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ABSTRACT 

 

Light Detection and Ranging (LiDAR) systems have been increasingly used in 

project planning, project development, construction, operations, maintenance, and asset 

management. Typical data collected by a LiDAR system include slant distance, incidence 

angle, and reflectivity measurements. This research focuses on mobile LiDAR systems 

(MLSs). 

Processing of large amounts of data collected by MLSs remains tedious and time-

consuming. For MLSs to be used efficiently in roadway drainage inventory and condition 

assessment, automated methods are needed to identify key features that affect drainage. 

The aim of this research is to develop computational methods for automated identification 

of such features from data collected through MLSs. The specific objectives of this research 

are to a) detect pavement surface type, b) detect the presence of driveways and underlying 

pipes and extract count, width, elevation difference and material cover and c) detect 

roadside features such as grass-cover area, curb location, and curb height based on the 

data collected using a SICK LMS-5XX series LiDAR scanner and hardware and software 

by Road Doctor.  

Reflectivity, measured as a logarithmic index of power level called received signal 

strength indicator (RSSI), is used to develop an algorithm to detect surface type based on 

statistical analysis of RSSI. Cross-sectional geometry, along with material identification, 

is used to identify driveways and underlying pipes. RSSI distribution and material 

identification techniques are used to detect roadside grass areas. Elevation distribution and 
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filter template technique are used to detect curbs. Each method was tested and validated 

using data from actual road sections in Texas. The ability to detect aforementioned 

features reliably using automated means is an initial step to further the cause of MLS 

acceptance and implementation. 

Generally, the accuracies of pavement and grass detection methods were at least 

83%. The effect of reflectivity attenuation is pronounced for roadside. Therefore, in order 

to develop a reliable grass detection method, attenuation correction is required. It is 

possible to detect driveways and distinguish them from topographical features using a 

combination of elevation cross sections, material detection, and surface smoothness. It is 

possible to identify curbs using filter template technique.  
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MLS Mobile LiDAR System 

NIR Near-Infrared 

LiDAR Light Detecting and Ranging 

RGB Red, Green and Blue 

RSSI Received Signal Strength Indicator 

SVM Support Vector Machines 

TTI Texas Transportation Institute 

TxDOT Texas Department of Transportation 

  



 

viii 
 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. vi 

NOMENCLATURE ......................................................................................................... vii 

TABLE OF CONTENTS ................................................................................................ viii 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES .......................................................................................................... xiv 

1  INTRODUCTION ........................................................................................................ 1 

1.1  Background ........................................................................................................... 1 
1.2  Problem Statement and Research Questions ........................................................ 2 
1.3  Research Objectives .............................................................................................. 3 
1.4  Data Collection Equipment ................................................................................... 3 
1.5  Research Task and Thesis Organization ............................................................... 4 

2  LITERATURE REVIEW ............................................................................................. 7 

2.1  LiDAR Technology .............................................................................................. 7 
2.2  Surface Type Detection Techniques ................................................................... 10 
2.3  Methods for Feature Extraction from Images ..................................................... 12 
2.4  Application of Laser-based Data in Roadway Infrastructure Management ....... 15 
2.5  Data Quality Control ........................................................................................... 16 

3  DEVELOPMENT OF SURFACE TYPE IDENTIFICATION METHOD ............... 18 

3.1  Pre- and Post-Processing of Reflectivity Data .................................................... 19 
3.2  Development of Pavement Surface Type Detection Method ............................. 21 

3.2.1  Formulation ............................................................................................ 21 
3.2.2  Results .................................................................................................... 29 
3.2.3  Adjustment Based on Adjacent Section ................................................. 33 



 

ix 
 

 

 
3.3  Grass Detection ................................................................................................... 37 

3.3.1  Formulation ............................................................................................ 37 
3.3.2  Results .................................................................................................... 49 

4  DEVELOPMENT OF DRIVEWAYS AND UNDERLYING PIPES  
IDENTIFICATION METHOD .................................................................................. 50 

4.1  Formulation ......................................................................................................... 51 
4.1.1  Detection of Ditches Using Cross Section Geometry ............................ 53 
4.1.2  Verification of Driveways Based on Material Type ............................... 54 
4.1.3  Verification of Driveways Based on Smoothness .................................. 55 

4.2  Implementation ................................................................................................... 57 
4.3  Results ................................................................................................................. 60 

5 DEVELOPMENT OF ROADSIDE FEATURES IDENTIFICATION METHOD ... 63 

5.1  Grass Area Extraction ......................................................................................... 64 
5.1.1  Formulation ............................................................................................ 64 
5.1.2  Results .................................................................................................... 71 

5.2  Curb Detection .................................................................................................... 73 
5.2.1  Formulation ............................................................................................ 73 
5.2.2  Results .................................................................................................... 79 

6  SUMMARY OF RESEARCH EFFORTS, CONCLUSIONS, AND 
RECOMMENDATIONS ........................................................................................... 82 

6.1  Development of Surface Type Identification Method ........................................ 82 
6.1.1  Conclusions Related to Pavement Surface Type Detection ................... 82 
6.1.2  Conclusions Related to Grass Detection ................................................ 83 
6.1.3  Future Works .......................................................................................... 84 

6.2  Development of Driveways and Underlying Pipes Identification Method ......... 84 
6.2.1  Conclusion .............................................................................................. 84 
6.2.2  Future Works .......................................................................................... 85 

6.3  Development of Roadside Feature Identification Method .................................. 85 
6.3.1  Conclusions Related to Grass Area Extraction ....................................... 85 
6.3.2  Conclusions Related to Curb Detection .................................................. 86 
6.3.3  Future Works .......................................................................................... 86 

  



 

x 
 

 

REFERENCES ................................................................................................................. 88 

APPENDIX A REFLECTIVITY DISTRIBUTIONS ...................................................... 91 

APPENDIX B SOME TESTS OF DIFFERENT SECTIONS ......................................... 96 

APPENDIX C GRASS AREA EXTRACTION TESTS CARRIED OUT .................... 103 

APPENDIX D CURB DETECTION TESTS CARRIED OUT .................................... 109 

 



 

xi 
 

 

LIST OF FIGURES 

Page 

Figure 1: Asphalt, concrete and gravel spectra (Reprinted from Mohammadi, 2012) ..... 11 

Figure 2: Location of road sections considered in development of pavement 
surface type identification method (numbers correspond to sites in Table 1) .. 19 

Figure 3: Distribution of reflectivity in driven lane and side lane ................................... 20 

Figure 4: Distribution of reflectivity intensities for asphalt and concrete ........................ 22 

Figure 5: Distribution of reflectivity intensities for different pavement types ................ 22 

Figure 6: Variation in statistical metrics for pavement surfaces considered 
in this study. Concrete sample size (n) = 144, dense graded n = 88,  
open graded n = 223,  seal coated n = 301. Each sample unit is 0.05 
miles in length. .................................................................................................. 24 

Figure 7: Periodogram power spectral density (PSD) estimate of reflectivity values ..... 25 

Figure 8: Steps involved in identification based on skewness and mean ......................... 27 

Figure 9: Graphical depiction of detection of pavement surface type based on 
closeness to mean .............................................................................................. 28 

Figure 10: Overall accuracy – 4 category classification .................................................. 31 

Figure 11: Overall accuracy - asphalt vs concrete identification ..................................... 31 

Figure 12: Reference data size and overall accuracy for test length of 0.05 miles .......... 32 

Figure 13: Accuracy of prediction based on mean and skewness for 0.05 
mile (264', 80.47m) test sections ....................................................................... 33 

Figure 14: Steps involved in adjustment of pavement surface type based 
on adjacent section ............................................................................................ 35 

Figure 15: Accuracy of prediction with adjustment based on adjacent section 
for 0.05 mile (264', 80.47m) test sections ......................................................... 36 

Figure 16: Reflectivity distribution for different pavement material and grass. .............. 38 

Figure 17: Reflectivity distribution comparison between roadside and pure grass ......... 38 



 

xii 
 

 

Figure 18: Attenuation of reflectivity for grass sections .................................................. 40 

Figure 19: Variation of mean and standard deviation of reflectivity values 
for grass (transverse direction) .......................................................................... 40 

Figure 20: Reflectivity distribution in grass (first distance range) ................................... 41 

Figure 21: Attenuation correction equation ..................................................................... 43 

Figure 22: Attenuation corrected reflectivity distribution for pure grass. ........................ 43 

Figure 23: Reflectivity distributions with attenuated corrected pure grass and 
fitted normal distributions ................................................................................. 44 

Figure 24: Reflectivity distributions for asphalt and attenuated corrected pure 
grass with fitted normal distributions ................................................................ 45 

Figure 25: Reflectivity distributions for concrete and attenuated corrected pure 
grass with fitted normal distributions ................................................................ 46 

Figure 26: Confidence level for grass identification based on attenuation-corrected 
reflectivity (for asphalt roads only) ................................................................... 48 

Figure 27: Confidence level for grass identification based on attenuation-corrected  
reflectivity (for concrete roads only) ................................................................. 48 

Figure 28: Steps involved in postulated method for driveway identification .................. 52 

Figure 29: Identification of driveways based on cross section geometry. ....................... 53 

Figure 30: Verification of driveway detection based on material type. ........................... 54 

Figure 31: Verification of driveways based on surface smoothness ................................ 56 

Figure 32: Calculation of driveway smoothness .............................................................. 56 

Figure 33: An example driveway identified by the developed method 
(FM320 Section). Left: Elevation, Right: Distance along road and 
offset from MLS vehicle. .................................................................................. 60 

Figure 34: Change in reflectivity distribution across road edge. ..................................... 64 

Figure 35: Distribution of reflectivity for a road section. ................................................ 65 

Figure 36: Developed filtering technique for reflectivity and elevation distribution....... 66 



 

xiii 
 

 

Figure 37: Application of filtering technique ................................................................... 67 

Figure 38: Reflectivity distribution after attenuation correction ...................................... 67 

Figure 39: Steps involved in extraction of grass area ...................................................... 68 

Figure 40: Road side grass extracted with 80% confidence for asphalt road 
using (a) raw reflectivity, (b) filtered reflectivity and (c) attenuation 
corrected reflectivity ......................................................................................... 68 

Figure 41: Test for selection of 'good grass' definition corresponding to 68.2% 
central confidence level. .................................................................................... 70 

Figure 42: Steps involved in grass type classification method. ....................................... 70 

Figure 43: An example of grass detection test: FM95 North Bound Section 1 ............... 72 

Figure 44: One dimensional filter 0.3m in length (Y=distance from the MLS 
vehicle toward the roadside, ΔZ= elevation difference relative to center 
of MLS vehicle) ................................................................................................ 75 

Figure 45: One dimensional filter 2.1m on length (Y=distance from the MLS 
vehicle toward the roadside, ΔZ= elevation difference relative to center 
of MLS vehicle) ................................................................................................ 76 

Figure 46: Validity of 0.93 correlation threshold and filter length of 2.1m 
for George Bush Dr. (curb present) ................................................................... 77 

Figure 47: Validity of 0.93 correlation threshold and filter length of 2.1m 
for FM320 (road without curb) ......................................................................... 77 

Figure 48: Steps involved in curb detection method. ....................................................... 78 

Figure 49: Curb detection results for GB EBOL 2 (road with curb) ................................ 81 

Figure 50: Curb detection results for FM2661 WB 1 (road without curb) ...................... 81 



 

xiv 
 

 

LIST OF TABLES 

Page 

Table 1: Road sections considered in development of pavement surface 
type identification method. ................................................................................ 18 

Table 2: Distribution of skewness for different pavement types ..................................... 23 

Table 3: Mean and standard deviation for reflectivity distributions with 
attenuated corrected pure grass ......................................................................... 44 

Table 4: Mean and standard deviation for reflectivity distributions in 
Asphalt, Concrete and Grass surface ................................................................ 46 

Table 5: Grass detection test results ................................................................................. 49 

Table 6: Visual observation of FM320 driveways used for method development .......... 50 

Table 7: Visual observation of driveways used for testing (FM2661 Section) ................ 58 

Table 8: Visual observation of driveways used for testing (FM320 Section) .................. 59 

Table 9: Results of driveways identification (FM2661) .................................................. 61 

Table 10: Driveways identification test results: FM320 Section ..................................... 62 

Table 11: Description of actual sections used for testing roadside feature 
identification (grass area extraction, grass condition, presence of 
curb, curb height, and curb location) ................................................................ 63 

Table 12: Selection of definition for 'good grass' based on central confidence interval. . 69 

Table 13: Grass detection test results ............................................................................... 72 

Table 14: Trials with varying correlation threshold for identification of curbs ............... 76 

Table 15: Curbs detection test results .............................................................................. 80 



 

1 
 

 

1 INTRODUCTION 

 

1.1 Background 

Light Detection and Ranging (LiDAR) systems have been increasingly used in 

project planning, project development, construction, operations, maintenance, and asset 

management. Typical, data collected by a LiDAR system include incidence angle, slant 

distance, and reflectivity intensity. Intensity measurement vary from one manufacture to 

another (Kashani, et al., 2015). Generally, the reflectivity value is measured as a 

logarithmic index of power level called Received Signal Strength Indicator (RSSI). 

Intensity is normalized between 0 and 1 or scaled to 8, 12 or 16 bit dynamic range 

(Kashani, et al., 2015). Some units record accelerometer and displacement data as well. 

Generally, LiDAR systems operate on fixed platforms (terrestrial LiDAR), aerial 

platforms, satellite platforms, or mobile platforms.  This research focuses on mobile 

LiDAR systems (MLSs).  In MLSs, a video camera mounted on the vehicle provides 

additional imagery information. In airborne system, the height of flight is significantly 

greater than the changes in ground elevation; hence higher accuracy can be achieved by a 

MLS (Williams, et al., 2013; Large, et al., 2009). 

There are numerous ongoing research efforts to find useful and creative 

applications of LiDAR systems in civil engineering, such as project planning and 

development for creating CAD models and visualization, topographic mapping, 

construction automation (e.g., machine guidance), as-built surveys, post construction 

quality control, autonomous navigation, landslide assessment, monitoring of coastal 
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changes. In the infrastructure management area (which is the focus of this research), MLSs 

are increasingly being used for automated collection of roadway condition and inventory 

data. These applications are motivated primarily by improving safety and increasing 

efficiency in field data collection.  Data collection can be carried out at traffic speed 

without any obstruction to traffic flow. Usage of LiDAR data in infrastructure asset 

management include inventory, mapping, condition inspection, and automated or semi-

automated extraction of features. (Williams, et al., 2013) 

1.2 Problem Statement and Research Questions 

While MLSs collect large amounts of data (e.g., elevation and reflectivity 

measurements), the processing of these data remains tedious and time-consuming.  

Specifically, for MLSs to be used efficiently in roadway drainage inventory and condition 

assessment, automated methods are needed to identify key features such as pavement 

surface type, the presence of driveways and underlying pipes, presence of sidewalks, and 

type of roadside cover. 

Pavement surface type and condition affect surface drainage and flow 

characteristics (e.g., manning coefficient).  Driveways and underlying pipes, sidewalks, 

curbs, and roadside cover (e.g., dirt, gravel, and grass) are key roadway drainage features. 

The identification of these features will feed into drainage condition assessments and asset 

management systems. At the same time, the ability to detect the presence of these features 

using automated means will improve the application of MLSs in roadway inventory and 

drainage condition assessment. 
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1.3 Research Objectives 

The aim of this research is to develop methods for automated identification of 

roadway drainage related features from data collected through MLSs. The specific 

objectives of this research are to: 

1. Detect pavement surface type based on statistical analysis of reflectivity 

intensities. 

2. Detect the presence of driveways and underlying pipes and extract relevant 

parameters, such as count, width, elevation difference and material cover 

based on reflectivity intensities and road geometry. 

3. Detect roadside features including grass, dirt-cover, or side-walk, and 

detect grass-cover area, curb height and drainage features based on 

reflectivity and elevation distribution. 

Since MLSs record surface reflectivity intensity values and geometric measurements (e.g., 

elevation), this study hypothesizes that it is possible to identify pavement surface types, 

driveways and underlying pipes, and roadside material cover using MLS-collected data, 

without the use of other specialized equipment or manual measurements. 

1.4 Data Collection Equipment 

The data analyzed in this study were collected using a Mobile LiDAR System, 

owned by the Texas Transportation Institute (TTI) and purchased from RoadScanner Oy 

of Finland. This equipment includes a planar SICK LMS-5XX series LiDAR scanner, 

Road Doctor CamLink camera, GPS, IMU, Road Doctor Camlink 7.0 in-vehicle software 

and Road Doctor 3 post-processing software. LiDAR scanner is mounted at the back of a 
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truck and a forward-facing video camera is mounted on top of the cab. The scanner 

operates on a multi-echo, pulse time method. The pulse time method calculates the 

distance between the sensor and an object by capturing the time interval between the last 

laser pulse leaving the sensor and being received back. The scanner has a field of view of 

190o and a range of up to 180m (590 ft) and operates on 100 Hz frequency. It sends 285 

shots every second and records one data every 0.667o increment in angle of incidence. 

Resolution and range of data collected is dependent on elevation of scanner and vehicle 

speed in addition to scanner frequency. 

1.5 Research Task and Thesis Organization 

The thesis consists of six main sections, as follows: 

Section 1: Introduction and general background 

This section provides a general background of the research topic, the problem to 

be studied throughout the research, and the research objectives. 

Section 2: Literature review 

This section provides a review of the literature on various relevant topics. It 

contains discussions of automated data processing techniques, LiDAR technology, and 

application of mobile LiDAR in infrastructure management. 
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Section 3: Development of surface type identification method 

This section deals with the formulation and implementation of a pavement surface 

type and grass identification methods for data gathered through MLSs. Important 

statistical parameters allowing successful classification of these features are identified. 

Detection technique is developed and fine-tuned. Effect of data size on identification 

accuracy is studied. Results of pavement surface type identification tests on actual 

roadway sections is presented. Variation in accuracy of grass identification for different 

pavement surface type is presented. 

Section 4: Development of driveway and underlying pipe identification 

method 

In this section of the thesis, parameters for the detection of driveways and 

underlying pipes from MLSs data is investigated, followed by the development and testing 

of the identification method. Cross-section geometry together with surface type 

identification is used to formulate the identification method. Finally, results of detection 

tests on actual roadways are presented. 
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Section 5: Development of roadside features identification method 

This section contains discussion of the development and testing of roadside 

features identification algorithm, followed by results of tests carried out. These roadside 

features include presence, offset and height of curb and the area and condition of roadside 

grass. 

Section 6: Summary of research efforts, conclusions, and recommendations 

This section provides a summary of the overall research efforts, the conclusions of 

the study, and recommendations for future studies. 
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2 LITERATURE REVIEW 

 

2.1 LiDAR Technology 

Light Detection And Ranging System (LiDAR) uses shorter coherent and 

monochromatic wavelength of electromagnetic (EM) spectrum. Laser ranging was 

developed in the 1960s. Early systems used 'single beam' profiling devices and were used 

for bathymetry. With the development of more accurate geo-referencing, LiDAR terrain 

mapping began in 1970s. Development of global positioning systems and inertial 

measurement systems improved accuracy of LiDAR systems for various applications. 

Components of a typical Mobile LiDAR system (MLS) include camera, laser 

scanner, Global Positioning System (GPS), Inertial Measurement Unit (IMU), data storage 

and management systems. Complex MLS use multiple GPS receivers, an IMU and a 

Displacement Measuring Interferometer (DMI) for improved positioning. IMU measures 

body's specific force, angular rate using a combination of accelerometers and gyroscopes. 

The GPS/IMU system works together continually to report the best possible position. 

When satellite coverage is poor, the IMU fills the gap and corrects with GPS observation. 

Typical GPS receivers report positioning information at the rate of 1 - 10 Hz. IMU 

typically records positional information at 100-200 Hz. This improves the accuracy of 

LiDAR point cloud at higher speed. Yoo, et al. (2006) showed that scanner orientation on 

mobile platform can have drastic effects on the quality of data captured. 
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Mirror in the scanner spins to project laser pulses to the surface and measures the 

angle at which each pulse was fired. Scanner also receives reflected pulse from surface. 

This information is supplemented by location information for the scanner at the time of 

measurement, thus enabling calculation of coordinates of each scanned object. Typically 

scanners operate in line scan (or planar) mode. Generally, reflectivity value is measured 

as a logarithmic index of power level called Received Signal Strength Indicator (RSSI). 

Intensity measurement vary from one manufacture to another. Intensity is normalized 

between 0 and 1 or scaled to 8, 12 or 16 bit dynamic range (Kashani, et al., 2015).  

Frequency of emitted signal typically lies in the range of 50 kHz to 200 kHz 

(Large, et al., 2009). Signal with various wavelength is used based on usage such as 

meteorology, terrestrial mapping and bathymetry. Time delay between transmitted and 

reflected signals and intensity of reflected signals are measured. Using constant speed of 

light, delay is converted to slant distance. Knowing positon and orientation of sensor, 3D 

coordinates of the reflective object is calculated. 

Scanning modes are classified into two groups - phase scanning and pulse 

scanning. Phase scanning uses continuous wave laser scanners, where laser is constantly 

emitting light. Typically, this type has higher resolution and low range and is capable of 

measuring Doppler shifts. As such, it is more suitable for high velocity measurement. Data 

collection rate is also higher; in the range of 250-500 kHz (Large, et al., 2009). Pulse 

scanning devices emit single pulse or train of pulses. This type of system generally has 

long range but low resolution and cannot account for Doppler effects. Typical data 

collection rate is 100 - 10,000 Hz (Large, et al., 2009). 
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Intensity information from Mobile LiDAR system has been used in data 

registration, feature extraction, classification, damage detection, surface analysis and 

segmentation. A major application of LIDAR intensity that has been widely studied is to 

classify natural and urban surface covers such as asphalt roads, grass, trees and house roof 

(Kashani, et al., 2015). Intensity has also been used to discriminate snow covered areas 

from bare ice in a glacier, aging lava flows, rock properties, coastal land cover, flood 

modeling and wetland hydrology (Kashani, et al., 2015). Furthermore, LiDAR intensity 

has been used in conjunction with other measurements to improve the accuracy of results.  

LiDAR intensity is influenced by surface reflectance, roughness and other surface 

characteristics. In addition there are confounding variables related to intensity 

measurement such as range, angle of incidence, transmittal power, atmospheric 

transmittance, scanning environment and sensors. To minimize the effect of these 

variables and produce values that are more closely related to true surface characteristics, 

several intensity processing techniques have been developed and implemented. These 

processes have been classified as intensity correction, intensity normalization and rigorous 

radiometric correction and calibration. Intensity correction refers to adjustment made to 

the intensity values to reduce variation caused by range, angle of incidence etc. Intensity 

normalization processes increase contrast to facilitate distinction. Radiometric correction 

is a more detailed process based on calibration and mechanistic models. This process is 

most effective in improving consistency in collected data. For example, using these 

techniques, studies have shown an improvement of 9% to 31% in LiDAR-based canopy 

classification results. (Kashani, et al., 2015). 
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2.2 Surface Type Detection Techniques 

Gavilán et al. (2011) used a vehicle equipped with line scan cameras, laser 

illumination and acquisition to collect digital images. That study proposed a linear multi-

class support vector machines (SVM)-based classifier able to distinguish between up to 

10 different types of pavement (7 bituminous and 3 concrete). SVM are classifiers based 

on the concept of decision planes used to distinguish data points. Multi-class problem is 

reduced into multiple binary classification problems and optimization is carried out to find 

out best hyper-plane for overall classification. Gavilán et al. (2011) suggested that the use 

of pre-processing steps involving detection of non-crack features reduces the impact of 

false positives in identifying pavement types.  

Omer and Fu (2010) investigated the feasibility of winter road surface 

classification using low-cost RGB camera and a trained Support Vector Machine (SVM). 

Classification groups selected in the study are bare, wheel track bare, and fully snow 

covered. Like other imagery based methods, change of light intensity, shadows and noise 

are found to be main challenges in developing a robust classification system. 

Mohammadi (2012) developed a method for classification of road surface 

materials using hyperspectral data. Mean and standard deviation are found to be suitable 

spectral functions for distinguishing between asphalt, concrete and gravel (See Figure 1). 

Good, intermediate, and bad asphalt condition are differentiated using mean and image 

ratio. Usefulness of reliable reference spectra in classification of spectrally similar road 

surface material is identified. The multidimensional data help to reliably identify various 

materials under consideration due to differences in absorption and reflectivity for different 
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spectral bands. That study provides an insight into variation in reflectance for asphalt, 

concrete, and gravel against different incident wavelengths. Herold and Roberts (2005); 

Noronha et al. (2002) have shown that it is possible to map road surface condition and 

distress using hyperspectral imagery. 

 

 

Figure 1: Asphalt, concrete and gravel spectra (Reprinted from Mohammadi, 2012) 

 

Jonsson et al. (2015) used near infrared (NIR) camera images to develop a method 

that can reliably distinguish between dry, wet, icy or snow covered road surface areas. The 

study experimented with and compares various classification algorithms, namely K-

Nearest Neighbour (KNN), Neural Networks (NN), Support Vector Machines (SVM), 

Discriminant Analysis (DA), and Partial Least Squares (PLS). Different spectral response 

is obtained from laboratory and field tests for different surface types. Along with 

successful use of NIR camera system for surface status detection, that study identified 

SVM algorithm to be the most accurate type of classification. 
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2.3 Methods for Feature Extraction from Images 

Classification of features based on automated field measurement is an active area 

of research. For such classification, statistical calculations like mean, deviation, 

correlation, kurtosis, skewness, distribution etc. can be used solely or in association with 

numerical techniques like pattern recognition (e.g., classification, clustering), Neural 

Networks, K-Nearest Neighbor, Support Vector Machines, Discriminant Analysis and 

Partial Least Squares. The following paragraphs review the application of these techniques 

for extracting pavement features from camera-based and LiDAR-based images.  Principle 

benefit of using these automated means for collecting pavement condition data are safe 

data collection at traffic speeds and increasingly consistent and reliable results (Ong, et 

al., 2010; Timm & McQueen, 2004). 

Pavement types differ in granulation size, coloration and distribution. Previous 

classification attempts included implementation of multi-class support vector machines 

(SVM) on gray-scale images of road surface using four statics (average, deviation, 

skewness and kurtosis) and Fast Fourier Transform,  hyperspectral imagery using spectral 

angle mapper approach and spectral functions such as mean, standard deviation and image 

ratio, and use of support vector machines (SVM) on RGB image using Gaussian filter 

(Mohammadi, 2012; Omer & Fu, 2010; Jonsson, et al., 2015; Noronha, et al., 2002). 

Teomete, et al. (2005) studied digital image processing for pavement distress 

analysis. Pixel wise sum of 8-bit grayscale image was used without the use of any filtering 

algorithms to identify cracks with different orientations. Rajab, et al. (2008) estimated 

areas of pothole, alligator cracking and rutting based on image measurements. The result 
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is compared with traditional methods and showed close agreement. Mustaffara, et al. 

(2008) worked for development of a digital image processing and photogrammetry 

program able to classify longitudinal, transverse and alligator cracking and record 

intensity. The results obtained is found to be in 90% agreement with visual manual 

methods. Ahmed et al. (2011) used close range photogrammetric techniques for automatic 

pavement distress surveying with an aim of developing a low-cost solution. Kaseko and 

Ritchie (1993); Bray et al. (2006) presented integration of artificial neural network models 

with conventional image processing techniques and demonstrated its potential to further 

study in this area. Bray et al. (2006) classified pavement surface into cracks and non-

cracks and suggested that their results were promising to continue research in this field. 

Nguyen et al. (2009) introduced a method to detect cracks along with joint and bridged 

gap from collected imagery using anisotropy measure. This method detects cracks based 

on its color (relative darkness), continuity, and dominant orientation. 

Images collected by automated means have non-uniform background due to 

varying lighting condition, wetness, dirt, shadows and obstacles. This will cause difficulty 

for pavement image segmentation and pavement distress identification by use of imagery. 

A non-uniform background removal algorithm based on multi-scale wavelet transform 

presented in Sun and Qjan (2016) which is effective in removing non-uniform background 

and has an advantage for the extraction of tiny cracks compared to median filter algorithm 

and morphological closing algorithm. 

Yu et al. (2014) used intensity information in point clouds generated by Mobile 

LiDAR system to identify and recreate 3D crack skeleton. Crack candidates are extracted 
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by applying Otsu thresholding algorithm, then a spatial density filter is used to remove 

outliers. Crack points are grouped into crack-lines using Euclidean distance clustering and 

finally crack skeletons are extracted based on medial skeleton extraction method. The 

method is found to be promising with high density point clouds. Guan et al. (2015) used 

curb-based road extraction, georeferenced feature image generation and iterative tensor 

voting-based crack extraction from high-density point clouds collected by a mobile laser 

scanning system. Use of iterative tensor voting - a continuous grouping method - is found 

to be more powerful for low contrast georeferenced feature images containing cracks with 

non-uniform intensity and low signal-to-noise ratio. Requirement of intensive 

computation is a limitation of this method. 

Gavilán et al. (2011) smoothed the texture and enhanced linear feature in the pre-

processing phase of LiDAR data followed by non-crack feature detection to remove the 

areas of images with joints, sealed cracks, and white painting. For this task, Gavilán et al. 

(2011) proposed a seed-based approach with Multiple Directional Non-Minimum 

Suppression (MDNMS) with symmetry checks. MDNMS method defines linear feature 

as a sequence of points where image has a minimum in the direction of largest variance, 

gradient or surface curvature after performing directional pixel search. 

According to Moussa and Hussain (2011), different types of distresses, complex 

texture and color of the pavement surface are some of the challenges in developing a 

reliable and accurate automated system for detection and evaluation of pavement 

distresses. To overcome the limitation of image-based automated systems, Moussa and 

Hussain (2011) presented an automated pavement assessment system based on image 
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processing and machine learning. Their method consists of four main stages - 

segmentation, feature extraction, classification and parameters quantification. In that 

study, Support Vector Machine (SVM) is used for classification. Crack length and crack 

width are computed in the quantification stage, followed by crack type identification. 

Lewis (1995) developed a fast template matching methodology based on 

normalized cross correlation method and image processing techniques to efficiently 

identify patterns in images. That study was later expanded into fast-normalized cross-

correlation method by the author. Correlation-based methods have been used for object 

recognition, face detection, and motion analysis, etc. Studies like Tsai and Lin (2003) have 

proposed faster normalized cross-correlation methods for applications such a defect 

detection. Recently, Shen and Bao (2014) proposed a normalized cross-correlation method 

with invariant feature transform to develop a more efficient algorithm for application in 

remote sensing images. These developments have been paving the way for wider 

applications for such filter template techniques.  

2.4 Application of Laser-based Data in Roadway Infrastructure Management 

In roadway infrastructure management, laser-based measurements are most 

popular for calculation of the International roughness index (IRI), rut-depth measurements 

followed by joint-fault measurements (Timm & McQueen, 2004). 

Classification of road surface type is an essential step for developing efficient 

automated methods for roadway condition and inventory assessment. Different road 

surface types have different effect on surface drainage. Pavement surface characteristics 
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such as texture, granulation size, coloration, and porosity affect laser reflectivity; and thus 

lead to different RSSI values.  

Hans et al., (2003) qualitatively analyzed LiDAR-based elevation data for highway 

drainage analysis by comparing against standard USGS-based elevation data for 

watershed and drainage pattern delineation along a section of highway Iowa 1. The study 

used flow-modeling tools from Hydrologic Engineering Center (HEC) and GIS in 

conjunction with terrain obtained from LiDAR data and USGS Digital Elevation Model 

(DEM). The study did not find significant benefit due to additional detail from aerial 

LiDAR data in terms of highway hydrology in the area studied. Use of Mobile LiDAR for 

highway corridors significantly improves level of details captured, and as such can capture 

important drainage related features and inventory.  

2.5 Data Quality Control 

 Quality control and assurance is carried out in most states by means of computer 

diagnostics, visual verification of video images and inclusive field checks for diverse road 

types. To promote and standardize quality control in automated pavement condition data 

collection, Ong et al. (2010) investigated the inherent variability of automated pavement 

roughness and pavement surface distress data collection processes. A set of guidelines is 

proposed for pre-project, data collection, and post-processing phases based on accuracy 

and reliability of data collection processes studied. Chief findings include necessity of 

equipment vendor to test and certify for accuracy and precision before data collection as 

well as perform back-end checks for completeness and accuracy during the post-
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processing phase. Regular tests for consistency and quality is recommended for data 

collection phase (Ong, et al., 2010).  

This thesis seeks to extend the data and image analysis and processing methods 

discussed earlier to data gathered through LiDAR. Specifically, the thesis focuses on 

method for processing and analyzing reflectivity intensity and elevation data. 
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3 DEVELOPMENT OF SURFACE TYPE IDENTIFICATION 

METHOD 

 

The MLS unit was used for collecting data on 38.1 miles of road from different 

parts of Texas with concrete, dense graded, open graded, and seal coated surfaces. These 

sections are summarized in Table 1. The number of reflectivity readings represents the 

number of data points obtained within about 3 ft on each side of the MLS centerline and 

throughout the length of the roadway section. The locations of these sections are shown 

on the map presented in Figure 2. This data was used for developing and testing the 

pavement surface type detection method. Data was collected for additional sections within 

the City of College Station for the sole purpose of testing the developed method. 

 

Table 1: Road sections considered in development of pavement surface type 
identification method. 

Road Name Pavement Type Length 
Filtered No. of 
Reflectivity 
Readings 

George Bush Drive1 Concrete 4.5 miles (7.3 kms) 1,091,721 
Penberthy Road1 Concrete 2.7 miles (4.3 kms) 643,068 
University Drive1 Dense Graded 4.4 miles (7 kms) 868,329 
Texas 61 Open Graded 11.2 miles (18 kms) 1,702,827 
FM954 Seal Coated 7.7 miles (12.5 kms) 1,483,840 
FM3202 Seal Coated 7.3 miles (11.7 kms) 1,388,874 
FM26613 Seal Coated 0.2 miles (0.35 kms) 47,483 
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Figure 2: Location of road sections considered in development of pavement surface type 
identification method (numbers correspond to sites in Table 1) 

 

3.1 Pre- and Post-Processing of Reflectivity Data 

Road Doctor post-processing tool was used for extraction, filtering, and formatting 

of data to be used in the analysis. In addition, Road Doctor was found to be a useful tool 

for visualization of reflectivity, elevation, and video data, facilitating development of the 

detection algorithm. Firstly, measurement error and discrepancies related to section 

lengths and synchronization was corrected using a built-in tool within Road Doctor. Next, 

bits of data containing noise (especially at the start and end locations of each data 

collection section) were identified and noted for removal. Additionally, data collected 

while the vehicle is slowing down or standing still were removed to impart uniformity in 

resolution and reduce error. Finally, data is extracted into ASCII files for further analysis 

using tools like Python and MATLAB. 
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The reflectivity data in the ASCII files revealed differences in distribution of 

measured reflectivity between driven lane and side lane. For driven lane, distribution has 

smaller deviation and consequently smaller band-width (Figure 3). 

 

 

Figure 3: Distribution of reflectivity in driven lane and side lane 

 

Normalized reflectivity distribution for driven lane is compared with distribution 

for whole road (Appendix A). Much higher spread (deviation) is observed in case of the 

later. This is due to distortion by white stripes and attenuation of intensity with angle of 

incidence, range, and environmental factor; as discussed by Kashani, et al. (2015).  

Only reflectivity data from the driven lane were used in model development due 

to a) concise reflectivity distribution in driven lane, b) since the angle of incidence is 
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nearly vertical, there is no need for correcting reflectivity intensity, and c) driven lane does 

not require filtering to remove the effect of passing vehicles. 

Difference in reflectivity distribution between tined and un-tined concrete was 

found to be minimal. Thus, these two types were combined in the analysis of concrete 

pavement sections.  

3.2 Development of Pavement Surface Type Detection Method 

3.2.1 Formulation 

This method identifies pavement surface type in two ways: 

 Asphalt vs. concrete surfaces (Figure 4) 

 Dense graded, open graded, seal coated and concrete surfaces (Figure 5) 

For both reflectivity distributions (Figure 4 and 5), the abscissa represents 8-bit 

RSSI values, ranging from 0-255 as measured by Mobile LiDAR System used in 

this study. The following can be observed from these distributions: 

 Reflectivity distribution for open graded and dense graded asphalt are very 

similar.  

 Reflectivity distribution for concrete section is more uniform with less 

kurtosis.  

 Seal coated sections exhibit reflectivity in between concrete and open 

graded surface.  

 Compared to concrete surfaces, asphalt surfaces exhibit higher variation.  



 

22 
 

 

 
Figure 4: Distribution of reflectivity intensities for asphalt and concrete 

 

 
Figure 5: Distribution of reflectivity intensities for different pavement types 
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To discover discernible parameters for use in the surface identification algorithm, 

various statistical metrics were studied. These metrics include Mean, Variance, Skewness, 

Kurtosis, Spectral analysis and check for periodicity are statistical metrics studied for 

reflectivity values. As can be seen from Figure 6, the mean of reflectivity relatively 

appears to be the most promising metric for distinguishing between the pavement types 

considered in the research. However, skewness is quite distinct for seal coated sections, 

and thus could enhance the accuracy of the developed algorithm when considered along 

with the mean. As presented in Table 2, skewness for seal coated section was consistently 

less than that for other pavement types. 

 

Table 2: Distribution of skewness for different pavement types 

Pavement Type Skewness 

Open Graded 0.776 
Dense Graded 3.569 

Seal Coated -0.550 

Concrete 0.825 
 

 

To understand the effect of the section length on these statistical metrics, the 

analysis was repeated for multiple section lengths: 1/10th of a mile (528', 160.9m), 1/20th 

of a mile (264', 80.7m), 1/40th of a mile (132', 40.2m) and 1/80th of a mile (66', 20.1m). 

The pattern observed for the 0.05-mile section length was observed for all other section 

lengths.   
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Figure 6: Variation in statistical metrics for pavement surfaces considered in this study. 
Concrete sample size (n) = 144, dense graded n = 88, open graded n = 223, seal coated 

n = 301. Each sample unit is 0.05 miles in length. 

 

Figure 7 depicts spectral density of reflectivity values. Seal coated section exhibits 

multiple peaking for selected non-equispaced fast fourier transform value but no 

discernable pattern. Lack of any significant spatial periodicity can be observed from the 

figure. Thus, spectral distribution of reflectivity intensities was excluded from further 

consideration. 
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Figure 7: Periodogram power spectral density (PSD) estimate of reflectivity values 

 

In lack of periodicity and any observable patterns and similarity in variance and 

kurtosis distribution, mean and skewness were deemed the most suitable statistical metrics 

for developing the pavement surface type detection algorithm. 

3.2.1.1 Identification Based on Skewness and Mean 

In this method, surface type is identified based on skewness and closeness to mean 

of reference distributions for known surface types (see Figure 8). These properties are 

computed as follows: 
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Skewness: 

ܵ௞ ൌ 	ܧ ቈ൬
ܺ െ 	μ
ߪ

൰
ଷ

቉ ൌ 	
ሾሺܺ	ܧ െ 	μሻଷሿ

ଷߪ
 

Where, Sk = Skewness (Pearson’s moment coefficient of skewness) 

X = Random variable 

µ = Mean 

 σ = Standard Deviation 

Closeness to mean: 

∆μோ௜ ൌ |	μோ	்௘௦௧ െ	μோ௜	|	 

ܫ ൌ  ሺ∆μோ௜ሻ݊݅ܯ	ݎ݋݂	݅

Where, μோ	்௘௦௧ = Mean of reflectivity distribution for test section 

μோ௜ = Mean reflectivity distribution for reference distribution i 

∆μோ௜ = Absolute difference in means μோ	்௘௦௧	and μோ௜ 

I = i corresponding to identified reference section 

When mean of reflectivity values for a test section is relatively equidistant from 

mean of seal coated and concrete, or mean of seal coated and dense graded reference data, 

skewness is used to distinguish seal coated section from other surface types. Otherwise, 

type corresponding to the closest reference mean is identified as surface type for the test 

section (see Figure 9).  
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Figure 8: Steps involved in identification based on skewness and mean 

 

The thresholds for mean range and skewness used in this algorithm were 

determined based numerous tests and iterative sensitivity analysis.  
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Figure 9: Graphical depiction of detection of pavement surface type based on closeness 
to mean 

 

A reference data set was created for each surface type to establish reference 

distributions for these surface types.  Each reference data set represents the reflectivity 

values extracted from driven lane of road sections with known surface type.  The surface 

types are:  

 Concrete surface 

 Dense graded asphalt surface 

 Open graded asphalt surface 

 Seal coated asphalt surface 

 Asphalt surfaces (includes dense graded asphalt, open graded asphalt, and 

seal coated) 
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The size of each reference data set was varied to determine the effect of number of 

sections on the reference distribution. In each case, a portion of reflectivity data from each 

road surface type was used as known data (reference data) and remaining portion was used 

as test data. Reference data and test data were always selected at random from available 

pool of data. This will remove any inherent biases by user selection.  

A computer code was developed to carry out this task automatically based on user-

defined instructions. Required set of instruction include list of filenames containing data 

to be used, location range of data to be extracted, width of road section to consider relative 

to vehicle position, and other parameters such as data description and output location. 

These instructions are followed by length of test sections to use and percentage of data to 

be used as reference data. The code allows the user to specify the number of data points 

to use for each set and whether to sample randomly or sequentially. The program then 

divides the total road length into sections of user-defined lengths. Specified percentage of 

these sections are randomly selected as reference data. These sections are grouped based 

on surface types and saved as reference data sets.  

3.2.2 Results 

The charts presented in Figure 10 show variation in accuracy for classification into 

four categories – concrete, dense graded, open graded and seal coated pavements. 

Reference data size and test length are varied (from 1/80th of a mile to 1/10th of a mile) for 

each case. Accuracy is computed as: 

*100
TP

Accuracy
N

  
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Where TP = True Positives (number of correctly identified sections); N = Total 

number of sections in the test data set. 

While identifying between four types – Concrete, Dense Graded, Open Graded and 

Seal Coated pavement surfaces, accuracy remains high for concrete sections. 

Identification of dense graded vs open graded section is found to be most difficult. This is 

due to the fact that reflectivity distribution for these two pavement types are very close to 

each other. It is observed that overall accuracy is only slightly increased when the size of 

the reference data set increases many folds. For example, in case of test length of 1/80th 

of a mile, increasing reference data size from around half a million points to 6.5 million 

points, the increase in accuracy is less than 3.5%. The dotted trend line illustrates trend of 

overall accuracy as the reference size and test lengths are increased. Change in accuracy 

stayed within a range of about 6% for all cases. 

Similar analysis was carried out for asphalt vs concrete identification. Overall 

accuracy of more than 95% was achieved, as shown in Figure 11, for different reference 

data size and test lengths. Change in accuracy stayed within a range of about 5.5%. 
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Figure 10: Overall accuracy – 4 category classification 

 

 

Figure 11: Overall accuracy - asphalt vs concrete identification 

 

As an example, taking a closer look for a case where test length is 1/20th of a mile 

(i.e. 0.05 miles), Figure 12, different reference data size was used starting from 400 values 

(100 for each pavement type) to about 6.5 million values. Change in accuracy was very 
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small and remained within a small range of about 3% for asphalt vs concrete test and about 

6% for 4 categories test. 

 

 

Figure 12: Reference data size and overall accuracy for test length of 0.05 miles 

 

Based on Appendix B, identification accuracy for sections not represented in 

reference data was low. Reflectivity is found to be dependent on pavement wetness, 

surface asphalt concentration, polishing of aggregates, and other distresses. Identification 

accuracy for such sections was found to be poor. 

The graph below (Figure 13) depicts accuracy of prediction based on mean and 

skewness for 4 - categories identification (blue bars) and asphalt vs concrete identification 

(green bars). In this graph, accuracy is calculated for each pavement surface type, 

separately. In this case, 20% of randomly selected data is used as a reference data and the 

remainder as test data. The highest accuracy of detection was achieved for concrete surface 

(95.39%) and the lowest accuracy of detection was for dense graded surface (63.33%). 
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For open graded sections, it is found to be 88.44% and in case of seal coated sections it is 

92.58%. For distinguishing between asphalt and concrete, accuracy is found to be 98.08% 

for asphalt surface and 95.39% for concrete surface.  

 

 

Figure 13: Accuracy of prediction based on mean and skewness for 0.05 mile (264', 
80.47m) test sections 

 

3.2.3 Adjustment Based on Adjacent Section 

For network-level studies and applications, pavement surface type is likely to 

extend for a long segment of the road (e.g., 10 miles). This information is likely to improve 

the accuracy of detection at the cost of reduced ability to detect small changes in surface 
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type (e.g., patchwork). Additional steps were added to the surface type detection algorithm 

to account for this knowledge. These additional steps are depicted in Figure 14 and are 

described as follows: 

 Current identification is compared with identification of previous adjacent five 

sections and subsequent adjacent five sections. 

 If three out of five identifications in either direction are the same, identification for 

current test section is set to that identification. Algorithm is stopped at this point. 

 If there is a difference, the next 11 identifications are compared. 

 If 6 out of 11 of those is the same, identification is set to the common value. 

Algorithm is stopped at this point. 

 If no agreement is achieved, no change is made to identification postulated by the 

skewness and mean algorithm is kept. 
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Figure 14: Steps involved in adjustment of pavement surface type based on adjacent 
section 

 

To arrive at the thresholds used in this algorithm (3 out of 5 and 6 out of 11), 

extensive tests were carried out comparing accuracies for test sections used in the study.  

Based on the Adjustment by Adjacent Section, the accuracy for concrete and 

asphalt sections increased to 100%. Figure 15 reveals that the accuracy in identifying 
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dense graded sections has increased to 73.33%. Similarly, the accuracy of open graded 

and seal coated sections increased to 89.33% and 97.42%, respectively.  

 

 
Figure 15: Accuracy of prediction with adjustment based on adjacent section for 0.05 

mile (264', 80.47m) test sections 
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3.3 Grass Detection 

3.3.1 Formulation 

Figure 16 depicts histograms for reflectivity distribution in different pavement 

material along with distribution for pure roadside grass. Pure roadside refers to continuous 

roadside grass areas (i.e., after removal of driveways and dirt areas). Reflectivity 

distribution for grass is quite distinct from asphalt pavements. When comparing with 

concrete pavement, the distinction is not as much. This translates to reduced accuracy 

when grass section is adjacent to a concrete section. This difficulty was observed during 

development of pavement surface type identification method in Section 3.2. The 

implications of this is further discussed in subsequent sections. Reflectivity distributions 

in Figure 16 consider reflectivity values for pavement within 1m from center of MLS 

vehicle while reflectivity values for grass section is aggregated between edge of pavement 

to 4m into the roadside. Different studies discussed in Section 2 (e.g., Kashani et al. 2015) 

observed attenuation of reflectivity with range and angle among other environmental 

factors. Same phenomena was observed during development of pavement surface type 

identification method (Section 3.2). Attenuation is further discussed in Section 3.3.1.1. 

Figure 17 shows such aggregated reflectivity distribution between all of roadside and pure 

grass sections. Reflectivity for both cases is aggregated from edge of pavement to distance 

of 4m from MLS vehicle center into the roadside. Since area occupied by driveways and 

discontinuities is much less compared to grass areas, distribution observed is almost 

identical. 
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Figure 16: Reflectivity distribution for different pavement material and grass. 

 

Figure 17: Reflectivity distribution comparison between roadside and pure grass 
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Reflectivity distribution in dirt section is observed to be slightly higher than for 

grass section. Even though it is inseparable by statistical means developed thus far, this 

observation can be useful in identifying dirt patches in grassy areas. A portion of available 

dirt section (from LP79N road) contained asphalt and grass impurities. Hence double 

peaking is observed in its distribution. 

3.3.1.1 Attenuation of Reflectivity Values 

Figure 18 shows reflectivity histograms for pure grass areas as the LiDAR readings 

move away from the MLS vehicle center. Abscissa denote reflectivity values; ordinate on 

the left denotes proportion for histograms; and ordinate on the right denotes distance from 

center of MLS vehicle. When the mean reflectivity is plotted on this chart, a clear 

attenuation trend is observed. Further, Figure 19 highlights this attenuation with mean 

values and standard deviation of reflectivity.  
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Figure 18: Attenuation of reflectivity for grass sections  

 

Figure 19: Variation of mean and standard deviation of reflectivity values for grass 
(transverse direction) 
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Figure 20: Reflectivity distribution in grass (first distance range) 

 

At a distance of 2 to 2.5m from the center of the MLS, the surface contains asphalt 

and dirt impurities, as made evident by the shape of the histogram and change in 

attenuation trend for the first distance range (Figure 20). Therefore, a correction in 

reflectivity distribution was applied for this range to remove the effect of asphalt 

impurities and a new mean was calculated. Reflectivity correction is the difference 

between mean reflectivity at a certain distance from MLS center and reflectivity at a 

distance of 2.5m from MLS towards the roadside (distance at which roadside grass started 

for the test section).  Reflectivity difference is computed as follows: 
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ݎ∆ ൌ 	μ௥@ௗ െ	μ௥@ଶ.ଶହ௠ 

where, μ௥@ௗ = Mean of reflectivity distribution at a transverse distance d 

μ௥@ଶ.ଶହ௠ = Mean of reflectivity distribution at a transverse 

distance of 2.25m 

A regression analysis was conducted (see Figure 21) to determine the reflectivity 

correction at any given point as a function of transverse distance from the MLS center 

towards the roadside (d).  The best fit equation is as follows: 

ݎ̅ ൌ 	8.03݀ െ 17.82 

where, ̅ݎ = Reflectivity correction 

d = Transverse distance from the MLS center (2.25m < d < 6m) 

Attenuation-corrected reflectivity is computed as follows: 

ݎ ൌ ௜ݎ െ	  ݎ̅

where, ݎ௜ = Initial reflectivity before correction 

As we can observe, there is miniscule difference in linear and quadratic attenuation 

equations and attenuation behavior can be approximated as a linear function of distance 

from MLS center for efficiency and simplicity. Figure 22 depicts attenuation corrected 

reflectivity for pure grass at different distance and Figure 23 depicts reflectivity 

distribution in different pavement types with attenuation correction applied to grass 

reflectivity. Mean and standard deviation is presented in Table 3. In comparison with 

Figure 16, distribution of reflectivity in grass is more distinct from pavement surface types 

after applying the attenuation correction. 
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Figure 21: Attenuation correction equation 

 

 
Figure 22: Attenuation corrected reflectivity distribution for pure grass. 
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Figure 23: Reflectivity distributions with attenuated corrected pure grass and fitted 
normal distributions 

 

Table 3: Mean and standard deviation for reflectivity distributions with attenuated 
corrected pure grass 

  Open Graded Dense Graded Seal Coated Concrete Grass 
Mean 146.84 142.59 160.86 185.91 200.45

Standard Deviation 11.62 10.37 12.91 8.48 8.23

 

3.3.1.2 Identification of Grass 

Normal distribution is fitted to the reflectivity distributions as shown in Figure 23. 

The choice of normal distribution was made based on histograms of reflectivity 

distribution (bin size 1 for 8-bit integer reflectivity representation), and simplicity in 

estimation of probability for the detected material type. Method for identification of grass 
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is postulated with the aim of distinguishing grass from pavement material. As such, 

identification between grass vs asphalt and grass vs concrete are the two problems to be 

solved in this section (Figure 24 and Figure 25). Parameters required for normal 

distribution (mean and standard deviation) are presented in Table 4.  

 

 

Figure 24: Reflectivity distributions for asphalt and attenuated corrected pure grass 
with fitted normal distributions 
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Figure 25: Reflectivity distributions for concrete and attenuated corrected pure grass 
with fitted normal distributions 

 

Table 4: Mean and standard deviation for reflectivity distributions in Asphalt, Concrete 
and Grass surface 

  Asphalt Concrete Grass 
Mean 153.656 185.91 200.45 
Standard Deviation 14.45 8.48 8.23 

 

 

Identification accuracy for each material type is calculated based on these 

probability distributions functions (Figure 24 and Figure 25). The underlying assumption 

is that the material (or rather reflectivity) being tested belongs to one of these types. 

Probability for a value to belong to each of the material type is calculated and rescaled 

such that the summation of probabilities is one. The confidence level for a test point to be 
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grass is depicted in Figure 26 for asphalt roads and in Figure 27 for concrete roads. The 

confidence level is computed as follows: 

்݂݀݌ ௘௦௧	௜ ൌ ,݅		ݕݐ݅ݒ݅ݐ݈݂ܴܿ݁݁	݁ܿ݊݁ݎሺܴ݂݂݁݁݀݌  ሻ݁ݑ݈ܸܽ	ݐݏ݁ܶ

ܿ௜ ൌ
்݂݀݌ ௘௦௧	௜

∑ ்݂݀݌ ௘௦௧	௞
௡
௞

 

where, ݂݀݌ = probability density function 

ܿ௜ = confidence level for test value to be material i 

݊ = total number of material in consideration (two for asphalt vs 

grass or concrete vs grass) 

As evident in these figures, for a reflectivity value, confidence in grass 

identification for concrete road is lower than for asphalt road. This is due to the fact that 

reflectivity distribution for concrete is much closer to that of grass. Therefore, using the 

method developed, grass area extraction for asphalt road will be more accurate. 
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Figure 26: Confidence level for grass identification based on attenuation-corrected 
reflectivity (for asphalt roads only)

 

Figure 27: Confidence level for grass identification based on attenuation-corrected 
reflectivity (for concrete roads only) 
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3.3.2 Results 

To test the proposed roadside grass detection method, one thousand random 

samples were extracted from each of the known surface types – open graded, dense graded, 

seal coated, concrete, and pure grass. The road sections used for this tests are presented 

earlier in Table 1. The reflectivity values for the samples were processed using the 

developed algorithm. Results obtained are presented in Table 5. When the pavement is 

asphalt (i.e., the identification is asphalt vs. grass), grass is identified accurately for 98.7% 

of the samples. When the pavement is concrete (i.e., the identification is concrete vs. 

grass), 90.3% of grass samples were correctly identified and 16.3% of concrete points 

were misidentified as grass. So clearly, the result is better for roadside grass detection in 

asphalt road as depicted in Figure 26. 

 

Table 5: Grass detection test results 

  
SN 

  
Actual Type 

Percent Reflectivity Points Identified As 

Asphalt Concrete Grass 
1 Grass 1.3 ~ 98.7 

2 Open Graded 99.7 ~ 0.3 

3 Dense Graded 99.6 ~ 0.4 

4 Seal Coated 97.6 ~ 2.4 

5 Grass ~ 9.7 90.3 

6 Concrete ~ 83.7 16.3 
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4 DEVELOPMENT OF DRIVEWAYS AND UNDERLYING PIPES 

IDENTIFICATION METHOD 

 

This section deals with development of a method for the identification of 

driveways and estimation of underlying stormwater pipe length. The method extracts 

location, width, elevation difference across driveways, and driveway surface material 

type. A section of FM320 road is used for development of the method. The two lane seal 

coated section is of 470m in length and contains roadside ditches on both sides. Table 6 

presents driveway information collected on the section based on visual observation. For 

testing, two sections were used: another FM320 section 5000m in length and a 5300m 

section of FM2661. These sections also contain two lane – seal coated roadway with 

roadside ditch in most places. The FM2661 section contains paved and mostly flat 

driveways whereas the FM320 section (used for testing) contains mixed driveways 

(gravel, grass, deteriorated asphalt, etc.).  

 

Table 6: Visual observation of FM320 driveways used for method development 

SN 
Location 
Start 

Location 
End 

Remark Material 

1 32 42 Driveway Dirt 

2 62 77 Driveway Dirt + Asphalt 

3 181 188 Driveway Dirt 

4 200 206 Driveway Concrete 

5 223 229 Driveway Asphalt + Concrete 

6 235 254 Driveway Concrete 
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Table 6 Continued 

SN 
Location 
Start 

Location 
End 

Remark Material 

7 258 264 Driveway Grass 

8 265 276 Driveway Asphalt 

9 359 370 Driveway Dirt 

10 445 459 Adjoining road Concrete 

 

4.1 Formulation 

In order to detect a driveway and estimate relevant metrics, the primary challenge 

lies in detecting changes in elevation distribution and preventing false positives for 

elevated areas lacking proper ditches that are not driveways. In theory, a properly designed 

section without sharp changes in ditch geometry, jump in ditch bottom elevation can be 

used to detect presence of driveways. However, in many practical scenarios, this is not 

sufficient as sudden jump in elevation might not be present all the time and there may be 

instances where a sudden jump detected is due to change in longitudinal profile of the 

ditch (or road section) rather than due to presence of a driveway. To overcome this issue, 

the study considers cross sectional geometry rather than longitudinal, in conjunction with 

additional criteria such as smoothness and material type to verify suspected driveways. 

Figure 28 depicts the steps involved in the postulated method for driveway 

identification. This method applies to roadways with open ditches only.  In other words, 

this method does not apply to roadways with curb and gutter. Elevation and reflectivity 

are extracted from mobile LiDAR data. The governing assumption for detecting 

underlying pipes and estimating pipe length is that every driveway over a ditch has an 



 

52 
 

 

underlying pipe. In all cases, the driveway width is assumed to be equal to the pipe length.  

This introduces a limitation in estimating driveway width when there is a protruded pipe. 

Additionally, start-end elevation difference ( E ) is estimated using this method based on 

average of three consecutive cross sections on either side of the detected driveway, as 

follows: 

start endE E E    

where, ܧത௦௧௔௥௧ = mean of three consecutive ditch-bottom elevation before 

a driveway starts 

 ത௘௡ௗ = mean of three consecutive ditch-bottom elevation after aܧ

driveway ends 

 

 

Figure 28: Steps involved in postulated method for driveway identification 
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4.1.1 Detection of Ditches Using Cross Section Geometry 

The presence of roadside ditches is detected based on differences in cross sectional 

elevation, as presented in Figure 29. Elevation data is extracted from Mobile LiDAR Data. 

Minimum roadside elevation and average road surface elevation are calculated. This 

calculation is followed by ditch detection formulation. The criterion for the presence of a 

ditch is that the difference between the average road surface elevation and minimum 

roadside elevation should greater than 0.12m. This tolerance value is required since in 

many cases driveways are depressed over a ditch, either by design or due to settlement or 

erosion. The criterion for the presence of a driveway is that the ditch is continuously absent 

for more than 3.5m. These threshold values were determined in an iterative process that 

included many trials. 

 

 

Figure 29: Identification of driveways based on cross section geometry. 
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4.1.2 Verification of Driveways Based on Material Type 

A reference data set is defined for the road section under consideration. To improve 

the accuracy of material detection - as discussed earlier in Section 3.2 of this study, the 

dataset should contain known material reflectivity for road and roadside feature only. 

Reflectivity values for the suspected driveway area is extracted and tested against known 

values using methods developed in Section 3.2. If grass reflectivity values are used in the 

reference data to distinguish between driveway material and roadside material, grass 

driveways cannot be identified using this technique. Steps involved in this method are 

presented in Figure 30. 

 

 

Figure 30: Verification of driveway detection based on material type. 
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4.1.3 Verification of Driveways Based on Smoothness 

Final step in the developed method is to verify the suspected driveways based on 

measuring elevation change in the suspected driveway area. The basic assumption here is 

that the driveway has a smooth flat surface. This is based on the assumption that driveways 

are longitudinally smoother than dirt pile blocking the ditch, for example. Figure 31 

depicts steps developed for this purpose. Elevation data for suspected driveway area is 

extracted. Maximum and minimum elevation in each longitudinal line (based on data grid) 

is calculated. To account for anomalies in the collected data, maximum elevation is 

defined as an average of ten high elevations, and minimum is defined as an average of ten 

low elevations. Driveway flatness (i.e., surface smoothness) is defined as the minimum of 

differences in elevation between maximum and minimum values of all longitudinal lines 

along the driveway (see Figure 32). This measure of smoothness ensures that the gradient 

in transverse direction does not influence smoothness measure. Based on this measure of 

smoothness, a value of zero corresponds to perfectly smooth surface. If smoothness is less 

than 0.02m, then the suspected area is verified as a driveway. Multiple trials are carried 

out to arrive at this threshold value. 
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Figure 31: Verification of driveways based on surface smoothness 

 

 

Figure 32: Calculation of driveway smoothness 



 

57 
 

 

4.2 Implementation 

Implementation of the proposed method requires known (reference) reflectivity 

data set for grass and pavement materials and a priori information – whether grass 

driveways are present or absent. If grass driveways are presumed to be absent for a test 

section, then ‘detection of driveways based on material’ portion of developed 

identification method can be used. For the following tests being carried out, it is assumed 

that driveway material are either asphalt or concrete, but not grass. To test the proposed 

method a 5,300m section of FM2661 and another 5,000m section of FM320 are used. The 

FM2661 section has proper, undamaged driveways and intersections with clear separation 

from adjoining grass patches (see Table 7). On the other hand, the FM320 section has 

many imperfect dirt and dilapidated driveways unlike the ones used for development (see 

Table 8). The developed method was tested using these two scenarios. An example of 

driveway identification is presented in Figure 33. Blue dots in image on the right represent 

correctly identified driveway. 
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Table 7: Visual observation of driveways used for testing (FM2661 Section) 

Driveway 
ID 

Location 
Start (m) 

Location 
End (m) 

Material Remark 

1 240 254 Concrete Driveway 
2 402 412 Asphalt Driveway / Adjoining Road 
3 454 467 Asphalt Driveway / Adjoining Road 
4 763 794 Concrete Driveway 
5 854 865 Asphalt Driveway / Adjoining Road 
6 1229 1245 Dirt + Asphalt Driveway 
7 1275 1307 Asphalt Wide Adjoining Road 
8 1491 1502 Concrete Driveway 
9 1705 1707 Asphalt Driveway / Adjoining Road 
10 1823 1832 Asphalt Driveway / Adjoining Road 
11 2115 2128 Asphalt Driveway / Adjoining Road 
12 2451 2462 Concrete Driveway 
13 2701 2712 Asphalt Driveway / Adjoining Road 
14 2861 2882 Concrete Driveway 
15 3557 3568 Asphalt Driveway / Adjoining Road 
16 4081 4096 Concrete Driveway 
17 4344 4361 Asphalt Adjoining Road 
18 5201 5242 Asphalt Wide Adjoining Road 
19 5319 5329 Concrete Driveway 
20 5444 5458 Concrete Driveway 
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Table 8: Visual observation of driveways used for testing (FM320 Section) 

Driveway 
ID 

Location 
Start (m) 

Location 
End (m) 

Material Remark 

1 1132 1137 Dirt (Gravel) Driveway 
2 1170 1176 Asphalt Driveway 
3 1203 1212 Concrete Driveway 
4 1248 1257 Dirt (Gravel) Driveway 
5 1287 1299 Dirt Driveway 
6 1361 1371 Dirt + Grass + Asphalt Driveway 
7 1442 1456 Dirt + Concrete Driveway 
8 1488 1497 Asphalt + Gravel + Dirt Driveway 
9 1599 1605 Dirt Driveway 
10 1724 1738 Dirt Damaged 
11 1871 1879 Gravel Driveway 
12 1993 2014 Asphalt Adjoining Road 
13 2499 2508 Concrete Driveway 
14 2601 2616 Concrete Driveway 
15 3025 3035 Dirt + Grass Driveway 
16 3040 3040 Concrete Driveway 
17 3160 3170 Concrete Driveway 
18 3204 3211 Dirt Driveway 
19 3250 3257 Grass + Dirt Driveway 
20 3262 3273 Concrete Driveway 
21 3332 3338 Concrete Driveway 
22 3464 3473 Grass + Gravel Driveway 
23 3635 3643 Asphalt Driveway 
24 3763 3773 Concrete Driveway 
25 3793 3802 Concrete Driveway 
26 3937 3944 Concrete Driveway 
27 3959 3970 Grass + Gravel Driveway 
28 4253 4262 Grass + Dirt Driveway 
29 4274 4282 Grass + Dirt Driveway 
30 4454 4484 Asphalt Adjoining Road 
31 4589 4598 Grass + Dirt Driveway 
32 4844 4852 Grass + Dirt Driveway 
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Figure 33: An example driveway identified by the developed method (FM320 Section). 
Left: Elevation, Right: Distance along road and offset from MLS vehicle. 

 

4.3 Results 

Table 9 summarizes the results of this identification method for driveways on 

FM2661 test sections. These results include estimated width of underlying pipes, start and 

end elevation difference, and driveway material type. All the 20 driveways (and adjoining 

roads) present in this test section were correctly identified. One asphalt driveway covered 

with dirt was misidentified as concrete. Larger elevation difference and small width might 

indicate scouring at each end. This could not be verified using MLS videos. 

Table 10 presents the results of this identification method for driveways on FM320 

test sections. Out of 32 driveways present, 22 were correctly detected by the developed 

method. Additionally, two false positives were found. Most of the driveways in this 

section have grass overgrowth, dirt and gravel cover on the driveways driving the 

reflectivity values to be between that of concrete and grass. Careful study of MLS video 
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revealed lack of proper ditch in many areas of this test section. The algorithm searches for 

ditch and continuous absence of ditch over a length is postulated as suspected driveways. 

Lack of proper ditch, therefore, aided in reduced accuracy in identification of driveways 

and underlying pipes. 

 

Table 9: Results of driveways identification (FM2661) 

Driveway 
ID 

Location 
Start (m) 

Location 
End (m) 

Width 
(m) 

Elevation 
Difference 
(m) ( E ) 

Material 

Driveway 
Presence 
Correctly 
Identified? 

1 245.91 251.51 5.6 0.24 Concrete YES 

2 401.81 414.01 12.2 -0.30 Asphalt YES 

3 454.81 464.61 9.8 -0.08 Asphalt YES 

4 776.71 790.11 13.4 -0.08 Concrete YES 

5 850.71 865.21 14.5 -0.17 Asphalt YES 

6 1234.71 1250.01 15.3 -0.07 Concrete YES 

7 1276.91 1306.41 29.5 0.33 Asphalt YES 

8 1489.31 1503.01 13.7 -0.06 Concrete YES 

9 1705.31 1716.81 11.5 -0.06 Asphalt YES 

10 1824.21 1832.01 7.8 0.20 Asphalt YES 

11 2116.61 2127.71 11.1 0.67 Asphalt YES 

12 2454.31 2459.21 4.9 -0.12 Concrete YES 

13 2699.01 2716.01 17.0 -0.68 Asphalt YES 

14 2862.31 2881.51 19.2 -0.27 Concrete YES 

15 3554.31 3569.31 15.0 -0.35 Asphalt YES 

16 4085.81 4097.91 12.1 0.72 Concrete YES 

17 4344.71 4362.01 17.3 0.26 Concrete YES 

18 5203.31 5239.41 36.1 -0.85 Asphalt YES 

19 5320.21 5330.71 10.5 -0.06 Concrete YES 

20 5443.91 5456.31 12.4 -0.02 Concrete YES 
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Table 10: Driveways identification test results: FM320 Section 

Driveway 
ID 

Location 
Start (m) 

Location 
End (m) 

Width 
(m) 

Elevation 
Difference 
(m) 

Material 

Driveway 
Presence 
Correctly 
Identified? 

1 1133.91 1140.31 6.4 0.15 Concrete YES 

2 1172.01 1178.01 6.0 0.11 Asphalt YES 

3 1204.81 1211.01 6.2 -0.12 Concrete YES 

4 1231.81 1236.31 4.5 0.17 Concrete NO 

5 1250.01 1261.31 11.3 -0.23 Concrete YES 

6 1364.21 1370.51 6.3 0.23 Concrete YES 

7 1451.51 1455.21 3.7 0.56 Concrete YES 

8 1599.51 1604.31 4.8 0.01 Concrete YES 

9 1872.11 1878.71 6.6 0.30 Concrete YES 

10 1994.51 2014.31 19.8 0.25 Asphalt YES 

11 2015.81 2025.21 9.4 0.28 Concrete NO 

12 2499.91 2507.11 7.2 0.06 Concrete YES 

13 2602.21 2616.11 13.9 0.05 Asphalt YES 

14 3028.41 3031.61 3.2 -0.03 Concrete YES 

15 3160.21 3173.21 13.0 -0.24 Concrete YES 

16 3205.61 3210.91 5.3 -0.07 Concrete YES 

17 3334.11 3337.71 3.6 0.14 Concrete YES 

18 3469.21 3472.81 3.6 0.45 Concrete YES 

19 3637.51 3643.31 5.8 0.28 Asphalt YES 

20 3766.81 3772.81 6.0 0.31 Concrete YES 

21 3793.51 3802.41 8.9 0.13 Concrete YES 

22 4452.81 4486.21 5.4 0.15 Asphalt YES 

23 4586.91 4597.41 10.5 0.00 Concrete YES 

24 4848.01 4853.91 5.9 -0.36 Concrete YES 
  



 

63 
 

 

5 DEVELOPMENT OF ROADSIDE FEATURES 

IDENTIFICATION METHOD 

 

This section deals with development of methods for detecting grass areas and curbs 

from LiDAR data. Further relevant properties like grass condition, height and location of 

detected curbs are calculated. Sections of road from FM95, FM320 and FM2661 are used 

for developing the grass area extraction. Two sections from George Bush Dr. and FM320 

are used for developing the curb detection algorithm. 

Developed algorithm was converted into multiple codes and subroutines for testing 

and verification. Table 11 summarizes features of roadway sections used for testing the 

developed algorithms. 

 

Table 11: Description of actual sections used for testing roadside feature identification 
(grass area extraction, grass condition, presence of curb, curb height, and curb 

location)  

Section 
Pavement 
Type 

Length 
(m)

Curbs Ditches 
Driveways 
(Intersection)

FM320 SB 1 Asphalt 1,027 Absent Present Present 

FM320 SB 2 Asphalt 10,729 Absent Present Present 

FM95 NB 1 Asphalt 1,026 Absent Present Present 

FM95 NB 2 Asphalt 1,040 Absent Present Present 

FM95 NB 3 Asphalt 1,060 Absent Present Present 

FM2661 WB 1 Asphalt 1,985 Absent Present Present 

GB WBOL 1 Concrete 815 Present Absent Present 

GB WBOL 2 Concrete 815 Present Absent Present 

GB EBOL 1 Concrete 932 Present Absent Present 

GB EBOL 2 Concrete 933 Present Absent Present 

PBY NB 1 Concrete 616 Present Absent Present 
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5.1 Grass Area Extraction 

5.1.1 Formulation 

Figure 34 depicts typical distribution of reflectivity values as we move from 1.5m 

from the MLS center toward the roadside grass area. Clear change in distribution is 

observed across the pavement edge. Therefore, it is possible to distinguish and extract 

grass areas from pavement material based on reflectivity. Subsequent detection 

methodology is based on this observation to a large extent. 

 

 

Figure 34: Change in reflectivity distribution across road edge. 
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5.1.1.1 Filtering of Reflectivity Values 

Figure 35 depicts distribution of reflectivity values for a section of FM320. 

Ordinate axis corresponds to perpendicular distance from direction of travel, 0 being the 

center of the MLS vehicle. The blue dots in the reflectivity distribution represent grid 

points without reflectivity values. In general, density of collected data points decrease as 

we move away from the MLS vehicle toward the roadside. This is a problem when trying 

to extract grass area and classify grass condition. In addition, local variation and anomaly 

is observed in raw reflectivity values. In order to extract and identify aggregate features 

from reflectivity intensities, it is important to apply a filtering technique such that 

anomalies are accounted for. After carrying out multiple trials, a filtering technique was 

developed as presented in Figure 36. 

 

 
Figure 35: Distribution of reflectivity for a road section. 
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Figure 36: Developed filtering technique for reflectivity and elevation distribution 

 

Empty cells, if present, are replaced with local mean. Initial grid size for local 

mean computation is 3 by 3. If there are any more empty cells, mean grid size is increased 

by 2 units (5 by 5, 7 by 7 and so on) until there are no empty cells. Median filtering is then 

applied to remove anomalies. A pictorial representation of the filtering process is given in 

Figure 37. Reflectivity distribution after application of attenuation correction on the 

filtered reflectivity is given in Figure 38.  
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Figure 37: Application of filtering technique 

 

 

Figure 38: Reflectivity distribution after attenuation correction 

 

5.1.1.2 Statistical Parameters for Extraction 

Statistical approach is implemented for the extraction of grass area. As presented 

earlier in Figure 26 (Section 3.3.1), to be able to detect roadside grass for asphalt roads 

reliably (80% or higher confidence), the reflectivity value should be greater than 187.69.  
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For concert roads (Figure 27), the reflectivity has to be higher than 200 for the same 

confidence level. However, the upper limit of grass reflectivity is set to 213.99; which 

corresponds to nearly 100 confidence for both asphalt and concrete roads. 

Steps involved in extraction of grass area for the method developed are presented 

in Figure 39. Figure 40 again highlights the importance of filtering and attenuation 

correction in extraction of grass area.  

 

 

Figure 39: Steps involved in extraction of grass area 

 

 

Figure 40: Road side grass extracted with 80% confidence for asphalt road using (a) 
raw reflectivity, (b) filtered reflectivity and (c) attenuation corrected reflectivity 
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5.1.1.3 Classification of Grass Condition 

After grass area is extracted, areas with reflectivity closer to mean of grass 

distribution is considered as a ‘good’ grass and those further away in either direction are 

considered as a ‘poor’ grass section (Figure 26). Reflectivity values at the lower tail of the 

distribution tend to represent low-density grass (i.e., grass with bare spots). On the other 

hand, reflectivity values at the upper tail of the distribution tend to represent areas with 

water ponding. Based on a trial and error process for a section of FM320 (length = 450m), 

values within the central 68.2% of the normal distribution (i.e. 1 standard deviation on 

either direction of mean for a normal distribution) were considered to be representative of 

good grass as confirmed by the MLS video. A summary of these trials is presented in 

Table 12.  Figure 41 shows the area of good grass as identified by this method.  Steps 

involved in the method developed for grass type classification are presented in Figure 42 

below. 

 

Table 12: Selection of definition for 'good grass' based on central confidence interval. 

Trial 
No. 

Central confidence 
interval 

Reflectivity range 
for good grass 

Area: Good 
grass (sq. m) 

Area: Poor 
grass (sq. m) 

1 68.2% [192.22, 208.68] 1357.21 339.6 

2 50% [194.91, 206.00] 1035.78 661.03 

3 40% [198.37, 202.54] 451.1 1245.71 
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Figure 41: Test for selection of 'good grass' definition corresponding to 68.2% central 
confidence level. 

 

 

Figure 42: Steps involved in grass type classification method. 
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5.1.2 Results 

Summary of tests carried out for extraction of grass area on road sections listed in 

Table 11 is presented in Table 13. Graphical representation of extracted area is presented 

in Appendix C.  

For asphalt roads (FM320, FM95, and FM2661), 16.83% of the grass area is 

identified as poor grass in FM320 SB 1. This includes areas containing foreign objects, 

dirt, and standing water. For FM320 SB 2, 9.68% of the grass area is identified as poor 

grass area. Upon visual inspection of the MLS video, this part of FM320 is indeed found 

to have relatively small ratio of poor grass cover. Similarly, 6.38%, 4.76% and 6.75% of 

grass area in FM95 NB 1, 2 and 3 respectively were identified as poor grass areas. FM2661 

was estimated to have 12.37% poor grass area. Inspection of MLS video corroborated this 

estimate. 

Tests carried out on concrete road sections with side-walks and grass patches 

reveal larger estimate of poor grass area. This is attributed to difficulty in accurately 

separating grass areas from concrete side-walks based on reflectivity values. As such 

much of the side walk area was identified as poor grass, i.e. 42.86%, 50.81%, 35.82% and 

42.2% for GB WBOL 1, GB WBOL 2, GB EBOL 1 and GB EBOL 2, respectively. 

Similarly, 52.21% of area is estimated to be poor grass for the final concrete road section 

with concrete sidewalk, namely, PBY NB 1. An example test section is presented in Figure 

43. 
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Table 13: Grass detection test results 
 

Grass Parameters
Test No. Section Good Grass Area (sq. m) Poor Grass Area (sq. m)
1 FM320 SB 1 3,132.73 633.83 

2 FM320 SB 2 38,417.89 4,119.25 

3 FM95 NB 1 3,642.63 248.25 

4 FM95 NB 2 3,733.99 186.53 

5 FM95 NB 3 3,852.20 279.06 

6 FM2661 WB 1 4,888.80 604.92 

7 GB WBOL 1 1,860.48 1,395.69 

8 GB WBOL 2 1,233.34 1,273.98 

9 GB EBOL 1 2,372.76 1,324.39 

10 GB EBOL 2 2,000.40 1,460.26 

11 PBY NB 1 892.83 975.44 
 

 

 

Figure 43: An example of grass detection test: FM95 North Bound Section 1 
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5.2 Curb Detection 

5.2.1 Formulation 

A curb is usually a stone or concrete edging bounding a road or a path. For a road 

section with curbs, a gutter is usually provided along the curb to drain out the pavement. 

Roads without side ditches are usually provided with a curb and gutter. This section 

describes the development of a method for detecting the presence of curb and calculating 

its height and location. A section of George Bush Dr. (with curbs) and a section of FM320 

(without curbs) are used for the development of this algorithm. Both sections are 450m in 

length and both contain multiple driveways and intersections. 

The developed method uses a filter template technique; which uses normalized 

cross correlation coefficients to identify features. Cross-correlation is a measure of 

similarity of two series as a function of displacement of one relative to other. Cross 

correlation is also known as sliding inner-product. A sample signal (shape of cross section 

at the curb) is called a filter.  The moving correlation between the filter and a test signal 

(i.e., shapes of cross sections) is calculated. The location of highest correlation gives the 

location of best match along the cross section. The formula used for calculating 

normalized cross-correlation are as follows: 

௑௒ߩ ൌ 	
1

௒ߪ௑ߪ
ሾሺܺܧ	 െ μ௑ሻ	ሺܻ െ μ௒ሻሿ ൌ 	

1
௒ߪ௑ߪ

 ௑௒ߛ	

where, ܺ, ܻ = two random variables with μ௑, μ௒ as means (expected 

value) and ߪ௑,  ௒ as respective standard deviationsߪ
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 ௑௒ = covariance of random variables X and Yߛ

 ௑௒ = correlation between random variables X and Yߩ

Cross-correlation is calculated using this formula where X is a fixed filter signal 

and Y is a test signal of length equal to X at location τ. Cross-correlation at location τ is 

calculated as: 

௑௒ሺ߬ሻߩ ൌ 	
1

௒ߪ௑ߪ
ሾሺܺܧ	 െ μ௑ሻ	ሺ ఛܻ െ μ௒ఛሻሿ ൌ 	

1
௒ߪ௑ߪ

 ሺ߬ሻ	௑௒ߛ	

Based on this definition, the cross-correlation coefficient is calculated by 

normalizing the features to unit lengths using the fast normalized cross-correlation method 

developed by J.P. Lewis (Lewis, 1995). 

Location is defined in terms of x, y coordinates, where x is the distance from the 

beginning of the road section being analyzed and y is the distance from the MLS vehicle 

center toward the roadside (perpendicular to the direction of traffic).  This technique is 

used in pattern recognition, feature detection, and signal searching (Tsai & Lin, 2003). 

Both one and two dimensional filters can be used. Although two dimensional filters was 

tested, single dimensional filter was used in the developed algorithm so that individual 

cross sections can be examined independently.  

In order to create one dimensional filter for curb detection, elevation difference 

relative to center of MLS vehicle (ΔZ) near to the known curbs from multiple cross 

sections were averaged (Figure 44 and Figure 45). Filter length was varied from 0.3m to 

2.1m.  A filter length of 2.1 m was found to produce the most accurate location of curb 

(Table 14).  A correlation threshold of 0.93 was found to be most suitable as it identifies 

all curbs present in George Bush Dr. with a small number of false positives for FM320. 
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The 0.93 correlation threshold along with a 2.1m filter were tested on George Bush Dr. 

and FM320 (Figure 46 and Figure 47). 

 

 

Figure 44: One dimensional filter 0.3m in length (Y=distance from the MLS vehicle 
toward the roadside, ΔZ= elevation difference relative to center of MLS vehicle) 
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Figure 45: One dimensional filter 2.1m on length (Y=distance from the MLS vehicle 
toward the roadside, ΔZ= elevation difference relative to center of MLS vehicle) 

 

Table 14: Trials with varying correlation threshold for identification of curbs 

Test Section 
Curbs 
Present in 
Realty? 

Correlation 
Threshold 

Number of 
Cross Sections 
Detected to have  
Curbs 

Percentage of 
Detected Cross 
Sections with  
Curbs 

George Bush. Dr Yes 0.9 2931 65.13% 
FM320 No 0.9 203 4.51% 
George Bush. Dr Yes 0.92 2923 64.96% 
FM320 No 0.92 135 3.00% 
George Bush. Dr Yes 0.93 2917 64.82% 
FM320 No 0.93 109 2.42% 
George Bush. Dr Yes 0.94 2849 63.31% 
FM320 No 0.94 76 1.69% 
George Bush. Dr Yes 0.95 2563 56.96% 
FM320 No 0.95 43 0.96% 
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Figure 46: Validity of 0.93 correlation threshold and filter length of 2.1m for George 
Bush Dr. (curb present) 

 

 

Figure 47: Validity of 0.93 correlation threshold and filter length of 2.1m for FM320 
(road without curb) 
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Figure 48 depicts steps involved in curb detection method developed. Normalized 

cross correlation calculation is carried out between curb detection filter and rescaled 

elevation. A search limit is set so that any foreign features far away are not misidentified 

as curbs. Maximum correlation value for each cross section is compared with correlation 

threshold defined (0.93). When correlation exceeds this threshold, a curb is detected and 

the location of maximum correlation gives the transverse location of curb (y coordinate). 

Longitudinal location (x coordinate) is calculated based on location of the cross section as 

distance from the beginning of the road section. Maximum elevation difference within two 

nodes in either direction of the y coordinate (of the detected curb) gives the height of the 

curb. 

 

 

Figure 48: Steps involved in curb detection method. 
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5.2.2 Results 

Results from carrying out the curb detection algorithm on 11 actual road sections 

(listed earlier in Table 11) are presented in Table 15. For example, the algorithm detected 

that 93.47% of cross sections on GB WBOL 1 and 78.50% of cross sections GB WBOL 

2 have curbs. These estimates have been corroborated by observing MLS videos. The 

absence of curbs for approximately 7% - 20% of these roads is explained by the presence 

of multiple intersections. The average height of curb for these locations was found to be 

13.5cm. A smaller detection rate was obtained for PBY NB 1 (75.32% of road length).  

This rates can be explained by the presence of more frequent intersections along this road. 

Average curb height for PBY NB 1 was found to be higher (18cm). Location of detected 

curbs (distance from MLS vehicle center in the transverse direction of the road) ranges 

from 2.5m to 2.7m for George Bush Dr. (GB) sections and 3.3m for Penberthy Road 

section (PBY NB 1). These values were also verified by visual comparison of the MLS 

video. 

For the sections without curbs the developed method detected false positives for 

few of the cross sections (e.g., FM320 SB 1 with 2.29% of cross sections detected to have 

curbs). However, these false positives are random because the algorithm evaluates each 

cross section independently. Examination of the cross sections around these false positives 

(Appendix D) indicates that these are in fact random false positives (i.e. surrounding cross 

sections are true negatives. In all of these cases, average height of falsely detected curbs 

ranges from 4cm to 8cm (clearly unrealistic values). Also, the location with respective to 

MLS vehicle center varies widely. 
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Table 15: Curbs detection test results 

Section 
Detection 
Percentage 

Average 
Curb Height 
(m)

Curb 
Location* 

(Modal) (m)

Average Filter 
Match 

(Correlation)
FM320 SB 1 2.29% 0.05 2.20 0.949 

FM320 SB 2 4.92% 0.08 2.00 0.953 

FM95 NB 1 0.94% 0.07 3.20 0.943 

FM95 NB 2 2.39% 0.04 2.00 0.947 

FM95 NB 3 0.00% NA NA NA 

FM2661 WB 1 0.04% 0.06 2.90 0.939 

GB WBOL 1 93.47% 0.13 2.60 0.956 

GB WBOL 2 78.50% 0.14 2.70 0.964 

GB EBOL 1 90.25% 0.13 2.50 0.970 

GB EBOL 2 82.04% 0.14 2.50 0.967 

PBY NB 1 75.32% 0.18 3.30 0.967 

* From center of MLS vehicle 

 

Graphical representation of these results for each road section are presented in 

Appendix D, depicting distribution of all cross sections along with location and height of 

curbs when detected. Location in transverse direction is presented with respect to MLS 

vehicle center. Histogram of transverse location of curb is also presented. Results from 

two of these test road sections (one with curbs and one without curbs) are presented in 

Figure 49 and Figure 50, respectively, as examples.  
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Figure 49: Curb detection results for GB EBOL 2 (road with curb) 

 

 

Figure 50: Curb detection results for FM2661 WB 1 (road without curb) 
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6 SUMMARY OF RESEARCH EFFORTS, CONCLUSIONS, AND 

RECOMMENDATIONS 

 

The aim of the study was to aid in application of MLSs for roadway inventory and 

drainage condition assessment. The study attains its objective by developing 

computational methods for pavement surface type identification, grass detection, 

driveways and underlying pipe identification, grass area extraction, and curb detection. 

Each method was tested and validated using data from actual road sections in Texas. The 

ability to detect aforementioned features reliably using automated means is an initial step 

to further the cause of MLS acceptance and implementation. Next, the study conclusions 

and suggested future works are discussed for each method. 

6.1 Development of Surface Type Identification Method 

6.1.1 Conclusions Related to Pavement Surface Type Detection 

 For section-by-section surface type identification, a method based on skewness 

and closeness to mean of reference reflectivity distributions for known surface 

types produced the most accurate results. The accuracies of these detections are: 

o Greater than 95% when identifying between asphalt and concrete surfaces. 

o Between 83% and 90% when identifying between concrete, seal coated, 

dense graded and open graded section. 

 Increasing reference data size or test road section length has no significant effect 

on accuracy. This can be attributed to the homogeneous distribution of reflectivity 
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for each surface type and the fact that reflectivity intensity is measured using 8-bit 

discrete values. 

 Accuracy increases when adjacent sections are considered. This is most beneficial 

for network-level applications. 

6.1.2 Conclusions Related to Grass Detection 

 The effect of reflectivity attenuation is pronounced for roadside. Therefore, in 

order to develop a reliable grass detection method, attenuation correction is 

required. 

 The developed linear attenuation equation works well for a distance up to 6m from 

center of MLS vehicle toward the roadside. 

 The accuracy of detection is higher for asphalt roads than for concrete roads due 

to closeness in reflectivity distribution between grass and concrete.  

o When the pavement is asphalt (i.e., the identification is asphalt vs. grass), grass 

is identified accurately for 98.7% of the samples. 

o When the pavement is concrete (i.e., the identification is concrete vs. grass), 

90.3% of grass samples were correctly identified and 16.3% of concrete points 

were misidentified as grass 

 Generalizable graphs were developed (Figure 26 and Figure 27) to obtain the 

confidence level for any given attenuation-corrected reflectivity value to be grass. 
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6.1.3 Future Works 

 Calibrate the developed methods for reduction in reflectivity due to pavement 

surface and grass wetness. Also, account for the effect for season on grass. In this 

research, data were collected in December / January. 

 Pavements in good condition were observed to have lesser spread (less kurtosis) 

in reflectivity distribution compared to cracked pavements (sealed or unsealed 

cracks) (refer Appendix A). Future work could consider distinguishing between 

pavement in good condition and pavement in poor condition.   

 Reflectivity values can be used in association with imagery data to potentially 

improve the accuracy of surface type and grass detection. 

6.2 Development of Driveways and Underlying Pipes Identification Method 

6.2.1 Conclusion 

 It is possible to detect driveways and distinguish it from topographical features 

using a combination of elevation cross sections, material detection, and surface 

smoothness. 

 Accuracy of identification is dependent on the condition of ditches and driveways, 

as follows: 

o For road sections with well-maintained ditches, paved and well-maintained 

driveways, the identification accuracy of the developed method is 100% for 

the test case. 
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o For road sections with numerous dilapidated and grass/dirt covered 

driveways, the identification accuracy of the developed method is about 69% 

for the test case.  

6.2.2 Future Works 

 The accuracy of driveway width estimation and start - end elevation difference can 

be further verified using direct field measurements. 

 The developed method assumes that pipes are present beneath the driveways and 

adjoining roads. The method can be improved if a reliable method for detecting 

pipe inlets and protrusion can replace this assumption. 

 Use of filtering technique, as presented in section 5.2 can be explored further to 

detect driveways and underlying pipes for possible improvement in accuracy for 

roads with poorly-maintained or grass driveways or roads without ditches. 

6.3 Development of Roadside Feature Identification Method 

6.3.1 Conclusions Related to Grass Area Extraction 

 Filtering to remove local anomaly and variation was necessary to extract any 

aggregate information from reflectivity distributions. The developed filtering 

technique - replacing absent data in grid with local mean followed by median 

filtering - was found to be most suitable. 

 Grass area is extracted using reflectivity limits corresponding to 80% confidence 

for lower end (for asphalt road). Inspection of MLS video showed that the 

extracted area closely matches the actual grass area for asphalt roads. For concrete 

roads, the extracted area was less accurate. 
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 Inspection of MLS video showed that classification of grass type into good and 

poor based on reflectivity distribution produced reasonable results for roads 

without sidewalks. For roads with side-walks, much of the side-walks was 

incorrectly classified as poor grass. 

6.3.2 Conclusions Related to Curb Detection 

 Presence of curb, along with height and location, can be detected using filter 

template technique (commonly used in image processing). Specifically, a long 

filter and a correlation threshold of 0.93 gives best results. 

 Using this method, location of intersection and driveways can be identified for 

road sections with curbs. 

 False positives of curb detection for roads without curbs are mostly below 2.5% 

when each cross section is examined independently. 

6.3.3 Future Works 

 Independent attenuation correction for range, angle, instrument and material can 

be explored to further improve accuracy. 

 To improve accuracy of extraction for roads with sidewalks, surface smoothness 

(elevation variation) can be explored and incorporated in the algorithm to 

differentiate grass from smooth sidewalk surfaces. 

 Definition of good and poor grass can be explored further to improve classification 

precisions. 

 Inclusion of imagery data might help to improve the accuracy of grass area 

extraction. 
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 The developed methods do not account for the meandering driving path of the 

MLS.  Future work could address this limitation. 

 The developed methods could be extended to detect other features such as inlets, 

pipes, guardrails, and barriers. 
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APPENDIX A 

REFLECTIVITY DISTRIBUTIONS 

 

 

Normalized reflectivity distribution in driven lane of road section 
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Normalized reflectivity distribution considering whole width of road section: 
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Normalized reflectivity distribution of tined and un-tined concrete 
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Normalized reflectivity distribution of defect free and crack sealed pavement 
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Distribution of variance of reflectivity values (unit length: 0.05 miles, 264', 80.47m) 

 

Distribution of kurtosis of reflectivity values (unit length: 0.05 miles, 264', 80.47m)   
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APPENDIX B 

SOME TESTS OF DIFFERENT SECTIONS 

 

Some of the road sections not represented by the reference data is tested. The 

sections considered here have some distinguishing characteristics that is likely to make 

pavement surface identification difficult. The results of such tests is presented below along 

with a picture and a brief description of the section in consideration. Identification between 

the four categories followed by asphalt vs concrete identification is presented on the right. 

Reflectivity histogram for the test section is also presented. 

 

Description: Dense graded asphaltic pavement placed within last 3 years. 
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Description: Seal coat over dense graded over a bridge deck.  Joint for the bridge running 

transversely in the pavement can be observed.  The outside lane shows signs of bleeding 

in the wheel-paths.  This bleeding is somewhat expected due to the breaking condition and 

acceleration action of stopping and moving vehicles at the signal. 

 

Description: Dense graded mix placed within the last 3 years.  The small oily spots are a 

little difficult to explain.  They could come from the oil from the seal coat on the other 

side of the sign.  It could also be over-compaction that brought some oil to the surface. 
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Description: Seal coated section with a fairly small cover stone. There is also some crack 

seal present. 

 

Description: Dense graded section, placed within the last 6 months. 
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Description: The dense graded surface in this section is likely to be more than 10 years 

old. Some crack sealing is also observed. 

 

Description: Old dense graded section with significant crack seal. The dense graded 

surface is most likely to be more than 10 years old. With the age of the mix and the 

compaction in the wheelpaths, more oil could be near the top, creating a reflection 

difference. 
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Description: This section is similar to the previous one. 

 

Description: Old concrete pavement (about 15 years) with closely spaced transverse joints. 
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Description: About 15 year old concrete section with very little heavy truck traffic. 

 
Description: This section is similar to the one before. 
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Description: Wet seal coated section. Rock appears to have bean sheared off creating oil 

spot that is clearly visible. 
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APPENDIX C 

GRASS AREA EXTRACTION TESTS CARRIED OUT 

 

Results of tests carried out for the algorithm developed for grass area extraction is 

presented in this section. A total of eleven sections were tested out of which six had 

roadside grass ditch and five had a combination of side walk and grass strips. All the 

sections had grass area broken by frequent driveways and intersecting roads.  

 

1. FM 320 South Bound 1 (FM320 SB 1) 
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2. FM 320 South Bound 2 (FM320 SB 2) 

 

3. FM 95 North Bound 1 (FM95 NB 1): 
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4. FM 95 North Bound 2 (FM95 NB 2): 

 

5. FM 95 North Bound 3 (FM95 NB 3): 
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6. FM 2661 West Bound 1 (FM2661 WB 1): 

 

7. George Bush Dr. West Bound 1 (GB WBOL 1): 
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8. George Bush Dr. West Bound 2 (GB WBOL 2); 

 

9. George Bush Dr. East Bound 1 (GB EBOL 1): 
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10. George Bush Dr. East Bound 2 (GB EBOL 2): 

 

11. Penberthy Road North Bound 1 (PBY NB 1): 
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APPENDIX D 

CURB DETECTION TESTS CARRIED OUT 

 

Results of tests carried out for the algorithm developed for curb detection is 

presented in this section. A total of eleven sections were tested out of which five concrete 

road sections had road side pavement and six seal-coated farm-to-market road sections did 

not. All the sections had frequent driveways and intersecting roads -- intermittently 

breaking continuous curbs where present. 

 

1. George Bush Dr. West Bound 1 (GB WBOL 1): 
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2. George Bush Dr. West Bound 2 (GB WBOL 2); 

 

3. George Bush Dr. East Bound 1 (GB EBOL 1): 
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4. George Bush Dr. East Bound 2 (GB EBOL 2): 

 

5. Penberthy Road North Bound 1 (PBY NB 1): 
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6. FM 320 South Bound 1 (FM320 SB 1) 

 

7. FM 320 South Bound 2 (FM320 SB 2) 
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8. FM 95 North Bound 1 (FM95 NB 1): 

 

9. FM 95 North Bound 2 (FM95 NB 2): 
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10. FM 95 North Bound 3 (FM95 NB 3): 

 

11. FM 2661 West Bound 1 (FM2661 WB 1): 

 


