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ABSTRACT 

 

 It is believed that the observed rapid rise in global temperatures is caused by high 

atmospheric concentration of CO2, due to emissions from fossil fuel combustion. While 

global efforts are currently in place to mitigate the effect, it is expected that hydrocarbons 

will remain the main source of energy supply for the planet in the foreseeable future. 

Harmonizing these seemingly conflicting objectives has given rise to the concept of 

Carbon Capture Utilization and Storage (CCUS).  

A prominent form of CCUS involves the capture and injection of anthropogenic 

CO2 for Enhanced Oil Recovery (EOR). During CO2 EOR, substantial amount of injected 

CO2 is retained and permanently stored in the subsurface. However, due to inherent 

geological and thermodynamic complexities in subsurface environments, most CCUS 

projects are plagued with poor sweep efficiencies. For successful CCUS implementation, 

advanced reservoir management strategies which appropriately capture relevant physics 

are therefore required. In this regard, effective techniques in three fundamental areas of 

reservoir management including forward modeling, inverse modeling and field 

development optimization methods are presented herein. In each area, we demonstrate the 

validity and utility of our methodologies for CCUS applications with field examples.     

 First, a comprehensive streamline-based simulation of CO2 in saline aquifers is 

proposed. Here, the unique strength of streamlines at resolving sub-grid resolution which 

enables a high-resolution representation of CO2 transport during injection is exploited.  

Relevant physics such as compressibility and formation dry-out effects which were 
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ignored in previously proposed streamline models are accounted for. The methodology is 

illustrated with a series of synthetic models and applied to the Johansen field in North Sea. 

All streamline-based models are benchmarked with commercial compositional simulation 

response with good agreement.  

Second, a Multiresolution Grid Connectivity-based Transform (M-GCT) for 

effective subsurface model calibration is proposed. M-GCT allows the representation and 

update of grid property fields with improved spatial resolutions. This enables improved 

characterization of the subsurface, especially for CCUS systems in which CO2 transport 

is highly sensitive to contrasts in hydraulic conductivity. The approach is illustrated with 

a synthetic and a field scale problem. To demonstrate its utility, the proposed method is 

applied to a field actively supporting a post-combustion CCUS project.      

 Finally, a streamline-based rate optimization of intelligent wells used in CCUS 

projects is proposed. Based on a previously developed method, a combination of the 

incremental oil recovery, CO2 storage efficiency and CO2 utilization factor are optimized 

through an optimal rate schedules of the installed ICVs. The approach is particularly 

efficient since required objective function gradients and hessians are computed 

analytically from streamline-derived sensitivities obtained from a single simulation run. 

This significantly reduces the computational expense required to obtain solutions at level 

of optimality comparable to existing methods. The approach is illustrated with a synthetic 

case and applied to the Norne field to demonstrate the robustness of the approach.  
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CHAPTER I  

INTRODUCTION 

 

1.1 Background 

 Climate data acquired in the last few decades has clearly revealed a rising trend in 

global temperatures. It is generally believed that the gradual warming of the planet can be 

attributed to increasing concentrations of Carbon dioxide (CO2) in the atmosphere caused 

by human activities (IPCC, 2013). It is also claimed that increase in anthropogenic CO2 

emissions from combustion of fossil fuels and industrial activities in recent decades show 

close correlation with observed temperature increase (IPCC, 2014). A concerted effort to 

mitigate this effect has brought about one of the United Nations’ Sustainable Development 

Goals (SDGs) of reducing global concentrations of CO2 in the atmosphere (Griggs et al., 

2013).  

 An acclaimed technology for achieving this is the Carbon Capture and Storage 

(CCS). This involves all activities from the extraction of CO2 from industrial flue gas all 

the way to permanent sequestration. Deep geologic formations and deep oceans have been 

identified as possible CO2 storage sites. However, due to the high cost of the current CCS 

technology, Carbon Capture, Utilization and Storage (CCUS) technologies tend to be 

more economically attractive. CCUS refers to a combination of techniques that involves 

the capture of CO2 as in CCS followed by a recycling or an economic utilization of the 

captured CO2, in the process of which it is ultimately sequestered.  
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 One category of possible locations for permanent storage of CO2 is in deep 

geologic systems. This will be the focus of this dissertation. Identified geological media 

include depleted hydrocarbon reservoirs, unmineable coal seams, deep saline formations 

and active oil reservoirs, in which CO2 is utilized for enhanced oil recovery (USDOE, 

2015), as shown in Fig. 1.1. The latter is referred to as a form of CCUS, in which it is 

expected that the economic benefits from CO2 enhanced oil recovery (EOR) process can 

be utilized for offsetting the high cost of CCS. In the rest of this section we provide more 

background on both geological CCS and CO2 EOR technologies and how they are 

reconciled for the purpose of achieving the atmospheric CO2 concentration reduction goal.   

 

 

Figure 1.1: CCUS applications in underground geological formations, reprinted from 

IPCC (2005) 
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1.1.1 Geological Carbon Capture and Storage 

 The fundamental components of CCS involve the capture, transportation and 

eventual injection and storage of CO2 in the subsurface. Geological CCS has been 

recognized as the most versatile and vital climate mitigation technology that could be 

applied for providing a stabilization wedge in atmospheric concentrations of CO2 by the 

end of the century (Global CCS Institute, 2017; Pacala and Socolow, 2004). Up to 220 

million tons (Mt) of CO2 has been injected into the subsurface till date with a total of 17 

large scale CCS facilities are currently operational globally. An additional annual 37 Mt 

storage capacity is expected to be added with additional four facilities coming online in 

2018 (Global CCS Institute, 2017).  

 The CCS technology is however not without its technical challenges. Beside 

operational challenges related facilities installation, a good understanding of the behavior 

of the injected CO2 in the subsurface can determine the level of success of any CCS 

project. The hallmark of success in a CCS project is for the injected CO2 trapped and 

eventually permanently sequestered in the geologic media with. Achieving this objective 

often begins with the assessment of storage capacity of candidate formations based of 

relevant mechanisms involving considers pressures, volumetric and trapping mechanisms 

which are pivotal to CO2 containment in the subsurface (Heidug, 2013).  

Injected CO2 undergoes four main mechanisms of trapping in the subsurface, 

which are structural, residual, solubility and mineral trapping mechanisms (IPCC, 2005). 

As shown in Fig. 1.2, the trapping mechanisms vary in contributions and storage security 

with time. Structural or stratigraphic trapping mechanism involves geological features 
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such as sealing faults and stratigraphic seals that contain CO2 plume migration under the 

force of gravity and diffusion in the subsurface. This is known to offer the least storage 

security and tends to decline in trapping contribution with time as other trapping 

mechanisms take over. Residual trapping, which depends on relative permeability and 

capillary hysteresis effects is next in terms of initial trapping contribution. A more secure 

trapping mechanism is the solubility trapping in which CO2 dissolves in formation fluids, 

such as brine at in situ pressures and temperature. Finally, in mineral trapping, dissolved 

CO2, after an extended period of time reacts with in situ chemical molecules to become 

permanently sequestered.  

Beyond CO2 trapping mechanisms, relevant geological features also play 

significant roles in the success of a CCS project. The subsurface is inherently 

heterogeneous, especially in terms of hydraulic conductivity, and this is critical in 

determining flow path of CO2. Calibration of geologic models by integrating observed 

data acquired from operation projects often provide improved knowledge of the important 

trends and scale of heterogeneity. Understanding the subsurface is key to effective 

management of geologic CCS projects. 
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Figure 1.2: CO2 trapping mechanisms, reprinted from IPCC (2005) 

 

1.1.2 Carbon Dioxide Enhanced Oil Recovery (CO2 EOR) 

 A proven and mature technology for enhancing the productive life of oil fields 

internationally is CO2 EOR. The technology has been shown to be economically viable 

oil recovery method for over four decades. The first commercial demonstration of the 

technology was with the SCROC project in the early 1970s in West Texas (Crameik and 

Plassey, 1972). About 400 billion barrels of stranded oil resource currently lie in mature 

fields across the US, of which 52 billion barrels is technically recoverable by CO2 EOR 

(DiPietro, 2013). More than 100 CO2 EOR projects are operational in the US, with more 

than 50% located in the Permian basin (Melzer, 2012). With the possibility of an increase 

in the number of operational facilities, it is predicted that domestic production form the 
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CO2 EOR technology is project to rise up to 700,000 barrels per day by 2040 as shown in 

Fig. 1.3.   

The possibilities of increase in domestic production from mature, and sometimes 

abandoned fields comes from the effect of CO2 on residual oil in the subsurface. Injected 

CO2 contacts and dissolves in the in situ residual oil, causing it to swell, thereby causing 

a reduction in oil viscosity. The eventual increase in oil mobility makes oil recoverable 

from residual conditions. CO2 can either be first contact or multiple contact miscible in 

oil, however CO2 ceases to readily soluble in oil below a critical pressure known as the 

Minimum Miscibility Pressure (MMP) – a fundamental property of the hydrocarbon 

composition of the oil.  

 The CO2 EOR technology has been applied in multiple forms. This includes 

continuous CO2 injection which is often applied to highly water-wet formations, CO2 

Water-Alternating Gas (WAG), CO2 huff-and-puff, and so on. Due to its superior 

advantage of better mitigation of mobility contrasts, there has been as wide spread 

application of the CO2 WAG method. CO2 WAG, as the name implies, involves solely 

injecting gas and water in alternating fashion. The interval of alternation and the slug sizes 

of each fluid depends on the CO2 EOR design, based on reservoir geology and/or 

operational constraints (Ettehadtavakkol et al., 2014).  

Sufficient contact between injected CO2 and resident oil phase is crucial for 

improved oil recovery efficiency which marks the success of any CO2 EOR project. This 

underscores the need for high volumetric sweep efficiency during CO2 injection. However 

this usually becomes a challenge due to (1) density differences which results in 
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unfavorable gravity override, and (2) Mobility contrasts which causes undesired viscous 

fingering of CO2.  Both phenomena in combination cause poor conformance and eventual 

reduction in CO2 sweep efficiency. These effects are further aggravated by sharp 

heterogeneity contrasts in hydraulic conductivities. Addressing these challenges often 

hinges on the application of modern reservoir management techniques.  

 

 

Figure 1.3: Trends in US CO2 EOR production, reprinted from EIA (2014) 

 

1.1.3 Reconciling CCS with CO2 EOR for CCUS 

 The basic idea of CCUS, pertaining to geological storage of CO2 is a symbiosis 

relationship between two seemingly conflicting objectives. Although the idea has been in 

existence for decades, more conscious efforts are recently being made to design CCUS 

projects to reduce atmospheric carbon footprint while meeting world’s immediate demand 

for hydrocarbons. Years of data from CO2 EOR production has revealed that certain 
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amount of injected CO2 is always retained in the formation. This signifies some CO2 

storage associated with CO2 EOR as it has always been implemented.  

 One major difference between a regular CO2 EOR process and a planned CCUS 

process is the CO2 source. Sourcing CO2 from natural underground deposits, as is often 

done, is believed not to contribute to the climate mitigation efforts. Modern CCUS designs 

targeted at carbon footprint reduction source CO2 from industrial flue gas and power 

plants. For instance, the newly commissioned Petra Nova plant captures and transports up 

to 1.4MtCO2 per annum from the W. A. Parish power plant to the West Ranch field where 

it utilized in a CO2 EOR scheme. Petra Nova is considered the world’s largest post-

combustion CO2 capture plant. A distribution of global CO2 injection projects according 

to their respective CO2 sources and construction time is provided in Fig. 1.4. According 

to the figure, although the CCUS technology began as early as the first large-scale 

implementation of the CO2 EOR technology, dedicated CCS projects only started in the 

mid 90’s with Sleipner in the North Sea. 

 Since the mid 90’s global CO2 storage capacity, as well as cumulative CO2 

injection for CCUS has seen an exponential increase with time, as shown in Fig. 1.5. On 

this path, the number of CCUS projects across the world is expected to double within a 

decade (Global CCS Institute, 2017). Again, challenges abound with effective 

management of CCUS processes due to the critical attributes of CO2 that derogate from 

desired performance. Many CO2 injection projects suffer from conformance problems due 

to viscous fingering of CO2 and gravity override which are further aggravated by inherent 

geological heterogeneities. It is believed that application of modern reservoir management 
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techniques in advanced flood design can help increase sweep efficiencies (Wallace et al., 

2013), which is believed to be beneficial to both CO2 storage and recovery of residual oil.  

 

 

Figure 1.4: Large-scale CCS/CCUS facilities across the globe, reprinted from  

Global CCS Institute (2017) 

 

 

 

Figure 1.5: Global CO2 storage capacity and cumulative CO2 injection as functions of 

time, reprinted from Global CCS Institute (2017) 
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1.2 Reservoir Management 

The key to addressing the pressing challenges associated with successful 

implementation of CCUS projects is effective reservoir management techniques (Wallace 

et al., 2013). The fundamental components of reservoir management procedure include 

the forward modeling, inverse modeling and optimization workflows. Here we provide a 

general brief overview of these concepts as it concerns CCUS. 

1.2.1 Forward Modeling 

This involves all endeavor at representing relevant physics or phenomena that 

describe certain processes of interest. Certain simplifying assumptions are made, in any 

framework of choice in creating subsurface flow models which are eventually applied to 

evaluate different subsurface flow scenarios. Due to advances in technology, modern 

subsurface flow models are typically constructed based on mathematical and/or 

computational frameworks. In these frameworks, there is often a trade-off between speed 

and fidelity. Analytical or semi-analytical models, which are developed based on more 

simplifying assumptions, require less computational effort but are limited in application. 

High-fidelity solutions on the other hand, which involve numerical schemes for solving 

coupled flow equations, are based on less simplifying assumptions which makes them 

more applicable to realistic situations, however at extra computational cost.  

Analytical/semi-analytical models, which are derived from first principles, capture 

relevant driving mechanisms to facilitate quick diagnostics of the problem. Such models 

have been applied in reservoir management efforts for decades (Arps, 1945; Havlena and 
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Odeh, 1963). Recent methods attempt to account for subsurface heterogeneities by 

reducing reservoir models into graphs of wells and connections (Albertoni and Lake, 

2003; Ibrahima et al., 2017; Sayarpour et al., 2009). Analytical streamline-based solutions 

have also been proposed, using the front tracking technique to compute the propagation 

of saturation and mole fractions in heterogeneous and dual continuum media (Di Donato 

and Blunt, 2004; Lie and Juanes, 2005; Nilsen and Lie, 2009; Seto and Orr, 2009; Seto et 

al., 2007). Specifically for gas injection systems, analytical models accounting for gravity 

segregation have been proposed (Nordbotten et al., 2005; Rossen et al., 2010). Although 

elegant and computationally efficient, analytical models struggle in reality at capturing 

high-resolution effects which are sometimes more impactful to the overall performance of 

the subsurface flow scenario of interest.  

 Numerical models are often resorted to when analytical models fail. Numerical 

models are designed to solve coupled partial differential equations that describe 

subsurface flow through varying spatial and temporal discretization schemes (Jenny et al., 

2003; Karimi-Fard et al., 2003; Møyner and Lie, 2014; Sweby, 1984; Yanosik and 

McCracken, 1979). All numerical scheme however attempt to solve governing equations 

that describe fluid flow in the subsurface, starting from the differential material balance 

for any component i given as (Aziz and Settari, 1979a):  

  0ˆ
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
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Where iy  represents then mole fraction of component i  in phase  (which can be oil, 

water or gas), while iq  represents the source (well injection rate) or sink (well withdrawal 
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rate) terms of component i in phase  is defined control volume. ̂ , s and u

repectively denote the molar density, saturation and velocity field of phase   . Finally,   

denotes formation porosity. The phase velocity can be obtained by Darcy’s Law: 

 Zgp    ku         (1.2) 

 In which   and  respectively refer to the mobility (ratio of relative permeability 

to viscosity) and mass density of phase  . The phase pressure, which is a difference 

between the system pressure and capillary pressure )( cp  is denoted as p . Model 

permeability tensor is represented as k , while gravity and vertical elevation are denoted 

as g and Z respectively. The governing equation in Eq. 1.1 can be solved using different 

schemes including fully implicit, sequential implicit or Implicit Pressure Explicit 

Saturation (IMPES) form of schemes. The latter two schemes require a decoupling of Eq. 

1.1  into pressure and transport equations. The streamline-based flow simulation utilizes 

the IMPES scheme in which the system pressure is solved implicitly to obtain the flux 

field on which streamline trajectories are based. Transport equation, written as follows, is 

explicitly solved along the streamlines: 
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To solve the transport equation along streamlines, Eq. 1.3 is transformed from the 

3D domain into a set of independent 1D equations. In coordinate transformation, an 
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arbitrary velocity can be described in terms of effective density, ~  and a set of bi-

streamfunctions as follows: 

t   u          (1.4) 

The bi-streamfunctions determine the trajectory of a streamline (King and Dunayevsky, 

1989) while the effective density serves to conserve mass along the streamline. The 

formalism leads to the introduction of a new spatial coordinate known as the time-of-flight 

 , which is defined as the transit time of a neutral tracer in a particular flux field (Datta-

Gupta and King, 2007). Streamline time-of-flight is expressed as: 

 tu           (1.5) 

Where tu  denotes total velocity. By combining Eqs. 1.4 and 1.5 the transport equation is 

expressed in a 1D form along the streamlines as follows (Osako and Datta-Gupta, 2007): 
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It is informative to re-arrange Eq. 1.2 as follows (Aziz and Settari, 1979a): 
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In this form, the convective component (in the first term) of the phase velocity is 

decoupled form the gravity and capillary components (in the second term). In an operator-

splitting framework, streamline-based methods account for the convective term in a 

predictor step and the transverse fluxes (including capillarity and gravity terms) in the 

corrector step (King et al., 2005). In this case t

sl

if  while the correction, solve on 

the underlying grid, accounts for the second term in Eq. 1.7. For gravity and/capillary 
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dominated systems, like in CCUS processes, the orthogonal projection approach is 

recommended. Here convective fluxes as well as significant proportion of the gravity and 

capillary forces are accounted for in the predictor step, leaving room for relatively small 

corrections on the underlying simulation grid (Tanaka et al., 2014).  

Streamline-based solution to multiphase flow in the subsurface finds a neutral 

ground between high-fidelity numerical flow simulations and simple analytical models. 

The high level of numerical resolution achievable in high contrast systems compared to 

other modeling approaches makes streamline-based method applicable for CCUS 

problems.   

1.2.2 Inverse Modeling 

This includes all workflows and procedures for integrating observed data into 

reservoir models, in the process of which relevant model parameters are estimated. 

Subsurface model calibration, also referred to as history matching, remains a challenging 

step in most reservoir management workflows due to the high   computational 

requirements. Since all model calibration workflows rely on some forward model, it is 

expected that, with the same objective function reduction algorithm, the efficiency model 

calibration step scale linearly with the forward model evaluation speed. The other 

challenge with model inversion problems is the inherent non-uniqueness of solutions. This 

often requires the generation of an ensemble of plausible solutions that all agree with the 

observation data.  
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  The ultimate goal of a model calibration exercise is to update current state of 

knowledge of the subsurface model by calibrating reservoir parameters so that the 

resulting reservoir model reproduces the observed data. Observed data include dynamic 

field observations such as multiphase production, well test, 4D seismic data and so on. 

The selection of model parameters to be included in the calibration process requires prior 

sensitivity studies to determine the ‘heavy hitters’. Model properties that are spatially 

correlated such as grid petrophysical properties (permeability or porosity) are often re-

parameterized. This takes advantage of the spatial correlation of these properties in their 

spectral representation using few uncorrelated parameters. Using a set of real numbers

Mv , a grid property vector 
Nm , for NM  , can be represented in real (on the 

left) and spectral (on the right) domains as: 

mvvm
T          (1.8) 

Where   denotes a collection of orthonormal eigenvectors of a characteristic 

parameterization matrix.  

Many forms of parameterization schemes have been proposed (Bhark, 2011; Bhark 

et al., 2011b; Honorio et al., 2015; Jafarpour and McLaughlin, 2008; Jafarpour and 

McLaughlin, 2009; Khaninezhad et al., 2012; Sarma et al., 2008b). One popular schemes 

are the Principal Component Analysis (PCA) in which   is obtained from the singular 

value decomposition (SVD) of the property covariance matrix. The other is the Discrete 

Cosine Transforms (Strang, 1999) which has been generalized to the Grid Connectivity-

based Transforms (GCT) to handle all forms of reservoir model grid geometries (Bhark et 

al., 2011a). Here unlike in PCA,   is obtained from SVD of the grid Laplacian. In other 
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words, GCT precludes the extra difficult task of constructing a covariance matrix for the 

grid properties. In addition, GCT becomes more applicable in non-Gaussian grid 

properties, characterized by high permeability streaks, for example.  

 Solving a model calibration problem involves an optimization problem which 

seeks the best set of parameters that minimizes a defined residual between model response 

and observed data. Objective functions are typically constructed depending of the solution 

paradigm. In a sensitivity-based formalism (Kulkarni et al., 2000; Vasco et al., 1999), the 

objective function is constructed as follows: 

2
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)( mmmSdm   obsJ      (1.9) 

Where )(mdd gobsobs  ( )(mg  is the forward model response based on m ), m is the 

parameter deviation from the prior model and the parameter sensitivities is expressed as:  
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The second and third terms of the objective functions are respectively the regularization 

and roughness penalties.  is a spatial smoothness operator while 1 and 2 are specific 

weights which respectively determine the strengths of the prior model and roughness 

conditions. Guidelines in the selection of these weights are provided in (Parker, 1994). 

The optimal solution that minimizes the objective function can be obtained by solving the 

least-squares problem (Paige and Saunders, 1982): 
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This model inversion formalism has been utilized extensively in the updating of high-

resolution geologic models using streamline-based methods (Cheng et al., 2005; Cheng et 

al., 2007; Cheng et al., 2004; He et al., 2002). This is because of the quasi-linear feature 

of the construction. More importantly, in the streamline-based inversion approach, 

sensitivities are computed analytically with a single numerical simulation run making it 

applicable to large multi-million geologic models. Finally, grid property updates are 

robust and avoid overfitting, thereby preserving the geological realism of the subsurface 

model. 

In the Bayesian paradigm, the posterior distribution of the model parameters 

)|( obsP dm  relates to the product of the likelihood )|( mdobsP  and the prior distribution 

)(mP  of the parameter distribution with some proportionality constant (Oliver et al., 

2008):  

 )(exp)().|()|( mmmddm JPPP obsobs       (1.12) 

The posterior distribution can be expressed as a multivariate Gaussian function with the 

argument )(mJ  given as: 

        mmCmmmdCmdm m  
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Where DC  and mC are respectively the data covariance matrix and the parameter 

covariance matrix. This formalism allows a generation of multiple solutions with finite 
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non-zero values of the posterior distribution function )|( obsP dm . Eq. 13 can be solved for 

optimal values for m using the Gauss-Newton or Levenberg-Marquardt algorithms in a 

gradient-based approach (Nocedal and Wright, 2006a). Sampling algorithms however 

exist and have been applied to obtaining multiple plausible solutions from the posterior 

distribution function (Ma et al., 2008; Maucec et al., 2007; Olalotiti-Lawal, 2013; Xie et 

al., 2011). Ensemble-based methods have also shown promise in achieving probabilistic 

model calibration of subsurface models (Aanonsen et al., 2009; Emerick and Reynolds, 

2013; Evensen, 2003; Watanabe and Datta-Gupta, 2012). 

Finally, a recently introduced approach to history matching, which is applicable to 

potentially conflicting objectives utilizes the multiobjective optimization concept (Das 

and Dennis, 1997; Deb et al., 2002). In this approach, diverse multiple trade-off solutions 

are generated as the final result (Hajizadeh et al., 2011; Olalotiti-Lawal and Datta-Gupta, 

2015; Park et al., 2015).  Typically, calibrated model(s) are utilized for field performance 

forecasts and/or field development optimization purposes. 

1.2.3 Field Development Optimization 

 A final fundamental component of reservoir management is field development 

optimization. Usually, this step is contingent on the availability of credible models that 

are conditioned to available data. Most field development optimization problems consider 

optimal placement of wells, well drilling schedule and production and injection rate 

schedules under pre-specified operational or economic constraints. While design variables 

depend on the type of optimization in question, decision variables have historically been 
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cumulative hydrocarbon production or net present value (NPV) of the asset. The NPV-

based optimization concept introduces economic parameters such as discount factors in 

the optimization procedure. Like in the solution to subsurface model calibration problems, 

solution approaches to field development optimization problems take different 

approaches. 

Well placement optimization problems seek the optimal locations of multiple wells 

or completions in the reservoir to maximize defined decision variables. This results in a 

class of optimization problems referred to as Mixed Integer Non-Linear Problems 

(MINLP). Solutions to this problem have been proposed based on gradient or sensitivity-

based methods (Møyner et al., 2015; Sarma and Chen, 2008; Zandvliet et al., 2008) as 

well as population-based or evolutionary algorithms (Badru and Kabir, 2003; 

Bouzarkouna et al., 2012; Emerick et al., 2009; Guyaguler and Horne, 2001; Isebor et al., 

2014; Onwunalu and Durlofsky, 2011). A typical challenge with population-based or 

evolutionary algorithm methods is the large amount of computations required to obtain 

desired solutions. Gradient-based methods, on the other hand are frequently get trapped in 

local extrema. Approaches which utilize fast model evaluation proxies, which are 

therefore amenable to exhaustive search of the parameter space have been proposed to 

address the issue (Møyner et al., 2015; Taware et al., 2012). 

 In many cases, especially in mature fields, field development plans that require no 

additional drilling campaigns are more economically attractive. Ensemble-based methods 

have been applied using a closed-loop reservoir management approach is obtaining 

optimal rate schedules (Chen et al., 2009; Jansen et al., 2009; Sarma et al., 2005; Wang et 
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al., 2009). Davidson and Beckner (2003) opposed an integrated production optimization 

technique which utilizes the Sequential Quadratic Programming (SQP) algorithm 

(Nocedal and Wright, 2006b) in obtaining optimal rate schedules. An effective rate 

optimization approach was proposed that also utilizes SQP but however effectively 

computes required gradients and hessian from analytical streamline-derived sensitivites 

(Alhuthali et al., 2006; Alhuthali et al., 2010). Gradient-free methods which also exploit 

the strength of streamlines have also been proposed (Park and Datta-Gupta, 2013; Tanaka 

et al., 2017; Thiele and Batycky, 2006). Specifically for CCUS applications, both 

streamline-based and ensemble-based methods have been proposed (Chen and Reynolds, 

2015; Sharma et al., 2016). 

1.3 Contributions and Thesis Outline 

 This work provides contribution in each of the components of reservoir 

management discussed in the previous section as it pertains to CCUS applications. Details 

on these are reported in the following chapters. The robustness of the proposed 

methodologies and algorithms are demonstrated with real field applications. Below are the 

highlights of each chapter:   

(1) A comprehensive streamline-based simulation of CO2 sequestration saline aquifers is 

presented in the second chapter. This work is motivated by the need to effectively 

handle subsurface heterogeneity effects dating the injection of supercritical CO2 in 

saline aquifers. The algorithm, implemented in an existing streamline simulation code 

(Tanaka, 2014), is validated with commercial compositional simulator. The effects of 
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compressibility and formation dry-out effects, which were ignored in previous 

streamline-based methods, are implemented and validated.  Finally, an application to 

the North Sea’s Johansen formation is presented. 

(2) A multi-resolution grid connectivity-based parameterization scheme for efficient 

subsurface model calibration was proposed. A motivation for this work comes from a 

common scenario in mature fields characterized by localized distribution of data. It is 

common in geological CCUS applications that active wells are localized in specific 

regions in the reservoir domain. Constructing GCT basis functions that takes into 

consideration such special cases results in improved reservoir characterization. This 

concept is illustrated with a synthetic model and a field-scale Brugge benchmark case 

(Peters et al., 2010). An application to the West Ranch field – which supports the Petra 

Nova CCUS project – is presented. 

(3) A field development optimization based streamline-based optimization of intelligent 

wells is proposed. The workflow, based on previously proposed methodology 

(Alhuthali et al., 2010), optimizes the incremental oil recovery efficiency, CO2 

utilization factor as well as the CO2 storage efficiency. Finally, the value and utility 

of the proposed methodology is demonstrated with an application to the North Sea’s 

Norne field. 
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CHAPTER II  

COMPREHENSIVE STREAMLINE SIMULATION OF CARBON DIOXIDE 

STORAGE IN SALINE AQUIFERS 

 

 Subsurface sequestration of CO2 has received high level of attention from the 

global scientific community in response to climate change due to higher concentrations of 

CO2 in the atmosphere. Mathematical models have thus been developed to aid the 

understanding of multiphase flow of CO2 and trapping mechanisms during subsurface 

sequestration. Solutions to these models have ranged from analytical, semi-analytical and 

numerical methods, each having its merits and demerits in terms of underlying physics, 

computational speed and accuracy.  

We present a streamline-based method for modeling CO2 transport in saline 

aquifers which relies on the sub-grid resolution of streamlines in capturing small and 

large-scale heterogeneity effects during CO2 injection. Our approach is based on an 

iterative IMPES scheme and accounts for the physical processes characteristic of CO2 

injection in saline aquifers. These include compressibility, gravity, capillarity, mutual 

solubility, precipitation and formation dry-out effects. We present series of examples 

encompassing different levels of geologic and geometrical complexity to illustrate the 

accuracy and computational efficiency of the approach.  

 Our streamline simulation method provides an extension of previous streamline-

based models through rigorous treatment of transverse fluxes arising from compressibility, 

gravity and capillary effects.  



 

23 

 

 

2.1 Introduction 

           Climate change is a topical environmental issue which has been linked to the rise 

in global average temperatures because of increase in greenhouse gases (GHG) such as 

carbon dioxide (CO2) and methane in the atmosphere in the last century. The past few 

decades have witnessed a global concerted effort at reversing the trend by reducing the 

concentration of these gases, particularly CO2 in the atmosphere. A promising strategy is 

Carbon Capture and Storage (CCS) which involves capturing CO2 from industrial sources 

such as coal fired power plants, transportation of the CO2 and injection in subsurface 

geologic formations for permanent storage. Candidate formations include depleted 

hydrocarbon reservoirs, unmineable coal deposits and saline aquifers, which is known to 

show the highest potential for large scale subsurface storage (USDOE, 2015).  

 Like most subsurface flow processes, injection of CO2 in saline aquifers poses 

certain risks (Arts et al., 2008) arising from the dearth of data and subsurface uncertainty. 

Important risks include leakage of CO2 through old wells or non-sealing faults into 

underground water or the earth surface. These pose significant hazard to public health and 

the environment (Apps et al., 2010; Siirila et al., 2012). Proper site selection therefore 

requires understanding of CO2 plume migration in the short and long terms in the 

subsurface and understanding flow and trapping mechanisms of CO2 under varying 

thermodynamic conditions, geologic settings and structures at different time scales. The 

dominant trapping mechanisms of CO2 including structural, residual, capillary, solubility 

and mineral have been well documented in the literature (Bachu et al., 2007; Bachu et al., 
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1994; Ennis-King and Paterson, 2003; IPCC, 2005; MacMinn et al., 2010; Saadatpoor et 

al., 2010). 

Analytical and numerical predictive models incorporating relevant trapping 

mechanisms at varying fidelity levels have been developed for reliable evaluation of saline 

aquifer candidates for CO2 sequestration. Analytical models are valuable in identifying 

key parameters and/or dimensionless groups for better understanding important physics 

underlying the process and provides an efficient tool for screening of aquifer candidates 

for CO2 storage (Mathias et al., 2009b). Nordbotten et al. (2005) presented an analytical 

solution for CO2 plume evolution during injection in saline aquifers with homogenous 

media properties and uniform initial conditions. Vilarrasa et al. (2013) proposed a semi-

analytical solution as an improvement over the existing analytical solutions by accounting 

for non-uniform CO2 flux from the well across the aquifer cross-section. Mathias et al. 

(2009a) and Mijic et al. (2014) included the Forcheimer model in their analytical model 

to study the influence of non-Darcy flow and gas compressibility on well injectivity. While 

analytical solutions provide significant benefits in terms of lower computational cost, 

capturing important details such as small and large scale permeability heterogeneities 

remains a challenge.  

 Numerical models allow for more realistic description of subsurface flow of CO2 

in saline aquifers. Numerical simulation codes such as TOUGH2_ECO2N (Pruess, 2005), 

CMG-GEM-GHG (Nghiem et al., 2004) and E300-CO2STORE (Schlumberger, 2014) 

implicitly/semi-implicitly solve conservation equations using typically finite 

difference/volume schemes. Therefore, more detailed description of non-linear 
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relationships between model parameters with system state variables such as pressure, 

temperature and fluid saturations becomes possible. This allows higher fidelity 

representation of relevant subsurface flow phenomena such as residual and capillary 

trapping mechanisms (Saadatpoor et al., 2010; Spiteri et al., 2005), gravity induced 

convection and formation dry out effects (Giorgis et al., 2007; Pruess and Müller, 2009). 

Capturing these detailed physics, which sometimes require local grid refinements, 

however often come with much higher computational cost compared with analytical 

models.  

The streamline simulation has been applied (Obi and Blunt, 2006; Qi et al., 2009) 

to improve upon the computational efficiency of classical finite volume models. Besides 

faster solutions, streamline models offer visual and physically intuitive representation of 

the flow, making the results easy to analyze. With streamline-based methods, 3D transport 

problems are reduced to a set of independent 1D problems oriented along the direction of 

the total flux (Datta-Gupta and King, 2007). Streamline-based approaches also reduce 

numerical artifacts and better represent heterogeneities through sub-grid resolutions, 

making it suitable for large scale and geologically realistic systems, as illustrated in Fig. 

2.1. Obi and Blunt (2006) proposed the streamline simulation approach for CO2 

sequestration modeling in highly heterogeneous formations, using Henry’s Law for CO2 

solubility in brine and first order reaction model. Qi et al. (2009) later proposed an 

improved streamline simulation method to account for mutual solubility of CO2 in 

aqueous phase and water in CO2-rich phase. Both models showed good agreement with 

analytical solution in 1D domain, but were not benchmarked with standard simulation 
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models for field scale applications. More importantly, these models have assumed 

incompressible flow which has been shown to potentially result in erroneous prediction of 

plume geometry (Vilarrasa et al., 2010). 

 

 

Figure 2.1: Generated streamline distribution for a CO2 injection in a faulted reservoir. 

Streamlines are contoured by phase saturations (gas phase in red). This figure illustrates 

the capability of streamlines in capturing sub-grid resolution   

 

 We present a comprehensive streamline-based method for simulation of CO2 

sequestration in saline aquifers. Our approach accounts for fluid compressibility effects 

by incorporating an effective density term that allows for fluid expansion and compression 

along (Cheng et al., 2006; Osako and Datta-Gupta, 2007). Transverse fluxes such as 

gravity, capillarity and diffusion are accounted for using the orthogonal projection 

approach (Tanaka et al., 2014). Mutual solubility effects and precipitation effects are 

included to model well infectivity alteration during CO2 injection. Comparison between 
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streamline simulation results and commercial compositional finite difference simulation 

results show good agreement in terms of pressure, phase saturations, component 

concentrations, while offering improved computational benefit. The outline of this chapter 

is as follows: First we present the simulation model formulation including material balance 

and fluid property models. Next we provide the steps involved in our streamline simulation 

approach. We then we present 1D and 2D cross-section illustrative examples. Finally, we 

demonstrate the robustness of our approach using application to the Johansen field 

(Eigestad et al., 2009), a candidate for large scale storage of anthropogenic CO2.  

2.2 Simulation Model 

 We begin with the governing equations and transformation into streamline Time-

of-Flight (TOF) coordinates (Datta-Gupta and King, 2007). Next we discuss the fluid 

property and phase equilibria model applied in our approach, followed by modeling of salt 

precipitation and formation dry-out. The dry-out phenomenon in CO2 sequestration in 

saline aquifers has been well studied and shown to affect injection and formation pressure 

(Giorgis et al., 2007; Peysson et al., 2014), which in turn affects CO2 distribution between 

CO2-rich and aqueous phases – a critical component in the computation of CO2 storage 

efficiencies. Finally, we discuss the reaction model and formation porosity and 

permeability variations as a result of salt precipitation and reaction.  
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2.2.1 Governing Transport Equations 

 Reactive transport in CO2-brine system during CO2 sequestration in saline 

aquifers is here modeled using a three-component, two-phase system. Water  w and CO2 

 c  components are distributed in the aqueous  aq  and CO2-rich phases  g  while the salt 

 s  component is only present in the aqueous phase. Phase and component transport can 

be modeled by solving a system of coupled nonlinear equations as follows: 

     , ,g g g g w g c aqs m m
t
 


   


u       (2.1)

     , ,aq aq aq aq c aq w g Rxns m m m
t
 


    


u     (2.2)

    ,w g g w g g w gy s y m
t
  


  


u       (2.3)

    , ,c aq aq c aq aq c aq Rxn cx s x m m
t
  


   


u      (2.4)

    ,s aq aq s aq aq Rxn sx s x m
t
  


  


u       (2.5) 

Eqs. 2.1 and 2.2 describe phase transport for the CO2-rich  g  and aqueous  aq  phases 

respectively. Eqs. 2.3–2.5 on the other hand, describe component transport for water 

dissolved in the CO2-rich phase as well as CO2 and salt dissolved in the aqueous phase 

respectively. The phase saturations, velocities and densities are denoted by  u,s  and  ; 

 aqg,  respectively whereas the mass fraction of component   in aqueous and CO2-

rich phases are respectively denoted by x  and y ; { , , }c s w  . Incremental masses of 

CO2 dissolved in the aqueous phase and of pure water dissolved in the CO2-rich phase 
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per unit time are respectively denoted as aqcm ,  and gwm , . Overall additional mass change 

in the aqueous phase per unit time as a result of chemical reactions is denoted by Rxnm

while  cRxnm ,  and sRxnm ,  denote the additional mass change in aqueous CO2 and salt 

due to chemical reactions.  

 Imposing the condition that phase saturations must sum up to unity everywhere at 

all times, Eqs. 2.1 and 2.2 can be combined to obtain the overall mass balance equation 

as: 

 , ,

,

1 Rxn
c aq w g

g aq aq g aq

m
B s m m

t B B


 

  



  

     
                  


u

  (2.6) 

Here the phase formation volume factor, denoted by B is the ratio of phase densities at 

surface conditions to phase densities at subsurface conditions. Phase velocities can be 

expressed as function of grid pressure gradient following the usual Darcy’s law: 

  zgp    ku         (2.7) 

where  represents the phase mobility, k the grid permeability tensor and p the phase 

pressure which is the difference between system pressure p  and gas-water capillary 

pressure cgwp . Eqs. 2.6 and 2.7 can be solved implicitly to obtain instantaneous spatial 

distribution of the system pressure p , which is also taken as the pressure of the non-wetting 

phase (CO2-rich phase). Note that for this step, s , gwm , , aqcm ,  and Rxnm  values are 

obtained from the previous time step. This is the implicit step of the IMPES scheme that 

is applied in our streamline simulation approach. From the pressure solution, the velocity 
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field can be obtained using Eq. 2.6. For the purpose of streamline simulation, the aqueous 

phase velocity is expressed in terms of total velocity: 

 ,

aq g

g g t cg aq

t

F p g z
 




     u u k       (2.8) 

where 
gF is the fractional flow of the CO2-rich phase calculated by 

g t  while the 

fractional flow of the aqueous phase is simply obtained as 1aq gF F  . Phase velocities 

can be resolved along the direction of the total velocity by orthogonal projection as a 

means for effectively accommodating gravity and capillary along streamlines, so that Eq. 

2.8 becomes (King et al., 2005; Tanaka et al., 2014): 

 ,

aq g

g g t cg aq g t g

t

F p g z f
 




       u u k u u     (2.9) 

Where 

 ,2 2

1t g aq g

g g t cg aq

t t t

f F p g z
u u

 





       

u u
u k     (2.10) 

     ,
ˆ ˆ ˆ ˆaq g

g t t g t t cg aq

t

p g z
 




          u I u u u I u u k      

 The beauty of the orthogonal projection approach is its robustness and ease of 

implementation with no requirement of anti-diffusive flux computation as demanded by 

the operator splitting approach (Berenblyum et al., 2003). Furthermore, for most practical 

applications, significant portion of the gravity and capillary effects are accounted for along 

the streamlines, leaving transverse fluxes aqu of relatively smaller magnitudes to be 
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corrected for on the underlying grid. Larger time step sizes are therefore possible, with 

overarching effect of improved computational efficiency (Tanaka et al., 2014). 

2.2.2 Streamline Simulation 

 We adopt the generalized representation of a velocity field using a set of bi-

streamfunctions and the introduction of the effective density,   to account for 

compressibility effects (Osako and Datta-Gupta, 2007): 

t   u   (2.11) 

The introduction of the bi-streamfunctions facilitates an efficient 1D flow description 

along a new spatial coordinate known as the time of flight, .The time of flight is defined 

as the transit time of a neutral tracer along total velocity tu , mathematically expressed in 

the differential form as: 

 tu           (2.12) 

This allows a  , ,    coordinate system in which tu  is perpendicular to both   and 

 . Therefore, it can easily be shown that applying the time of flight definition in Eq. 

2.12 to a gradient operator in this coordinate system results in the operator: 
t 




 


u  

which can be applied to any scalar field in the model domain. Applying this operator to 

the flux conservation, knowing that t u  must vanish, we obtain the following form 

for the velocity divergence which is finite for general compressible systems: 
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ln
t


 




    


u         (2.13) 

The previously discussed transport equations can then be written in the streamline 

coordinates, applying the orthogonal projection phase fluxes along the direction of the 

total velocity and the definition of the velocity divergence. The CO2-rich phase transport 

equation, for instance, becomes: 

    g g

g g g g

f
s f

t


  

 

 
 

 
       (2.14) 

The second term of the LHS can be rearranged into a form complaint with the 1D solution 

scheme (Tanaka et al., 2014): 

    ,

2
ˆ ˆg aq g cg aq

g g g g t t z

t t

p z
f F k g

u

  
    

    

      
               

u k u   (2.15) 

Where zk  is the z-direction permeability component of the tensor k . Note that 

compressibility effect turns out to be accounted for along streamlines as an extra 

sink/source as shown in the right hand side of Eq. 2.14. The CO2-rich phase as well as 

the component transport equations can be treated similarly. Similarly, component 

transport equations result in the following 1D predictor equations: 

     g g

g g g g

y f
y s y f

t



 


  

 

 
 

 
      (2.16) 

    aq aq

aq aq aq aq

x f
x s x f

t



 


  

 

 
 

 
      (2.17) 

where  , ,c s w  . It is important to point out here that mutual solubility calculations are 

conducted as phase and saturation fronts are advanced along streamlines. As will be shown 



 

33 

 

 

later, this is critical to effectively capturing the formation the dry-out phenomena. Phase 

saturation and component mass fraction profile solutions obtained along the streamlines 

are mapped on the finite difference grid where transverse fluxes and other physics such as 

dissolution and reaction are accounted for on the underlying grid using the following 

corrector forms:  

    g g g gs
t
  


 


u         (2.18) 

   g g g gy s y
t

    


 


u        (2.19) 

 Similar expressions can be written for the aqueous phase and its components. Note 

that reaction contribution is accounted for here as well on the underlying grid. It is 

important to note that for practical injection rates of supercritical CO2 into the aquifer, as 

we have for most CO2 sequestration applications, dominant fluxes are already handled 

along the streamlines, leaving minimal transverse fluxes (orthogonal to the total flux 

direction) to be corrected for on the grid. Also in our formulation, only incremental 

dissolution of components into the phases are included in the equations. This, together 

with the reaction term in general, represents a small portion of total adjustments on the 

phase saturation and concentration distributions during the corrector step of our simulation 

workflow. Consequently, much smaller computational overhead is incurred during the 

corrector step on the finite difference grid, compared to the predictor step along 

streamlines.  
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2.2.3 Multiscale Streamlines 

To mitigate grid resolution effects associated with gravity override in subsurface 

gas injection modeling, we applied a global grid refinement scheme for the transport 

equations. Similar to previously multiscale streamline simulation methods (Aarnes et al., 

2005; Gautier et al., 1999; Stenerud et al., 2008), we solve for pressure field on a coarse 

grid and map the flux field to the fine grid for saturation and compositional transport 

solution. Here, however, the pressure and flux fields are solved on the original native grid 

and the coarse flux field is downscaled unto the refined grid for streamline tracing, 1D 

saturation and composition propagation and traverse flux correction steps.  

Flux reconstruction on the refined grid followed the Pollock approach using the 

previously proposed adaptive refinement tracing method (Matringe and Gerritsen, 2004). 

For a general 3-D grid refinement problem, refined grid fluxes are estimated in two steps. 

First, the flux values along each of the three directions is obtained independently by linear 

interpolation. In other words, for a three-level coarse grid refinement along the i-direction, 

total fluxes at both end faces of the coarse cell are linearly interpolated to estimate total 

fluxes of two faces (within the coarse cell) which form the i-faces of 3 pillars of refined 

grid cells.  Next, the calculated total flux at each i-face of a pillar of grids is downscaled 

commensurate with connection areas of individual refined grid cell (as defined by the 

coarse grid dimensions) to obtain the corresponding i-face fluxes of the refined grid cells. 

For practical field-scale subsurface models, isoparametric transformations are utilized to 

account for irregular corner point grid geometries (Datta-Gupta and King, 2007; Jimenez 

et al., 2010).    
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In our approach, flow properties used for the refined grids including the flux 

divergence term, are directly populated from corresponding parent coarse grid values, 

Also, like the regular Pollock’s algorithm, our flux construction remains conservative (

0 q ), thereby naturally enhancing mass conservation. Finally, at each well 

completion grid we compute a local pressure distribution p  in the refined grid by solving 

a local pseudo-steady state differential mass balance equation described by: 

t G well

p
p c V q

t





   



k
  (2.20) 

Where wq  denote the well completion rate at subsurface conditions, while ,  , tc  and 

GV respectively represent the porosity, fluid viscosity, total compressibility and bulk 

volume of the parent coarse well grid at the current time step. Note here that the 

permeability tensor k is essentially homogeneous and isotropic.  

The local pressure distribution is constrained by the average pressure value p  

computed from Eq. 2.6 on the coarse grid as well as by the coarse cell face fluxes. Also 

similar to Gautier et al. (1999), the local pressure system construction takes into account 

fluxes in neighboring coarse cells. The solution of Eq. 2.20 requires the solution of a single 

linear system which is only as large as the size of grid refinement. For a three-level vertical 

grid refinement strategy, Eq. 2.20 results only in a series of third order linear systems for 

each open completion. The solution of all these independent linear systems is 

inconsequential computationally compared to the global pressure solve. Total fluxes in the 

refined grid are computed based on the calculated pressure field using Darcy equation. 
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The value of our multiscale streamline methodology is illustrated with a scenario 

in which fluid is being injected at the center of a 2D heterogeneous infinite domain.  In 

Fig. 2.2, we compare the streamlines generated with regular Pollock’s algorithm with that 

generated with our multiscale methodology based on the trajectories and the times of flight 

along the streamlines. Although equal number of streamlines were traced in both cases, 

smoother gradation of   values can be observed with the multiscale method. With finer 

 discretizations obtained in the multiscale method, we hypothesize a major mitigation of 

adverse grid resolution effects on achievable streamline sub-grid resolutions during 

transverse flux corrections  (Bratvedt et al., 1996).  

           

(a)       (b) 

Figure 2.2: Comparing streamline trajectory and time of flight between (a) regular 

streamline tracing and (b) multiscale streamline tracing 
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2.2.4 Fluid and Solubility Model  

The incremental mass transfer per unit time of CO2 component into the aqueous 

phase aqcm , and water into the CO2-rich phase, gwm , is obtained based on the proposed 

by Spycher et al. (2003) and Spycher and Pruess (2005) which allows for fast and non-

iterative computation of mutual solubility of water and CO2 components in the phases. 

This extended solubility model which applies for pressure-temperature ranges of interest 

to CO2 sequestration in saline aquifers, provides equilibrium mole fraction of water 

dissolved in the CO2-rich phase, wy~ and mole fraction of dissolved CO2 in the aqueous 

phase cx~ at specific system pressure, temperature and brine molality using the following 

equations: 
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where R  is the gas constant and 0K denotes thermodynamic equilibrium constants for the 

distribution of water and CO2 components between aqueous and CO2-rich phases at 

specified Temperature T and reference pressure barp 0.10  ,   denotes component 

fugacity coefficients in the CO2-rich phase, V the partial molar volume of pure phases 

between reference pressure 0p and p . The activity of liquid water due to the presence of 

dissolved salts is denoted by OHa
2

, while x' denotes the activity coefficient of CO2 

dissolved in the aqueous phase. This approach assumes infinite dilution of H2O 
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component in the CO2-rich phase for calculating fugacity coefficients using a calibrated 

Redlich-Kwong (Redlich and Kwong, 1949) equation of state (Spycher et al., 2003). The 

mass fraction of H2O tends to be ideally very small in the CO2-rich phase makes the 

assumption reasonable from the mutual solubility computational accuracy standpoint. The 

computational advantage of the simplifying assumption is that the equilibrium model 

reduces to a set algebraic equations used for solving mutual solubilities without iteration 

once system pressure, temperature and salt molality are known. Computed equilibrium 

mole fractions are converted to mass fractions and in turn, used in the computation of 

mutual mass solubilities per time between the phases as will be shown in a later section. 

Standard phase property correlations were incorporated in our simulation model 

based on the high accuracy achievable as well as their limits of validity which subsume 

the ranges of formation pressures and temperatures of interest for CO2 sequestration in 

saline aquifers Aqueous phase density was obtained as a volume weighted average of brine 

density  Tx BrsBr ,, and dissolved aqueous CO2 density  Tcd : 
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Where brine density  Tx BrsBr ,,  is obtained from Dittman (1977) correlation which 

approximates brine density as a function of brine concentration and system temperature. 

Aqueous CO2 density, on the other hand is computed from the correlation proposed by 

Garcia (2001) which provides the corrected molar volume of CO2 due to dissolution in 

the aqueous phase as a function of Temperature in degree Celsius. The corrected density 
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can then be calculated as a ratio of CO2 molecular weight 
2COM and corrected molar 

volume: 

6

3724
10

10044.510740.809585.051.37

2 



 TTT

MCO

cd     (2.24) 

Aqueous phase viscosity aq is computed from the standard correlation by (Kestin et al., 

1981) which gives the dynamic viscosity of aqueous solution of NaCl within the 

temperature range C15020 and pressure range MPa351.0   with %5.0 accuracy. The 

CO2-rich phase density, g follows the Span and Wagner (1996) model which, based on 

an equation of state, provides g at temperatures and pressures up to K1100 and MPa800  

respectively with %05.0  accuracy. Dynamic viscosity of CO2-rich phase, g is 

computed from the Fenghour et al. (1998) correlation which is valid at temperatures and 

pressures up to K1000 and MPa300  respectively with approximate accuracy of %3.0 . 

For simplicity, we have assumed negligible effect of dissolved CO2 on aq  and of 

vaporized water on g . 

2.3 Simulation Steps 

 Our streamline-based simulation approach follows an iterative IMPES scheme as 

shown in Fig. 2.3. At first global iteration, pressure and fluxes are computed based on 

phase saturations and component concentrations at old time step. New time level phase 

saturations are obtained from streamline 1D transport solutions followed by corrector 

solutions as well as equilibrium and reactions calculations on the finite difference grid. 
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The pressure and flux are computed with updated properties in the second global iteration 

and the process until global residual is less than specified values. The steps involved are 

discussed in more detail as follows:  

 

Figure 2.3: Iterative IMPES scheme for streamline simulation 

 

(1) Solve the overall mass balance equation in Eq. 2.6 to obtain the spatial distribution of 

the field system pressure at the new time level, 1np  using phase saturations and mass 

fractions at old time level, ns , 
nx , ny . Using the pressure solution, compute phase 

fluxes using Eq. 2.8. Downscale phase fluxes unto the refined grid. 

(2) Trace streamlines along total field velocity, obtained from the sum of phase fluxes 

based on the algorithm proposed by Pollock (1988). 
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(3) Solve phase and component transport equations along streamlines using Eqs. 2.14 –

2.17. This step results in intermediate phase saturations and component mass fractions

21ns ,
21nx , 21ny  in each streamline segment. 

(4) Next is to solve for mutual solubility to redistribute the components between the CO2-

rich and aqueous phases by readjusting their respective mass fractions 
21nx and 21ny  

along each streamline. The following are the steps involved for an arbitrary streamline 

segment:    

i. Similar to Qi et al. (2009) we start by computing overall initial masses of CO2

 cM , water  wM and salt  sM present per bulk volume: 
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Where s denotes salt density and n
0 porosity prior to salt precipitation 

ii. Next is to calculate salt molality, sn for the equilibrium component mole 

fractions: 
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where Brsx , , the salt mass fraction in the aqueous phase without dissolved CO2 

component.  
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iii. Compute equilibrium mole fractions of CO2 ( cx~ ) and H2O ( wy~ ) in the aqueous 

and CO2-rich phases using Eqs. 2.21 and 2.22. These are then converted to 

mass fractions: 
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iv. Update phase saturations based on the new equilibration mass fractions: 
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Negative phase saturation in this step signifies phase disappearance which 

necessitates an update in component mass fractions in the remaining phase: 
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v. The final step in the mutual solubility calculations is to cater for salt dissolution 

and precipitation which contributes to the formation dry-out phenomenon. Salt 

precipitates if salt mass fraction in CO2-free aqueous solution, CR
BrsBrs xx ,,  . 

Here CR
Brsx , denotes the critical salt mass fraction which represents the maximum 

salt concentration that can dissolve in CO2-free aqueous solution at the system 
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temperature. This is computed from the Potter et al. (1977) correlation which 

provides CR
Brsx , as a function of temperature T in C :   

 265
, ][1006.1][102.726218.0 CTCTxCR
Brs

      (2.32) 

vi. To account for salt precipitation, first total mas of water dissolved in the CO2-

rich phase, wgm  and of salt dissolved in the aqueous phase, swm are calculated: 
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Then used in the computation of Brsx , as follows: 
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These are then supplied to the following to algorithm from which the final salt 

mass fraction update 1n
sx , intermediate porosity (due to precipitation) 21n and 

updated salt molality sn of the aqueous phase are obtained:  

If CR
BrsBrs xx ,,  :  Salt precipitates out of aqueous phase 
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Else If nn
0  :   Apparent salt concentration is subcritical; precipitated salt is 

present 
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  If 0, PPTsm : Part of precipitated salt dissolves, leaving PPTsm ,  



 

44 

 

 

sPPTs
nn m  ,0

21  ; 
1

,1

1 






n
c

CR
Brsn

s
x

x
x ; 

salt
CR

Brs

CR
Brs

s
MWx

x
n

1000

1 ,

,


  (2.38) 

  Else:    All precipitated salt dissolve in aqueous phase 
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  End 

End 

The impact of formation dry out is significant near the CO2 injector. When 

large volume of dry CO2 comes in contact with the aqueous phase resulting in 

more water from the aqueous phase vaporizing into the CO2-rich phase. This 

results in significant increase in wgm and in turn, in Brsx , until a certain point 

where calculated 1, Brsx leading to a negative calculated salt molality, sn . At 

this stage the streamline segment cell completely dries up and phase saturations 

and component mass fractions are updated as follows: 
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(5) Map updated phase saturations, component mass fractions and porosity from 

streamlines to the refined grid to correct for gravity and capillary effects. Repeat step 
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4 on the grid. Note that corrections on the grid due to transverse fluxes as well as 

mutual solubility, and consequently resulting changes in saturations and mass 

fractions, are very minimal and require a very small fraction of the overall computation 

cost.  

(6) Incremental mass of CO2 dissolved in the aqueous phase 1
,
 n
aqcm  and of water dissolved 

in the CO2-rich phase 1
,
 n
gwm needed for the system pressure update are thus computed 

as follows using updated phase saturations and component mass fractions. 
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(7) The final update of the grid porosity is obtained after accounting for reaction. Similar 

to Obi and Blunt (2006) we have assumed a simple first order reaction between 

aqueous CO2 and dissolved salt to permanently deposit a secondary mineral on the 

pore walls of the grid. We start by calculating the limiting reaction concentration as 

follows: 
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Therefore changes due to chemical reaction of rate constant k over time step t can 

be obtained as: 
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Here RockSaltMW  and RockSalt denote molecular weight and density of the reaction 

product – deposited secondary mineral. Note that we have assumed similar percentage 
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change in  and 0 which are grid porosity with and without aqueous salt precipitation 

respectively. Incremental aqueous phase and component mass change due to chemical 

reaction needed for the pressure update is calculated as follows:  
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(8) Grid permeability is updated as a consequence grid porosity changes due to aqueous 

salt precipitation and chemical reaction. In our approach we adopted the ‘tube-in-

series’ model proposed by Verma and Pruess (1988). The two-parameter model is 

based on the fractional length of pore bodies   and the fraction of original grid 

porosity r for which permeability vanishes. Using this model, the fractional change in 

permeability is given as: 
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Where 0k and k are original and updated grid permeability values respectively. For all 

the examples presented in this work we have assumed 0.8 for values of r  and  , while 

solid phase saturation is computed as 00
11   n

sS , where 00  represent original 

grid porosity.  

(9) Upscale grid properties on the coarse grid for the next global pressure solve. First 

upscale updated grid porosities using bulk volume weighted averages. Then 

saturations and concentrations based on pore volume weighted averages. Finally, 
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update coarse scale permeability values based on as a geometric mean of harmonic-

arithmetic and arithmetic-harmonic resultant permeability values. 

The iterative IMPES approach uses updated phase saturations and component mass 

fractions through the global iteration process. This leads to better accommodation of the 

effects of buoyancy and rock property changes due to precipitation and reaction and 

improves the solution after 2 or 3 iterations based on our observation. Processes with small 

viscous to gravity ratios will likely require more iterations to reach the specified global 

convergence criteria. It is worthwhile to note that an alternative algorithm may involve 

carrying out mutual solubility calculations on finite difference grid after step 5 (Qi et al, 

2009). However, as we will show later on, this results in critical phenomena such as salt 

precipitation and effect on well injectivity being poorly captured especially for strongly 

water-wet formations. 

 Once the injection well is shut-in well fluxes go to zero, meaning streamline-based 

convection calculations are no longer available. As a result, our formulation identically 

reduces to a conventional finite difference method to account for transverse fluxes 

(gravity, capillarity and diffusion) and chemical reaction. Simulation results from our 

streamline-based approach have been compared with that from a commercial finite 

difference simulator with emphasis on simulation responses during the injection period. 

This is because accurate prediction of fluid phase and component concentration 

distribution at injection shut-in is fundamental to reliable modelling of long term CO2 

trapping mechanisms post-injection.  
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2.4 Case Examples 

 We present examples to validate our streamline-based simulation approach with 

the CO2STORE module in ECLIPSE reservoir simulator (Schlumberger, 2014). 

CO2STORE is a dedicated commercial simulator for carbon sequestration in saline 

aquifers which models relevant trapping mechanisms and accounts for underlying physics. 

We begin with a simple 1D problem and then to 2D homogeneous and heterogeneous 

cross-section models to demonstrate buoyancy effects on CO2 plume propagation. We 

have assumed negligible capillarity and molecular diffusion effects for the time being, 

although these effects can be accounted for using operator splitting technique (Obi and 

Blunt, 2006). We have applied the parameters in Table 2.1 to all simulation cases 

presented in this work. We will discuss the computational benefit afforded by our 

streamline simulation-based simulation approach compared with finite difference models.  

 Next, we compare the results from mutual solubility calculations on streamline 

segments and on finite difference grids after the mapping step. We then compare the 

differences in responses with and without capillarity to illustrate the impact of accounting 

for mutual solubility. Finally, to demonstrate the robustness of our approach, we apply the 

streamline-based simulation approach to evaluate the Johansen field CO2 sequestration 

project. 

2.4.1 Example 1: 1D Case 

 The first example models a 1D convection problem. The essence of this case is to 

provide a conceptual model for quick illustration of the physics associated with CO2 
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injection while we ignore influence of gravity segregation for the time being, and also to 

validate the correct handling of phase saturation and component concentration calculations 

in our method by comparing with results from CO2STORE using an equivalent input set. 

The model comprises a homogeneous rectangular rock piece of length ft200 , discretized 

into 200grid cells of equal dimension ftftft 111   as shown in Fig. 2.4. The rock is 

assumed to have uniform initial permeability and porosity values of mD100 and 2.0

respectively with negligible capillary effects. Initial pressure and brine saturation were 

psia1500 and 1.0 respectively. Dry CO2 is injected at DMscf /0.5 for Days5.1 (equivalent 

of PVI425.0 cumulative) while the other end is open to flow and thus, maintained at the 

initial pressure of psia1500 to simulate a continuous aquifer and to prevent unwanted 

premature pressure buildup in the formation.  
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Table 2.1: General simulation parameters 

Parameter Value 

Aquifer Temperature [ F ] 140 

Brine Salinity [mass fraction NaCl] 0.2 

First Order Reaction Rate [ yr/ ] 5.0E-04 

Salt Density, s [ 3/ ftlb ] 135 

CO2 Surface Density, 
g [ 3/ ftlb ] 0.116 

Pure Water Surface density, 
w [ 3/ ftlb ] 62.37 

Rock Salt Density, Rocksalt [ 3/ ftlb ] 135 

Molecular Weight of Salt, saltMW [ mollblb / ] 58.4 

Molecular Weight of CO2, 
2COMW  [ mollblb / ] 44.0 

Molecular Weight of Water, OHMW
2

[ mollblb / ] 18.0 

Molecular Weight of Rock Salt, RocksaltMW [ mollblb / ] 100 

Aqueous Phase Endpoint Relative Permeability, e
aqrk , [-] 0.95 

Aqueous Phase Relative Permeability Exponent, aqn [-] 4.0 

Aqueous Phase Critical Saturation, wcs [-] 0.1 

CO2-rich Phase Endpoint Relative Permeability, e
rgk [-] 0.4 

CO2-rich Phase Relative Permeability Exponent, gn [-] 2.0 

CO2-rich Phase Residual Saturation, grs [-] 0.2 
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Figure 2.4: Set-up for the 1D simulation case showing the CO2 injector at one end of the 

porous of rock and the brine producer well (used to mimic a semi-infinite medium) on 

the other end 

 

 Simulation results in terms of grid pressure, CO2-rich phase saturation and 

aqueous CO2 and salt mass fractions are compared with CO2STORE at Day5.0 , Day0.1

and Days5.1  as shown in Fig. 2.5. All comparisons show excellent agreement with the 

commercial finite difference simulator. It is easy to notice the effect of fluid 

compressibility and mobility effects in the pressure profile as indicated by sharp 

differences in pressure gradients between the two phase region and the brine phase region. 

Consequently, ignoring compressibility effects, as in previous streamline-based 

simulation methods, may result in erroneous flux computations computation leading to 

incorrect CO2 plume migration predictions.  
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(a)        (b) 

      
          (c)          (d) 

Figure 2.5: Model validation in 1D with commercial FD compositional simulator 

showing (a) Grid pressure profile (b) CO2-rich phase saturation (c) Aqueous phase CO2 

mass fraction, and (d) Aqueous phase salt mass fraction 

    

 Behind the two phase front, aqueous phase CO2 concentration shows an expected 

slight variation with grid pressure which is consistent with experimental data (Spycher 

and Pruess, 2005). An equally important feature captured by our model is the slow 

evaporation of water from the aqueous phase into the CO2-rich phase which results in 

gradual drying out of the grid cells in the vicinity of the CO2 injection well or completion. 

This causes a sharp increase in the salt concentration and in turn, a decrease in aqueous 

phase CO2 concentration. The aqueous phase saturation gradually decreases below critical 

value and, depending on the injection rate and duration, completely vanishes eventually 
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leaving a CO2-rich phase saturation equal to 1.0. In streamline based simulation methods, 

these phenomena are difficult to capture without mutual solubility calculations on 

streamline segments prior to mapping to the finite difference grid. 

2.4.2 Example 2: Homogeneous 2D Cross Section 

 Next we demonstrate a cross-section model to illustrate the effect of buoyancy 

during CO2 injection and post-injection periods. Consider a slice of porous media of 

length ft5298 , width ft298.5 and depth ft50 uniformly discretized into 501100  grids as 

shown in Fig. 2.6(a). We assume homogeneous permeability and porosity value of mD100

and 2.0 respectively with negligible capillary effects. Dry CO2 is injected at a constant 

reservoir volume rate of DRB/50  ( DPVI /01.0  equivalent) through an injection well 

(shown in red line in Fig. 2.6(a)) completed only in the bottom three layers of the model. 

Brine saturation and initial pressure were kept constant at 0.1 and psia2500 respectively at 

initial conditions. To imitate open aquifers, pressure was maintained constant at the other 

end of the model throughout the injection period. Supercritical CO2 is injected for a period 

of 10 days before injection well shut in, after which plume migration was monitored over 

a period of 1000 years. 

 Figs. 2.6(b) and (c) show the streamline distribution with time of flight contours 

and CO2 rich phase saturation at the end of CO2 injection period respectively. Solutions 

are mapped on the underlying grid and compared with the results from CO2STORE. CO2 

rich phase 
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saturations are compared in Fig. 2.7 while aqueous phase CO2 mass fractions are 

compared in Fig. 2.8. Overall, our model showed good agreement with the commercial 

         

                  (a)                     (b)          (c)    

Figure 2.6: (a) Homogeneous 2D cross-section model showing the CO2 injection well in 

red line (b) Streamline distribution with Time of Flight contoured along each streamline 

(c) Saturation of CO2 rich phase at injector shut-in contoured along streamlines 

 

simulator. High values of CO2 rich phase saturations (and consequently, less than connate 

aqueous phase saturations) as well as low aqueous phase CO2 mass fractions in the 

vicinity of the injection completions indicate the impact of formation dry out which is 

captured by our streamline based simulation method. A well-studied feature of CO2 

injection in saline aquifers is flow instability which results from an increase in aqueous 

phase density due to dissolution of CO2 (Ennis-King and Paterson, 2003; Garcia, 2001; 

Hesse et al., 2008; Neufeld et al., 2010). This creates a vertical convection current which 

in turn causes fingering of CO2 bearing aqueous phase through virgin brine phase as 

shown in Fig. 2.8. Besides fluid phase and component concentration profiles on simulation 

grids, we compared CO2 injector bottomhole pressures (BHP) as a function of time shown 

in Fig. 2.9. A good agreement was also recorded between our approach and CO2STORE. 
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Figure 2.7: Time Lapse of CO2-rich phase saturation for 2D cross-section homogeneous 

model 
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Figure 2.8: Time Lapse of CO2 mass fraction in the aqueous phase for 2D cross-section 

homogeneous model 

 

 Permeability and porosity variations with time throughout the porous media as a 

result of salt precipitation and mineralization are shown in Fig. 2.10. Note that rock 

porosity and permeability are altered mainly due to salt precipitation during injection 

period. Time scales of active CO2 trapping mechanisms can be clearly described through 

the life cycle plot shown in Fig. 2.11. After injector shut-in free CO2 plume continues to 

migrate and get trapped by residual mechanism. This leads to a steady decrease in free 

CO2 saturation and increase in residual CO2 until the plume hits the other end of the 

formation in the constrained domain and can no longer migrate. Residual CO2 begins to 

decline due to dissolution in brine facilitated by gravity fingering and convective mixing. 
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At 300 years, reaction and CO2 mineralization begin to take effect resulting in significant 

permeability and porosity reduction throughout the porous media as shown in Fig. 2.10. 

 

Figure 2.9: CO2 injector bottomhole pressure for homogeneous 2D cross-section 

homogeneous case 

 

 

Figure 2.10: Grid porosity and permeability changes due to salt precipitation and 

reaction at 1000 years, post-injection 
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Figure 2.11: CO2 Life cycle over 300 years post-injection for homogeneous 2D cross-

section homogeneous case 

 

2.4.3 Example 3: Heterogeneous 2D Cross Section 

 A study was also conducted using a vertical cross section model with 

heterogeneous permeability field obtained from the first 35 (non-channelized) layers of 

the SPE 10 comparative model (Christie and Blunt, 2001). The flow domain is uniformly 

discretized into 351150  grid cells, each grid have similar dimensions as the 

homogeneous 2D cross section example discussed above. Grid permeability distribution 

shown (in natural logarithm) in Fig. 2.12(a) ranges between mD800002.0   to add more 

geologic realism into the model. For simplicity, the formation is assumed incompressible 

while porosity takes a constant value of 2.0  and capillary fluxes are negligible. Initial 

conditions are similar with the homogeneous 2D cross section example with initial 
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pressures and brine saturations taking uniform values of psia2500 and 0.1 respectively. 

This model likewise consists of a CO2 injector at one end of the rectangular model and 

completed within the bottom 5 layers of the simulation grid. Similar boundary conditions 

of DRB/50 ( DPV /01.0 equivalent) constant injection rate of CO2 and constant pressure 

at the outlet was imposed over Days15 of CO2 injections. Again, the CO2 plume effects on 

formation was monitored over a period of 1000 years post-injection.  

 

       

(a)                     (b)          (c)    

Figure 2.12: (a) Heterogeneous 2D cross-section model showing logarithm of 

permeability distribution and CO2 injection well in red line (b) Streamline distribution 

with Time of Flight contoured along each streamline (c) Saturation of CO2 rich phase at 

injector shut-in contoured along streamlines 

 

 An appealing feature of the streamlines methodology is the intuitive visualization 

of flow though connected volumes in the heterogeneous domain. The streamline 

distribution for this model with time of flight contours shown in Fig. 2.12(b) provide 

useful information not only about flow distribution, but also relative connectivity within 

the domain. Fluids typically flow along preferential paths with lower times of flight along 

the streamlines. This can be easily observed by visual inspection of the CO2 rich phase 
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saturation at the end of injection as calculated along the streamlines shown in Fig. 2.12(c). 

Solutions on the streamline time of flight domain are mapped to the Cartesian domain for 

easy visual comparison with CO2STORE.  

 Temporal and spatial profiles of CO2 rich phase saturations and aqueous phase 

CO2 mass fractions on the finite difference grids are compared separately in Figs. 2.13 

and 2.14 respectively. Good agreement between the two simulations methods was 

recorded as well. Also the near-injection grid precipitation phenomena is well captured as 

indicated by unit saturations of the CO2 rich phase and lower mass fraction of CO2 

dissolved in the aqueous phase. Injector BHP comparison, shown in Fig. 2.15 likewise 

shows good agreement between our streamline based method and CO2STORE.  
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Figure 2.13: Time Lapse of CO2-rich phase saturation for 2D cross-section 

heterogeneous model 

 

 For this example, a CO2 life cycle plot is provided in Fig. 2.16 as a graphic 

representation of the variations and time scales of CO2 trapping mechanisms over

years1000 post-injection. Comparing this plot with Fig. 2.11, it can be observed that the 

point of maximum residual trapping of the CO2 is delayed in the heterogeneous model 

compared with the homogeneous model. One explanation for this is an improvement in 

vertical sweep due to flow barriers which delay gravity override in the heterogeneous 

model even though comparable volumetric rates of CO2 were injected in both cases. 

Consequently, higher residual trapping results with greater reduction in free CO2 
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structurally trapped at years1000 . Time scales for solubility and mineral trapping are more 

or less comparable in both the homogeneous and heterogeneous examples, except for 

slight delay in the onset of convective mixing in the heterogeneous case. 

 

 

Figure 2.14: Time Lapse of CO2 mass fraction in the aqueous phase for 2D cross-section 

heterogeneous model 
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Figure 2.15: CO2 injector bottomhole pressure for heterogeneous 2D cross-section case 

 

 

Figure 2.16: CO2 Life cycle over 300 years post-injection for heterogeneous 2D cross-

section case 
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2.5 Discussion of Results 

 In this section we present a summary of the results so far including the 

computational benefit of our streamline-based methodology compared to conventional 

finite volume methods. We also provide a description of the improvement offered by our 

method over existing streamline based methods for CO2 sequestration applications.  

2.5.1 Value of Streamline Simulation 

 The subsurface environment is typically heterogeneous and quick assessment of 

storage potentials of saline aquifers requires efficient analytic and flow simulation 

approaches. Streamline simulation has been extensively studied and shown to effectively 

handle large and small-scale heterogeneities while avoiding grid orientation and numerical 

artefacts (Batycky, 1997; Chaban Habib, 2005; Datta-Gupta and King, 2007). 

Consequently, streamline simulation potentially offers benefits in improved tracking of 

CO2 plume during injection. In all examples presented so far, we have consistently shown 

reasonable agreement between our simulation approach and commercial finite difference 

simulator based on standard flow dynamics metrics including spatial profiles of phase 

saturations, component mass fractions and injector BHP variations with time. Here we 

investigate the value of our streamline-based simulation methodology in terms of 

convergence and computational advantage.  

2.5.1.1 Convergence Studies 

 In this section, we compare simulation convergence performance between the 

regular streamline methodology, multiscale streamlines approach and finite difference 
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simulation. For both homogeneous and heterogeneous 2D cross-section models, we 

conducted a series of numerical experiments at various grid resolutions to investigate the 

rate of convergence of each simulation approach. For both cases, we start with a 40 5

grid model with 50 50 20 ft   grid dimensions and vertically refine by a factor of 2 twice 

to obtain additional models of vertical grid dimensions 10  and 20 . The reference model 

was set to have a vertical grid resolution 80nz  . An infinite aquifer domain was 

mimicked with pore volume multiplier value of 3000  at both ends of the model.  We 

imposed a constant initial reservoir pressure of 2500psia  for both models and CO2 is 

injected at 200 /RB D  over a period of 200days . A homogenous porosity value of 0.2  

was applied with permeability value of 100mD  for the homogeneous model, while the 

natural logarithm of permeability for the heterogeneous model ranges from 6  to 6 . 
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Figure 2.17: Grid resolution study for homogeneous 2D cross-section case showing the 

gas saturation profile for the 20-cell vertical resolution case (top) and the grid 

convergence comparison plots (bottom) 

 

 The results and observation obtained from the numerical experiments is 

summarized in Fig. 2.17 and 2.18 for the homogeneous and heterogeneous models 

respectively. For all three simulation methods, we summarize the grid resolution 

experiment with a plot of the error norm, computed as  10log
REFg gs s , is plotted 

against the number of vertical grid cells. The error is simply the L2 norm of the 

difference between the calculated gas saturation on the low resolution grid gs  and the 

reference gas saturation computed on the 80-layer grid 
REFgs . An improved convergence 

was observed with the multiscale streamline simulation methodology for both 

homogeneous and heterogeneous models.  
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Figure 2.18: Grid resolution study for heterogeneous 2D cross-section case showing the 

gas saturation profile for the 20-cell vertical resolution case (top) and the grid 

convergence comparison plots (bottom). Inset shows the ln(permeability) distribution on 

the coarse 5-layer grid 

 

This is seen to be a direct implication of the higher resolution   discretization which also 

allows for gravity corrections on the refined grid, thereby minimizing the smearing effect 

that results from grid-to-streamline mappings during streamline simulation. 

2.5.1.2 Time Stepping 

 As shown in Fig. 2.19, in all the three cases number of required time steps is 

reduced by a factor of 10 on the average compared to CO2STORE. This may be attributed 

to the unique effectiveness of streamline based methods at handling convective transport 

leaving mild flux corrections per predictor step. Number of iterative IMPES iterations, is 

thus small for reasonably high injection rates as those practical for CO2 sequestration 
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applications. We however recognize, as a limitation, that this benefit of streamline based 

approach may diminish as transverse fluxes increase with gravity and/or capillary 

dominated systems.  

 

 

Figure 2.19: Comparison of required number of time steps 

 

2.5.2 Flow Visualization 

 Here we demonstrate the value of streamline-based flow visualization in providing 

insights into subsurface flow dynamics during and post injection. Apart for the visual 

appeal which the streamline method is known for, it enhances the understanding of 

subsurface flow mechanisms at various stages of CO2 sequestration in saline aquifers. We 

provide an illustration with the homogeneous 2D-cross-section case discussed in Example 

2. Figs. 2.(a)–(g) provide series of snapshots covering different flow regimes during 

injection and post-injection periods. Streamlines, computed based on the total flux field, 
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are overlain on the aqueous phase CO2 mass fraction profiles. To put it in context, the 

contributions of the four main trapping mechanisms are also provided in intuitive 

understanding of dominant trapping mechanism associated with each flow regime.  

 Recall that streamline trajectory can always be computed as long as flux field 

magnitudes are non-zero within the domain of interest. Forced convection, established by 

fluid fluxes from wells, results in streamlines which essentially connect the sources and 

sinks during the injection period as shown in Figs. 2.(a) and (b). As mentioned earlier, 

both CO2 injection and brine producer wells are completed in the lower 5 layers of the 

model. And due to the high injection rate constraint, resulting in high viscous-to-gravity 

ratio, flux magnitude is relatively lower above the completion zone. This is clearly 

depicted by the streamline distribution in the domain. 

 Natural convection currents take over right after the wells are shut in as shown in 

Fig. 2.(c). These natural currents result from the expansion of the CO2-rich phase due to 

a combination of gravity-induced advection forces and compressibility effects (Vilarrasa 

et al., 2010; Vilarrasa et al., 2013). Here streamlines loop multiple times and only a few 

streamlines need to be traced to effectively visualize the flux field. The natural currents 

are sustained through the plume migration period as shown in 2.(d). As can be observed 

from the adjoining plot, the residual trapping contribution become dominant during the 

plume migration as the CO2-rich phase invade pure brine saturated regions of the aquifer. 

The increase in the aqueous phase density as a result of CO2 dissolution makes the system 

becomes dynamically unstable. At a later time, characteristic of the model properties, 

gravity fingers develop which results in gravity-induced convective mixing as  
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(a)         (b) 

 

        
(c)        (d) 

Figure 2.20: Flow visualizations before and after CO2 injector shut-in 
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(e)        (f) 

 

 

 
(g) 

 

Figure 2.20 (continued): Flow visualizations before and after CO2 injector shut-in 
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shown in Figs. 2.(e) and (f). Again, from the trapping contributions plot, CO2 dissolution 

trapping mechanism become dominant here. Studies on the convective fingering 

phenomenon, utilizing both numerical and experimental approaches, have been 

extensively reported (Neufeld et al., 2010; Pau et al., 2010; Riaz et al., 2006). The time to 

onset of flow instability as well as the size of the gravity fingers, is largely dependent on 

the Rayleigh’s number Ra , which is a dimensioinless ratio of gravity to diffusive forces. 

Large CO2 diffusion forces results in high Ra values, which reduces the time towards 

convective mixing, and vice versa  (Hidalgo and Carrera, 2009). In our implementation, 

we have ignored molecular diffusion effects for simplicity purposes. As a result, onset 

time to flow instability and consequently, dissolution trapping contribution may be under-

estimated. 

 Finally, the slumping flow regime become important. This occurs at large time (in 

this case 800 years) as shown in Fig. 2.(g) to further enhance the dissolution trapping 

mechanism. As indicated by the streamlines which are mostly concentrated at the aqueous 

CO2 interface, the flow regime is also driven by gravity forces. Szulczewski et al. (2013) 

classified the different types of slumping flow regimes depending on the shape of the 

interface due to the interplay between gravity and diffusive forces. We obtained straight-

line slumping regime in our application due to the underlying assumption of negligible 

diffusive fluxes. 
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2.5.3 Fluid Compressibility Effects 

 The strengths of streamline based simulation and flow description in 

heterogeneous porous media have previously been exploited for CO2 sequestration 

modeling by few authors (Obi and Blunt, 2006; Qi et al., 2009). These streamline models 

were however built on the assumption of incompressible fluids, which may not be quite 

accurate for the CO2 rich phase. Aside the fact that ignoring compressibility effects may 

lead to inaccurate pressure buildup estimation in the aquifer, studies have clearly shown 

that compressibility effects have significant impact on the eventual size and shape of the 

CO2 plume during injection (Vilarrasa et al., 2010). A possible explanation for this is the 

non-linear relationship that exists between pressure, CO2 rich phase and the aqueous 

phase mass fraction of CO2. High pressures results in larger equilibrium concentration of 

CO2 in the aqueous phase, which in turn affect the system of mass balance equations 

which solves to give the pressure distribution. Therefore, since the 1D streamline grids are 

generated based on the total fluxes computed from the pressure distribution, disregarding 

compressibility effects becomes detrimental to realistic representation of the flow physics. 

 We illustrate this with two numerical experiments were conducted with separate 

boundary conditions using the 1D model. We have chosen the simple model so that 

buoyancy effects do not interfere with compressibility effects, however as we will show 

later using a field example, similar conclusions can be reached with 3D geologically 

realistic cases. For both cases, the initial formation pressure is 3000psi  and, again a 

constant pressure boundary was maintained at the opposite end of the injection well to 

mimic and open reservoir boundary. The injection well was constrained at a constant 



 

74 

 

 

pressure of 5500psi for the first experiment, while CO2 was injected as a constant 

reservoir rate of 1.7 /RB D . 

 The compressibility effects are presented for the BHP constrained and rate 

constrained cases in Figs. 2.21 and 2.22 respectively. For the constant injection BHP case, 

it is expected that the CO2 rich phase saturation shock front for the compressible case will 

be ahead of the case where compressibility is not considered. This is because 

compressibility acts here as an additional source where the flux divergence is positive. It 

also shows up as a higher grid pressure at locations where CO2 rich phase saturation is 

non zero as shown in Fig. 2.21. Higher surface rate injection therefore results for the 

compressible case, which imply higher infectivity and ultimately, larger storage capacity 

than the incompressible case. For the constant reservoir injection rate constraint 

experiment, the CO2 plume apparently migrates faster in the incompressible case at 

1.5days  as shown in Fig. 2.22. This seems contradictory, but it turns out that the lag in 

the compressible case is due to the lower injection BHP at early time, during which 

compressibility acts as a local sink and pressure slowly builds up in the reservoir. Higher 

surface injection rate, and thus, high storage capacity is however achieved with the 

compressible case again in this experiment due to compressibility effects. Concretely, both 

experiments show that ignoring compressibility effects, as in previous streamline-based 

models, under-estimates the storage capacity by a factor of15% .   
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(a)         (b) 

                                           

 
      (c) 

 

Figure 2.21: Simulation responses for a constant injection pressure case showing (a) 

CO2 phase saturation profile, (b) cell pressure profile and (c) CO2 surface injection rate 

for the constant bottomhole pressure case   
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(a)       (b) 

 

       
(c)       (d) 

Figure 2.22: Simulation responses showing (a) CO2 phase saturation profile, (b) cell 

pressure profile, (c) CO2 surface injection rate and (d) Injector bottomhole pressure 

response for the constant subsurface volume injection rate case   

 

2.5.4 Formation Dry-Out Effects 

 On another note, formation dry out effects due to salt precipitation in the near 

injection well region, as shown by previous studies (Giorgis et al., 2007; Pruess and 

Müller, 2009), has significant negative influence on well infectivity over time. This poses 

a significant challenge to the overall operation of CO2 sequestration projects and as such, 
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incorporating this effect in simulation models becomes important. Solubility calculations 

based on modified Redlich-Kwong equation of state (Spycher and Pruess, 2005) was 

included in the recent streamline model (Qi et al., 2009) but with more emphasis on the 

aqueous phase components, which turned out to ignore formation dry out effects. Besides 

that, solubility calculations were carried out after mapping convective transport solutions 

from the streamline domain onto the finite difference grids. This approach suffers from a 

smearing effect whereby component distribution between phases is more or less averaged 

over a set a grid cells as decided by the pressure update time step. This makes it difficult 

to fully capture formation dry out effects except with very frequent pressure updates. In 

our streamline based approach, mutual solubility calculations are carried out in tandem 

with convective transport before mapping to the grid. This ensures local precipitation 

effects are better captured without resorting to small time steps.  

 We demonstrate this effect by comparing the grid-based and streamline-based 

mutual solubility calculations with the homogeneous 2D cross section but under two 

different conditions: with and without capillary fluxes. For the case with capillary pressure 

we applied the van Genuchten type capillary pressure function (Van Genuchten, 1980) 

expressed as: 
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Where caqs ,  denote aqueous phase connate saturation, 1.00 p and 31.1n . All other 

conditions such as discretization, well locations and completions and injection rates are 

kept the same as described in the homogeneous 2D cross section example. Average solid 
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saturation and permeability reductions in the injection grids are tracked for both cases over 

the simulation period of days10 . The results of this experiment are presented in Figs. 

2.23(a) and (b) for cases without and with capillary effects respectively. The general trend 

is an increase in solid saturation and reduction in grid permeability due to salt 

precipitation. For the case without capillary effects, precipitation in the injection grid stops 

at 4days making solid saturation and grid permeability stay constant for the rest of the 

simulation period. At this point injection grids have effectively dried out with unit gas 

phase saturations. On the other hand under the influence of capillarity as in the second 

case, the injection grids do not dry out within the simulation time frame. This is because 

the strong water-wet nature of the rock causes more brine to be drawn to the injection 

grids as water continually gets vaporized into the CO2 rich phase. As a result, solid 

saturation increases while grid permeability reduces dramatically compared to the case 

without capillary effects. This is a reproduction of the effects previously studied by other 

authors (Giorgis et al., 2007; Kleinitz et al., 2003; Ott et al., 2015; Peysson et al., 2014) 

but with streamline based methods.  
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(a)                  (b) 

Figure 2.23: Comparison of permeability and porosity changes obtained from grid-based 

and streamline-based mutual solubility calculation models (a) without capillarity and (b) 

with capillarity 

 

 Equally important is the observation from the comparison between grid-based and 

streamline-based mutual solubility calculations for both cases with and without capillary 

effects. The previously discussed smearing effect associated with the grid-based approach 

results in poor capture of the near well region precipitation phenomena. This is indicated 

as smaller increase in solid saturation and smaller reduction in grid permeability when the 

grid dries out. Without capillary forces, there are mild differences between the two 

solubility calculation approaches with about 10% and 2% differences in solid saturation 

and permeability reduction respectively. As formation get more and more water wet, the 

weakness of the grid-based approach in capturing the near well details get more significant 

with about 25% and 40% differences in solid saturation and permeability reduction 

respectively. Clearly such disparity in near well grid permeability results in differences in 

well injectivities which in turn can impact the evaluation of the aquifer storage potential 

and/or overall project viability. 
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2.6 Field Example: Johansen Case 

2.6.1 Background on Field Model 

 Finally we applied our streamline-based CO2 sequestration modeling approach to 

the Johansen field (Eigestad et al., 2009), one of the world’s few aquifers considered for 

large scale storage of anthropogenic CO2. The Johansen formation, located offshore the 

Norwegian coast, was intended to serve two gas fired power plants in its vicinity having 

combined CO2 emissions of over 3Mt/year. The Johansen formation exists at depths 

between 200,7 and ft000,10 below sea level, therefore with large overburden pressure 

which makes it suitable for CO2 Storage. The geological model indicates layers of sand 

and shale deposition with average thickness of over ft300 .  

 A sector model of the field was publically made available with 11100100  grid 

discretization with average cell dimensions of ft70500,1500,1  . The Johansen sand is 

practically ‘sandwiched’ by the Dunlin shale in the top 5 grid layers and the Amundsen 

shale in the last grid layer. For the purpose of our simulations, we assume these shale 

zones are sealing and are therefore the respective simulation grids are considered inactive. 

Fig. 2.24 presents the model structure and grid properties (ignoring shale layers) with 

permeability ranging between mD660,164 and porosity between %2810 . The major 

fault existing in the middle of the formation is assumed to be sealing due to its large throw. 

All other faults in the formation are assumed to be sealing, and thus assigned zero 

transmissibility multipliers.  
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(a)           (b) 

Figure 2.24: (a) Grid porosity and (b) Logarithm of grid permeability distribution of 

Johansen model 

 

2.6.2 Numerical Simulation Set-up 

 The simulation model consists of a single well located in the center of the 

formation, similar to Eigestad et al. (2009). The well, assumed to connect to all 5 sand 

layers with a wellbore radius of ft5.0 , injects supercritical CO2 at a rate of DMMscf /483

into the formation. This is equivalent to daytons/000,29 or yrMtons/10 . We applied a pore 

volume multiplier of 000,2 in boundary cells to mimic a continuous aquifer. CO2 injection 

period lasted for 000,30 days ( 82 years) and CO2 plume was monitored over a period of 

000,2 years post-injection. 

 A streamline based simulation model was conducted on the model with 000,1

streamlines sufficient to span the domain. Pressure distribution shown in Fig. 2.25(a) 

indicate significant amount of pressure gradient (up to psia000,2 ) exists owing to large 
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structural variations in the aquifer model. Streamline distribution at the end of the injection 

period is shown in Fig. 2.25(b) with the  contoured along each streamline. Phase 

saturations and component mass fraction results from our streamline-based simulation 

approach was compared with the results from CO2STORE in Fig. 2.26. Again, good 

agreement was obtained between the two methods. Formation dry out effects are clearly 

noticeable, as indicated by unit CO2 rich phase saturations together with corresponding 

high aqueous phase salt concentration and low concentration of dissolved CO2 in the 

vicinity of the injection well. CO2 injector BHP also shows good agreement with the 

commercial simulator as shown in Fig. 2.. 

 

        
(b)           (b) 

Figure 2.25: (a) Grid pressure and (b) Streamline distribution with time of flight 

contours at Injector shut-in 
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Figure 2.26: CO2 Injector BHP comparison between streamline-based simulation and 

CO2STORE for Johansen case 

 

             

(a) (b) 

Figure 2.27: CO2 rich phase saturation from (a) streamline and (b) CO2STORE 
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           (c)            (d) 

 

 

              

           (e)            (f) 

Figure 2.27 (Continued): Aqueous phase CO2 mass fraction from (c) streamline and (d) 

CO2STORE; aqueous phase salt mass fraction from (e) streamline and (f) CO2STORE 
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                                    (g)          (h) 

Figure 2.27 (Continued): Water mass fraction in the CO2 rich phase from (g) streamline 

and (h) CO2STORE at the end of gas injection 

 

2.6.3 Fluid Compressibility Effects 

 Again, fluid compressibility effect was replicated for the Johansen case. Here CO2 

injection was constrained at a constant bottomhole pressure value of 6000psia over an 

injection period of 80years .  In Fig. 2.28(a), we overlay plots of five saturation contours 

each for both compressible and incompressible cases on the finite difference grid. It turns 

out, consonant with the 1D pressure constrained injection case presented in Fig. , that the 

incompressible saturation front mostly lags the compressible one. Similar explanation 

suffices for this observation. During injection fluid compressibility effects acts as a 

pseudosink since flow divergence in the vicinity of the injection well becomes less than 

zero. As a result, larger fluid volumes at surface and reservoir conditions invade the 

reservoir, as confirmed with the surface injection rate plots in Fig. 2.21.  
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 In addition however, for realistic fully 3D models where gravity override is 

important, fluid compressibility play a significant role in plume migration at the lead edge 

of the CO2 plume directly beneath an impermeable seal. Therefore putting it all in context, 

ignoring fluid compressibility effects in streamline simulation of CO2 injection in saline 

aquifers results in under-estimation of the extend of plume migration during CO2 

injection. Also, in agreement with the estimate made for the 1D simulation case, 

approximately 15%  reduction in aquifer storage capacity results from ignoring fluid 

compressibility effects. 

 

       

(a)                  (b) 

Figure 2.28: Plots showing fluid compressibility effects with respect to (a) CO2 plume 

migration and (b) surface injection rate of CO2 

 

2.6.4 Life Cycle of CO2 

 The post injection period is characterized by upwards migration of CO2 plume 

under the influence of gravity forces, in the process of which more residual CO2 is trapped 
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as shown in the life cycle plot in Fig. 2.29. A closer look at the CO2 rich phase saturation 

profile at 000,2 years post-injection in Fig. 2.30(a) reveals structural trapping whereby 

pools of CO2 rich phase are immobilized at saturations higher than residual saturation 

values due to the geometry of the surface the sealing caprock. Note that the amount of 

structurally trapped CO2 due to seal undulations (Juanes et al., 2010; Nilsen et al., 2015) 

is included in the quantity of free CO2 plotted in Fig. 2.29 and not specifically quantified. 

Assuming these caprocks are perfectly sealing, the structurally trapped pools of CO2 

gradually reduce in size due to convective mixing that is generated over time.  

 

 

Figure 2.29: CO2 Life cycle for the Johansen case 
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                                         (a)                 (b) 

Figure 2.30: (a) CO2 rich phase saturation and (b) Aqueous phase CO2 mass fraction at 

2000 years post-injection 

 

2.7 Concluding Remarks 

 A streamline-based simulation approach for CO2 sequestration in saline aquifers 

has been presented. The approach improves on previous streamline models to account for 

pertinent physics which are vital for reliable prediction of the multiphase flow during CO2 

storage process. Our method is based on an iterative IMPES scheme in which fluid 

properties, phase saturations and component concentrations are updated in each global 

iteration until a specified tolerance limit is reached. In each global iteration, phase and 

component transport equations are solved along streamlines and corrected for transverse 

fluxes on the underlying grid. 

 Our approach elegantly captures the effect of fluid and rock compressibility along 

streamlines as an extra source in each streamline segments. This development over 
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previous streamline models helps to improve on the pressure calculations resulting in 

superior equilibrium calculations. Furthermore, compared to previous streamline models, 

formation dry out effects are better modelled in our approach. This is because mutual 

solubility computations were carried out along streamlines unlike in previous streamline-

based methods. This enables more accurate prediction of well injectivity variations during 

CO2 injection especially for highly water wet media. These are evident in the series of 

examples presented in this chapter where the results of our streamline-based simulation 

compare reasonably well with commercial simulator (ECLIPSE-CO2STORE) results.  

 In this chapter we demonstrate the solution approach to a reactive transport 

problem by decoupling the Multiphysics into a series of partial differential equations 

described in section 2.2.1, which are sequentially solved in a iterative fashion.  It is clear, 

based on the results obtained from the cases presented that the impact of the nonlinearities 

associated with the multiphase-multicomponent problem can be reasonably relaxed using 

our approach, resulting in fewer amount of time steps required for modeling the CO2 

injection period. We however submit that the computational advantage achievable using 

this approach may reduce as transverse fluxes such as gravity, capillarity and molecular 

diffusion become more dominant. 
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CHAPTER III  

MULTIRESOLUTION GRID CONNECTIVITY-BASED REPARAMETERIZATION 

FOR EFFECTIVE SUBSURFACE MODEL CALIBRATION1 

 

 Low-rank representation of reservoir property fields has evolved over the years 

and offered significant benefits for robust subsurface model calibration problems. In 

particular, the Grid Connectivity-based (GCT) parameterization techniques provide a 

framework for efficient updates of high resolution models while preserving essential 

geologic features. For many subsurface flow problems, high fluxes are localized in the 

model and the normal GCT scheme struggles to effectively resolve the associated high-

resolution model properties, because of the inherent smoothing effects. We propose a 

Multi-Resolution Grid Connectivity Transform (M-GCT) to address this shortcoming. In 

this parameterization scheme, the basis functions utilized for field property 

parameterization are constructed from adaptively coarsened grids which are based on the 

total fluid flux distribution in the model. The M-GCT basis functions display improved 

image compression within the Area of Interest (AOI) compared to the normal GCT 

scheme. The power and utility of the M-GCT scheme is demonstrated using a series of 

numerical experiments with 2D models and a field scale reservoir model.  

                                                 
1 Part of the data reported in this chapter is reprinted with permission from “Post-Combustion CO2 EOR 

Development in a Mature Oil Field: Model Calibration Using a Hierarchical Approach” by  Olalotiti-

Lawal, F., Onishi, T., Datta-Gupta, A. et al. 2017: Paper SPE-187116-MS presented at the SPE Annual 

Technical Conference and Exhibition, San Antonio, Texas, USA. Copyright 2017 Society of Petroleum 

Engineers.  
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3.1 Introduction 

 Understanding subsurface flow mechanisms is crucial for reliable performance 

predictions, and therefore remains critical in many areas of subsurface engineering 

including ground water modeling and hydrocarbon reservoir engineering. Subsurface fluid 

flow dynamics is sensitive to model features including the geology (stratigraphy, 

depositional settings, existence of faults and conductive fractures), fluid type 

(single/multiphase/multi-component, compressible/incompressible), wettability (relative 

permeability and capillary pressure), and so on. These features are reasonably captured 

through geostatistical techniques and integrated subsurface modeling (Deutsch and 

Journel, 1992; Ertekin et al., 2001) which utilizes multiple data sources such as seismic, 

well logs and laboratory measurements in initial model building. It is however necessary 

that reservoir models be regularly calibrated at later times by integrating newly acquired 

dynamic data, including multiphase production, injection and 4D seismic data. Updated 

hydrocarbon reservoir models provide better understanding of the subsurface and hence, 

enable informed operational and investment decisions over the life of the asset. 

Fundamentally this task, often referred as model calibration or history matching, requires 

careful identification and estimation of critical parameters such as hydraulic conductivity 

(permeability) which impacts subsurface fluid flow.  

 Subsurface model calibration problems are inherently ill-posed (Oliver et al., 

2008), which is a direct consequence of the under-determined nature of the problems. In 

other words, there are typically more model parameters than there are conditioning data. 

As such, the solution is non-unique and requires regularization in the form of smoothing 



 

92 

 

 

of anchoring to prior information (Tarantola, 2005; Vasco et al., 1999). Assisted history 

matching techniques have shown great potential in addressing the challenges with the 

inverse problems related to subsurface model calibration. Most widely used are gradient-

based techniques such as the adjoint method which utilizes the adjoint gradients computed 

in tandem with the forward numerical simulation run. These gradients, which represent 

the derivatives of production data misfit with respect to model parameters, are passed to 

standard optimizers the minimize data misfits. Streamline-based inversion techniques (He 

et al., 2002; Vasco et al., 1999) have also been introduced for convection-dominant flow 

regimes. This technique not only computes sensitivities more efficiently compared to the 

adjoint-based method, but also benefits from the quasi-linear attribute of the streamline-

based inversion problem. Apart from deterministic approaches to subsurface model 

calibration, gradient-free and stochastic approaches are also widespread. Rapid growth in 

computing technology has enabled the application of evolutionary and stochastic 

algorithms such as Genetic Algorithms (Oliver and Chen, 2011; Schulze-Riegert et al., 

2002), Particle Swarm Optimization (Mohamed et al., 2010), Markov Chain Monte Carlo 

(MCMC) (Ma et al., 2008; Maucec et al., 2007; Olalotiti-Lawal, 2013) algorithms to 

subsurface model calibration problems. However, these methods are limited in the number 

of parameters they can handle. Model reparameterization is therefore necessary to 

significantly reduce the parameter space and, thus better pose the subsurface model 

calibration problems. This is the primary motivation of this chapter. 

 By casting the grid property of interest, such as reservoir permeability of hydraulic 

conductivity on a system of orthogonal basis functions, the property field can typically be 



 

93 

 

 

reconstructed as a linear combination of only a small number of these functions. Since the 

basis coefficients are uncorrelated, the low rank approaches for property representation 

become attractive for spatial model calibration problems. Existing parameterization 

techniques differ by the basis construction as well as the basis combination procedures. 

The Karhunen-Leove Transform (Karhunen, 1947; Loeve, 1978) also known as the 

Principal Component Analysis (PCA) relies on the Gaussian process assumption for grid 

properties and the basis functions are eigenvectors resulting from the Singular Value 

Decomposition (SVD) of the property covariance matrix. Due to the rapid decay of 

corresponding eigenvalues, only a small number of the basis functions are needed in a 

history matching problem as illustrated by several authors (Ma et al., 2008; Sarma et al., 

2008a; Sarma et al., 2008b). A major shortcoming for the PCA is that parameter 

covariance matrices are usually not readily available and difficult to construct with 

spatially sparse data which is typical for petroleum reservoirs. Moreover, the underlying 

Gaussian assumption limits its applicability to spatial parameter distributions in the 

presence of connectivity of extreme values, for example, high permeability channels and 

low permeability barriers (Journel and Alabert, 1990).  

 Then application of the Discrete Cosine Transforms (DCT) (Strang, 1999) was 

proposed to address the limitations of the PCA method (Jafarpour and McLaughlin, 2008). 

Bhark et al. (2011a) later proposed a generalization of the DCT re-parameterization 

approach, referred to as the Grid Connectivity Transform (GCT) to handle a broad range 

of reservoir grids (structured, corner point and unstructured grids). In the GCT approach, 

basis functions are obtained as the eigenvector of the grid Laplacian which considers only 
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the reservoir grid connectivity information in a sparse matrix. For the purpose of parameter 

update, a linear combination of the basis functions generates a multiplier field with which 

the property field is updated by individual grid property-based Schur product operation. 

The parameterization technique has found application in various history matching 

workflows, both deterministic and probabilistic (Olalotiti-Lawal and Datta-Gupta, 2015; 

Park et al., 2015). Multiplier fields are typically smooth, since they are generated with a 

small number of lower frequency (high energy) basis functions. However, for reservoir 

models with significant small-scale variations of flux field, such as high well density 

reservoirs, relatively larger number of basis functions are typically required to reasonably 

capture underlying high frequency flux profiles. This is particularly the case for gas (CO2) 

injection processes flow distributions are generally more sensitive to local contrasts in 

hydraulic conductivity properties, because of typical unfavorable mobility ratios.    

 We propose a variant of the GCT designed to incorporate additional resolution 

locally within the reservoir domain in the parameterization procedure. By coarsening the 

low flux regions of the model, while retaining the original resolution of the high activity 

(flux) regions, otherwise referred to as the Area of interest (AOI) our proposed approach 

results in improved resolution with better image compression within the AOI. This 

parameterization scheme is derived from an adaptive JPEG image compression algorithm 

and generalized for reservoir model grid systems. In the adaptive digital image 

compression procedure, the image undergoes a quadtree decomposition (De Natale et al., 

1992; Samet, 1984) which compromises unstructured sub-images. Particularly in the 

edge-adaptive compression technique (Ramos and Hemami, 1996), the size (pixel count) 
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of each sub-image depends on the level of visual activity, as determined by the proportion 

of edges identified by an edge detection algorithm. Consequently, critical details of the 

image are better preserved with the same memory overhead as with the traditional JPEG 

routine. As an analogy to reservoir property field parameterization, regions of high visual 

activity symbolize high flux regions of the field in within which high frequency update 

might be required for improved and more efficient model calibration.  

 In this work, a Multi-Resolution Grid Connectivity Transform (M-GCT) is 

proposed, in which the basis construction relies on prior dynamic information, such as 

well distribution, in the reservoir model. The objective of this study is to investigate the 

potential benefits and possible limitations of the M-GCT in the context of subsurface 

model calibration. This chapter is organized as follows: First, the comparative 

performances of the normal and M-GCT parameterization schemes are discussed and 

compared. Second, a series of 2D numerical experiments, utilizing a layer of the SPE10 

comparative model (Christie and Blunt, 2001), are conducted to investigate the power and 

utility of the M-GCT compared with the Normal GCT scheme for subsurface model 

calibration. Similar experiments are conducted with the Brugge benchmark model (Peters 

et al., 2010) to validate the applicability and robustness of the M-GCT scheme at the field 

scale. Our results clearly demonstrate the advantage of the M-GCT parameterization 

scheme in terms of improved localized parameter resolution and data compression leading 

to superior subsurface model updates. 
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3.2 Grid Connectivity-Based Reparameterization 

 One of the key objectives in subsurface model parameterization is to represent 

reservoir property continuity with few uncorrelated parameters. This approach minimizes 

parameter redundancies in reservoir description and hence, facilitates stability of the 

model calibration problem. As a generalization of the concept of Discrete Cosine 

Transform (DCT) for image compression (Jafarpour and McLaughlin, 2008; Strang, 

1999), the Grid Connectivity Transform (GCT) was proposed to effectively handle 

complex geologic grid geometry and structures (Bhark et al., 2011a). In GCT, geologic 

model features such as faults, pinch outs and inactive cells in structured, corner point and 

unstructured grid framework are accounted for in the construction of the grid Laplacian. 

A singular value decomposition of the Laplacian provides a set of basis functions which 

are utilized in updating reservoir property field at scales and resolution required by the 

observed data (Bhark, 2011). 

 A notable advantage of the GCT over other parameterization methods is its 

reliance only on the grid connectivity information for the construction of the Laplacian 

matrix. The steps in the construction of the Laplacian matrix L  involves translating the 

reservoir model containing N grid cells to an undirected graph  EVG ,  with the grid 

nodes represented by a set of N vertices V and connections between the grid cell 

represented by a set of edges E . Then an NN  symmetric adjacency matrix A is 

constructed with elements ija  as follows: 
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        (3.1) 

In other words, the overall graph connectivity structure is encoded in the adjacency matrix 

A . Finally, the graph Laplacian is obtained as ADL  , where D  is an NN  diagonal 

matrix whose diagonal entries are defined as the row-wise sum of the elements of A . As 

an illustration, Fig. 3.1 shows a 1010 structured grid with the graph Laplacian 

constructed from the corresponding graph of order 100N . As indicated by the 

annotations on the grid figure, the grid Laplacian is constructed based on only the grid 

cells connection information.  

 

                 
(a)               (b) 

Figure 3.1: An illustrative 10x10 grid with the corresponding connectivity Laplacian 

based on the grid connectivity information. Grid Laplacian for the 2D model is penta-

diagonal having rank equal to the number of gird cells 
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 Grid Laplacians constructed in such manner are typically banded for structured 

grids. For unstructured and complex reservoir grids involving Non-Neighbor Connections 

(NNCs) because of faults and pinch-outs, grid Laplacians may not be strictly banded 

depending on the level of structural complexity of the grids. Nonetheless, grid Laplacians 

are generally very sparse and this is beneficial computationally for spectral decomposition 

in the generation of the basis functions, which are basically the eigenvectors of the grid 

Laplacian. For all computations reported in this work, we utilize the ARPACK library 

(Lehoucq et al., 1998), in-built in MATLAB (Mathworks, 2016) for eigenvalue 

decomposition. The package contains an implementation of an efficient iterative eigen-

problem solver which exploits the sparse and symmetric nature of the grid Laplacian in 

each Lanczos iteration for improved computational cost (Trefethen and Bau III, 1997).  

 The subset of the basis functions i obtained for the grid Laplacian shown in Fig. 

3.1 are shown in Fig. 3.2, arranged in the order of increasing frequency. The basis 

functions are essentially the modal vibrational harmonics based on the grid connectivity 

structure (Bhark, 2011). Any grid property field 
Nu  can be represented as a linear 

combination of the basis functions given by: 

vu 


m

i

iiv
1

          (3.2) 

Where Nm  . A useful property of the basis vectors is their orthogonality, i.e. IT

. This allows seamless transition between real (on the left) and spectral representations (on 

the right) of grid property fields  
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uvvu
T          (3.3) 

Further improvement on the compression power of the GCT is achieved by preferential 

selection of the basis functions as guided by the prior property field, if available. This 

adaptive GCT approach entails projecting the prior model to the frequency domain 

comprising a sufficient number of basis functions. Basis function are then selected 

according to the sorting indices (in descending order) of the absolute values of the 

resulting basis coefficients v which are obtained from the spectral transformation 

described by Eq. 3.3.  Finally, using the basis functions are the building blocks, it is 

possible to re-construct the property field with few number of uncorrelated parameters as 

desired using the following expression: 

uu
T

estimate           (3.4) 

 For the rest of this chapter, we shall refer to the image compression algorithm 

describe so far as the Normal GCT algorithm. This method is general and robust in terms 

of compliance to multiple reservoir grid types and wide applicability to reservoir 

parameter field estimation. However, parsimonious selection of basis functions improves 

smoothing effects that result in loss of localized features. For instance, in a subsurface 

model calibration problem where production wells are clustered in a relatively smaller 

area of the reservoir domain, the Normal GCT parameterization approach will effectively 

require large number of basis functions to adequately resolve the flow field to achieve 

reasonable match of the production data. Our proposed Multi-Resolution Grid 

Connectivity Transform (M-GCT) algorithm addresses this shortcoming by introducing 

improved localized resolution. 
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Figure 3.2: A set of basis orthonormal functions obtained from the eigen-decomposition 

of the grid Laplacian based on Normal GCT parameterization 

 

3.3 Multi-Resolution Grid Connectivity Transform (M-GCT) 

 Although it is of interest to obtain a global update of reservoir properties, dynamic 

data are rarely acquired at similar spatial resolution throughout the entire reservoir 

domain. This can be seen in the Brugge benchmark model in which the wells are clustered 

around the anticline region of the formation above the oil-water contact Fig. 3.3(a). As 

shown in Fig. 3.3(b), the region of high well density is characterized by much higher flux 

magnitude than the other areas. We refer to the high flux region of the field as the Area of 

Interest (AOI) since more dynamic data are available in this region compared to other 

regions. It is natural to parameterize the reservoir properties such that AOI is better 

resolved during the model calibration procedure. This is the idea behind the M-GCT 

parameterization method.  
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(a)         (b) 

Figure 3.3: Areal views of the Brugge model showing (a) Fluid contacts and well 

distribution and (b) Flux distribution in reservoir  

 

 

 In the M-GCT method, reservoir grid cells in regions outside the AOI are 

coarsened while the AOI is left at native fine grid resolution. This is illustrated in Fig. 

3.4(a) which shows the same grid in Fig. 3.1(a), coarsened in the area outside the AOI. 

Considering the connectivity information in the grid system, the grid Laplacian can be 

constructed as discussed in the last section. As shown in Fig. 3.4(b), the grid Laplacian is 

no longer banded as there are multiple fine grid cell connections to a single coarse grid 

cell at the boundary of the AOI. It is apparent that the grid Laplacian gets less banded with 

more aggressive coarsening of the grid cells outside the AOI. 
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 The M-GCT leads to reduced computational cost for the eigen-decomposition of 

the grid Laplacian. The computational complexity of eigen-value problems scales by 

)( N  where N denotes the rank of the matrix and 0.30.2   , depending the 

algorithmic efficiency (Trefethen and Bau III, 1997). The reduced rank of the grid 

Laplacian in Fig. 3.4(b) results in substantial reduction in computational cost for the 

eigenvalue problems.   

 

 
(a)     (b) 

Figure 3.4: An adaptively coarsened 10x10 grid with the corresponding connectivity 

Laplacian based on the Multi-Resolution Grid Connectivity Transformation (M-GCT). 

Grid Laplacian for the 2D model is less banded and has smaller rank compared to the 

full 10x10 grid problem 

 

 The basis functions derived from M-GCT, shown in Fig. 3.5, share similar 

properties with those obtained from the normal GCT method. In both methods, the first 

basis functions have constant values. This is an essential member of the set of basis 

functions since it allows for a bias correction or overall shift in the mean value of grid 

property. Also, the basis functions are orthonormal, allowing seamless spectral-real space 

transform of grid property field representation according to Eq. 3.3. Also, grid property 

field reconstruction with minimal number of basis functions is similar with both 
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parameterization schemes, as described in Eq. 3.4. One unique feature of the set of basis 

functions derived from the M-GCT is their relatively higher frequency within the AOI. 

This feature enhances the image compression quality within the AOI, and hence, improved 

reservoir parameter resolution can be obtained by integrating localized dynamic data into 

the reservoir model.    

 

 

Figure 3.5: A set of basis orthonormal functions obtained from the eigen-decomposition 

of the grid Laplacian based on Multi-Resolution GCT parameterization 

 

3.4 Comparative Compression Performance: GCT vs. M-GCT 

 We compare here the image compression capabilities of the normal GCT and M-

GCT parameterization schemes. This is done by quantifying the error in the estimation of 

the grid property values. The property field is reconstructed with increasing number of 

basis functions using Eq. 3.4 at each step. We carry out this exercise for two cases: (1) In 

a marine type depositional environment (relatively mild property heterogeneity) and (2) 

in a fluvial depositional environment (severe property heterogeneity). The average Root 

Mean Square (RMS) is computed as: 
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   
N

RMSE est

T

est )ln()ln()ln()ln( kkkk 
      (3.5) 

Where estk and k respectively denote the estimated and the reference property fields. For 

the first case involving mild contrast in property values, the relative performance of the 

normal GCT and M-GCT is visually compared using 100 leading basis functions in Fig. 

3.6 and quantitatively compared in Fig. 3.7. Note that we compared the M-GCT scheme 

at varying coarsening levels of the regions outside the AOI. It is clear from these figures 

the improvement in image compression achieved within the AOI using the M-GCT. 

However, the image compression quality deteriorates with more aggressive coarsening 

outside the AOI.  

 Similar trends can be identified in the second case involving sharp contrast in grid 

property values. Again, comparing the image reconstruction qualitatively in Fig. 3.8 (with 

100 leading basis functions) and quantitatively in Fig. 3.9, same conclusions can be drawn 

in terms of improvements in image compression quality within the AOI and reduction of 

the image compression quality outside the AOI with aggressive grid coarsening schemes. 

An interpretation of this trend is that while global uniformity in grid property resolution 

is ensured with the normal GCT, the M-GCT parameterization facilitates an improvement 

of grid property resolution within a defined AOI at the expense of the resolution outside 

the AOI. Of course, as shown from our analysis, the extent to which this is allowed 

depends on the level of grid coarsening outside the AOI during the Laplacian construction.  
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Figure 3.6: Picture compares image compression capabilities between Normal and 

Multi-Resolution GCT parameterization methods in a marine type depositional 

environment. M-GCT, compared at 3 different adaptive coarsening scales, clearly shows 

improved image compression over Normal GCT within the AOI 

 

       
(a)                  (b) 

Figure 3.7: Quantitative comparison of image compression performance between 

Normal and Multi-Resolution GCT parameterization methods in a marine type 

depositional environment (a) within the AOI and (b) outside the AOI. M-GCT, 

compared at 3 different adaptive coarsening scales, clearly shows increasing 

improvement in image compression with in the AOI and an associated deterioration of 

compression performance outside the AOI with more aggressive coarsening 
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Figure 3.8: Picture compares image compression capabilities between Normal and 

Multi-Resolution GCT parameterization methods in a fluvial environment. M-GCT, 

compared at 3 different adaptive coarsening scales, clearly shows improved image 

compression over Normal GCT within the AOI 

 

        
(a)                 (b) 

Figure 3.9: Quantitative comparison of image compression performance between 

Normal and Multi-Resolution GCT parameterization methods in a fluvial depositional 

environment (a) within the AOI and (b) outside the AOI. M-GCT, compared at 3 

different adaptive coarsening scales, clearly shows increasing improvement in image 

compression with in the AOI and an associated deterioration of compression 

performance outside the AOI with more aggressive coarsening 

 

 

 Regardless of the parameterization scheme adopted, the importance of the basis 

functions for image reconstruction diminish with increasing number of leading basis 

functions. This is evident in both cases considered as seen from the slower reduction in 
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RMSE shown in Figs. 3.7, 3.9 and 3.10. The observed trends can be attributed to the 

relatively higher frequency of basis functions within the AOI and relatively lower 

frequency of basis functions outside the AOI with the M-GCT scheme compared to the 

normal GCT scheme. In effect, the M-GCT parameterization can maximize the resolution 

available within the AOI and at the same time provide smooth estimate of the parameter 

values in regions outside the AOI. The benefit of this unique feature of the M-GCT will 

be demonstrated with numerical experiments pertaining to subsurface model calibration 

problems in the following sections.  

 

                
(a)                 (b) 

Figure 3.10: Plots showing rapid drop in leading basis coefficients required for 

reconstructing the property fields in the (a) marine and (b) fluvial depositional 

environments. Plots show that smaller basis coefficients required to the property field 

reconstruction 

 

3.5 Application to Model Calibration Problems 

 The key objective of the model reparameterization is to facilitate robust calibration 

of subsurface models through a low rank representation and update of property fields. In 
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this manner large number of spatially correlated grid property values are reduced to a set 

of uncorrelated basis coefficients, v  which are directly updated within the calibration 

workflow. Typical workflow involves evaluating each proposal of v  using a reliable 

forward model and quantitatively comparing the model response with available dynamic 

data. Model calibration algorithms essentially seek to find an optimal set or multiple sets 

of v  that reproduce the available dynamic data within a specified tolerance. We present 

the details of the forward model and inversion algorithm in the following sub-sections.   

3.5.1 Forward Model 

Subsurface models are evaluated by solving a system of coupled partial differential 

equations to compute both pressure and fluid saturation distribution in the porous media 

and the production responses at wells. Forward models, regardless of the numerical 

scheme involved, seek to honor material balance within each grid cell by ensuring that 

mass is conserved at all locations and time (Aziz and Settari, 1979b): 
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Where the primary variables computed are the pressure p  and saturation s  distributions 

of both the wetting ( w ) and non-wetting ( n ) phases. Spatial distribution of 

porosity and permeability tensor, which are properties of the porous media, are denoted 

by   and k  respectively. The phase mobility  is the ratio of the phase relative 

permeability to the in-situ viscosity. The phase formation volume factor B represents the 

ratio of the phase density at standard conditions to the phase density at subsurface 
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conditions. Finally, well rates, either by reservoir injection or withdrawal are denoted by 

q . Additional physical constraints require the following: 

1


s  and  wCnw sPpp         (3.7)

  

Where  wC sP  is the capillary pressure. These systems of equations are either constrained 

by pressure or flux boundary conditions at the wells and/or at the outer boundaries of the 

solution domain. In all the examples reported here, we only update the field permeability 

distribution and assume all other parameters are known with reasonable level of certainty. 

We utilize ECLIPSE, a commercial finite difference flow simulator (Schlumberger, 2014) 

for all model evaluations in this study.  

 It is worth mentioning here that ECLIPSE provides a model grid coarsening 

functionality which allows model evaluations to be conducted more efficiently by 

reducing the effective cell count. This feature is particularly favorable for the M-GCT 

parameterization scheme in which regions outside the AOI can be adaptively coarsened 

during the basis construction. Computational cost required for each model evaluation, and 

overall for the entire model calibration workflow, is significantly reduced if the simulation 

model utilizes the same coarsening scheme used for the construction of the basis functions. 

With the transmissibility upscaling facility in ECLIPSE, the computational cost advantage 
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generally comes with negligible loss of accuracy in model evaluations, more so that 

computational grids are only coarsened outside the AOI. 

3.5.2 Inversion Workflow 

 We adopt a gradient-based inversion workflow proposed by Bhark et al. (2011a) 

as shown in Fig. 3.11. The workflow starts with a fixed number of leading basis functions.  

Rather than directly altering the permeability field, a set of multiplier fields are updated 

during model calibration. The permeability field is updated by an elementwise Schur 

product of the logarithm of initial model permeability with the multiplier field. The 

multiplier field is constructed as a linear combination of the selected basis functions,   

using a set of uncorrelated basis coefficient, v . Mathematically, 

     initkvvk ln)(ln          (3.8) 

 Numerical simulations are conducted to obtain the model response based on the 

updated permeability field. In addition, adjoint gradients, which are essentially the 

multidimensional derivatives of the production data with respect to model permeability, 

are also obtained from each fully-implicit simulation run and associated adjoint solutions 

(Li et al., 2001). Objective function is computed as a weighted L2 norms of the mismatch 

between observed obsd  and simulation response ))(( vkg  as follows: 

        2

2

2

2
lnln)( initobs gJ kvkvkdv        (3.9) 

Where   represents a regularization term to prevent large deviations between the updated 

and prior permeability model to maintain geologic realism during the model updates. 
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Large values of  indicate high level of confidence in the initial geologic mode and only 

minor updates are allowed. As a result the inversion results can be sensitive to the value 

of  . Although the choice of values for  can be subjective, there are guidelines for this 

in literature (Parker, 1994). In situations where good estimates exist for measurement error 

variance or covariance matrix, Eq. 3.9 can be generalized accordingly (Bhark, 2011; 

Tarantola, 2005). From Eqs. 3.8 and 3.9, and by chain rule, the gradient of the objective 

function can be computed as: 
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           (3.10) 

Note that the gradient is computed by utilizing the chain rule, so that the quantity within 

the square parenthesis represent the first part of the objective function derivative, that is 

  )ln()(21 kv J , while the expression on the right of the square brackets is simply 

vk  )ln( . The first part of the differential utilizes the adjoint sensitivities kvk  ))((g  

obtained from each numerical simulation run. The sensitivities, which are the derivatives 

of each simulated well responses at each time step with respect to model parameters, are 

obtained by solving a set of adjoint equations backwards in time. In each step, the 

computation utilizes already computed Jacobian of the linear system of flow equations in 

a fully-implicit numerical scheme (Li et al., 2001).  

 We adopt a quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm (Nocedal and Wright, 2006a) for the minimization of the objective function. 

The BFGS is an iterative algorithm used in solving unconstrained, non-linear optimization 
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problems. This algorithm utilizes the supplied objective function gradient in 

approximating the system Hessian which facilitates accelerated convergence. At each 

BFGS iteration in our model calibration workflow, the permeability field is updated based 

on the set of updated calibration parameters v , and the updated model is evaluated with a 

numerical simulation. This continues until a specified tolerance is reached in terms of the 

magnitude of successive objective function reduction. At this point, an iteration set is 

complete. If needed, additional set of basis function functions are added to improve the 

resolution of the updated permeability field to begin a fresh iteration set.  

 

 

Figure 3.11: Gradient-based model calibration workflow 
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3.6 Illustrative Example 

 In this section we conduct a numerical experiment to compare the performance 

between the normal GCT and M-GCT parameterization schemes in terms of convergence 

and objective function reduction during subsurface model calibration. The example 

problem is a simple 9-spot pattern waterflood, comprising of 8 producers and one water 

injector in the center of the pattern. The initial and reference permeability fields, together 

with the well positions are shown in Fig. 3.12. The reservoir model was built with 

21060  grid cells, each of ft402040  in dimensions. Reservoir porosity and connate 

water saturation were both assumed to be constant at %20 . For the M-GCT 

parameterization scheme, the Area of Interest (AOI) is demarcated with the broken red 

boxes as shown in Fig. 3.12. All producers are constrained at psia2800  bottomhole 

pressure (BHP) while a water injection rate of 800 barrels/day is imposed on the injector 

well (INJ).  

 The well conditions are kept constant throughout the production history of 3years 

and over an additional forecast period of 5years. The observed data was generated as the 

response obtained from a numerical simulation using reference model. Production water 

cut (WCT) at all wells and the injection BHP acquired through the 3-year historical period 

are integrated into the initial reservoir model by updating the permeability field. Although 

the fluid system is three-phase, the reservoir pressure was maintained above the bubble 

pressure in this case to keep the gas in solution. The model calibration problem utilizes 

the workflow described in section 5.2 to obtain the best estimate of a set of basis 



 

114 

 

 

coefficients that reproduce the 3-year long production history for the reference model. In 

this study, 10 leading basis coefficients are added at the beginning of each of the 4 

iterations sets. The objective function was constructed based on well BHP as well as oil 

and water production rate residuals. Since adjoint sensitivities of well WCT response are 

not readily available from the simulator, the well WCT data is not included in the objective 

function definition but only used for results analysis purposes.  

 

 

Figure 3.12: Illustrative model calibration problem setup, showing well configuration as 

well as initial and reference model permeability fields 

 

 The objective function decline (shown in natural logarithm values) with respect to 

iteration sets shown in Fig. 3.13. The superior performance of the M-GCT over the normal 

GCT parameterization schemes is quite apparent in terms of faster convergence speed. 

However, it is likewise interesting to see that the 3x3 coarsening scheme outperforms the 

5x5 coarsening scheme. This appears counter-intuitive considering the trends in image 

compression improvements within the AOI with more aggressive coarsening, as discussed 

in section 4. However, it is important to realize that the overall subsurface flow dynamics 
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are impacted by flow physics within and outside the AOI. Therefore, a higher property 

field resolution within the AOI (more inferior resolution outside the AOI) may not 

necessarily represent the best model parameterization scheme. The development of an 

effective approach to determine an optimal coarsening strategy will be a significant 

contribution toward the robustness of the M-GCT parameterization scheme. 

 

Figure 3.13: Comparison of objective function reduction among the 3 parameterization 

schemes. Clearly, faster convergence is achieved with M-GCT 

 

Cumulative oil and water production volume matches are compared in Fig. 3.14(a) 

and (b) respectively for both history and forecast periods. The observations here clearly 

agree with the deductions from the objective function plot. Improved reproduction of 

production history and better production forecast are achieved using the M-GCT 

parameterization schemes. The calibration quality can also be compared on a well by well 

level for all parameterization schemes.  Fig. 3.15 shows the production WCT and injection 

BHP match comparisons over the historical and forecast periods. Note that this example 

is particularly difficult for any model calibration workflow as water breakthough is 
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observed only in 3 of the 8 producer wells at the end of the 3-year historical period. The 

WCT breakthough and prediction beyond the historical period can be challenging for most 

history matching algorithms in such scenarios.     

 Visual comparison shows that production data matches in historically water 

producing wells (PRD5, PRD7 and PRD8). Again  M-GCT is superior over the normal 

GCT scheme. Although the WCT prediction for PRD8 based on the 5x5 coarsening M-

GCT scheme is slightly inconsistent with observed data, the WCT response of PRD5 based 

on the normal GCT scheme shows greater discrepancy with historical match. For 

historically non-water-producing wells, the predications based on the M-GCT scheme 

consistently provided superior estimates of water breakthrough times compared to the 

normal GCT scheme. An exception is for PRD2 where the predictions based on the 5x5 

coarsening scheme were inaccurate, however the predictions based on the 3x3 coarsening 

scheme provided a reasonable estimate the same well. This also reflects the overall 

superior performance of the 3x3 coarsening scheme over the 5x5 coarsening for this 

problem. Finally, looking at the injection BHP matches and predictions, the results based 

on the M-GCT parameterization scheme were more precise. The reason for the superior 

performance of the M-GCT scheme becomes clear by visually comparing the required 

changes in the permeability field to condition the initial model to the production data 

shown in Fig. 3.16.  
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(a)                 (b) 

Figure 3.14: Model calibration results for equally weighted objectives comparing field 

(a) oil and (b) water production matches and forecasts between Normal GCT and M-

GCT parameterization methods. Significant reduction in production data misfit was 

achieved for all parameterization schemes, however M-GCT resulted in superior fit of 

the observed data. 

 

 

 

Figure 3.15: Model calibration results at the well level for equally weighted objectives. 

Picture compares injector BHP and oil and water production matches and forecasts 

between Normal GCT and M-GCT parameterization methods. Overall, then M-GCT 

scheme shows superiority in reproduction of production data and production forecasts 
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Figure 3.16: Picture comparing final calibrated multiplier fields required to update the 

permeability fields using the normal GCT scheme and the M-GCT scheme at both 3x3 

and 5x5 coarsening levels 

 

 Although the overall trends on local increases and reductions in initial model 

permeability field are similar, the ability of the M-GCT scheme to effect high resolution 

spatial variations in property field results in the improved performance for this problem. 

The results obtained from the numerical experiment conducted with this illustrative 

example can be quantitatively summarized as follows. First, for each well data, we 

compute a relative residual   which is the ratio of the residual of updated model response 

to the residual of initial model response through the forecast period, as described in Eq. 

3.11. The relative residuals are calculated based on the updated models from each 

parameterization method. compared with the initial model, while a value of 1 shows 

poorer performance. Second, at the field level, we compute relative errors in cumulative 

oil and water production at specific times t , as described in Eq. 3.12.  
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Where obsd  and )( updatedg k  respectively represent observed well data and simulated well 

response based on the updated model. Whereas, FIeld

tobsd ,
 and Field

tupdatedg )(k  are respectively 

the observed and simulated field cumulative volume at specific time t . The relative 

residuals are compared in a semi-log bar chart for each well and each parameterization 

method in Fig. 3.17. The dotted line drawn across the plot shows the unit base value of 

the initial model residuals. It can be observed from the plot that the M-GCT 

parameterization scheme resulted in improved model calibration, based on production 

response match at the well level. Exceptions include wells PRD2, PRD4 and PRD8 in 

which relative residuals obtained from the M-GCT-updated models are slightly higher 

than that of the normal GCT-updated model. However, the overall trend, as visually 

observed in Fig. 3.15, is a general improvement in model calibration using M-GCT 

parameterization method. 

 The relative errors in field-wide cumulative oil and water production for all the 

three parameterization methods are compared respectively in Fig. 3.18(a) and (b), 

showing the relative errors at the end of the 3-year historical and 8-year forecast periods. 

In the figures, for both historical and forecast periods, the overall superiority of the M-

GCT parameterization method over the normal GCT scheme is confirmed. Although 

relative errors in predicted volumes increased slightly at the end of the forecast period 
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with the M-GCT scheme, relative errors are still much larger with the normal GCT 

scheme.  

 

                    

Figure 3.17: Relative error residuals of WCT for all producers and injector BHP data 

compared between normal GCT and M-GCT parameterization schemes. A value less 

than 1.0 indicate better match compared with the initial model. A value greater than 1.0 

means the updated model performs worse than the initial model in reproducing the 

historical data.    

 

             
(a)                 (b) 

Figure 3.18: Relative errors in (a) field oil production and (b) field water production 

responses between reference and calibrated models. Relative errors are compared both 

Normal and two M-GCT parameterization schemes. M-GCT resulted is smaller relative 

errors at the end of the 3-year historical period and at the end of the 8-year forecast 

period. 
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3.7 The Brugge Benchmark Case 

 We demonstrate the robustness and applicability of the M-GCT parameterization 

scheme to field scale problems using the Brugge benchmark model (Peters et al., 2010). 

The simulation model, which was built with realistic geologic features, was intended as a 

history matching and optimization benchmark case. The geologic model comprises of 7 

distinct facies, a single major fault characterized by a significant throw as shown in Fig. 

3.19 and 4 geologic zones (from the top): Schelde, Waas, Maas and Schie. A total of 104 

model realizations were generated, each upscaled to 948139  grid dimensions and 

approximately 45,000 active grid cells. For our application we have selected the 103rd 

realization as the initial model to test our parameterization schemes. 

 As shown in Fig. 3.19, hydrocarbons are trapped at the top of the reservoir anticline 

and consequently, all the wells are placed within and close to the hydrocarbon bearing 

regions of the formation. This scenario makes the application of the M-GCT 

parameterization scheme ideally suited for this model calibration problem. This also 

becomes quite apparent when the overall flux distribution in the reservoir as shown in Fig. 

3.3 is considered. For the M-GCT scheme, we have demarcated the AOI with the red 

dotted line shown in Fig. 3.19.  
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Figure 3.19: The Brugge model description showing reservoir structure, well distribution 

and initial oil saturation 

 

 The reservoir model calibration problem involves integrating 10-year production 

history from 20 oil producers and 10 peripheral injectors into the initial model by 

modifying the model permeability distribution. We applied a gradient-based model 

calibration algorithm with both the normal and M-GCT parameterization schemes. Again 

here, we compared the performances of both the 3x3 and 5x5 coarsening schemes. A total 

of 10 leading basis functions were added at each iteration set for a total of 4 iteration sets. 

To prevent an unwanted smearing of permeability updates across geological zones, the 

model was parameterized on a layer-by-layer basis. This implies that a total of 90 

additional basis coefficients were included in the parameter set for every iteration. For 

cases ran in this application we selected large values of  to preserve geologic realism in 

the updated permeability model. Again, just to reiterate, the large value of  implies more 

confidence in the prior permeability model and ensures only minor changes will be made 

to update the permeability field.  
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 Although the gradient-based search is susceptible to getting trapped in local 

extrema, we observed faster convergence using the M-GCT parameterization scheme. 

This is self-evident from Fig. 3.20. Two iterations using the M-GCT scheme already 

resulted in objective function values lower than the objective function value obtained at 

the end of the 4th iteration using the normal GCT scheme. Note that larger reductions in 

the objective function can be obtained if less emphasis is placed on preserving the prior 

permeability model. This was the case in the synthetic case discussed in the last section of 

this chapter. Production data matches of a few key wells are shown in Figs. 3.21 and 3.22. 

Note that we have presented oil and water production rates in terms of dimensionless WCT 

values. 

 

Figure 3.20: Comparison of objective function decline for all model parameterization 

schemes 

 

 

 It is obvious by first glance at these figures that the prior model only needed minor 

update to reasonably reproduce the observed production data, hence the choice of  . As 
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shown in Fig. 3.21, although the WCT data matches are generally improved compared to 

the prior model response, the M-GCT parameterization schemes show clear superiority 

over the normal GCT method. For instance, in well BR-P-3 normal GCT-updated model 

resulted in early water breakthrough, whereas water breakthrough is delayed in the M-

GCT-updated models, in agreement with the production data. Beyond improved water 

breakthough time match, amplitude values of WCT after breakthough shows significant 

improvement using the M-GCT over the normal GCT method. This is clearly depicted in 

the rest of the wells shown in Fig. 3.21. Overall improvement in BHP data match with 

respect to the prior model is also achieved as shown in Fig. 3.22. However, again the M-

GCT parameterization scheme shows better performance compared to the normal GCT 

method. Although in BR-P-9 the BHP match deteriorated in both normal GCT and the 5x5 

coarsening M-GCT parameterization scheme, the 3x3 coarsening M-GCT 

parameterization scheme resulted in improved match of the BHP. Other wells such as BR-

P-10 and BR-P-15 also depict the superiority of the M-GCT over the normal GCT 

parameterization scheme.  

 Final updated permeability distributions based on the three parameterization 

schemes are shown in Fig. 3.25. Changes required in the initial permeability model are 

shown in Fig. 3.26. Note that these are the multiplier fields by which the initial 

permeability distribution is updated according to Eq. 3.8. For all cases, the results show 

that high updates are required for both Schelde and Mass geologic zones, but only modest 

updates in Wass. An interesting observation is that not changes were required for the layer-

9 of the model. This is because of two reasons: first, no producer is completed in this layer 
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and second, the small vertical permeability values in the model prevents vertical 

movement of fluid streams into the layer.  

 Again, just as was observed in the synthetic case presented in the last section, the 

overall trends in the permeability changes are roughly similar between the normal and M-

GCT schemes. However, higher resolutions of the changes (relatively concentrated within 

the AOI) attained using the M-GCT scheme results in improved match of the production 

data.  

 

 

Figure 3.21: Performance comparison between normal and M-GCT schemes based on 

water cut matches at all producers 
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Figure: 3.22: Performance comparison between normal and DR GCT schemes based on 

bottomhole pressure matches at all producers 
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Figure 3.23: Model permeability field update comparison between normal and M-GCT 

parameterization schemes 
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Figure 3.24: Comparison of required changes for model permeability field update 

between normal and M-GCT parameterization schemes 

 

3.8 Field Application  

3.8.1 Background 

 Here we present a field application of our proposed M-GCT parameterization 

scheme for robust update of high resolution geologic models. We apply our model 

calibration workflow to the Petra Nova project involving large scale industrially sourced 

CO2 EOR. Petra Nova, a 50/50 joint venture between NRG and JX Nippon operates a 

commercial-scale post-combustion carbon capture facility at NRG’s WA Parish 
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generating station southwest of Houston, Texas. This facility captures more than 90 

percent of the CO2 from a 240 MW equivalent slipstream of flue gas. This is the world's 

largest post-combustion carbon capture facility installed on an existing coal-fueled power 

plant. The captured CO2 is being utilized for Enhanced Oil Recovery to increase 

production at the West Ranch oil field, which is operated by Hilcorp Energy Company 

and owned by a partnership between Petra Nova and Hilcorp called Texas Coastal 

Ventures LLC. The field was discovered in 1938 and has been in continuous operation 

ever since. Since then, it has produced approximately 390 million barrels of oil. Facility 

construction was commenced after the investment decision in 2014. Pre-EOR water 

injection was initiated in mid-2016 for pressurizing the target reservoir and then CO2 

injection was commenced at the end of 2016. 

 The reservoir under study has a fluvial geology with large permeability contrasts 

at varying length scales, ranging from 0.5 to 35,000mD. With a Dykstra-Parsons 

heterogeneity measure of over 0.9, the reservoir can be categorized as highly 

heterogeneous (Willhite, 1986). The 140-layer geologic model was discretized into 7 

million grid cells of which about 3 million cells are active.  The intermittent stratigraphic 

shale barriers and baffles contribute to severe vertical permeability anisotropy in the 

formation. Grid petrophysical properties in the geologic model are shown Fig. 3.25.  
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(a)         (b) 

Figure 3.25: Field geologic model with (a) porosity and (b) permeability distribution 

 

3.8.2 Model Calibration Problem 

 We integrate reservoir injection data into the reservoir model selected from the 

ensemble of calibrated models in the previous section. As shown in Fig. 3.26(a) the 

reservoir pressurization period lasted roughly 6 months, 4 of which was exclusively for 

water injection while the rest of the period featured a combination of water and CO2 

injection. The reservoir pressurization involved a total of 38 wells, of which 10 wells were 

equipped with downhole pressure gauges to measure reservoir pressure over time. About 

half of these monitoring wells were later converted to CO2 injection wells, leaving 8 

dedicated monitor wells. Downhole pressure data were obtained from two of these 

dedicated monitor wells (MW1 and MW2) at much higher temporal resolutions (daily 

basis), while the rest, henceforth referred to as observation wells, provided single or few 

intermittent downhole pressure readings which were all integrated into the geologic 

model. The locations of all the wells are shown in an aerial view of the model in Fig. 
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3.26(b). In the figure, monitoring wells are shown in black, observation wells in cyan 

while the empty circles represent the injection wells. 

   

          
(a)       (b) 

Figure 3.26: (a) Area plot of cumulative injection of water and CO2 during reservoir re-

pressurization campaign (b) Distribution of observation, monitor and injection wells in 

injection area indicated by the red AOI boundary line  

 

3.8.3 Permeability Update 

 Here adopt the 5x5 coarsening M-GCT parameterization scheme based on the AOI 

as defined in Fig. 3.26(b). As discussed in previous sections, our M-GCT parameterization 

scheme is well suited for this problem due to the localized distribution of wells within the 

reservoir domain. The M-GCT parameterization scheme facilitates a high-resolution 

update of the permeability field within the AOI during the model calibration procedure. 

Some of the M-GCT basis functions used for our application are shown in Fig. 3.27. To 

reiterate, the first basis function is a constant field and therefore plays a vital role in 

resolving general biases in the property field. The rest of the basis functions show varying 

frequencies which are responsible for local changes at different length scales in property 
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field during model calibration. In consonance with previous discussion on the M-GCT, 

the basis functions show larger frequencies within the AOI, compared to outside the AOI. 

This enhances the desired higher resolution permeability field update within the AOI.  

 

 

 

Figure 3.27: Multiresolution Grid Connectivity Transform (M-GCT) basis functions 

with the AOI indicated by dotted red line 

 

For this problem, each of the 4 zones identified from the energy calibration step (Olalotiti-

Lawal et al., 2017) were reparametrized separately. The permeability field is updated 

using a multiplier field obtained from a linear combination of a small number of basis 

functions, according to Eq. 3.2. Uncorrelated basis coefficients iv , which are generally 

much fewer in number compared to the model cell count, therefore become the calibration 

parameters. For this application, 30 basis coefficients were calibrated per zone to update 

the model permeability. Here as well, the logarithm of the prior permeability field is 

updated according to Eq. 3.8. 

 Since the reservoir pressure was already above the measured minimum miscibility 

pressure, we adopted the Todd-Longstaff model (Todd and Longstaff, 1972) for miscible 

CO2 flood. Based on a series of sensitivity studies (not reported here), a mixing parameter 

value of 0.6 was selected. Parameters for the selected model from the global energy 
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calibration step (Olalotiti-Lawal et al., 2017) were retained for all simulations in this step. 

For this application, we adopt an evolutionary approach in the model calibration 

workflow. The Genetic Algorithm (GA) with a proxy filter (Lophaven et al., 2002) was 

applied for the search of the best combination of basis coefficients that minimize the 

objective function. The objective function is defined by the logarithm of the L2 norm of 

misfits of all observed downhole pressure data, scaled by the standard deviation d :  
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 The GA was run with a population size of 100 and over 40 generations. The kriged 

response surface proxy model applied facilitated an accelerated convergence to a global 

minimum. Figs. 3.28(a) and (b) compare calibrated model responses with observed 

downhole pressure data for monitoring wells MW1 and MW2 respectively. Compared to 

the initial model response, an improvement in the pressure data match in the updated 

models is clear. Fig. 3.29 compares the initial and updated model permeability 

distribution. Here, in the interest of brevity, we compare with only the updated model with 

the lowest objective function. Visually comparing the models and the statistical 

distribution of the permeability field, it can be observed that only modest changes have 

been applied in the model update to preserve the geologic realism in the model. More 

quantitively, the required permeability changes shown in Fig. 3.30(a) shows that location 

and magnitude of the permeability changes in the reservoir model. Static pressure data 

matches are also compared in Figs. 3.30(b) and (c). A general improvement in the static 

pressure match can be observed by comparing the two figures. An exception is one of 
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ObsWell4 static pressure measurements which was taken earlier during the reservoir 

pressurization campaign. Assuming measurement errors can be completely ruled out, this 

inadequacy in the updated model could be resolved by integrating other sources of data, 

such multiphase production data.  

 

          
(a)               (b) 

Figure 3.28: Ensemble of calibraed models compared with observed dowmhole pressure 

data from monitor wells (a) MW1 and (b) MW2 

 

3.9 Conclusions 

 In this chapter, we have proposed the Multi-Resolution Grid Connectivity 

Transform (M-GCT) parameterization scheme for subsurface model calibration purposes. 

The approach generalizes the previously proposed normal Grid Connectivity Transform 

(Bhark et al., 2011a) to account for spatially varying resolution depending on well or 

overall flux distribution within the reservoir model. We have compared the compression 

performances between the two algorithms using series of numerical experiments with a 

2D illustrative case and a field scale model. The results demonstrate the superiority of the 
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M-GCT over the normal GCT parameterization schemes in terms of improved local 

resolution and faster 

 

Figure 3.29: Comparison of model permeability distributions in initial and updated 

models, showing modest changes in prior geologic mode 

 

 

          

Figure 3.30: (a) Changes required in initial permeability models (b) static pressure 

response in the prior model compared with observed data (c) ) static pressure response in 

the updated model compared with observed data 
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convergence during model calibration. The M-GCT parameterization scheme was 

successfully applied to update the permeability field of a multimillion high resolution 

geologic model using a population-based evolutionary algorithm. Based on our 

observations, the following conclusions can be reached: 

1. With the same level of problem dimensionality in the spectral domain (similar number 

of basis functions), the M-GCT scheme provides higher compression power within the 

AOI and less compression performance outside the AOI compared to the normal GCT 

scheme. 

2. Compression performance with the AOI improves (and deteriorates outside the AOI) 

with more aggressive coarsening schemes. This feature of the M-GCT 

parameterization scheme is shown and quantified in Figs. 3.6 to 3.9 for both mildly 

heterogeneous and high contrast systems. The 5x5 coarsening scheme resulted in high 

compression within the AOI compared to the 3x3 coarsening scheme, which in turn 

showed better compression compared to the normal GCT. A direct opposite trend is 

observed outside the AOI. In a nutshell, the M-GCT facilitates higher grid property 

resolution within the AOI at the expense of the resolution outside the AOI. The right 

coarsening scheme to apply will somewhat depend on the model calibration problem, 

in terms of certain features reservoir model and production data. This area is worth 

exploring. 

3. Subsurface model calibration problems can be accelerated using the M-GCT 

parameterization schemes. This was shown in both the 2D illustrative and field scale 
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experiments. Although we have applied the M-GCT parameterization scheme using 

an evolutionary algorithm, the comparison of convergence speeds between M-GCT 

and normal GCT parametrization schemes we conducted with gradient-based model 

calibration workflows. Although, we expect a similar conclusion to be reached, an 

experimental validation of the superiority of the M-GCT parameterization shame to 

normal GCT could also be explored. 
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CHAPTER IV  

OPTIMIZATION OF CO2 EOR AND STORAGE VIA RATE CONTROL IN 

INTELLIGENT WELLS 

 

 Effects of gravity and heterogeneity can significantly impact the performance of 

CO2 injection for EOR and/or sequestration purposes. Designing optimal injection and 

production schemes to maximize the sweep efficiency of the injected CO2 and minimize 

gravity override is a non-trivial exercise. We present an efficient streamline-based 

approach for optimal injection and withdrawal rate schedules along smart wells with 

inflow control valves (ICVs) to simultaneously maximize oil recovery and CO2 storage 

during CO2 WAG process.  

Our CO2 flood optimization is based on maximizing sweep efficiency while 

increasing the viscous to gravity (VGR) ratio to minimize gravity override. The 

optimization problem is defined with arrival time equalization to maximize CO2 sweep 

and injection/production acceleration subject to equality and inequality constraints at the 

well and field levels. First, streamlines are traced and arrival time computed based on flow 

fluxes are generated using a commercial reservoir simulator. Next, analytical sensitivities 

are obtained which are used for calculating an approximate Hessian applied in a sequential 

quadratic programming algorithm for constrained optimization.  

 The optimization workflow is illustrated with a CO2 WAG flood of a 

heterogeneous 2D cross-section model where we considered incremental oil recovery, 

CO2 storage and CO2 utilization factor as the decision variables. We further prove the 
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robustness of our approach with the Norne field application. We consistently show overall 

improvement in all decision variables using our optimization workflow. 

4.1 Introduction 

 One attractive enhanced oil recovery technique is the Carbon Dioxide Enhanced 

Oil Recovery (CO2 EOR) technology. It is a proven and mature technology that has been 

profitably adopted in rejuvenating and sustaining productive lives of mature fields for 

almost half a century (Wallace and Kuuskraa, 2014). In general, CO2 is injected into an 

oil bearing formation during which it contacts, mixes with and mobilizes in situ residual 

oil. Typically, a fraction of the injected CO2 is trapped in the subsurface due to capillary 

and relative permeability hysteresis effects (Krevor et al., 2012; Kumar et al., 2005; 

Saadatpoor et al., 2010). This phenomenon facilitates permanent underground storage of 

CO2, which aligns with the goal of global reduction of CO2 concertation in the atmosphere 

(IPCC, 2005). In fact, a major justification for Carbon Utilization and Storage (CCUS) 

projects is to rely on the economic benefits of CO2 EOR as a means to offsetting the high 

cost of Carbon Capture and Storage (CCS) projects (Gozalpour et al., 2005; Melzer, 2012).     

 Beginning from early 1972 when the CO2 EOR technology was first commercially 

deployed in the SACROC unit in the Scurry county of Texas (Crameik and Plassey, 1972), 

the oil and gas industry has witnessed a widespread adoption of the technology for 

enhancing the value of mature assets especially in North America. In 2012, an average of 

282,000 bbl/D of oil was produced by CO2 EOR in the United States and the number is 

projected to rise over 600,000 bbb/D by the year 2020 (Wallace and Kuuskraa, 2014). The 
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reason is not far-fetched. Although most applications have been in depleted oil reservoirs 

the onshore environment including sandstone, carbonate (Wilson and Monea, 2004) and 

recently in unconventional tight formations (Ghaderi et al., 2012; Han and Gu, 2014), 

offshore application of the technology has started drawing attention (Pham and Halland, 

2017). Also, Residual Oil Zones (ROZs) are beginning to generate interests due to its 

potentially substantial value creation through CO2 EOR (Melzer, 2006). Meanwhile, there 

have been accounts of deployment of the technology in the Middle East region, including 

Saudi Arabia (Kokal et al., 2016). 

 Over the years, the CO2 EOR technology have been applied in different forms, 

targeted to the specific requirement of the oil-bearing formations for optimal oil recovery. 

These forms include continuous CO2 injection, Water-Alternating-Gas (WAG) Injection, 

gravity drainage, huff-and-puff, and so on. Here, we focus on the WAG process which is 

regarded to be most effective for residual trapping of CO2 in  the subsurface (Qi et al., 

2009; Spiteri et al., 2005). Regardless of the process employed for CO2 EOR however, 

quality reservoir management still plays a key role in maximizing the value of the asset 

through this technology (Wallace and Kuuskraa, 2014). This includes reservoir 

characterization to understand the features and subsurface flow properties, followed by 

generation of optimal strategies to be adopted for improved conformance.  

 Measures to combat flow conformance problems becomes particularly vital for gas 

injection processes like CO2 WAG. This because of both viscous fingering and gravity 

override effects, due to differences in multiphase fluid properties including viscosity and 

density (Orr, 2007). Mitigating associated conformance issues is typically achieved 
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through precautionary screening of potential reservoirs (Taber et al., 1997a; Taber et al., 

1997b) as well as effective field development optimization procedures and workflows to 

optimize well placements as well as fluid rates, taking into cognizance subsurface 

geological features and existing flow dynamics (Møyner et al., 2015; Onwunalu and 

Durlofsky, 2011; Passone and McRae, 2007; Sarma et al., 2005; Zhou et al., 2012). 

 Several field optimization methods for CCUS applications, covering simple 

analytical, simplified physics and full-physics-based techniques, have been proposed in 

the literature. Leach et al. (2011) proposed an analytical optimization technique that 

sought to optimize the fraction of CO2 in the injection stream for maximum economic 

benefit of any CCUS project. Their conclusion that the economics is insensitive to Carbon 

tax incentives but solely depends on the economic value of the CO2 EOR component 

supports the whole preference of CCUS or CCS processes. Utilizing the fractional flow 

theory that incorporates the crucial gravity override effects, Rossen et al. (2010) was able 

to estimate the distance to the point of segregation of water and gas fronts from an injection 

well. According to the authors, through certain injection strategies it is possible to 

maximize this distance into the formation for improved sweep efficiency. Analytical 

techniques like these, although generally capture the main trends, tend to address 

simplified and idealistic versions of the problem. 

 Other authors have approached the optimization problem more practically. A data-

driven approach was adopted by Azzolina et al. (2015) in their work in which a logistic 

regression was performed on existing datasets from many CO2 EOR sites. Based on the 

regression model, performance of potential CCUS sites can be probabilistically evaluated 
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and optimized based on oil recovery and CO2 utilization and storage metrics. Like most 

data-driven techniques however, the reliability of such regressions models are more likely 

to be restricted by the quality and quantity of training data. Song et al. (2014), on the other 

hand developed a sensitivity-based optimization workflow, employing reservoir 

simulation techniques in all scenario evaluations. Essential dimensionless parameters such 

as WAG ratio, slug size and Voidage Replacement Ratio (VRR) were considered in the 

optimization problem. Ampomah et al. (2017) applied the Genetic Algorithm (GA) in 

combination with a proxy construction in optimizing a CCUS project in the Anadarko 

basin. Ettehadtavakkol et al. (2014) developed field optimization workflows for 

maximizing the NPV of CCUS projects by considering several parameters including 

WAG ratio, well placement and well spacing. However, while optimal well placement is 

important in any field development strategy, operators often find development strategies 

that require no additional drilling campaigns more economically viable.  

 Optimizing rates of existing wells helps to meet this requirement. Chen and 

Reynolds (2017) applied an ensemble-based method in the optimization of the Net Present 

Value (NPV) of a CO2 WAG process by controlling the rates of the Inflow Control Valves 

(ICVs) of the intelligent wells. Like all ensemble-based methods however, a large amount 

of computational power is required to solve the problem. This may be impractical for large 

field cases. A very successful method which has been applied for rate allocation and 

optimization in waterflood applications is the streamline-based method (Alhuthali et al., 

2010; Park and Datta-Gupta, 2013; Thiele and Batycky, 2006). The superior advantage of 

the streamline-based technique comes from the unique capability of identifying and 
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quantifying the strength of each source-sink connections based on the flux field in the 

subsurface. This information is then utilized to modify well or ICV rates to meet certain 

objectives such as optimizing injection efficiency (Thiele and Batycky, 2003; Thiele and 

Batycky, 2006), improving sweep efficiency and/or accelerating production (Alhuthali et 

al., 2006; Alhuthali et al., 2010; Taware et al., 2010). Due to its robustness, the streamline-

based optimization method has found applications in other Improved Oil Recovery (IOR) 

problems such as polymer flood (Ekkawong et al., 2017; Sharma et al., 2011). Recently, 

Tanaka et al. (2017) proposed a gradient-free streamline-based rate allocation algorithm 

for maximizing the NPV of an asset. The algorithm was applied to a CO2 EOR problem. 

However, since the illustrative model was in areal 2-Dimensions, the impact of associated 

physics such as gravity override was not addressed in the method. 

 In this chapter, we build upon a streamline-based algorithm proposed by Alhuthali 

et al. (2010) for the optimization of CCUS projects using smart wells. In our applications, 

we assume all wells are equipped with ICVs to better mitigate conformance problems 

(Brnak et al., 2006). We utilize the previous work by Sharma et al. (2016) and, in addition 

to optimizing cumulative oil recovery, we seek best injection and production rate 

schedules that result in optimal CO2 storage efficiency and net utilization factor. The co-

optimization idea is based on the premise that improved volumetric sweep efficiency 

during a WAG scheme will not only result in improved oil recovery but also maximize 

CO2 retention in the subsurface. First, we illustrate the technique with a 2D-cross-section 

heterogeneous model. We show that with equal cumulative volumetric injection, optimal 

flow allocation for all ICVs can result in higher oil recovery and CO2 storage efficiency 
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than with a naïve injection strategy. The power and utility of this methodology is 

demonstrated with the Norne field – a faulted reservoir in the North Sea with similar 

deductions. This chapter is organized as follows: First, we present the mathematical 

formulations, define the objective function and pose the optimization problem. Second, 

we discuss the forward model and the assumptions made in all model evaluations. Then 

we provide a 2D cross-section illustrative example, and finally the field example to 

demonstrate the robustness of the optimization workflow for CCUS applications. 

4.1 Optimization Strategy 

4.1.1 Mathematical Formulation 

 Here we pose the optimization problem we intend to solve. Our overall goal is to 

maximize volumetric sweep efficiency which in turn results in improved oil recovery, 

CO2 utilization and storage. For this purpose, we adopt a streamline-based rate 

optimization technique (Alhuthali et al., 2010) which seeks optimal producer and injector 

voidage rates that maximizes sweep efficiency while accelerating production.  

Given a field with Pn  number of producer wells or ICVs, the objective function is defined 

as follows: 

tteeq
TTf )( ;  , Pn

e t        (4.1) 

Where t denotes the vector of arrival times at each producer well or ICV, while e represents 

the deviation of each arrival time from the desired equalized arrival time. Essentially, the 
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approach attempts to minimize the variance of arrival times at the producers or ICVs. The 

objective function can be re-written in more detail as follows: 

          
groups mprodgroups mprod n
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n

m

n

i

mimd tttf
,,

2

,

2

,,)( qqqq  ;   Wn
q    (4.2) 

Where groupsn denotes the number of well groups in the field. The partitioning of wells 

and/or ICVs, and the resulting groupsn is typically guided by reservoir connectivity, 

geological information and operator’s economic and operational constraints. The number 

of producer wells or ICVs in the 
thm group is denoted by mprodn , . The constant user-

specified parameter  denotes the norm weight, the significance of which will be 

discussed later in this section. The control variable for the optimization problem is a vector 

of Wn rates at each well or ICV, denoted byq .  

To define the arrival times mit , at each producer, we recall the concept of streamline 

time-of-flight which is the transit time of a neutral tracer in defined flow field (Datta-

Gupta and King, 2007). The time-of-flight at a certain position x  in the domain is 

mathematically described as follows: 







q

dA )()(
)(

xx
x          (4.3) 

Where q  is a constant flux along the streamline  , A  represents the streamtube flow area 

while   represents the porosity at position x along the streamline  . In other words,  is 

simply the line integral of the inverse of the interstitial velocity along the streamline. The 



 

146 

 

 

arrival time at a producer i  is computed as the average of the arrival times computed on 

the iFastSLn , fastest streamlines arriving at the producer:  

 
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In our application iFastSLn ,  is taken as the fastest 20% of all streamlines arriving at the 

producer. Note that the gas arrival times at each producer is approximated as the ratio of 

the time-of-flight to the shock speed at breakthrough which relies solely on the fractional 

flow function (Lake, 1989). Furthermore, to improve CO2 retention, we penalize the 

calculated arrival time after gas breakthrough as follows (Taware et al., 2010): 

   
















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mimi
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WGOR
tt

,

,, 1ˆ qq        (4.5) 

Where iWGOR  and max,iWGOR respectively represent the current and maximum allowable 

Gas-Oil Ratio at producer i . The exponent 0 measures the importance of the penalty. 

While the penalty is completely ignored when 0 , large values of  heavily penalizes 

producers experiencing gas breakthroughs. Depending on the value of  and the relative 

GOR values, the arrival time is penalized by forcing a reduction in  qmit ,
ˆ , which 

eventually results in the reduction of rates along any injector-producer pair involving 

producer i . 

 The desired arrival time for the 
thm group is them computed as an arithmetic 

average of the arrival times computed as each producer: 
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 In essence, the objective function involves two terms which individually seek to 

achieve different goals. The first term of Eq. 4.1 alone seeks to equalize arrival times at 

all producers by minimizing arrival time residuals. The second term alone, on the other 

hand, seeks to accelerate production by minimizing the magnitude of arrival times at all 

producers. The specified norm weight   indicates the relative importance of the 

production acceleration objective over the arrival time equalization objective. The 

implication of this pertaining to our CO2 EOR and storage optimization is that both 

objectives are expected to combine to optimize volumetric sweep efficiency. The arrival 

time equalization objective optimizes the areal sweep while the production acceleration 

objective enhances the Viscous-to-Gravity ratio (VGR) (Sharma et al., 2016; Tchelepi and 

Orr Jr, 1993) to improve the vertical sweep efficiency. Concisely, the optimization 

problem is therefore posed as:  

q
min )(qf          (4.7) 

Subject to: 0)( qg ; 0)( qh     

for some : EQWells
NN

g  and : IEQWells
NN

h   

In other words, we minimize the objective function subject to EQN equality constraints 

)(qg and IEQN  inequality constraints )(qh using on the control variable q  which, again, 

is a vector of all injection and production rates. The constraints include field injection and 

production/processing capacity, voidage and bottomhole pressure constraints. The 
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formulation for these is provided in detail by Alhuthali (2009). In solving our optimization 

problem, we apply the Sequential Quadratic Programming (SQP) algorithm (Nocedal and 

Wright, 2006a) by utilizing the SQP module in-built in MATLAB (Mathworks, 2016). 

The required function gradient and hessian are analytically computed. 

 First, a multivariate differential of Eq. 4.1 with respect to q gives the gradient of 

the objective function and can be written as follows: 

 tSeJtteeq
TTTTf   222)(       (4.8) 

Here, we refer to the gradient of t as the sensitivity S , and the gradient of the arrival time 

residuals e as the Jacobian J . By combining Eqs 4.1 and 4.6, S and J will be given by: 
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Note that in both matrices defined above, the ji, indices respectively point to the 
thi

producer and the thj well or ICV. The overall computational efficiency of our 

optimization workflow comes directly from the streamline-based sensitivity calculation 

method which requires a single numerical simulation run. Secondly, we obtain the hessian 
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of the objective function by taking the second derivative of Eq. 4.1. This can be 

approximately obtained as: 

 SSJJq
TTf  2)(2         (4.11)  

The hessian computed here is a reasonable approximation since truncated terms are by and 

large negligible (Duijndam, 1987).  

4.1.2 Optimization Workflow 

 Our adopted optimization workflow follows Alhuthali et al. (2010). The workflow, 

graphically presented in Fig. 4.1, iteratively optimizes rates at each time step by utilizing 

streamline-based analytical gradient and hessian computed from a single simulation run. 

The steps involved are outlined as follows: 

1. Carry out a numerical simulation for the current time step by restating from a time step 

directly preceding it. Restarting simulation runs is a common feature provided by 

standard reservoir simulation software packages such as ECLIPSE (Schlumberger, 

2014). The simulation restart feature affords the assurance that the current time step is 

initialized with the optimized state of the previous time step. 

2. Trace streamlines based on underlying flux field and obtain arrival times at each 

producer (Jimenez et al., 2010). As mentioned earlier, in the calculation of the arrival 

times at the producer, only the 20% fastest streamlines are taken into consideration. 

3. Compute sensitivities, gradient and hessian of the objective function. Again, the 

beauty and elegance of our workflow is that the gradient and hessian can be calculated 
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based on a single numerical simulation run, which significantly improves the 

computational efficiency of the optimization workflow.  

4. Construct and solve the SQP problem by incorporating desired equality and inequality 

constraints. Then update the well and/or ICV rates. 

5. Repeat steps 1 through 4 over user-specified itrn _ iterations for the current time step. 

In all applications reported in the work, itrn _ was kept at 10  

6. Finally, repeat for all desired time steps.  

In other words, the entire workflow entails conducting numerical simulations for each 

individual time steps for itrn _  times. Therefore, the cost obtaining optimal injection and 

production rate schedules is by and large equivalent to conducting only itrn _  full 

simulations on the model. This in itself clearly validates the superiority of the streamline-

based optimization workflow compared to evolutionary, population-based and ensemble-

based algorithms in terms of computational overhead.  

4.2 Forward Model 

 For all applications reported here, reservoir simulation was conducted using the 

ECLIPSE reservoir simulator (Schlumberger, 2014). For simplicity purposes, we assume 

a first contact miscible system and estimated fluid density, viscosity and relative 

permeability using the Todd-Longstaff empirical approach (Todd and Longstaff, 1972). 

Also, in our CO2 WAG evaluations, gas phase hysteresis was simulated using the Land 

trapping empirical functions. 
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Figure 4.1: Streamline-based rate optimization workflow 

 

4.2.1 Fluid Miscibility Model 

 Miscibility of CO2 is generally known to be critical for overall oil recovery 

efficiency (Blunt et al., 1993; Kovscek, 2002). The assumption of first contact miscibility 

in our CO2 flood simulations requires the estimation of the effective fluid properties for 

both oil and gas (CO2) phases at all location in the domain and all times. For this we adopt 

the Todd-Lonstaff  empirical treatment of physical dispersion effects in the miscible 

mixture (Todd and Longstaff, 1972). The treatment models a two-phase system, with oil 

and gas component in the miscible phase and water representing the other phase. It 

requires the specification of the mixing parameter  which ranges between 0 (indicating 



 

152 

 

 

negligible mixing) and 1 (indicating perfect mixing). The effective oil and gas component 

viscosities, effo, and effg , are thus respectively computed as:   

 moeffo

 1

,          (4.12) 

 mgeffg

 1

,          (4.13) 

Where effm, represents the mixture viscosity given as: 
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Where oroo sss ~ and gcgg sss ~  

 Effective oil and gas relative permeabilities in the mixture are computed by scaling 

the relative permeability of the miscible phase  nrn sk  with the saturation fractions of 

either phase, mathematically written as: 
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The effective oil and gas densities are calculated using the effective viscosities computed 

in Eqs. 4.12 and 4.13 as well as the nominal densities and viscosities of the unmixed 

phases: 
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Note that the value of the mixing parameter   dictates the resultant values for both 

effective (mixed) oil and gas densities and viscosities. It is easy to show that when 0

effective component densities and viscosities identically yield their respective pure 

(unmixed) values. 

4.2.2 Trapping Model 

 To quantify CO2 retention by residual trapping, it was necessary to model gas 

phase hysteresis during our CO2 WAG simulations using a trapping model. Similar to 

common simulation approaches for incorporating this important pore scale physics 

(Krevor et al., 2015; Qi et al., 2009), we make use of a trapping model proposed by Land 

(1968) whereby the gas phase relative permeability during imbibition is estimated from 

the drainage relative permeability:  

)()( , fg
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rgg

imb

rg sksk          (4.19) 

Where fgs , is given as a function of the trapped gas saturation trapgs ,  and the Land 

parameter C : 
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The trapped gas saturation trapgs , is calculated as a function of the Land parameter C , the 

maximum gas saturation during drainage process mgs ,  and critical gas saturation crgs , : 
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The Land parameter C measures the relative strength of residual trapping in the porous 

media. Smaller values result in more trapping (larger trapgs ,  values) and vice versa.    

4.3 Performance Metrics 

 With respect to CCUS objectives, we adopt three performance metrics to evaluate 

and compare models for optimality (Hovorka and Tinker, 2010; Leach et al., 2011; 

Melzer, 2012). These metrics are both computed as functions of physical time and pore 

volume (of both water and CO2) injected )(PVI . These field-wide metrics are defined as 

follows: 

(1) Oil Recovery Efficiency, recE : This is the cumulative oil )( Pr

SC

odOilV  produced at the end of the 

project as a percentage (or fraction) of oil in place )(OIP . That is: 

100(%)Re Pr 
OIP

V
cvoeryOil

SC

odOil        (4.22) 

Here, both 
SC

odOilV Pr  and OIP are computed at standard conditions and recE is only incremental, 

in thatOIP is the amount of oil in place at the initiation of the CO2 WAG scheme.  

(2) Net CO2 Utilization Factor: This is the amount of CO2 retained in the formation per 

incremental standard barrel of oil produced. It is calculated as the ratio of the difference in 
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cumulative CO2 injected )( 2

SC

InjCOV  and produced )( Pr2

SC

odCOV  to cumulative oil production 

)( Pr

SC

odOilV  at standard conditions, mathematically described as: 
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(3) CO2 Storage Efficiency, storeE : We compute this as a product of the CO2 trapping efficiency, 

trapE  and the placement efficiency, placE  (Vitoonkijvanich et al., 2015). Where the CO2 

placement efficiency is the volume of CO2 retained the reservoir as a fraction of reservoir pore 

volume while CO2 trapping efficiency is the volume of immobilized CO2 as a fraction of the 

volume CO2 in place, both at reservoir conditions. Mathematically we have: 

plactrapstore EEE          (4.24) 
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In all computations of CO2 utilization factor, we assumed with negligible CO2 losses 

(Melzer, 2012). We also compared the classical injection efficiency which is the volume 

of oil production as a percentage of fluid volume injected at reservoir conditions. Finally, 

we compared WAG ratios in each cycle, computed as the water injection to CO2 injection 

rate at reservoir conditions. 

4.4 Illustrative Example 

 We begin with a demonstration of the optimization workflow with a with a 2D 

cross-section reservoir model shown in Fig. 4.2. The model is discretized into 60100
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grid cells, each with dimensions ft310050  . Absolute permeability in the reservoir 

model ranges between mD10 and mD000,30  with vertical anisotropy ratio 3.0kvkh and 

porosity assumed constant at 2.0 . An injector and a producer re placed at the two ends 

of the model, with each having 30 ICVs installed. The problem was initialized to mimic a 

typical candidate for CO2 EOR in the field. We assumed a water-wet system with relative 

permeability functions shown in Fig. 4.3. Initial oil saturation was set to residual 

conditions at 4.0 with no free gas initially present. A psia4000  initial reservoir pressure 

was specified and a Todd-Longstaff mixing parameter 67.0 was assumed. While 

residual gas saturation in the drainage process was set at 0.0 , we assumed a Land 

parameter 0.2C for residual CO2 trapping in the imbibition process.  

 A list of the production and operational constraints imposed on the optimization 

problem is provided in Table 4.1. Note that we have imposed a unit Voidage Replacement 

Ratio )(VRR to prevent decline in reservoir pressure, which is undesirable for CO2 flood 

applications. Also the constraint helps to avoid unfavorable increase in pressure above 

fracture limits. We compared the optimized cases with a base case which is set up to inject 

the maximum possible fluid volume, approximately PV3 , over the 20-year life of the 

project. Through the life of the project, a WAG cycle of 1 year was maintained, with CO2 

and water injection periods lasting 6 months in each cycle for all cases. Concretely, the 

optimization workflow routine shown in Fig. 4.1 was repeated through 40 time steps for 

this problem. We ran the optimization algorithm on the problem with norm weight 0

and 1000  in each case. To reiterate, a zero value of   indicates an emphasis on areal 
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sweep efficiency optimization whereby streamline arrival times are equalized at the 

producer ICVs. A positive value of  on the other hand seeks an optimal combination of 

rates that maximizes both areal and vertical sweep efficiency through production 

acceleration.  

 

Table 4.1: Inequality and equality constraints for the 2D cross-section optimization 

problem 

Constraint 
Type 

Constrained Parameter Value 

Inequality 
Constraints 

Field-wide production rate DRB /2250  

Field-wide injection rate DRB /2250  

Producer well ICV rate DRB /400  

Injector well ICV rate DRB /400  

Production bottomhole pressure psi5000  

Production bottomhole pressure psi3000  

Production GOR at ICVs STBMSCF /1000  

Equality 
Constraint 

Voidage Replacement Ratio )(VRR  0.1  
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Figure 4.2: Reservoir model showing permeability distribution (with values ranging 

from 10 to 30,000mD), producer and injector wells each with 30 ICVs installed. Inset 

shows a typical ICV design (Brnak et al., 2006) 

 

 

    
(a)         (b) 

Figure 4.3: (a) Oil-water relative permeabilities indicating a water-wet formation (b) Gas 

relative permeability 

 

A comparison between the results obtained based on the optimization algorithm and the 

base case is provided in Fig. 4.4. From this figure, the impact of the rate optimization 

procedure is apparent. It can be observed that oil saturation is reduced and trapped CO2 is 

increased by the sweep efficiency optimization )0(  . Further improvements in these 

can also be noticed as more emphasis is placed on volumetric sweep efficiency, that is 

1000  . As shown in the figure, while rates are uniformly distributed for all ICVs in the 
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naive (base) case, improved sweep was achieved in the optimized cases by adjusting rates 

according to the underlying heterogeneity and gravity forces. In response to gravity forces, 

higher injection and production rates were maintained through ICVs located towards the 

bottom part of the two wells. 

 The results of this example are quantitatively presented in terms of the previously 

discussed metrics. The incremental oil recovery efficiencies are compared with respect to 

both physical time and PVI in Figs. 4.5(a) and (b) respectively. An additional %5  and 

%10  incremental oil recovery over the base case were achieved with 0 and 1000  

in the optimized cases respectively. As can be observed in the dimensionless recovery plot 

in Fig. 4.5(b), although with less PVI , more oil was recovered in the case with 0  due 

to improvement in areal sweep efficiency. With 1000 however, improved areal and 

vertical sweep efficiencies were combined to result in higher incremental oil recovery.  

 

 

Figure 4.4: Visual comparison of flood performance for base case (on top) and 

optimized cases. First and second columns respectively compare oil and trapped gas 

saturation profiles at the end of the 20-year period. Third column overlays injector and 

producer profiles on the formation permeability distribution. 
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 Similar trend can be observed in the CO2 storage efficiencies, storeE  compared in 

Figs. 4.8(a) and (b). This should be expected because higher incremental oil recovery can 

be attributed to improved CO2 sweep which also results in more residual trapping of CO2 

in the formation. However, the trapping efficiencies trapE  were observed be similar for all 

cases as shown in Fig. 4.7(a), while placement efficiencies placE have the major 

contribution to storeE  as shown in Fig. 4.7(b). Less monotonicity can be noticed in placE  

profile the case with 0 . This is because of more frequent changes rates and WAG ratio 

as a function of time compare the other cases. The reduction placE  for the case with 0

is due to the overall decline in injection rates and increase in WAG ratio at later time. 

These can be observed from the 20th year rate plots in Fig. 4.4 and in Fig. 4.9(b) 

respectively.  

 The UFCO2 profile follows a typical trend of sharp decline to a stable value with 

time for all cases as shown in Figs. 4.6(a) and (b). Clearly form these figures, the 

improvement in incremental oil recovery and CO2 storage efficiency achieved with the 

optimization workflow comes with the same net CO2 utilization factor, UFCO2 as the 

base case. This observation is in fact consistent with the results recorded for both 

incremental oil recovery and CO2 storage efficiencies. Based on Eq. 4.23, higher 

incremental oil recovery indicates larger CO2 retention and thus, higher CO2 storage 

efficiency. 
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 The areal sweep efficiency optimization ( 0 ) case turns out have the highest 

injection efficiency as shown in Fig. 4.9(a). This observation is consistent with the 

incremental oil recovery plots in Figs. 4.5(a) and (b) where the dimensionless plot shows 

an incremental oil recovery efficiency close to the case where 1000 . 

 

            
(a)              (b) 

Figure 4.5: Incremental Oil recovery efficiency as a function of (a) time in years and (b) 

reservoir pore volume injected 

 

 

          
(a)           (b) 

Figure 4.6: Net CO2 utilization factor as a function of (a) time in years and (b) reservoir 

pore volume injected 
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(a)         (b) 

Figure 4.7: (a) CO2 placement efficiency and (b) CO2 trapping efficiency as a function 

of time 

 

 

            
(a)         (b) 

Figure 4.8: CO2 storage efficiency as a function of (a) time in years and (b) reservoir 

pore volume injected 

 

 

            
(a)         (b) 

Figure 4.9: (a) Injection efficiencies comparison (b) WAG ratios comparison 
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4.5 Norne Field Application 

4.5.1 Background 

 Discovered in late 1991, the Norne field is situated in blocks 6608/10 and 6508/10, 

80km north of the Heidrun oil field in the North Sea. The sandstone reservoir consists of 

five main geological zones namely Garn, Not, Ile, Tofte and Tilje buried between 2500 – 

2700m below sea level with 110m column of oil and 25m of gas (Morais, 2012; 

Rwechungura et al., 2010). Gas is predominantly found in the Garn sands while Ile is the 

oil bearing formation. The Tofte and Tilje sands contained mostly water. The reservoir 

fluids distribution is shown in Fig. 4.10(a). The Not formation forms a stratigraphic barrier 

preventing vertical communication between Garn and the rest of the sands (Rwechungura 

et al., 2010). Formation porosity ranges between 0.25 to 0.3 while permeability lies 

between 20 and 2500mD (Steffensen and Karstadt, 1996). The reservoir structure is 

features a complex fault network, shown in Fig. 4.10(b) by which the reservoir is 

compartmentalized into four segments – C, D, E, and G exhibiting varying strengths in 

communication, resulting in 6 equilibrium regions. 

 The reservoir simulation model was constructed with 2211246  grid cells of 

which 44431grid cells are active. Through a period of oil production lasting between 1997 

and 2006, about 50% of the original Oil Initially in Place (OIIP) has been recovered with 

only 50 wells (33 producers and 17 injectors). Field development operations included both 

classical water injection and a short period of natural gas injection. Previous work by 

Morais (2012) investigated the added value of gas injection on the field through Water-
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Alternating-Gas (WAG) and Simultaneous Water-Alternating-Gas (SWAG) schemes. In 

their work, using the active wells (13 producers and 8 injectors) control variables for 

sensitivity studies and optimization include well configurations, injection rate, WAG ratio 

and slug size. In our application here, we evaluate the value of a CO2 WAG scheme on 

the Norne field, specifically applying our optimization algorithm. 

 

 
(a)         (b) 

Figure 4.10: Norne field reservoir model showing (a) initial fluids distribution and 

contacts and (b) fault network 

 

4.5.2 Problem Description 

 We utilize the median realization of previously calibrated models which were 

updated by integrating available 4D seismic data and 10 years of production history into 

the prior reservoir model (Watanabe et al., 2017). Figs. 4.11(a), (b) and (c) respectively 

show the spatial distribution of the model porosity, Net-to-Gross (NTG) and permeability, 

as well as the distribution of wells utilized in the rate optimization workflow. Vertical 

permeability anisotropy, kvkh ratio varies between 01.0 and 0.1  through geological 
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zones, with an average value of 3.0 . The CO2 WAG development plan involves of 8 

injectors (shown in black) and 13 producer wells (shown in white). The three-phase 

relative permeability and capillary pressure functions, shown in Figs. 4.12(a), (b) and (c) 

are scaled according to the connate fluid saturations characterizing each rock type in the 

formation. With an average reservoir pressure of bars250  at the initiation of the CO2 

WAG scheme, we assumed a miscible CO2 with a Todd-Longstaff mixing parameter 

67.0 . In this application we assumed a Land trapping parameter 0.2C .  

 An average of 5 ICVs were installed in each well in the optimization problem. The 

CO2 WAG scheme was run for 10 years, alternating between CO2 and water injection 

every year. The operational constraints imposed are summarized in Table 4.2. Here as 

well, as in the synthetic case, the 0.1VRR  was imposed to keep reservoir pressure within 

safe operational limits. The maximum field injection/production value was set so that a 

unit value of Hydrocarbon Pore Volume )(HCPV  would be injected at the end 10-year 

CO2 WAG development program in the base case. The base case was set up such that all 

ICVs produce and inject at fixed reservoir rates of DSM /1000 3
throughout the 10-year 

period. The movement of CO2 in the formation was tracked using the concentration of a 

numerical tracer activated in the injected CO2. 
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(a)     (b)      (c) 

Figure 4.11: Calibrated reservoir model grid property distribution: (a) porosity (b) Net-

to-Gross (NTG) and (c) permeability field. Also shown are well locations with injectors 

shown in black and producers in white 

 

 

            
(a)     (b)      (c) 

Figure 4.12: Three-phase relative permeability can capillary pressure curves: (a) Oil-

water relative permeability function (b) Oil-water capillary pressure function and (c) Oil-

gas relative permeability function 
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Table 4.2: Inequality and equality constraints for the Norne field application 

Constraint 
Type 

Constrained Parameter Value 

Inequality 
Constraints 

Field-wide production rate DSM /50000 3  

Field-wide injection rate DSM /50000 3  

Producer well ICV rate DSM /3000 3  

Injector well ICV rate DSM /3000 3  

Production bottomhole pressure bars500  

Production bottomhole pressure bars150  

Production GOR at ICVs 33 /1000 SMSM  

Equality 
Constraint 

Voidage Replacement Ratio )(VRR  0.1  

 

4.5.3 Results and Discussion 

 Similar to the synthetic case, the optimization algorithm was run in two scenarios: 

0  and 1000 to evaluate the effect of considering gravity forces in the optimization 

problems. The concentration of CO2 in all the three cases run are compared in Figs. 4.13 

through 4.15. The field-wide sweep of CO2 in the formation is clearly at maximum in the 

base case and the lowest in the case with 1000 . The seeming contradiction of this 

result with the synthetic case can be explained by considering the structure of the objective 

function. As more emphasis is placed on production acceleration (as   increases), larger 

is weight is placed in minimizing arrival time at each of the producer ICVs. As a result, 

since producers are predominantly completed within the oil rim, arrival times are 
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minimized by keep injections within this zone. Therefore, in the case with 1000 , the 

injected CO2 is concentrated within the oil rim with little injection above and below the 

zone. This can also be validated with a plot of average CO2 concertation within each zone 

at the end of the 10-year WAG scheme, as shown in Fig. 4.16. The figure clearly shows 

high CO2 concentrations within the oil rim and lower CO2 concentrations outside the oil 

rim in the case with 1000 , compared to the base case. The case with 0  

consistently showed intermediate values. Based on this, it is therefore expected that the 

optimized cases result in higher incremental oil production but with lower CO2 storage 

capacity compared with the base case. 

 The conflicting behavior of the oil recovery efficiency and CO2 storage efficiency 

objectives can be clearly observed in Figs. 4.17 and 4.20. Although incremental oil 

recovery efficiency was improved by the rate optimization algorithm, a reduction in CO2 

storage efficiency storeE compared can be directly noticed compared to the base case. 

Again, as shown in Fig. 4.19(b), the CO2 trapping efficiencies, trapE  are essentially 

similar because of consistent trapping mechanism in all cases. The CO2 placement 

efficiency placE which, according to Fig. 4.19(a) varies in each of the cases, solely 

determines the value of storeE . In this application however, due less variation in rates and 

WAG ratios compared in Fig. 4.21(b), placE showed the expected monotonic increase for 

the case with 0 , unlike in the synthetic case.  
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(a)         (b) 

Figure 4.13: CO2 concentration for base case (a) in full-field view and (b) in cross-

sectional view for the Norne field case 

 

 

                        
(a)         (b) 

Figure 4.14: CO2 concentration for optimized case ( 0 ) (a) in full-field view and (b) 

in cross-sectional view for the Norne field case 

 

        

                               
(a)         (b) 

Figure 4.15: CO2 concentration for optimized case ( 1000 ) (a) in full-field view and 

(b) in cross-sectional view for the Norne field case 
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Figure 4.16: Comparison of CO2 injection conformance between base and optimized 

cases. Optimized cases show more CO2 invasion within the oil rim and less outside the 

oil rim 

 

 

 The injection efficiencies show a trend similar to the observation in the synthetic 

case. As shown in Fig. 4.21(a), the injection efficiency is consistently at maximum with 

0 and minimum with the base case. The impact of the injection efficiency can be 

observed directly in the dimension plots of incremental oil recovery andCO2 storage 

efficiency storeE  respectively in Figs. 4.17(b) and 4.20(b). While storeE  for the case where 

0  became close to that of the base case, the incremental oil recovery with 0

became slightly higher than the case with 1000 . Poor injection efficiency in the base 

case, although came with improved  storeE  values, it resulted in poor CO2 utilization factor 

UFCO2 , as shown in Figs. 4.18(a) and (b). The computed UFCO2 for the base case is 

approximately twice the value of the optimized cases at the end of the 10-year project life. 

Note that CO2UF is computed in field units so that a UFCO2 of 400 recorded for the 
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optimized cases is equivalent to STBMSCF /25.2 , which falls within range of the values 

obtained in the synthetic case. 

 In this application, the storeE was observed to show some conflict with other 

objectives in that higher storeE  values were computed for the base case compared to the 

optimized cases, while the base case was inferior in other objectives including incremental 

oil recovery, UFCO2 and injection efficiency. Based on the analyses presented above, the 

optimal trade-off for this problem is with the case where 0 . The norm weight 0  

tends improve the volumetric sweep efficiency indirectly by accelerating production, this 

application shows that this might lead to inferior solutions in certain geologic scenarios. 

 

 

        
(a)         (b) 

Figure 4.17: Incremental Oil recovery efficiency as a function of (a) time in years and 

(b) reservoir pore volume injected in the Norne field case 
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(a)         (b) 

Figure 4.18: Net CO2 utilization factor as a function of (a) time in years and (b) 

reservoir pore volume injected in the Norne field case 

 

 

         
(a)         (b) 

Figure 4.19: (a) CO2 placement efficiency and (b) CO2 trapping efficiency as a function 

of time for Norne field case 
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(a)         (b) 

Figure 4.20: CO2 storage efficiency as a function of (a) time in years and (b) reservoir 

pore volume injected in the Norne field case 

 

          
(a)         (b)          

Figure 4.21: (a) Injection efficiencies comparison (b) WAG ratios comparison in the 

Norne field case 

 

     

4.6 Conclusion 

 In this work, we have proposed a streamline-based co-optimization method for 

CCUS applications with the aid of smart wells. The use of smart wells helps to mitigate 

the challenges associated with conformance in CO2 injection applications (Brnak et al., 

2006). We specifically optimized CO2 WAG processes, considering the incremental oil 

recovery, CO2 storage and CO2 Utilization Factor as the decision variables, while 
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individual ICV rates represent the design variables. Compared to other proposed methods 

of approaching the same problem, our approach provides robustness in terms of 

accounting gravity effects, as well as superior computational efficiency. This 

computational advantage comes from reduced number of full-scale simulations to arrive 

at optimal solutions, as required objective function gradient and hessian are computed in 

a single simulation run via our streamline-based technique. We presented an example with 

a 2D cross-section model to illustrate the algorithm, and then we applied to the Norne field 

to demonstrate the value and utility of the approach. The following conclusions can be 

reached: 

(1) Using our streamline-based rate optimization approach in CO2 WAG schemes 

improves both incremental oil recovery, CO2 storage efficiency and CO2 Utilization 

Factor. This is achieved by obtaining optimal rate schedules that maximize both areal 

and vertical sweep efficiency during the process. 

(2) Typically, higher values of the norm weight   result in more optimal solutions in 

terms of the three decision variables. Injection efficiencies are however always optimal 

when only areal sweep efficiency maximization is the focus, that is 0 . In such 

case, fluids are injected and produced at rates just enough to minimize the arrival time 

residuals at the producers.  

(3) In certain scenarios based on the underlying geology, reservoir structure and/or well 

configuration, a potential trade-off might exist among the three decision variables, just 

as was observed with the Norne field application. In such scenarios, a careful choice 

of   becomes crucial for a good optimal trade-off solution to the problem.  
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It is however, recommended that the choice of   be dynamic through the optimization 

workflow using a multi-start feature. In such framework, multiple runs, each assigned 

varying values of  , are initiated at each time step and the best compromise solution is 

selected to mode to the next time step. This generalizes the entire optimization workflow 

to handle multiple scenarios in a more robust manner. 
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

 

 It is expected that the world will continue to rely on hydrocarbons for its energy 

needs for the foreseeable future. However, the impact of fossil fuel combustion of the 

environment sue to CO2 emissions is believed not to be in the best interest of the planet’s 

future. The Carbon Capture, Utilization and Storage (CCUS) technology has been 

accepted as a promising approach to unifying the two objectives. A common form of 

CCUS is the injection of anthropogenic CO2 in geologic formations for Enhanced Oil 

Recovery (CO2 EOR) in the process of which CO2 is permanently stored in the 

subsurface.  

 Like subsurface flow problems, CCUS in geological media requires a good 

understanding of the subsurface so as to effectively manage system pressure and the 

migration of the CO2 in a view to achieving both objectives of responsible energy 

production and successful containment of CO2 in the subsurface. A structured approach 

to effective reservoir management requires the following: 

(1) Proper representation of the underlying physics that effectively captures the complex 

interactions between reservoir fluids and geologic properties. This representation, 

often in a mathematical framework refers to the forward model. 

(2)  A methodology for integrating data into an existing geologic model, in a view to 

improving the level of understanding of the subsurface. This step, often referred to as 

model calibration should be able to integrate multiple sources of data including 
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production and seismic data to update a prior subsurface model in a robust manner, 

while honoring relevant physics.  

(3) A field development optimization procedure, which relies on the improved 

understanding of the subsurface to search for optimal set of configurations that 

improves overall performance of the process as it pertains to the essential CCUS 

objectives. 

This dissertation features three contributions is each of the aspect outline above. In this 

chapter, we discuss the conclusions reached and provide recommendations for future 

research directions. 

5.1 Conclusions 

 A streamline-based simulation of CO2 sequestration in saline aquifer has been 

proposed. Based on the results obtained, the following conclusions are drawn: 

(1) The simulation methodology was benchmarked with a commercial compositional 

model with good agreement for both synthetic and field cases, at varying scales of 

permeability heterogeneity.  

(2) Neglecting compressibility effects in streamline simulation of CO2 in saline aquifers 

under-estimates CO2 storage capacity by 15%. This number was arrived at based on 

both synthetic and field models. 

(3) Ignoring formation dry-out effects in streamline simulation of CO2 in saline aquifers 

over-estimates CO2 infectivity. The effect, which is in agreement with previous 

studies, tend to be more severe with highly water-wet systems. 
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(4) Streamline-based simulation method provides an effective framework for resolving 

geologic heterogeneities during the injection of CO2 in saline aquifers. 

 The multiresolution grid connectivity-based (M-GCT) was presented in which 

high resolution reservoir description is retain with a specified area of interest (AOI). The 

set of conclusions drawn from the parameterization scheme for model calibration are as 

follows: 

(1) The M-GCT scheme provides higher compression power within the AOI and less 

compression performance outside the AOI compared to the normal GCT scheme. 

(2) Compression performance with the AOI improves (and deteriorates outside the AOI) 

with more aggressive coarsening schemes.  

(3) Subsurface model calibration problems can be accelerated using the M-GCT 

parameterization schemes.  

 Finally, a streamline-based methodology for optimizing intelligent wells in CCUS 

application was presented. Decision variables such as incremental oil recovery efficiency, 

CO2 storage efficiency and CO2 utilization factor were considered. The following are the 

conclusions from this work: 

(1) Using our streamline-based rate optimization approach in CO2 WAG schemes 

improves both incremental oil recovery, CO2 storage efficiency and CO2 Utilization 

Factor.  

(2) Typically, higher values of the norm weight   result in more optimal solutions in 

terms of the three decision variables.  
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5.2 Recommendations 

For future contributions for the streamline-based simulation methodology are as follows: 

(1) Application of the simulation methodology to high contrast systems and naturally 

fractured reservoirs.  

(2) An investigation of the approach using vertical equilibration (VE) models (Gasda et 

al., 2009). This simplification, which relies on large aspect ratios of typical saline 

aquifers, reduces the need for gravity corrections during streamline simulation.   

For grid connectivity-based parameterization in general, conditioning parameter update to 

available hard data at well or completion locations still remain unresolved. A possible 

solution is proposed in which a constrained eigenvalue problem is solved in the generation 

of the basis functions (Gander et al., 1989; Porcelli et al., 2015). 

For a reservoir model with N grid cells and NNw  hard data locations, a constrained 

eigenvalue problem can be expressed as follows:  

uBuL ~~~
           (5.1) 

Where  is the eigenvector while L
~

an augmented Laplacian given as: 
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Note that L is the regular Laplacian.  0,1 wN N
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Where jwell refers to the grid index of location of the thj well or completion. And finally, 

the augmented eigenvector, obtained by the singular value decomposition of L
~

 becomes: 











0

u
u~           (5.4) 

The eigenvectors (basis functions) obtained from the regular and conditioned GCT 

schemes are compared in Figs. 5.1 and 5.2. Note that for both schemes the basis functions 

are orthogonal, however the all basis functions are constrained to zero values at each well 

or completion in the conditioned GCT scheme. Proposed parameter update using the 

conditioned GCT basis functions is as follows: 

)exp( vkk  prior          (5.5) 

 

 

Figure 5.1: Unconstrained eigenvalue problem – Regular GCT basis functions 

 

 

Figure 5.2: Constrained eigenvalue problem – Conditioned GCT basis functions 

 



 

181 

 

 

 Finally, for the streamline-based optimization methodology proposed, the 

following research directions are recommended: 

(1) A multi-start approach whereby multiple instances of the algorithm are run in parallel 

but with different values of  . At each time step best solution among the runs is 

retained. Keeping   dynamic enhances the robustness of the optimization procedure. 

(2) A multiobjective optimization framework for the streamline-based method, by which 

multiple trade-off solutions can be obtained in situations where certain decision 

objectives conflict. 
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