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ABSTRACT 
 
 

It is both exciting and important to look for life beyond our planet. To find signs of life on distant 

planets, there is a need to search across the vast space that surrounds us and find planets outside 

our solar system, called exoplanets. Among the many search techniques which have been 

developed to detect exoplanets, ‘microlensing’ holds the advantage of finding Earth-like planets. 

In order to detect a microlensing event, there is a need to scan millions of stars simultaneously 

for the case of perfect alignment of two stars. This chance alignment typically lasts for weeks or 

days, until the two stars move out of alignment. Hence, there is a need to follow up on all 

detected events in real-time, to capture information about the properties of the star system. Large 

scale astronomical surveys like the Global Astrometric Interferometer for Astrophysics (Gaia) 

mission and Large Synoptic Survey Telescope (LSST) will capture terabytes of data every night. 

Hence, building an automatic classifier, using tools from machine learning in order to sift 

through this data and detect microlensing events is crucial.  

The scope of work includes identification and development of three appropriate methods 

to establish an automatic classifier. The first method makes classification decisions based on five 

characteristics of microlensing translated into statistical features. The second and third methods 

detect microlensing events without relying on any specific characteristics of microlensing, but 

differ in the way they handle data. These methods are applied to datasets from three different 

astronomical surveys and the results thus obtained are evaluated to make sure that all the 

occurrences of this rare event, microlensing, are detected. The third method uses an RNN to 

detect all the events in the training set. It is concluded that, this method can be easily extended to 

exoplanet detection. 
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1. INTRODUCTION 

 

It is very exciting to look beyond the normal scope of life and get involved in the search for life                    

beyond earth. Life that sustains on planets other than the Earth is called extraterrestrial life (E.T).                

There are many theories employed in extra-terrestrial search techniques; examining the           

atmospheres of various planets for gases that could cook life, by measuring the spectrum of the                

star it is orbiting. As the star emits these gases, the planets surrounding them absorb it in                 

different combinations, thus forming unique signatures composed of gases. These planets,           

present outside our solar system, are called exoplanets.  

While the search for E.T is one motivation to find them, another important reason to look                

for exoplanets that could host life is for us to inhabit; since the Earth may become uninhabitable                 

as the Sun gets older, larger and warmer.  

There are various exoplanet search techniques like radial velocity searches, transit           

photometry and microlensing. Radial velocity search refers to the variations in the speed with              

which a star moves towards or away from the Earth. These variations in a star’s speed occur due                  

to the gravitational pull of the planets orbiting it. Transit photometry refers to the brief decrease                

in brightness of a star, as a planet orbiting it crosses (transits). Microlensing refers to the                

magnification in the brightness of a star due to its alignment with another star whose               

gravitational pull acts like a lens. 

While radial velocity searches can look for planets with a distance of upto 100 light years                

away and transit photometry can look for those which are several hundreds of light years away,                

microlensing can look for planets which are thousands of light years away from us.  

Microlensing can help detect the farthest and smallest of planets. While radial velocity             

and transit photometry can well detect planets very closely orbiting their stars, microlensing is              

good at detecting planets orbiting their stars at moderate to large distances. This is another great                

advantage since planets orbiting stars at moderate distances have certain conditions like            

1 

 



 
 
 
 

temperature, which are very similar to those on Earth. Whereas closely orbiting planets would              

have very high temperatures, unsuitable for most forms of life. Hence, it is justified to say that                 

microlensing plays a crucial role in exoplanet searches. The phenomena of microlensing is             

discussed in detail, in the following sub-section. 

 

1.1 Microlensing 

Microlensing is observed when, a massive object (lens star) bends the light of a bright               

background object (source star) with its gravitational pull, generating a magnified image of the              

source star as shown in figure 1 below. As the lens star moves in the foreground of the source                   

star, the magnified image of the source star gets brighter, reaches a peak and then gets dimmer in                  

a smooth way, over a period of few days or weeks.  

Additionally, when a planet present close to the lens star passes through one of the source                

star’s light streams, the planet’s gravitational pull also affects the lensing phenomena. This             

indicates the presence of a planet. Based on the duration of the microlensing event and its                

intensity, the characteristics of a planet ,like its mass, orbit etc., can be derived.  

Exoplanets are detected using microlensing as follows; During the initial experiments on            

microlensing events, a prominent brightening of star was observed in the pattern and it was               

concluded that it was due to the gravitational pull of a star resulting in gravitational               

microlensing. Later on, additional spikes of brightness were observed and it was concluded that              

there were two objects responsible for the spikes. Upon further observation of this brightness              

pattern, it was noted that the second object was smaller and of much less mass compared to that                  

of the lensing star. This helped in concluding that the second object is a planet orbiting the                 

lensing star. As planets affect the brightness of a background star, exoplanets can be easily               

detected by scanning millions of stars simultaneously for a case of perfect alignment.  
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Figure 1: Gravitational microlensing phenomenon [1] 
 
 
 

This entire process is depicted in figure 1 above, as we look from the rightmost column to                 

the leftmost one. In the first step, an observatory on Earth is observing a bright source star. When                  

another star comes to the foreground of the source star, it acts like a lens and bends the light,                   

resulting in the magnification of source star’s brightness (‘magnitude’). It is important to note              

that, in astronomy, an increase in a star’s brightness is observed as a decrease in magnitude.                

When a planet orbiting this lens star is struck by light from the source star, there is a brief                   

increase in brightness again before the lens star moves out of alignment and the source star goes                 

back to its normal brightness level. This measurement of brightness varying over time is called a                

light curve. The top part of this figure depicts the associated light curve. The objective is to                 

detect the occurrence of a microlensing event by observing the light curve of the source star.  
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There are many challenges associated with the analysis of these light curves due to the               

problems encountered while recording them. Details of some of those challenges and ways to              

handle them are discussed in the following sub-section. 

 

1.2 Challenges In The Analysis Of Astronomical Data  

The light curve data of stars is observed, collected and documented by various astronomical              

surveys. Astronomical surveys like the Sloan Digital Sky Survey (SDSS), Global Astrometric            

Interferometer for Astrophysics (Gaia) mission and Large Synoptic Survey Telescope (LSST),           

send in terabytes of data; LSST every night and Gaia, SDSS, by the end of their operation. There                  

are certain challenges while analyzing the data obtained through these surveys, some of which              

are described; 

● Astronomical data is vast, as these surveys operate in specific regions of the universe and               

document data of most of the stars present there. Hence, the volume of astronomical data               

thus generated poses a challenge in the phase of analysis.  

● Additionally, separating brightening effects due to physical phenomena like         

microlensing, from those occurring due to faulty mechanical objects in the telescopic            

equipment etc., is difficult.  

● The light curve data collected is often unevenly sampled, having no observations for             

certain periods of time, due to bad weather conditions and other reasons. This is a               

challenge since there are many stars with missing observations. 

Information can’t be lost, by clouding it with ambiguity, drawing erroneous conclusions            

or waiting for astronomical phenomena to happen again. It is important to analyze data,              

efficiently and accurately, as it comes. For example, the LSST is going to scan the sky every                 

night and is estimated to generate about 60 petabytes of data by the end of the project. With mere                   

man-power it is impossible to manage the data generated through this survey. This is also the                
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case with data from the Gaia mission. This paves the way for efficient data analysis techniques                

like machine learning, which could reduce or eradicate manual intervention to a great extent.  

Machine Learning, simply put, is a computer teaching itself to grow and change when              

exposed to new data. An introduction to all the steps involved in a typical machine learning                

pipeline is provided in the following sub-section.  

 

1.3 Machine Learning Pipeline  

The machine learning pipeline shown in figure 2 below, depicts the series of steps involved in                

solving a problem using machine learning.  

 
 
 

 

Figure 2: Machine learning pipeline 
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As depicted in figure 2 above, there are two major steps involved in a machine learning                

pipeline; problem specification and model specification. Each of the steps is described in detail              

as follows; 

 

1.3.1 Problem Specification 

This step involves the formulation of a problem statement, identification with one of the existing               

problem types in machine learning and collection of datasets helpful for the machine to learn.               

Each of these is described in detail as follows; 

1. Problem Statement - A problem that one wants to solve needs to be defined informally.               

Then, the motivation for solving the problem and the impact of the solution needs to be                

known to the person who formulated the problem statement. In order to convert this              

formulated problem to a machine learning problem, the next sub-step, problem           

identification, is done. 

2. Problem Identification - The formulated problem can be aligned with one of the             

commonly used types of machine learning problems; Supervised Learning, Unsupervised          

Learning etc. They are described as follows; 

● Supervised Learning - In this case, the machine is fed with examples of             

input-output pairs and is posed with the task of deciding outputs for new inputs              

given by the user. The machine decides outputs by inferring a function from the              

fed examples and mapping new inputs to it. There are two types of supervised              

learning, namely, Classification and Regression. Classification assigns the inputs         

to discrete categories (classes or labels), whereas Regression predicts the future           

values of a continuous quantity.  

● Unsupervised Learning - In contrast to supervised learning, where the machine           

finds patterns from existing correct outputs to a given set of inputs, unsupervised             

learning finds patterns without knowing any outputs to the inputs. Clustering is            
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the most popular type of unsupervised learning, which groups all the similar            

inputs together, such that each group is different.  

It is clear from the above definitions that, to solve any problem using machine learning, it                

is required to feed example input-output pairs or just inputs (in the case of Unsupervised               

Learning) to the machine, to solve a problem. Hence, collection of datasets is an              

important step in machine learning and is described below. 

3. Data Collection - A collection of input-output pairs is called a dataset. A typical dataset               

comprises samples, features and labels. They are described as follows; 

● Samples - Each example of input-output pair is termed as a sample. Many such              

samples are fed to the machine. Each sample is stored as a row in the dataset.  

● Features - The measurable properties or characteristics of inputs are termed as            

features. The number of features used to represent an input is under the discretion              

of the user. The set of features is chosen in such a way that it helps to differentiate                  

between the categories of inputs. Each feature is stored as a column in the dataset. 

● Labels - The outputs or categories of inputs are called labels. Labels are fed to the                

machine only in supervised learning problems. Labels are stored as a single            

column in the dataset. 

As the problem definition, problem identification and data collection necessary for the machine             

to solve the problem have been completed, a problem solving model is discussed in the next step. 

 

1.3.2 Model Specification 

Through this step, a relevant problem solving model is evolved and all the details about its                

construction are described. The datasets are processed to a form suitable for the problem solving               

model, post which, all the available models are evaluated iteratively based on their performance. 

7 

 



 
 
 
 

1. Data Preprocessing - The process comprises several steps; performing exploratory data           

analysis, cleaning the dataset, splitting into training, test and validation sets. Each of the              

steps is detailed below; 

● Exploratory data analysis - The dataset can be visualized using computer aided            

tools and programming to find the underlying patterns and distributions of data.            

This step helps to identify prominent trends in the data and exposes various issues              

which might exist in the data. 

● Cleaning the dataset - Data analysis is performed to tackle missing values in the              

data, remove abnormalities or outliers (data samples which are quite different           

from the rest of the samples). 

● Training set - The training set is a set of example input-output pairs fed to the                

machine to create a learning model. The training set is used to ‘train’ a machine               

learning model in order to help the machine learn patterns from the data and make               

decisions on new data. 

● Validation set - A sample of data held back from the training phase is called the                

validation set. The validation set is fed as an input to the trained model. The               

decisions of the trained model on these inputs are validated against their            

corresponding outputs, to evaluate the performance of the model. This is an            

iterative process, since the hyperparameters (configurable variables internal to the          

model) are continuously changed (‘tuning’) to ensure the best achievable          

performance for a model (‘optimization’), with a given dataset. It is important to             

validate every model before selecting a final model.  

● Test set - The test set is independent from the training set and serves as the new                 

data given to the trained and validated model. In brief, the decisions a machine              

learning model makes on the test set, comprises the solution to the defined             

problem.  
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2. Model Construction - Once the pre-processed training, validation and test sets are            

obtained, various existing machine learning models are considered, selected based on           

their applicability to the collected datasets (‘Model Selection’) and developed (‘Model           

Building’). These two topics are detailed as follows; 

● Model Selection - The models to consider are narrowed down based on; the             

identification of problem, supervised or unsupervised, and the inferences drawn          

about the distribution and patterns in the data from exploratory data analysis. If it              

is a supervised learning problem, various classification and regression models like           

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),        

Random Forests (RF), Support Vector Machines (SVMs), Neural Networks         

(NNs), Linear Regression, Logistic Regression etc., are used. If it is an            

unsupervised learning problem, various clustering models like K-Means,        

Hierarchical Clustering etc., are used. Further, in classification models, if the           

underlying distribution of training data forms a clear boundary between the           

classes or categories of input data, basic classifiers like LDA, QDA, RF etc., can              

be used.  

● Model Building - Essentially, a machine learning model, makes decisions about           

input data by forming a function between example inputs and outputs considering            

some factors (‘parameters’). This function differs from model to model. The           

decisions made on input data are compared with the true outputs, by a learner              

system, in turn adjusting the parameters in the model until there is a fully              

optimized model. 

3. Evaluation - The performance of the constructed model is evaluated using various metrics             

like classification accuracy, confusion matrix, area under the receiver operating          

characteristic curve (roc) etc., for classification models and mean absolute error, mean            

squared error etc., for regression models.  
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This pipeline is iterative. Based on the evaluation results, if the model doesn’t perform              

satisfactorily, the next step is to revert to the model specifications part, define a new model and                 

perform all other steps associated with it. 

A detailed account of the machine learning pipeline has been given in the above section               

1.3. The objective defined in section 1.1 is translated into a problem statement and solved using                

the machine learning pipeline. Each of the steps, are applied to this specific problem and               

described in detail in the following sections. 
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2.  PROBLEM SPECIFICATION  

 

This section discusses in detail, all the steps pertaining to the specification of a problem in a                 

machine learning pipeline, applied to the case of detecting microlensing events.  

 

2.1 Problem Statement 

It can be inferred from section 1.1 and 1.2 that, in order to detect microlensing events by                 

analyzing all the light curves in the great volume of data generated by astronomical surveys,               

creating an automated system, with no manual intervention, is mandatory. It was also mentioned              

that machine learning is the most effective way to establish an automated system when dealing               

with a large dataset. By binding all these ideas together, we arrive at the problem statement;                

building an automated system to detect microlensing events.  

This problem statement is translated into a machine learning problem in the following             

sub-section. 

 

2.2 Problem Identification 

To find a machine learning problem suitable to achieve the goal of detecting microlensing events               

in a pool of many other types of stars (‘variable stars’), certain challenges need to be understood.  

Complicating the search for microlensing, there are a lot of other stars which show a               

continuous change in their brightness. According to [2], it could happen either due to internal               

factors like the star shrinking and swelling periodically (‘Pulsating Variables’) or the light from              

it to the Earth getting blocked due to some external factors like having an orbiting partner                

eclipsing it (‘Eclipsing Binaries’). Some of the variable stars present in the pulsating variables              

group are;  

● Cepheids - Young, massive and luminous stars. 

● RR Lyrae stars - Less luminous than cepheids & have shorter periods. 
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● Delta Scuti stars - Much fainter & have much shorter periods.  

● Mira (​"Mira"​, Latin, adj.) - Characterized by very red colors and have periods longer than               

100 days.  

● Slow irregular variable stars - Have little or no detectable periodicity, therefore being             

similar to microlensing events and causing a difficulty in distinction.  

 
 
 

 

Figure 3: Light curve of a variable star 
 
 
 

The example light curves of one such slow irregular variable star (in figure 3 above) and                

a microlensing event (in figure 4 below) demonstrate the difficulty in distinguishing them.  

A microlensing event is characterized by a magnification of brightness for a brief period,              

only once in its lifetime and symmetric about its peak brightness value. The astronomical              

convention of a drop in magnitude corresponding to an increase in brightness can be observed in                

figure 4 below. Similarity is observed in the variable star displayed, as there is a magnification of                 
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brightness for a brief period (between 7400-7405 on x-axis), after which it follows its usual               

pattern of brightness.  

 
 
 

 

Figure 4: Light curve of a microlensing event 
 

 
 

Therefore, given a representation of both variable stars and microlensing, the goal is to              

separate out microlensing events from all other types of variability. This clearly aligns with a               

classification problem. The formulated problem statement can now be translated into a machine             

learning problem as; automatic classification of microlensing candidates. 

Given a classification problem, we need to collect datasets with representations of both             

variable stars and microlensing. Details about the collection of datasets is discussed in the              

following section. 
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2.3 Data Collection 

In order to build an automatic classifier, datasets containing a representation of both variable              

stars and microlensing are chosen.  

The training set [7,8] (for which we know the class, microlensing or variable star)              

consists of 1534 variable stars like RR Lyrae, Cepheids, MIRA, Delta Scuti, Eclipsing Binaries              

etc., (described in section 2.2) and 212 confirmed microlensing candidates from the first two              

operating seasons of an astronomical survey, Optical Gravitational Lensing Experiment (OGLE).           

The test set [9] (for which we don’t know the classes), consists of 3194 stars from the first data                   

release of Gaia. The number of observations for each sample is quite uneven, as mentioned in                

section 1.2; range of 12 to 49 for variable star light curve samples, 116 to 280 for microlensing                  

light curve samples, 4 to 90 for Gaia light curve samples. It was ensured that aperiodic stars (like                  

slow irregular variable stars described in section 2.2) are represented in the training dataset.              

About 76 such samples were included. 

OGLE was chosen as the training dataset since this survey was dedicated to look for               

microlensing events and it has a rich database of variable stars as well as microlensing events.                

Gaia was chosen as the test dataset, since we intend to test it on a dataset with a huge number of                     

samples to evaluate the scaling capability of our models to huge datasets. An additional dataset               

[17], MACHO (an astronomical survey looking for galactic dark matter in the form of Massive               

Compact Halo Objects, machos) was also used as a validation dataset for microlensing events              

since it has a significant number of observations (about 250-535 for each sample) compared to               

that in Gaia (4-90 for each sample). About 13 confirmed microlensing events were used from the                

survey data in the ‘Large Magellanic Cloud’. This also serves the purpose of evaluating the               

scaling capability of our models.  

Therefore, in line with data collection in the machine learning pipeline, the samples are              

light curves of stars, features are magnitude values in the light curve and labels are microlensing                
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and variable star. These labels are numerically represented as ‘0’ for variable stars and ‘1’ for                

microlensing. 

This completes the problem specification part of the pipeline. The subsequent model            

specification step is discussed in the following section. 
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3. MODEL SPECIFICATION - A 

 

A model (arbitrarily named ‘A’) is evolved, for solving the problem introduced in section 2.2, by                

using the resources mentioned in section 2.3. Based on the evaluation results, it is decided               

whether to use this model or iteratively start by evolving a new one.  

The scope of this section includes application of each step in the model specification part               

of the general machine learning pipeline to the problem at hand.  

 
3.1 Data Pre-Processing 

The first step in data preprocessing, exploratory data analysis, is performed as follows; 

 
3.1.1 Exploratory Data Analysis 

Among the three data components, samples, features and labels, data patterns and distributions             

are mainly drawn from features. As specified in the previous section, features are the magnitude               

values or observations in the light curve. Section 2.3 mentions greatly varying number of              

features between datasets as well as within each dataset.  

But, the input space on which supervised classifiers operate, typically contains fixed            

length input vectors. So, the number of features (‘dimensions’) need to be brought to a fixed                

length, in order to be fed to the classifiers. This can be done in two ways; use domain knowledge                   

of the data to create features which can separate the two classes well (‘feature engineering’),               

bring each of the samples to a fixed length (‘interpolation’). Feature engineering is attempted and               

evaluated first.  

Microlensing event is defined to be a single, symmetric, positive excursion from the             

baseline brightness level. From this definition, each of the five characteristics is mathematically             

formulated to create five features. The features thus created, are evaluated using certain data              1

1 ​Reproduced from Data from Paragraphs 3 & 4 in Section 4.2 (adapted). Vasily Belokurov et al. Light-curve                  
classification in massive variability surveys — I. Microlensing. ​MNRAS​ (2003) 341 (4): 1373-1384. By permission  
of Oxford University Press on behalf of the Royal Astronomical Society. Available online at:              
https://academic.oup.com/mnras/article/341/4/1373/1039118?searchresult=1 
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visualization techniques to observe their ability to separate the two classes, variable stars and              

microlensing.  

Feature Engineering 

1. Distinction from baseline noise 

The baseline noise is continuous and the microlensing peak significantly stands out from             

it. Traditionally, to detect these type of significant peaks present in noise, an             

autocorrelation function (‘acf’) is used. The correlation of magnitude values with delayed            

copies of themselves is called autocorrelation. The maximum value of this           

autocorrelation function, where the energy of the signal is concentrated, is the point of              

perfect match of the signal under consideration. 

acf  =   [n] Y [n ]rk =  ∑
∞

n = −∞
Y *  − k  

maxacf = maximum(acf) 

Here, the time delay is k and Y is a set of ‘m’ magnitudes. Y[n] is simply the nth                   

sample. Thus, the ‘maxacf’ feature is computed.  

2. Excursions  

Excursion is the deviation of a signal from its usual path of values. The microlensing               

event is observed as an excursion from the baseline noise. The logarithm of ratio of the                

mean of measurements above the median and below the median is calculated to measure              

the excursion. This feature helps us determine whether the excursion is positive or             

negative. In the case of microlensing, we expect the excursion to be positive as the               

increase in brightness is measured as a decrease in magnitude (astronomical convention),            

resulting in a log argument greater than 1.  

xcursions  e = log(mean(A )med
mean(B )med

)  
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Here, is the set of observations (magnitude values) lying above the median Amed             

of the observations and is the set of observations (magnitude values) lying below    Bmed           

the median of the observations.  

3. Symmetry  

When the source star and lens star move out of alignment, the brightness of the source                

star gradually decreases and goes back to its normal path of values. This pattern of               

decrease in brightness is in symmetry with the increase in brightness as the stars move               

into alignment. Traditionally, to detect the similarity in two signals, a cross-correlation            

function (‘ccf’) is used. The correlation of the lightcurve with a time reversed copy of               

itself serves as the ccf in this case. The similarity is observed as a peak (maximum value)                 

in the ccf value since when two positive peaks or two negative peaks align, they make a                 

positive contribution to the integral.  

             ccf = [n] Y [− ] ∑
∞

n = −∞
Y *  n + k  

cf  maximum(ccf )c =   

Here, the time delay is k and Y is a set of ‘m’ magnitudes. Y[-n+k] is the                 

time-reversed measurement of Y[n].  

4. Periodicity  

Microlensing has a single occurrence, as it is nearly impossible for the same stars to               

perfectly align, more than once. Whereas, all the variable stars exhibit a specific             

periodicity. The mean frequency calculated with the power spectrum as a weighting            

function is measured as periodicity (‘omega_bar’) [10].  

Omega_bar = =ω  1( − 0.5
1+exp(−period))   

In order to calculate the periodicity, most of the existing methods assume even             

sampling. So, we use the Lomb-Scargle Periodogram [11], which helps compute periods            

(‘period’ in the formula above) for unevenly sampled data by doing a least squares fit of a                 
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single sinusoid to the data. The best fit occurs only at the correct periods. To find these                 

correct periods, the periodogram uses a brute force grid search optimizer which searches             

over a grid of period values specified by the user. This grid should ideally cover all                

expected periodicities in the data. The period range is set to (0.2, 1.2) since the expected                

periodicities of almost all the variable stars are bounded by these values. A detailed              

explanation of the method is documented in [17].  

5. Timescale of the event  

Microlensing events usually do not last very long (last upto a maximum of few weeks),               

so we want to filter out the patterns that span a considerable time period (typical variable                

stars). Width of the autocorrelation function (‘ACF_Width’) measures the timescale of an            

event and is judged by its standard deviation. A narrow acf generally implies a broad               

signal spectrum and vice versa as shown in figure 5 below; 

ACF_Width​ = ( [n] Y [n ])σmag ∑
∞

n = −∞
Y *  − k  

Here, is the standard deviation of the acf at every sample ‘mag’ σmag            

(magnitudes), and is called the width of the acf. The time delay is k and Y is a set of ‘m’                     

magnitudes. Y[n] is simply the nth sample. 

 
 

 

 

Figure 5: Width of autocorrelation function [18] 
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The goal of exploratory data analysis is to discover the underlying patterns or             

distributions in data using data visualization techniques. The scatterplots for some of the             

feature pairs (feature names, as designated above) calculated on the training set (depicted             

in figures 6-10 below), establish this.  

 
 
 

 

Figure 6: Scatter plot of maxACF vs Excursions 
 
 
 

Figure 6 depicts the distribution of values for the features ‘distinction from baseline             

noise’ and the ‘excursion’. 

 
 
 

 

Figure 7: Scatter plot of maxACF vs ccf 
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Figure 7 depicts the distribution of values for the features ‘distinction from baseline             

noise’ and the ‘symmetry’. 

 
 
 

 

Figure 8: Scatter plot of maxACF vs acf_width 
 
 
 

Figure 8 depicts the distribution of values for the features ‘distinction from baseline             

noise’ and the ‘timescale of the event’. 

 
 
 

 

Figure 9: Scatter plot of omega_bar vs ccf 

 

21 

 



 
 
 
 

Figure 9 depicts the distribution of values for the features ‘periodicity’ and the ‘timescale              

of the event’. 

 
 

 

Figure 10: Scatter plot of acf_width vs omega_bar 
 

 
Figure 10 depicts the distribution of values for the features ‘timescale of the event’ and               

the ‘periodicity’. 

It can be inferred from these plots that some of the combinations of these features already                

partially separate the boundaries of microlensing and variable star classes (for example, maxACF             

vs acf_width) and some show regularities (for example, omega_bar vs acf_width), where the             

variable stars have different periodicities but bounded timescales, in contrast with microlensing            

candidates. The true separating efficiency of these features can only be determined in the              

evaluation stage (section 3.3). Hence, we proceed with the next step in data preprocessing,              

cleaning the dataset. 

 

3.1.2 Data Cleaning 

Any erroneous values like NaN (not-a-number type in the data), would come up in the               
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exploratory data analysis. But, nothing like that was found, so the next preprocessing step,              

splitting the dataset into training, validation and test set is performed. 

 

3.1.3 Training, Validation and Test Data 

Feature engineering is applied to the microlensing and variable star samples from the OGLE and               

Gaia datasets. All five features are computed for each sample in the OGLE dataset and are used                 

as the training and validation datasets. And those computed for each sample in the Gaia dataset                

are used as the test dataset. 

The validation dataset is created using a k-fold cross-validation technique as follows; the             

data set is split into k equal parts and the kth part is used as the validation dataset while the                    

remaining k-1 parts are used as the training dataset. This is repeated k times (folds) such that the                  

classifier is trained on all the observations, leaving one part out each time. This is done in order                  

to generalize over the data. The choice for ‘k’ is not fixed and is at the discretion of the user. A                     

large value of ‘k’ results in large computation time. The divisor of the dataset is commonly used                 

as the value of k. Hence, in this case, k is chosen as 5.  

This completes the step of data preprocessing and the next step in model specification,              

‘model construction’ is discussed in the following section. 

 

3.2 Model Construction 

With the training, validation and test datasets obtained in the previous section, machine learning              

models applicable to the problem are identified (‘model selection’), the working of each of the               

identified models is discussed in detail and their applicability to this specific problem is              

explained (‘model building’).  

 

3.2.1 Model Selection 

As specified in section 1.3.2, model selection is done based on the identification of problem               
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(supervised or unsupervised) and the inferences drawn from exploratory data analysis. The            

problem was identified to be supervised, specifically, a classification problem.  

It was also mentioned that, if a clear separation of classes (variable stars and              

microlensing, red vs blue) is observed in the distribution of data, models like LDA, Logistic               

Regression, QDA, RF etc., can be used, due to their relationship with the distribution of data. In                 

brief, while LDA and Logistic Regression generate a linear separating boundary between class             

distributions, QDA and RF generate complex separating boundaries between class distributions.           

The features represented in figures 6-8 seem to linearly separate the classes, whereas the ones in                

figures 9,10 do not show a linear separation. Each of these models and their applicability is                

studied in detail in the following section. 

 

3.2.2 Model Building 

In this section, each of the four machine learning models selected; LDA, Logistic Regression,              

QDA and RF are discussed. 

3.2.2.1 Linear Discriminant Analysis 

The working and application of LDA are discussed separately as follows [13]; 

3.2.2.1.1 Working  

Discriminant analysis is a technique used to determine the set of independent features which help               

in distinguishing the classes. This analysis technique uses a discriminant function in finding the              

features which are independent. Discriminant function is a functional mapping to obtain a linear              

combination of features to discriminate between the classes well. 

LDA comprises a linear discriminant function and has a linear separating boundary            

between the classes (in blue and red) as shown in the figure 11 below. LDA makes some                 

assumptions about the data; the data comes from a Gaussian distribution and each class has the                

same covariance.  
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Figure 11: LDA boundary (black solid line)[13] 
 
 
 

With the above mentioned assumptions, LDA performs the following steps;  

● It computes the mean  for each of the classes in the data.(μ )k  

● The covariance  for each class in the data is also computed. LDA assumes =  (Σ )k  Σk  Σ   

● It makes predictions on the data by estimating the probability of each new input sample               

belonging to a certain class. 

● The class probabilities are estimated using Bayes’ Theorem; 

 arg max
k

P ( X=x
K=k ) = π  f (x)k k

(π  f (x) )∑
 

i
i i  

   

● The class probability which maximizes the discriminant function below is predicted as            

the corresponding class for the input.  

25 

 



 
 
 
 

arg max
k

π  f (x)k k

 f (x)∑
 

i
πi i

= arg max
k

(log )(f )k (x) + log (π )k  

● Now, we assume the discriminant function to be; 

δk (x) = log (f )k (x) + log (π )k  

● Substituting the assumptions of LDA in the discriminant function above; 

   − Σ x μ Σ μδk (x) = μT
k

−1 + 2
1

k
−1

k + ln (π )k  

where,  

prior probability, ,πk = n
nk  

estimated probability of ​‘x’ ​belonging to class ‘k’ based on the first assumption of LDA,

,f k (x) =
(2π) Σp/2| k|

1/2
exp (x−μ ) Σ (x−μ )( 2

−1
k

T −1
k k )  

number of samples of class ‘k’ in the training data, ,nk  

total number of samples in the training data, ,n   

features in the training data, x  

predicted class, .k   

As the definition and working of LDA have been established, its applicability to the              

problem at hand is discussed. 

3.2.2.1.2 Application 

Each of the above mathematical steps is integrated into a ‘Python’ programming package,             

‘sklearn.discriminant_analysis.LinearDiscriminantAnalysis’ . 

Model Fitting  

This step trains the LDA, in brief, helps it to learn the mapping between existing               

input-output pairs (training data). It accepts as inputs (parameter ‘X’ in the function), the 5 -                

feature training dataset and their corresponding labels (parameter ‘y’ in the function) and follows              

the working of LDA. 

Model Predictions 

This step tests the LDA, in brief, given the validation and test datasets (new inputs), it makes                 
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predictions about their labels by examining their class probabilities (detailed in ‘working’            

above).  

An evaluation of these predictions will be discussed in section 3.3.  

3.2.2.2 Quadratic Discriminant Analysis 

The working and application of QDA are discussed separately as follows; 

3.2.2.2.1 Working 

QDA comprises a quadratic discriminant function, unlike LDA, and has a quadratic separating             

boundary between the classes (as shown in figure 12 below, in blue and red). QDA makes almost                 

similar assumptions about the data; the data comes from a Gaussian distribution but each class               

uses its own estimate of covariance. With these assumptions, QDA also performs the same steps               

as LDA. The only difference is that the class probabilities maximize a quadratic discriminant              

function below [4]; 

− (x ) Σδk (x) = 2
1 log Σ|| k

|
| − 2

1 − μk
 T −1

k (x )− μk + log (π )k  

 
 
 

 

Figure 12: QDA boundary (black solid line)[13] 
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3.2.2.2.2 Application 

Each of the above mathematical steps is integrated into a ‘Python’ programming package,             

‘sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis’. 

Model Fitting  

This step trains the QDA, in brief, helps it to learn the mapping between existing input-output                

pairs (training data). It accepts as inputs (parameter ‘X’ in the function), the 5 - feature training                 

dataset and their corresponding labels (parameter ‘y’ in the function) and follows the working of               

QDA. 

Model Predictions 

This step tests the QDA, in brief, given the validation and test datasets (new inputs), it makes                 

predictions about their labels by examining their class probabilities (detailed in ‘working’            

above). An evaluation of these predictions will be discussed in section 3.3. 

3.2.2.3 Logistic Regression 

The working and application of Logistic Regression are discussed separately as follows [12,18]; 

The function which maps the inputs to outputs while using logistic regression is called a logistic                

function and is derived in the ‘working’ section. A logistic or sigmoid function applied on an                

input ‘x’ is as follows [3]; 

(x)f = 1
1+e−x  

The function is s-shaped and is depicted in figure 13 below. The function always maps 

the inputs to a range of outputs (0,1).  

3.2.2.3.1 Working 

Given a set of two features separable by a linear boundary, the equation of the linear      , x )(x1  2            

boundary would be . ​Plugging in the values of a point (a,b) in the boundary   x xβ0 + β1 1 + β2 2             

equation would give . If (a,b) lies in the region where the class label is ‘1’,   a bg β=  0 + β1 + β2              

the boundary equation would lie in the region (0,∞). If (a,b) lies in the region where the class                  

label is ‘0’, ‘g’ would lie in the region (-∞,0). And if (a,b) lies on the boundary then the class                    

28 

 



 
 
 
 

label is undecided. Let P(X) denote the probability of occurrence of an event X (belonging to                

class ‘1’). The ratio of the probability of an event happening, to not happening is called the odds                  

ratio, and needs to be mapped to the region (-∞,∞). Hence, we take a logarithm of the P (X)
1−P (X)                 

odds ratio (log-odds). Odds ratio = , since ‘g’ is the logarithm of the odds ratio. Thus, the      eg             

logistic function, P(X) = is obtained.eg

1+eg  

 
 

 

Figure 13: Logistic regression boundary (green solid line) [16] 
 

 
The most important steps in logistic regression are; 

● The logistic regression model makes a prediction about the probability of the input             

belonging to class ‘0’. If this probability exceeds 0.5, the output is a prediction for the                

default class (class ‘0’), otherwise it is for class ‘1’.  
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● The estimation of coefficients ( ) is often the most important step in logistic regression.    β           

These coefficients are used as weights to the input features (‘x’).  

● Averaging P(X) over the entire training dataset will give the likelihood of a new data               

point belonging to the class ‘1’. The aim of logistic regression is to maximize this               

likelihood. 

● Maximum likelihood estimation is used to obtain the best estimate of these coefficients.             

This is done by taking a derivative of the likelihood function described above and              

equating it 0. 

● The estimation is an iterative process, minimizing the cost function while training and             

selecting the coefficients. 

● The cost function is a sum of the squared errors between the predicted and true outputs.                

Gradient descent minimizes the cost function.  

● Gradient descent computes the derivative of the cost function with every update of             

coefficients until a global minima of the cost function is reached.  

3.2.2.3.2 Application 

Each of the above mathematical steps is integrated into a ‘Python’ programming package, called              

scikit-learn. Specifically, ‘sklearn.linear_model.LogisticRegression’ is the function with all the         

above mathematical steps programmed.  

Model Fitting 

Since there are five input features, the logistic function would be; 

(x) f = eg

1+eg  

where g​ = ,x x x x xβ0 + β1 1 + β2 2 + β3 3 + β4 4 + β5 5  

           represent the regression coefficients,β0−5  

            represent the five input features computedx1−5  

This function is used to map the inputs to outputs (variable star and microlensing, class ‘0’ and 

class ‘1’). 
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Model Predictions  

The predictions are made by evaluating the probability of an input belonging to class ‘0’. 

3.2.2.4 Random Forests 

The working and application of Random Forests are discussed separately as follows; 

3.2.2.4.1 Working 

Random forests, simply put, are an aggregation of decision trees. Decision tree is a supervised               

learning model, in which predictions are done based on decision rules on features (like setting a                

threshold value in case of numerical features). In brief, every decision tree has nodes, each of                

which is a decision rule. These decision rules are decided (deciding the threshold value, for               

example) based on their ability to split the classes well. Each node could have several daughter                

nodes under it. For example, if the main node has a decision rule for variable ‘x’ as x<5, possible                   

daughter nodes would have decision rules like, x>2, x<3 etc.  

In order to make predictions, each new sample is sent to the root node (first node in the                  

decision tree, superset of all decision rules), and passed through the corresponding daughter             

nodes until it reaches a leaf node (last node, class label). Several such decision trees combined                

together make a random forest. Here, the new input sample is sent to each of the decision trees in                   

the forest and the mode of the results from leaf node is selected as the final class. 

It consists of the following steps; 

● A subset of features ‘i’ from the total number of input features ‘j’ is randomly selected                

such that i << j. 

● Calculate the node which can be the best split point.  

● Split that node into daughter nodes using best split method. 

● Repeat the above 3 steps until we are left with the leaf node (‘output’). 

● One iteration of the above steps creates a ‘tree’. Create ‘n’ such random trees to create a                 

random forest 

The best split is the value of a feature for which the cost is minimum. This completes the                  
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creation of the random forest. The next step is to make predictions. It consists of the following                 

steps; 

● Pass the input features in the test dataset to each random tree, predict the outcome and                

save it. 

● For each sample, calculate the number of votes for each class.  

● The class with maximum votes is considered as the final prediction. 

3.2.2.4.2 Application 

Each of the above steps is integrated into a ‘Python’ programming package, called scikit-learn.              

Specifically, ‘sklearn.ensemble.RandomForestClassifier’ is the function with all the above steps          

programmed.  

Model Fitting 

Since this is a classification problem, ‘gini index’ is used as the cost function. It calculates the                 

purity of the groups created by the best split point. A ‘0’ gini index indicates perfect purity i.e.,                  

class samples are separated into exactly two groups (binary classification).  

Model Predictions 

The predictions on the test set are made by using the steps described in the predictions part of the                   

random forest working. 

Since all the classifiers have been defined and the application of training, test and              

validation datasets generated in section 3.1.3 is discussed, all of them are evaluated in the               

following section. 

 

3.3 Evaluation 

Cross-validation is a method which evaluates the efficiency of a built classification model on real               

data. ​The quality of each of these classifiers using 5-fold cross validation (discussed in section               

3.1.3) is assessed. ​This is repeated 5 times (folds) such that the classifier is trained on all the                  
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observations, leaving one part out each time. The results of all 5 folds are averaged to produce a                  

single error estimate. ​In this way the error rate on the training data is determined.  

The metrics evolved to evaluate the results of these four classifiers on the selected              

datasets are; total error rate, false alarm rate and missed detection rate. Each of these is defined,                 

after which their values for model - A are specified. 

Total error rate: ​The total proportion of wrong predictions in the dataset. 

Total Error Rate = T otal number of  samples

true labels−predictions∑
 

 
| |

 

A true positive (tp) is an outcome where the model correctly predicts the positive class               

(label = ‘1’). Similarly, a true negative (tn) is an outcome where the model correctly predicts the                 

negative class (label = ‘0’). A false positive (fp) is an outcome where the model incorrectly                

predicts the positive class. And a false negative (fn) is an outcome where the model incorrectly                

predicts the negative class. 

False alarm rate: It represents the misclassification rate of the negative class. It is a ratio                

of number of false positives and sum of false positives and true negatives. It is mathematically                

defined as; 

False alarm rate = fp
fp+tn  

Missed detection rate: It represents the misclassification rate of the positive class. It is a               

ratio of number of false negatives and sum of false negatives and true positives. It is                

mathematically defined as; 

Missed detection rate = fn
fn+tp  

 
 
 
 
 
 
 
 

33 

 



 
 
 
 

 Training error Total error rate False alarm rate Missed detection rate 

LDA 0.98669937 0.01487352 0.08559219  0.00529373 

QDA 0.9742566 0.02688989  0.17571749 0.00266934 

Logistic 
Regression 

0.95451891 0.04632174  0.11251501 0.03944792 

Random Forests 0.99914184 0.01601474 0.05743934  0.01113635 

Table 1: Evaluation metrics for model - A 
 
 
 

An important observation about the error rates, QDA is always expected to perform better 

than LDA since LDA is just a special case of QDA. This is observed in the training dataset but 

not particularly followed in the validation dataset, which indicates that it overfits on the training 

data. Additionally, we can’t afford any missed detections of microlensing because the event is 

very rare (1 in 400,000 in the bulge, as reported by the MACHO project [1]). But, since the total 

error rates and missed detection rates were low, this model was applied on the test dataset.  

In order to make predictions on the test set, each of the classification algorithms makes its                

predictions. First, for each light curve in the test set, we calculate its "score" or the number of                  

classifiers that labelled it as a potential microlensing candidate. In an ideal case, we would see                

only 4's and 0's. The former corresponds to the case when all algorithms say that a given sample                  

is a microlensing candidate, the latter to the case when all agree that it is not. As we might                   

expect, there are also some 1's, 2's and 3's - samples for which different algorithms give us                 

different predictions. We choose to focus only on the "strong candidates", i.e., samples which              

have been unanimously declared as microlensing candidates, to be very sure of the predictions.              

Using this method, 149/3194 candidates were classified as strong microlensing events. The            

histogram in figure 14 below, shows a detailed breakdown of these predictions. 
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Figure 14: Classifier votes for candidates 
 
 
 

The results are unsatisfactory, as we expect to see very few microlensing events in the               

whole dataset. In addition to that, to establish an automated classifier and perform better on               

unseen data (which is our intended use case- LSST, Gaia), it is important to avoid manually                

extracting features (as done in model A) and wave fitting; evaluating the fit of parameters               

relevant to a microlensing event​, to light curves from the test set. Hence, this method was                

discarded in favor of a model - B described in the next section.  
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4. MODEL SPECIFICATION - B 

 

Based on the evaluation results for model - A and the drawbacks mentioned, it is evident that a                  

new model (arbitrarily named ‘B’) needs to be evolved. All the steps starting from data               

preprocessing to evaluation are performed again. Based on the evaluation results, it is decided              

whether to use this model or iteratively start by evolving another new one.  

The scope of this section includes application of each step in the model specification part               

of the general machine learning pipeline to the problem at hand.  

 

4.1. Data Pre-Processing 

Each of the parts comprised; exploratory data analysis, data cleaning and data splitting specific              

to this model are discussed in detail.  

 

4.1.1 Exploratory Data Analysis 

Section 3.1.1 mentioned the need for fixed length input vectors and the two methods to achieve                

it. The first method, feature engineering, was performed and evaluated as a part of model A. In                 

model B, the second method, interpolation, is performed and evaluated.  

Interpolation is the method of inserting new data points into a range of discrete data               

points specified. Before directly performing interpolation on all the datasets, it is important to              

analyze the consequences of applying classifier models to this data. Hypothetically, interpolation            

is performed on the variable star and microlensing data from the training dataset specified in               

section 2.3. Of all the magnitude observations in a typical microlensing sample, only a few (part                

where the exact microlensing event occurs) actually relate to microlensing. The rest of the              

observations are a part of the baseline noise. As mentioned in section 3.2.2, classifiers learn the                

underlying class distribution of data. Therefore, given a set of microlensing samples, the             

classifiers learn an incorrect distribution of data. In order to avoid this, observations pertaining to               
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only the microlensing event are selected to represent the microlensing class, after which each of               

the samples is interpolated. The method to do this is explained below and the result is depicted in                  

figure 15 below.  

● A similarity measure (cross-correlation) is performed between, a reference, confirmed          

microlensing light curve (from OGLE) and microlensing samples in the training data set.  

● We examine the peak locations (cross-correlation peak means maximum similarity as           

discussed in section 3.1.1). We then note the peaks before and after the microlensing              

peak (peak with minimum magnitude). The part of the light curve lying between these              

two peaks depicts the phenomena of microlensing, as shown in figure 14 below.  

● In order to find the peaks, a peak detection function is used. It performs a continuous                

wavelet transform by convolving a ricker wavelet with each microlensing sample using            

various width sizes, to which the wavelet is stretched. Ricker wavelet is modeled as the               

following function; , where and is the width A 1( − a2
x2 ) exp −( a2

x2 )   A = 2
( )π√3a 0.25   a     

size,  is the input wave to the function.x  

● We need to choose the range of these widths such that they cover the expected widths of                 

the peaks we want to detect. Therefore, tuning of peak widths in the peak detection               

function, is essential to get precise locations for the beginning and end of a microlensing               

event. In this specific case, a width range of 13-20 was found to be optimal in detecting                 

the positive peaks accurately and a width range of 10-50 was found to be optimal in the                 

case of negative peaks.  

● These specific parts of the microlensing samples are all extracted to form the class of               

microlensing. 

● The variable star samples, microlensing samples after cross-correlation (training dataset),          

and the samples in the test dataset are all linearly interpolated to contain the number of                

observations equal to the maximum number of observations present in their class samples             

(microlensing or variable stars). 
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Figure 15: The part of curve selected by peak detection method 
 
 
 

The goal of exploratory data analysis is to discover the underlying patterns or             

distributions in data using data visualization techniques. The mean vs variance plot for             

the data is depicted in figure 16 below. 

 

Figure 16: Mean vs Variance plot to examine class decision boundary 
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It can be inferred from this plot that the distributions of these datasets clearly separate the                

boundaries of microlensing and variable star classes. Hence, we proceed with the next step in               

data preprocessing, cleaning the dataset. 

 

4.1.2 Data Cleaning 

As there were no erroneous samples observed in the training dataset, there is no need for any                 

data cleaning to be performed.  

 

4.1.3 Training, Validation and Test Data 

Interpolated magnitude observations for each sample in the OGLE dataset are used as the              

training and validation datasets. The microlensing class samples after cross-correlation are           

interpolated and used in the training dataset. And interpolated magnitude observations for each             

sample in the Gaia dataset are used as the test dataset. 

The validation dataset was created as follows; A fraction of light curves each from              

variable stars and confirmed microlensing candidates (from the datasets mentioned above), were            

selected such that the number of resulting time segments for each class is balanced. In order to                 

generate these time segments, a segmentation pipeline is used. It uses the sliding window              

technique to choose fixed length blocks of overlapping data, extracts time segments of these light               

curves and labels each one of them based on their class, variable star or microlensing candidate.                

The number of samples and time segments in training and validation for each of the classes are                 

mentioned towards the end of section 4.1.3. 

A block length of 48 with an overlap of 10 is chosen, based on classifier results for each                  

length upto the number of observations in the variable stars class (since it is the lower of the two                   

classes and increasing it beyond that would leave variable stars with no data for the remaining                

length). Thus, a training dataset for the baseline classifier was created using those labelled time               

segments. Similarly, using the remaining light curves, a validation dataset was created. This             
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method ensures that samples of both variable stars and microlensing candidates are contained in              

the training and validation datasets and there is no overlap of light curves between the two                

datasets.  

The datasets are further preprocessed to organize them into a form required for a              

classifier operating on fixed length sequences. In particular, all the samples are shuffled to avoid               

any learning of order of data, each sample in the newly created training and validation dataset                

has 48 observations (equal to the chosen block length), labeled as 49 features (48 magnitude               

observations and 1 class label), for the classifier to learn. The class label feature is excluded from                 

the validation dataset when given as input to the classifier, since it has to predict the labels on its                   

own and the class label feature is used to evaluate the accuracy of those predictions. The details                 

of the training and validation are; 

 
 
 

 Microlensing 
samples 

Microlensing 
time segments 

Variable stars 
samples 

Variable stars 
time segments 

Training 30 720 767 767 

Validation 31 744 767 767 

Table 2: Training and validation dataset compositions 
 
 
 

4.2 Model Construction 

With the training, validation and test datasets obtained in the previous section, machine learning              

models applicable to the problem are identified (‘model selection’), the working of each of the               

identified models is discussed in detail and their applicability to this specific problem is              

explained (‘model building’).  
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4.2.1 Model Selection 

As mentioned in section 3.2.1, in the presence of a clear separating boundary between the two                

classes, baseline classifiers like QDA can be used. The results from exploratory data analysis              

present a class distribution which seems to be separable by a quadratic separation boundary              

(intuitively). Hence, QDA is applied to the selected training, validation and test datasets.  

 

4.2.2 Model Building 

Since the relevant literature and application of QDA is clearly discussed in section 3.2.2, ​the               

model is directly applied to the training and validation data described in section 4.1.3. The built                

model is evaluated in the following section. 

 

4.3 Evaluation 

The metrics evolved to evaluate the results of QDA on the selected datasets are; false alarm rate,                 

missed detection rate (defined in section 3.3) accuracy score and confusion matrix. Accuracy             

score and Confusion matrix are defined, after which the values of all the metrics for model - B                  

are specified. 

Accuracy score: It is a ratio of number of correct classifications (given label = predicted               

label) and total number of samples being classified. It is mathematically defined as; 

ccuracya (y, )y︿ = 1
nsamples

∑
n −1samples

i=0
I (y =y )i  

︿  

where,  ​is an indicator function, takes the value of 1 only when ​a ​is equal to​ b​, otherwise 0.Ia=b  

Confusion matrix: It helps to evaluate the performance of a classifier in supervised             

learning problems. Each row of the matrix represents the samples in an actual class while each                

column represents the instances in a predicted class. The components of a confusion matrix are;               

true positive, true negative, false positive and false negative.  
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We achieve an accuracy score of 96.89% , false alarm rate of 1.04% (percentage of               

variable stars misclassified as microlensing) and missed detection rate of 5.24% (percentage of             

microlensing candidates misclassified as variable stars). The confusion matrix for this           

classification problem is as follows; 

 
 
 

 Predicted Labels 

 
 
Actual Labels 

 Variable Stars Microlensing 

Variable Stars 759 8 

Microlensing 39 705 

Table 3: Confusion matrix of QDA  
 
 
 

Upon inspecting the microlensing time segments incorrectly detected as variable star time            

segments, it was found that they belonged to 27 microlensing samples, out of a total of 31                 

samples in the validation dataset. This is a major disadvantage since the classifier is unable to                

detect most of the microlensing events. We can’t afford any missed detections of microlensing              

because the event is very rare (1 in 400,000 in the bulge, as reported by the MACHO project                  

[1]), as mentioned previously.  

Another notable disadvantage was that any data set that needs to be passed through this               

classifier needs to have a fixed length, which indicates the need to interpolate. But, this could                

greatly disrupt the quality of data. In some cases, there could be a change of shape of the light                   

curve itself by adding too many observations and stretching them out (interpolation) or by              

discarding important observations. We cannot afford to change the shape by attempting to             

interpolate it to a longer timescale since microlensing events don’t usually last for longer than a                

month. And discarding observations could stray us away from very valuable discoveries as it              
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could contain exoplanet information, which would only be a small blip in the microlensing light               

curve.  

Considering the above inferences, it is clear that another model to resolve the above              

mentioned issues, needs to be evolved. This is discussed in detail in the following section. 
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5. MODEL SPECIFICATION - C 

 

A model (named ‘C’ arbitrarily) is evolved to address the issues in models A and B. All the steps                   

pertaining to model specification in the machine learning pipeline are performed again.  

 

5.1 Data Pre-Processing 

All the steps starting from exploratory data analysis are performed again and described in the               

following sections. 

 

5.1.1 Exploratory Data Analysis 

Feature engineering and interpolation were proved unsuitable for this problem in sections 3.3 and              

4.3 respectively. Therefore, in this model, data is used in its original form, without any               

preprocessing. The inputs are variable length (length of a sample equal to the number of               

observations present in it). Hence, the next step, data cleaning is performed. 

 

5.1.2 Data Cleaning 

There were no erroneous samples observed in the dataset. Hence, the next step, creation of               

training, validation and test data is performed. 

 

5.1.3 Training, Validation and Test Data 

The OGLE datasets mentioned in section 2.3, are used in their original form as the training and                 

validation datasets. The Gaia dataset is used in its original form as the test dataset. Two cases are                  

mentioned in the creation of training and validation datasets; 

● Case-1: 30% of light curves from variable stars data and 50% of light curves from the                

confirmed microlensing events data (from the training dataset mentioned in section 2.3),            

were selected in order to achieve some balance between the training samples in two              
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classes, variable stars and microlensing. Here, each of these light curves is labelled based              

on their class, variable star or microlensing candidate. Thus, a training dataset was             

created using these labelled light curves. Similarly, using the remaining light curves from             

the samples of microlensing and 15% of remaining light curves from the samples of              

variable stars , a validation dataset was created.  

● Case-2: In order to evaluate its accuracy for a highly imbalanced dataset, 80% of the               

samples each from training examples of variable stars and microlensing are used. Using             

the remaining 20% light curves in each class,  a validation dataset was created.  

The resulting data set compositions are as follows; 

 
 
 

  Microlensing samples Variable stars samples 

Case-1 Training 112 534 

Validation 100 150 

Case-2 Training 169 1227 

Validation 43 307 

Table 4: Dataset compositions 
 
 
 

The generated training, validation and test datasets are used in the construction of a              

model, discussed in the following section. 

 

5.2 Model Construction 

With the training, validation and test datasets obtained in the previous section, machine learning              

models applicable to the problem are identified (‘model selection’), the working of each of the               

identified models is discussed in detail and their applicability to this specific problem is              

explained (‘model building’). 
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5.2.1 Model Selection 

The model selected should be able to make predictions on variable length inputs. The most               

popular model which can achieve this is a Recurrent Neural Network (RNN). This model,              

applied to the datasets generated in section 5.1.3, is discussed in detail in the following section. 

 

5.2.2 Model Building 

This section will briefly describe the working of neural networks, followed by an improved              

version, recurrent neural networks and its application to the problem at hand. It is important to                

understand the elements and working of a neural network since they are the building blocks of                

RNNs as well. 

5.2.2.1 Neural Networks 

It is a type of a machine learning model, which mimics the working of human brain in its                  

operation and is used to recognize patterns in data. While all the models described in the                

previous sections map given inputs to outputs based on specific functions; neural network creates              

a function to map any input to any output. It is therefore called, Universal Approximator. It                

learns the correct function to relate all such known input-output pairs, given a training dataset.  

The most basic element in a neural network is a node and is depicted in figure 17 below.                  

A node is simply where computations happen. Several nodes combine to form a layer. Several               

such layers combine to form a network. The nodes in a neural network are like neurons in the                  

human brain. Hence the name, neural network.  
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Figure 17: Elements in a node of the neural network [14] 
 
 
 

5.2.2.1.1 Working 

At every node, the input data is combined with some coefficients (‘weights’), which either              

amplify or dampen that particular input. This, simply put, is assigning significance to an input in                

solving a particular problem. A sum of the product of these combinations of inputs and weights                

is passed through the activation function. The activation function decides the extent of progress              

of this input (through the network) to affect the final output (like class prediction in a                

classification problem).  

 
 
 

 

Figure 18: Basic structure of a neural network [14] 
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The structure of a neural network is depicted in figure 18 above. The inputs are fed to the                  

input layer of a neural network. Based on the significance assigned to each of those inputs, they                 

are either turned on or off. The results of this layer are passed to the next layer, hidden layer,                   

where the same process is repeated and its results are given to the final output layer, where we                  

obtain the class predictions as outputs (in case of a classification problem). Based on the error in                 

classification, the weights are adjusted and the process is done again. It can be mathematically               

defined in three steps [14]; 

● Scoring the input: Input * Weight = Guess (Based on activation function) 

● Calculating the associated loss: Truth - Guess = Error (Based on loss function) 

● Updating the model: Error * Weight's contribution to error = Adjustment of weights             

(feedback) 

This type of network is called a feed-forward network and act only on the current inputs                

and don’t consider their past inputs to perceive the future inputs.  

A neural network chooses initial weights at random and updates them by using gradient              

descent as discussed in section 3.2.2. The amount of change these coefficients should have in               

each update is decided by the step size (or learning rate). The learning rate is selected by using                  

various optimization algorithms like Root Mean Squared Propagation (RMSprop) etc., which           

calculates the learning rate adaptively, dividing the learning rate by an average of squared              

gradients in each update. 

5.2.2.2 Recurrent Neural Network 

Recurrent networks, another type of neural networks, remember the decision they made on the              

previous input fed to make a decision on the input at the next time step. This is very helpful in                    

the case of sequential inputs like time series inputs where each of the inputs form a sequence and                  

are related to each other.  

5.2.2.2.1 Working 

They are neural networks with memory. A recurrent neural network is depicted in figure 19. 
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Figure 19: Recurrent Neural Network [15] 

 

 

 

In the figure 19 depicted above, ‘ ’ is the input fed to a chunk of neural network ‘A’      X t             

(usually having a single layer), to give the output ‘ ’. The loop around ‘A’ indicates the ability          ht         

of the network to pass information from one time step to the next, as depicted in the right hand                   

side. 

This memory capability of recurrent neural networks reduces with increase in time i.e.,             

they can’t memorize the inputs for long periods, which could be an issue in the case of sparse                  

inputs spread over a long time period. In order to address this issue, a class of RNNs called Long                   

Short Term Memory Networks (LSTMs) were evolved.  

5.2.2.2.2 Applicability 

The sequential learning of RNNs is very helpful for the problem at hand since, each sample in                 

the datasets under consideration forms a time series. But, astronomical data could be sparse,              

depending on the sampling rate of the survey documenting the data. So, choosing an RNN which                

doesn’t have the capability to perform well on sparse data, wouldn’t be ideal. Because, the               

problem identified is to build an automatic classifier to detect microlensing candidates in any              

given dataset. The objective is to build a model which can scale well to a dataset having a high                   

number of samples and a high number of observations in each sample. Hence, a model which can                 
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scale well is required.  

5.2.2.3 Long Short Term Memory Networks  

They are a special class of RNNs. Remembering information for long periods of time is the                

default behaviour of LSTMs.  

5.2.2.3.1 Working 

As mentioned in the case of an RNN, the repeating neural network in each time step (‘A’),                 

usually consists of a single layer. Whereas, in the case of an LSTM, it consists of four layers                  

interacting in a very different way. The core functionality of an LSTM is established by the ‘cell                 

state’, to which information is added and removed using gates in the LSTM. This process is                

discussed in detail below through figure 20 [5].  

 

 

 

 

Figure 20: LSTM [15] 

 

 

 

The four yellow boxes in a network indicate various layers in an LSTM. These layers               

decide which information needs to be evicted, stored in the cell state (the horizontal line at the                 
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top carrying state information from one network to the other) and select the outputs accordingly.               

The first sigmoid layer (first yellow box) is the ‘forget gate’ and decides which information               

needs to be evicted from the cell state. The second sigmoid layer, the ‘input gate’ decides which                 

weights we will update and the next tanh layer creates the new weights to be used. The ‘+’,‘x’                  

and ‘+’ operations are all used to update the cell state (forget and store information). The final                 

sigmoid layer decides which parts of the cell state we will output. The ‘tanh’ in pink merely                 

pushes the values to be in the range of -1 to +1 and is multiplied with the output of the sigmoid                     

layer to create the final output and send to the next network in the loop. 

Although LSTMs essentially use variable length inputs to generate class predictions (‘0’            

or ‘1’ for binary classification), the inputs need to have a fixed length. Therefore, all the variable                 

length inputs are padded with zeros to the left of the first observation in each sample, such that                  

their length equals the maximum length of the sequences present. This is fed to the RNN along                 

with a mask, containing ones only where the data is present and the padded values masked as                 

zeros. The RNN simply copies the previous state as the current state whenever it encounters a ‘0’                 

in the mask i.e., it doesn’t affect the learning process. Whereas, whenever it encounters a ‘1’ in                 

the mask, it memorizes the input and changes the state, i.e., it affects the learning process. In this                  

way, LSTMs handle variable length inputs. 

5.2.2.3.2 Application 

This is the most ideal model for the problem at hand because it can handle sparse time series data                   

very well, very easily. It is applied to the problem at hand using the given resources. The                 

training, validation and test datasets generated in 5.1.3 are padded with zeros as mentioned in the                

previous paragraph and then, given as an input to the LSTM model.  

This LSTM model is used with the following hyperparameters ​(configurable variables as            

defined in section 1.3.2) crucial in training any neural network​; ​activation function, loss function              

and dropout.​ ​The hyperparameters applicable to this problem are discussed;  
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● Sigmoid Activation Function: An activation function is responsible for generating the           

mapping function between inputs and outputs, and maintaining the universal          

approximation characteristic of the neural network. Hence, they need to be non-linear in             

nature. ‘Sigmoid’ is chosen as the activation function for the problem at hand. The              

activation function of a sigmoid is inversely proportional to [6]. The non-linear         e 1 +  −x  
 
    

nature of the sigmoid function helps the output to stay in the range (0,1), which is our                 

desired range of outputs.  

● Binary Cross-Entropy Loss Function: A loss function computes the cost associated with            

every decision regarding the output. Some of the loss functions used are binary             

cross-entropy, squared error, euclidean distance. Cross-entropy loss is defined as; 

H(p,q) =  p(x) log q(x)Σ  

Here, ‘p’ is the true label and ‘q’ is the predicted value from the model used. Binary                 

cross-entropy is used when ‘p’ has only two possible labels, in short, for binary              

classification problems, such as the problem at hand.  

● Optimization algorithm: RMSprop algorithm is one of the basic adaptive learning           

techniques, so this is used first as the optimization algorithm. If the results are not               

satisfactory, other optimization algorithms need to be implemented.  

● Dropout: Adding dropout probability ‘p’ as a hyperparameter in a neural network means             

that nodes, are kept with a probability of ‘p’ during the training phase of a model. The                 

nodes are chosen randomly during each epoch (iteration). A co-dependency is developed            

amongst nodes during training, resulting in ‘over-fitting’, which curbs a model’s ability            

to perform with equal ability (as performed on training data) on unseen test data. Dropout               

helps to eliminate over-fitting. ​A dropout of 0.007 is finalized after tuning to several              

other values.  

All the above parameters are carefully tuned to arrive at the best classification model.              

This completes the construction of model ‘C’. An evaluation for both the cases (mentioned in               

section 5.1.3) applied to the built LSTM model, is discussed in the following section. 
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5.3 Evaluation 

The metrics chosen to evaluate model ‘C’ are accuracy score and confusion matrix (described in               

section 4.3). The parameter values selected, training, validation and test split details, accuracy             

score and confusion matrix are tabulated below; 

 
 
 

Training  
[Variable Stars: Microlensing] 0:1 

534:112 

Validation 
[Variable Stars: Microlensing] 0:1 

150:100 

No. of Nodes 
Input-Hidden-Output 

1-40-2 

Batch Size 10 

No. of Epochs 3 

Dropout 0.1 

Validation Accuracy ~99.2 

Table 5: Parameters used in LSTM for case-1 
 

 
 

 Predicted Labels 

 
 
Actual Labels 

 Variable Stars Microlensing 

Variable Stars 148 2 

Microlensing 0 100 

Table 6: Results for case-1 
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Training  
[Variable Stars: Microlensing] 0:1 

1227:169 

Validation 
[Variable Stars: Microlensing] 0:1 

307:43 

No. of Neurons 
Input-Hidden-Output 

1-40-2 

Batch Size 10 

No. of Epochs 3 

Dropout 0.007 

Validation Accuracy ~99.7 

Table 7: Parameters used in LSTM for case-2  
 
 
 

 Predicted Labels 

 
 
Actual Labels 

 Variable Stars Microlensing 

Variable Stars 306 1 

Microlensing 0 43 

Table 8: Results for case-2  
 
 
 

It is clearly indicated that the classifier never misses the detection of microlensing events              

in the validation dataset (even when there is a high class imbalance), which is of primary interest                 

to us.  

Several attempts were made to apply models ‘B’ and ‘C’ to the Gaia dataset, but given                

the low number of recorded observations for each star, it is difficult to confirm an event.                

Interpolating the Gaia dataset was observed to stretch out the curve and entirely change the               
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structure of almost all the light curves since there are very few observations, so this is not a                  

reliable pre-processing method. 

Since the application of these models to the test dataset wasn’t possible, another dataset              

with a high number of observations for each sample (MACHO), was considered. The details of               

this dataset are mentioned in section 2.3. This was used as an additional validation dataset in                

order to test if the built model can scale to datasets with a high number of observations per                  

sample, with similar performance.  

The training and validation datasets are created as follows; 80% of light curves from              

variable stars data and 100% of light curves from the confirmed microlensing events data (from               

the training dataset mentioned in section 2.3), were selected. Here, each of these light curves is                

labelled based on their class, variable star or microlensing candidate. Thus, a training dataset was               

created using these labelled light curves. Similarly, using the remaining 20% of light curves from               

the samples of variable stars and all the light curves from the samples of MACHO microlensing                

events, a validation dataset was created. ​The results are tabulated below; 

 
 
 

Training  
[Variable Stars: Microlensing] 0:1 

1227:212 

Validation 
[Variable Stars: Microlensing] 0:1 

307:13 

No. of Neurons 
Input-Hidden-Output 

1-40-2 

Batch Size 10 

No. of Epochs 1 

Dropout 0.007 

Validation Accuracy 100 

Table 9: Parameters used in LSTM for validation with MACHO 
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 Predicted Labels 

 
 
Actual Labels 

 Variable Stars Microlensing 

Variable Stars 307 0 

Microlensing 0 13 

Table 10: Results for MACHO  
 
 
 

The built model ‘C’ was able to show similar performance on OGLE on MACHO              

datasets, even though the number of observations in each sample greatly increased. This proves              

that this model is the best of the three models built. 

The built model ‘C’ serves as the perfectly automatic classifier to detect microlensing             

events with an accuracy of at least 99%, and 0% missed detection rate.  
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6. CONCLUSIONS 

 

This built model ‘C’ can be used to detect exoplanets discovered through microlensing by              

providing it with confirmed light curve examples of the same and testing it on all the                

microlensing candidate light curves we have available. The fact that there are very limited              

number of exoplanets already detected through microlensing, makes it a challenging task to train              

the classifier.  

By exploring more advanced pre-processing techniques, there is scope to apply it to             

datasets consisting of very less observations for each star, like Gaia, and obtaining reasonably              

accurate results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57 

 



 
 
 
 

REFERENCES 
 
1. The Planetary Society Blog. ​Microlensing [Web log post]​. Retrieved on September 20, 2016             

from ​http://www.planetary.org 

2. Wikipedia, The Free Encyclopedia. ​Variable Star​. Retrieved on May 15, 2018 from            

https://en.wikipedia.org 

3. Raschka, Sebastian. ​Machine Learning FAQ. ​Retrieved from, www.sebastianraschka.com  

4. The Pennsylvania State University. ​Classification [Lecture Notes]. ​Retrieved on May 16,           

2018 from ​https://newonlinecourses.science.psu.edu/stat857/node/80/ 

5. Skymind.ai​. A Beginner’s Guide to LSTMs [Web log post]​. Retrieved from           

https://skymind.ai/wiki/lstm 

6. Sharma, Avinash​. ​(2017, Mar 30)​. Understanding Activation Functions in Neural Networks           

[Web log post]. ​Retrieved from​ ​https://medium.com/the-theory-of-everything/ 

7. Pigulski A., Kolaczkowski Z., Kopacki G. (2003, Oct 20). ​VI photometry of MM1 and MM7 

OGLE fields. ​Retrieved from ​http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/AcA/53/27#sRM3.2 

8. Udalski A. et al. (2006, Sep 21). ​OGLE microlensing events in Galactic Bulge. ​Retrieved              

from​ ​http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/AcA/50/1#sRM3.1 

9. Gaia Collaboration et al. (2016, Sep 14). ​Gaia Data Release 1. ​Retrieved from             

http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/337/fov  

10. Vasily Belokurov, N. Wyn Evans, Yann Le Du. (2003, June 1). ​Light-curve classification in 

massive variability surveys -I​. Retrieved from 

https://doi.org/10.1046/j.1365-8711.2003.06512.x 

11. VanderPlas, Jacob T.​ (2017, Mar 28). ​Understanding the Lomb-Scargle Periodogram​. 

Retrieved from arXiv:1703.0984 

12. Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. ​Additive logistic regression: a            

statistical view of boosting​. The Annals of Statistics, 28(2):337407, 2000. 

58 

 

http://www.planetary.org/
https://newonlinecourses.science.psu.edu/stat857/node/80/
https://medium.com/the-theory-of-everything/
http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/AcA/53/27#sRM3.2
http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/AcA/50/1#sRM3.1
http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/337/fov
http://adsabs.harvard.edu/cgi-bin/author_form?author=VanderPlas,+J&fullauthor=VanderPlas,%20Jacob%20T.&charset=UTF-8&db_key=AST


 
 
 
 

13. Thatcher, Tim. ​Linear Discriminant Analysis​. Retrieved on (2018, May 17) from           

http://discriminantanalysis.readthedocs.io/en/latest/ 

14. Skymind.ai​. A Beginner’s Guide to Neural Networks and Deep Learning [Web log post]​.             

Retrieved from https://skymind.ai/wiki/neural-network 

15. Olah, Christopher. (2015, Aug 27). ​Understanding LSTM Networks. ​Retrieved from          

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

16. Hussain, Mahboob. (2015, Oct 9). ​About Logistic Regression [Web log post]​. Retrieved from             

http://mh-journal.blogspot.com/2015/10/about-logistic-regression.html 

17. The MACHO Collaboration. (1997, Apr 10). ​The Macho Project: 45 Candidate           

Microlensing Events From The First-year Galactic Bulge Data​. Retrieved from          

http://wwwmacho.anu.edu.au/Data/LMC/Lensing/ 

18. MIT OpenCourseWare. ​The correlation functions (cont.) [Lecture Notes]. ​Retrieved on May 

17, 2018 from 

https://ocw.mit.edu/courses/mechanical-engineering/2-161-signal-processing-continuous-an

d-discrete-fall-2008/lecture-notes/lecture_22.pdf 

 

 

59 

 

http://discriminantanalysis.readthedocs.io/en/latest/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://mh-journal.blogspot.com/2015/10/about-logistic-regression.html
http://wwwmacho.anu.edu.au/Data/LMC/Lensing/
https://ocw.mit.edu/courses/mechanical-engineering/2-161-signal-processing-continuous-and-discrete-fall-2008/lecture-notes/lecture_22.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-161-signal-processing-continuous-and-discrete-fall-2008/lecture-notes/lecture_22.pdf

