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ABSTRACT 

Earth ovens are complex cooking features that have been important worldwide, throughout 

human history. Knowledge of what was cooked in an individual earth oven is only available if 

food was charred, so other lines of evidence are being sought by archaeologists. The purpose of 

this dissertation is develop a method using Raman spectral analysis of biochemical residue found 

on fire cracked rock (FCR), to assess what was being cooked in archaeological earth ovens. 

Specifically, the carbohydrate inulin is being pursued, because it is important in earth oven 

cooking but is not associated with any diagnostic microfossils.  A reference collection was 

created, including modern and archaeological macrobotanicals, and raw and cooked samples. 

FCR from Fort Hood and Lower Pecos, both in Texas, were analyzed and compared to control 

samples. 

This study demonstrated that is possible that food residues identifiable by Raman spectroscopy 

are persevered on archaeological FCR from earth ovens – while cooking and diagenetic 

processes do affect the spectra of food samples, they do not render them unidentifiable.  While it 

is not possible to identify precisely what plants were cooked in an earth oven, there was a 

tentative identification of carbohydrates on 3 FCR samples from a total of 16 samples. These 

finds are in line with other research on residue from archaeological FCR. The archaeological 

samples were different from the non-diagnostic control samples, indicating that it is unlikely that 

the residue is from the environment.  

There is potential for the use of Raman spectroscopy to study earth oven residue; however, it 

requires substantial continued study before conclusive analysis is consistently achieved. Of 
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primary concern is separating the signal from the target carbohydrate spectra from background 

and environmental spectra, as well as identification of residue-rich FCR for sampling. 
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CHAPTER I  

INTRODUCTION 

 

While the nature of the archaeological record prevents us from ever knowing exactly when the 

first humans cooked their food, archaeological evidence points to the start of cooking at least 

250,000 years ago (Wrangham and Carmody 2010). Initially cooking occurred over unprepared 

hearths, using only burning fuel, though over millennia more complex cooking features were 

developed.  Earth ovens in the archaeological record appear 35,000-31,000 years ago in the Old 

World including Europe (Movius 1966; Straus 2006), Japan (Dogome 2000), Australia (Gillespie 

1997), and the Bismarck Archipelago (Torrence et al. 2004), and 10,000 year ago in the 

Americas, including central and southwest Texas (Black et al. 1998:82–84; Black and Thoms 

2014).  Earth ovens (Figure 1) are multi-component cooking features that layer food and packing 

material over heated stones or hot coals to bake food (Black and Thoms 2014). While analysis of 

earth oven cookery affords important insights into diet and culinary practices of past populations, 

current analytical techniques are limited to largely physical (i.e., structural) remains found 

charred in the oven. Recent advances in analysis of microscopic remains such as starch, 

phytoliths, and raphides – known collectively as microbotanicals or microfossils have expanded 

the potential for earth ovens to provide data (Thoms, Laurence, et al. 2014a; Laurence et al. 

2011).  Importantly, however, one of the most common types of plant foods processed in earth 

ovens, inulin-rich geophytes (plants with underground storage origins) do not produce diagnostic 

microbotanical remains. For this dissertation, Raman spectroscopy is explored as a potential 
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method to identify inulin in food residues on samples of fire-cracked rock (FCR) that severed as 

heating elements in pre-Columbian earth ovens in south-central North America. 

 

ENVIRONMENTAL CONTEXT 

Analyses for this study were undertaken in conjunction with a long-term cultural resources 

management research project that focused on recovery of archaeobotanical remains from earth 

ovens found at pre-Columbian open-air sites at Fort Hood, a U.S. Army installation in central 

Texas.  Fort Hood encompasses 64,226 hectares within the ecotone between the Blackland 

Prairie and the Edwards Plateau (Figure 2).  The modern climate is subtropical, characterized by 

Figure 1: Schematic of generic earth oven. A: 

heating rocks with wood fuel. B: cooking food 

packets in green-vegetation packing material. 

C: abandoned oven after food removal and 

decomposition of packing material. Reprinted 

from Thoms et al. (2014) 
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hot, humid summers and relatively short, dry winters (Kibler 2004).   Many of the wild food 

plants found in this area are geophytes known to have been cooked in earth ovens. These include 

various members of the Liliaceae family such as wild onion (Allium sp.), the Asparagaceae 

family that includes camas (Camassia scilloides), agave (Agave sp.), and sotol (Dasylirion sp.), 

as well as tuberous plants including scurfpea (Pediomelum sp.), groundnut (Apios americana), 

and flatsedge (Cyperus sp.) (Boyd, Mehalchick, et al. 2004). On Fort Hood, there are a number 

of localized environmental niches, including the Paluxy sands, which are associated with earth 

ovens. These loose sandy deposits eroded from a sandstone and shale bed known as the Paluxy 

formation (Abbott et al. 1995; Hayward et al. 1996). They are well drained and easier to dig than 

surrounding clayey soils, which contributed to them being a favored location for earth oven 

construction  (Boyd, Mehalchick, et al. 2004).   

 

Figure 2: Site locations. Map data ©2018 Google 
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Botanical remains and artifacts from earth ovens inside pre-Columbian dry rockshelters in 

Texas’ arid Lower Pecos region were also included in the analysis for comparative purposes in 

assessing residue preservation issues in diverse environmental settings.  The Lower Pecos region 

lies in west Texas, along the southwest border of the Edwards Plateau (Figure 2). The modern 

climate is semiarid, with hot summers and dry winters (Koenig 2012). Plant foods in the area 

likely to have been processed by earth ovens include prominently desert succulents such as sotol 

(Dasylirion sp.) and agave (Agave sp.), though some Liliaceae family members, including wild 

onion (Allium sp.) (Riley 2010; Basham 2015).  The region’s deep, steep-walled canyons, incised 

into limestone bedrock, are dotted with rock shelters that contain the remains of earth ovens 

dated throughout the last 10,000 years. The soils in this area are very thin, predominantly 

gravelly and silty loams (Golden et al. 1982). 

ARCHAEOLOGICAL CONTEXT 

Human occupation of Texas was under way by 13,200 to 15,500 BP, with ephemeral sites from 

before the Paleoindian period (Waters et al. 2011). While there is evidence of earlier earth ovens, 

they start to appreciably appear during the Early Archaic period (8800-6000 BP). These are 

generally smaller ovens, not the larger burned rock middens (BRM) seen in the later periods 

(Boyd, Kibler, et al. 2004). BRMs are the accumulated remains of dozens to hundreds of earth 

oven built in the same location over decades to several millennia (Thoms, Boyd, et al. 

2014).   During the Middle Archaic period (6000-4000 BP), drier conditions may have been 

associated with an expansion of xeric plants, including the common food resources like sotol and 

yucca, and the apparent greater reliance on BRMs (Johnson and Goode 1994).   An increase in 

population density is seen around 5000-4500 BP, possibly with macrobands visiting some larger 
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sites seasonally, or several small groups may have used the same sites for longer periods (Boyd, 

Kibler, et al. 2004).   Earth ovens continued to be a major constituent of the Late Archaic 

subsistence strategies (Prewitt 1981).  The late period (4000-13/1200 BP) has increasing 

population size, and the establishment of cemeteries implying strong territorial ties.  The use of 

burned rock may have reached zenith at some point during this period, but there is some 

evidence indicating high intensity use continued into early Late Prehistoric (Collins 1995; Black 

et al. 1997; Kleinbach et al. 1999:795).  Horticulture was never an important part of the Texas 

subsistence system, not appearing until relatively late (Collins 1995). With Indians being forced 

onto reservations during the 19th century, intensive earth oven use in Texas ceased.  

As a population increases, and all surrounding areas are occupied such that territorial expansion 

is no longer a viable option the population density will reach a critical mass. At that point the 

society will need to change how it is feeding people—it will need to extract more food from the 

same area of land. This process is known as intensification, and requires increasing energy spent 

on food production, in order to increase the amount of food extracted from a single unit of land.  

Intensification processes include (but are not limited to) increased hunting and gathering efforts 

on lower caloric yield foods, domestication of plants and animals, and cooking (Binford 

2001:188; Morgan 2014).   It has been suggested that earth ovens, as opposed to horticulture, 

was a major form of intensification in Texas, and was part of the reason that horticulture never 

gained significance in central Texas’ pre-Columbian history (Johnson and Hard 2008).  

When cooking is an intensification method, as population density increases, cooking technology 

becomes less efficient as more costly foods are used – more heat energy is expender per unit 

calorie gained from the food item.  Thus, the tendency through time is that direct cooking on 
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coals gives way to rockless earth ovens, to cook-stone grills, to earth ovens and other forms of 

cook stone technology, and later to ceramic and metal vessels (Thoms 2009). This is reflected in 

the archaeological record, where radiocarbon dating indicates that the presence of BRMs 

increased as population density increased through the Middle Archaic, and peaked during the 

Late Archaic, when population densities were highest (Black and Creel 1997:280–282). Given 

that earth ovens indicate significant time and labor investment in the processing of plants, these 

are an excellent indicator of intensification (Johnson and Hard 2008). 

RELATIONSHIP BETWEEN EARTH OVENS AND INULIN 

As noted previously, earth ovens bake or steam food in below-ground pits, layering food and 

packing material over heated stones or hot coals. Most earth ovens are reused multiple times, 

which requires that the central pit be cleaned and any spent cooking stones be discarded as FCR, 

older features may be dug into, or the pit may be filled with debris (Black and Thoms 2014). 

Through time, most components weather away, but the last used heating element typically 

remains most intact but almost always subjected to some form of pedoturbation that 

disarticulates heating element rocks to some extent. Other archaeological features indicative of 

earth-oven cookery include: pits infilled with carbon–stained sediment; FCR concentrations, 

perhaps resulting from cleaning previous ovens; and linear barrow pits zone representing sources 

of sediment to cap ovens.  Given the amount of digging and transporting sediment associated 

with earth-oven construction and use, the fill in earth ovens and BRMs often contain incidentally 

introduce artifacts and ecofacts not necessarily functionally related the ovens. In short, earth 

oven use creates complex features, often palimpsest in nature with mixed matrix; foods cooked 
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therein are only preserved when charred (Black and Thoms 2014).  Due to their complex nature, 

multiple lines of evidence are required to accurately interpret patterns of earth oven use. 

Earth ovens cook food at relatively low temperatures in a moist environment, over a few hours 

up to several days. In an oven where food is cooked and not burned, while the rock temperature 

may reach over 500 °C, the food itself tends to remain at 100 °C or lower (Thoms, Laurence, et 

al. 2014b). Ovens are well suited to cook tough and fatty cuts of meat and plants rich in complex 

carbohydrates, since the cooking environment allows for the breakdown of large molecules in 

carbohydrates, proteins and lipids, as well as preserve food and destroy toxins (Wandsnider 

1997). Inulin is a complex carbohydrate, a type of polysaccharide known as a fructan and source 

of soluble dietary fiber. It is a prebiotic, in that in its raw form, it does not directly provide 

nutrients for humans, but it is fuel for bacteria in human’s lower intestinal tract (Leach 2008). 

However, when exposed to water and heat, complex carbohydrates, including inulin, break down 

into easily digestible sugars (Wandsnider 1997). Caramelizing onions is a good example of the 

process that may be familiar to many people (Leach 2009). 

While a variety of foods were cooked in earth ovens, plant foods rich in inulin, including onion, 

camas, sotol, and agave, are associated with earth ovens in the study area (Thoms 2009; Black 

and Thoms 2014). Evidence for this includes historic records, ethnographic reports, and charred 

plants found in archaeological earth ovens (Thoms 2008b, 2009). In the central Texas and Trans 

Pecos study area, there is a reasonable probability that any particular oven cooked inulin rich 

foods; it is less certain as to what specific oven cooked a specific inulin-rich food. Charred plant 

foods are generally the best evidence for what was cooked in an oven, however they are 

relatively rare in the archaeological record. The presence of microbotanicals, such starch, 
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raphides, and phytoliths, can also indicate what plant foods were processed in earth ovens 

(Thoms, Laurence, et al. 2014a).Starch grains, for example, act as direct evidence of the presence 

of starch rich foods, even if the precise plant cannot be identified (Torrence and Barton 2006). 

Other diagnostic microfossils include calcium oxalate for cacti, or phytoliths for maize, however, 

there are no diagnostic microfossils for inulin-rich foods (Jones and Bryant 1992; Piperno 2006). 

RESIDUE ANALYSIS AND RAMAN SPECTROSCOPY 

During the use-cycle of an earth oven, stones are intensely heated and slowly cool as they cook 

the food, which causes the rocks to crack, change colors, and minerals to break down 

(Pagoulatos 2005). This can cause microcracks in the stones, that may help preserve food 

residues from the cooking process that would otherwise deteriorate (Shanks et al. 2001; Thoms, 

Boyd, et al. 2014; Thoms, Laurence, et al. 2014a).   The molecular structure of those preserved 

residues may be identifiable using analytical chemistry, which can then be linked to the potential 

source of these residues using the archaeological biomarker concept (Evershed 2008b). The 

biomarker concept states that in some cases particular molecular components of the complex 

mixtures that comprise all biological materials are unique to certain flora or faunal species. If the 

particular component is preserved in an identifiable way through the archaeological record, it can 

be diagnostic for identifying the presence of the flora or fauna it is associated with. For the 

present study, the flora “species” is inulin-rich plants as a class, using inulin as their biomarker. 

Whether or not the molecular signature of inulin is present in an identifiable way through 

cooking and diagenesis is the question addressed by this dissertation.  
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A variety of techniques can be used for biochemical or organic residue analysis, such as gas 

chromatography–mass spectrometry (GCMS), liquid chromatography–mass spectrometry 

(LCMS), Raman spectroscopy, Fourier Transform Infrared (FTIR) absorption spectroscopy, and 

many others.  Most analyses using biochemical analysis of food residues focus on lipids 

absorbed in pottery. There are some that analyze residues on FCR from earth ovens (Buonasera 

2005; Quigg et al. 2001), and some examining the residues in soils in earth ovens (Isaksson 

1996), though these all use GCMS. There are also several biochemical analyses of earth ovens 

amongst CRM monographs that include both work with GCMS and FTIR (see Quigg et al. 2010 

which uses both). These studies show that lipids are preserved on FCR from earth ovens, but that 

the source(s) of those lipids is up for debate. 

Since ethnographic and historic evidence in Texas indicates that mostly plants were cooked in 

earth ovens, and the biomarker in question would be a carbohydrate, lipid focused methods are 

not appropriate. Carbohydrates can be characterized by mass spectroscopy and similar methods, 

but they result in complex signatures, and would likely rely on the same kind of fingerprinting 

method that is more commonly associated with vibrational spectroscopy. With GCMS, ratios of 

fatty acids are used sometimes to determine potential source species for archaeological lipids 

(Malainey et al. 1999b; Skibo 1992; Buonasera 2007). This is similar to the kind of 

fingerprinting done with Raman spectroscopy and FTIR. While rare, carbohydrates have been 

identified in archaeological record, though determining their source has proven difficult (Dhakal 

and Armitage 2013; Oudemans and Kubiak-Martens 2012). In order to identify carbohydrates 

the fingerprinting method would still be used even if the analytical technique was something like 
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GCMS. Raman spectroscopy offers additional benefit in that it requires minimal sample 

processing, so Raman was chosen as the analytical method. 

Raman spectroscopy has been used to analyze a variety of materials and residues including 

pigments, binders, and resins. Aside from a preliminary study by Short et al. (2014), however, it 

has not been used to study food residues. This is likely due to problems that arise specifically 

when attempting to analyze organics; however, recent advances have improved the ability of 

Raman to characterize organic residues (Schrader et al. 1999; Edwards 2009). Raman 

spectroscopy characterizes materials based on how light interacts with its molecular structure. 

When light hits a molecule, it changes the molecule’s energy level and causes it vibrate, which in 

turn changes the frequency of the light reflected from the molecule. The change in the light’s 

frequency is determined by the molecular bond, which is measured by Raman spectroscopy. The 

raw data is transformed into a spectra which can be interpreted; the relative strength of each 

wavelength detected indicates the molecular structure of the residue (Malainey 2011a). Certain 

materials, including organic materials that an archaeologist might study, can be overwhelmed by 

fluorescence. Fluorescence can show up in Raman spectra, and overwhelm the target signals. 

Recent advances, especially the use of long-wavelength laser light source, have vastly improved 

its ability to characterize organic residues by reducing this fluorescence. Thus, Raman is 

potentially a relatively rapid method for determining presence of inulin in archaeological 

samples. 
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RESEARCH OBJECTIVES 

The overarching research goal of this dissertation is to determine what was being cooked in earth 

ovens via Raman spectral analysis of biochemical residue found on FCR.  To that end, three core 

questions are addressed: (1) Are vibrational-spectroscopically identifiable food residues 

preserved on archaeological FCR from earth ovens; (2) If they are, can they be reliably assigned 

to an ancient baking event(s); (3) If so, can they be used to characterize what was baked, and to 

what degree of precision? There are a few ancillary issues within the first question, including 

how cooking and the passage of time effects residue spectra, and whether or not different 

depositional environments effect the preservation of residues on FCR. 

STRUCTURE OF DISSERTATION 

Chapter 2 reviews pertinent literature regarding the application biochemical techniques to 

identify archaeological food residues. The focus includes separation and analysis techniques 

(such as Gas-Chromatography/Mass-Spectroscopy [GCMS]) and vibrational spectroscopy 

(including both Raman spectroscopy and Fourier Transform Infrared [FTIR] absorption 

spectroscopy).  This section begins with a technical and historical overview of biochemical 

residues of archaeological food residues, followed by a discussion of general characteristics of 

quantitative and qualitative investigations and current trends. It concludes with a set of best 

practices for sample collection and analysis based on issues and analytical difficulties reported in 

the literature. 

Chapter 3 presents a pilot study demonstrating that a handheld Raman spectrometer can detect 

inulin on experimentally produced FCR. For this study spectral signatures were obtained from 
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sotol (Dasylirion spp.) experimentally baked in an earth oven as well as sotol residue on an 

experimentally used processing tool.  Inulin was present in the resulting spectra. The portable 

handheld Raman spectrometer also detected traces of inulin on experimental boiling stones used 

to boil commercially obtained inulin. Additional analysis of archaeological FCR from Fort Hood, 

TX revealed the presence of residues whose further identification required improvement of 

current optical methods.  

Chapter 4 is a proof-of-concept study that develops a reference collection of both modern and 

archaeological botanical samples, as well as residues on FCR generated by actualistic and 

laboratory cooking experiments. It demonstrates that inulin is distinguishable from other 

carbohydrates and identifiable in botanical samples. It also confirms spectra differences between 

archaeological and modern botanical samples as well as among raw, cooked, and charred food 

samples. Three of the sixteen FCR samples from earth ovens in the Fort Hood and Lower Pecos 

region showed tentative evidence for the presence of carbohydrates. While promising, this study 

confirmed the need for improvement of the optical methods.  
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CHAPTER II  

THIRTY YEARS OF BIOCHEMICAL ANALYSIS OF ARCHAEOLOGICAL 

FOOD RESIDUES 

INTRODUCTION 

Biochemical or organic residue analysis of food stuffs is increasingly important in the 

archaeological literature. It provides information about diet, culinary practices, subsistence 

patterns, and artifact function. This article is a systematic and critical review of roughly the past 

thirty years of biochemical analysis of archaeological food residues. Diagnostic techniques of 

interest include separation-analytical techniques (such as Gas-Chromatography/Mass-

Spectroscopy [GCMS]) and vibrational spectroscopy (including both Raman spectroscopy and 

Fourier Transform Infrared [FTIR] absorption spectroscopy). Several earlier reviews focused on 

the application of these techniques to archaeology in general, but none focus specifically on how 

they are applied to food residues (see Evershed 2008b; McGovern and Hall 2015; Regert 2011; 

Roffet-Salque et al. 2016; Steele 2013; Vandenabeele et al. 2007). 

With rapid growth comes a potential for uncritical application and over-interpretation of results. 

While a few articles have suggested best practices for sample collection, analysis, or both, these 

assessments tend to be based on anecdotal experiences rather than a systematic review of the 

current state of research (see Mazow et al. 2014; McGovern and Hall 2015). This article provides 

a set of best practices for residue specialists to follow during sample collection and analysis 

based on issues and difficulties others have reported in their analyses. The current review begins 

with a technical and historical overview of biochemical residues of archaeological food residues, 
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followed by a brief discussion of the methods used for this review. The general characteristics, 

patterns, and trends of the current body of literature are described both quantitatively and 

qualitatively. Then, from challenges and recommendations described in the literature a list of 

best practices is proposed, and directions in further research suggested. 

BACKGROUND 

Reliable subsistence data for archaeological sites traditionally comes from analysis of 

macrobotanicals and faunal remains. Many of the tools used in food processing, however, are not 

directly associated with the foods they process. In most cases it is not immediately obvious what 

foods were stored in a pot, ground with a mano and metate, or cooked with a stone heating 

element. Various methods have been developed, most using microscopy such as microwear and 

microfossil analyses, to identify how tools were used or what substances may have been in or on 

them. Organic or biochemical residue analysis adds to these techniques by describing what was 

directly in contact with the artifact. This can then be linked to diet and artifact function, which 

can indicate culinary practices or be generalized to subsistence practices and other social 

behavior.  

Archaeological food residues are unique among substances normally submitted to analytical 

chemistry analysis. Most analytical chemistry techniques are geared towards characterizing 

materials that tend to be relatively pure, materials that are known to the analyst, or both. 

Substances with simple molecular structures are the easiest to identify; however, if the researcher 

knows what they are looking for, they can pinpoint their analytical techniques to identify a single 

substance in otherwise very complex mixtures. This principle is used frequently in the food 
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industry, where various analytical techniques are used to determine if a food product has had 

other substances added to it (Ellis et al. 2012). 

Food residues are neither simple nor known materials; they are abstruse mixtures of complicated 

substances. The plants and animals that contribute to the human diet are mixtures of complex 

molecules: fats, proteins, and carbohydrates. These foods are then combined in various ways. 

This complexity is further increased by culinary practices that break down some molecules and 

create new ones (Wandsnider 1997). These residues adhere to artifacts which then enter the 

archaeological record and undergo taphonomic processes. These processes can affect the 

molecular structures through biological and physical means, such as water moving through the 

soil washing away water soluble residue, microbes consuming residues and depositing 

byproducts, or soil chemistry affecting residues (Oudemans 2007; Hillman et al. 1993). While 

other types of archaeological residue analysis deal with complex mixtures of substances that 

have undergone their own taphonomic processes, many, such as resins or pigments, only have a 

limited number of constituent materials which are likely to be present. The substances which one 

might find in archaeological food residues are comparatively limitless (Wandsnider 1997). 

Fortunately, instrumental analyses have improved to the point that researchers are able to 

characterize trace amounts of these complex molecules, and the results of these analyses can in 

turn be interpreted to identify the source of the archaeological residue. The following sub-

sections briefly review the historical progress of the analyses of archaeological food residues and 

give an overview of how the technologies in question work. 
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History 

Archaeological applications closely followed the developments of technology, as can be seen in 

Figure 3. Initial work with all these techniques tends to focus on inorganic materials, move to 

organics, and then foodstuffs. As technology improved small amounts of sample could be 

analyzed with increasing precision. The first written records for chemical analysis are from 

Egypt during the second millennium BC, documenting the determination of the purity of gold 

(Szabadváry 1966). The earliest interpretation of social relations based on such scientific 

investigations comes from Fabroni in 1810, who notes class differences in grave goods from an 

Etruscan tomb based on metal composition (Fabroni 1810). Though the 19th century was still 

focused on traditional wet chemistry analytical methods, it is during this period chemists develop 

processes that will eventually lead to the introduction of instrumental analysis in the latter half of 

the 20th century. Likewise, in the development of archaeological methods, the late 19th and early 

20th century was associated with a switch from amateur collecting for private curios and 

museums to more systematic professional methodology, and this is when some of the first 

applications of wet chemistry to archaeology appear. The interest in scientific approaches to 

archaeology, including analytical chemistry, was so strong that a new term, archaeometry, was 

coined in the 1950s by Christopher Hawkes to describe it. Since then, there has been a rapid 

development of organic residue analysis. 
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Figure 3: Timeline of the development of GCMS, Raman spectroscopy, FTIR spectroscopy, 

and their applications to archaeology 
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Analytical Methods 

The two techniques of focus in this review are separation-analytical methods and vibrational 

spectroscopy. Both techniques produce spectra, which are visualized as graphs with peaks at 

certain locations that relate to the components being studied; Figure 4 illustrates an example of 

GCMS, FTIR, and Raman spectra of olive oil. These are interpreted by trained specialists: 

location along the x axis determines the identification of the molecular component, while the 

height of the peak up the y axis is the intensity of the measurement of each component.  Detailed 

descriptions and methodological discussions are provided in several books written for 

archaeologists (Price and Burton 2011; Malainey 2011b; Castillo and Strivay* 2012). 
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Figure 4 Spectra of Olive Oil from A) FTIR, B) Raman, and C) GCMS analysis. Adapted 

from Yang and Irudayaraj (2001) and Yang et al. (2013) 
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Separation-analytical methods refers to methods that couple a technique to separate components 

and a technique to analyze the separated components. Each component can be used on its own 

but the combination allows for a more precise analysis. There are numerous separation-analytical 

techniques, but the best known in archaeology is probably GCMS. In the case of GCMS, the gas 

chromatograph fragments the sample using heated gas while the mass-spectrometer measures the 

mass to charge ratio, as can be seen in Figure 5. There are some limitations, as some molecules 

may be too large, too polar, or too thermally unstable to pass through the gas chromatograph. 

Others may not accept the charge or they may be destroyed by the ionization process in the 

mass-spectrometer. Thus, while GCMS can analyze many materials, not all can be analyzed. 

Also different technologies can be used for each instrumental component, so only the analyses 

that that used the same or demonstratively comparable methods can be compared. 

 

 

Figure 5 Diagram of how GCMS works 
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Vibrational spectroscopy uses light to vibrate molecular bonds (thus it is also known as optical 

spectroscopy). The molecular bonds vibrate in consistent ways, such that changes in light 

frequency can be used to determine what kinds of bonds are present in the molecule, which 

indicates what molecules are present in a compound. While there are several vibrational 

spectroscopy techniques, the most common among archaeological biochemical residue studies is 

FTIR, with Raman a distant second. They are related in that they use the same basic method but 

are measuring different effects. FTIR measures the change in the light that is transmitted through 

the sample, while Raman measures the change in the light that is scattered, as can be seen in 

Figure 6. Vibrational spectroscopy also has limitations. Depending on the technique, not all 

bonds vibrate. Water, for example, creates a large band in FTIR that obscure the peaks around it, 

while it does not show up in a Raman spectra at all. Other variations in instrumentation can also 

affect the resulting spectra; for example, Raman analysis of organic materials is best achieved 

using longer (1064nm) wavelength lasers for excitation, as shorter wavelengths over-excite the 

molecules and cause florescence, which overwhelms the Raman signal. These limitations must 

be kept in mind when comparing multiple studies. 
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METHODOLOGY 

This article reviews 100 English-language peer-reviewed articles, dissertation, and theses 

published over the past 30 years, representing work by specialists. Works were chosen for their 

relevance to the theme of biochemical residue studies of archaeological foodstuffs, focused on 

separation techniques such as GCMS and vibrational spectroscopy such as FTIR and Raman. 

While protein and blood residue work falls under biochemical residues and may be relevant to 

subsistence studies, the techniques are fairly specialized and thus excluded (Evershed 2008b). 

Figure 6 Diagram of how Raman/FTIR works 
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Additionally, the review focuses on application of techniques rather than the development of 

methods or theory. Therefore, articles not focusing on analysis of archaeological materials such 

as experimental work and blind tests were excluded from the formal review, though they will 

come into play during the discussion. While this review aims to be comprehensive, it is not 

exhaustive - in order to prevent weighting the results, some particularly prolific authors' 

contributions are limited. 

The present review identifies and describes qualitative and quantitative patterns in the literature. 

A deeper meta-analysis was no possible, however, as these articles tended to be inconsistent in 

what kind of information they provide. This is likely due to the wide range of journals in which 

these articles were published, across a variety of disciplines, each with different publishing 

standards; this is discussed further in the quantitative analysis. The current challenges in 

biochemical residue analysis are identified and best practices standards are proposed to address 

these issues. While a number of articles have also suggested best practices for sample collection, 

analysis, or both, these tend to be based on anecdotal experiences rather than a systematic review 

of the current state of research (see Manzano et al. 2015; Mazow et al. 2014). Their relative 

proliferation is indicative that such standards are needed. The set of best practices suggested here 

is based on the systematic review of current body of literature. 

QUANTITATIVE PATTERNS IN LITERATURE 

The quantitative patterns portion of the review flows from broad questions such as who is doing 

the studies and where they looking, to what kinds of artifacts are being analyzed and how they 

handled, to the actual analysis of the residues themselves. Then issues that need to be considered 
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through the whole of the analysis process are discussed, specifically contamination and 

degradation.  

 

 

Figure 7 Number of articles published over time 

 

Over the past 30 years there has been a significant increase in published articles using separation 

spectrometry and vibrational spectroscopy to assess foodstuffs and related residues. While these 

techniques were regularly applied to other archaeological artifacts and non-food residues, food 

residues did not gain traction until the early 2000s, as seen in Figure 7. It is not clear if this is 

related to technological development or influence of researchers dedicated to residue studies. 

Short of a fully comprehensive review, this is probably a good estimate of the actual frequency 

of these studies. The biggest limitation to a fully comprehensive review is that each article 
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needed to be skimmed to determine if actually addressed food residue, rather than non-food 

residues associated with food processing tools, such as hafting adhesive or pigments that were 

ground using ground stone. Secondly the diversity of journals that they were published in—

discussed below—means even if one limited the search to a specific journal the results would be 

limited in relation to the field as a whole. To check how well this 100 article review reflects the 

actual pattern in publication frequency, two journals, Journal of Archaeological Science and 

Archaeometry, were searched for the co-occurrence of food and residue with each of the 

techniques: GCMS, FTIR, and Raman. The totals for both journals show similar patterns, with 6 

articles published before 2000, 11 from 2000-2004, jumping dramatically to 48 from 2005-2009, 

46 from 2010-2014, and 33 in 2015 and 2016.   

 

Table I: Area of interest for publications 

Archaeology/anthropology 69 

General science 15 

Analytical techniques 6 

Other disciplines 6 

Thesis 4 

 

The reviewed articles were published in a variety of journals. Table I shows the general area of 

focus for the journals. The majority of them (69) were in archaeology or anthropology journals, 

15 were general science, 6 were focused on analytical techniques, 6 were from other scientific 

disciplines, and 4 were dissertations or theses. This can be seen in Table II, which shows the 

journals with three or more articles. Three of these journals are focused on archaeological 
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science, and even the one area-based journal on this list has a significant scientific focus. The 

others were major general science and major general archaeology journals. The specific journals 

they were published in attests to the interdisciplinary nature of this field of study. 

 

Table II: Journals 

Journal of Archaeological Science 22 

Archaeometry 11 

Proceedings of the National Academy of Sciences 8 

Antiquity 3 

Documenta Praehistorica 3 

Mediterranean Archaeology and Archaeometry 3 

Nature 3 

 

To explore who is doing these studies and where, the location of the researchers’ institute the 

study site was determined per paper. Thus, if five researchers were all from different institutions 

within Europe, that paper’s origin was listed as once for the Europe. Relatedly, even if a single 

European institution produced five papers, since each of those papers was from Europe, that one 

institution accounts for five instances of Europe. Finally, since there is significant collaboration 

in these studies, many papers have multiple institution origins; thus, there are somewhat more 

data points than 100 papers. This is true of many variables examined through this section. 
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Table III: Regional location of Researcher’s institution and Sites 

Region 

Researcher's 

institution  

location 

Site location 

Africa 1 5 

Americas 34 20 

Asia 11 27 

Europe 67 54 

Oceania 1 3 

 

Looking at Table III: Regional location of Researcher’s institution and Sites , there is a probable 

English language bias: the bulk of the institutions are from Europe and the Americas, and when 

broken down by country 37 are from the UK and 30 are from the USA. Institution locations by 

country indicate a fair amount of internationally collaborative work. While the majority papers 

(62) only represent one country, 26 have authors from two countries, 6 from three countries, and 

5 papers have authors from four to six countries. These international collaborations are further 

reflected in the site locations. While European sites are the most common; more sites from Asia 

are studied than from the Americas.  

 

Table IV: Depositional context of sites 

Curated 23 

Water adjacent 18 

Underwater 5 

Cave 5 
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Depositional environment and the level of potential preservation plays a role in what sites 

researchers choose to study. This researcher had hoped to be able to discuss environmental 

factors in depth; however, most articles only reported minimal information on the sediment, 

climate, or other environmental factors that affect preservation. Only in rare cases did authors 

provide detailed information on about the depositional environment, while others provided none 

at all. Some of the articles were parts of larger projects and this information may have been 

available in other articles or reports that were not reviewed. Other cases were likely influenced 

by the journal standards, such as journals focusing on analytical chemistry techniques, and so the 

importance of these details were overlooked. As a result, this section reflects the limited reported 

data. As can be seen in Table IV, several of the sites were water adjacent, meaning that the site 

was near a body of water, including ocean, stream or lake. A few were from underwater or 

otherwise waterlogged sites; others from dry cave deposits. While it was not always clear what 

came from collections (if the site information citations were ten years older than the publication 

of the residue article, for example), but some of the articles indicated that at least some of their 

samples came from a museum or other storage facility, stored for anywhere between a few years 

to decades. 
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Figure 8 Age Range Represented by Articles 

 

Site age also affects preservation. Figure 8 shows how frequent any given date is, in terms of the 

length of time covered by all sites used by each paper. Age range for each paper was determined 

by taking the oldest and youngest date reported for all samples in a particular study. It does not 

necessarily represent site age. The longer periods represented here are either due to large scale 

studies incorporating many sites or are the result of approximate calendar dates based on 

reported periods. Figure 9 shows how frequently any millennium appeared in the literature. This 
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was determined by breaking the whole period up into thousand year intervals, and if the age 

range for a paper fell within that interval it was counted. 

 

 

Figure 9 Frequency of time periods appearing in articles 

 

Dates recorded here should be considered tentative in large part because dates are reported 

inconsistently: a) many authors only gave period, not calendar dates, b) since it was not always 

indicated, all “BP” dates were assumed to be calibrated, c) all dates were converted to years 

before present then rounded to the closest 50 years. It seems many authors assumed that readers 

would be familiar with the local chronology or have access to site reports with detailed date 

information. In two cases no dates were given at all. While having period dates is better than 
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nothing, relative dates based on material culture vary across a region in relation to their 

associated calendar dates. Thus, the dates used here for the site age are at best an educated guess. 

Unsurprisingly the bulk of the dates are relatively recent, dropping off after 6000 years and very 

few papers touch on dates after 10,000 years ago. Figure 8 shows that these more recent articles 

tend to focus on very short periods of time, while articles with older sites represent longer 

periods of time. That residues were still found on these very old artifacts is impressive, and 

appear to provide opportunity study broad factors in degradation. 

 

Table V: Artifact type for analysis 

Pottery 84 

Ground stone 5 

FCR 5 

Lithics 2 

Soil/sediment 4 

Organics 4 

Floor plaster 1 

 

Further narrowing the focus from site description to artifact analysis, Table V summarizes the 

types of artifacts chosen for analysis. These are predominantly pottery, though various stone 

artifacts were also examined including ground stone, fire cracked rock (FCR), and chipped 

lithics. Notable are the more unique cases, including where soil and plaster flooring was 

examined for food residues from food processing (rather than being used as a baseline control), 

as well as organic materials. The residues that came from these artifacts were predominantly 

absorbed into the matrix (88), though 18 articles described visible residue, while in two cases 
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actual foodstuffs (seeds and bread) were analyzed. Pottery is most popular for a variety of 

reasons: it is porous and easily absorbs and preserves residues within its matrix, while also being 

relatively easy to extract said residues from. It also has the longest history with food residue 

analysis and thus has been the most studied with regard to absorption, contamination, 

degradation, and related studies. Still, most artifacts related to food production including pottery, 

ground stone, and fire cracked rock are not directly associated with either faunal or 

macrobotanical materials. Given that it has been demonstrated that other artifacts also have 

preserved residues, it is worthwhile to not limit oneself to pottery samples when looking food 

residues. 

 

 

Figure 10: Frequency of total number of samples per article 
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The number of samples a researcher decides to analyze depends on a variety of factors: what is 

available to analyze, money and time limitations, and research questions being asked. Number of 

total samples analyzed per article has a large range, from a minimum of 1 to a maximum of 

2225. The average is 94 samples, but the median is 23, with a standard deviation of 253, 

reflecting a significant skew to the lower end of the range. As can be seen from Figure 10, the 

bulk of the articles have less than 40 samples (n=68). Breaking it down a bit further, 29 articles 

have 10 or fewer samples, 16 have 11-20 samples, 17 have 21-30 samples, and 6 articles have 

31-40 articles. The rest of the articles are distributed in low numbers across the range. Thus, 

while it is not unusual to have a larger number of samples, almost 70% analyze 40 or fewer, with 

30% analyzing 10 or fewer. 

 

Table VI: Residue extraction technique 

Chloroform/methanol 66 

In situ 14 

Hexane sequence 6 

Acidified methanol 5 

Chloroform 5 

Water 4 

Other 12 

 

How residue samples were extracted from the artifacts can be seen in Table VI. The focus is not 

the full sample preparation, just on how the samples were removed from their matrix. A variety 

of residue extraction methods utilize a combination of chloroform and methanol in different 

volumes. The majority are based on either the Folch (1957) or Bligh and Dyer (1959) methods. 
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One of the most common variations was described by Charters et al. (1993). Another common 

variation is to substitute chloroform for dichloromethane, an extremely similar but slightly less 

toxic solvent – those variations are considered chloroform for these purposes. Chloroform-

methanol based methods were used by the majority of the articles. The next most common was 

in situ – i.e. samples studied without extraction – examination, and was applied to whole samples 

and visible residue using vibrational spectroscopy techniques, as it is not possible for separation 

techniques. Hexane sequence refers to the extraction method described by Hill and Evans (1987) 

involving increasingly polar solvents: hexane, chloroform, propanol, and water. Acidified 

methanol method was recently developed by Correa-Ascencio and Evershed (2014). The various 

other methods included biomarker specific extractions, significant variation on other techniques, 

or entirely independent that have not been widely adopted. 

 

Table VII: Analytical method 

Separation-analysis GCMS 76 

Separation-analysis other 45 

Vibrational Spectroscopy - IR absorption 19 

Vibrational Spectroscopy - other 2 

isotopes - GC-C-IRMS 32 

isotopes - bulk 5 

Microscopy 5 

wet chemistry spot tests 6 

XRF 2 
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Once food residues are removed, they need to be analyze. How they were analyzed has been 

summarized in Table VII. The bulk of the analytical techniques used were separation-analysis 

types– most instances were GC-MS, though other types were common. It should be noted that 

GC-C-IRMS (or Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry, a type of 

separation-analysis technique that includes isotope analysis) was counted as an isotopic 

technique, not a separation-analysis. FTIR absorption techniques was the most common the 

vibrational spectroscopy techniques, while 1 used UV absorption (which functions the same as 

FTIR except the excitation laser is a different wavelength) and another used Raman. There were 

a number of techniques that were used to supplement separation-analysis and vibrational 

spectroscopy. Isotope analysis was common as it is used to help get a detailed characterization of 

lipids – many used GC-C-IRM though a few used bulk isotopic techniques. Other techniques 

included microscopy, wet chemistry spot tests, and XRF. Many researchers used more than one 

technique-the average number of analytical techniques used per article is just under 2 (1.85). 

While many (47) used one, 28 used two, 20 used three, 4 used four and 1 used five. 
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Figure 11: Methodologies used over time 

 

The analytical methods that researchers used changed over time, as can be seen in Figure 11. 

General improvement of technology and increasing interest over time has resulted in 

diversification in how residues are being studied. Prior to 2000 there appears to a fair amount of 

variation in the kinds of analyses being performed, probably due to the relatively low numbers of 

articles during this period. After that, the proportions remain relatively constant with the bulk of 

analyses using some sort of separation method, though after 2015 there is an increase in relative 

use of other techniques, and slight relative increase in vibrational spectroscopy. 

 

Table VIII: Characterization method 

Component identification 91 

Biomarker 65 

Finger printing 56 

Not described 2 
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Once the residues have been analyzed, the raw data needs to be characterized, and when 

possible, identified. There are three broad ways that a residue can be characterized: component 

identification, using biomarkers, and using fingerprinting. Most researchers use more than one. 

Briefly, component identification identifies the molecule or molecular structure associated with 

each peak. Archaeological biomarkers are compounds, unique to a particular substance or class 

of substances, that can be linked back to human behavior (Evershed 2008b; Regert 2011; 

Hillman et al. 1993) Using a biomarker technique first involves identifying components, then 

using prior knowledge of a substance and how it breaks down (i.e. through reference building 

including experimental work), connects those components to substances that may have been used 

in the past. This differs somewhat from fingerprinting, which does not require that components 

be identified. As used here, fingerprinting includes both matching spectra and using ratios of 

components (such as fatty acids or isotopes) to identify substances.  

The characterization methods are summarized in Table VIII. Almost all of the articles identified 

components, which is to be expected given it is the first step of the biomarker process. Almost as 

many articles used a fingerprinting method as used biomarkers, with the grand majority (86) 

used two or more methods. This is another case in which researchers frequently did not describe 

the process used – in those cases it was inferred based on what literature they were citing. In two 

cases the characterization process was not described at all; these were from archaeobotanical 

publications (one pre-1990 and one post-2010) where the result of the chemical residue analysis 

were simply indicated. Relatedly, raw data was frequently not reported nor available as 

supplemental information, making meta-analyses and comparisons between different 

characterization methods difficult. 
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Table IX: Reference library source 

Literature 76 

Experimental 26 

Modern references 27 

Ancient references 4 

Not described 2 

 

All of these characterization techniques require prior analysis of potential residues, that is, a 

reference library. Building reference libraries is key to residue work; they should include not just 

potential foodstuffs, but those foodstuffs processed and aged, as well as potential contaminants. 

As no author can do it all, it is expected that they rely on the literature to an extent, but it is 

important to be sure that the literature is relevant to the area one is studying. Aside from issues 

with differential degradation across different depositional environments, studies indicate that 

there is worldwide spatial variation in various residue signatures (see Gregg et al. 2009). A 

summary of the sources of reference libraries can be seen in Table IX. Most of the authors relied 

on references libraries published in the literature. Of those that created their own reference 

library, most tested modern references though a few did look at ancient samples. It was not 

always clear when authors were referencing their own (or their lab's) reference library as 

opposed to literature. In some cases an in-house reference collection was mentioned but not 

described; it was assumed to contain modern references. Additionally, several authors did 

experimental work, either testing anthropogenic changes due to cooking and processing methods 

or degradation due to aging. In the two cases where reference library source was not given, 

information on biomarkers was treated as common knowledge and uncited. This is inappropriate, 

as even component identifications can be cited within the literature. 
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Table X: Food characterization 

Carbohydrates 5 

Proteins 3 

Lipids (all) 80  
Unspecified 6 

 
Beeswax 11 

 
Plant 43 

 
Animal (all animal lipids) 64 

 
 General Adipose 28 

 
 Ruminant Adipose 20 

 
 Non-ruminant Adipose 17 

 
 Dairy 23 

 
 Unspecified fish 12 

 
 Marine 9 

 
 Freshwater 3 

Resins 16 

Minerals 3 

Other compounds 18 

Specific resources 5 

Not specified 1 

 

The results of these residue characterizations are shown in Table X. Most of the articles 

identified lipids, which have been separated out further. In a few of these studies, the lipids were 

not further specified, either due to research goals of the paper or because of the limitations of the 

analytical technique chosen. The rest were either beeswax, plant, animal lipids. Some of the 

studies that found animal lipids– due to research goals, analytical techniques, or both – were 

broken down further. Of these, most were adipose fats not further specified, though ruminant 

(large herbivores including cattle, goats, sheep, deer) and non-ruminant (sometimes identified 

more specifically as porcine) were identified, along with were dairy fats. In most cases when 

water resources were found, freshwater and marine were not differentiated. Freshwater fish were 
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only identified alongside marine resources, when the research goal was to determine what kind 

of aquatic resources people were using.  

There were significantly fewer articles that identified non-lipids. A few articles identified 

carbohydrates and proteins. Only in one case were the results not specified – in this case, while 

the goal was to identify resources, the results were overwhelmed by contamination. Resins were 

identified, usually associated with wine. Minerals were also identified, either background noise 

or indicative of the consumption of bone. Other non-macronutrient compounds were identified in 

a number of articles, in Table X as “other compounds”. These were usually specific biomarkers 

being sought out to detect either wine or cacao. In very few cases specific food resources were 

identified, all by fingerprinting methods using vibrational spectroscopy. 

 

Table XI: Use of controls 

none indicated 65 

lab blanks 23 

field controls: soil 12 

field controls: 

comparable substances 

9 

curation control 0 

 

The researcher needs to know that the residues they characterized accurately represent ancient 

foodstuffs. A control allows for the researcher to account for contamination and degradation 

(McGovern and Hall 2015). As can be seen in Table XI, despite its documented importance the 

majority articles did not mention the use of a control. Use of laboratory blanks, a standard 
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technique to test for contamination during the analytical process, was only mentioned in about a 

quarter – given that it is routine procedure, it is possible that this was omitted from the methods 

discussion and was under-reported. A few cases soils were collected to test if residues transferred 

between soil and the matrix (as opposed to collection for residue testing). In even fewer cases, 

controls were taken from like substances – such as the unused portion of pottery or ground stone, 

or in the case of FCR a non-cultural rock – to provide a baseline for environmental 

contamination, sometimes considered background noise. In no cases were control samples taken 

from curation facilities, though Washburn et al. (2014) demonstrated this to be as important for 

samples for curated artifacts as freshly excavated ones. 

 

Table XII: Contamination 

Not mentioned 21 

Discussed only 15 

Plasticizer noted 13 

Other potential  

contaminants noted 14 

Removed outer  

portion 38 

Field controls 21 

Lab blanks 24 

 

Use of controls to evaluate contamination is addressed in Table XII. Contamination may be from 

environmental processes or may occur in the lab, thus controls should be used and residues 

screened for known potential contaminants. Even if it is concluded that contamination is not an 
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issue for those residues, how that was determined needs to be documented in the resulting 

publication. 

In a number of the articles contamination was not mentioned at all or it was mentioned but there 

was no indication that they attempted to control for it. In some cases either plasticizer – 

contamination from contact with plastics – or other potential contaminants were noted, indicating 

contaminants from the environment, handling, or both. Contamination can also be controlled via 

methodological considerations. In many cases the outermost portion of the sample matrix – 

either pottery or stone – was removed as this is the section most likely to have contamination. 

Controls were also used – the articles mentioned using either field controls or lab blanks. Field 

controls provide a baseline for environmental contamination, and lab blanks are helpful to 

identify contamination during analysis. 

 

Table XIII: Degradation 

Not mentioned 21 

Discussed only 6 

Noted during  

interpretation 69 

Experimental work 6 

 

Degradation is a normal occurrence in the archaeological record that changes the original residue 

profile. It should be assumed to have occurred, and thus—like contamination—should be 

accounted for during analysis and reported in the publication. A lot of work has been done on the 

degradation pathways of fatty acids (Eerkens 1989), though a smaller body of work has also 

indicated other macronutrients such as proteins and carbohydrates survive (Bland et al. 1998). 
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Given that the water soluble biomarkers of cacao survive, it may be worthwhile to expand the 

non-lipid based work. As can be seen in Table XIII, the grand majority of the articles directly 

dealt with degradation: the majority during their interpretation though a few articles did 

experimental work specifically related to degradation. However, in some cases it was not 

mentioned at all, and in few cases it was discussed but not apparent that it was considered during 

the interpretation. 

 

 

Figure 12: Relationship between site age and percentage of artifacts with residue as a proxy 

for preservation 

 

The reported percentage of samples with identifiable, non-contaminated residues (i.e. successful 

results) was compared to broadly reported ages for the sites. Only 40 papers reported the number 

or percentage of successful results. Figure 12 displays the relationship between percentage of 

successful samples and the age of the sites – a) for all sites, b) for all under 10,000 years. While 

there appears to possibly be a weak relationship (R2=0.144, p =0.12) between sites under 10,000 
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years of age (based on the start date) and successful results, the author has concluded these 

results are not valid. This is due in part to the way dates were recorded, and in part because 

different researchers used different criteria to discard samples. Some rejected only those that had 

insufficient residue to be detected or were obviously contaminated, others were more stringent, 

rejecting samples that did not meet a minimum amount of lipids (to indicate that they were not 

the result of background noise/contamination). A more thorough meta-analytical study of 

degradation is warranted, but may not be possible. 

 

 

Figure 13: Relationship between number of samples in an article and the percentage of 

artifacts with residue 

 

In order to test for publishing bias, the number of samples in a study were compared to its 

reported positive results. The papers with the three oldest sites were excluded from the initial 

regression analysis because despite being between 11,000 and 200,000 years old, they all had 

over 60% successful results, which is remarkably good preservation. It is possible that there is a 
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push-pull motivation to publish only positive results-not just refusing to publishing studies where 

no residue was found or identified, but declining to mention that larger number of samples were 

tested than reported on. Take two researchers both testing 12 samples, 8 of which provide 

enough non-contaminated sample to be analyzed. If one researcher reports all 12 samples while 

the other only reports on the 8 successful samples, then the first will have a 67% success rate 

while the second will have 100%. If researchers are dropping non-successful results from their 

reporting, the overall number of samples reported is lower, thus the expectation is that larger 

studies will have lower success rates. This is a good strategy for the researcher to improve the 

probability of being published; however, it would be good if publishers advertise their 

willingness to publish results that were not across the board successful.  

Figure 13 shows an initial regression comparing the number of samples in a study and the 

reported percentage successful results showed a weak but moderately significant relationship 

(R2=0.111, p-value=0.0354). Given the weak connection, it was prudent to more closely examine 

the cloud on the left side of the graph, which showed non-significant non-correlation (R2=0.034, 

p-value=0.269). This indicates that, of those who provide success rates, publishing bias may not 

be influencing reporting overall. Certainly, differences in preservation and sampling methods 

plays a significant role in percentage of successful samples. That said, some may still question if 

preservation in several millennia old sites is good enough that, even with careful sampling 

decisions, two samples can be tested and both result in identifiable residue. Thus, it can improve 

confidence to report on all samples examined, even if they are not all identifiable.  

 



 

46 

 

QUALITATIVE PATTERNS IN LITERATURE  

While quantitative trend data describes the body of literature as a whole, qualitative information 

is needed to get a full picture. The qualitative patterns described in this section focus on broad 

research goals including what kind of information was sought in addition to archaeological data. 

Several different types of research goals have been addressed by the articles, ranging from basic 

to higher order anthropological issues. The lowest order is simply characterizing the residues 

without connecting it to any anthropological considerations. The next order involves inferences 

about behavior based on those residue characterizations. Some second order studies focused on 

subsistence, such that residue information was linked to what food sources people were 

consuming. Other second order studies were focused on what the artifacts were used for, rather 

than subsistence. Frequently these were pottery studies, wherein the function of the vessel – 

determined by the residue – was compared to the form of the vessel. The final order is when 

those behavioral inferences are extrapolated to greater social networks, such as feasting, ritual, 

and diffusion of knowledge such as dairy or agriculture. These broad research goals were 

approached in a variety of ways. 

Regardless of where they fell within the order of anthropological issues, in some cases 

researchers were not seeking to generally characterize residues, they were looking for evidence 

of specific resources, such as dairy (Craig et al. 2005), wine (Guasch-Jané et al. 2004), cacao 

(Henderson et al. 2007), certain oils (Koh and Betancourt 2010), aquatic resources (Olsson and 

Isaksson 2008). This is reflected by the use of specific extraction techniques or the focus on 

particular biomarkers. Studies that focused on just characterizing residues without looking to 
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higher order questions tended to be 'proof of concept'--they were either demonstrating that 

identifiable residues were present or were more concerned with methodological issues. While 

many of the earlier works certainly fall into that category (see Hill et al. 1985), many recent 

articles are still producing proof of concept type articles (see Bianco et al. 2015) indicating that 

this field still has significant growth potential.  

Among those articles that did look at higher order questions, a number of them were seeking 

independent testing of specific hypotheses. Most of the form/function studies could be 

characterized as hypothesis testing. General subsistence patterns were also subject to testing, 

such as whether or not residues reflected patterns seen in other data sources such as faunal, 

macro- or microbotanical, or ethnographic. In some cases hypotheses bore out, sometimes they 

did not. Also among the higher order question articles, a number of these studies looked at 

variations in subsistence, vessel function, or both across multiple sites or through time. These 

studies were generally very large involving hundreds of samples, though some were smaller, 

containing as few as a two dozen. Copley et al. (2003) provides a good example of both. The 

relationship between pastoralism, farming and the use of dairy was examined by analyzing 950 

samples from 14 sites from across Britain from the early Neolithic to late Iron Age. The results 

of the analysis supported the hypothesis that in Britain animals were being utilized for dairy 

before farming was established.  

A majority of studies generated new information that could not have been obtained without 

residue studies. Some residues do not have other direct evidence in the archaeological record, 

especially liquids like dairy, fermented beverages, or oil (McGovern et al. 2013; see Evershed et 

al. 2008; Pecci and D’Andria 2014). In other instances the site does not have good preservation 
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of more traditional sources of subsistence information such as faunal or botanical studies (Kwak 

and Marwick 2015; see Buonasera et al. 2015). Sometimes direct subsistence information is 

available, but does not answer the research question, such as the case for form/function studies, 

or when residue data is being used as independent source for hypothesis testing. In very few 

cases, while residue studies were performed, the actual characterization relied more on other 

information from the site. 

Numerous articles reported on either the first analysis of residues from an area, or the residues 

were from earliest/oldest dated sites. For example: Bianco et al. (2015) identified the first grape 

products from Torre di Satriano site, Crown et al. (2012) the earliest known use of black drink at 

Cahokia, Isaksson and Hallgren (2012) the earliest evidence of dairying in Sweden. Meanwhile, 

Reber et al. (2015) performed the first published study of lipid distribution from a whole vessel 

in North America; Tarquini et al. (2014) did the first FTIR microspectroscopy analysis of 3rd 

century A.D. roman amphorae from Monte Testaccio; and Buonasera (2016) analyzed the first 

samples of bedrock features from dry caves for lipid content. 

In addition to answering questions about human behavior, many of the articles contributed to the 

field by performing experimental analyses and testing methodologies. Experiments allow 

researchers to better connect what is found in the archaeological record to actual human 

behavior, part of middle range research. A number of these experiments were tied into building 

reference libraries, testing the effects of cooking, aging, or both. These included both lab-based 

experiments (Oudemans et al. 2007; see Eerkens 2005), and actualistic experiments based on 

processing methods similar to the methods people originally used to create the archaeological 

materials (see Eusebio 2015; Heron et al. 2010; Kedrowski et al. 2009). These kinds of cooking 
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and aging experiments may end up taking years (see Pecci et al. 2013). Though not included in 

the quantitative analysis, there also a number of papers that focus solely on these kinds of 

experiments (Fankhauser 1997; Evershed 2008a; see Charters et al. 1997). 

In addition to the effects of cooking or aging, several researchers looked at how residues behaved 

in their matrix. Condamin et al. (1976) established that pottery absorbed food residue, so did 

work by Buonasera (2005, 2007) and Quigg (2001) establish that burned rock and ground stone 

absorb food residue as well. There are significantly fewer studies of the residue absorption by 

stone than by pottery, however. Pecci et al. (2015) studied glazed and unglazed pottery, testing 

the idea that glazed pots prevent residue from being absorbed, and actually found that residues 

appeared to be more abundant in the glazed vessels. Romanus et al. (2009) examined the effects 

of pitch, oil, and wine on their relative absorption. While there are interactions between the 

substances, all are absorbed into the fabric of the pottery up to 2.5-3 mm. Dimc (2011) studied 

how deeply contamination may be absorbed by pottery, and while most of the contaminated 

lipids were in the outer millimeter, some did absorb as far as the 3 mm, the same distance as 

shown by Romanus. These studies are not exactly comparable, however, as Dimc reports on 

amount lipids absorbed, while Romanus reports on the biomarkers for pitch/oil/wine absorbed. 

Of more concern, however, is that while some of residues from the outer were clearly 

contamination by residues associated with handling and plastics, some of the residue from inner 

portions would have been interpreted as archaeological foods, specifically aquatic animals or 

vegetables. Notably, it does not appear that soils or sediments contribute significantly to these 

kinds of contamination (Heron et al. 1991; Dudd et al. 1998), though Reber and Kerr (2012) do 

observe that there can be soil-pottery interactions. 
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Other questions relate to sampling choice, such as where in the matrix to sample and what kinds 

of residues to focus on. Charters et al. (1993) examined how residues were distributed in vessels, 

and established that these distributions may vary based on the type of vessel. Though many 

researchers cite this when justifying their choice of where within a vessel to sample, and some 

have used the concept when interpreting vessel function (see Pecci et al. 2015; Soberl et al. 

2014), it does not appear that others have tested it beyond the later experimental work done by 

Charter et al. (1997). Generally, researchers have some choice about where in a vessel to take 

samples, but usually do not have many options regarding what kind of residues (i.e. absorbed 

residues, visible residues, chars) to analyze. Oudemans and Boon (2007) had the opportunity to 

compare charred and non-charred residues, and found that chars had higher yields of extractable 

lipids per gram samples compared to non-charred residues, which may have been related either 

vessel use or effects of degradation on those types of residues. Their findings illustrate that 

choices regarding sampling can affect residue analysis. 

More technical methodological investigations involved the testing of sample preparation and 

analytical instrumentation. A number of these tested the applicability of various analytical 

instrumentation (Bianco et al. 2015; Mirabaud et al. 2007; Garnier and Valamoti 2015). Goals 

generally include increasing precision and sensitivity of the analysis. Notable among these is 

Romanus et al. (2007), who compared different instrumental set ups to determine the precision 

and comparability of these methods. Sample preparation techniques may also improve issues 

around instrument sensitivity, since if residues are better extracted from their matrix, there is 

more material to analyze. Most people use established techniques, thus the bulk of these kinds of 

studies appeared earlier in the literature (Charters et al. 1993; Hill et al. 1985). There have been 
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some more recent developments, however, such as the microwave assisted method developed by 

Gregg and Slater (2010) and the single step extraction derivatization method developed by 

Koirala and Rosentreter (2009). Regardless of the methods used, however, it is consistently 

noted throughout the literature that while useful information can come for individual analytical 

techniques, the most complete picture comes when multiple complementary techniques are used.  

DISCUSSION 

There are a number of relevant observations and suggestions from the literature regarding how 

biochemical residue analysis is best performed. When developing their own analytical procedure, 

it may be worthwhile for the emerging specialist to look at how related fields of research address 

issues related to reference libraries, controls, contamination, and degradation. These include 

other subfields within archaeology such as microbotany analysis, as well as residue-related 

analysis in art history, forensics, and food science. That said, what follows are suggestions based 

on the review of the literature on biochemical analysis of archaeological food residues.  

Foremost of the specialist’s concerns should be assurance that the archaeological residues are 

actually being interpreted. Thus, contamination needs to be controlled and degradation accounted 

for. In addition to work by Washburn et al. (2014) and Buonasera (2005) stressing the 

importance of controls, Mazow et al. (2014) and related work by McCandless (2012) present a 

compelling story on the necessity of testing everything, including equipment, for potential 

contaminants. Additionally, new or unfamiliar procedures should be test run before using them 

on archaeological materials. An excellent opportunity to test methodology while also expanding 

the reference library is through the analysis of experimental work or other reference materials. 
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Contributions to residues from the environment or natural contaminants cannot be eliminated, 

but several ways exist to control for it. One common practice being to remove the surface, 

though there is some doubt if this is necessary (see Evershed et al. 1990; Henderson et al. 2007; 

McGovern et al. 2013), or one can discard any samples whose total lipids fall below a minimum 

amount—Evershed (2008a) suggests discarding samples with less than 5µg of lipid per gram of 

sherd. Many researchers also test soils as a control method, to be sure the residues from the 

artifact differ from those in the soil. If soils are not available, the exterior portion of a pottery 

vessel can act as a good proxy (see Stern et al. 2000). Furthermore, while there have been studies 

establishing a basic understanding of how food residues interact with pottery, there are no similar 

studies on any types of stone artifacts. In addition the experimental work discussed earlier, such 

as determining the depth of residue absorption (Dmic 2011; Pecci et al. 2015) and testing 

interactions between the pottery and soil (Dudd et al. 1998; Heron et al. 1991; Reber and Kerr 

2012), Johnson et al. (1988) established that firing pottery destroyed any residues that may be 

present in raw materials for pottery. Buonasera (2005) similar studies would be useful for 

cooking stone in particular: establishing that the heating process for cook stone destroys previous 

environmental residues; depth of residue absorption into rocks; and baseline minimum amount of 

lipids present in natural rocks. Since environmental residues are present on non-cultural rocks, 

off-site natural control rocks should be used for each site as this can help establish what an 

environmental signature may look like and the background environmental lipid levels 

(Buonasera 2005). 

Before interpreting the implications of residues for human behavior, they must be identified or 

otherwise characterized. To do that, one needs a reference library, and building a reference 
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library with quality fingerprints, biomarkers, or both is a difficult task. One needs to be sure that 

the biomarkers actually represent what they are supposed to. Though Evershed (2008) and 

Hillman et al. (1993) focus on biomarkers, the same basic framework applies to fingerprinting. 

First, differences component signatures between classes of source material need to be identified. 

Second, variations of the signatures within these classes need to be understood. Third, the effects 

of cooking and taphonomy need to be accounted for. The disparate effects of processing, 

environment and age are especially problematic in the case of fingerprinting, where relative 

proportions of components--whether fatty acids, isotopes, or molecular bonds--is key (rather than 

presence/absence in a classical biomarker design). Many have noted that food mixing, 

degradation, and environmental contaminants all affect these proportions, and that classes may 

not be fully differentiated (Buonasera 2005; Barnard et al. 2007; Regert 2011). These three 

components are all necessary, and without a strong understanding of each, they are all potential 

sources of error in the identification and characterization of residues. 

The first point, identifying spectra associated with the material class in question, is the most 

straightforward step. Care must be taken that the spectra is only association with a particular 

class. Barnard et al. (2007) has discussed how biomarkers may be associated with two or more 

unrelated classes. Several articles note that residues need be interpreted in light of existing 

archaeological and environmental data, and geographical considerations may be one way to rule 

out biomarker confusion(see Koh and Betancourt 2010). Crown et al. (2012, 2015) address this 

with regards to using caffeine as a biomarker for the use of certain plants, usually cacoa 

(Theobroma cacoa) and holly (Ilex vomitoria and I. cassine). Caffeine has been found in vessels 

from regions where there are multiple plants that are caffeine sources and from regions where 
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there are no caffeine sources. In this case, geography is not sufficient to determine the source of 

the caffeine, and a more precise biomarker or fingerprint is needed to strengthen the 

identification. Thus Crown et al. (2012, 2015) uses theobromine, theophylline, and sometimes 

ursolic acid in addition to caffeine to differentiate between cocoa and holly plants.  

The second point, understanding variation in spectra within material classes, is more difficult. It 

requires testing as many variations with in a class as possible or practical, as a component may 

be misidentified if there is greater natural variation in the class’s spectra than is present in the 

reference library. Stable carbon isotope values re used to differentiate different types of fates. 

Researchers often rely on the published data, as library building is costly and the data is 

relatively well documented. It is clear, however, that there is spatial variation in stable carbon 

isotope values, as two researchers have demonstrated that their location variation did not match 

the variation in the published data. Gregg (2009), found that δ13C values of sheep adipose from 

Israel and dairy fats from Turkey do not match those from northern Europe. Likewise, Spiteri 

(2012) found that the δ13C and ∆13C isotopic values of ruminant dairy and non-ruminant 

adipose fats were shifted in comparison to the UK reference data. Even with relatively well 

established reference literature, it is worthwhile to be sure local variation matches what is 

anticipated in the literature.  

The third point, accounting for the effects of cooking and taphonomy, further complicates the 

reference library building. It is not enough to know components of modern species, but to be sure 

they survive through the cooking and taphonomic processes. Again, dealing with these issues 

take time and funding. Furthermore, fingerprinting may be particularly susceptible as multiple 

factors may interact in unanticipated ways. Many researchers, as previously noted have 
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conducted cooking and charring experiments to produce references for cooked residues. Here 

ethnographic and historic information is valuable for indicating how foods may have been 

processed. Survival through the archaeological record can be tested by either analyzing 

identifiable archaeological floral or faunal remains (Isaksson 1999; see Heron et al. 2015), 

through artificial aging of modern references (see Malainey et al. 1999a), or letting materials age 

through time (see Pecci et al. 2013). 

Once the residue has been characterized, the human behavior implications can be interpreted. 

While prior knowledge of the archaeological and environmental data can contribute to these 

interpretations, there is also the danger that they may cause unintentional bias and circular 

reasoning. Faunal and botanical analyses define relatively narrow classes, usually down to genus 

or species level. Biochemical analysis of organic residue tends to use more broad classes, such as 

ruminant versus non-ruminant animal. Thus, if non-ruminant animal fat is found in a vessel, it 

does not prove that deer fat was cooked in that vessel, even if deer bones were found at the site. 

Circular logic is a pitfall to be aware of and avoided; however, different aspects of the 

archaeological record may be combined with biochemical analyses to more fully understand 

culinary practices. There are a number of good examples of this in the literature. Baeten et al. 

(2013) note the burn patterns on the vessels they were studying, as well as the texture of 

associated bones suggest that meat and vegetable cooked in the pots were stewed together. 

Poulain et al. (2016) also interpreted their results as a stew from a single meal, as the visible 

residues had been scraped off the outside of glazed vessels, which they argue would have been 

easily cleaned thus the residues represented a single meal. Koh and Betancourt (2010) found that 

a vessel with particularly weak peaks for the presence of wine had been repaired in such a way 
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that could not hold liquids – thus it may have held wine initially but was reused for dry storage. 

This ties in with an observation by Hill and Evans (1987) regarding the relationship between 

form and function, that a vessel may have been created for one purpose but used for another. 

How results are reported is as important as accurate and precise characterization and 

interpretation of the residues. Standardization in reporting could improve comparisons of results 

from sites across time period and regions, allowing for meta analyses. While there were different 

research goals and different technologies used for the papers, this is not sufficient reason not to 

clearly report dates or environmental factors related to the actual site. As the field ages, the need 

to fully describe analytical technology fades, especially as this information is readily available 

from general reference sources. This pattern reflected in the literature: early papers tend to be 

focused on the mechanics of residue analysis, including how it works, details of methodology, 

and concerns related to contamination and degradation, while later papers tend to gloss over this 

information. However, many researchers are declining to report important information such as 

whether or not they used a control, or whether or not they noticed degradation/contamination 

products, which would improve confidence in the characterization. Likewise, negative findings 

are as important as positive – not only does the literature support that not finding residue on all 

samples is normal, the number of samples with residues can give information regarding the 

preservation at the site. Researchers are also declining to give details on how they interpret the 

source of the residues, such as not giving information about their reference collection. The 

characterization process is complicated by many variables, and is still developing as an area of 

study. Thus it remains important to report this information, and when possible provide raw data. 
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CONCLUSIONS 

To summarize the current literature on using separation-analysis and vibrational spectroscopy: 

most articles reported on GCMS analyses of lipids in pottery. This is unsurprising: A) lipids are 

the best preserved macronutrients, and thus are most likely to be retrieved B) pottery is highly 

absorbent and provides a known reservoir for food residues C) vibrational spectroscopy has only 

recently improved it’s sensitivity and ease of use. There appears to be a European/American 

dominance in who is doing these studies, though it may be the result of the English-language 

bias of this review. That said, there is a significant amount of collaboration between countries: 

38 of the papers have authors from two or more countries. There is potential for a variety of 

meta-analyses, especially related to degradation but it would require tracking down site reports to 

get accurate information about the depositional environment. A preliminary examination of the 

data indicates that (as expected) there is a relationship between age of the site and amount of 

identifiable residues; however, while statistically significant, it does not account for a majority of 

the variation. Fortunately an equally preliminary examination does not indicate the appearance of 

reporting bias.  

There is considerable variation in research goals for residue studies. Some of these studies focus 

on performing proof-of-concept tests, showing that a particular site or time period produced 

identifiable residues. Others were interpreting residues in the light of subsistence patterns, social 

behavior, or vessel function. Many of these were testing hypotheses derived from archaeological 

or ethnohistoric data. The majority of these studies, especially those related vessel function, had 

research questions that could not be answered without residue analysis. In addition to answering 

questions about cultural processes, many studies had research goals focused on technical aspects 
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of residue analysis. Experimental studies included the effects of cooking and aging, and how 

residues move through their matrix. Technical questions also included sampling choice: if given 

the option, where to sample from a vessel and what kinds of residues to analyze. Finally, 

improvements in technology were tested, both methods of sample preparation and what kinds of 

instrumentation to use. Based on this review and other detailed discussions of archaeological 

practices, standards for best practices have been developed, outlined below. 

Best Practices Standards 

In preparation for their study, the specialist, if not doing the sampling themselves, should work 

closely with the persons collecting the samples from the sites. This includes making sure that 

they fully understand proper sampling procedure and what kinds of samples to take. While there 

has not been work done to this end for other potential residue sources such as grinding stone or 

fire cracked rock, a number of studies have been performed on ceramics. The sampling supplies 

should be non-reactive – when taking whole samples this often means wrapping with aluminum 

foil (Lewis and Christensen 2015), or if taking chemical samples in the field that all gauze, 

filters, and the like are binder-free (Mazow et al. 2014). Additionally, the specialist should stress 

the importance of control samples; at the very least should ask potential research projects to 

budget for them. 

When sampling, the most important part is making sure the procedures reduces the chances of 

contamination. The most basic methods involve generally limiting contact with samples: a) No 

food, aerosols near open pits (and pay attention to wind); b) Powder free gloves, pull back long 

hair; c) Clean sampling supplies between takes (Thoms 2014). Then they need to appropriately 
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contained: avoid plastics and sharpies; paper bags, foil, and pencil are best (Heron and Evershed 

1993). These should bagged separately from other artifacts (Barton and Torrence 2015). They 

need to be moved to a cool, dry place as soon possible – if possible, even frozen. Samples should 

not be washed in the field. Not all contamination can avoided, but it can be controlled through 

sampling. Non-cultural controls can provide information on ‘background noise’ or 

‘environmental influences’, for stone samples, this would be a non-cultural rock, from ceramics, 

the external side of the vessel may be a good option. Potential contamination sources can also be 

sampled – in archaeological sites, this can be from the soil; from curated samples this can 

include the dust that collects on the shelving. If performing archaeological excavation, this may 

also be a good opportunity to take samples for the reference library. 

Best practices in the lab also entail controlling for contamination. There are a number of steps in 

addition to basic good lab practices, such as cleaning and sterilizing equipment (i.e. heating to 

over 500°C), using powder free gloves, and using a clean bench (Crowther et al. 2014; Hart 

2008; Kwak and Marwick 2015; Mayyas and Douglas 2015). This includes using lab blanks to 

test for contamination during the processing, as well having signatures for potential 

contaminants, such as solvents, in the lab. Test the equipment to make sure it’s non-reactive; this 

includes stoppers, plungers, and other pieces that may but do not necessarily come into contact 

with solvents (Mazow et al. 2014).  

Best practices do not end in the lab, they extend into analysis and interpretation. The reference 

library should be relevant to the area, and include non-cultural sources (i.e. possible 

environmental contaminants) as well. Experimental work relevant to the cooking processes being 

studied should be done, if possible. If software and literature libraries are being used, they need 
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to be evaluated to ensure that the methods of data collection are consistent with those used in the 

study. Potential contamination and degradation should be noted and reported. To maintain 

confidence in the results, everything should be reported, included negative results and possible 

sources of error.  

Future work 

The literature points to several directions for future research. First, experimental studies can 

elucidate many important aspects of residue analysis including contamination, degradation 

through cooking and aging, how residues transfer to their matrix. In particular, experimental 

studies of residues on stone artifacts need to be expanded, including establishing environmental 

signatures and whether there are residues presents on stones before they absorb cultural residues. 

Second, reference studies need to be expanded and criteria for identification refined. The 

variation between and within material classes is not fully understood. Making reference libraries 

readily available to other researchers may not reduce the amount of reference building any 

particular researcher needs to do, but gives the opportunity to study this variation. Further, 

including less economically important ad non-food resources in reference libraries more fully 

accounts for what materials an artifact may have come in contact with. For example, most 

residue studies focus on large mammals, but small rodents may have been important to incipient 

have been important to incipient horticultural societies (c.f. Malainey et al. 1999). Third, with 

improving instrument sensitivity, it may be worthwhile to generally increase the focus of these 

studies to included non-lipid based food stuffs. While they are less likely to be preserved, the 

literature supports that some non-lipids are surviving. This could add several additional steps to 

lipid-based studies; however, given that it is established that multiple lines of evidence are best, 
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it is a worthwhile effort. Biochemical residue analysis of archaeological food residues is a 

growing subfield with many opportunities for future research.  
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CHAPTER III  

FACILE RESIDUE ANALYSIS OF RECENT AND PREHISTORIC COOK-

STONES USING HANDHELD RAMAN SPECTROMETRY1 

INTRODUCTION 

The first analysis of archaeological food residue occurred in the 1930s, when Johannes Grüss 

used basic chemical tests to identify black residue on a ceramic vessel as overcooked milk (Craig 

2002).  Since then, residue analysis has been conducted on a wide variety of substances 

including perfumes, cosmetics, beeswax, resins, tar, pitches, proteins and lipids in soils, 

pigments, ink, and paint (Evershed 2008b; Ciliberto and Spoto 2000; Edwards and Chalmers 

2005; Glascock et al. 2007).  Food residue studies generally analyze lipids, proteins, DNA, and 

other characteristic compounds of residues absorbed by pottery.  A wide range of techniques are 

used including chromatography, gas spectrometry, elemental analysis, optical and resonance 

spectroscopy, stable isotope analysis, X-ray diffraction and immunological techniques (Malainey 

2011b). 

Studies of food residue have been most successful with pottery, likely because the porous nature 

of the pottery enables substances to become easily absorbed and trapped.  There also have been 

successful protein and lipid analyses of residues on the surface of grinding implements and 

flaked tools (Malainey 2011b). In both cases, blind tests using modern laboratory-created 

                                                 

1 Reprinted with permission from: “Facile residue analysis of recent and prehistoric cook-stones 

using handheld Raman spectrometry” by Laura Short, Alston V. Thoms, Bin Cao, Alexander M 

Sinyukov, Amitabh Joshi, Virgil Sanders, and Dmitri V Voronine, 2014. Journal of Raman 

Spectroscopy, 1–17, Copyright 2014 John Wiley & Sons, Ltd. 
 



 

63 

 

artifacts have shown that these methods are in need of further development and utilization of 

multiple lines of evidence (Barnard et al. 2007; Colombini et al. 2011b; Leach et al. 1998). 

Raman spectroscopy for archaeological analysis has focused on paints and pigments, resins and 

pitch, and plaster-like materials (Edwards and Chalmers 2005; Malainey 2011b).   It can be used 

to identify both organic and inorganic substances and has gained popularity due to its non-

destructive nature.  However, fluorescence background may limit the sensitivity and 

archaeological materials may undergo taphonomic processes that make matches to modern 

reference samples difficult(Smith and Clark 2004). Additionally, until recently, Raman analysis 

has been laboratory oriented. 

Various types of Raman instruments have been developed and optimized for different purposes. 

A class of miniaturized portable Raman spectrometers is now available for rapid in situ 

experiments such as airport screening, forensics, art authenticity verification, etc. Handheld 

Raman spectrometers can be used by a single operator in diverse challenging environments and 

may be particularly useful in archaeology, especially in situations when artifacts cannot be easily 

moved to the laboratory or when objects are too large for a microscope. Several applications of 

portable spectrometers to examine the composition of compounds in art such as canvas and rock 

paintings have been recently reported (Vandenabeele, Castro, et al. 2007; Olivares et al. 2013; 

Maguregui et al. 2012). 

In this paper, we use a handheld Raman spectrometry to perform trace analysis of food residue 

from limestone rocks (i.e., cook-stones) used experimentally as heating elements in 
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actualistically constructed and used earth ovens. We also analyzed cook-stones recovered from 

prehistoric earth ovens at archaeological sites in Fort Hood, TX. 

BACKGROUND: HOT-ROCK COOKING TECHNIQUES 

Cook-stone technology, the use of heated rocks for cooking, is roughly 30,000 years old, and has 

occurred worldwide.  Techniques include using heated stones as griddles in open hearths, as 

heating elements in closed earth ovens and steaming pits, and as the heating element for boiling.  

Its appearance in the archaeological record has been related to population packing that required 

people to put more effort into procuring more food from the same area of land. This technology 

requires more energy input than hot-coal cooking, because stones and green-plant packing 

material have to be collected in addition to the firewood; however, it is more fuel efficient 

because the stones retain heat long after the coals cool (Thoms 2008b, 2009).  

In their most essential form, earth ovens consist of a pit in which heated stones are used to cook 

food.  Generally speaking, food may or may not be wrapped into packages, but is always 

insulated from the stones with green plant material.  Earth ovens are ideal for cooking foods that 

require a long cooking time.  Ethnographic evidence shows that many groups around the world 

cooked meat, fish and shellfish in earth ovens. Most archaeological evidence indicates that pre-

Columbian (i.e. prehistoric) North Americans living in temperate environs most commonly 

cooked plants in earth ovens. In the eastern half of Texas, wild root foods, especially bulbs of 

eastern camas (Camassia scilloides), wild onion (Allium spp.), and false garlic (Nothoscordum 

bivalve) were baked in earth ovens as early as 8-9,000 years ago. In the western half of Texas 

desert succulents were commonly baked in ovens, including lechuguilla (Agave lechuguilla), 

sotol (Dasylirion spp.), and prickly pear (Opuntia spp.) (Thoms 2008b, 2009). For the most part, 
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knowledge about what was baked in earth ovens comes from ethnographic evidence and, less 

commonly, carbonized plant remains from archaeological remains of earth ovens. 

Cook-stones were also used to boil water, in a process known as stone boiling (Thoms 2008b, 

2009).   In this case, stones heated in an open fire to about 500 ºC were removed using tongs, 

quickly rinsed in water, and dropped into a vessel containing liquid and food.  As the stones 

cooled, they were removed and hot ones were added until the food was adequately boiled.  This 

method boils liquids in bark, wooden, or hide containers more quickly than direct heating 

methods, and it does not require heat-resistant materials (e.g., ceramic and metal) as do direct 

heating methods.  Stone boiling was used for a wide variety of cooking applications, creating 

soups, stews, porridge, and rendering fat.  Many foods were cooked by stone boiling - nuts and 

seeds, geophytes, meat, and fish.  Nuts and animal parts were both used to render fat.  Since 

stone boiling does not usually result in charred materials, at this point most knowledge of what 

was cooked by this method is based on ethnographic evidence (Thoms 2009).   

Starch granule and other residue analyses are now being used to identify plant-food microfossils 

in cooking stones, albeit with  mixed results(Laurence et al. 2011).  Raman spectroscopy also 

provides the potential to identify what was in direct contact with the cook-stones used in boiling 

as well as minute food remains adhering to rocks used as heating elements in earth ovens. 

Handheld Raman methodology could be used at archeological sites to provide additional 

information about cook stone methods. In principle it could be used to distinguish between the 

earth-oven heating stones and the boiling stones by analyzing the amount of charred residues. 

Raman spectra could be used to distinguish between lipid residues and carbohydrates and 

between plant and animal residues. It is also sensitive to the nature of carbohydrates and could 



 

66 

 

distinguish between starch, cellulose and inulin and provide specific information on the 

morphology and chemical composition of the cooked foods.  

BACKGROUND: PLANT CARBOHYDRATES 

Plant carbohydrates include simple sugars and alcohols, storage polysaccharides and structural 

polysaccharides.  Simple sugars such as glucose and fructose make up the sweetness we taste in 

fresh fruits and vegetables.  Storage polysaccharides such as starch and fructans are used to store 

energy.  Structural polysaccharides such as cellulose and pectin are the components of cell walls 

known as dietary fiber (Wandsnider 1997). 

A specific storage carbohydrate, inulin, is associated with earth-oven baking (Thoms 2009). 

Inulin is concentrated in the edible underground storage organs (bulbs, tubers, etc.) of some 

geophytes including many plants in the lily family, such as onion and garlic (Allium spp.) and 

camas (Camassia spp.), and many plants in the aster family, including chicory (Cichorium 

intybus), jerusalem artichoke (Helianthus tuberosus), and dandelion (Taraxacum spp.), as well in 

the pulpy central stems (i.e. hearts) of succulents such as sotol (Dasylirion spp.) and agave 

(Agave spp.).  The simpler the carbohydrate, the easier it is for humans to digest and utilize the 

sugar – complex carbohydrates such as starch and inulin must undergo hydrolysis to be readily 

digestible.  Raw inulin provides energy via digestion by gut flora (which is why it is known as a 

prebiotic), but inulin breaks down into simpler sugars fructose and glucose when cooked over a 

long period of time.  Earth ovens, which are capable of generating and maintaining sufficient 

heat for 72 hours, are ideal  for the kind of extended cooking required to break down inulin and 

thereby render it more readily digestible (Wandsnider 1997). 
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HOT-ROCK COOK-OFF:  EXPERIMENT AND ANALYSIS 

 

 

Figure 14 (A) Photograph of a partially uncovered 48-hour earth oven from the HRCO 

field experiments in San Marcos, TX that was used to bake sotol. (B) Schematic illustration 

of construction and use of a typical earth oven (adapted from Thoms, A. V. J. Anthropol. 

Archaeology 27, 443 (2008)): (B, top) fire is built in a pit overlain  by a layer of rocks; (B, 

middle) when the fire burns completely, red-hot rocks are covered with green packing 

material, food packs, more packing material, and covered with earth; and (B, bottom) 

remains of the oven after the food is removed  and the oven is abandoned. 
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The Hot-Rock Cook Off (HRCO) is an actualistic experimental archaeological cooking event, 

where cooking methods utilizing cook-stone (the “hot rock”) are recreated based on 

archaeological and ethnographic data.  Earth-oven cooking is the focus of the event, though stone 

boiling and grilling are included.  Predominantly an academic venture by anthropology students 

at Texas A&M and Texas State Universities, it is open to the public and includes other 

educational activities and information. Each year representatives of Native American groups 

from the region attend and participate in the event. These experiments are an attempt to replicate 

archaeological signatures of earth ovens found throughout Texas and elsewhere around the 

world. Figure 14 depicts earth ovens used during the HRCO event in San Marcos, TX in 

November 2012.  To replicate prehistoric cooking techniques, sotol was baked for approximately 

48 hours using heated limestone rocks (Figure 15A and B). We measured the Raman spectra 

using the ‘First Guard’ handheld Raman spectrometer from the Rigaku Corporation, which has a 

1064 nm laser, a spectral resolution of ~20 cm-1, and a detection range from 200 to 2000 cm-1. 

The focal spot size was ~ 1 mm. The 1064 nm wavelength provides advantages of in situ 

investigation and a significant suppression of fluorescence background. This push-button device 

is most convenient for field experiments that do not require sample preparation. It is therefore 

especially suitable for non-destructive efficient exploration of prehistoric archaeological sites.   
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Figure 15 (A) Sotol. (B) A desiccated sotol “heart” sliced with a saw to show the internal 

structure of the plant. The knife points to the edible central stem from which the leaves grow, 

something like an artichoke. (Courtesy of Phil Dering) (C) Stone tool used to scrape cooked 

sotol at the HRCO site. (D) Raman spectra of cooked sotol (red) and sotol residue on the 

scraper (black), compared with uncooked inulin (blue) and cooked inulin on boiling stones 

(green). Similar spectral signatures were found in all samples. 
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At the HRCO,  a stone tool  was used to scrape the baked sotol and make it into cakes more 

suitable for eating, as is documented ethnographically and likely occurred in the distant past as 

well (Figure 15C) (Sobolik 1996). The handheld Raman spectrometer was used to examine the 

visible residue that remained on the scraper. The laser beam was focused on the stone surface at 

400 mW laser power with 3 second exposure time and an average of three shots. These 

conditions were optimized to obtain the maximum S/N. The results are shown in Figure III.2D. 

Both the surface of the scraper (black) and the spectra from fresh sotol (red) have a well-resolved 

peak at 1453 cm-1 which is absent in a clean stone washed with tap water. There are also other 

peaks around 800 and 1100 cm-1 which are weak. These peaks confirm the presence of sotol on 

the surface of the scraper. The signal intensity varied depending on the position on the scraper. 

The results imply that the key issue in detecting residues on artifacts is to find a hotspot where 

some residue adheres to the surface or in cracks and crevices. That several places on a given 

artifact can be sampled in a short timeframe indicates the practicality of handheld Raman 

spectrometry in field and laboratory archaeology. 

We compared the spectra of the raw sotol and baked sotol on the surface of the scraper to the 

spectra of inulin. We also used handheld Raman spectrometry for residue analysis of limestone 

fragments used to boil chicory root inulin powder purchased from a local grocery store. The 

limestone was purchased from a local garden center. About 5 grams of inulin were boiled with 

several stones for an hour. 

Figure 15D shows a comparison of Raman spectra of raw inulin (blue) with cooked inulin on the 

surface of boiling stones (green), and with raw sotol (red) and baked sotol on the surface of the 

scraper (black). The obtained spectra of inulin are in agreement with previous reports (Manno et 
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al. 2009; Sigma-Aldrich 2018). Spectra of cooked inulin on boiling stones reveal clear signatures 

of inulin. Sotol and inulin have similar spectra. Therefore inulin is a major component in Raman 

spectra of sotol. This confirms the potential of handheld Raman spectrometry for archaeological 

food residue analysis on boiling stones.  

PREHISTORIC COOK-STONES:  METHODS AND ANALYSIS  

We examined two cook-stones, commonly known as fire-cracked rocks (FCR) from two ancient 

earth ovens.  These FCR were among many such cook-stones constituting the heating element of 

earth ovens excavated at Ft. Hood, TX. Figure 16 B-D and F-H show photographs of different 

sides of stones 1 and 2, respectively. Stone 1, from site 41CV1553, dates to approximately 350-

650 AD. Stone 2, from the site 41CV594, dates to approximately 2,500-500 BC. Raman spectra 

from the surface of stones 1 and 2 are shown in Figure 16  A and E, respectively. As described 

above, the spectrometer was put against the surface of the cook-stones to obtain the spectra, and 

different spots were selected. A small piece cut from stone 1 was thoroughly cleaned for 

comparison (Figure 16 J). The corresponding Raman spectrum is shown in Figure 16 I. The 

Raman spectra in Figure 16  A, E and I show similar patterns. Both stones showed Raman peaks 

around 988, 1085, and 1170 cm-1. The same peaks were also found on the piece of stone 1 that 

was rinsed with tap water (Figure 16 I). Therefore, they were assigned to the stone itself. The 

strongest Raman peak of calcite at 1087 cm-1 matches well with the observed strongest peak at 

1085 cm-1 (Burgio and Clark 2001). However, the spectra of several spots on the uncleaned 

cook-stones showed broadening of the 1085 cm-1 peak. This broadening was not observed on the 

cleaned cook stone and is attributed to the presence of residues. 
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Figure 16 (A) and (E) are Raman spectra of two different stones from the prehistoric 

archaeological sites in Ft. Hood, labeled stone 1 and stone 2, respectively. (B) - (D) and (F) - 

(H) are photographs of different sides of stones 1 and 2, respectively. (B) - (D) and (F) - (H) 

are photographs of different sides of stones 1 and 2, respectively. (B) is a split cross-section 

of stone 1 with the corresponding spectra 1 - 3 in (A). (I) Raman spectrum of a cracked piece 

of stone 1 (J) after rinsing with tap water. Arrows indicate spatial positions on the cook-

stones that correspond to the spectra. The cook-stone sizes vary in the range 3 – 15 cm. 
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Figure 16 shows that the spectra 1 and 3 in (A) and the spectrum (I) of the section of the cook-

stone cleaned by tap water have a narrower width at 1085 cm-1 compared to the spectra from the 

surface of the stones. The broadening is shown more clearly in normalized Raman spectra in 

Figure 17. It is possible that the observed broadening of the peak at 1085 cm-1 is due to organic 

food residues such as carbohydrates (inulin, cellulose or others). Inulin is present in many wild 

plants found in the vicinity of the sites, especially onion and camas, both of which have been 

recovered as charred macrobotanical fragments from remains of ancient oven at Fort Hood 

(Mehalchick et al. 2004). However, other inulin spectral peaks such as the 1453 cm-1 peak were 

not resolved due to low signal-to-noise ratio. This finding suggests the possibility of identifying 

organics, including residue of food eaten a thousand or more years ago, using handheld Raman 

spectrometry. Assessment of this working hypothesis—broadening of the peak at 1085 cm-1 is 

due to organic food residues — requires improvement of the signal-to-noise, spectral resolution 

and extension of the detection spectral range. 
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Figure 17 Normalized Raman spectra of inulin (dash-dotted black), cellulose (dotted red), 

and two different stones from the prehistoric archaeological sites in Ft. Hood, labeled stone 

1 (solid blue) and stone 2 (dash-dotted green). The two stones correspond to Figure III.3E 

(spot2) and I, respectively. The cracked piece of stone 1 was cleaned with tap water. The 

spectra of carbohydrates and uncleaned stone 2 show a significant broadening of the 1085 

cm-1 peak. 

 

COMPARISON OF THE PORTABLE AND LAB-BASED RAMAN INSTRUMENTS  

We compared the performance of the portable handheld Raman spectrometer with the state-of-

the-art lab-based Raman microscope. The latter was a confocal Raman microscope (Nanonics 

Imaging, Ltd) with an electric-cooled CCD detector (-70 ºC) and iHR550 spectrometer (Horiba), 

and 180o backscattering detection. The excitation source was a 785 nm CW laser with up to 30 

mW power at the sample with a 10x objective. The typical spectral resolution was better than 0.7 

cm-1. To perform the comparison of the two instruments we purchased two reference materials, 
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inulin from chicory root and cellulose acetate, from Sigma-Aldrich, Inc. Both of these materials 

may be present as food residues at archeological sites. Cellulose is the most abundant natural 

organic polymer on Earth. The ability to distinguish inulin from cellulose using portable Raman 

spectroscopy will be useful in archeology.  

The Raman spectra of inulin and cellulose are shown in Figure 18A and B, respectively. The 

comparison of the spectra measured using the portable (red) and lab-based (blue) instruments 

shows that both instruments provide essentially the same information. The lab-based instrument 

shows an additional feature in the region of 1600 – 1700 cm-1 which is most probably an artifact 

of fluorescent background subtraction. The 785 nm wavelength of the lab-based instrument can 

lead to a larger amount of fluorescence than the 1064 nm wavelength of the portable instrument. 

The portable instrument has lower spectral resolution but is still able to detect most of the 

spectral lines. For example, both the portable and the handheld instruments measure similar line 

shapes of the 1270, 1333 and 1453 cm-1 transitions in Figure 18A. These transitions have similar 

line widths and are less congested. However, the portable instrument cannot resolve the 

transitions in the more congested region around 1059 cm-1. It does not affect the detection of 

inulin and cellulose but can be important in other cases. Then the sample can be analyzed using 

the lab-based instrument and the portable Raman spectrometer can be used to obtain the 

preliminary information. This demonstrates that the portable Raman instrument may be used for 

residue analysis in field experiments.  
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Figure 18 Raman spectra of inulin (A) and cellulose (B) purchased from Sigma-Aldrich, 

Inc measured with a lab-based (blue) and portable (red) instruments. Similar spectral 

signatures obtained with both devices demonstrate that a portable instrument can be used 

in archeological field experiments. 
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Figure 19 Comparison of the Raman spectra of inulin from Sigma-Aldrich, Inc (red) and 

from a grocery store (blue) obtained using a handheld spectrometer. Similar spectral 

signatures in both cases are observed. 

 

Figure 19 shows a comparison of the Raman spectra of inulin from a grocery store (blue) to the 

chemical grade inulin from Sigma-Aldrich (red) measured using the handheld Raman 

spectrometer. Similar results are obtained. This shows that the portable Raman spectrometer can 

detect inulin from various sources. 

Band assignment was performed based on previous Raman studies of inulin (Manno et al. 2009; 

Beirão-da-Costa et al. 2013) and cellulose (Barrett 1981; Szymańska-Chargot et al. 2011). These 

two chemicals are both naturally occurring carbohydrate polymers. Inulin is a fructan mostly 
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made of fructose units, whereas cellulose consists of a chain of glucose units. Comparison of the 

bands of inulin and cellulose in Table XVI (see Appendix A) shows that these two different 

carbohydrates can be distinguished using portable Raman spectroscopy.  

Previous literature reports on carbohydrates confirm the ability of Raman spectroscopy to 

distinguish different chemicals. Raman spectroscopy was shown to be a valuable tool for the 

studies of carbohydrates (Goral 1992; Brandenburg and Seydel 2002; Vasko et al. 1971; Choi et 

al. 2010; Mathlouthi and Koenig 1987; Parker 1983). For example, distinct Raman spectra were 

measured for thirteen different sugars including glucose, fructose, starch and cellulose (Barrett 

1981). Pectin and starch were distinguished in situ in living potato cells and in carrot roots 

(Thygesen et al. 2003; Baranski et al. 2005). Raman spectroscopy was used to distinguish 

starches from potato and maize due to their different structural properties (Bulkin et al. 1987). 

Our results and previous literature suggest that Raman spectroscopy is able to provide 

chemically specific signatures of carbohydrates, including inulin.  

The ability of Raman spectroscopy to distinguish various carbohydrates is based on the 

sensitivity of vibrational signatures on molecular structure and conformation. Branched vs linear 

structures, crystalline vs amorphous, various degrees of hydrogen bonding, and spatial 

arrangement of substituents relative to the backbone lead to distinguishable Raman shifts. For 

example, the CH2-OH bending and deformation bands at 1333 and 1453 cm-1 in inulin are 

suppressed and shifted in cellulose. The COC stretching modes in these chemicals are also 

different due to the different structure of unit cells. These peaks provide unique spectral 

signatures of inulin as an organic residue on archeological samples. For example, the 1453 cm-1 

peak is clearly resolved on a scraper stone in Figure 15D and the 1333 band appears as a weak 
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shoulder. The handheld Raman instrument may be used as a fast tool to detect the organic 

residue which can be later more carefully analyzed using other lab-based techniques.  

Carbohydrates also have a broad band around ~2900 cm-1 (not shown), which lies outside of the 

available range of the handheld Raman spectrometer (from 200 to 2000 cm-1). This band, 

however, cannot be used for inulin identification because it is present in all carbohydrates. The 

available spectral range is sufficient to identify inulin at archeological sites using portable 

measurements (Figure 18). Further analysis in a broader range can be later performed using 

laboratory-based instruments.  

CONCLUSIONS 

We demonstrated the use of handheld Raman spectrometry for facile trace analysis of inulin in 

actualistic experiments and its potential application at prehistoric archaeological sites. We 

detected spectroscopic features of inulin in the Raman spectra of sotol, which is a potential 

residue source in prehistoric earth ovens. Future exploration of archaeological samples using 

handheld Raman spectrometers is anticipated. Given that food residue is most likely to be 

preserved in the cracks and crevices of ancient, well weathered cook-stones and tools (Laurence 

et al. 2011; Namdar et al. 2009), we conclude that portable handheld Raman microscopy should 

focus on these places on a given stone(Smith and Clark 2004).  

Coherent anti-Stokes Raman scattering (CARS) spectroscopy has been recently used for the 

investigation of the molecular composition of gas residues in cracks of translucent materials 

(Smart 2012; Burruss et al. 2012). CARS can be also used for the archaeological food residue 

analysis. The CARS signal is (N-1) times stronger than the spontaneous Raman signal used in 
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this work, where N is the number of molecules. Therefore, CARS can enhance the signal from 

traces of organic residues which have microscopic amounts of material. Another possible future 

direction of improving handheld Raman spectrometry is by increasing the sensitivity via surface 

enhancement (Kneipp et al. 2006; Le Ru and Etchegoin 2009). Surface-enhanced Raman 

scattering (SERS) micro-spectroscopy has been used for the detection of nucleotide traces in 

pyroxene rocks as imitation of in situ search for life traces on Mars (Muniz-Miranda et al. 2010). 

SERS will require a special sample preparation to provide a contact between the residue and the 

enhancing surface. It may also be possible to adapt combinations of these techniques to the in 

situ food residue analysis and to develop portable surface-enhanced CARS (SECARS) and 

FAST-CARS spectrometers (Liang et al. 1994; Voronine et al. 2012; Scully et al. 2002; Pestov et 

al. 2007). Sample enrichment procedures could also be used to enhance weak signals. Tighter 

focusing and higher laser power may burn the sample. Developing portable handheld CARS, 

SERS and SECARS spectrometers may decrease the signal collection time and will bring many 

future advantages in the field.  
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CHAPTER IV  

RAMAN SPECTROSCOPY OF BIOCHEMICAL RESIDUES FROM EARTH 

OVENS IN SOUTH-CENTRAL NORTH AMERICA 

INTRODUCTION 

Cooking is one of the most important human activities. Even with abundant evidence of cooking 

in the archaeological record, it is rarely clear what particular food(s) people were preparing in a 

given feature. Earth oven baking is a prime example – while ethnographic information provides a 

general sense of what one might expect, without the preservation of botanical or faunal remains, 

archaeologists cannot be sure what was processed in any particular oven. Presented here is a 

proof of concept study developing a method to characterize biochemical residues, aimed at 

identifying what plant foods were baked in given earth oven or other cooking feature. 

Earth ovens first appear in the archaeological record approximately 32,000 years ago, and show 

up in the Americas by 10,500 years ago (Thoms 2009; Movius 1966; Pearson 1999). In Texas, 

the location of this study, earth ovens were prevalent starting in the Early Archaic (8800 BP) 

where ethnographic and macrobotanical evidence indicates they were used primarily to process 

plant foods (Thoms 2008a).  Earth oven cooking is part of the intensification process. By 

increasing digestibility through increased input of time and labor, people attempt to maintain an 

increasingly dense population. This increased resource (including time, labor, technology) 

exploitation extracts more food energy per unit area of land  (Thoms 2009; Johnson and Hard 

2008; Thoms 1989).  It has been suggested that earth ovens, rather than horticulture, were a 

major form of intensification in Texas, and was part of the reason that horticulture never gained 

significance in central Texas’ pre-Columbian history (Johnson and Hard 2008).    
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Earth oven cooking usually uses heated stones in below-ground pits to bake or steam food. This 

serves a number of purposes: to break down complex carbohydrates, proteins and lipids; for 

preservation; and to destroy toxins (Wandsnider 1997). This makes them well suited to cook 

tough cuts of meat and plants rich in complex carbohydrates. Inulin is one such complex 

carbohydrate. Foods rich in it, including onion, camas, sotol, and agave, are frequently 

associated with earth oven cooking (Thoms 2009; Black and Thoms 2014). Generally speaking, 

inulin has been shown to be an important resource world-wide, spanning, potentially, back to the 

dawning of modern humans (Leach 2008). It is a prebiotic, in that in its raw form, it does not 

directly provide nutrients for humans, but it is fuel for bacteria in humans’ lower intestinal tract 

(Leach 2008). However, when exposed to water and heat, the complex carbohydrate breaks 

down into easily digestible sugars (Wandsnider 1997). Caramelizing onions is a good example of 

the process that may be familiar to many people (Leach 2009). 

Evidence for the association of earth ovens and inulin rich plant foods comes from historic 

records, ethnographic reports, and charred plants found in archaeological earth ovens (Thoms 

2008b). While charred plant foods provide good evidence of what foods were processed, they are 

relatively rare in the archaeological record. Other sources of direct evidence include 

microbotanicals, such starch, raphides, and phytoliths (Thoms, Laurence, et al. 2014a). They are 

excellent at identifying the processing of starchy foods, for example, since starch grains act as 

direct evidence of their presence. Other diagnostic microfossils include raphides for cacti, or 

phytoliths for maize. To date, there have been no correlations made between diagnostic 

microfossils and inulin-rich foods, however. 
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Rocks heated in excess of 500 °C by burning wood or other fuel function as heating elements in 

the closed oven and they cool slowly as they cook the food. This produces a number of changes 

in the rocks – for example they crack, change color, and some minerals break down, and they are 

known as fire cracked rocks (FCR) (Pagoulatos 2005).  The resulting microcracks help preserve 

food residues that would otherwise deteriorate (Shanks et al. 2001; Thoms, Boyd, et al. 2014; 

Thoms, Laurence, et al. 2014a).  If those organic residues are preserved, their molecular structure 

may be identifiable using analytical chemistry.  

A variety of techniques are used for biochemical or organic residue analysis, including those that 

combine separation and analysis such as gas chromatography–mass spectrometry (GCMS) and 

liquid chromatography–mass spectrometry (LCMS), and vibration spectroscopy such as Raman 

spectroscopy and Fourier Transform Infrared (FTIR) absorption spectroscopy(McGovern and 

Hall 2015; Ribechini et al. 2011).  These molecular structures can indicate the potential source of 

the residues using the archaeological biomarker concept to link the structures found in the 

chemical fingerprint to substances known to have existed in organisms that humans exploited 

(Evershed 2008b). The biomarker is an identifier for that is unique to a particular organism or 

class of organisms, and it needs to survive in an identifiable way through the archaeological 

record. This study is looking for an inulin signal, to act as the biomarker for inulin rich foods.  

For this study, Raman spectroscopy was chosen as the analytical method. Raman characterizes 

the molecular structure of substances by measuring chemical bonds’ changes in energy level 

when hit with light, which are represented in a spectra that analysists interpret (Malainey 2011a). 

Recent advances, especially the use of long-wavelength laser light source, have vastly improved 

its ability to characterize organic residues (Schrader et al. 1999; Edwards 2009). The technique 
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has been used to analyze a wide range of archaeological materials: dyes, pigments and binders; 

resins, pitches and adhesives; evidence of firing and burning; minerals and their provenance; 

food and non-food residues in pottery and ceramics; as well as other organic archaeological 

materials (Malainey 2011b). Aside from a prior pilot study identifying potential organic material 

on FCR, Raman spectroscopy has not been used to study food residues on archaeological FCR. 

The present study is part of a larger project focusing on the use of earth ovens on Fort Hood in 

central Texas, in an ecotone between the Blackland Prairie and the Edwards Plateau.  The 

modern climate is subtropical, characterized by hot, humid summers and relatively short, dry 

winters (Kibler 2004).   There a number of localized environments niches in the study area, 

including the Paluxy sands, which are associated with earth ovens in part because they because 

they are well drained and easier to dig than other soils in the area (Boyd, Mehalchick, et al. 

2004).  They are pockets of loose sandy deposits eroded from outcrops of the Paluxy formation, 

a sandstone and shale bed that are the remains of an ancient shoreline (Abbott et al. 1995; 

Hayward et al. 1996). In order to compare earth ovens from open air sites to ovens from 

sheltered sites, the study was expanded to include sites from the Lower Pecos. The Lower Pecos 

is located in west Texas, along the southwest border of the Edwards Plateau. The modern climate 

is semiarid, with hot summers and dry winters (Koenig 2012). The soils in this area are very thin, 

predominantly gravelly and silty loams (Golden et al. 1982). 

METHODS: 

Earth oven cooking features are complicated, and in turn create complicated biomolecular 

residue signatures. The sources of biochemical food residues start as complex mixtures, which 

then undergo cooking and taphonomic processes (Oudemans 2007). Earth ovens add further 
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complexity due to the green vegetation acting as packing material and wood fuel in proximity to 

the FCR. This makes the residues difficult to interpret. Ideally, reference collections should 

control for location, the effects of cooking and diagenesis, as well as taking in account possible 

contaminant and environmental factors. Thus multiple type of samples were analyzed: modern 

botanicals, archaeological botanicals, FCR from modern cooking experiments, and FCR from 

archaeological earth ovens. Within this section the samples are described first, followed by 

sample preparation, and then the details of the Raman spectrometer. 

Samples 

In order to use inulin as the biomarker for inulin rich plants, the spectra of inulin needs to be first 

identified. Thus four carbohydrates that are commonly found in plants were analyzed: inulin, 

starch, cellulose, and pectin. Chemical grade inulin and cellulose were purchased from Sigma-

Aldrich, while corn starch and pectin purchased from a local grocery store were used. Previous 

work as shown that grocery store inulin was comparable to inulin purchased from Sigma-

Aldrich, and spectra of the grocery store samples was comparable to what was found in other 

studies (Short et al. 2014; Kizil et al. 2002; Synytsya 2003). How the spectra is interpreted is 

detailed in the results section. 

 

 

 



 

86 

 

Table XIV: Modern Botanical Samples Analyzed 

Common Name Scientific name Part 

Inulin 

rich 

Starch 

present 

Evidence of being 

cooked in ovens 

Onion (domestic) Allium cepa bulb Yes No 

For wild onion: 9, 

12 

Sotol Dasylirion spp. blade Yes No 1 

Agave Agave spp. blade/heart Yes No 8, 10 

Jerusalem artichoke 

Helianthus 

tuberosus tuber Yes Yes 

7, 8, 9, 10, 11, 12, 

13, 16 

Camas Camassia scilloides bulb Yes No 1, 3 

Crow poison/False 

Garlic 

Nothoscordum 

bivalve bulb 

Yes 

Yes 17 

Copper Lily 

Habranthus 

tubispathus bulb 

Yes 

Yes For Liliaceae sp.: 1 

Rain Lily 

Cooperia 

drummondii bulb 

Yes 

Yes 
17 

Gay feather Liatris spp. corm Yes Yes 4 

Potato (domestic) Solanum tuberosum tuber No Yes n/a 

Asian water lily 

(domestic) Nelumbo nucifera rhizome No Yes 

for American Lotus: 

5, 6, 7, 10, 11, 12, 

13 

Cattail Typha latifolia rhizome Yes Yes 2, 7, 10, 13, 14, 15 

1: Dering 1997, 2: Bailey 2001, 3: Bean and Saubel 1972, 4: Bolton 1914, 5: Bourke 1895, 6: 
Driver and Massey 1957, 7: Foster and McCollough 2001, 8: La Vere 2004, 9: McCormick 1973, 
10: Newcomb 1961, 11: Opler 1983a, 12: Opler 1983b, 13: Opler 2001, 14: Prikrly 1990, p. 13, 
15: Reid 1977, 16: Ricklis 1996, 17: Mehalchick 2004 

 

Modern botanicals, both food resources common to the Texas area and some potential 

contaminants, were analyzed. See Table XIV for the list of modern botanical samples analyzed 

in this study. When they could not be found in the wild, they were purchased.  They were 

analyzed in both raw and cooked states to determine the effects of cooking on the Raman spectra 

of the residue. Samples were cooked in an oven at approximately 180 °C for half an hour to an 

hour – until visible browning but not burning occurred. Meat samples (venison, turkey, and 
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bison) were also analyzed in order to compare to the plant foods. Additionally, to assess the 

effects of charring, domestic onion was cooked at 180 °C in half hour intervals for four hours.  

Archaeological botanicals were analyzed in order to determine the effects of diagenesis on the 

samples. They were obtained from Hinds Cave (41VV456), a dry cave site in the Lower Pecos 

region that had excellent botanical preservation (Dering 1979). See Table XV for the 

archaeological botanical samples analyzed in this study. Identifiable uncharred archaeological 

botanical samples were not available from central Texas. These samples were chosen because 

they were food resources or found in conjunction with earth ovens (Dering 1999). Prickly pear 

(Opuntia sp.) was likely used as a packing material, while little walnut (Juglans microcarpa) was 

likely incorporated in the fuel source or packing material. These were analyzed by Raman both 

directly (with no preparation) and by the extraction used for modern samples. When directly 

analyzing the intact samples, some problems were encountered with burning. The laser light can 

heat up the sample, especially if the sample is dry and dark colored, which interferes with getting 

a good spectra. A limited number of samples were extracted because it is a somewhat 

destructive. While crushing the sample is not required, some needed to be cut down to fit in the 

beaker and some tended to disintegrate when remoistened.  

 

Table XV: Archaeological Botanical Samples Analyzed 

Common Name Scientific name part sample 

Prickly Pear Opuntia sp. pad, seed Extract, intact 

Sotol Dasylirion spp. blade Extract, intact 

Wild Onion Allium sp. bulb intact 

Mesquite Prosopis sp. pod intact 

Little Walnut Juglans microcarpa nut Extract, intact 
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Residue samples were taken from FCR from actualistic cooking experiments intended to 

replicate ethnographic cooking conditions. The actualistic experiments included complicating 

factors such as additional components of the earth ovens as well as longer cooking times. A 

number of experimental ovens were built over the larger project period. Of these, samples from 

three ovens were analyzed. Two were from ovens built in 2010, one that cooked starch-rich 

domestic potatoes (Solanum tuberosum), and one that cooked inulin-rich domestic onion (Allium 

cepa) and camas (Camassia scilloides). These were relatively large ovens that cooked for 

approximately 72 hours (Thoms, Laurence, et al. 2014b). In 2017 a meat based oven was done 

for comparison. This was a smaller oven that cooked for only 3-4 hours, done as part of an 

archaeology program for girl scouts. Cooked in this oven were domestic carrots (Daucus carota), 

potatoes, onions, and beef (Bos Taurus). 

Archaeological FCR residue samples came from 9 sites at Fort Hood, and 7 sites in the Lower 

Pecos (Thoms, Boyd, et al. 2014; Basham 2015; Rodriguez 2015). As discussed previously, 

these were chosen to compare a variety of different site types and potential preservation. The 

dry, sheltered sites are likely to have been exposed to less weathering than the open air sites. 

From Fort Hood, samples were predominantly from sites that included macrobotanicals, as it 

indicate a likelihood of plant foods being cooked. A control sample off site was taken at Fort 

Hood, and sediment samples were also tested as a control measure. 

 

 

 



 

89 

 

Table XVI: Sample descriptions. Sources (Thoms, Boyd, et al. 2014; Rodriguez 2015; Basham 2015) 

Fort 
Hood 
Samples Site 

Feature 
Number Notes Matrix Age 

Associated 
Macrobotanicals 

1 41CV1553 6 
Flat Bottomed, 
Slab lined 

gravely, fine 
sandy loam 180-45 BC 

Carya 
illinoinesis, 
Camassia sp. 

2 41CV1553 8E 
Basin Shaped, 
Unlined 

gravely, fine 
sandy loam n/a Camassia sp. 

3 & 4 41CV984 4 
Basin Shaped, 
Slab lined 

sandy loam, 
increasingly 
clayey with 
depth 

760-400 BC 
and AD 10-
210 

indeterminable 
tuber, Allium sp. 
Camassia sp. 

5 & 6 41CV947 5 
Basin Shaped, 
Slab lined 

fine sandy 
loam 

AD 780-
1020 

Indeterminable 
tuber, Carya 
illinoinensis 

7 41CV594 2G 
Basin Shaped, 
Unlined 

fine sandy 
loam n/a 

Indeterminable 
tuber 

8 41CV594 2C 

Disturbed, Large 
slab lining, basin 
shape with flat 
bottom 

fine sandy 
loam 

760–680 
and 670–
410 BC Camassia sp. 

9 41CV1657 3 
Basin Shaped, 
Slab lined 

gravelly clay 
loam 

AD 890–
1030 

Indeterminable 
botanical 

Lower 
Pecos 
Samples Site 

Feature 
Number Notes Matrix Age 

Associated 
Macrobotanicals 

1 & 5 41VV890 F13 
open air site 
(basin unlined) not described 

AD 1667-
1948 Agave 

2 41VV164 F1 
Disturbed, ash 
lens loam/ash 

4356 -4260 
BC 

Agave, 
indeterminable 
bulb 

3 & 6 41VV890 F7 
Disturbed, open 
air  (flat unlined) not described 

AD 1317 – 
1418 n/a 

4 41VV164 F2 Disturbed, basin loam n/a Sotol 

7 41VV165 F1 
Disturbed, FCR 
midden deposits 

fine sandy 
loam 

AD 1200-
1450 n/a 
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Sample preparation and extraction 

Botanical samples were rinsed in distilled water to remove any sediment. They were cut to fit in 

the beakers, and cut or gently crushed to increase surface area. Approximately 1.5 grams of outer 

material removed from a 5x5 cm2 area of the FCR samples, which amounted to  the outer 1 or 2 

mm of a given rock and is the  portion most likely to have post-excavation environmental 

contaminants (Dimc 2011).  Analyzed samples consisted of about 3 grams, or 2-4 mm of 

material was removed from the inner portion. Samples of adhering sediment and inner and outer 

powdered samples were reserved from each piece of FCR.  Several samples of sediment and 

outer portions were analyzed but the present paper focuses entirely to the inner portion.  

Initially an extraction sequence of hexane, chloroform, propanol, and water was used, following 

the protocol used by Hill and Evans (1989). However, it was determined this multi-step process 

did not result in significant difference as compared to extracting with the simpler combination 

chloroform/methanol method, similar to a conclusion reached by Hill and Evans (1989). Thus, a 

one-step extraction protocol using 2:1 Choroform:Methanol was used, based on lipid extractions 

techniques such as the Folch method (1957). Unlike lipid extraction techniques, however, the 

methanol portion was retained, as this is used to extract carbohydrate molecules (Meier and Reid 

1982). Additionally, simple soaking versus using a soxhlet extractor apparatus was also 

compared. Samples were soaked in solvent for at least 12 hours (up to 24; no appreciable 

difference was observed in extraction beyond 12 hours). Solvent was filtered, and then the 

residue precipitated into a small vial under a nitrogen stream. Alternatively samples were 

processed in a soxhlet for about 12 hours, and again dried under a nitrogen stream. As beakers 

and filters were easier and less expensive to set up, more samples could be processed by soaking 
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in a single run, and thus those were favored for the plant samples. However, soxhlets provide for 

a more complete extraction. While it did not make a particularly strong difference (in part 

because of the poor quality of the spectra) the soxhlet extraction resulted in consistently better 

spectra, while in no cases were the spectra from the filtered extraction better. For the FCR, then, 

soxhlet extractions were used.  

Raman Analysis 

Analysis was conducted on the ‘First Guard’ hand-held Raman spectrometer from the Rigaku 

Corporation.  It has a 1064-nm laser, a spectral resolution of approximately 20cm-1, a focal spot 

size of approximately 1mm,  and a detection range from 200 to 2000cm-1. The 1064-nm 

wavelength provides advantages of in situ investigation and a significant suppression of 

fluorescence background.  

RESULTS 

When interpreting a spectra, it is common to identify the molecular bonds that cause individual 

peaks; however, this can be difficult to do when the spectra has many peaks or many 

components. Since the purpose here is to identify inulin in the archaeological residues, a 

fingerprint method will be used instead. With fingerprinting, the important peaks and their 

relative strength are identified in a reference material, which is then compared to the sample to 

be identified. The whole spectra is affected by the molecular structure, therefore it is not enough 

to have one or two peaks be the same between the reference and sample spectra – all the peaks 

must be present for a definitive match. However, mixtures of molecules, as would be expected in 

complicated substances like plants, can ‘move’ or ‘hide’ peaks so it is difficult to precisely match 

the sample spectra to a reference spectra. These difficulties will become apparent below. 
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Carbohydrate samples 

The spectra of four carbohydrates – cellulose, pectin, starch, and inulin – were analyzed so that 

the unique fingerprint of inulin could be identified. Cellulose and pectin are structural 

carbohydrates, giving the cell walls of many plants their shape. It is therefore reasonable to 

expect both to show up in the spectra of most plants. Starch and inulin are both storage 

carbohydrates, meaning they are where the plants store their energy for later use. Many plants 

mix types of storage carbohydrate, but wild plants are not normally subjected to the kind of 

macronutrient analysis that would indicate how much inulin or starch we could expect from any 

particular plant (Ernst and Bufler 1994). The Raman spectra for these carbohydrates is shown in 

Figure 20. 

In seeking to determine which peaks to use as a fingerprint for carbohydrates, the spectrum is 

divided up in three sections, corresponding to different molecular structures. There are several 

regions associated with functional groups in carbohydrates. From 800-100 cm-1 is associated 

with CCO deformations, from 1200-800 cm-1 is associated with stretching modes of C-O/C-C, 

and 1500-1200 cm-1 is associated with deformations of CH/CH2 (Wiercigroch et al. 2017). The 

region 1200-800 cm-1 can be further subdivided at roughly 1000 cm-1, since the area from 1160-

970 cm-1 is also the region associated with the carbohydrate backbone. Small changes here can 

indicate not just which carbohydrate is present, but also details about the structure of the specific 

carbohydrate. A broad peak here, though, will mask that level of identification (Séné et al. 1994). 
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Figure 20: Raman spectra of carbohydrate samples 
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Inulin has a unique peak around 815 cm-1, so a peak here and weak or no other peaks between 

800-1000 cm-1 is strongly indicative of inulin. Inulin, like the rest of the carbohydrates, has 

broad/overlapping peaks through the 1000-1200 cm-1 region, but only has one strong peak 

around 1050 cm-1. In the final region, 1200-1500 cm-1, there are a number of weak or moderate 

peaks, but only one strong peak around 1450 cm-1. Strong peaks at these locations (especially 

around 815) indicate probable inulin. 

Starch has one unique peak around 930 cm-1. In the 800-1000 cm-1 region it has a second strong 

peak around 860 cm-1. In the 1000-1200 cm-1 region it has a strong peak around 1120 cm-1, with 

a relatively weaker one around 1080 cm-1. In the 1200-1500 cm-1 region it has three strong peaks: 

1330 cm-1, 1375 cm-1, and 1450 cm-1. Strong peaks at these location indicate possible starch.  

Cellulose has a unique peak around 900 cm-1. It is the only strong peak present in the 800-1000 

cm-1 region for cellulose. In the 1000-1200 cm-1 region it has two strong peaks around 1120 cm-1 

and 1070 cm-1. In the 1200-1500 cm-1 region it has strong peaks around 1375 cm-1 and 1430 cm-1. 

There are other weak and moderate peaks through the entire 800-1500 cm-1 spectrum.  

Pectin's spectra is predominantly broad moderate and weak peaks, with no unique peaks. Its 

strongest peak is a strong peak around 850-860 cm-1. In the 1000-1200 cm-1 region it does not 

have any particularly strong peaks, though the strongest peak in this region is a moderate peak 

around 1080 cm-1. Again, in the 1200-1500 cm-1 there are no strong peaks, but there is a 

moderate peak around 1320 cm-1. 
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Modern reference samples -- Botanicals 

Modern botanicals were analyzed to confirm that inulin was identifiable in inulin-rich plants, as 

well as determine the degree of differentiation in spectra between plant species. Modern 

botanicals representative of plant foods known or suspected to have been cooked in earth ovens 

and analyzed for this paper are  divided into two groups: inulin-rich plants without diagnostic 

starch, and those plants, both inulin- and starch- rich, with diagnostic starch (Laurence 2014). 

How much of any particular storage carbohydrate a given plant species contains is understudied, 

especially for the wild food plants, but family level research indicates that inulin is strongly 

associated with the Liliaceae and Agavaceae2 families, among others (Meier and Reid 1982). 

While many plants contain only one type of storage carbohydrate, some contain a mixture 

(Kandler and Hopf 1982). In any case, all plants also contain cellulose since it is a structural 

carbohydrate, but some root foods contain pectin as well (Robert et al. 2008). Plants, therefore, 

are mixtures of the different carbohydrates, as well as other components. Thus it is anticipated 

that there will be a certain amount of overlap between peaks from different components. 

Modern botanical samples have been evaluated for the presence of cellulose, pectin, starch, and 

inulin based the criteria laid out in the previous section. See Appendix A for spectra of all the 

plants examined here. Those showing the characteristic peaks of inulin (approximately 820, 

1050, and 1450) are onion (Allium cepa), sotol (Dasylirion spp.), agave (Agave spp.), Jerusalem 

artichoke (Helianthus tuberosus), camas (Camassia scilloides), and copper lily (Cooperia  

                                                 

2 Until recently camas (Camassia sp.) was in the Lilliacea family, but has since been moved to the Agavaceae by the 
Angiosperm Phylogeny Group, though the USDA PLANTS website has not yet changed their classification  (APG 
2003; USDA NRCS 2018).  
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drummondii). Figure 21 depicts the Raman spectra of sotol, and Figure 22 depicts the spectra of 

camas.  False garlic (Nothoscordum bivalve), gayfeather (Liatris spp.), and cattail (Typha 

latifolia) show some of the peaks, notably the unique peak around 820, as well as the peak 

around 1450 which is also present for starch, as illustrated for false garlic in Figure 23. This is all 

as expected, as inulin is known to be present in plants from the order Liliales, which includes the 

lily family (Liliaceae) and agave subfamily (Agavoideae, formerly family Agavaceae); the order 

Asterales, which includes composite flowers such as gayfeather and Jerusalem artichoke; and the 

order Poales, which includes cattail (Meier and Reid 1982). While there has not been much 

analysis of inulin-rich plants with Raman spectroscopy, the spectra seen here are in agreement  
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Figure 21: Raman spectra of modern sotol 
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with the spectra of other inulin rich plants such as Dahlia tubers (Ciobanu et al. 2016). The 

presence of the other carbohydrates in the plants was less conclusive. Only Asian water lily had 

all the peaks associated with starch – see Figure 24. 
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Figure 22: Raman spectra of modern camas 
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Most of the samples were also cooked to determine if there was a change during normal cooking 

process. For the most part, as can be seen in figures 21-24, while there is change in the intensity 

of some peaks they are all still recognizable as they go from raw to cooked state. Potato and false 

garlic Figure 4b, however, lost definitive peaks. Additionally charred camas bulbs (Figure 3c) 

were available for analysis from an actualistic cooking experiment failure (Thoms, Laurence, et 

al. 2014b). These had no identifiable signature, indicating that complete carbonization prevents 

identification 
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Figure 23: Raman spectra of false garlic 
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Modern reference samples -- Faunal 

Three meat sources – turkey, venison, and buffalo – were also analyzed for comparison with the 

plant food sources. While physical archaeological evidence of meat cooking is not common in 

the study area, there is some ethnohistoric evidence for it, and meat is commonly cooked in earth 

ovens elsewhere (Wandsnider 1997; Thoms 2007). Thus they were included as a possible residue 

that might show up, as well as to show how different meat spectra are from plants. In Figure 25, 

buffalo is shown as a representative of the meat samples. There is a broad peak around 870 cm-1, 

and another at 1065 cm-1. The two strongest peaks are at 1298 cm-1 and 1441 cm-1, which allow 

for differentiation from carbohydrates.  As with the plant samples, the meat spectra are still 

identifiable after cooking. 
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Figure 24: Raman spectra of Asian water lily 
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Archaeological botanicals - intact 

Intact archaeological botanical samples (i.e., macrobotanical specimens) were analyzed to 

demonstrate the effects of taphonomic processes. Figure 26 shows the Raman spectra of little 

walnut, prickly pear, sotol, and onion. The samples were difficult to analyze and the resulting 

spectra were fairly noisy. Very dark samples can burn when hit with the laser, so the power of 

the laser needs to be reduced, which in turn reduces the strength of the signal. That said, the 

approximate locations of the peaks spectra were still apparent. Most had a similar pattern: low 

broad peak centered at 800 cm-1, a somewhat sharper speak centered 1080-1090 cm-1, another 

broad low peak centered at 1310 cm-1, a weaker peak around 1460 cm-1.  
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Figure 25: Raman spectra of modern buffalo meat 
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Figure 26: Raman spectra of intact archaeological botanicals  
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Most of the prickly pear pad, cactus seed, and sotol samples had an additional peak around 1485 

cm-1, and a few had a peak near 900 cm-1. Calcium oxalate has peaks around 900 cm-1, 1470 cm-

1, and 1490 cm-1 (Frausto-Reyes et al. 2014). Calcium oxalate is well known to come from cacti 

like prickly pear, and Dering (2008) found it in the sotol species (Dasylirion texanum) common 

to Texas. While the peak around 900 cm-1 is not consistently present throughout these species, it 

seems likely that the source of these peaks is from calcium oxalate. Aside from calcium oxalate 

it is difficult to assign origins to many of the other peaks. There is a possible peak around 815 

cm-1 for two of the sotol samples, but there is no associated peak at 1050 cm-1, which is 

insufficient for a confirmation of inulin. None of the other carbohydrate peaks were recognizable 

in the archaeological macrobotanical sample.   

Archaeological botanicals – extracted 

Three botanicals were available for comparison between the archaeological intact and extracted 

samples – sotol, prickly pear, and little walnut (Figure 27). In sotol, all the peaks above 1100 cm-

1 in the extracted samples were present in the intact samples, though the reverse was not true. 

The peak around 800 cm-1 in the intact sample was shifted to 780 cm-1 in the extract, and the 

peak between 1080 cm-1 and 1090 cm-1 was shifted slightly to 1075 cm-1. The peak at 870 cm-1 

in the extract is also possibly the 900 cm-1 peak shifted. In prickly pear, there was variation 

within the different spectra of both the intact and extracted samples, so it is not clear if the 

differences were the result of natural variation or shifts due to extraction. For example, some of 

the extracted samples have peaks at 800 cm-1, 880 cm-1 or 930 cm-1, while some the intact 

samples have peak at 800 cm-1, 850 cm-1 or 888 cm-1. Most notably the two peaks associated 

with calcium oxalate, 1465 cm-1 and 1480 cm-1, were not present in extract. Little walnut was the 
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only sample to have more peaks in the extract than the intact sample. In addition to new peaks, 

there was a dramatic shift between the 1090 cm-1 peak in the intact sample and the 1050-1065 

cm-1 in the extracts, while the peaks at 1330 cm-1 and 1450 cm-1 were consistent.  While the 

reasons for these changes are unclear, it demonstrates the importance of obtaining a reference 

sample using the same extraction technique used in the study. 
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Figure 27: Raman spectra of extracted samples from archaeological botanicals 
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There are also differences between modern and archaeological samples of sotol and onion. While 

the archaeological sotol peaks are shifted in the same direction between intact and extracted 

samples, between the archaeological and modern extractions, they shift in different directions. 

For example, the archaeological sample peak at 1275 cm-1 shifts down to 1266 cm-1 in the 

modern sample, while the peak at 1336 cm-1 shifts up to 1345 cm-1. Notably, the 1450 cm-1 peak 

is consistent across both the archaeological and modern samples. The other inulin peaks, 

however, appear to be shifted: 825 cm-1 in the modern samples becomes 800 cm-1 in the 

archaeological, while 1060 cm-1 shifts to 1075 cm-1. For onion, only the intact archaeological 

sample was available for comparison with the modern extract. Again, peaks appear to be shifted, 

but not always in the same direction. Focusing on the peaks relevant to inulin, the 825 cm-1 peak 

in the modern sample shifts to 800 cm-1 in the archaeological, while the modern 1065 cm-1 peak 

shifts to 1090 cm-1 in the archaeological sample, and 1450 cm-1 remains the same. Assuming that 

the inulin remains in the archaeological sample, it appears that the 815-825 cm-1 peak decreases 

to around 800 cm-1, while the approximately 1050-1065 cm-1 peak shifts as far as 1090 cm-1, 

while the 1450 cm-1 peak is consistent. While the 800 cm-1 peak could be related to inulin, it 

must be noted that this peak is present in little walnut, which does not have inulin (Kandler and 

Hopf 1982), indicating the possibility of false positives. 
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Experimental – charring 

In order to determine the effects of extended cooking on the spectra of plants, a charring 

experiment was performed, though the plants did not reach full carbonization. Raman 

spectroscopy does not directly give information about the quantity of a substance present in a 

sample, though it can be calculated (Pelletier 2003). Generally, the relative intensity of a set of 

peaks is just as important as peak location in determining a spectral signature. Examining the 

spectra representative of the onion charring experiment in Figure 28, we see that the relative 

intensity of the peaks stays fairly consistent, and that the peaks associated with inulin 

(approximately 815, 1050, and 1450 cm-1). Baked in a conventional oven, the moisture loss 

shown here was approximately 5%, 20%, and 40%. Forty percent moisture loss is consistent with 

studies of moisture loss in earth ovens (Thoms, Laurence, et al. 2014a). This indicates that it is 

possible for the spectra of onion to be identifiable after 40% moisture loss. 

 

 

Figure 28: Raman spectra of Onion charring experiment 
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Experimental – earth ovens 

The spectra from the experimental oven FCR samples generally had low intensity and low signal 

to noise ratio, and so most were rejected as non-diagnostic. They can be seen in appendix A. 

Sample 1 from the inulin-rich oven, seen in Figure 29, has two strong peaks at 799 cm-1 and 1066 

cm-1, and a weaker peak at 1444 cm-1.  While these peaks are somewhat offset from the 

anticipated peaks for inulin, they are within the 20 cm-1 resolution of the handheld spectrometer.  

Thus inulin is provisionally identified in this spectra. No other strong peaks are present in the 

800-1000 cm-1 region, precluding the presence of other carbohydrates.  This is only a provisional 

identification because of the similarities to the spectra from sample 1 from the starch-rich oven 

(Figure 30), the only other sample with spectra intense enough to be analyzed. The lack of a peak 

at 1450 cm-1 renders it non-diagnostic; however, there is a strong peak at 800 cm-1, which would 

not be anticipated for non-inulin carbohydrates.  The source of this spectra is currently unknown. 

 

Figure 29: Raman spectra of inulin-rich oven FCR sample 1 
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Figure 30: Raman spectra of starch-rich oven FCR sample 1 

  

Archaeological ovens 

The spectra from the Fort Hood FCR samples tend to show low intensity and to have a low 

signal to noise ratio such that most were rejected as non-diagnostic. They can be seen in 

appendix A. Fort Hood sample 1 (FH1), from 41CV1553 feature 6, is a borderline case. Figure 

31 shows FH1 overlain with the spectra of inulin. While there is noise interrupting the spectra, 

there are two relatively strong peaks at 798 cm-1 and 1114 cm-1. While raw inulin peak appears 

around 815 cm-1 and 1050 cm-1, the archaeological inulin rich plants had those peaks shifted 

closer to 800 and 1100, so these peaks are within expectations the presence of archaeological 

inulin. To confirm an inulin identification, a peak should be present at 1450 cm-1, which we do 

see. The region from about 1400 to 1500 cm-1, however, is very noisy. The lack of peaks in the 

850-950 cm-1 range rules out the presence of other carbohydrates. Thus there is a very tentative 

identification of inulin in this sample.  
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Figure 31: Raman spectra of FCR sample from 41CV1553 feature 6 (sample FH1), overlain with spectra of 

inulin 

 

Fort Hood sample 9 (FH9), from 41CV1657 feature 3, has a higher signal to noise ratio, with 

more prominent peaks (Figure 32). The peaks at 797 cm-1 and 1083 cm-1 are strong, but the peak 

at 1457 cm-1 is very weak. This is a tentative identification of inulin in the sample. There is a 

strong peak at 930 which is also present in starch. In the 1000-1200 cm-1 starch has its strongest 

peak at 1122 cm-1. If FH9 has a mixture of starch and inulin present, this may account for the 

relatively wide peak in this region, even if those peaks cannot be resolved in the spectra. Again 

the region from 1200-1500 cm-1 is fairly noisy, but a broad peak around 1350 cm-1 is apparent 

and could account for the starch peaks at 1336 cm-1 and 1375 cm-1. Again the weakness of the 

peak at 1450 cm-1, as well as the lack of a distinct peak at 860 cm-1 weaken the argument for the 

presence of starch. A cautious assignment of inulin and starch are made for FH9. Figure 13 
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shows FH9 with overlain with the spectra of a 2:1 mixture of inulin and starch. 

FCR samples from the Lower Pecos also have low intensity and low signal to noise ratios. 

Again, most of the samples are non-diagnostic, as is shown in Appendix A. Lower Pecos sample 

9 (LP7), from 41VV165, however, has a stronger signal to noise ratio. The peaks at 800 cm-1 and 

1081 cm-1 are strong, but there is not clear peak at 1450 cm-1. The strong clear peak at 922 cm-1 

indicates starch could be present. There are peaks at 1080 cm-1 and 1135 cm-1, in alignment with 

starch. The peak at 1350 cm-1 could be the 1336 cm-1 peak of starch, and the weak peak at 850 

cm-1 could be the 860 cm-1 peak of starch. A cautious assignment of inulin and starch is made for 

LP7 Again, however, there is no clear peak at 1450 cm-1. Figure 33 shows LP7 overlain by a 

mixture of starch and inulin. 
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Figure 32: Raman spectra of FCR sample from 41CV1657 feature 3 (sample FH9), overlain 

with a 2:1 mixture of inulin and starch 
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Figure 33: Raman spectra of FCR sample from 41VV165 (sample LP7), overlain with a 1:1 

mixture of inulin and starch 

 

Control samples provide information about the background environmental signal that may 

interfere with interpreting food signatures. If the off-site rock has an identifiable signature, it 

may be mistaken for food. The samples of the associated sediment and external portion of the 

FCR from the stones sampled from 41CV1553, as well as from the off-site control sample are 

shown in Figure 34. These show similar spectra in that their strongest peak is between 1050 and 

1100 cm-1, and a peak around 800 cm-1. The off-site control rock has a distinct peak at 932 cm-1. 

They do not have clear peaks in the 1200-1500 area, and are thus non-diagnostic. This indicates 

that the signals found on the interior portion of the FCR are unlikely to come from the 

environment. 
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B – FH2 external 

 

 

 

 

 

 

C – FH 1 sediment 

 

 

 

 

 

 

D – FH2 sediment 

 

 

 

 

 

 

E – Fort Hood off-site 

Figure 34: Raman spectra of control samples including the outer 1-2mm of FCR from Fort 

Hood sample 1 (A) and 2 (B), the sediment associated with Fort Hood samples 1 (C) and 2 

(D), and an off-site stone from Fort Hood (E) 
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DISCUSSION AND CONCLUSIONS 

Earth ovens are complicated features, potentially reused multiple times, repurposed, or both 

(Black and Thoms 2014). Even in an idealized setting where a given oven was used once, 

abandoned, and preserved, the central heating feature is exposed to the elements and potentially 

disturbed when the food is removed. Interpretations of organic residue of archaeological 

materials are inherently difficult, given taphonomic processes. Studying cooking residues even 

more so, since food stuffs start as complex mixtures, which are further modified by heat and 

moisture. Earth oven cooking has further complicating factors to discerning the signature of food 

residues, with green packing material and the fuel source likely adding to the ‘background’ of the 

spectra. Thus while biochemical analysis has the potential to address what was cooked in 

individual ovens, it should not be assumed that the answer to such questions will come easily. 

With multiple layers of complexity, developing a reliable and reproducible technique to identify 

the chemical structures of food residues from earth ovens and other cooking features will take 

time and many false starts. 

Several different aspects of the reference collection were assessed. It was demonstrated that 

inulin is discernable from other carbohydrates, both in its isolated form and in plant material. 

The signals between different carbohydrates are similar, however, so good signal to noise ratio, 

intensity and resolution are necessary for a conclusive identification. Though the number of 

archaeological botanicals was limited, comparing archaeological to modern botanical references 

demonstrates that the spectra changes over time. Similarly, there are some shifts of the peak 

locations in the spectra between the intact and extracted archaeological botanical samples. This 
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indicates that the reference collection materials and their processing should be as similar as 

possible to the samples that are going to be studied. 

Of the 16 total archaeological FCR samples from 12 ovens, three were cautiously identified as 

possibly having the remains of carbohydrates. One appeared to be just inulin, while two could 

contain a mixture of inulin and starch. Moreover, the control rock sample had a non-diagnostic 

spectra similar to the archaeological sample, indicating that environmental signatures could 

potentially be identified as food-related signatures. While not a panacea for those of us intent on 

determining what plant food(s) were cooked in a given oven, this is in line with other FCR 

residue studies. For example, Buonasera (2005) found that only 3 of the 9 FCR samples had 

more lipids than the control samples, which yielded signatures similar to what one might expect 

for food. Thus as a preliminary study demonstrating proof of concept, this study found potential 

signatures on FCR from both open and rockshelter sites.  

Surprisingly, there does not appear to be a difference in preservation between the different 

depositional environments. It was anticipated that the dry rockshelters, having better preservation 

conditions, would have better preserved organic residue. The similarity in the FCR residue 

signatures between the different environments may also be of concern. It is unlikely to be 

background from the FCR itself, as limestone has an overwhelming peak at 1093 cm-1 and a 

strong peak at 872 cm-1, and it would be apparent in the spectra (Gunasekaran et al. 2006). It is 

also unlikely to be background from charred fuel, as that creates a broad peak centered around 

1350 cm-1, not where the diagnostic peaks are (Inoue et al. 2017). Similarities between either fuel 

source or packing materials are not anticipated between central Texas and the Lower Pecos. 



 

114 

 

There is ample room to improve the results of future studies. Firstly, there may have been 

methodological issues. Procedures used here are a modification of extraction methods used in 

lipid residue analysis. While the methanol fraction should retain the more polar carbohydrate 

molecules it is possible that another solvent might work better.  Initial tests reported here, 

however, did not show a difference between the chloroform/methanol mixture and the hexane-

chloroform-propanol-water series. Given that hot water is used to extract inulin from plants, 

there is no straightforward solvent alternative (Meier and Reid 1982). Secondly, technological 

limitations of traditional Raman spectroscopy may have contributed to the noisy findings. Low 

intensity and low signal to noise ratio may be overcome with more advanced techniques such as 

Surface- enhanced Raman scattering (SERS), which uses special sample preparation to improve 

the instrument sensitivity.  

While Raman technology has vastly improved in recent decades, readily available spectrometers 

– such as what was used in this study – may not be a good option for detailed studies of cooking 

residues from earth oven features. Improved analysis using advanced Raman techniques like 

SERS may be a good option, but non-Raman techniques chromatography, spectrometry, or both 

– such as GCMS – have been more extensively used. Importantly, Raman remains a good 

addition to a GCMS study, as it can be used to screen for the presence of organics after the initial 

extraction (though a range extending into the 3500 region is recommended). 

There remain many directions for further study using either Raman or another analytical 

technique. Knowledge of biochemical signatures of wild food sources needs to be expanded. In 

addition to adding more wild foods to a given reference collection, nutrient analysis are needed 

to identify components of the food that can be identified with spectrometry. Further experimental 
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work with residues from earth ovens is needed to pinpoint signature changes resulting for 

cooking and charring. We also need to learn more about where within a given heating element 

residue-rich FCR are likely to be found. Toward that end, detailed studies need to be undertaken 

of potentially single-event archaeological ovens and single-event earth oven experiments 

wherein FCR samples are selected from across an oven.  
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CHAPTER V  

CONCLUSIONS 

Currently the best way to understand earth oven use is to take a “big picture” view, focusing the 

spatial patterning over a landscape, in conjunction with environmental and ethnographic 

information. This is because individual ovens are deconstructed as part of their use cycle, 

frequently reused, repurposed or both. Often ovens are reused through the years, creating 

massive accumulations of FCR known as bedrock middens. This palimpsest nature makes it 

difficult to parse the evidence of what was cooked in a particular oven (Black and Thoms 2014). 

Focusing on food residues on individual stones, which is the subject of this dissertation, affords a 

means of determining what a single oven was cooking, in much the same way that carbonized 

macrobotanicals currently do, but without the requisite cooking failure. This is, of course, easier 

said than done. 

INHERENT COMPLEXITIES 

Analyzing archaeological biochemical residues is an inherently difficult process. Blind testing of 

multiple laboratories has shown that while many analytical techniques are able to provide some 

information, none are able to accurately pinpoint the precise source of the residue (Colombini et 

al. 2011a; Barnard et al. 2007). This is partially due to the nature of archaeological residues. 

First, they are often complex mixtures which are more difficult to interpret than single simple 

substances. Second, the artifact may have come in contact with multiple substances at various 

points during its use cycle. Third, post-depositional taphonomic processes, such as microbial 

activity and water washing through the soil, can cause the transfiguration and leeching of 

components of the residues. Fourth, there are limitations inherent to every analytical technique 
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which is why using a variety of complementary methods is recommended. Food residues can be 

particularly complicated, as the cooking process adds more complexity through the breakdown 

of food molecules. 

With multiple layers of complexity, developing a reliable and reproducible technique to identify 

the chemical structures of food residues from earth ovens and other cooking features takes time 

and many false starts. Every developing field has growing pains. In pollen studies of coprolites, 

the coprolites themselves needed to be demonstrated to be of human origin. Over the decades 

debates were waged about how to interpret the remains – whether immunological studies were 

effective, how to interpret phytolith and pollen counts, and how to identify contamination 

(Bryant and Dean 2006). Starch analysis has seen similar trial and tribulations, including 

accounting for the effects of cooking and diagenesis, as well as sources of starch transport and 

contamination (Laurence 2013; Henry et al. 2009, 2016). Patience is necessary, and while 

disappointment should be expected it should not be disheartening. 

There remain numerous challenges for biochemical analysis of food residue from earth ovens. 

Packing materials and unburnt fuel may contribute to the spectral signature. This will need to be 

qualified and quantified to effectively identify target spectra. Starch residue analysis of earth 

ovens has similar issues (Thoms, Laurence, et al. 2014a). Also, while the FCR that was closest to 

the food seems most likely to have food residue on it, this hypothesis has not been tested. If, as 

Thoms et al. (2014a) contend, that plant microfossils are deposited on FCR via water vapor and 

subsequently as organic materials decompose and water percolates through the feature, the same 

might be possible for the chemical residues. Thus, where exactly residue collects within an earth 

oven is open to more exploration. Alternatively, it would be helpful to have a way to identify 



 

118 

 

residue rich FCR amongst an earth oven during the Raman analysis, like ability of GCMS to 

quantify lipid amounts (Buonasera 2005). Finally, in south-central North America plant-cooking 

ovens are more common and the biomarker of interest is a carbohydrate. While carbohydrates 

have been found on artifacts, they are less likely to be preserved than lipids (Forte et al. 2018). 

PRIMARY FINDINGS  

As shown in the literature review of chapter 2 a majority of current literature on archaeological 

food residues focuses on GCMS analysis of lipids in pottery. This is because lipids are relatively 

well preserved and more likely to be detected than carbohydrates and pottery is highly absorbent 

and a known reservoir for food residue.  The field is still in its infancy though, given that many 

articles perform proof-of-concept tests or present preliminary data, as well as performing 

experimental archaeology and addressing technical issues. There are a number of articles, 

however, that present analysis of large, long running or otherwise longitudinal studies.  

The literature review also provided insight into how to develop a good analytical procedure. First 

is the necessity of a reliable reference collection, so that the researcher knows that the results 

actually represent the substance of interest. Foremost for archaeologists is diagenetic processes, 

to ensure that the signal remains recognizable in the archaeological record.  It is important that 

either identifiable archaeological reference samples are studied or artificial aging studies are 

done. Important for studies of food residue is the effects of cooking, since that changes the 

molecular structure of food. Ideally taphonomic studies of cooked food residues would combine 

both process. Additionally, site location can affect the residue signature, depending on the type 

of analysis done.  
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Second is issues related to contamination. There are a number of steps a researcher can take to 

prevent contamination in the field and the lab. These include basics such as wearing gloves and 

being sure not to spray chemicals near artifacts of interest. However, it is not possible to prevent 

contamination from the environment. Thus it is vital that environmental control samples are 

taken from off-site contexts. Taking references of non-food plants would also help characterize 

what kind of signals may show up from the environment, or in the case of earth ovens, the 

packing material. Knowing the nature of background signatures will allow the signature of the 

food to be more accurately recognized.  

The pilot study presented in chapter 3 demonstrated that the handheld Raman spectrometer has 

potential for analysis of archaeological food residues. This study focused on visible residues. A 

scraper used to process sotol during an actualistic oven experiment had a spectra characteristic of 

inulin. Two pieces of FCR from Fort Hood (from 41CV1553 and 41CV594) showed differences 

between the stone surface and a cleaned interior portion, indicating the presence of potential 

organic residue. Inulin was unable to be confirmed due to a low signal to noise ratio preventing 

the resolution of any peak in the 1200-1500 range. It was concluded that Raman spectroscopy 

holds potential for a good analytical technique of food residues. While handheld machines like 

the one the used in this study provide relatively cursory information about the spectra, better 

optical methods should provide better analytical results. These would include lab-based 

spectroscopes with higher resolution or better sensitivity, or related techniques that improve 

upon those, such as SERS or CARS. 

In chapter 4 a reference collection was created and used to interpret signatures from 

archaeological FCR samples. Inulin can be distinguished from other carbohydrates in its isolated 
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form and in plant materials. However, the signals of various carbohydrates are somewhat similar 

and there are other compounds that may obscure the spectra of interest. Therefore, definitive 

identification of a particular carbohydrate requires good signal to noise ratio, intensity and 

resolution. In the modern reference samples, cooking did not seem to obscure the signal. Short of 

full carbonization, peaks were still identifiable with moisture loss comparable to what was 

observed in earth ovens. Comparing modern botanicals to the archaeological botanical references 

revealed that peak locations shift slightly, possibly a result of weathering processes. Spectra of 

samples extracted from archaeological macrobotanicals exhibited differences as compared to the 

spectra of those same intact macrobotanicals. This indicates that the reference materials, their 

preparation, and analytical set up should be as similar as possible to the samples that are going to 

be studied.  

Of the 16 archaeological FCR samples analyzed, three were cautiously identified as possibly 

having signature peaks indicative of carbohydrates. One spectra appeared to have peaks 

associated with inulin alone, while two may represent a mixture of inulin and starch. Samples 

with possible carbohydrate signatures came from earth ovens in both humid open air sites and 

arid rock shelters. Of concern is that while the limestone off-site control sample from Fort Hood 

was deemed non-diagnostic, its spectra did have some similarities to the spectra of the 

archaeological sample. This, however, is in line with previous residue studies of FCR, including 

Buonasera (2005) who found that off-site control rocks had diagnostic ratios of lipids 

comparable to FCR from earth ovens, and Laurence (2013) found starch grains on off-site 

control rocks in comparable number and types to FCR from earth ovens.  
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Dry rockshelters are ideal preservation conditions, thus it was anticipated that the Lower Pecos 

samples would have stronger or more clear spectra; however, there does not appear to be a 

difference in preservation between the different depositional environments. The similarity in the 

FCR residue signatures between the different environments is also interesting. It is unlikely to be 

background from the FCR itself, as limestone has an overwhelming peak at 1093 cm-1 and a 

strong peak at 872 cm-1, and it would be apparent in the spectra (Gunasekaran et al. 2006). In 

figure 4 of the preliminary study, the sharpness of the peak at 1085 cm-1 is indicative of what one 

would expect from a background of limestone spectra. It is also unlikely to be background from 

charred fuel, as that creates a broad peak centered around 1350 cm-1, not where the diagnostic 

peaks are (Inoue et al. 2017). Similarities in the fuel source or packing materials are not 

anticipated between central Texas and the Lower Pecos. Further work needs to be done to 

confirm that the similarities in spectra are due to the fact that both locales cook inulin-rich foods 

in earth ovens, and not some other cause. 

The overarching research goal of this dissertation was to assess what was being cooked in earth 

ovens, via Raman spectral analysis of biochemical residue found on FCR. The first research 

question was whether vibrational-spectroscopically identifiable food residues was preserved on 

archaeological FCR from earth ovens. This study indicates that it is possible. The reference 

collection showed that while cooking and taphonomic processes affect the spectra, they do not 

render it unidentifiable. Additionally it was demonstrated that food residues are preserved in 

open air and rockshelter environments. The second question was whether identified residue 

could be reliably assigned to an ancient baking event(s). Given that the off-site control sample 

was non-diagnostic, this is a cautious yes; however there was a spectra that had some similar 
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peaks. This indicates that in future studies it is vital to account for environmental signatures. The 

third and final question was whether the residue spectra can be used to characterize what was 

baked, and to what degree of precision? This is another tentative affirmative. It was not possible 

to identify a particular plant or plants that may have been cooked in an earth oven. However, the 

carbohydrate could be (cautiously) identified, which was sufficient for our purposes. This 

indicates that there is certainly potential for the use of Raman spectroscopy to study earth oven 

residue; however, it requires significant continued study before conclusive analysis is 

consistently achieved. Of primary concern is addressing background (such as from packing 

materials) and environmental noise to better recognize the obscured carbohydrate targets. 

FURTHER RESEARCH  

First, there may be room for methodological improvement. Two extraction methods were tested 

as part of this study. One was based on the work of Hill and Evans (1989) and entails  use of 

increasingly polar solvents (hexane, chloroform, propanol, and water) to extract a range of 

molecules. The other method, is based on  Folch (1957), which is used for extraction of lipids, 

but the methanol fraction is not discarded, which should retain the more polar carbohydrate 

molecules. Similar to the conclusion reached by Hill and Evans, the present study revealed that 

there was not a significant difference between the much longer series extraction and the shorter 

Choroform:Methanol extraction. Nonetheless, it is possible that a different solvent or extraction 

procedure would have been better for carbohydrates.  Secondly, technological limitations of 

traditional Raman spectroscopy may have contributed. This is partially due to the handheld 

Raman spectrometer that was used, which is not a precision instrument. While a spectrometer 

similar to the one used I this study may be good for initial screening of artifacts, for detailed 
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analysis a lab based machine with better resolution is recommended. Low intensity and low 

signal to noise ratio can be overcome with more advanced techniques. Two such methods are 

Coherent anti-Stokes Raman scattering (CARS) and Surface- enhanced Raman scattering 

(SERS) micro-spectroscopy. Within the past decade both have been used to analyze residues on 

rock surfaces (Burruss et al. 2012; Muniz-Miranda et al. 2010). These would require that the 

archaeologists work closely with a physics lab. 

There are many potential further directions for the biochemical analysis of earth ovens but all of 

them should begin with building a regionally specific reference collection. Beyond simply 

adding more food resources, knowledge of the nutritional components of wild plants would be 

useful. Wild food resources are understudied, and nutrient analysis enable the researcher to 

anticipate what kind of spectra to expect from a sample. Modern reference collections should be 

supplemented with cooked and archaeological samples when possible. In addition to laboratory 

cooked samples, actualistic earth oven samples allows for not only the more complex spectra 

anticipated from such an oven, but also allow for idealized analysis of oven components, for 

example, where one might anticipate residue-rich FCR. Longer term experiments could asses the 

effects of weathering on ovens that cooked known foods. Hypothetically FCR from the center of 

ovens with intact heating elements should produce the best spectra, as they have been the least 

disturbed. Additionally, intact heating elements will provide additional information about the 

physical structure of oven, as well as possibly including associated macro- and microbotanicals, 

to provide a more complete a picture of a single cooking event. Along those lines, a detailed 

analysis of individual ovens would be worthwhile. A systematic sampling system across an oven 
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may allow for the location of residue-rich FCR to be mapped out, which would facilitate 

expedient sampling in other studies.  
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APPENDIX B: FACILE RESIDUE ANALYSIS OF RECENT AND 

PREHISTORIC COOK-STONES USING HANDHELD RAMAN 

SPECTROMETRY: SUPPLEMENTARY MATERIAL 

Inulin (cm-1) Cellulose (cm-1) Band Assignment 

813 s -  CC stretching 

-  833 w CCC, COC, OCC, OCO skeletal bending 

867 w -  COC bending 

-  903 s HCC, HCO bending 

-  975 w HCH bending 

1059 s -  COC stretching and ring deformations 

-  1071 s COC stretching symmetric 

-  1117 s 

-  1258 w HCH (twisting), HCC, HOC, COH (rocking) 

bending 

1270 s -  CH bending 

1333 s -  CH2-OH bending and deformations symmetric 

-  1373 s HCH, HCC, HOC, COH bending 

-  1430 s HCH asymmetric 

1453 s -  CH2-OH bending and deformations asymmetric 

-  1730 s C=O stretching 

Figure 35 Summary of Raman shifts and band assignments of inulin and cellulose from 

Sigma Aldrich (s – strong, w - weak). The band assignment was based on previously 

reported Raman spectra of inulin (Manno et al. 2009; Beirão-da-Costa et al. 2013) and 

cellulose (Barrett 1981; Szymańska-Chargot et al. 2011). 
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APPENDIX C: RAMAN SPECTRA 

CARBOHYDRATE SAMPLES 

 

Figure 36 Raman spectra of carbohydrate samples. A: inulin; B: starch; C: cellulose; D: 

pectin 

 

 

 

 



 

162 

 

 

 

MODERN BOTANICAL REFERENCE SAMPLES 

 
Figure 37 Raman spectra of modern camas. A: Raw; B: Cooked; C: Charred 
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Figure 38 Raman spectra of modern domestic onion. A: Raw; B: Cooked 
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Figure 39 Raman spectra of modern sotol. A: Raw; B: Cooked 
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Figure 40 Raman spectra of modern jerusalem artichoke. A: Raw; B: Cooked 
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Figure 41 Raman spectra of modern agave leaf. A: Raw; B: Cooked 
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Figure 42 Raman spectra of modern agave heart. A: Raw; B: Cooked 
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Figure 43 Raman spectra of modern false garlic. A: Raw; B: Cooked 



 

169 

 

 

Figure 44 Raman spectra of modern copper lily. A: Raw; B: Cooked 
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Figure 45 Raman spectra of modern gayfeather. A: Raw; B: Cooked 
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Figure 46 Raman spectra of modern domestic potato. A: Raw; B: Cooked 

 

 

 

Figure 47 Raman spectra of modern Asian water lily. A: Raw; B: Cooked 
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Figure 48 Raman spectra of modern cattail. A: Raw; B: Cooked 

 

MODERN MEAT REFERENCE SAMPLES 

 

Figure 49 Raman spectra of modern buffalo. A: Raw; B: Cooked 
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Figure 50 Raman spectra of modern turkey. A: Raw; B: Cooked 
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Figure 51 Raman spectra of modern venison. A: Raw; B: Cooked 
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ARCHAEOLOGICAL INTACT BOTANICAL (MACROBOTANICAL) REFERENCE 

SAMPLES 

 

Figure 52: Raman spectra from archaeological macrobotanical samples of prickly pear pad 

from Hinds Cave 
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Figure 53: Raman spectra from archaeological macrobotanical samples of little walnut 

shell from Hinds Cave 
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Figure 54: Raman spectra from archaeological macrobotanical samples of mesquite seed 

from Hinds Cave 
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Figure 55: Raman spectra from archaeological macrobotanical samples of sotol from Hinds Cave 
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ARCHAEOLOGICAL EXTRACTED BOTANICAL REFERENCE SAMPLES 

 

Figure 56: Raman spectra from extractions of prickly pear from Hinds Cave 

 

  

 

Figure 57: Raman spectra from extractions of Opuntina seed from Hinds Cave 
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Figure 58: Raman spectra from extractions of little walnut from Hinds Cave 

 

 

 

Figure 59: Raman spectra from extractions of sotol from Hinds Cave 
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ACTUALISTIC COOKING EXPERIMENTS FCR RESIDUE SAMPLES  

 

 

Figure 60: Raman spectra of FCR samples from inulin-rich actualistic experimental oven 
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Figure 61: Raman spectra of FCR samples from starch-rich actualistic experimental oven 

 

 

 

Figure 62: Raman spectra of FCR samples from mixed meat and vegetable actualistic 

experimental oven 
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FORT HOOD FCR RESIDUE SAMPLES  

 

Figure 63: Raman spectra of FCR from Fort Hood, sample 1 

 

 

 

Figure 64: Raman spectra of FCR from Fort Hood, sample 2 
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Figure 65: Raman spectra of FCR from Fort Hood, sample 3 

 

 

 

Figure 66: Raman spectra of FCR from Fort Hood, sample 4 
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Figure 67: Raman spectra of FCR from Fort Hood, sample 5 

 

 

 

Figure 68: Raman spectra of FCR from Fort Hood, sample 6 
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Figure 69: Raman spectra of FCR from Fort Hood, sample 7 

 

 

 

Figure 70: Raman spectra of FCR from Fort Hood, sample 8 
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Figure 71: Raman spectra of FCR from Fort Hood, sample 9 

 

 

LOWER PECOS FCR RESIDUE SAMPLES 

 

 

Figure 72: Raman spectra of FCR from Lower Pecos, sample 1 
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Figure 73: Raman spectra of FCR from Lower Pecos, sample 2 

 

 

 

Figure 74: Raman spectra of FCR from Lower Pecos, sample 3 
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Figure 75: Raman spectra of FCR from Lower Pecos, sample 4 

 

 

 

Figure 76: Raman spectra of FCR from Lower Pecos, sample 5 
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Figure 77: Raman spectra of FCR from Lower Pecos, sample 6 

 

 

 

Figure 78: Raman spectra of FCR from Lower Pecos, sample 7 
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