven by rainy years in which large, organized storms including mesoscale convective 

systems (MCSs) and multicell line storms (squall lines) deliver the largest amounts of 

precipitation to the SGP. MCSs account for 30 to 70% of yearly warm season precipitation to the 

Great Plains region (Fritsch et al. 1986). 

Several mechanisms fuel convective system formation in the SGP. During spring and fall, 

cold dry air is pulled into central Texas by the polar jet stream, which can deliver fronts to the 

region (Figure 2.3). This dry air mass collides with humid Gulf of Mexico air, which is funneled 

onto land by the western arm of the Bermuda High system. This mixing of humid and dry air 

masses generates severe convective storms that release large amounts of rainfall onto the SGP 

region, with moisture derived from the Gulf of Mexico (Nativ and Riggio, 1990). A second 

mechanism is due to elevation-based differential cooling between the Rocky Mountains and the 

SGP, which leads to the formation of the Great Plain low-level jet (LLJ) from differences in 

pressure. Air is forced up in elevation during transit from the flat Great Plains region to the 

Rocky Mountains, resulting in decreased atmospheric stability and increased chances of surface 

convergence, which often results in MCS formation (Kumjian 2006). These mechanisms of 

storm generation result in peak precipitation amounts in late spring and early fall (Figure 2.1).   

In the summer, a strong, largely stationary mid and upper level anticyclone sits over the 

region, which reduces instability in the region and generally prevents rain events, except for the 

occasional tropical or subtropical disturbance. In Northern Hemisphere (NH) winter, humid air 

from the Gulf of Mexico is less pervasive and there is less precipitation. Year-round moisture 

comes from the Gulf of Mexico because a strong high-pressure area exists just west of the SGP, 

which, combined with the western border of the Rocky Mountains, prevents Pacific moisture 

from reaching the region (Elliot 1949). Furthermore, the lack of topographic barriers in the SGP 
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and a common source of SGP moisture from the Gulf of Mexico largely explain the similarity 

among SGP rainfall events (Nielsen-Gammon 2011) because air masses can easily travel through 

the SGP region. Thus, precipitation variability that occurs in south central Texas is highly 

correlated with rainfall variability that occurs in the broader SGP region. The spatial correlation 

of modern precipitation throughout the SGP suggests that our speleothem record will be a robust 

recorder of past hydroclimate variability for the entire SGP region. 

 

 
 
 

 

 

Figure 2.1.  Monthly Texas precipitation (blue bars) and temperature (red and blue points). 1939-2016 
monthly dataset from Camp Mabry in Austin, TX (Western Regional Climate Center 2017). 
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 A 

 
B 

 
Figure 2.2. Bimodal Texas rainfall. Monthly rainfall amount of the 5 driest years with no observable bimodal 
peaks (A) and 5 wettest years with observable peaks in late spring and fall (B) from the Camp Mabry 
precipitation dataset (Western Regional Climate Center, 2017). 
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2.2.2 Cobbs Cavern in central Texas  

 Cobbs Cavern, located in Williamson County Texas (Figure 2.4, 30.5° N, 97.75° W), 30 

miles north of Austin, is a part of the Balcones Escarpment on the Edwards Plateau, which forms 

the base of the Great Plains region. The Edwards Plateau is sandwiched between the Texas High 

Plains and ultimately the Rocky Mountains to the west, and the Mississippi River Valley to the 

east. At Cobbs Cavern, the water that infiltrates the cave and forms speleothems is primarily 

sourced from SGP rainwater that has soaked into the ground above the karst area rather than 

from regional groundwater. 

 

Figure 2.3. Southern Great Plains (SGP) climate schematic. The polar jet (blue) delivers cold, dry air 
masses to the SGP that lift humid air from the Gulf of Mexico (purple) to form convective storms. The Gulf 
of Mexico air is funneled onto land by the western branch of the Bermuda High. 
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2.2.3 Stable isotopes in rainwater and dripwater 

The stable isotopes of deuterium (D), oxygen-18 (18O) and oxygen-16 (16O) can be used 

to track water as it moves through the water cycle. The abundance of each isotope is measured 

and expressed relative to an established standard in per mil (‰) units. The original standard was 

called “standard mean ocean water,” or SMOW (Craig 1961) but has since been updated to 

Vienna SMOW (VSMOW). The ratio of stable water isotopes is denoted as δD for deuterium, 

the ratio of H2
16O to 2H2

16O, and δ18O for oxygen, the ratio of the heavier oxygen isotope (18O) 

to the lighter (16O). The most abundant oxygen isotope is 16O, which makes up 99.76% of all 

 

Figure 2.4. Location of study area. Cobbs Cavern shown in purple and Austin rainfall collection site in 
south central Texas. 
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stable oxygen isotopes; with a relative proportion of 0.2%, 18O is the second most abundant 

oxygen isotope followed by 17O at 0.04% (Bradley 2015). 17O is not useful for the purposes of 

this study and is thus left out of further discussion. With the hydrogen component, there are two 

stable isotopes. 1H is most abundant at 99.984% followed by 2H (deuterium) at 0.016% (Bradley 

2015). 

As water evaporates from a body of water, the vapor is more depleted in deuterium and 

18O (the heavier isotopes) than the water left behind, which is now relatively enriched in 

deuterium and 18O. Yet as this vapor condenses, the lower vapor pressure of the heavier isotopes 

means they will preferentially be converted from vapor to liquid state than H2O comprising the 

lighter isotopes; thus, relative to the vapor, the condensation will be enriched in deuterium and 

18O (Dansgaard 1961). This process continues such that repeated cooling will produce 

condensate with lower and lower heavy isotope concentrations than the initial concentrations. 

This is known as Rayleigh distillation (Dansgaard 1964). Therefore, mass differences due to 

potential combinations of oxygen and hydrogen isotopes result in distinct fractionation rates that 

can reveal clues about the history and origin of rainwater.  

 

2.2.4 Relevance of precipitation composition to speleothem science 

 To investigate what controls δ18O variability in our records, we must first determine what 

drives δ18O variability in Texas precipitation, which is the source of our cave dripwater. If 

speleothem calcite forms in isotopic equilibrium, its δ18O value likely reflects rainwater δ18O and 

cave temperature (Lachniet 2009). A range of factors can influence the δ18O of precipitation, 

including rainfall amount, air temperature, latitude, altitude, and seasonality of precipitation. Due 

to the range of factors that can influence the δ18O value of rainwater, a relationship between local 
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precipitation and same-day climate variables is needed to establish a strong paleoclimate 

interpretation of the record of interest.  

 A local meteoric water line (LMWL) is needed to determine vapor source origins and 

evaporative conditions for our site. The δ18O and δD values of global rainfall exhibit a linear 

correlation with an R2 greater than 0.95, known as the global meteoric water line (GMWL) 

(Craig 1961). The fractionation of these isotopes during phase changes follows the GMWL 

formula given by δD = 8 x δ18O + 10 (Craig 1961; Dansgaard 1964). In the GMWL equation, the 

slope expresses the ratio of equilibrium fractionation factors between 18O and 2H and varies by 

location. The y-intercept value (10) is known as the deuterium excess (d-excess) and is useful in 

determining what kinetic conditions may have been at play during evaporation that led to 

changes in the meteoric water line equation (Dansgaard 1964; Merlivat and Jouzel 1979). For 

example, under conditions of increased wind speeds or high relative humidity, both of which 

may increase evaporation rates, the kinetic effect is reduced and deuterium values of rainwater 

will decrease such that the y-intercept will deviate from 10 (Jouzel et al. 1982). Most influences 

on d-excess values involve the conditions present at the water vapor source and the phase change 

history of the water mass before it precipitates out (Clark and Fritz 1997; Froehlich et al. 2002). 

 

2.2.5 Potential controls on oxygen isotopic composition of rainwater  

To investigate what might control oxygen isotope variability in Texas rainwater, we analyzed 

~2 years of rainfall samples from Austin, Texas. In mid-latitudes such as our central Texas site, 

temperature and the amount of rainfall are generally considered the two main drivers of oxygen 

isotope variability in rainwater. Other potential drivers of δ18O variability could be altitude, 
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latitude, and seasonality of precipitation. On glacial-interglacial timescales, the δ18O value of the 

ocean, related to the global ice volume on the earth, could also exert control on rainfall δ18O. 

The so-called “amount effect”, in which increased precipitation totals in a particular storm 

correspond with more negative isotope values of rainwater, is generally observed in the tropics 

and sub-tropics, including Texas. The heavy isotopes are preferentially rained out before the 

lighter ones, and the incorporation of recycled, lighter water vapor from storm downdrafts 

contributes to a more negative isotopic value in large convective storm systems (Dansgaard 

1964; Lachniet 2009; Kurita 2013). Related to this effect is the phenomenon that the type of 

storm system that forms a particular rainfall event can also leave a fingerprint on its isotopic 

composition, such that stratiform clouds produce precipitation that is less depleted in δ18O than 

rainfall from a convective storm system (Gedzelman and Lawrence 1982; Gedzelman 1988). 

This signature results from the structure of an MCS in which depleted vapor becomes entrenched 

in a cycle of downdraft recycling, leading to continual isotopic depletion of this stratiform 

rainfall (Kurita 2013). 

A second dominant isotope effect at middle latitudes is the temperature effect, or the 

observed positive relationship between mean annual temperature (MAT) and the average δ18O 

rainfall value (Dansgaard 1964; Fricke and O’Neil 1999). Kim and O’Neil (1997) determined the 

equilibrium δ18O fractionation between water and calcite as a function of temperature, ranging 

from 0.18‰/°C at 35°C to 0.23‰/°C at 5°C. By combining the known temperature dependent 

fractionation gradient of oxygen isotope in calcite with seasonal δ18O temperature fluctuations, 

speleothem δ18O records from mid-latitude regions may reflect local paleo-temperature 

variations (Bar-Mathews et al. 1999; Lachniet 2008).  
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Other influences on rainfall δ18O values include altitude, latitude, and seasonality. The 

altitude effect is the observed decline in δ18O values with an increase in elevation, where 

decreased temperatures are a component of increased altitude (Rozanski et al. 1993; Clark and 

Fritz 1997; Lachniet 2009). As an air mass rises over an orographic barrier, condensation 

temperatures decrease and progressive Rayleigh distillation causes lighter isotopes to evaporate 

faster than heavier ones (Lachniet 2009). The continental, or latitude, effect explains the 

reduction in δ18O values with distance from the moisture source, the ocean (Dansgaard, 1964; 

Rozanski et al., 1993; Clark and Fritz, 1997). There exists a sustained depletion of δ18O as the 

amount of water vapor is reduced as an air mass travels over the continent. Heavier isotopes rain 

out as the mass moves inland, and from warmer to cooler conditions (Dansgaard 1964). The 

relative contributions of seasonal rainfall, combined with its place of origin, can also have a 

control on δ18O values (Wang et al. 2001; Lachniet 2009), but the isotopic signature of Texas 

precipitation will not deviate much seasonally because the Gulf of Mexico is the primary source 

of moisture throughout the year.  

On glacial-interglacial timescales, the δ18O value of the ocean has changed due to variations 

in the amount of ice present on the earth. Seawater δ18O increases as the amount of ice stored as 

continental ice sheets increases, because evaporation will preferentially remove the light isotopes 

(16O) into the vapor and leave behind the heavier isotopes (18O) in the ocean water (Lachniet 

2009). Thus, in glacial periods, more 16O is locked up in ice and the oceans become isotopically 

heavier (more positive) than during warmer periods with less continental ice. The glacial ocean 

δ18O composition may have been ~1.1‰ higher than modern (Labeyrie et al. 1987; Shackleton 

1987). 
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2.3 Methods 

2.3.1 Austin precipitation collection 

Beginning in April 2015, rainfall samples were collected from a residential area in North 

Austin, Texas. Rainfall was sampled at a daily resolution through an open top rain gauge. Date, 

sample precipitation amount (mm), and temperature (°C) on day of collection were recorded. To 

prevent and/or minimize evaporative loss, a thin film of mineral oil was placed inside the gauge. 

After each day with rain, water was transferred into a labeled bottle and stored in a freezer until 

isotopic analysis to minimize isotopic exchange between the water sample and the air after 

collection. Eighty-six Austin rainwater samples were collected and analyzed for δD and δ18O 

makeup on a Picarro A0211 High-Precision Vaporizer attached to a Picarro Li2120 cavity ring 

down spectrometer based on the liquid evaporator autosampling method established by Gupta et 

al. (2009). The autosampler injected 2µL water samples from glass vials fitted with silicon septa. 

The evaporator and analyzer were cleaned with dry gas and evacuated several times, while the 

needle was rinsed, to remove any contamination from previous samples. With the evaporator set 

at 140°C and under continuous vacuum, the water sample was vaporized within several seconds 

of injection and then combined with the nitrogen dry carrier gas, resulting in a homogenous 

mixture of water vapor isotopologues. This mixture equilibrated for 2 minutes and then flowed at 

a constant rate in the three-way valve to the instrument for isotopic measurements. After dilution 

from the evaporator, the 2µL water injection resulted in a ~20,000 ± 220 ppm pulse of water 

vapor at ~35 Torr throughout the analyses. The measurements taken during the flat pulse of the 

water sample concentration profile were measured and used to calculate oxygen and hydrogen 

isotopic ratios in the sample. Precisions are ±0.10‰ for δ18O values and ±0.50‰ for δD values, 

and sample results were calibrated relative to the international VSMOW standard (Craig 1961). 
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 Recorded rainfall amounts and temperature were confirmed with historical data from 

Wunderground’s local weather station at Quail Hollow, North Austin, Texas. Rainfall was 

sampled at a daily resolution, but some rain events occurred over more than one day. NOAA 

NCEI Radar Data Map was used to evaluate each recorded rain event. If a single rainfall event 

spanned more than one day based on historical radars from NCEI, isotope measurements from 

our data record were combined using amount-weighted averages such that each data point in our 

record represents a single rain event regardless of duration (n=61).  The isotopic values of 

rainwater were then compared to other same-day variables including the amount of rainfall in a 

particular storm and temperature to investigate controls on oxygen isotopic composition of Texas 

rainwater.  

 

2.3.2 Cobbs Cavern dripwater collection 

 During a February 2017 trip to Cobbs Cavern, three dripwater samples were taken from 

sites of active drips from the room of Cobbs Cavern where the stalagmite from this project, 

16CobbB2, was collected. A fourth dripwater sample was collected from a small cave lake in a 

room of the cave adjacent to the collection site room. Drip rates were recorded. Samples were 

collected in glass bottles and a crimper was used to seal the tops immediately upon collection to 

prevent isotopic exchange between dripwater and water vapor in Cobbs Cavern. The samples 

were stored in a refrigerator until analysis. Cave dripwater samples were analyzed for δD and 

δ18O makeup on a Picarro A0211 High-Precision Vaporizer attached to a Picarro Li2120 cavity 

ring down spectrometer. All water samples were measured relative to VSMOW standard and 

analyzed according to the Gupta et al. (2009) method described above. 
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2.3.3 Classification of Texas storms  

Because MCSs deliver a majority of precipitation to Texas, storm events producing 

rainfall for our collected samples were filtered by MCS versus non-MCS to investigate isotopic 

differences based on storm type. The date of each storm was recorded on day of collection, and 

used to search reflectivity radar data to determine the type of storm. Radar imagery from the 

NCEI National Reflectivity Radar was used due to its widespread availability and high-

resolution radar data (Figure 2.5).  

Each storm that produced a rainfall sample was classified as MSC or non-MCS based on 

the method set forth by Houze (1989). First, the area of continuous rainfall had to exceed 100 km 

in length. Second, the reflectivity values had to exceed 40 dbZ and convective activity must be 

present during formation of the storm system. Finally, after convective activity had been 

detected, there must have been stratiform precipitation with reflectivity values of at least 30 dBz 

(Houze et al. 1989; Smull and Houze 1985; Steiner et al. 1995; Houze 2004). The presence of a 

leading-line trailing stratiform structure is the most common, clear indicator of a mature MCS 

(Houze et al. 1990), although leading stratiform and parallel stratiform arrangements are also 

indicative of MCS formation (Parker and Johnson 2000). NOAA time-stamped upper air maps 

were used to investigate the presence of lines of divergence that are required to form an MCS 

when the NCEI radar imagery was not sufficient in determining MCS status. 

. 
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2.4 Results 

2.4.1 Isotope analysis  

Austin precipitation collected from April 2015 to March 2017 had an average δ18O of      

-4.0‰ ±2.7‰ with a range of 12.46‰ (Table 2.1). Rainfall δD values averaged -20.9‰ ±21.9‰ 

with a range of 106.8‰. During this two-year time interval, twenty-nine rain events from the 

dataset were classified as MCSs and delivered 1058mm of rainfall; the average MCS δ18O value 

was -4.6‰ ±2.2‰. Non-MCS precipitation, sourced from thirty-two rain events delivering 

 
 
Figure 2.5. Mesoscale convective system (MCS) storm classification. MCS storm identified using NOAA 
NCEI National Reflectivity Mosaic map. This MCS, developed through a trailing stratiform structure, 
occurred on May 19, 2016 and delivered 63mm of precipitation to our Austin collection site. 
 
 
 
 



 

 21 

985mm of rainfall, had an average δ18O value of -3.5‰ ±2.9. Cave dripwaters from four distinct 

sites inside Cobbs Cavern had an average δ18O value of –4.8‰ ±0.1‰ and δD values –29.5‰ 

±0.7‰, with a δ18O range less than 0.3‰ (Table 2.2).  Over the nine month cave temperature 

record, Cobbs Cavern maintained a steady 19.93°C (±0.03°C). D-excess values were also similar 

between precipitation and cave dripwater, as Austin precipitation d-excess averaged -11.3‰ 

±5.5‰ and cave dripwater 8.7‰ ±1.6‰. 

 

 

 

Date δ18O (‰) δD (‰) d-excess (‰) 

4/18/15 -8.51 -57.0 11.1 
4/24/15 -1.98 -7.5 8.3 
4/27/15 -1.04 -4.2 4.1 
5/5/15 -1.41 2.9 14.2 
5/8/15 -0.67 5.4 10.8 

5/11/15 -4.98 -28.9 10.9 
5/15/15 -1.43 -3.7 7.7 
5/17/15 -2.76 -15.2 6.9 
5/24/15 -5.51 -34.4 9.7 
5/25/15 -3.96 -20.2 11.5 
5/29/15 -4.50 -22.9 13.1 
6/14/15 -13.13 -94.7 10.3 
6/20/15 -3.25 -18.2 7.8 
6/27/15 -4.01 -22.6 9.5 
9/9/15 -2.03 -2.4 13.8 

10/23/15 -8.04 -50.8 13.5 
10/30/15 -6.86 -41.6 13.3 
11/17/15 -2.91 -10.5 12.8 
11/27/15 -2.27 -0.5 17.7 
12/13/15 -7.05 -45.3 11.1 
12/27/15 -3.39 -13.2 13.9 

1/2/16 -9.54 -83.0 -6.7 
1/6/16 -4.39 -11.6 23.5 

2/23/16 -8.14 -53.0 12.1 
3/8/16 -8.65 -54.8 14.4 

3/29/16 0.67 12.1 6.7 
4/1/16 -4.06 -22.6 9.9 

4/12/16 -2.90 -6.3 16.9 
4/16/16 -1.76 -1.0 13.1 

Table 2.1. Austin rainfall isotope value results. Rainfall collected from our residential site in North 
Austin, Texas from April 2015 to March 2017. 
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Date δ18O (‰) δD (‰) d-excess (‰) 

4/20/16 -4.12 -17.6 15.4 
4/21/16 -5.40 -30.5 12.7 
4/28/16 -2.25 -7.5 10.5 
4/30/16 -0.09 9.2 9.9 
5/12/16 -2.60 -5.2 15.6 
5/16/16 -2.49 -5.8 14.2 
5/17/16 -5.10 -33.5 7.3 
5/19/16 -6.45 -37.5 14.1 
5/27/16 -4.50 -27.2 8.8 
5/29/16 -2.20 -15.0 2.6 
5/30/16 -2.69 -32.7 -11.2 
6/1/16 -9.34 -62.2 12.5 

6/28/16 -3.02 -14.58 9.6 
7/25/16 -1.67 -2.40 11.0 
8/13/16 -5.18 -32.20 9.2 
8/20/16 -5.28 -31.40 10.8 
8/28/16 -3.69 -17.17 12.3 
9/10/16 0.05 1.23 0.9 
9/23/16 -1.77 -1.43 12.7 
9/24/16 -2.50 -13.90 6.1 
11/3/16 -4.03 -17.78 14.5 
11/6/16 -3.68 -14.01 15.5 
11/7/16 -4.61 -16.60 20.3 

11/22/16 -1.42 0.48 11.8 
12/4/16 -8.57 -55.80 12.8 
1/2/17 -5.33 -28.03 14.6 

1/13/17 -1.55 4.29 16.7 
1/15/17 -2.08 -2.09 14.5 
1/17/17 -3.55 -12.60 15.8 
2/19/17 -5.68 -31.42 14.0 
3/3/17 -2.77 -2.32 19.8 

3/10/17 -3.25 -13.22 12.7 
Average -4.02 -20.9 11.3 
Stnd dev. 2.7 -21.9 5.5 

    

Table 2.1 continued 
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2.4.2 Local Meteoric Water Line 

To evaluate moisture source origins and evaporative conditions of our cave dripwater and its 

relationship to local rainfall, a LMWL for Williamson County, Texas was constructed (Figure 

2.6). We found a significant linear correlation (R2=0.94) between the deuterium and oxygen 

isotope values. The constructed LMWL has a slope (7.93) and y-intercept (10.85) very close to 

those of the GMWL (8 and 10, respectively), which represents the average isotopic compositions 

of global precipitation. Global rainfall is sourced primarily from precipitation and evaporation 

that occurs over the open ocean. Dripwaters collected from Cobbs Cavern fall in the middle of 

the constructed central Texas LMWL. 

 
 
 
 
 
 
 
 
 
 
 

Table 2.2. Cobbs Cavern dripwater isotope value results. Cave dripwater collected from Cobbs Cavern in 
Williamson County, TX in February 2017. 
 

Sample δ18O (‰) δD (‰) d-excess (‰) 

Drip 1 -4.92 -28.86 10.5 
Drip 2 -4.66 -30.13 7.1 
Drip 3 -4.75 -30.16 7.8 
Pool -4.81 -28.90 9.5 

Average -4.78 -29.5 8.7 
Stnd. dev 0.1 0.7 1.5 
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2.4.3 Rainfall effects 

By comparing the oxygen isotopic composition of Austin rainwater samples to temperature 

on the day of collection, we investigated temperature as a driver of oxygen isotope variability in 

Texas rainwater. We found a weak, insignificant relationship (R2= 0.076) between temperature 

and rainwater δ18O (Figure 2.7), suggesting that temperature is not a significant control on 

oxygen isotope variability. The other major potential driver of oxygen isotope variability in mid-

latitude rainfall is the amount of precipitation. Here, we found a significant negative correlation 

(Figure 2.8, R2=0.273, p<0.0001) between amount of precipitation in a particular rain event and 

 

 
 
Figure 2.6. Central Texas local meteoric water line (solid blue line). Austin rainfall is plotted in light blue. 
Cobbs dripwater is plotted in dark blue. The global meteoric water line is plotted as the black dashed line.  
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the δ18O value of that rainfall, thus connecting more depleted rainfall δ18O values with increased 

precipitation totals. After classification of each storm providing a rainfall sample as MCS or non-

MCS, the negative correlation between the δ18O value and the amount of rainfall was 

strengthened in the dataset from MCS storms (Figure 2.9, R2 = 0.305, p<0.0001). 

Another important factor in the signature of rainfall is the d-excess value. Physical 

conditions at the site of evaporation of source water vapor, including relative humidity, sea 

surface temperature (SST), and air temperature, are the main determinants of d-excess values 

(Merlivat and Jouzel 1979). Using the radar imagery method described above, storms were 

classified as MCS versus non-MCS. In our Austin rainwater record from April 2015 to March 

2017, we found that MCSs were responsible for the majority (56%) of rainfall reaching the study 

site for the duration of the record.  

To further investigate the connection between storm type and isotopic composition of 

rainfall, we compared d-excess values of MCSs versus non-MCSs storms. We did not find a 

significant difference between d-excess values of MCSs and non-MCSs. However, d-excess 

values can also be used to identify vapor origins, and in our data d-excess values are comparable 

between rainwater and dripwater samples, which indicates the same source of origin for both 

dripwater and rainwater. For Austin rainwater, d-excess values average 11.3‰ (n=61, σ=5.5). In 

cave dripwaters, d-excess values averaged 8.7 (n=4, σ=1.5).  
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Figure 2.7. Austin rainfall oxygen isotopic composition versus temperature. Rainfall samples were 
collected from April 2015 to March 2017. 
 
 
 
 
 
 

 
Figure 2.8. Austin rainfall isotopic composition versus amount of rainfall. Rainfall samples were collected 
from April 2015 to March 2017.  
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2.5 Discussion 

2.5.1 Cobbs Cavern dripwaters on the Local Meteoric Water Line 

The constructed LMWL for Williamson County, Texas, is within reasonable error of the 

GMWL with cave dripwaters falling in the center of the LMWL, thereby indicating an open 

ocean source of moisture for both our Austin rainwater and Cobbs Cavern dripwaters. For central 

Texas and the SGP, this source is the Gulf of Mexico. Because cave lake stable isotopic values 

are indistinguishable from dripwater values in Cobbs Cavern, both drip and stagnant cave waters 

originate from local meteoric water.  

 

 
 
Figure 2.9. MCS-only Austin rainfall isotopic composition versus rainfall amount. Rainfall samples were 
collected from April 2015 to March 2017. 
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The LMWL further indicates that evaporative effects are not distorting the rain signal that 

is reaching Cobbs Cavern, and ultimately, the speleothem sample. If rainwater were undergoing 

evaporation prior to entering the cave, the isotope values would plot above the LMWL (Clark 

and Fritz 1997). Because the LMWL of Austin rainwater and cave dripwater has a slope 

approximating that of the GMWL, we have ruled out secondary evaporation effects that occur 

during rainfall, which is a phenomenon more common in regions of higher aridity (Clark and 

Fritz 1997).  

Cobbs Cavern is a relatively shallow cave. The rainwater that feeds into the cave likely 

maintains a small residence time in the epikarst. This leaves little room for evaporation, which, 

in combination with our LMWL results, indicates that central Texas precipitation does not 

undergo significant recycling of moisture on land. Furthermore, the relatively small variance in 

d-excess values of rainwater (n=61, σ=5.5) suggests that the source origin of Austin precipitation 

is similar, and consistently the Gulf of Mexico throughout the duration of our record (Rozanski 

et al. 1993). 

 

2.5.2 Lack of evidence for other isotope effects 

Cobbs Cavern has an elevation of ~300m above sea level, and our Austin rainfall 

collection site has an elevation ~450m. No major orographic barriers exist in the SGP region, so 

the altitude effect does not affect δ18O isotope variability in central Texas rainwater. 

Furthermore, because Austin is less than 200 miles from the Gulf of Mexico, water vapor does 

not travel far enough inland to the collection site such that the continental effect will only have a 

negligible impact on the δ18O of rainfall at our study site. This leaves temperature and amount as 

the two main drivers of isotope variability. Our analysis of Austin rainfall indicates a weak 
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relationship between temperature and rainfall δ18O, so temperature does not have a control on 

oxygen isotopic variability in Texas precipitation. Therefore, the major identifiable control on 

oxygen isotope variability in Texas rainwater, and ultimately, Cobbs Cavern dripwater, is the 

amount of rainfall reaching the cave.  

 

2.5.3 Dominant amount effect in Austin precipitation  

The amount effect is the observed phenomenon in which the isotopic values of tropical 

and sub-tropical rainfall become more negative with increased precipitation under modern 

climate conditions (Dansgaard 1964). This effect allows for paleorainfall reconstructions of 

speleothem isotope records from mid- and low-latitude regions (Wang et al. 2001; Cruz et al. 

2005; Partin et al. 2007; Cross et al. 2015). Our Austin rainfall data demonstrates a statistically 

significant amount effect. Previous rainfall analyses in central Texas have also documented the 

presence of a so-called amount effect in Texas precipitation (Wong et al. 2015). 

One of the mechanisms driving this amount effect is the type of storm system delivering 

the precipitation. During spring and fall in the SGP, multicell cluster storms, including MCSs, 

deliver large amounts of rainfall to the region. A substantial proportion of rainfall in tropical and 

warmer, mid-latitude regions are the result of MCSs (Houze 2004).  MCSs are the largest of 

convective storms and are most typically defined as cumulonimbus cloud systems that generate 

an area of precipitation covering more than 100 km2. In a system as organized as an MCS, 

surface vapor feeds the creation of a convective updraft; this vapor advects to the stratiform 

region of rainfall and precipitates out. If nearby air is unsaturated, evaporation of this rainfall 

may occur such that lighter isotopes preferentially undergo evaporation before the heavier 

isotopes. The vapor becomes depleted with respect to δ18O composition, and is funneled into the 
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downdraft where it cycles through this pattern of rainout, downdraft incorporation, and further 

isotopic depletion, resulting in MCS cycling as a crucial mechanism of the amount effect in 

isotope geochemistry (Kurita 2013). Kurita et al. (2011) also found that the most negative 

isotopic extremes in surface water vapor are correlated with maximum amounts of precipitation 

in MCS stratiform precipitation regions, thus providing more evidence correlating more depleted 

oxygen isotope values in rainwater with increased amounts of MCS-sourced rainfall.  

Our rainfall record demonstrates an enhanced amount effect in MCS precipitation. After 

classifying each storm from our dataset, we found a strong negative correlation between the 

amount of rainfall and that rainfall’s δ18O value. This indicates that storm structure, which is 

related to the amount of rain in a storm event, can influence the isotopic value of rainfall. Large, 

organized MCS storms likely contribute to the more depleted isotopic signal found in our Austin 

rainfall data. Therefore, in the speleothem record presented in Chapter 3, more negative δ18O 

values reflect increased precipitation due to climate conditions in which the polar jet delivers 

frequent cold fronts to the SGP, which function as lifting mechanisms for humid Gulf air and 

result in more intense, organized convective systems in the region and thus large amounts of 

precipitation. In other words, the “amount effect” in the speleothem record is fueled by the 

persistence of a climate regime encouraging formation of MCSs and overall wetter conditions. 

 

2.5.4 Proposed glacial vs. interglacial climate dynamics   

During excursions of global warming, planetary jet streams shift poleward as energy is 

transferred to the polar zones from heat accumulation and the decline of sea ice (Archer and 

Caldeira 2008). This results in temperature extremes that send cooler air to the middle latitudes, 

which ultimately encourages storm generation in mid-latitude regions (Screen et al. 2012). 
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Francis and Vavrus (2016) hypothesized that the reduced temperature gradient between polar and 

mid-latitude atmospheres causes the polar jet to adopt a more oscillatory path. Because the 

amplitude of planetary waves increases, their speed decreases, the flow becomes weakened and 

elongated, and more extreme weather occurs in mid-latitude regions (Francis and Vavrus 2016). 

Therefore, during periods of higher global temperatures, the polar jet stream shifts north and 

adopts an oscillatory pattern with slower waves of greater amplitude. 

Although there is little previous regional work on glacial-interglacial timescales 

investigating these climate dynamics, we propose a similar atmospheric mechanism for glacial 

versus interglacial periods. In warm interglacial periods in the SGP, such as MIS 5e, the amount 

effect is strengthened by the persistence of a climate pattern with conditions favorable for large, 

organized storm growth (Figure 2.10). As the temperature gradient between the high and middle 

latitudes is reduced, the polar jet stream moves northward and gains amplitude, thus delivering 

more frequent cold fronts to the SGP. These fronts then function as lifting mechanisms for humid 

Gulf of Mexico air, which is funneled onto the continent by the western branch of the Bermuda 

High. Increases in summer temperatures can intensify development of the Bermuda High 

(Betancourt et al. 1990), which further propels warm air from the Gulf of Mexico into the path of 

southerly cold fronts. This results in more frequent and intense convective storm system 

formations that release rainfall with more depleted oxygen isotopic compositions. During glacial 

times, we suggest that MCS activity is reduced because the polar jet is farther south and less 

oscillatory such that it does not flush as many frontal systems into the SGP (Figure 2.11). 

Furthermore, air coming from the Gulf of Mexico is less warm and holds less water vapor during 

glacial times. This lack of a penetrative polar jet combined with cooler Gulf air results in less 
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frequent MCS formation, and thus more sporadic, smaller rainfall events with less depleted 

oxygen isotopic compositions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2.10. Interglacial SGP climate schematic. Conditions of global warming encourage a northward shift 
of the polar jet. The polar jet adopts an elongated, more oscillatory pattern as the Arctic warms faster than 
the equatorial region, which reduces the temperature gradient between the polar and mid-latitude 
atmospheres. The polar jet is then positioned to deliver frequent cold fronts to the SGP, thus fueling uplift of 
warm, humid air from the Gulf of Mexico and resulting in more frequent mesoscale convective system 
formation. 
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2.6 Conclusions 

This two-year dataset of central Texas precipitation and Cobbs Cavern dripwaters 

illustrates that cave dripwater reflects the isotopic composition of rainfall in central Texas, which 

corresponds with rainfall variability in the broader SGP region. While there is no significant 

evidence for air temperature as a control on oxygen isotope variability in our rainfall dataset, 

there is a statistically significant relationship between the oxygen isotopic composition of a 

particular rain event and the amount of rainfall associated with that event. The remaining isotope 

effects are negligible, and we conclude that the chief driver of oxygen isotope variability in our 

central Texas rainwater is the amount of precipitation in a particular rain event. Furthermore, 

after classifying storm type, we found that the amount effect is more pronounced in organized 

 

 
Figure 2.11. Glacial SGP climate schematic Under a glacial climate regime, the severe temperature gradient 
between the polar and mid-latitude atmospheres forces the polar jet to maintain a constrained, less 
oscillatory path that does not penetrate into the SGP region. Air from the Gulf of Mexico is less warm and 
holds less water vapor, resulting in less convective storm activity in the region. 
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storm systems such as MCSs. More frequent and extreme convective system formation is likely 

attributed to a stronger, more penetrative polar jet that is intensified during warmer conditions. 

Our LMWL results suggest that central Texas rainfall does not undergo significant 

recycling of moisture on land, and that the Gulf of Mexico is our open ocean source of moisture 

throughout the year. The lack of significant variance in Austin rainwater d-excess values further 

suggests that the vapor source of precipitation and source vapor evaporative conditions are 

similar and consistent throughout the record (Rozanski et al. 1993). Barring any in-cave kinetic 

effects (discussed in Chapter Three), dripwater from Cobbs Cavern will be representative of 

meteoric water originating from the Gulf of Mexico. Based off our analysis of modern SGP 

rainfall, Austin precipitation data, and cave dripwater data, the speleothem record presented in 

Chapter Three will likely be a robust reconstruction of variability of rainfall amounts during 

rainy years and storm structure in the SGP. 
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CHAPTER III 

LATE PLEISTOCENE AND HOLOCENE CLIMATE INFERRED FROM STABLE 

ISOTOPES IN A TEXAS STALAGMITE 

 

3.1 Introduction  

In the US Southern Great Plains (SGP), the efficacy of water management strategies and, 

ultimately, the economic health of this agriculturally significant region, depends on a better 

understanding of how SGP hydroclimate may vary with future climate change.  Atmospheric 

concentrations of major greenhouse gases, including carbon dioxide, methane, and nitrous oxide, 

are higher now than they have been for the last 800,000 years (IPCC 2014). While global surface 

temperatures are expected to rise by 1.5 to 2°C by 2100, precipitation forecasts are less 

straightforward since rainfall variability will not be uniform across the globe (IPCC 2014). The 

IPCC RCP8.5 scenario forecasts increased precipitation amounts in high and low latitudes, but 

there is greater uncertainty surrounding the rainfall forecasts in mid-latitude and subtropical 

regions (IPCC 2014). According to RCP8.5, continental mid-latitude regions are expected to 

experience more intense and frequent extreme rainfall events (IPCC 2014). A better 

understanding of the mechanisms driving past rainfall variability and the influence of future 

climate scenarios on these mechanisms is needed to ensure water security into the future, 

especially in regions already experiencing water resource stress. 

One such region is the Great Plains region, which comprises roughly 70% farmland and/or 

rangeland, and depends heavily on precipitation alone for crop irrigation (Kunkel et al. 2013). 

While croplands in the western half of the SGP are mostly irrigated, their water resources–such 

as the Ogallala Aquifer–are being rapidly depleted (Rosenberg et al. 1999). This region’s 
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viability and success in crop production is highly sensitive to a range of climatic conditions 

including rainfall, temperature and heat stress, ozone levels, and severe weather events (Kunkel 

et al. 2013). Understanding the hydroclimate variability of this economically significant region 

will help policymakers devise more effective water management strategies and climate change 

mitigation plans.  

Although the instrumental climate record is useful in studying modern climate dynamics, 

it does little to contribute to understanding climatological variability beyond the last century and 

necessitates the use of paleoclimate records. Long-term records of regional hydrological 

variability allow for investigations into patterns of wet or dry periods that can be placed in the 

context of distinct global climate regimes such as glacial vs. interglacial periods. Marine and 

terrestrial paleoclimate archives are able to record these glacial-interglacial cycles. For example, 

ice cores recovered from Antarctica have trapped air bubbles for the past ~800 kyr; analysis of 

this air has revealed variations in CO2 that align with the past four ~100 kyr glacial-interglacial 

cycles (Petit et al. 1999). During glacials, the planet is colder, drier, and dustier, with more 

extensive ice sheets, than interglacial periods such as the most recent glacial period that occurred 

from 120 kyr to 11.5 kyr BP. The Holocene interglacial began thereafter and has lasted until 

present day.  

A time period of particular interest is the penultimate interglacial period, known as the 

Eemian interglacial, or Marine Isotope Stage (MIS) 5e. MIS 5e peaked around 125 kyr BP and 

had temperatures as much as 2°C warmer, (Shackleton 2002), sea level 4-6m higher (Bard et al. 

1990), and ice sheets smaller (Cuffey and Marshall 2000) than present day. MIS 5e thus has the 

potential to serve as an analogue for future planetary warming scenarios, but robust paleoclimate 

archives are needed to investigate climate conditions during this period.  
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Speleothems are a useful archive that allow for long term paleoclimate reconstructions 

based on their isotopic composition. These cave deposits record the isotopic footprint of rainfall 

as mineral-rich, meteoric water seeps into the karst system and drips to form stalactites and 

stalagmites. Recently, speleothems have been used for a variety of reconstructions ranging from 

temperature to rainfall amount in part because speleothem growth typically arises from closed 

system karst formations and speleothem samples are suitable for high-precision uranium-thorium 

(U/Th) disequilibrium dating (Shen et al. 2012). Therefore, generating a high-resolution time 

series in tandem with an oxygen isotope depth series sampled from a U/Th dated speleothem can 

allow for robust reconstructions of hydroclimate variability well beyond the Holocene. 

Studying past variability in the climate dynamics of glacial and interglacial periods will 

help elucidate what controls orbital configuration may have on the climate system. Stalagmite 

oxygen isotopic records from tropical and sub-tropical regions across the planet have 

demonstrated significant orbital signals that roughly align with variability in summer insolation 

(Wang et al. 2001; Wang et al. 2008; Cruz et al. 2005; Fleitmann et al. 2007). In some monsoon 

climates, Milankovitch forcing—primarily precessional cycles of ~23kyr—have a role in the 

intensity of rainfall. Records have indicated a robust correlation between summer insolation and 

summer monsoon intensity, as increased solar radiation builds stronger monsoons and may shift 

inland the position of the ITCZ during the summer season (Wang et al. 2001; Asmerom et al. 

2007; Cruz et al. 2005). However, this relationship remains ambiguous for much of the globe. 

More well-dated, long-term paleoclimate data, such as speleothem records, are needed to 

establish a clearer understanding of how variability in orbital geometry and insolation may 

influence the variability of rainfall throughout the planet. 
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Wang et al. (2001) generated a record correlating δ18O variability in Chinese stalagmite 

samples to the relative intensity of the summer East Asian Monsoon (EAM) over the last 75,000 

years. They found a link between EAM intensity and stadial-interstadial Dansgaard-Oeschger 

(D/O) cycles recorded in Greenland ice records (Dansgaard et al. 1993) to conclude that abrupt 

climate events caused by rapid changes in ocean and atmosphere patterns are hemispheric in 

scope and shift from more latitudinal patterns in stadials to longitudinal patterns in interstadials 

(Wang et al. 2001). Cheng et al. (2016) continued this work to more precisely constrain the 

timing of ice age boundaries using stalagmite samples from China.  In the U.S., Asmerom et al. 

(2010) generated a δ18O record from a New Mexico speleothem dated from 56 kyr to 11 kyr BP 

and found evidence of the Younger Dryas event and Heinrich Events. Wagner et al. (2010) used 

a speleothem record to demonstrate the prevalence of drier conditions in the U.S. Southwest 

during interstadial periods, and wetter conditions during stadials as established in the Greenland 

ice record. 

In Texas, the most prolific proxy data include tree rings, speleothems, and sediment 

records. Tree rings are an important climate archive to investigate drought history, but despite 

their potential for high-resolution reconstructions, tree ring records are limited to the past ~500 

years. Cleaveland et al. (2011) used bald cypress rings from central Texas to demonstrate the 

consistency of extended droughts in recent SGP climate.  Other tree ring work has been 

conducted in Texas, but have chronologies extending back fewer than 400 years (e.g. Stahle et 

al. 2016). Thus, while these climate archives help elucidate recent climate patterns, they do not 

contribute to a robust understanding of regional changes in mean state and forcing.  

Although speleothem work has been conducted in Texas and the SGP, previous Texas 

speleothem oxygen isotope records only cover discontinuous intervals–about 9 to 19,000 years 
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BP–in the Holocene (Wong et al. 2015; Feng et al. 2014). Feng et al. (2014) generated a record 

of the Last Glacial Maximum (LGM) and Bolling-Allerod warm period from a central Texas 

speleothem that demonstrated a 2‰ depletion in δ18O in Termination I. Comparison of U.S. 

Southwest speleothem records with a Texas record revealed variability in the source of moisture 

during deglacial times (Feng et al. 2014; Asmerom et al. 2010; Wagner et al. 2010). Wong et al. 

(2015) also generated a central Texas speleothem δ18O record for the Holocene but found no 

trend other than a roughly 1500-year 0.5‰ oscillatory pattern. Nevertheless, these records 

validate the potential for past rainfall reconstructions from dripwater δ18O recorded in carefully 

chosen Texas speleothem samples that have been screened for kinetic fractionation effects. 

 

3.1.2 Stable isotopes in speleothems 

The relevant stable isotopes of oxygen are 16O and 18O, and a mass spectrometer is used 

to measure the ratios of both isotopes relative to a standard. The result is reported in “delta” 

notation (δ18O) and the equation is as follows (Equation 1): 

 

 

 
For carbonate materials, such as speleothems, the reference standard is Pee Dee Belemnite (PDB, 

now “Vienna” PDB or VPDB) (Craig 1957). For water, the reference is Standard Mean Ocean 

Water (SMOW, now VSMOW) (Gonfiantini 1978). The δ measurement is reported in “per mil” 

(‰) notation, where the standards are given a value of 0.0‰. Changes in the ratio of 18O to 16O 

as therefore conveyed as differences compared to the standard reference materials; so, relatively 

lower δ18O values signify that the sample is depleted in 18O and thus isotopically “lighter”, 

whereas more positive δ18O values indicate that the sample is enriched in 18O and isotopically 
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“heavier” (Lachniet 2009). If speleothem carbonate is deposited under equilibrium conditions, its 

δ18O value can be correlated to the δ18O value of cave dripwater and the temperature of the cave 

because of its relationship to fractionation rates (Hendy 1971; Kim and O’Neil 1997). 

Although less studied than oxygen isotopes, speleothem δ13C values provide insight into 

vegetation cover in the region from which the speleothem grew (Dorale et al. 1998). Dripwater 

filters through the soil such that δ13C values in the soil reflect the relative concentration of C3 and 

C4 plants (Dorale et al. 1998). Trees and cool-season grasses comprise the C3 plant category; C4 

plants include warm-season grasses from tropical and temperature grasslands (Dorale et al. 

1998). The δ13C values of C3 plants, which are found in regions with low CO2 production or 

during the non-growing season, are less negative than the δ13C values of C4 plants (Dorale et al. 

1998; Sundqvist et al. 2007). Thus, carbon isotope signals recorded in speleothems can aid in 

reconstructions of the type of ecosystem and plant life at the time the speleothem formed. 

 

3.1.3 Speleothem formation and suitability for paleoclimate study 

As rain and groundwater absorbs CO2, it forms a weak carbonic acid (H2CO3). This acid 

eventually disassociates into a free hydrogen ion (H+) and bicarbonate (HCO3
-). This solution 

will dissolve CaCO3 as it encounters limestone (Equation 2). When the partial pressure of CO2 

in the solution exceeds the partial pressure of CO2 in a cave, some CO2 will escape from the 

solution and the resultant solution will be supersaturated in calcite (Hendy 1971). As the solution 

drips onto the cave ceiling or floor, it creates speleothems through calcite deposition (Equation 

3).  

  
H2CO3 + CaCO3 à Ca2+ + 2 HCO3

-  (2) 
  

Ca2+ + 2 HCO3
- à CaCO3 + H2O + CO2 (3) 
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Speleothem formations record isotopic signals in C and O in the precipitated CaCO3. A slow loss 

of CO2 from the precipitating calcite solution–hence, a slow precipitation of calcite–results in 

preservation of isotopic equilibrium of aqueous CO2 and bicarbonate ions during deposition so 

that variations in δ18O will be representative of past climate conditions (Hendy 1971). More 

specifically, hydrological variability as recorded by the δ18O of speleothems can be interpreted as 

a reconstruction of dripwater and, consequently, rainfall δ18O (Partin et al. 2008; Lachniet 2009).  

Although covariance between δ13C and δ18O in a sample was originally thought to 

illustrate the presence of kinetic effects (Hendy 1971), that covariance between oxygen and 

carbon can be attributable to climate fluctuations since δ13C values may reflect vegetation 

changes via soil CO2, atmospheric CO2, and carbonate bedrock (Dorale and Liu 2009). However, 

rapid degassing of CO2 prohibits the system from equilibrating isotopically during calcite 

deposition, which can result in fractionation of oxygen and carbon isotopes (Hendy 1971). A 

Replication Test can rule out kinetic effects in speleothems because if more than two 

speleothems from the same cave reveal similar isotopic profiles, fractionation effects must be 

absent or have disturbed distinct samples in the exact same manner, which is improbable (Dorale 

and Liu 2009). Understanding local and regional controls on rainfall δ18O values is crucial in 

generating a robust speleothem δ18O variation record (Lachniet 2009). Growth of speleothems 

generally results from closed system karst formations, so these cave deposits are able to be dated 

precisely using U/Th disequilibrium dating (Shen et al. 2012). By pairing a δ18O depth series 

with a high-resolution time series, speleothems permit long-term reconstructions of hydroclimate 

variability beyond the Holocene. 
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3.1.4 Uranium-thorium dating of speleothems 

Speleothems are accumulations of calcium carbonate that have precipitated from cave 

dripwaters. Uranium (U) is fairly soluble in natural waters, meaning that as a material such as 

calcite precipitates from these natural waters, it will contain small amounts of uranium. 

Conversely, thorium (Th) is not soluble in natural waters, so it is not included in the calcite 

lattice during speleothem formation. Because the 230Th activity upon CaCO3 formation 

approximates zero, the 230Th concentration increases with time as a decay of 234U. 234U maintains 

secular equilibrium with 238U, and the decay chain of U to Th can be used to date various 

calcareous materials based on the activity ratio of 230Th to 238U (Faure 1986). Uranium-series 

dating is distinct from other radiometric dating methods because it does not involve final 

measurement of a stable end-member decay product from the chain. Rather, U-series dating 

measures the degree to which secular equilibrium has been reached between the parent 

radioactive isotope, 234U, and the daughter radioactive isotope, 230Th, to calculate an age. 

To use this radiometric 230Th-238U method of dating, the initial 230Th/238U ratio must be 

very near zero, the sample must exist in a closed uranium system so that intermediate nuclides 

between 238U and 230Th do not disrupt the activity measurements for dating, and the initial 

activity ratio of 234U/238U should be known (Faure 1986). Calcite material up to 600,000 years 

old can be dated using this U/Th disequilibrium method (Dorale et al. 2004). This limitation 

results from a number of factors, including how well constrained the 230Th-234U ratio in a sample 

is, the half life of 230Th, and the accuracy of knowledge of 230Th and 234U half-lives (Dorale et al. 

2004). 
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3.1.5 Present Study 

Determining how rainfall variability has affected this region in past interstadial (warm, non-

glacial) periods is crucial to understanding how to predict future changes in the region’s rainfall. 

In the Great Plains region, there is significant model uncertainty in the sign and intensity of 

hydroclimate response to different scenarios of climate change (Cook et al. 2008; Kunkel et al. 

2013). The IPCC AR4 General Circulation Models (GCMs) generally forecast increased 

precipitation in the mid Great Plains region but reduced precipitation in the SGP by 2100 (IPCC 

2014; Cook et al. 2008). Although the Coupled Model Intercomparison Project phase 3 (CMIP3) 

models overall forecast a reduction in SGP rainfall, they disagree on the magnitude of rainfall 

changes depending on the emission scenario selected (Kunkel et al. 2013). In contrast, the North 

American Regional Climate Change Assessment Program (NARCCAP) produced rainfall 

analyses forecasting an increase in future SGP precipitation relative to the reference period 

selected (Kunkel et al. 2013). Model disagreement obstructs a clear forecast of rainfall and 

extreme weather projections in the SGP. 

Because few paleorainfall records exist from past interglacials on the North American 

continent, this project seeks to fill this paleoclimate data gap and add to the body of knowledge 

of SGP rainfall history. Ultimately, this may aid modelers in creating more accurate models of 

future precipitation variability to ensure the SGP’s sustainability as both an agriculturally 

productive and water-secure urban region. In this chapter we present three U-series dated 

speleothem oxygen and carbon records from an undisturbed cave in central Texas. We use the 

conclusions reached from our study on oxygen isotope variability in Texas precipitation in 

Chapter Two to ensure a robust reconstruction of the isotope geochemistry of our speleothem 

calcite. The U/Th dates indicate speleothem growth from 350 to 3800 years BP, from 98,000 to 
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130,000 years BP, and from 179,000 to 209,000 years BP. Therefore, we have isotope data from 

both the Late Holocene and the Late Pleistocene, including the penultimate interglacial period of 

MIS5e. We use the oxygen isotope record we generated to investigate what drives δ18O 

variability in our speleothem, and compare modern conditions (~350 yr BP) to past interglacial 

(MIS 5e) conditions in order to investigate how rainfall variability may shift in the SGP in 

response to calculated rises in Northern Hemisphere (NH) insolation and predicted 

anthropogenic warming scenarios. Our Texas speleothem records contribute to a clearer 

understanding of SGP hydroclimate variability on orbital timescales. 

 

 

3.2 Setting 

3.2.1 Southern Great Plains climatology 

The Great Plains region comprises a diversity of agricultural products including 

soybeans, cotton, corn, cattle, and hogs; these products are highly sensitive to climate extremes 

and water stress, and irrigation is already depleting regional aquifers (Kunkel et al. 2013). On 

average, the eastern half of the SGP receives more than 1800 mm (70in) each year, whereas the 

western half receives less than 300 mm (12 in) of annual rainfall (Basara et al. 2013). This 

variance in rainfall amount in a ~1000km wide region results in a diversity of temperature and 

precipitation patterns. Furthermore, this region frequently experiences extreme weather events, 

including tornadoes, flooding, and drought, with intensities and storm types that vary widely 

depending on location (Kunkel et al. 2013).  

Geographical and physical features of the region also contribute to the diversity of 

climates found in the Great Plains. The Rocky Mountain Range, the western border of the Great 
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Plains, prevents Pacific Ocean moisture from reaching this region; thus, the main source of 

moisture to the region, especially the southern half or the SGP region, is the Gulf of Mexico 

(Kunkel et al. 2013). A standing high-pressure system persists in the subtropical Atlantic Ocean 

and pulls warm air from the ocean into the SGP such that warm and humid conditions prevail for 

much of the year (Kunkel et al. 2013). When positioned sufficiently southward, the polar jet 

stream can bring cold fronts into the region; these fronts then act as lifting mechanisms for 

humid Gulf of Mexico air and often results in formation of convective systems. 

The low-level flow over the SGP region during spring and summer months often 

generates a nocturnal low-level jet (LLJ) with the Gulf of Mexico (GoM) serving as chief source 

of moisture to the SGP (Higgins et al. 1997). In the spring months, the Bermuda High leads to 

the formation of southerly winds that transport unstable, warm air from the GoM to the SGP (Mo 

et al. 2005; Tuttle and Davis 2006). Thus, distinct LLJ events, sometimes referred to as the Great 

Plains low-level jet (GPLLJ), form an atmospheric flow bringing summer precipitation to the 

SGP region (Cook et al. 2008). Mo et al. (2005) conducted a 23-year National Centers for 

Environmental Protection (NCEP) reanalysis (RR) that found that the zonal easterly Caribbean 

low-level jet (CALLJ) carries moisture from the Caribbean to the GoM and the meridional 

southerly GPLLJ moves moisture onward from the GoM to the Great Plains region.  

During years with an El Niño Southern Oscillation (ENSO), the LLJ teams up with an 

ENSO-induced standing trough over the SGP, resulting in an increased rainfall rate in the SGP 

(Wang et al. 2015). When the trough is directly west of the region, southwesterly flow and 

divergence above the SGP may result, leading to the creation of mesoscale convective systems 

(MCS) and heightened amounts of precipitation from GoM-sourced SGP moisture (Johns 1993; 

Houze 2004; Tuttle and Davis 2006; Barandiaran et al. 2013). When ENSO develops, it is 
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expected to increase the amount of precipitation in SGP during later spring months due to the 

presence of the regional LLJ. Anthropogenic warming in the form of increased SST from rising 

global temperatures has strengthened this connection (Wang et al. 2015).  

Furthermore, past extreme hydrologic events in the central U.S. have been linked to an 

increase in the number of GPLLJ developments as well as a strengthening of the southerly low-

level flow over the region (Cook et al. 2008). It is predicted that under current warming scenarios 

in the SGP, the GPLLJ will continue to strengthen as a result of intensified zonal geopotential 

height gradients throughout the region (Cook et al. 2008). Therefore, it is crucial to establish a 

better understanding of the connection between SGP atmospheric dynamics and extreme 

hydroclimate events. 

 
 

 

 
 
Figure 3.1. Southern Great Plains atmospheric diagram. General movement patterns of the subtropical jet 
(orange) and polar jet (blue). 
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3.2.2 Cobbs Cavern 

We collected the stalagmite sample (16CobbB2) from Cobbs Cavern in central Texas. 

Cobbs Cavern is located on a private conservation easement in Williamson County, Texas 

(Figure 3.2, 30.5° N, 97.75° W) about 30 miles north of Austin, Texas. Williamson County is 

nestled in the Edwards Plateau at the foot of the Great Plains with Cobbs Cavern sitting at the 

northernmost part of the Balcones Fault Zone. The Edwards Plateau of central Texas forms the 

southernmost part of the Great Plains. The Edwards Plateau is bordered by the Rolling Plains to 

the north and connects with the New Mexico and Texas High Plains in the west. The watershed 

of the Edwards Plateau drains into the Colorado, Guadalupe, San Antonio, and Nueces Rivers 

and their tributaries (Blum et al. 1994). Situated in the Edwards Plateau, the Balcones 

escarpment region is an example of a mature karst aquifer in the SGP. Over 3,000 caves and 

sinkholes have been identified in the Edwards Plateau, many of which, including Cobbs Cavern, 

have existed since the Pliocene (White et al. 2009). 

 Cobbs Cavern lies on the private property of the Lyda family trust’s 4-T Ranch and is one 

of the longest caves in Texas. This cave has limited surface expression. Access to the cave has 

been restricted with only the outermost half of the cave open to visitors from 1962 to 1970. With 

permission from the Lyda family trust and logistical assistance from the Williamson County 

Conservation Fund, Cambrian Environmental Consultants, and SWCA Environmental 

Consultants, we have amassed speleothem samples, collected cave dripwater samples to test for 

evaporative effects, recorded pCO2 values in the cave, and placed temperature loggers in Cobbs 

Cavern to monitor temperature fluctuations.  
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3.3 Methods 

3.3.1 Stalagmite collection and analysis 

For this speleothem project, a dormant calcite stalagmite (16CobbB2) was collected in 

June 2016 from Cobbs Cavern in the Texas Hill country. This columnar stalagmite sample 

measured 146.5 cm in total length (Figure 3.3). We recovered the sample in a room full of other 

dormant and actively dripping speleothems, where the sample had been growing deep in the 

undisturbed side of the cave. 

After collection, 16CobbB2 was sliced lengthwise with a rock saw. Each longitudinal 

slice of the stalagmite measured between 0.5 and 1 cm in thickness. Splitting the sample revealed 

 
 
Figure 3.2. Map of Cobbs Cavern and Austin rainfall collection site.  
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that 16CobbB2 had no visible detrital material along the growth axis in the calcite. The sample 

was then divided into six pieces, A through F, with A as the youngest and F the oldest. 

Eighteen subsamples of 16CobbB2 Pieces A, D, and E were drilled for U/Th chemistry 

and 230Th dating (Figure 3.4). Chemical separation and purification of uranium and thorium 

procedures were done according to methods described in Shen et al. (2002; 2003). U/Th isotopic 

measurements of calcite powder, ~60 mg each, were performed on a multicollection inductively 

coupled plasma mass spectrometer (MC-ICP-MS), Thermo-Fisher NEPTUNE, at the High-

Precision Mass Spectrometry and Environment Change Laboratory (HISPEC) in the Department 

of Geosciences, National Taiwan University (Shen et al. 2012). To correct for mass bias and 

determine U and Th contents and isotope makeup, a gravimetrically calibrated triple-spike, 

229Th-233U-236U, isotope dilution method was used (Shen et al. 2012). U/Th nuclide half-lives 

used for 230Th calculations of age are denoted in Cheng et al. (2013). U/Th isotopic errors and 

230Th uncertainties, relative to 1950 CE, are two standard deviation of the mean. 

A computer-controlled mill was used to drill and collect calcite powder along the growth 

axis of each piece. Milled calcite powder was labeled and stored in a plastic vial until analysis. 

Oxygen and carbon stable isotope analyses in calcium carbonate were performed by a Thermo 

Electron Kiel IV Carbonate Device connected to a dual inlet Thermo MAT 253 stable isotope 

ratio monitoring mass spectrometer at the Stable Isotope Geoscience Facility (SIGF) at Texas 

A&M University. Calcium carbonate samples, weighing between 40 and 80 µg, were reacted 

with nominally 103% phosphoric acid at 75°C for 7 minutes. The resultant isotope values were 

reported in delta notation relative to Vienna Peedee Belemnite (VPDB) standard for carbonates. 

Analytical precision was determined using an internal standard calibrated to NBS-19 and IAEA-

603, the isotopic reference material that measured in sample runs at a ratio of 3 standards to 20 
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unknown samples to track instrumental precision and accuracy. For the SIGF Kiel IV and MAT 

253, the long-term average precision of this standard is 0.06‰ (±1σ) for δ18O and 0.04‰ (±1σ) 

for δ13C.  

 

 

 
 
 
 
 
 
 
 

 
Figure 3.3. Entire stalagmite (16CobbB2). Top U/Th ages (years before 1950 AD) shown for each 
piece. 
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Figure 3.4. Stalagmite (16CobbB2) with dates and drill paths (dashed white lines). Pieces A, D, and 
E are shown, and identified hiatus dates are indicated in pink. 
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Table 3.1. U/Th isotopic ratios and 230Th ages of 16CobbB2 pieces D and E (Pleistocene). 
                

Piece 
Distance 
to base 
(mm)a 

238U (ppb)b 232Th (ppt) δ234U 
measuredb 

[230Th/238U] 
activityc 

230Th/232Th 
atomic 

 (x 10-4) 

Age (yr BP) 
relative to 1950 

AD 

D 9.75 261.71 ± 0.30 17.4 ± 7.2 75.2 ± 1.4 0.6542 ± 0.0013 162008 ± 66486 100631 ± 401 

D 72.25 205.9 ± 0.38 983.5 ± 7.9 46.5 ± 2.6 0.6672 ± 0.0025 2303 ± 20 109274 ± 865 

D 95.75 178.48 ± 0.41 7.6 ± 7.7 50.1 ± 3.2 0.6915 ± 0.0030 267424 ± 270028 115630 ± 1118 

D 103.75 336.23 ± 0.50 202.1 ± 6.8 63.2 ± 1.8 0.7144 ± 0.0021 19598 ± 662 119464 ± 746 

D 113.75 314.49 ± 0.45 304.2 ± 7.5 61.1 ± 2.1 0.7131 ± 0.0027 12157 ± 302 119536 ± 950 

D 125.75 275.72 ± 0.51 1044.1 ±7.7 66.9 ± 2.5 0.7206 ± 0.0027 3138 ± 25 120382 ± 987 

D 146.3 202.67 ± 0.45 198.0 ± 7.0 50.1 ± 3.2 0.7345 ± 0.0027 12397 ± 437 129036 ± 1244 

D 153.8 195.54 ± 0.35 146.4 ± 7.6 52.9 ± 1.9 0.7381 ± 0.0027 16257 ± 848 129501 ± 1027 

D 161.3 206.38 ± 0.39 1055.6 ± 7.5 63.7 ± 2.6 0.8021 ± 0.0031 2586 ± 20 149120 ± 1501 

D 166.4 321.37 ± 0.47 7.5 ± 7.5 69.5 ± 1.6 0.8656 ± 0.0028 613464 ± 613448 174572 ± 1573 

D 169.7 231.66 ± 0.49 29.2 ± 7.5 69.4 ± 2.7 0.8803 ± 0.0037 115213 ± 29603 181961 ± 2365 

D 268.2 160.64 ± 0.16 116.8 ± 6.4 67.3 ± 1.3 0.8766 ± 0.0019 19882 ± 1087 181091 ± 1198 

E 303.95 168.88 ± 0.29 1973.5 ± 8.6 69.2 ± 2.1 0.8792 ± 0.0031 1240.5 ± 6.6 181185 ± 1918 

E 450.95 153.16 ± 0.20 1.1 ± 6.9 59.4 ± 1.7 0.9128 ± 0.0025 
2050847 ± 
12675399 206858 ± 1998 

        Analytical errors are 2σ of the mean. 
    a Base given as the youngest edge of piece D 
    b[238U] = [235U] x 137.818 (±0.65‰) (Hiess et al., 2012); δ 234U = ([234U/238U]activity - 1) x 1000.  

 c[230Th/238U]activity = 1 - e-l230T + (δ 234Umeasured/1000)[l230/(l230 - l234)](1 - e-(l230 - l234) T), where T is the age. 
 

      Table 3.2. U/Th isotopic ratios and 230Th ages of 16CobbB2 piece A (Holocene). 
 

              

Piece 
Distance 
to base 
(mm)a 

238U (ppb)b 232Th (ppt) δ234U 
measuredb [230Th/238U] activityc 

230Th/232Th     
atomic        
(x 10-4) 

Age (yr 
BP) 

relative to 
1950 AD 

A 0.5 153.61 ± 0.27 16.8 ± 7.6 70.2 ± 2.0 0.00411 ± 0.00018 619 ± 279 350 ± 18 

A 99.5 167.17 ± 0.41 89.3 ± 7.2 83.1 ± 3.4 0.02178 ± 0.00032 672 ± 55 2,134 ± 34 

A 184.5 200.37 ± 0.41  281.3 ± 7.6 89.9 ± 2.6 0.03191± 0.00031 375 ± 11 3,138 ± 37 

A 246.5 218.56 ± 0.39 268.6 ± 7.6 86.8 ± 2.2 0.03878 ± 0.00026 520 ± 15 3,864 ± 32 

        Analytical errors are 2σ of the mean. 
    a Base given as the youngest edge of piece D 
    b[238U] = [235U] x 137.818 (±0.65‰) (Hiess et al., 2012); δ 234U = ([234U/238U]activity - 1) x 1000.  

 c[230Th/238U]activity = 1 - e-l230T + (δ 234Umeasured/1000)[l230/(l230 - l234)](1 - e-(l230 - l234) T), where T is the age. 
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3.3.2 Cave monitoring  

To gain a better understanding of the stability of the cave site, we placed HOBO 

temperature loggers in Cobb Cavern from April 2016 to November 2017. The first deployment 

starting in April 2016 included two loggers in different rooms of the ventilated side (“skylight 

cave”) of Cobbs Cavern. The loggers were recovered and new loggers placed in different 

positions in the unventilated side (“deep cave”) of Cobbs Cavern for the third deployment 

beginning in February 2017. This second set of loggers were placed in the room of the cave from 

which our sample, 16CobbB2, was collected. Each logger was attached to a stalagmite sample 

using zipties to keep it in place. At each trip to our cave site, we also recorded pCO2 values and 

collected dripwater samples with the results discussed in Chapter Two. 

 

 

3.4 Results 

3.4.1 Cave results 

Data from temperature loggers spanning April 2016 to February 2017 demonstrate a 

steady temperature in Cobbs Cavern (Figure 3.5). The Williamson County ambient air 

temperature fluctuates throughout the year with a range of roughly 34°C. August is generally 

Williamson County’s hottest month with an average temperature of 28.8°C; January is typically 

the coldest month with an average temperature of 8.8°C (NOAA NCEI). The cave temperature as 

recorded by the two temperature loggers is a steady 19°C throughout the year with a minimum 

temperature of 18.5°C and maximum of 21.1°C. This small temperature range is derived from 

data from the deep cave logger as well as the more ventilated skylight logger. The skylight 
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logger exhibits a greater degree of variance throughout the year but still approximates 19°C 

temperature year round. 

The mean temperature of our record for Cobbs Cavern is 19.9°C which approximates the 

mean annual temperature (MAT) of Williamson County of 19.3°C. Furthermore, pCO2 values in 

the poorly ventilated side of the cave range from 0.9% in January, to 1.5% in June, to 1.3% in 

November. High pCO2 values are generally found in caves with little to no ventilation (Gillieson 

1996). This reduces the pCO2 gradient between the cave atmosphere and the drip, which limits 

the likelihood of rapid degassing and favors calcite that is precipitated in isotopic equilibrium 

(Hendy 1971; Lachniet 2009). Together, these cave monitoring records indicate that Cobbs 

Cavern is providing a temperature-stable environment for the preservation of speleothems, with 

little outside influence. This is likely a result of the cave having little to no surface expression, 

and thus minimal interaction with the outside environment. 

 

 

 
Figure 3.5. Cobbs Cavern temperature record (pink and green lines). Data from April 2016 to November 2017 with 
outside air temperature of Williamson County, Texas (grey). Texas temperature data from Wunderground’s 
Georgetown Municipal Airport station. 
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3.4.2 Age models 

We obtained 18 high-precision U/Th dates (Table A-1) using a multicollector inductively 

coupled plasma mass spectrometry with age uncertainties of ±2%. These dates show that 

16CobbB2 grew continuously from 350 to 3800 yr BP, from 98 to 130 kyr BP, and from 179 to 

208 kyr BP. An age model for our speleothem sample (16CobbB2) was created by linear 

interpolating between U/Th dates.  Each U/Th age was used as the age model anchor point with 

the exception of the older Pleistocene record, which had overlapping U/Th ages. To ensure that 

our age model for this record demonstrated logical, linear growth, we used the outer boundaries 

of three U/Th ages (age uncertainty subtracted from the 181,961 age, and added to the 181,091 

and 181,185 ages) to approximate the most reasonable intervals of growth. We then calculated 

age models and growth rates for each record using all minimum, and all maximum growth rates 

to demonstrate that our average age models fall within reasonable error given the most extreme 

parameters. 

Based on the U/Th dates a growth hiatus was found at the ~150mm mark (piece D) along 

the primary growth axis. There was a clear visible change from translucent calcite to a darker, 

denser material. In our original age model (Figure 3.6), what is identified as a growth hiatus 

included three U/Th ages ranging from 130 to 179 kyr BP over ~11 mm of growth resulting in a 

growth rate below 1µm/year. In contrast the growth rates pre and post hiatus were 5 and 8 

µm/year. The 2 U/Th dates, 149,311 and 174,572 yr BP, associated with this hiatus or period of 

extremely slow growth were excluded from any age model development because we believe 

these 2 dates to have included calcite dust from before or after the hiatus; as a consequence, pre 

and post hiatus age models were developed. 
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The first Pleistocene age model, (Figure 3.7A), has dates ranging from 98 to 130 kyr BP. 

Eight U/Th ages were used to constrain this age model, with an average growth rate of 5 µm/yr. 

An age model with maximum age (U/Th age plus uncertainty) paramaters indicate a growth rate 

of 4.9 µm/yr, and minimum age paramaters indicate a rate of 5.3 µm/yr, supporting our 

calculated average growth rate of 5 µm/yr. 

The second Pleistocene age model, (Figure 3.7B), has dates ranging from 179 to 208 kyr 

BP. Four U/Th ages were used to constrain this age model, with an average growth rate of 8 

µm/yr. An age model with maximum age paramaters indicates a growth rate of 7.7 µm/yr, and 

minimum 10.9 µm/yr, thus supporting the calculated average growth rate of 8 µm/yr. 

The Late Holocene age model, (Figure 3.8), has dates ranging from 350 to 3800 yr BP. 

Four U/Th ages were used to constrain the age model, with an average growth rate of 70 µm/yr. 

Maximum U/Th ages indicate a growth rate of 72 µm/yr, and minimum age paramaters indicate 

a rate of 68 µm/yr, supporting our calculated average growth rate of 70 µm/yr.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3.6. Pleistocene U/Th age model (16CobbB2) with hiatus (purple). 
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Figure 3.7. Two-part Pleistocene U/Th age model. Pre-hiatus age model from 98 to 130 kyr BP shown in A, and post-hiatus 
age model from 179 to 209 shown in B. An assumption of linear growth underlies the models. 
 
 
 
 

 

 
 
Figure 3.8. Late Holocene U/Th age model. There is assumption of linear growth. 
 
 
 
 

A B 
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3.4.3 Oxygen isotopes 

No evidence for solution drilling and dissolution due to undersaturated caves waters was 

detected in 16CobbB2; these effects would have been observable as small holes borne into the 

top of the stalagmite due to dripwater with low pH (Lachniet 2009). The calcite is largely 

transparent, and appeared to have low abundances of visible detrital material. These preliminary 

conditions make the sample ideal for paleoclimate reconstruction work, though further 

investigations into fractionation concerns were conducted and are discussed later. 

We measured 1059 δ18O values along 70 cm of the 16CobbB2 growth axis, and excluded 

inclusion of data from the growth hiatus at the 150 mm mark on Piece D (Figures 3.9, 3.10, 

3.11). The average resolution of isotope measurements for 16CobbB2 is 100 yr/sample. The δ18O 

record has a range of 3‰, from -6.19‰ to -3.13‰ (Tables A-2, A-3). Combined with the U/Th 

chronology, our three records span continuous growth periods from 350 to 3800 yr BP, from 98 

to 130 kyr BP, and from 179 to 208 kyr BP.  

The Pleistocene δ18O values in 16CobbB2, with dates indicating growth from ~98 to 209 

kyr BP, range from –6.19‰ to –3.13‰ with an average of –4.85 ± 0.5‰ (1σ, n=790). The most 

pronounced fluctuations in the Pleistocene oxygen record from 16CobbB2 (Figure 3.12) include 

relative δ18O minima at 108, 128, 179, and 198 kyr BP, with the most negative absolute δ18O 

values at 108 and 128 kyr BP (-6.19‰ and -6.18‰, respectively). Observable δ18O relative 

maxima occur at 104, 129, 186, and 201 kyr BP, with the most positive absolute δ18O value at 

186 kyr BP (-3.13‰). The Holocene record has dates indicating growth from ~350 to 3800 yrs 

BP. The Late Holocene δ18O values in 16CobbB2 (Figure 3.13) range from –5.39‰ to –4.49‰, 

with an average of -4.92‰ ± 0.2‰ (1σ, n=232). 
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Figure 3.9. Piece A δ18O (blue) and δ13C (green) records versus depth (distance in mm). 0 is the top 
(youngest) of the piece. 
 
 
 
 
 

 
Figure 3.10. Piece D δ18O (blue) and δ13C (green) records versus depth (distance in mm). 0 is the top 
(youngest) of the piece, and the hiatus is highlighted in black. 
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Figure 3.11. Piece E δ18O (blue) and δ13C (green) records versus depth (distance in mm). 0 is the top 
(youngest) of the piece. 
 
 
 
 
 

 
 
Figure 3.12. Texas Pleistocene δ18O (blue) and δ13C (green) records with U/Th dates. Error bars shown in 
pink. 
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3.4.4 Carbon isotopes 

Following the same process as the oxygen record, we then measured 1059 δ13C values 

along 70 cm of the 16CobbB2 growth axis with an average resolution of 100 yr/sample (see 

Figures 3.9, 3.10, 3.11 above). Hiatus-related isotope measurements are excluded from 

discussion, and the average resolution of δ13C data is 100 yr/sample. The δ13C record has a larger 

range of 6‰, from -12.18‰ to -5.73‰. 

The Pleistocene δ13C values in 16CobbB2, with dates indicating growth from ~98 to 208 

kyr BP, range from –6.19‰ to –3.13‰ with an average of –4.85‰ ± 0.5‰ (1σ, n=790). The 

most pronounced fluctuations (see Figure 3.12 above) in the Pleistocene carbon record from 

16CobbB2 include relative δ13C minima at ~110, 120-127, 185, and 200 kyr BP, with the most 

 
Figure 3.13. Texas Holocene δ18O (blue) and δ13C (green) records with U/Th dates. Error bars shown in 
pink. 
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negative absolute δ18O values at 108 and 128 kyr BP (-6.19‰ and -6.18‰, respectively). 

Observable δ13C peaks in the Pleistocene record occur at ~100, 180, and 192 kyr BP. The Late 

Holocene δ13C values in 16CobbB2 (see Figure 3.13 above) range from –7.21‰ to –5.73‰ with 

an average of –6.53‰ ± 0.33‰ (1σ, n=232). The carbon isotope values in the Cobbs record 

generally do not align with fluctuations in the oxygen record. 

 

 

3.5 Discussion 

3.5.1 Fractionation  

Before interpreting δ18O values from 16CobbB2, it must first be established that the 

speleothem is reliably recording changes in the δ18O of cave dripwater. To do this, we must rule 

out kinetic effects that could be distorting the isotopic signal. To test for kinetic effects, we have 

plotted two different drill paths from piece D, with one path as a Hendy path, to assess 

intrasample reproducibility in the speleothem. In both paths, we find a reproducible, large per 

mil change in both the carbon and oxygen records (Figure 3.14). This indicates that isotope 

values are not changing with distance from the locus of deposition.  

We then analyzed carbon and oxygen covariation along the growth axis. Significant 

covariation between carbon and oxygen could be an indication of nonequilibrium deposition 

(Dorale and Liu 2009; Mickler et al. 2006). In our Pleistocene record, we find no significant 

covariation (R2=0.13, n=790, p=0.0001) between oxygen and carbon in our sample (Figure 

3.15). In our Holocene record, we also find no significant covariation (R2=0.08, n=232, 

p=0.0001) between oxygen and carbon in our sample (Figure 3.16). 
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Covariation between carbon and oxygen values is not necessarily indicative of 

fractionation. Factors driving variability in speleothem δ18O, in this case amount of rain, can also 

affect bioproductivity, which ultimately alters organic matter composition and δ13C values in the 

speleothem (Dorale and Liu 2009). However, this is not the case in 16CobbB2, as demonstrated 

by a clear lack of covariation between oxygen and carbon in both time periods. 

This evidence, combined with monitoring results from Cobbs Cavern indicating a stable 

cave environment, suggests that stalagmite 16CobbB2 formed under isotopic equilibrium 

conditions and that kinetic effect are not affecting our samples. Thus, stalagmite δ18O is reliably 

recording changes in rainfall δ18O. Based on our analysis of Austin rainfall, we interpret this as 

variability in the amount of precipitation reaching the SGP.  

 

 

 
 
 
 
 

     A              B 

 
 
Figure 3.14. Hendy paths. Reproducibility between paths in both the oxygen (A) and carbon (B) records as 
indication of equilibrium deposition. 
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Figure 3.15. Pleistocene oxygen and carbon covariation. Comparison of Texas stalagmite isotope values 
along the drill path to test for covariation. The younger half of the Pleistocene record is shown in shades 
of blue, and the older half in green. 
 
 
 
 
 
 

 

 
Figure 3.16. Holocene oxygen and carbon covariation. Comparison of Texas stalagmite isotope values 
along the drill path to test for covariation.  
. 
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3.5.2 Oxygen isotope interpretation 

During speleothem formation, temperature dependent fractionation of calcite and water, 

with a ratio of ~–0.20‰/°C (Kim and O’Neil 1997), and the isotopic signature of dripwater, 

drive δ18O variability in calcite (Fleitmann et al. 2003; Asmerom et al. 2007; Baker and Bradley 

2010). If temperature were the sole driver of δ18O variability in 16CobbB2, cave temperature 

would have to change by ~15°C based on the range of oxygen isotope variability of 3.06‰ over 

the course of the entire record encompassing the time periods 350 to 3800 yr BP, 99 kyr to 130 

kyr BP, and 179 kyr to 208 kyr BP. A 15°C shift in air temperature, even from glacial to 

interglacial periods, is not a plausible range of temperature change in the SGP, as estimates from 

coupled ocean-atmosphere simulations from the Paleoclimate Modeling Intercomparison Project 

(PMIP2) suggest the Last Glacial Maximum (LGM) was 2-5°C cooler than present (Braconnot et 

al. 2007). Tropical SST-based reconstructions of temperature variability during the LGM have 

shown a range of glacial cooling ranging from 1 to 5°C (Porter 2001; Waelbroeck et al. 2009). 

An oxygen isotope record from Atlantic corals off the coast of Barbados indicated LGM SSTs 

just shy of 5 °C cooler than present (Guilderson et al. 2001). Across the globe, a long-term 

paleotemperature speleothem record from Soreq Cave in Israel indicated LGM temperatures ~6 

to 7°C cooler than present (Affek et al. 2008). A continental paleotemperature record derived 

from atmospheric noble gas concentrations dissolved in radiocarbon-dated groundwater in 

northeastern Brazil suggested LGM temperatures ~5°C cooler than modern day temperatures 

(Stute et al. 1995), which is in agreement with temperature reconstructions reached by other 

South American pollen records and snow line reconstructions (Rind and Peteet 1985). Although 

these temperature reconstructions exhibit a high degree of variability, none come close to the 
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15°C difference needed to explain isotope variability in our speleothem record if it were 

interpreted entirely in terms of temperature. 

Monitoring efforts for Cobbs Cavern have demonstrated its stable temperature 

environment for growing calcite in isotopic equilibrium. Caves such as Cobbs Cavern, with no 

major surface expressions, generally maintain relative humidity levels near 100% (Poulson and 

White 1969). Therefore, the requisite ~15°C range is not reasonable given the year-round, steady 

temperature approximation of Williamson County MAT in Cobbs Cavern. 

A lack of isotopic covariation combined with reproducible Hendy paths led us to 

conclude that fractionation or kinetic effects are not interfering with equilibrium deposition of 

speleothem calcite. We also conclude that cave temperature is not the primary driver of 

stalagmite δ18O variability. Thus, we argue the primary control on Cobb speleothem δ18O 

variability is the δ18O value of dripwater, which we demonstrated in Chapter 2 as rainwater 

influenced by the “amount effect”.  

The temperature effect, or a direct correlation between MAT at the cave site and the 

average δ18O value of precipitation, is statistically insignificant at Cobb based on our rainfall 

data (Figure 2.7). This means that temperature is not a major control on isotope variability in 

central Texas rainwater. The altitude effect, in which a decrease in δ18O values occurs with an 

increase in altitude, is also negligible at our site because there are no orographic barriers near 

Cobbs Cavern. Furthermore, Cobbs is not far enough inland for the continental effect to be a 

major factor because the water does not travel far from the Gulf of Mexico to reach the cave site. 

The amount effect is the observable decrease in precipitation δ18O values as the amount of 

rainfall increases (Lachniet 2009). As demonstrated by our rainfall data, and previous central 
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Texas rainfall analyses (e.g. Wong et al. 2015), the so-called “amount effect” is a significant 

control on the rainwater δ18O, and ultimately, cave dripwater δ18O. 

Therefore, based on our complementary Austin rainfall data, we interpret more negative 

δ18O values in the speleothem as indicative of wetter conditions, likely resulting from the 

presence and persistence of multiple years of climate patterns conducive to the formation of 

large, organized convective systems. We interpret more positive δ18O values in the speleothem as 

indicative of drier conditions.  In our Texas stalagmite oxygen record (Figure 3.17), we find 

oxygen minimums coincident with the timing of MIS 5e, the Eemian interglacial. We find 

oxygen maximums coincident with MIS 5d, and MIS 6a, which marks the deglacial transition 

from MIS 6a to MIS 5e (Figure 3.17). 
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3.5.3 Carbon isotope interpretation 

Drivers of carbon isotope variability are less straightforward as speleothem carbon is 

sourced from either carbonate bedrock or CO2 derived from the soil and atmosphere. The 

proportion of carbon derived from soil versus atmosphere depends on vegetation density 

(Hellstrom et al. 1998) and soil respiration rates (Genty et al. 2003), whereby shallow and poorly 

 
 
Figure 3.17. Texas speleothem record. Stalagmite oxygen (blue) and carbon (green) records with U/Th ages and 
associated error bars (pink). Marine Isotope Stages are labeled MIS and differentiated by the purple and gold 
shading. Deuterium values from EPICA Dome C (gray) and the oxygen record of the Lisiecki-Raymo benthic 
stack (purple) are shown to put our Texas record in global context. 
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vegetated soils get more of their CO2 from the atmosphere (Cerling 1984, Frumkin et al. 2000). 

Thus, the proportion of host rock carbon can influence speleothem δ13C values (Hendy 1971; 

Fairchild et al. 2006). 

One of the main drivers of speleothem δ13C variability is the relative abundance of C3 

and C4 plants that exist above the karst area, which helps control the δ13C value of soil (Dorale et 

al. 1992; Fairchild et al. 2006). Differences in the chemical and physical composition of plants 

allow for plants to discriminate against carbon-13 during photosynthesis. This plant-specific 

preference for a particular carbon isotope is then used to differentiate among photosynthetic 

groups. C3 and C4 refer to the distinct photosynthetic pathway of a plant, such that C3 plants are 

not equipped with photosynthetic adaptations to reduce photorespiration, but C4 plants are. 

Because C4 plants are able to more efficiently capture CO2 at elevated leaf temperatures, these 

plants are typically more heat and drought tolerant. Their δ13C value is more positive than that of 

their C3 counterparts due to differing isotope preferences and processes of carboxylation 

(O’Leary 1988). Enrichment of 13C in calcite generally reflects a higher contribution of C4 plants 

to soil CO2 and thus the δ13C of speleothem calcite can reveal the relative distributions of plants 

with different photosynthetic pathways directly above the cave (Cerling et al. 1984; Dorale et al. 

1998). Warm season grasses such as crabgrass, as well as corn and sugarcane, fall under the C4 

photosynthetic pathway and are found in desert and subtropical regions (Ehleringer 1978; 

Hattersley 1983). In contrast, wetter conditions or increased moisture availability in a region 

generally result in a shift toward C3 vegetation, which consists of most temperate plants and all 

woody trees; this trend toward C3 vegetation leads to more negative speleothem δ13C values 

(Lloyd and Farquhar 1994). Consequently, C3 vegetation δ13C values are more negative than C4 

values (Smith and Epstein 1971; Cerling 1984).  
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Another major control on δ13C values in speleothems is vegetation biomass, which may 

be affected by temperature and precipitation (Genty et al. 2006). As previously discussed, the 

type of vegetation overlying the karst area can influence δ13C values, but so can the amount of 

biomass and thus biologic activity in the vicinity of the cave (Cruz et al. 2006). A pronounced 

decrease in speleothem δ13C values may reflect enhanced biologic CO2 production in the 

overlying soil due to warmer temperature and/or increased precipitation (Hellstrom et al. 1998). 

A speleothem record from western Australia exhibited more positive δ13C values during the 

LGM and early deglaciation, but a steep decline in δ13C values was coincident with the onset of 

interglacial conditions, which the authors interpreted to reflect increased plant density due to 

heavier rainfall periods during the early to mid Holocene (Denniston et al. 2013). 

Despite this seemingly straightforward δ13C signal of vegetation type and 

bioproductivity, complications may arise with secondary effects that can influence speleothem 

δ13C values. First, rapid degassing of CO2, whereby 12CO2 preferentially escapes from 

oversaturated waters, may result in elevated δ13C values of residual dissolved inorganic carbon 

(Hendy 1971, Mickler et al. 2004). Secondly, fractionation during precipitation, in which 

carbonate ions are incorporated into rapidly precipitating CaCO3 without equilibrium isotope 

exchange between solid CaCO3 and the solution, could also influence speleothem δ13C values. 

Finally, as the speleothem-building calcite solution makes its way through the flowpath in the 

unsaturated zone, it may equilibrate with lower PCO2 conditions, which results in a process 

known as prior calcite precipitation (PCP) (Fairchild et al. 2000). PCP is this process by which 

calcite precipitates from solution before deposition on the stalagmite and may increase δ13C 

values (Fairchild et al. 2000) Thus, elevated δ13C values could be caused by enhanced PCP in the 

karst flow path from slower flow rates in dry conditions, whereas wetter climates may reduce the 
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occurrence of PCP due to more constant recharge rates (Johnson et al. 2006; Denniston et al. 

2013). Temperate caves like Cobbs Cavern without a steep seasonal PCO2 gradient are less likely 

to form speleothems that have been influenced by the effects of PCP (Fairchild et al. 2000). 

In addition, cave ventilation rates may also distort speleothem δ13C values (Tremaine et 

al. 2011; Spötl et al. 2005). In caves where ventilation rates may fluctuate on a seasonal basis, 

interpretation of speleothem δ13C values must take into account this variability in ventilation. 

However, monitoring efforts at Cobbs Cavern have demonstrated that the cave maintains an even 

temperature and stable, high PCO2 environment throughout the year. We have documented no 

evidence for these in-cave kinetic effects at Cobbs Cavern, although their potential influences 

should be noted. 

Cobbs Cavern is located beneath a well-vegetated grassland, in which case speleothem 

δ13C most likely reflects carbon values from the soil. We interpret more negative δ13C values as 

indicative of wetter conditions, either through a trend toward a higher relative abundance of C3 

plants over C4 plants, or increased biologic CO2 productivity in the soil zone above the cave that 

result from warmer temperatures and/or increased precipitation (Hellstrom et al. 1998; Genty et 

al. 2006). A demonstrated lack of correlation between δ13C and the δ18O values (see Figures 3.15 

and 3.16), suggests that carbon isotope variability in the speleothem does not reflect the same 

precipitation variability recorded in the oxygen record. There is a lack of evidence for in-cave 

kinetic effects in 16CobbB2 that would contaminate the isotopic signal of the speleothem calcite. 

The roles of kinetic fractionation and PCP on speleothem δ13C values cannot be entirely 

eliminated, but are likely negligible in our stalagmite sample. Therefore, δ13C values in 

16CobbB2 are largely reflective of regional moisture availability via the amount or type of 

vegetative biomass that was present during speleothem formation, such that more negative 
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values reflect wetter conditions and more positive reflect drier conditions. A negative peak in our 

speleothem record coincides with MIS 5e, suggesting increased regional moisture availability, or 

a trend toward C3 vegetation, during this interglacial time.  

Although there is no conclusive interpretation of global speleothem δ13C values, previous 

speleothem work from similar humid continental regions has largely interpreted more negative 

δ13C values as an indicator of wetter conditions. A U/Th dated speleothem from West Virginia 

recorded a precipitous decline in calcite δ13C at ~122.7 kyr BP, which was interpreted as an 

abrupt increase in regional moisture availability coincident with the timing of MIS 5e (Springer 

et al. 2014). In Israel, a speleothem collected from Soreq Cave spanning 178 to 152 kyr BP, a 

largely glacial interval with a cold but humid Mediterranean climate where negative peaks in 

δ13C were also interpreted as indicative of increased moisture availability and CO2 sourced from 

C3 vegetation (Ayalon et al. 2002). A pollen core from central Texas indicated the presence of 

deciduous forest and thus wetter conditions from 3000 to 2000 yr BP, whereas after 2000 yr BP 

drier conditions ensued along with a shift toward C4 and savanna plants (Holloway et al. 1987). 

This work illustrates that vegetation shifts can occur relatively rapidly in central Texas as a result 

of changing climatic conditions and supports our interpretation of Cobbs δ13C values as 

reflective of changing moisture conditions in the SGP region. 

 

3.5.4 Ice volume correction  

Because variations in global ice volume affect the oxygen isotopic composition of ocean 

water and ultimately global water vapor, an ice volume correction was done for the Cobbs 

Cavern speleothem record by subtracting estimates of seawater δ18O values from speleothem 

δ18O values. In cold periods, such as the second half of the Pleistocene record, more seawater is 
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locked up in large continental ice sheets. Since the isotopically lighter 16O is preferentially 

incorporated into ice, the oceans become isotopically heavier (more positive) in oxygen during 

cold periods than they do during warmer periods with less global ice volume. To compensate for 

this, oxygen isotope values are shifted more negative according to the quantitative δ18O seawater 

dataset generated by Waelbroeck (2010) that established a robust regression between a relative 

sea level (RSL) curve and long-term benthic isotope records from the North Atlantic and 

Equatorial Pacific to generate a dataset of ocean δ18O history through the past 430 kyr. 

An ice volume correction was then applied to the Pleistocene record of 16CobbB2 

(Figure 3.18) by calculating a 95% confidence interval for the distribution of the means, using 

the runs test (Draper and Smith 1998) to calculate the actual degrees of freedom in the Cobbs 

isotope record. We found that the δ18O means of the raw versus the ice-corrected dataset are 

indistinguishable for the first half of the Pleistocene record (98 to 130 kyr BP), which 

encompasses the Eemian interglacial, a time of maximum insolation to the northern hemisphere. 

The ice volume correction does significantly change the δ18O means of the older half of the 

Pleistocene record (179 to 208 kyr BP), which encompasses major cold periods with substantial 

global ice volume such that the ice volume effect is expected to have a greater influence on δ18O 

values.  

Furthermore, the difference of means between the raw records of both Pleistocene 

records, 0.32‰, is equivalent to 1-2°C temperature change (Lachniet 2009) from glacial to 

interglacial periods. This temperature change is reasonable given other North American 

reconstructions and model simulations such as those from PMIP2 that find the LGM 2-5°C 

cooler than the modern (Rind and Peteet 1985; Stute et al. 1995; Braconnot et al. 2007). 

Consequently, an ice volume correction could result in canceling out a temperature effect that 
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may be real. We also note that the shifts toward more negative δ18O values in our speleothem 

record during interglacial times are not affected by the ice volume correction. Although the 

magnitude of the range of δ18O values changes with an ice volume correction, the frequency of 

peaks and troughs in δ18O values in our speleothem record does not change, and the timing and 

frequency of the peaks and troughs in δ18O values is the chief focus of our project. 

 
 
 
 

 
 
 
 

3.5.5 Orbitally driven variability 

Landmark paleoclimate work has identified variations in the earth’s orbital configuration 

as the main mechanisms driving Quaternary ice age succession (Hays et al. 1976; Imbrie and 

Imbrie 1980). To investigate this, we examined our record for orbital spectral powers. We found 

 
 
Figure 3.18. Ice volume correction of the speleothem record. Texas stalagmite raw oxygen record (dark blue) 
and ice-corrected record (turquoise) with distributions of each mean shown with error bars. Ice corrected 
values based on Waelbroeck et al. (2010) seawater δ18O reconstruction. 
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peaks (more negative values) in the δ18O at ~108 kyr and ~128 kyr BP in the younger half of the 

Pleistocene record, and peaks at approximately ~180 kyr and ~203 kyr in the older half of the 

Pleistocene record. These ~20 kyr and ~23 kyr frequencies roughly align with the frequency of 

an axial precession cycle. Therefore, to investigate the observed ~20-23 kyr cycle that appears in 

the Cobbs oxygen record, we compared the record with NH summer insolation at 30°N (Figure 

3.19).  

Precession, one of three Milankovitch orbital parameters governing the amount of the 

sun’s energy reaching the earth’s surface, is the result of a gyroscopic wobble of the earth on its 

axis primarily due to the gravitational pull of the sun and the moon on the earth. A complete 

precessional cycle generally takes 26,000 years. While undergoing this wobble, the orientation of 

the earth’s tilt changes relative to its plane of orbit around the sun, but the tilt itself is maintained 

at a relatively constant 23.4°. Precession is an especially significant orbital component in the 

low- and mid-latitudes, where it has been found to dominate climate responses to warming 

(Short et al. 1991; Kim and Crowley 1994).  

In monsoon climates globally, variations in solar intensity have been connected with 

rainfall intensity. Speleothem δ18O records from Hulu and Dongge Caves in China over the last 

160 kyr have demonstrated that variations in East Asian Monsoon (EAM) strength are connected 

to orbitally induced changes in insolation as EAM intensity concurrently changed with 

Greenland temperature reconstructions from GISP2 (Wang et al. 2001; Wang et al. 2005). 

Similarly, a Holocene speleothem δ18O record from Qunf Cave in Oman also suggested a direct 

relationship between monsoon precipitation variability and changes in NH summer insolation 

(Fleitmann et al. 2003). In northern Africa, coupled atmosphere-ocean climate model simulations 

showed increased tropical Atlantic SST in the summer as the amplitude of seasonal insolation 
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was increased in the mid Holocene (Kutzbach and Liu 1997). In the arid American Southwest, a 

Holocene speleothem δ18O record from New Mexico correlates periods of increased solar 

activity with reduced moisture to the region, which is the opposite trend to the Asian cave 

records, likely due to solar activity playing a role in moderating the El Niño–Southern 

Oscillation (ENSO) or Pacific Decadal Oscillation (PDO) (Asmerom et al. 2007). Nevertheless, 

this New Mexican speleothem record further strengthens the link between solar variability and 

moisture availability. 

Although Texas does not qualify as a monsoon climate, it nevertheless exhibits monsoon-

like qualities during rainy years, with peak precipitation amounts in late spring and fall (Figure 

2.1). Yet even in areas without a monsoon climate, solar variability has been hypothesized to be 

a driver speleothem isotopic variability due to its connection to increased rates of biologic 

activity in the soil (Frisia et al. 2003). Although the details governing orbital influences on earth 

processes remain unclear, solar variability undoubtedly maintains an important control on 

climate.   

When comparing the Cobbs oxygen record with summer insolation, we find that our 

oxygen record aligns with peak to trough timing of changes in NH insolation on glacial-

interglacial timescales. Minima in the δ18O record match maxima of precession-paced annual 

summer insolation at 30°N. This alignment suggests that one of the drivers of large changes in 

our oxygen record, and thus wetter versus drier periods in the SGP, is NH insolation. Therefore, 

our Pleistocene Texas speleothem record agrees with conclusions reached by other major 

speleothem records in that variability in NH insolation exerts some degree of control on large 

changes in rainfall intensity. 
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3.5.6 MIS 5e – The Eemian 

MIS 5e, also known as The Eemian Interglacial, was the penultimate interglacial period. 

During this time, temperatures were as much as 2°C warmer, (Shackleton 2002), sea level 4-6m 

higher (Bard et al. 1990), and ice sheets less extensive (Cuffey and Marshall 2000) than modern 

day. The orbital position of the earth was such that NH summer heating was greater than present 

(Berger and Loutre 1991). This indicates that MIS 5e may serve as a potential analogue for 

future warming scenarios. 

 
 
Figure 3.19. Orbitally driven rainfall variability. Texas stalagmite oxygen record (blue) with U/Th ages (pink) and 
northern hemisphere summer insolation at 30°N (black). Glacial terminations are noted. More negative δ18O are 
interpreted as indicative of wetter conditions, and more positive values drier. 
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To examine the moisture conditions of the modern versus those of MIS 5e, we compared 

the 3500 years of MIS 5e with the most negative δ18O values in our oxygen record to our 3500 

years of data from the late Holocene (Figure 3.20). Here it is important to note that the ice 

volume correction, mentioned above, did not significantly alter Cobbs δ18O during MIS 5e and 

that is why we use the raw δ18O record here. A 2x standard error distribution of the mean was 

calculated, using the runs test (Draper and Smith 1998) to estimate degrees of freedom. The 

calculated distributions of the means from our 3500 years of data in the late Holocene and 3500 

years from the height of MIS 5e do not overlap, indicating a significant difference between the 

mean δ18O values of MIS 5e versus our late Holocene data. Furthermore, because the average 

δ18O value of MIS 5e (-5.66‰) is significantly more negative than the average value of the late 

Holocene data (-4.91‰), we suggest that MIS 5e was a wetter time period with more frequent, 

more intense, and/or more organized convective storm systems in the SGP than the late 

Holocene.  

Although little hydroclimate work extending as far back as MIS 5e has been done in the 

SGP, modern model scenarios and reanalyses of historical weather data (e.g. Lorenz and 

DeWeaver 2007; Archer and Caldeira 2008) provide evidence for a northward shift of the polar 

jet stream in response to global warming, such as during peak interglacial conditions similar to 

those in MIS 5e. Previous paleoclimate work in North America further supports this conclusion, 

such as the work of Asmerom et al. (2010) in which the authors use a New Mexican speleothem 

δ18O record to conclude that temperature changes in the northern hemisphere result in latitudinal 

displacement of the polar jet stream and the ITCZ, which indicates a more arid North American 

Southwest in response to warming. However, moisture conditions in the US Southwest are 

generally out of phase with those in the SGP region due to the path of the jet stream and the 
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difference in moisture origin, which is the Pacific Ocean for the southwestern US but the Gulf of 

Mexico for the SGP. Nevertheless, a potential mechanism driving increased SGP rainfall during 

MIS 5e, and a probable explanation for more negative MIS 5e δ18O values relative to the 

modern, is a shift of the polar jet stream such that it was situated more directly over the SGP 

region during MIS 5e than its Holocene position. 

Shifts in this upper level jet, which delivers synoptic support for thunderstorm formation, 

could also affect the extent of the GPLLJ, which is responsible for sustaining synoptic lift in the 

SGP, and therefore deliver greater amounts of precipitation through the formation of MSCs in 

the SGP region (Wang et al. 2013; Barandarian et al. 2013). Increased regional low-level 

moisture advection by the GPLLJ has been suggested as a driving force for simulated modern 

rainfall increases in the central US (Cook et al. 2008). The intensification of jet formation, 

sustained at length, is hypothesized as the mechanism responsible for the 1993 Midwest floods 

(Arritt et al. 1997). An unusually strong jet in the SGP region, associated with increased rates of 

precipitation and flood events (Cook et al. 2008), could be related to the northward shift of the 

polar jet stream and thus responsible in part for greater amounts of rainfall during the warm MIS 

5e period in the SGP. 

Another potential mechanism to explain increased rainfall during warm events is 

enhanced zonal gradients over the SGP that could be due increased regional temperatures. In 

central North America, horizontal geopotential height gradients shift from predominantly 

meridional to largely zonal as the Bermuda high shifts farther west during the warmer months 

(Cook et al. 2008). This further strengthens the jet, resulting in increased rates of precipitation, 

likely through more organized storm system formation, in the central US. During warm MIS 5e, 
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enhanced zonal gradients over the SGP may have strengthened the jet and resulted in an 

anomalously wet period in the region. 

Although the lack of concurrent paleoclimate reconstructions precludes us from deriving 

a robust conclusion to explain a wetter MIS 5e than present, previous evidence of shifts in the 

polar jet and changes in geopotential height gradients during warm periods suggest these factors 

could be at play in delivering greater amounts of precipitation to the SGP region. MIS 5e 

interglacial conditions likely led to intensification of the GPLLJ and/or a latitudinal shift of the 

polar jet stream, which resulted in less moisture delivery to the US Southwest (Asmerom et al. 

2010) but greater moisture delivery to the SGP.  

 
 
 

 

 
 
Figure 3.20. Moisture conditions in MIS 5e versus the modern. The 3500 wettest years of the Texas 
stalagmite record for MIS 5e (purple) compared with the 3500 years of data for the late Holocene (green). 
Distributions of the means are shaded in the appropriate color and each denoted with an error bar. 
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3.6 Conclusions 

This speleothem record contributes to a clearer understanding of large-scale rainfall patterns 

in the SGP region. There is little to no evidence for kinetic effects or fractionation in our 

speleothem, leading us to conclude that the stalagmite likely formed under conditions of isotopic 

equilibrium. Dripwater δ18O thus serves as a true reconstruction of rainwater δ18O. Variability in 

amount of rainfall is the primary control on δ18O variability in Cobbs Cavern calcite. 

Controls on the carbon record are less straightforward than oxygen. We cannot totally rule 

out PCP or kinetic effects. However, we suggest that a combination of biologic factors such as 

vegetation type overlying the karst area and soil bioproductivity are important drivers of δ13C 

variability in the speleothem.  

Our central Texas stalagmite δ18O records SGP hydrologic response to a changing climate. 

We suggest that interglacials correspond to wetter conditions in the SGP, likely due to increased 

water vapor penetrating into the SGP as well as polar jet movement such that it delivers more 

cold fronts to the region, which act as lifting mechanisms for warm Gulf of Mexico air and result 

in more persistent, frequent, and intense convective storm activity. Furthermore, the δ18O 

variability roughly follows maximum insolation at 30°N from 98-130 kyr BP and 179-208 kyr 

BP. This suggests NH insolation as a potential driver of large changes in our oxygen record, and 

thus, regional large-scale rainfall variability. After comparison of past interglacial with modern 

(late Holocene) data, we find our record provides evidence for increased precipitation under past 

warming conditions. If we assume that rainfall variability will continue to follow NH insolation, 

then with the calculated future rise in insolation, combined with predicted anthropogenic 

warming, we suggest a wetter SGP into the future. 
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CHAPTER IV 

 CONCLUSIONS 

 

4.1 Rainfall research conclusions 

In Chapter 2, we demonstrated that the isotopic composition of dripwater from Cobbs 

Cavern is reflective of the isotopic composition of central Texas rainwater, sourced from the 

Gulf of Mexico, influenced by isotope effects. By comparing our Austin rainwater δ18O data to 

other same-day variables, we found a statistically significant relationship connecting the amount 

of precipitation to the δ18O of that precipitation. More negative rainwater δ18O values were 

indicative of increased precipitation totals, forming a relationship that was strengthened when 

storms were identified as mesoscale convective systems (MCSs).  

Comparing our rainwater δ18O dataset to air temperature on the day of collection revealed 

no significant relationship between the two, thus providing no support for central Texas 

temperature as a major driver of oxygen isotope variability in regional rainwater. The remaining 

isotope effects, including continentality, altitude, and ice volume, are negligible, and we 

conclude that the chief driver of oxygen isotope variability in our central Texas rainwater is the 

amount of precipitation in a particular rain event. After classifying storm type from our collected 

Austin rainfall, we found that the amount effect is more pronounced in organized storm systems 

such as MCSs.  

Our local meteoric water line (LMWL) results indicate that the Gulf of Mexico is the 

year-round open ocean source of moisture and that central Texas precipitation does not 

experience significant recycling of moisture on land. We found a lack of variance in Austin 

rainwater d-excess values, which further suggests that the vapor source of our rainfall, and 
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evaporative conditions at that source, are similar and consistent throughout the record. We 

conclude that dripwater from Cobbs Cavern will be representative of meteoric rainwater 

originating from the Gulf of Mexico.  

 

4.2 Speleothem research conclusions 

 Our long-term, paleorainfall speleothem record presented in Chapter 3 contributes to a 

better understanding of the mechanisms driving large-scale rainfall variability in the SGP. We 

found no evidence of isotope fractionation during calcite formation, which, combined with stable 

cave temperature and pCO2 records, led us to conclude that the stalagmite 16CobbB2 likely 

formed under conditions of isotopic equilibrium. Our conclusions from Chapter 2, with these in-

cave results, indicated that δ18O in cave dripwater thus serves as a direct reflection of rainwater 

δ18O, which we interpreted as variability in the amount of rainfall reaching the SGP region. This 

relationship is made stronger when the storm delivering the rainfall is an organized MCS. 

Because we cannot fully exclude the potential for prior calcite precipitation or kinetic 

effects in our speleothem, nor can we use rainwater records as a carbon proxy, controls on the 

carbon record are less straightforward than they are for the oxygen record. Given limited carbon 

data resources, we suggest that a combination of biologic factors including vegetation type 

overlying the karst area (e.g., C3 versus C4 photosynthetic pathways), and soil bioproductivity, 

are important drivers of δ13C variability in the speleothem such that more negative δ13C values 

are indicative of generally wetter conditions. A negative peak in our speleothem record coincides 

with MIS 5e, suggesting increased regional moisture availability, or a trend toward C3 

vegetation, during this interglacial time.  
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Our central Texas stalagmite δ18O records regional hydroclimate response to a changing 

climate. Based on our speleothem-based oxygen isotope record, we conclude that interglacials 

correspond to wetter conditions in the SGP, and glacials to drier conditions. Our speleothem 

δ18O variability follows maximum insolation at 30°N from 98-130 kyr BP and 179-209 kyr BP, 

which indicates Northern Hemisphere (NH) insolation as a probable driver of large changes in 

our oxygen record, and ultimately, regional large-scale rainfall variability. By comparing MIS 5e 

(penultimate interglacial) with modern (late Holocene) data, we found that our record provides 

evidence for increased precipitation regimes, perhaps through more frequent and/or organized 

MCS storms, under past warming conditions. With the calculated future rise in insolation and 

predicted anthropogenic warming, our results indicate a wetter SGP into the future if rainfall 

variability continues to follow the NH insolation curve. 
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Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

0.5 350 1153 7102 -6.54 -4.97

1.5 368.02 1092 5439 -6.48 -4.77

2.5 386.04 1231 4288 -6.59 -4.88

3.5 404.06 1173 4268 -6.64 -4.95

4.5 422.08 911 4081 -6.24 -4.88

5.5 440.1 943 4658 -6.35 -4.73

6.5 458.12 924 4388 -6.45 -4.84

7.5 476.14 938 4656 -6.46 -4.84

8.5 494.16 1014 5530 -6.39 -4.77

9.5 512.18 955 4974 -6.27 -4.80

10.5 530.2 1002 5982 -6.09 -4.88

11.5 548.22 1053 7359 -6.04 -4.72

12.5 566.24 936 4480 -5.89 -4.89

13.5 584.26 1021 6540 -5.91 -4.93

14.5 602.28 1024 6552 -5.94 -5.10

15.5 620.3 987 5503 -5.84 -5.05

16.5 638.32 816 2872 -5.75 -4.92

17.5 656.34 973 5230 -5.89 -5.39

18.5 674.36 1043 6421 -5.73 -5.19

19.5 692.38 997 5846 -5.92 -5.11

20.5 710.4 985 5497 -6.06 -5.12

21.5 728.42 1038 6863 -6.01 -5.07

22.5 746.44 1007 6122 -6.21 -5.15

23.5 764.46 1053 7406 -6.27 -5.20

24.5 782.48 982 5371 -6.23 -5.01

25.5 800.5 899 3835 -6.22 -4.84

26.5 818.52 1104 6720 -6.49 -4.97

27.5 836.54 1048 6149 -6.62 -5.05

28.5 854.56 987 4331 -6.61 -5.06

29.5 872.58 1048 7019 -6.68 -5.04

30.5 890.6 1016 6118 -6.65 -5.07

31.5 908.62 999 5707 -6.57 -4.95

32.5 926.64 1043 7343 -6.62 -4.96

33.5 944.66 1009 6821 -6.73 -4.88

34.5 962.68 943 5167 -6.78 -4.84

35.5 980.7 970 5773 -6.69 -4.97

Table A-2. Holocene oxygen and carbon isotopic ratios of 16CobbB2, measured on Kiel IV, MAT 253 carbonate 
device.
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 Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

36.5 998.72 1012 5724 -6.72 -4.94

37.5 1016.74 1002 6715 -6.64 -4.97

38.5 1034.76 997 6306 -6.72 -5.27

39.5 1052.78 997 6489 -6.42 -4.86

40.5 1070.8 990 3787 -6.63 -4.87

41.5 1088.82 1058 4836 -6.60 -4.99

42.5 1106.84 1134 6360 -6.60 -5.09

43.5 1124.86 1187 7330 -6.55 -5.01

44.5 1142.88 1058 4797 -6.53 -4.89

45.5 1160.9 1104 4680 -6.65 -4.86

46.5 1178.92 1041 4467 -6.68 -4.90

47.5 1196.94 1136 5545 -5.88 -2.46

48.5 1214.96 1090 5138 -6.67 -4.64

49.5 1232.98 977 3556 -6.35 -4.36

50.5 1251 1175 7415 -6.60 -4.62

51.5 1269.02 1082 5251 -6.85 -4.81

52.5 1287.04 1104 5754 -6.78 -4.86

53.5 1305.06 970 3565 -6.69 -4.88

54.5 1323.08 1026 4291 -6.56 -4.94

55.5 1341.1 1212 6868 -6.48 -4.97

56.5 1359.12 1151 6369 -6.50 -5.04

57.5 1377.14 1202 5824 -6.53 -5.13

58.5 1395.16 1190 5797 -6.48 -5.24

59.5 1413.18 1109 5860 -6.44 -5.07

60.5 1431.2 1212 5869 -6.50 -5.23

61.5 1449.22 1107 5795 -6.33 -5.03

62.5 1467.24 1195 5870 -6.41 -4.85

63.5 1485.26 1134 5815 -6.30 -4.80

64.5 1503.28 1175 4805 -6.34 -4.90

65.5 1521.3 1151 4858 -6.29 -4.98

66.5 1539.32 1209 5753 -6.45 -5.06

67.5 1557.34 1029 4250 -6.33 -4.95

68.5 1575.36 1148 5268 -6.55 -4.90

69.5 1593.38 1092 5761 -6.44 -4.84

70.5 1611.4 1007 5849 -6.47 -4.90

71.5 1629.42 1034 5791 -6.70 -4.89

72.5 1647.44 1051 6620 -6.80 -4.79

73.5 1665.46 929 4542 -6.73 -4.63

74.5 1683.48 1073 5540 -6.86 -4.57

75.5 1701.5 995 6183 -6.78 -4.68

76.5 1719.52 1056 6595 -6.91 -4.74

Table A-2 continued. 
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Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

77.5 1737.54 960 5192 -6.86 -4.67

78.5 1755.56 1014 5443 -6.79 -4.74

79.5 1773.58 1158 7245 -6.76 -4.82

80.5 1791.6 1170 7410 -6.92 -4.90

81.5 1809.62 1175 7460 -6.71 -4.84

82.5 1827.64 1178 7473 -6.80 -4.81

83.5 1845.66 1161 7425 -6.75 -4.82

84.5 1863.68 1178 7302 -6.70 -4.70

85.5 1881.7 1112 6138 -6.59 -4.94

86.5 1899.72 1163 4336 -6.55 -4.87

87.5 1917.74 1168 7387 -6.42 -4.85

88.5 1935.76 1078 5441 -6.45 -4.79

89.5 1953.78 1009 4288 -6.41 -4.89

90.5 1971.8 1131 6657 -6.33 -4.77

91.5 1989.82 1139 6871 -6.31 -4.91

92.5 2007.84 1056 4989 -6.36 -4.88

93.5 2025.86 1048 4822 -6.42 -4.87

94.5 2043.88 1097 5894 -6.41 -4.77

95.5 2061.9 1187 7384 -6.36 -4.89

96.5 2079.92 1183 5944 -6.19 -4.68

97.5 2097.94 1197 7457 -6.30 -4.82

98.5 2115.96 1183 7457 -6.16 -4.78

99.5 2134 1168 7398 -6.36 -4.84

100.5 2145.81 1226 7483 -6.39 -4.86

101.5 2157.62 1187 7419 -6.49 -4.92

102.5 2169.43 1229 7419 -6.51 -4.93

103.5 2181.24 1175 7419 -6.39 -4.86

104.5 2193.05 1075 5419 -6.34 -4.79

105.5 2204.86 1195 4299 -6.40 -4.64

106.5 2216.67 1060 5152 -6.41 -4.55

107.5 2228.48 1151 6716 -6.49 -4.73

108.5 2240.29 1178 7069 -6.47 -4.83

109.5 2252.1 1085 5600 -6.34 -4.93

110.5 2263.91 1134 6907 -6.17 -4.77

111.5 2275.72 1207 7070 -6.08 -4.76

112.5 2287.53 1046 4947 -5.84 -4.53

113.5 2299.34 1095 5927 -6.02 -4.70

114.5 2311.15 1095 5796 -5.99 -4.92

115.5 2322.96 1034 4747 -6.08 -5.10

116.5 2334.77 1161 7066 -6.23 -5.19

117.5 2346.58 1217 7022 -6.33 -5.13

Table A-2 continued. 
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Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

118.5 2358.39 1180 7047 -6.24 -4.95

119.5 2370.2 1021 6018 -6.16 -4.71

120.5 2382.01 995 5470 -5.85 -4.49

121.5 2393.82 1148 7110 -6.25 -4.85

122.5 2405.63 1143 7126 -6.23 -4.83

123.5 2417.44 1141 7051 -6.35 -4.84

124.5 2429.25 1156 7114 -6.36 -4.93

125.5 2441.06 1114 5913 -6.25 -4.78

126.5 2452.87 992 5194 -6.11 -4.69

127.5 2464.68 1009 5704 -6.26 -4.85

128.5 2476.49 1024 6024 -5.94 -4.61

129.5 2488.3 1134 7112 -6.07 -4.66

130.5 2500.11 1185 7067 -5.97 -4.72

131.5 2511.92 1048 6572 -5.83 -4.57

132.5 2523.73 1087 7075 -5.97 -4.61

133.5 2535.54 1070 7026 -6.11 -4.64

134.5 2547.35 1085 5716 -6.15 -4.62

135.5 2559.16 1060 6548 -6.22 -4.68

136.5 2570.97 1163 5862 -6.32 -4.78

137.5 2582.78 1085 7121 -6.32 -4.84

138.5 2594.59 1097 7058 -6.38 -4.89

139.5 2606.4 1151 7159 -6.59 -5.01

140.5 2618.21 1048 6194 -6.53 -4.85

141.5 2630.02 1068 6667 -6.67 -4.89

142.5 2641.83 1161 7067 -6.63 -4.89

143.5 2653.64 1148 5767 -6.55 -5.00

144.5 2665.45 1075 5751 -6.46 -4.87

145.5 2677.26 1170 5705 -6.67 -4.99

146.5 2689.07 1126 6712 -6.39 -4.68

147.5 2700.88 1038 5749 -6.49 -4.92

148.5 2712.69 990 4949 -6.49 -5.02

149.5 2724.5 1100 7089 -6.53 -4.99

150.5 2736.31 1053 6087 -6.56 -4.92

151.5 2748.12 1131 7079 -6.47 -4.91

152.5 2759.93 1146 7094 -6.26 -4.85

153.5 2771.74 1139 7139 -6.35 -4.97

154.5 2783.55 1195 7076 -6.41 -4.96

155.5 2795.36 1187 7064 -6.53 -5.11

156.5 2807.17 1143 5905 -6.40 -4.91

157.5 2818.98 1156 7146 -7.12 -5.30

158.5 2830.79 997 4986 -7.05 -5.38

TableA-2 continued. 



 

 101 

 

 

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

159.5 2842.6 995 5921 -6.24 -4.77

160.5 2854.41 1038 6906 -6.31 -4.82

161.5 2866.22 1056 7083 -6.34 -4.87

162.5 2878.03 968 5256 -6.35 -4.97

163.5 2889.84 1119 7117 -6.37 -5.18

164.5 2901.65 1053 7081 -6.37 -5.10

165.5 2913.46 1046 5895 -6.46 -5.23

166.5 2925.27 997 5872 -6.52 -5.29

167.5 2937.08 438 952

168.5 2948.89 604 1663

169.5 2960.7 1143 6992 -6.49 -4.96

170.5 2972.51 1143 6812 -6.58 -4.96

171.5 2984.32 1136 7109 -6.39 -4.91

172.5 2996.13 1082 7133 -6.23 -4.85

173.5 3007.94 995 5773 -6.20 -4.78

174.5 3019.75 1129 7070 -6.26 -4.80

175.5 3031.56 1146 5974 -6.57 -4.92

176.5 3043.37 953 5066 -6.52 -4.82

177.5 3055.18 1080 7061 -6.58 -4.97

178.5 3066.99 1029 6532 -6.43 -5.07

179.5 3078.8 1043 7071 -6.45 -4.89

180.5 3090.61 1109 7123 -6.61 -4.95

181.5 3102.42 1024 6421 -6.50 -4.59

182.5 3114.23 1129 5925 -6.30 -4.64

183.5 3126.04 1136 5742 -6.42 -4.77

184.5 3138 1109 5924 -6.64 -4.94

185.5 3149.71 1117 7012 -6.79 -5.04

186.5 3161.42 1134 6532 -6.83 -4.80

187.5 3173.13 384 770

188.5 3184.84 711 2312

189.5 3196.55 931 4748 -6.90 -4.76

190.5 3208.26 1102 7124 -6.97 -4.68

191.5 3219.97 1070 7131 -7.04 -4.83

192.5 3231.68 1065 7149 -7.09 -4.86

193.5 3243.39 1100 7080 -6.83 -4.70

194.5 3255.1 1143 7159 -6.95 -4.84

195.5 3266.81 1090 7056 -7.14 -5.13

196.5 3278.52 963 5261 -7.10 -5.14

197.5 3290.23 1134 7126 -7.19 -5.23

198.5 3301.94 1070 7117 -7.08 -5.21

199.5 3313.65 816 3043 -6.78 -4.84

Table A-2 continued. 
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Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

200.5 3325.36 1139 6686 -6.85 -5.00

201.5 3337.07 975 4390 -6.84 -5.03

202.5 3348.78 1100 5948 -6.63 -4.85

203.5 3360.49 999 4547 -6.85 -4.93

204.5 3372.2 1087 5365 -7.02 -4.94

205.5 3383.91 929 3642 -7.00 -4.89

206.5 3395.62 1112 4754 -6.89 -4.86

207.5 3407.33 1121 5843 -6.81 -4.76

208.5 3419.04 1085 5698 -6.91 -4.77

209.5 3430.75 1009 4728 -6.97 -4.89

210.5 3442.46 1012 4802 -7.14 -4.80

211.5 3454.17 970 4230 -7.04 -4.78

212.5 3465.88 965 4196 -7.06 -4.73

213.5 3477.59 933 3819 -7.01 -4.93

214.5 3489.3 1043 5401 -7.05 -5.03

215.5 3501.01 1065 5072 -6.95 -5.15

216.5 3512.72 1068 4805 -7.08 -5.28

217.5 3524.43 1170 4910 -6.98 -5.09

218.5 3536.14

219.5 3547.85 1046 5833 -6.81 -5.24

220.5 3559.56 1053 6832 -6.73 -5.11

221.5 3571.27 965 4859 -6.85 -5.24

222.5 3582.98 1012 5702 -6.88 -5.10

223.5 3594.69 1056 6735 -6.91 -5.03

224.5 3606.4 1114 7092 -6.81 -4.79

225.5 3618.11 1075 7079 -6.79 -4.87

226.5 3629.82 992 5670 -6.78 -5.05

227.5 3641.53 1024 6301 -6.68 -4.94

228.5 3653.24 1026 6819 -7.02 -5.19

229.5 3664.95 1102 7130 -7.13 -5.30

230.5 3676.66 1021 6663 -6.97 -5.06

231.5 3688.37 1131 7147 -6.94 -4.90

232.5 3700.08 943 4265 -7.00 -5.02

233.5 3711.79 1134 7107 -7.14 -5.22

234.5 3723.5 995 5611 -7.21 -5.33

235.5 3735.21 948 4560 -7.02 -5.27

236.5 3746.92 1156 6013 -6.94 -5.08

237.5 3758.63 1195 7120 -7.10 -5.16

238.5 3770.34 995 4852 -7.13 -5.12

a ±1σ instrumental uncertainty of ±0.04 ‰ for δ13C for normal-sized (1800 mV to 9000 mV m44 measurement sample 
b ±1σ instrumental uncertainty of ±0.06 ‰ for δ18O using method above

Table A-2 continued. 
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

0.25 99317.264 1070 5908 -8.36 -4.34
0.75 99386.408 1214 4554 -8.26 -4.35
1.25 99455.552 1214 4518 -8.28 -4.46
1.75 99524.696 1131 7098 -8.52 -4.45
2.25 99593.84 1029 5025 -8.72 -4.55
2.75 99662.984 826 2734 -8.16 -4.39
3.25 99732.128 1329 7328 -7.93 -4.61
3.75 99801.272 1207 4297 -7.78 -4.68
4.25 99870.416 1143 6838 -7.99 -4.49
4.75 99939.56 1197 6298 -7.97 -4.44
5.25 100008.704 1124 6886 -7.97 -4.50
5.75 100077.848 1231 4800 -7.92 -4.66
6.25 100146.992 1036 5112 -8.02 -4.75
6.75 100216.136 1148 7349 -7.88 -4.58
7.25 100285.28 1349 7365 -7.80 -4.52
7.75 100354.424 1136 7174 -7.90 -4.50
8.25 100423.568 1060 5506 -7.93 -4.46
8.75 100492.712 1224 4609 -7.98 -4.65
9.25 100561.856 1297 6245 -7.82 -4.55
9.75 100631 1224 4502 -7.77 -4.48

10.25 100700.144 1295 6286 -7.71 -4.44
10.75 100769.288 1263 5385 -8.01 -4.65
11.25 100838.432 1297 6469 -8.24 -4.72
11.75 100907.576 1261 5379 -8.23 -4.64
12.25 100976.72 1341 7392 -8.19 -4.57
12.75 101045.864 1234 4807 -8.27 -4.57
13.25 101115.008 1178 5984 -8.33 -4.46
13.75 101184.152 1295 6224 -8.34 -4.71
14.25 101253.296 1302 6570 -8.42 -4.86
14.75 101322.44 946 3860 -8.30 -4.75
15.25 101391.584 1314 6568 -8.24 -4.78
15.75 101460.728 1336 6215 -8.25 -4.62
16.25 101529.872 1075 5645 -8.23 -4.53
16.75 101599.016 1231 4784 -8.50 -4.84
17.25 101668.16 1185 7333 -8.35 -4.68
17.75 101737.304
18.25 101806.448 1097 6116 -8.28 -4.52
18.75 101875.592 1310 6734 -8.25 -4.47
19.25 101944.736 1275 5639 -8.20 -4.46
19.75 102013.88 999 4529 -8.17 -4.38
20.25 102083.024 992 4595 -8.31 -4.35
20.75 102152.168 1187 7370 -8.38 -4.40
21.25 102221.312 811 2603 -8.32 -4.51
21.75 102290.456 1258 5387 -8.21 -4.35
22.25 102359.6 970 4234 -7.87 -2.95
22.75 102428.744 963 4067 -8.50 -4.38
23.25 102497.888 758 2222 -8.41 -4.34
23.75 102567.032 1041 5139 -8.45 -4.55
24.25 102636.176 1024 4902 -8.48 -4.65
24.75 102705.32 1112 6311 -8.53 -4.68

Table A-3. Combined Pleistocene oxygen and carbon isotopic ratios of 16CobbB2, measured on Kiel IV, 
MAT 253 carbonate device. Horizontal bar indicates growth hiatus.
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

25.25 102774.464 951 3973 -8.45 -4.83
25.75 102843.608 1205 4265 -8.38 -4.81
26.25 102912.752 1065 5768 -8.55 -4.74
26.75 102981.896 833 2784 -8.48 -4.74
27.25 103051.04 1214 4511 -8.48 -4.98
27.75 103120.184 802 2509 -8.57 -5.03
28.25 103189.328 819 2663 -8.67 -5.12
28.75 103258.472 1226 4596 -8.67 -4.91
29.25 103327.616 1175 7059 -8.49 -4.79
29.75 103396.76 1097 6381 -8.63 -4.77
30.25 103465.904 1209 4375 -8.61 -4.91
30.75 103535.048 1002 4640 -8.56 -4.69
31.25 103604.192 980 4345 -8.54 -4.75
31.75 103673.336 1007 4674 -8.45 -4.82
32.25 103742.48 1090 6131 -8.55 -4.95
32.75 103811.624 963 4108 -8.57 -4.84
33.25 103880.768 1239 4989 -8.54 -4.98
33.75 103949.912 1021 4913 -8.56 -4.79
34.25 104019.056 1087 6102 -8.57 -4.80
34.75 104088.2 1158 6903 -8.51 -4.66
35.25 104157.344 855 2999 -8.61 -4.69
35.75 104226.488 1270 5491 -8.61 -4.62
36.25 104295.632 1141 7254 -8.58 -4.45
36.75 104364.776 1124 6751 -8.51 -4.37
37.25 104433.92 1087 6065 -8.53 -4.37
37.75 104503.064 1121 6643 -8.56 -4.29
38.25 104572.208 1095 6235 -8.31 -4.20
38.75 104641.352 1222 4377 -8.60 -4.39
39.25 104710.496 1207 4261 -8.66 -4.53
39.75 104779.64 992 4360 -8.63 -4.39
40.25 104848.784 611 1377 -8.63 -4.34
40.75 104917.928 1131 5952 -8.78 -4.52
41.25 104987.072 936 3802 -8.80 -4.80
41.75 105056.216 1029 4932 -8.84 -4.84
42.25 105125.36 1102 6317 -8.54 -4.75
42.75 105194.504 1104 6264 -8.74 -4.81
43.25 105263.648 1180 7346 -8.80 -4.72
43.75 105332.792 1019 4790 -8.74 -4.69
44.25 105401.936 1209 4300 -8.86 -4.86
44.75 105471.08 1043 5185 -8.81 -4.74
45.25 105540.224 819 2710 -8.82 -4.63
45.75 105609.368 1158 6064 -8.91 -4.59
46.25 105678.512 1126 6939 -8.87 -4.42
46.75 105747.656 1129 6884 -8.92 -4.57
47.25 105816.8 1124 6650 -8.99 -4.75
47.75 105885.944 1268 5500 -9.01 -4.82
48.25 105955.088 1200 7342 -8.98 -4.89
48.75 106024.232 1200 7359 -9.01 -4.99
49.25 106093.376 1202 4313 -9.06 -5.20
49.75 106162.52 1131 6932 -8.96 -4.95
50.25 106231.664 1068 5761 -8.95 -4.94
50.75 106300.808 1195 6226 -8.94 -4.85
51.25 106369.952 1253 4468 -8.68 -4.89
51.75 106439.096 1146 5533 -8.82 -4.66
52.25 106508.24 1192 7368 -8.65 -4.62
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

52.75 106577.384 1295 6253 -8.68 -4.59
53.25 106646.528 1126 6948 -8.73 -4.55
53.75 106715.672 1051 5267 -8.79 -4.58
54.25 106784.816 1185 7397 -8.59 -4.25
54.75 106853.96 1224 4708 -8.97 -4.85
55.25 106923.104 1219 4503 -9.06 -4.96
55.75 106992.248
56.25 107061.392 1200 7361 -9.12 -4.87
56.75 107130.536 990 4444 -9.02 -4.86
57.25 107199.68 1161 7338 -9.08 -4.92
57.75 107268.824 1143 6022 -9.01 -4.85
58.25 107337.968 1231 4825 -9.22 -4.99
58.75 107407.112 1244 4962 -9.25 -4.99
59.25 107476.256 907 3478 -9.17 -4.81
59.75 107545.4 1126 6298 -9.13 -4.69
60.25 107614.544 1146 5889 -9.20 -4.71
60.75 107683.688 1219 4557 -9.27 -4.82
61.25 107752.832 1205 4308 -9.09 -4.77
61.75 107821.976 1212 4383 -9.08 -4.75
62.25 107891.12 1248 5079 -9.26 -4.74
62.75 107960.264 1112 6587 -9.48 -4.71
63.25 108029.408 1078 5852 -9.73 -4.82
63.75 108098.552 1217 4413 -9.88 -5.10
64.25 108167.696
64.75 108236.84 1241 4861 -10.17 -5.31
65.25 108305.984 1256 5305 -10.24 -5.31
65.75 108375.128 1236 4855 -10.41 -5.38
66.25 108444.272 1258 5321 -10.53 -5.75
66.75 108513.416 1136 7146 -10.43 -5.86
67.25 108582.56 1158 5940 -10.30 -5.88
67.75 108651.704 1246 5319 -10.20 -6.03
68.25 108720.848 1219 4665 -10.32 -6.18
68.75 108789.992 1209 4452 -10.33 -6.19
69.25 108859.136
69.75 108928.28 1214 4466 -10.40 -5.87
70.25 108997.424 1292 6318 -10.32 -5.25
70.75 109066.568 1285 6005 -10.26 -5.13
71.25 109135.712 1180 6153 -10.15 -5.28
71.75 109204.856 1151 5909 -9.97 -5.30
72.25 109274 1168 7316 -10.01 -5.30
72.75 109409.23 1241 4995 -10.09 -5.43
73.25 109544.46 1207 4348 -10.14 -5.53
73.75 109679.69 1209 4435 -10.16 -5.54
74.25 109814.92 1129 6975 -10.22 -5.42
74.75 109950.15 1236 4818 -10.27 -5.58
75.25 110085.38 1170 7312 -10.24 -5.45
75.75 110220.61 1139 6826 -10.25 -5.47
76.25 110355.84 1131 6947 -10.20 -5.49
76.75 110491.07 1173 6045 -10.11 -5.43
77.25 110626.3 941 3809 -10.15 -5.50
77.75 110761.53 982 4361 -10.12 -5.49
78.25 110896.76 1043 5235 -10.17 -5.53
78.75 111031.99 1239 4897 -10.33 -5.67
79.25 111167.22 1285 5989 -10.48 -5.78
79.75 111302.45 1270 5553 -10.42 -5.82
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

80.25 111437.68 1224 4591 -10.42 -5.91
80.75 111572.91 1222 4464 -10.29 -5.79
81.25 111708.14 1082 5863 -10.18 -5.52
81.75 111843.37 1234 4719 -10.17 -5.49
82.25 111978.6 1329 7364 -10.17 -5.33
82.75 112113.83 921 3622 -9.95 -5.01
83.25 112249.06 1195 7391 -9.90 -4.90
83.75 112384.29 1124 6155 -9.56 -5.00
84.25 112519.52 1205 3897 -9.78 -4.88
84.75 112654.75 1053 4797 -9.88 -4.76
85.25 112789.98 1202 3858 -9.86 -4.81
85.75 112925.21 1214 4072 -9.90 -4.75
86.25 113060.44 1139 6514 -10.10 -4.66
86.75 113195.67 1187 7121 -10.20 -4.74
87.25 113330.9 1212 2587 -10.17 -4.88
87.75 113466.13 1163 5152 -10.10 -4.87
88.25 113601.36 1253 5053 -10.26 -4.89
88.75 113736.59 1234 4737 -10.29 -4.89
89.25 113871.82 1136 3858 -10.15 -4.70
89.75 114007.05 1214 4229 -10.29 -4.86
90.25 114142.28 1190 7293 -10.32 -4.73
90.75 114277.51 1229 4499 -10.43 -4.82
91.25 114412.74 1173 7245 -10.55 -4.71
91.75 114547.97 1202 4010 -10.65 -4.74
92.25 114683.2 1222 2706 -10.54 -4.76
92.75 114818.43 1136 3860 -10.25 -4.67
93.25 114953.66 1165 4319 -10.23 -4.66
93.75 115088.89 1165 4796 -10.37 -4.63
94.25 115224.12 1187 4247 -10.34 -4.49
94.75 115359.35 1195 4207 -10.57 -4.48
95.25 115494.58 1246 4816 -10.91 -4.63
95.75 115630 1222 4311 -10.84 -4.72
96.25 115869.625 1195 7279 -10.51 -4.59
96.75 116109.25 1175 7222 -10.62 -4.64
97.25 116348.875 1161 3939 -10.88 -4.83
97.75 116588.5 1134 5986 -10.98 -4.87
98.25 116828.125 1119 5692 -10.96 -4.95
98.75 117067.75 1163 6862 -11.17 -4.96
99.25 117307.375 1141 6268 -11.23 -4.89
99.75 117547 1082 5078 -11.12 -4.89

100.25 117786.625 1080 5115 -11.20 -5.02
100.75 118026.25 1187 7249 -11.30 -5.01
101.25 118265.875 1197 4033 -11.50 -5.10
101.75 118505.5 1148 4497 -11.49 -5.21
102.25 118745.125 1012 4136 -11.39 -5.05
102.75 118984.75 1117 3476 -11.14 -4.81
103.25 119224.375 1214 3925 -11.51 -5.15
103.75 119464 1082 5164 -11.68 -5.24
104.25 119467.6 1151 6728 -11.86 -5.09
104.75 119471.2 1153 6742 -11.85 -5.14
105.25 119474.8 1185 7283 -11.81 -5.17
105.75 119478.4 1087 5316 -11.77 -5.28
106.25 119482 1104 5589 -11.82 -5.24
106.75 119485.6 1036 4421 -11.81 -5.09
107.25 119489.2 941 4294 -11.92 -5.26
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

107.75 119492.8 1178 4164 -11.81 -5.32
108.25 119496.4 1197 4189 -11.79 -5.21
108.75 119500 1075 4897 -11.88 -5.36
109.25 119503.6 1095 5259 -11.89 -5.28
109.75 119507.2 1217 3913 -11.96 -5.23
110.25 119510.8 1053 4531 -11.98 -5.02
110.75 119514.4 1100 5277 -11.99 -5.08
111.25 119518 1141 6216 -11.96 -5.09
111.75 119521.6 1102 5448 -11.92 -5.14
112.25 119525.2 1031 2581 -11.86 -5.07
112.75 119528.8 1202 3704 -12.04 -5.37
113.25 119532.4 1161 4916 -11.96 -5.17
113.75 119536 1146 3715 -11.98 -5.18
114.25 119571.25 1222 4061 -12.00 -5.55
114.75 119606.5 816 2269 -11.83 -5.39
115.25 119641.75 1153 3989 -11.73 -5.32
115.75 119677 1173 6402 -11.92 -5.18
116.25 119712.25 1161 7038 -11.97 -5.32
116.75 119747.5 1175 7298 -11.89 -5.49
117.25 119782.75 1183 4231 -11.78 -5.35
117.75 119818 1207 3649 -11.88 -5.30
118.25 119853.25 1161 6664 -11.90 -5.03
118.75 119888.5 1185 7077 -11.81 -5.22
119.25 119923.75 1114 5501 -11.76 -5.20
119.75 119959 1185 7293 -11.81 -5.34
120.25 119994.25 1200 6131 -11.72 -5.10
120.75 120029.5 1224 4085 -11.78 -5.12
121.25 120064.75 1163 4056 -11.90 -5.02
121.75 120100 1126 3539 -11.94 -5.10
122.25 120135.25 1031 4316 -11.87 -5.12
122.75 120170.5 1104 3364 -11.96 -5.23
123.25 120205.75 1192 4199 -11.85 -5.24
123.75 120241 1073 4945 -12.01 -5.40
124.25 120276.25 1119 5894 -12.11 -5.46
124.75 120311.5 1209 3827 -12.12 -5.54
125.25 120346.75 1087 5219 -11.98 -5.45
125.75 120382 1134 6191 -11.94 -5.53
126.25 120570.13 1141 6525 -12.04 -5.51
126.75 120758.26 1190 7213 -12.01 -5.74
127.25 120946.39 1151 3984 -12.00 -5.65
127.75 121134.52 1219 4082 -12.18 -5.93
128.25 121322.65 1214 3983 -11.99 -5.98
128.75 121510.78 1263 5063 -12.02 -5.52
129.25 121698.91 1231 4258 -12.08 -5.29
129.75 121887.04 1178 7274 -12.02 -5.25
130.25 122075.17 1236 4387 -12.03 -5.47
130.75 122263.3 1131 6180 -12.02 -5.49
131.25 122451.43 1151 6797 -12.04 -5.45
131.75 122639.56 1178 7231 -12.07 -5.50
132.25 122827.69 1236 2742 -12.06 -5.54
132.75 123015.82 1168 4617 -11.88 -5.57
133.25 123203.95 1234 4396 -12.03 -5.71
133.75 123392.08 1219 4206 -12.06 -5.77
134.25 123580.21 1141 3744 -11.97 -5.46
134.75 123768.34 1100 5615 -11.96 -5.38
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

135.25 123956.47 1195 4218 -11.96 -5.30
135.75 124144.6 1092 5325 -11.97 -5.59
136.25 124332.73 1222 4019 -11.95 -5.79
136.75 124520.86 1183 7302 -11.85 -5.68
137.25 124708.99 1192 4249 -11.74 -5.56
137.75 124897.12 1192 4260 -11.66 -5.47
138.25 125085.25 1190 7262 -11.65 -5.46
138.75 125273.38 1046 4316 -11.61 -5.43
139.25 125461.51 1217 3937 -11.73 -5.50
139.75 125649.64 1095 5291 -11.84 -5.40
140.25 125837.77 1192 7259 -11.96 -5.51
140.75 126025.9 1246 4691 -11.94 -5.56
141.25 126214.03 1205 3803 -11.98 -5.66
141.75 126402.16 1168 4558 -11.87 -5.52
142.25 126590.29 1192 5095 -11.84 -5.58
142.75 126778.42 1202 3826 -11.80 -5.63
143.25 126966.55 1165 4149 -11.54 -5.40
143.75 127154.68 1209 3956 -11.01 -5.47
144.25 127342.81 1205 3967 -10.44 -5.50
144.75 127530.94 1200 7308 -10.07 -5.62
145.25 127719.07 1121 5928 -10.31 -5.41
145.4 127907.2 1187 4768 -9.88 -5.67

145.55 128095.33 1058 2915 -10.33 -6.11
145.7 128283.46 1151 3959 -10.50 -6.18

145.85 128471.59 963 3484 -10.54 -6.12
146 128659.72 1214 3942 -10.49 -6.00

146.15 128847.85 1148 6565 -10.63 -5.86
146.3 129036 1126 6077 -10.70 -5.76

146.45 129045.3 1082 5175 -10.72 -5.54
146.6 129054.6 1180 4288 -10.69 -5.25

146.75 129063.9 1019 4288 -10.62 -5.07
146.9 129073.2 1146 3919 -10.53 -5.00

147.05 129082.5 1024 4285 -10.56 -5.03
147.2 129091.8 1219 4255 -10.64 -5.01

147.35 129101.1 1180 7277 -10.64 -5.02
147.5 129110.4 1173 7288 -10.67 -5.14

147.65 129119.7 1195 4215 -10.60 -5.02
147.8 129129 1219 4407 -10.67 -5.30

147.95 129138.3 1161 4246 -10.60 -5.18
148.1 129147.6 1185 4955 -10.52 -5.23

148.25 129156.9 1109 3597 -10.44 -5.21
148.4 129166.2 1085 4001 -10.39 -5.27

148.55 129175.5 1153 3698 -10.39 -5.26
148.7 129184.8 1143 6926 -10.23 -5.33

148.85 129194.1 794 2141 -10.22 -5.44
149 129203.4 1100 5635 -10.10 -5.43

149.15 129212.7 1073 5159 -9.96 -5.38
149.3 129222 1095 5569 -9.84 -5.35

149.45 129231.3 1104 5761 -9.72 -5.35
149.6 129240.6 1107 5845 -9.54 -5.28

149.75 129249.9 1200 4245 -9.34 -5.04
149.9 129259.2 1053 4886 -9.33 -5.17

150.05 129268.5 1207 4029 -9.44 -5.05
150.2 129277.8 1187 7262 -9.37 -5.03

150.35 129287.1 1104 5850 -9.36 -5.03
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

150.5 129296.4 1112 5915 -9.38 -4.98
150.65 129305.7 1180 4233 -9.31 -4.82
150.8 129315 1134 3936 -9.27 -4.76

150.95 129324.3 1168 4750 -9.32 -4.90
151.1 129333.6 1190 4271 -9.27 -4.80

151.25 129342.9 1205 2476 -9.34 -4.94
151.4 129352.2 1234 2782 -9.29 -5.00

151.55 129361.5 1251 5006 -9.30 -4.98
151.7 129370.8 1139 6605 -9.22 -4.76

151.85 129380.1 1058 4857 -9.29 -4.71
152 129389.4 1200 7290 -9.30 -4.64

152.15 129398.7 1229 4252 -9.35 -4.74
152.3 129408 1097 5513 -9.30 -4.67

152.45 129417.3 1214 4021 -9.35 -4.69
152.6 129426.6 1183 5198 -9.26 -4.51

152.75 129435.9 1026 4367 -9.28 -4.71
152.9 129445.2 1153 3590 -9.10 -4.57

153.05 129454.5 1151 6863 -9.19 -4.71
153.2 129463.8 1082 5125 -9.24 -4.61

153.35 129473.1 1202 3862 -9.23 -4.69
153.5 129482.4 1058 4736 -9.17 -4.53

153.65 129491.7 1126 5982 -9.19 -4.54
153.8 129501 1185 4359 -9.12 -4.49
169.7 179596 1153 7092 -7.17 -4.63
170.2 179609.67 1060 4760 -6.99 -4.51
170.7 179623.34 1156 5368 -6.99 -4.41
171.2 179637.01 1156 4991 -7.06 -4.50
171.7 179650.68 1200 4667 -7.04 -4.42
172.2 179664.35 875 2659 -7.03 -4.54
172.7 179678.02 1209 3946 -7.16 -4.64
173.2 179691.69 1244 4612 -7.10 -4.66
173.7 179705.36 1205 3894 -7.16 -4.75
174.2 179719.03 1146 6654 -7.18 -4.76
174.7 179732.7 1031 4339 -7.17 -4.78
175.2 179746.37 1170 6760 -7.22 -4.81
175.7 179760.04 1080 5085 -7.19 -4.85
176.2 179773.71 1048 4574 -7.19 -4.81
176.7 179787.38 1146 5292 -7.20 -4.70
177.2 179801.05 1038 4395 -7.20 -4.83
177.7 179814.72 1107 5585 -7.18 -4.79
178.2 179828.39 1131 6017 -7.19 -4.88
178.7 179842.06 1151 6610 -7.17 -4.88
179.2 179855.73 1200 5818 -6.75 -4.47
179.7 179869.4 1224 4243 -7.27 -5.03
180.2 179883.07 1146 6396 -7.25 -5.00
180.7 179896.74 1180 6255 -7.23 -5.10
181.2 179910.41 1173 5863 -7.09 -5.14
181.7 179924.08 1190 5447 -7.08 -5.19
182.2 179937.75 1212 3951 -7.12 -5.26
182.7 179951.42 1170 4845 -7.11 -5.15
183.2 179965.09 1224 4182 -7.20 -5.33
183.7 179978.76 1192 4198 -7.14 -5.15
184.2 179992.43 1161 6892 -7.12 -5.14
184.7 180006.1 1131 6104 -7.11 -5.25
185.2 180019.77 1190 7226 -7.08 -5.30
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

185.7 180033.44 1146 6521 -7.14 -5.34
186.2 180047.11 1109 5754 -7.09 -5.36
186.7 180060.78 1139 6051 -7.12 -5.30
187.2 180074.45 1090 5299 -7.11 -5.24
187.7 180088.12 1102 5267 -7.17 -5.18
188.2 180101.79 1134 6248 -7.14 -5.09
188.7 180115.46 1075 4939 -6.00 -4.08
189.2 180129.13 1187 6779 -7.11 -5.09
189.7 180142.8 1029 4270 -7.14 -5.16
190.2 180156.47 1065 4861 -7.14 -5.26
190.7 180170.14 1170 5669 -7.09 -5.15
191.2 180183.81 1168 5341 -7.12 -5.14
191.7 180197.48 1217 4135 -7.18 -5.31
192.2 180211.15 1134 4642 -7.15 -5.17
192.7 180224.82 1141 4437 -7.08 -5.10
193.2 180238.49 1078 5160 -6.98 -5.11
193.7 180252.16 1085 5115 -6.99 -5.03
194.2 180265.83 1112 5702 -7.01 -4.96
194.7 180279.5 1202 3775 -7.07 -4.97
195.2 180293.17 1168 6863 -7.02 -4.98
195.7 180306.84 1051 4611 -7.01 -5.04
196.2 180320.51 1097 5412 -6.96 -4.91
196.7 180334.18 1217 4001 -6.95 -4.84
197.2 180347.85 1158 5481 -6.97 -4.78
197.7 180361.52 1114 4493 -7.00 -4.83
198.2 180375.19 1219 4102 -7.14 -5.12
198.7 180388.86 1192 5870 -7.01 -4.98
199.2 180402.53 1236 4492 -7.17 -5.22
199.7 180416.2 1187 7145 -7.10 -5.08
200.2 180429.87 1146 6564 -7.09 -5.14
200.7 180443.54 1222 4138 -7.10 -5.14
201.2 180457.21 1187 6085 -7.17 -5.00
201.7 180470.88 1226 4290 -7.29 -5.04
202.2 180484.55 1165 5317 -7.25 -4.67
202.7 180498.22 1178 4924 -7.37 -4.45
203.2 180511.89 1207 3963 -7.50 -4.72
203.7 180525.56 1185 4397 -7.34 -4.57
204.2 180539.23 1131 6283 -7.30 -4.58
204.7 180552.9 1212 3995 -7.35 -4.50
205.2 180566.57 1239 4486 -7.35 -4.43
205.7 180580.24 1246 4660 -7.24 -4.29
206.2 180593.91 1114 5785 -7.12 -4.29
206.7 180607.58 1178 6560 -7.08 -4.21
207.2 180621.25 1200 6034 -7.22 -4.14
207.7 180634.92 1051 4480 -7.39 -4.22
208.2 180648.59 1029 4303 -7.42 -4.22
208.7 180662.26 931 3127 -7.32 -4.25
209.2 180675.93 948 3316 -7.42 -4.31
209.7 180689.6 985 3737 -7.65 -4.44
210.2 180703.27 1043 4509 -7.61 -4.37
210.7 180716.94 760 1817 -7.68 -4.56
211.2 180730.61 1026 4240 -7.64 -4.70
211.7 180744.28 877 2677 -7.48 -4.62
212.2 180757.95 850 2479 -7.31 -4.46
212.7 180771.62 1068 4942 -7.30 -4.46
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

213.2 180785.29 902 2872 -7.28 -4.43
213.7 180798.96 1014 4099 -7.36 -4.58
214.2 180812.63 1046 4589 -7.39 -4.49
214.7 180826.3 836 2293 -7.43 -4.44
215.2 180839.97 1024 4278 -7.50 -4.42
215.7 180853.64 914 3000 -7.60 -4.35
216.2 180867.31 960 3452 -7.64 -4.32
216.7 180880.98 914 3012 -7.71 -4.29
217.2 180894.65 836 2391 -7.76 -4.28
217.7 180908.32 992 3752 -7.89 -4.52
218.2 180921.99 1004 3947 -7.89 -4.52
218.7 180935.66 782 2021 -7.90 -4.72
219.2 180949.33 1012 4043 -7.86 -4.84
219.7 180963 1046 4536 -7.73 -4.83
220.2 180976.67 887 2735 -7.68 -4.53
220.7 180990.34 489 825 -7.94 -5.00
221.2 181004.01 694 1481 -7.85 -4.73
221.7 181017.68 1090 5357 -7.74 -4.62
222.2 181031.35 1151 6200 -7.56 -4.43
222.7 181045.02 1114 5675 -7.62 -4.39
223.2 181058.69 1131 5358 -7.84 -4.48
223.7 181072.36 1058 4646 -7.95 -4.54
224.2 181086.03 1165 7163 -7.80 -4.45
224.7 181099.7 1095 5381 -7.64 -4.56
225.2 181113.37 1183 7176 -7.45 -4.42
225.7 181127.04 1112 5729 -7.49 -4.34
226.2 181140.71 997 3860 -7.47 -4.29
226.7 181154.38 1161 6001 -7.68 -4.35
227.2 181168.05 1163 5689 -7.78 -4.48
227.7 181181.72 1183 5266 -7.77 -4.46
228.2 181195.39 1153 6913 -7.69 -4.36
228.7 181209.06 1100 5414 -7.50 -4.35
229.2 181222.73 1102 5597 -7.44 -4.37
229.7 181236.4 1043 4521 -7.58 -4.49
230.2 181250.07 1043 4483 -7.66 -4.35
230.7 181263.74 1131 5525 -7.63 -4.22
231.2 181277.41 1104 5061 -7.60 -4.35
231.7 181291.08 1068 4691 -7.74 -4.32
232.2 181304.75
232.7 181318.42 1109 5753 -7.86 -4.64
233.2 181332.09 1153 6772 -7.68 -4.57
233.7 181345.76
234.2 181359.43 1161 7157 -7.50 -4.54
234.7 181373.1 1048 4613 -7.52 -4.42
235.2 181386.77 1161 7092 -7.55 -4.35
235.7 181400.44 1114 5872 -7.55 -4.44
236.2 181414.11 47 6477 -7.73 -4.58
236.7 181427.78 1080 5232 -7.86 -4.69
237.2 181441.45 1158 5807 -7.78 -4.67
237.7 181455.12 47 4737 -7.72 -4.59
238.2 181468.79 49 4018 -7.81 -4.66
238.7 181482.46 1043 4496 -7.72 -4.44
239.2 181496.13 1151 6619 -7.80 -4.54
239.7 181509.8 1202 4149 -7.91 -4.41
240.2 181523.47 1190 6929 -7.77 -4.32
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

240.7 181537.14
241.2 181550.81 1185 6397 -7.77 -4.45
241.7 181564.48 1153 6001 -7.82 -4.44
242.2 181578.15 1183 5523 -7.97 -4.64
242.7 181591.82
243.2 181605.49 1024 4185 -7.96 -4.65
243.7 181619.16
244.2 181632.83 1141 6354 -7.72 -4.26
244.7 181646.5 1205 3850 -7.69 -4.50
245.2 181660.17 1161 6934 -7.63 -4.31
245.7 181673.84 0 5672 -7.67 -4.34
246.2 181687.51 1222 4045 -7.73 -4.53
246.7 181701.18 1226 4279 -7.66 -4.80
247.2 181714.85 1161 6018 -7.60 -4.96
247.7 181728.52 1205 3786 -7.50 -4.82
248.2 181742.19 1158 6927 -7.38 -4.86
248.7 181755.86 1165 7257 -7.27 -4.64
249.2 181769.53 1065 4820 -7.35 -4.77
249.7 181783.2 1114 5696 -7.30 -4.78
250.2 181796.87 1065 4884 -7.26 -4.89
250.7 181810.54 1043 4452 -7.57 -5.35
251.2 181824.21 980 3626 -7.40 -5.02
251.7 181837.88 1197 4183 -7.35 -4.84
252.2 181851.55 1195 4151 -7.16 -4.84
252.7 181865.22
253.2 181878.89 1139 6742 -7.36 -4.99
253.7 181892.56
254.2 181906.23 880 2698 -7.38 -4.86
254.7 181919.9 1053 4714 -7.27 -4.77
255.2 181933.57 1175 7275 -7.00 -4.16
255.7 181947.24 1178 7280 -7.19 -4.77
256.2 181960.91 1168 7243 -7.29 -4.80
256.7 181974.58 1173 7056 -7.36 -4.79
257.2 181988.25 1148 6782 -7.47 -4.83
257.7 182001.92 1107 3344 -7.41 -4.64
258.2 182015.59 1087 5335 -7.27 -4.78
258.7 182029.26 1185 7253 -7.36 -5.00
259.2 182042.93 1136 6290 -7.39 -5.17
259.7 182056.6 1139 6479 -7.28 -5.10
260.2 182070.27 1151 6765 -7.31 -5.11
260.7 182083.94 1173 7298 -7.26 -5.20
261.2 182097.61 1151 3838 -7.22 -5.06
261.7 182111.28 1141 3707 -7.23 -5.11
262.2 182124.95 1197 4227 -7.21 -5.03
262.7 182138.62 1139 3798 -7.13 -4.99
263.2 182152.29 1197 4800 -7.25 -5.14
263.7 182165.96 1175 4315 -7.22 -5.10
264.2 182179.63 1095 5479 -7.27 -5.10
264.7 182193.3 1175 7284 -7.26 -5.10
265.2 182206.97 1170 7232 -7.27 -5.09
265.7 182220.64 1202 4047 -7.26 -5.22
266.2 182234.31 1217 4024 -7.18 -5.18
266.7 182247.98 1185 7212 -7.03 -5.07
267.2 182261.65 1214 3888 -7.01 -5.17
267.7 182275.32 1126 5952 -6.92 -5.07
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

268.2 182289 1109 5725 -6.82 -4.90
268.7 182303.8 892 2790 -6.74 -4.85
269.2 182318.6 1136 6450 -6.63 -4.77
269.7 182333.4 1165 7217 -6.57 -4.74
270.2 182348.2 1175 4197 -6.39 -4.72
270.7 182363 1029 4426 -6.36 -4.76
271.2 182377.8 1175 4162 -6.30 -4.89
271.7 182392.6 1068 5053 -6.35 -5.09
272.2 182407.4 1124 3608 -6.58 -5.14
272.7 182422.2 1143 4575 -6.67 -5.09
273.2 182437 1217 4172 -6.43 -4.85
273.7 182451.8 1222 4236 -6.42 -4.55
274.2 182466.6 1102 5623 -6.54 -4.48
274.7 182481.4
275.2 182496.2
275.7 182511 1085 5254 -6.14 -4.45
276.2 182525.8 1158 6915 -6.34 -4.40
276.7 182540.6 1043 4465 -6.78 -4.72
277.2 182555.4 1060 4710 -7.23 -5.05
277.7 182570.2 1197 4197 -7.38 -5.04
278.2 182585 1100 5405 -7.36 -5.00
278.7 182599.8 1102 5369 -7.51 -5.07
279.2 182614.6 1119 5614 -7.63 -5.19

279.95 182629.4 1175 7029 -7.85 -5.19
280.7 182644.2 1153 6453 -7.93 -4.99

281.45 182659 1034 4147 -8.06 -4.95
282.2 182673.8 1163 6614 -8.08 -4.92

282.95 182688.6 0 4999 -8.16 -4.97
283.7 182703.4 1075 4800 -8.36 -5.34

284.45 182718.2 1136 3586 -8.31 -4.93
285.2 182733 1075 2987 -8.23 -4.80

285.95 182747.8 1197 4574 -8.36 -4.81
286.7 182762.6 1102 5416 -8.40 -4.97

287.45 182777.4 1051 4508 -8.48 -4.79
288.2 182792.2 1168 6945 -8.60 -4.85

288.95 182807 1197 7342 -8.49 -4.90
289.7 182821.8 1195 7284 -8.44 -4.64

290.45 182836.6 1207 3724 -8.68 -4.66
291.2 182851.4 1019 4055 -8.82 -4.54

291.95 182866.2 1134 6012 -8.93 -4.62
292.7 182881 1100 5345 -9.23 -4.32

293.45 182895.8 1007 3906 -9.56 -4.15
294.2 182910.6 1163 6929 -9.57 -4.30

294.95 182925.4 1092 5773 -8.62 -4.33
295.7 182940.2 1305 6232 -8.95 -4.22

296.45 182955 1165 7346 -9.33 -3.97
297.2 182969.8 1026 4804 -9.50 -4.07

297.95 182984.6 1226 4534 -9.50 -4.17
298.7 182999.4 1095 5982 -9.62 -4.18

299.45 183014.2 1185 7350 -9.64 -4.32
300.2 183029 1297 5102 -9.78 -4.41

300.95 183043.8
301.7 183058.6 1183 7363 -9.72 -4.29

302.45 183073.4 1229 4527 -9.79 -4.43
303.2 183088.2 1031 4884 -9.75 -4.36
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

303.95 183103 1097 5903 -9.70 -4.33
304.7 183224.2 1048 5062 -9.76 -4.33

305.45 183345.4 1251 4785 -9.82 -4.44
306.2 183466.6 645 1589 -9.68 -4.18

306.95 183587.8 1075 5525 -9.83 -4.47
307.7 183709 1029 4783 -9.74 -4.40

308.45 183830.2 1288 5520 -9.73 -4.51
309.2 183951.4 1244 4687 -9.73 -4.56

309.95 184072.6 1019 4595 -9.67 -4.45
310.7 184193.8 736 1999 -9.50 -4.29
311.45 184315 1346 7257 -9.39 -4.35
312.2 184436.2 1143 6914 -9.17 -4.05

312.95 184557.4 1251 4741 -9.00 -3.84
313.7 184678.6 1095 5804 -8.89 -3.45

314.45 184799.8 1214 4088 -8.96 -3.48
315.2 184921 1239 4522 -8.94 -3.44

315.95 185042.2 1351 5886 -8.76 -3.22
316.7 185163.4 1082 5510 -8.56 -3.17

317.45 185284.6 1185 6895 -8.42 -3.26
318.2 185405.8 1253 4723 -8.26 -3.29

318.95 185527 1141 6201 -8.29 -3.25
319.7 185648.2 1241 4519 -8.44 -3.34

320.45 185769.4
321.2 185890.6 1200 7330 -8.49 -3.13

321.95 186011.8 1134 6714 -8.88 -3.41
322.7 186133 1183 7356 -9.00 -3.49

323.45 186254.2 1073 5465 -8.93 -3.44
324.2 186375.4 1236 4404 -8.93 -3.48

324.95 186496.6 1209 4037 -8.94 -3.52
325.7 186617.8 1231 4351 -8.99 -3.66

326.45 186739 1158 7352 -8.95 -3.52
327.2 186860.2 1004 4645 -8.99 -3.63

327.95 186981.4 1034 5084 -9.05 -3.65
328.7 187102.6 1234 4726 -8.96 -3.87

329.45 187223.8 1153 6037 -8.67 -3.63
330.2 187345 716 2041 -8.58 -3.61

330.95 187466.2 753 2193 -8.76 -3.51
331.7 187587.4 914 3539 -8.65 -3.35

332.45 187708.6 828 2760 -8.53 -3.26
333.2 187829.8 929 3682 -8.33 -3.16

333.95 187951 907 3383 -8.53 -3.21
334.7 188072.2 1126 6777 -8.59 -3.21

335.45 188193.4 814 2662 -8.73 -3.31
336.2 188314.6 973 4171 -8.81 -3.38

336.95 188435.8 1239 4817 -8.99 -3.60
337.7 188557 1165 7375 -9.00 -3.64

338.45 188678.2 1139 7089 -9.08 -3.95
339.2 188799.4 1087 6051 -9.07 -4.17

339.95 188920.6 1060 5528 -8.99 -4.07
340.7 189041.8 472 960 -8.54 -4.08

341.45 189163 848 2914 -8.70 -4.17
342.2 189284.2 931 3636 -8.65 -4.21

342.95 189405.4 1139 7167 -8.67 -4.15
343.7 189526.6 831 2735 -8.69 -4.09

344.45 189647.8 772 2288 -8.71 -4.21
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

345.2 189769 846 2921 -9.00 -4.19
345.95 189890.2 1080 5722 -8.90 -4.26
346.7 190011.4 1146 7240 -8.78 -4.06

347.45 190132.6 1002 4533 -8.70 -3.79
348.2 190253.8 1246 4911 -8.54 -3.80

348.95 190375 1200 4130 -7.93 -4.32
349.7 190496.2

350.45 190617.4 907 3318 -7.40 -4.40
351.2 190738.6 872 3054 -7.55 -4.57

351.95 190859.8 1168 7357 -7.64 -4.74
352.7 190981 826 2651 -7.63 -4.81

353.45 191102.2 1261 5133 -7.66 -4.91
354.2 191223.4 1068 5459 -7.47 -4.81

354.95 191344.6 1029 4809 -7.47 -4.96
355.7 191465.8 804 2524 -7.33 -5.15

356.45 191587 1202 4377 -7.24 -5.28
357.2 191708.2 1207 4239 -7.11 -5.19

357.95 191829.4 1109 6415 -7.04 -5.20
358.7 191950.6 1175 7318 -6.79 -5.12

359.45 192071.8 1126 7298 -6.71 -5.17
360.2 192193 1212 4238 -6.82 -5.27

360.95 192314.2 1253 4956 -6.83 -5.20
361.7 192435.4 1104 6141 -6.71 -5.01

362.45 192556.6 1034 4939 -6.64 -4.89
363.2 192677.8 1102 5036 -6.70 -4.90

363.95 192799 1200 7392 -6.73 -4.92
364.7 192920.2 1280 5537 -6.89 -5.06

365.45 193041.4 1263 5091 -7.04 -5.08
366.2 193162.6 1222 4468 -7.10 -5.06

366.95 193283.8 1246 4850 -7.12 -5.08
367.7 193405 1239 4798 -7.20 -5.12

368.45 193526.2 1004 4525 -7.25 -5.08
369.2 193647.4 1134 6788 -7.25 -5.09

369.95 193768.6 1244 4893 -7.30 -5.29
370.7 193889.8 1131 6435 -7.25 -5.12

371.45 194011 1185 7343 -7.23 -5.14
372.2 194132.2 1241 4818 -7.35 -5.27

372.95 194253.4 1236 4708 -7.35 -5.25
373.7 194374.6 1256 5196 -7.26 -4.98

374.45 194495.8 1285 5753 -7.26 -5.02
375.2 194617 1297 6415 -7.19 -4.96

375.95 194738.2 1302 6591 -7.20 -5.01
376.7 194859.4 1205 4289 -7.28 -5.18

377.45 194980.6 1192 7411 -7.32 -5.11
378.2 195101.8 951 4016 -7.36 -5.12

378.95 195223 1175 7350 -7.28 -4.95
379.7 195344.2 1207 4194 -7.38 -5.09

380.45 195465.4 1102 6277 -7.36 -4.99
381.2 195586.6 1180 7341 -7.27 -4.89

381.95 195707.8 1170 7321 -7.27 -4.98
382.7 195829 1219 4477 -7.35 -5.09

383.45 195950.2 1051 5285 -7.42 -5.06
384.2 196071.4 1207 4286 -7.59 -5.20

384.95 196192.6 1222 4509 -7.55 -5.16
385.7 196313.8 1007 4617 -7.43 -5.16
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Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

386.45 196435 1109 7400 -7.47 -5.35
387.2 196556.2 1197 7356 -7.46 -5.21

387.95 196677.4 1268 5512 -7.60 -5.32
388.7 196798.6 1236 4915 -7.84 -5.31

389.45 196919.8 391 7321 -7.85 -5.15
390.2 197041 1085 6846 -7.82 -5.24

390.95 197162.2 1085 7344 -7.91 -5.30
391.7 197283.4 577 7362 -8.00 -5.36

392.45 197404.6 531 6944 -8.16 -5.46
393.2 197525.8 259 6286 -8.35 -5.41

393.95 197647 1134 7156 -8.35 -5.43
394.7 197768.2 1126 6907 -8.34 -5.41

395.45 197889.4 1214 4422 -8.47 -5.49
396.2 198010.6 1175 7332 -8.59 -5.53

396.95 198131.8 1183 7354 -8.59 -5.52
397.7 198253 990 6039 -8.29 -5.41

398.45 198374.2 904 7319 -8.42 -5.49
399.2 198495.4 933 5323 -8.45 -5.53

399.95 198616.6 953 6889 -8.44 -5.50
400.7 198737.8 1231 4790 -8.41 -5.43

401.45 198859 1141 7334 -8.35 -5.28
402.2 198980.2 1219 4482 -8.39 -5.40

402.95 199101.4 1165 7327 -8.30 -5.38
403.7 199222.6 1180 7354 -8.32 -5.39

404.45 199343.8 1168 7330 -7.97 -5.19
405.2 199465 1212 4429 -8.58 -5.49

405.95 199586.2 1209 4402 -8.73 -5.43
406.7 199707.4 1214 4440 -8.82 -5.40

407.45 199828.6 1224 4633 -8.91 -5.45
408.2 199949.8 1170 6821 -8.92 -5.07

408.95 200071 1285 5975 -9.08 -4.98
409.7 200192.2 1241 4835 -9.20 -4.95

410.45 200313.4 1236 5485 -9.12 -4.72
411.2 200434.6 1200 7327 -9.14 -4.85
411.95 200555.8 1180 7350 -8.90 -4.78
412.7 200677 1224 4628 -8.58 -4.81

413.45 200798.2 1151 7325 -8.11 -4.63
414.2 200919.4 1209 4323 -7.75 -4.57

414.95 201040.6 1168 7334 -7.74 -4.60
415.7 201161.8 1161 5798 -7.89 -4.65

416.45 201283 1266 5576 -7.87 -4.73
417.2 201404.2 1248 5056 -7.90 -4.61

417.95 201525.4 1173 7385 -7.65 -4.36
418.7 201646.6 1200 7333 -7.50 -4.24

419.45 201767.8 1217 4534 -7.54 -4.39
420.2 201889

420.95 202010.2 1195 7326 -7.47 -4.25
421.7 202131.4 1222 4826 -7.59 -4.45

422.45 202252.6 1192 7389 -7.54 -4.29
423.2 202373.8 1234 5082 -7.56 -4.40

423.95 202495 1207 4357 -7.71 -4.43
424.7 202616.2 1173 7309 -8.27 -4.59

425.45 202737.4 1170 7363 -8.70 -4.87
426.2 202858.6 1151 7320 -8.84 -4.98

426.95 202979.8 894 7373 -8.90 -5.21
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 Table A-3 continued.

Depth Age 
Interpolation

Total CO2 
(µbar)

Measurement Sample 
Intensity m44 (mV) δ13C (‰ VPDB)a δ18O ( ‰ VPDB)b

427.7 203101 1200 7377 -8.92 -4.97
428.45 203222.2 1148 7334 -8.97 -5.04
429.2 203343.4 792 7181 -9.09 -5.08

429.95 203464.6 1185 6825 -9.23 -5.08
430.7 203585.8 1021 5530 -9.23 -5.15

431.45 203707 1060 7349 -9.21 -5.16
432.2 203828.2 1234 4815 -9.28 -5.03

432.95 203949.4 1183 7408 -9.27 -5.10
433.7 204070.6 1058 7392 -9.22 -5.13

434.45 204191.8 977 4307 -9.21 -4.96
435.2 204313 977 4280 -9.17 -4.96

435.95 204434.2
436.7 204555.4 885 3324 -9.23 -5.05

437.45 204676.6 1100 6250 -9.19 -5.10
438.2 204797.8 1187 7109 -9.25 -5.17

438.95 204919 526 2471 -9.27 -5.07
439.7 205040.2 782 6377 -9.25 -4.98

440.45 205161.4 977 4281 -9.30 -4.96
441.2 205282.6

441.95 205403.8 980 4254 -9.24 -5.28
442.7 205525 828 2722 -9.20 -5.09

443.45 205646.2
444.2 205767.4 919 3534 -9.29 -5.11

444.95 205888.6 1053 5354 -9.29 -5.15
445.7 206009.8 1009 4656 -9.31 -5.17

446.45 206131 1129 7330 -9.20 -5.02
447.2 206252.2 709 1961 -9.15 -4.97

447.95 206373.4 638 1595 -9.06 -4.86
448.7 206494.6 865 3129 -9.09 -4.96

449.45 206615.8 758 2296 -9.04 -5.07
450.2 206737 655 4473 -9.00 -4.93

450.95 206858 755 2266 -8.98 -5.00
451.7 206979.2 806 2644 -8.93 -4.89

452.45 207100.4 911 3561 -8.91 -4.98
453.2 207221.6

453.95 207342.8 1087 6580 -9.00 -5.17
454.7 207464 1078 5929 -9.03 -5.11

455.45 207585.2 889 5316 -9.00 -5.07
456.2 207706.4 853 2929 -8.87 -4.92

456.95 207827.6 941 3863 -8.68 -4.93
457.7 207948.8 889 3337 -8.60 -5.01

458.45 208070 999 4609 -8.51 -4.89
459.2 208191.2 850 2904 -8.52 -5.03

459.95 208312.4 750 2235 -8.42 -5.03
460.7 208433.6 741 2162 -8.48 -4.98

a ±1σ instrumental uncertainty of ±0.04 ‰ for δ13C for normal-sized (1800 mV to 9000 mV m44 measurement 
sample intensity) sampleson long-term, replicate (n = 6/day) analyses of the VPDB carbonate isotope standards 
NBS-19 and IAEA-603
b ±1σ instrumental uncertainty of ±0.06 ‰ for δ18O using method above


