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ABSTRACT 

 

 Recent studies on multi-phase fluids in nanoscale capillaries indicated that the 

capillary wall-fluid interactions could play a dominant role on the co-existence of the 

phases, which caused the fundamental properties of the fluids, such as density, viscosity, 

and interfacial tension, to become capillary size-dependent. At the extreme of the 

confinement, these properties become vague. This raises a serious question on the validity 

of Young-Laplace equation to predict capillary pressure in small capillaries that the 

unconventional resources commonly exhibit. In this research, using non-equilibrium 

molecular dynamics simulation of mercury injection into model nano-capillaries, the 

nature of multi-phase fluids is investigated in capillaries with sizes below 20 nm and the 

Young-Laplace equation is re-visited. 

Higher capillary pressure is predicted for the model nano-capillaries used in the 

simulations compared to that value obtained using the Young-Laplace equation, in 

particular, when the capillary diameter is less than 10nm. Good agreement found with the 

theory in larger size capillary. The capillary pressure increases as the capillary size 

decreases and shows a power-law dependence on the size of the capillary. This 

dependence yields up to 70% increase in the estimated capillary pressure value for the 

extreme case of 1nm capillary. Higher tangential local pressure resulted from the 

adsorption phase, which identified as the cause of this difference. Two approaches were 

used for the capillary pressure calculation from the molecular dynamics simulation and 

the more reliable one was used for further evaluation.  
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Based on the observations, a modified Young-Laplace equation is proposed for 

mercury-air filled pore systems which are commonly used in Mercury Injection Capillary 

Pressure (MICP) experiments for the pore volume and pore size distribution (PSD) 

measurements. At the highest injection pressure of MICP, the minimum captured pore 

throat size is predicted 4.8nm instead of 3.6nm based on the Young-Laplace equation. The 

increase in the predicted capillary size leads to an increase in total pore volume of the 

sample. The error is up to 20% for measurements with shale samples.  The results are 

important for the characterization of resource shale formations because the pore volume 

correction influence the hydrocarbon in-place and reserve calculations. 

The work can be extended to other multi-phase systems, such as oil-water and 

water-gas, grouping with other capillary wall material to study the behavior of multi-phase 

flow in nano-capillaries.  
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NOMENCLATURE 

 

𝜎  Surface Tension 

 Depth of the Potential Well 

𝜎𝐻𝑔−𝐶 Length Scale of Mercury-Carbon Interaction 

𝜙 Porosity 

𝜃 Contact Angle 

U (or Φ) Mutual Potential Energy 

𝑎 Constant in the Modified Young-Laplace Equation 

𝑏 Constant in the Modified Young-Laplace Equation 

F Unit of Electrical Capacitance, Farad 

g Gravitational Acceleration 

G Correction Term for the Young-Laplace Equation 

MICP Mercury Injection Capillary Pressure 

MC Monte Carlo 

MD Molecular Dynamics 

NMR Nuclear Magnetic Resonance 

𝑃𝑐 Capillary Pressure 

PSD Pore Size Distribution 

r Radius of the Capillary Tube 

R Dimensionless Radius 

SANS Small-angle Neutron Scattering 
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SAXS Small-angle X-ray Scattering 

SEM Scanning Electron Microscopy 
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CHAPTER I 

 INTRODUCTION 

 

 This thesis is on accurate characterization of resource shale pore structure using 

Mercury Injection Capillary Pressure (MICP) method. This method has been widely 

used in the industry to measure the pore size distribution and predict the interconnected 

pore volume using the fundamental theory of mercury-air displacement based on the 

Young-Laplace equation.  According to the theory, mercury is expected to invade a 

particular size capillary in the network and displace the air therein only when the 

mercury is forced into the capillary beyond the capillary pressure threshold. The 

equation gives exactly the threshold pressure necessary for the intrusion. However, with 

the resource shale, the concern is the tight nature of the formation with capillaries having 

sizes down to nanometer. In such small capillaries, the threshold pressure that needs to 

be overcome increases dramatically. Hence, MICP has injection limit to force mercury 

into the shale samples and detect nanopores. In addition, at extreme pressure and pore 

size conditions it is possible that the theory collapse due to changes in the properties of 

the mercury and the mercury-air system such as density, interfacial tension, and contact 

angle. In the latter case, the pore size distribution and total pore volume of the shale 

sample could be measured incorrectly. 

As the fundamental theory giving the injection pressure-capillary size 

relationship for MICP experiment, the Young-Laplace equation and its application to 

MICP has recently become questionable. In this study, the Molecular Dynamics (MD) 
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simulation method is used to re-visit the capillary pressure theory based on the Young-

Laplace equation in pores below 20nm. A piston model is developed to simulate 

mercury injection under extreme conditions. The study shows clearly the current 

limitation of the experimental method, and proposes a modified Young-Laplace equation 

based on the simulation results. This work is important in gaining new insights into 

MICP method to have accurate measurement of shale matrix properties such as pore size 

distribution, total pore volume, and porosity. In addition, the study helps us understand 

the displacement processes in nanocapillaries and to explore the multi-phase flow 

behavior in nanoporous materials.  

 

1.1    Background 

 Previous investigations in our group on resource shale hydrocarbon in-place and 

reserve calculations showed dependence of the fluid storage and transport mechanisms 

to the pore size distribution of the formation (Akkutlu and Fathi, 2012; Rahmani and 

Akkutlu, 2013; Kou et al., 2016; Bui and Akkutlu, 2016). Hence, to predict the reservoir 

properties, such as effective porosity and permeability, accurate measurement of the pore 

size distribution of the formation is critical. However, pore size measurements using 

shale samples is relatively poor due to presence of a wide distribution. Resource shales 

have organic (kerogen) pores, inorganic pores, micro-cracks and fractures with sizes 

spanning several orders of magnitude in length (Loucks et al., 2009; Loucks et al., 

2012). Resource shale could have small pores, rather macromolecular openings, in solid 

kerogen down to a few angstroms (A). 
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In general, the pores are categorized based on their size using the International 

Union of Pure and Applied Chemistry (IUPAC) notation as follows: 

• micropores with sizes less than 2nm; 

• mesopores with sizes in between 2-50nm; 

• macropores with sizes larger than 50nm. 

Shale samples obtained from the currently existing resource shale basins in North 

America often contain pores from all of the categories above. Bustin et al., (2008), for 

example, used several pore size measurement techniques and predicted that the typical 

mode of the measured pore size distribution of the samples from the Barnett and Antrim 

shale formations were around 10nm and others around 10 m. Adesida et al. (2011) later 

on reported crushed Barnett shale samples with 20-40% of the pore volume consisting of 

pores with sizes below 10nm. Similarly, Kuila and Prasat (2013) reported the existence 

of the nanopore size distribution for various shale samples. These investigations 

independently indicated that resource shales could be considered as a naturally-occurring 

nanoporous materials. Typically, two types of nanopores are observed in shale: the inter-

particle pores, which exist in between the small grains, and the intra-particle organic 

pores which are located within the solid kerogen (Loucks et al., 2009). The inter-particle 

nanopores, also known as clay pores, are often taken by the formation water (i.e., the 

clay-bound water) and do not permit significant storage of hydrocarbons; however, the 

intra-particle pores, often associated with the kerogen nanopores are places for 

hydrocarbon storage. 
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1.2    Techniques for Pore Size Distribution Measurements  

Several techniques have been considered to measure the nanopore size 

distribution of shale. These include mercury injection capillary pressure (MICP) method, 

low-pressure cryogenic adsorption method, nuclear magnetic resonance (NMR) 

spectrometry, scanning electron microscopy (SEM), and small-angle scattering methods. 

The first two methods involve a measurement fluid (e.g., mercury, nitrogen, carbon 

dioxide) and based on penetration of the measurement fluid into the sample through an 

interconnected network of pores and throats; whereas the other methods involve signals 

with ability to penetrate through the solid and, hence, measure the total pore volume. In 

cryogenic adsorption method, N2 or CO2 is introduced at a fixed low temperature into 

the sample and the fluid pressure is varied below the saturation pressure of the fluid. 

Ramping up the pressure leads to adsorption and capillary condensation of the fluid 

inside the pores; whereas ramping the pressure down leads to desorption of the fluid. 

The constructed adsorption-desorption curves are then converted to pore size, specific 

surface area, and pore geometry. CO2 adsorption is useful for measuring and 

characterizing micropores, while N2 is suitable for measuring mesopores and macro-

pores (Josh et al., 2012; Clarkson et al., 2013; Sigal, 2015). However, this method has a 

relatively low range of measurement, with an upper limit of about 300nm or 0.3m 

(Clarkson et al., 2011). NMR spectrometer, on the other hand, creates permanent and 

pulsating magnetic fields and records the relaxation times of the fluid-saturated sample 

protons. The contrast in the relaxation times of the pore fluids versus solid skeleton 

creates an important measure to provide the pore volume of samples (Coates et al., 
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1991). With the smaller pores the protons of the fluid relax faster, hence the rate of 

relaxation becomes a measure of the pore size distribution. SEM is a destructive method 

that produces high-resolution 2D and 3D images of the samples and allows estimation of 

the porosity, pore connectivity and permeability from the images. This method can 

capture pores as small as 4-6nm. Recent studies showed that for materials with a large 

pore size distribution such as shale, it is beneficial to combine multiple technique, e.g., 

NMR and gas injection methods, and develop hybrid methods for the investigation of the 

complete pore size distribution (Coates et al., 1999, Bustin et al., 2008 and Josh et al., 

2012; Sigal 2015). Finally, small-angle neutron-scattering (SANS) and x-ray scattering 

(SAXS) methods involve scattering of the beam that is directed at the sample in small 

angles to investigate its structure (Clarkson et al., 2013). 

 

1.3    Capillary Pressure 

 The multi-phase flow in oil and natural gas production involves co-existence and 

transport of oil, water and gas. During the oil or gas production, the multiphase flow in 

porous media is common. It occurs frequently in the gas production when the reservoir 

pressure is decreased. It is also common during waterflooding or enhanced oil recovery 

operations. 

 When two immiscible phases meet in a capillary, they are separated with an 

interface. The pressure difference across the interface is defined as the capillary 

pressure. This is the pressure that has to be overcome by the displacing phase in order to 
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flow. The well-known Young-Laplace equation defines the capillary pressure as a 

function of the capillary radius: 

𝑃𝑐 =
2𝛾𝑐𝑜𝑠𝜃

𝑟
 (1) 

 

where, Pc represents the required capillary pressure of the two phases, the interfacial 

tension between the two phases, θ the contact angle, and r the capillary radius. The 

detailed derivation of this equation is included in Appendix A using the capillary rise 

problem. The contact angle quantifies the wettability of the wall surfaces of the 

capillary, which is commonly measured as the liquid-vapor interface on a specific 

surface. Both strongly water-wet or oil-wet reservoirs exist globally although the water-

wet reservoirs are more common.  When the wetting phase is displacing the non-wetting 

phase, the saturation of the wetting phase increases; this process is known as imbibition. 

On the other hand, the wetting phase decrease is defined as the drainage process. During 

MICP measurement mercury penetration into an air-filled rock under vacuum is 

considered as a drainage process because mercury is always the nonwetting phase. 

 

1.4    Mercury Injection Capillary Pressure (MICP) 

 Among the measurement techniques, MICP is the most traditional approach for 

the pore volume and pore size distribution measurements. It was first proposed by 

Washburn (1921) to measure the capillary pressure-liquid saturation curve. Later, it was 

introduced by Purcell (1949) as an approach for measuring the pore size distribution of 

rock samples. Prior to begin the experiment, the samples should be cleaned and the 
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residual fluid molecules inside the pores such as the adsorbed water or hydrocarbons 

should be removed from the core sample. This is typically done keeping the samples 

under vacuum over extended time. During the measurement, liquid mercury, being the 

ultimate non-wetting phase to any sedimentary rock sample, is forced into the sample 

using a piston. This is the drainage process where the residual air left in the pore network 

is displaced by the mercury. The injection pressure applied by the piston is increased in 

small steps with equal size. The pressure steps are recorded up to six significant figures 

to increase the accuracy and resolution of the pore size distribution measurement. The 

injected volume of mercury is monitored at each pressure step, and the volumetric pore 

size distribution as a result is obtained from the raw data of the intrusion volume versus 

pressure. The higher pressure the piston applies, the smaller void in the sample the 

mercury invades. However, significantly high pressure is required during the process of 

mercury intrusion into small pores. With the current technology, the experimental setup 

can achieve as high as 60,000 psia (0.4GPa). This method is based on the assumption 

that the pores inside the sample are interconnected, and the original pore geometry will 

not be changed during the mercury intrusion (Abell et al., 1999). 

Liquid mercury intrudes into the target pore when the pressure applied to the 

piston is equal or larger than the capillary pressure required to displace air in that pore. 

This capillary pressure value is predicted for a given radius using the Young-Laplace 

equation (Equation 1), which requires a priori mercury-air interfacial tension and 

contact angle, based on the assumption that the pore geometry in the core sample is 

cylindrical. Industry commonly uses 480mN/m and 140° as the values of and , 
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respectively. Indeed, the surface tension and contact angle used in the Young-Laplace 

equation are sensitive to the solid wall material. A recent experimental study using 

graphite predicted a contact angle as high as 152.5±2° at room temperature (Awasthi et 

al., 1996). This value also agreed with the measurement by Chen et al. (2005) using 

molecular dynamics simulation. In this thesis, because the wall of our capillary model is 

made of graphene, which represents a highly-mature kerogen in shale, the value of 

152.5° was used for the contact angle. In addition, we used value of 475.5 mN/m, 

which was measured by Wang et al., (2016) using Lu-Jiang model (2005) as for the 

graphene surface. 

In pore networks characterized by pores that are interconnected with throats, it is 

argued that MICP measures the pore throat size distribution of the sample, rather than 

the sizes of the pores (Keighin, 1997; Clarkson et al., 2013). By definition, the sizes of 

the throats are smaller than the pores, except for the slit-shape pores, and usually has a 

measurable and consistent ratio found in carbonates and sandstones (Coates et al., 1999; 

Josh et al., 2012). Consequently, in the sedimentary rocks, MICP is known to measure a 

pore size distribution that is shifted to the smaller end. Nevertheless, this method is 

widely used because it has relatively a large measurement range, 0.003 to 500 m, and it 

also takes short measurement time about only half an hour to finish the analysis (Rigby 

and Edler, 2002; Giesche, 2006). As a result, it is also a relatively less expensive 

approach. Some literatures proposed that the upper end of the measuring range using 

MICP is as high as a few hundred micrometers (Giesche, 2006; Rigby and Edler, 2002; 

Wang et al., 2016), but usually the minimum captured pressure through the experiment 
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is 0.5 psi or higher, which has the corresponding diameter of 428m based on the 

Young-Laplace equation.  

As for shale pore throat size distribution, which varies in 4 to 5 orders of 

magnitude, MICP measurements yield a significantly larger range than any other 

techniques introduced before. MICP also plays an important role in determining the 

permeability of shale (Apisaksirikul, 2016), together with NMR relaxation time (Rezaee 

et al., 2012).  

 

1.5    Local Pressure Calculation in Nanopores 

 Note that the Young-Laplace equation considers the pressure difference across 

the interface based on the average pressure. The average pressure is the arithmetic 

average of the three individual compressional stresses: 

𝑝 =
1

3
(𝑝𝑥𝑥 + 𝑝𝑦𝑦 + 𝑝𝑧𝑧) (2) 

 

where, pxx=pyy, are the tangential pressures and pzz is the pressure normal to the interface. 

Hence, the pressure we commonly use in the calculations is in fact the average of the 

diagonal terms of the stress tensor. Away from the interface, the fluid is isotropic. 

Hence, these three components have the same value. Consequently, the pressure is 

uniform and equal to the arithmetic average of the components. However, near the 

interface anisotropy develops. Interfacial tension is a consequence of this anisotropy in 

the compressional stress field. In previous work (Bui and Akkutlu, 2015; Bui and 

Akkutlu, 2016) showed that added complexity occurs in the local pressure (as well as  
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Figure 1  Local pressure and density across the width of a 4.4nm channel as a function of 

distance from the wall. The pressure and density inside the channel are normalized by 

the values of a bulk fluid that is in equilibrium with the channel at 138 bars. Adapted 

from Bui and Akkutlu (2016). 

 

density) of a fluid inside a nanopore. These quantities become strongly heterogeneous 

(Figure 1). In addition, the local pressure is strongly anisotropic inside the pore, 

pxx=pyy >> pzz. The heterogeneity and anisotropy in pressure is due to amplified fluid-

wall interactions, namely physical adsorption: More specifically, the extreme local 

pressure within the adsorbed layer by the wall is caused by the tangential stress 

components, while the normal stress remains constant across the diameter of the pore. 

Consequently, the average pore pressure becomes pore-wall and -size dependent. This 

observation is important to our work because, an increase in the average pore pressure 

due to anisotropy is an increase in pressure at the pore entry during the MICP 

measurement of small pores. The analysis of the MICP data does not consider the entry 

effects, however. 
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The heterogeneity in local quantities and the anisotropy in local pressure could 

be much more amplified in small pores, where volume for free fluid is reduced, such that 

behavior of the mercury-air interface at the entrance of a pore could change 

dramatically. This change in interfacial behavior could be perceived as a change in the 

values of the interfacial tension and the contact angle. For example, Bui and Akkutlu 

(2015) reported the interfacial tension of a liquid-vapor interface in nanopores is 

significantly reduced as the pore size is decreased. Thus, MICP measurements involving 

samples with small pores have these added molecular level complexities. 

Previous work related to the applicability of Young-Place equation in nanopores 

has found that both the contact angle and the interfacial tension are pore size dependent. 

The pore size effects were found to be significant in sub-10nm pores, where with respect 

to the conventional values of 152.5° and 475.5 mN/m for graphene surface, the contact 

angle was increased as the pore size decreased (Wang et al., 2001; Werder et al., 2003; 

Kutana and Giapis, 2007 and Wang et al., 2016), and the surface tension was also found 

varying with the pore size and the curvature (Tolman, 1949). The latter has established 

the Gibbs-Tolman-Koenig-Buff (GTKB) equation for the curvature-dependent surface 

tension. However, due to the limited understanding of the Tolman’s length in this 

equation, Lu and Jiang (2005), and Kalová and Mareš (2015) later indicated theoretical 

models based on GTKB equation. Using Lu-Jiang’s (2005) model, Wang et al. (2016) 

found that the surface tension dropped sharply when the capillary radius less than 20nm.  

These studies adopted the Young-Laplace equation, where the surface tension or contact 

angle were corrected for the nanopore size. 



 

12 

 

 

 

Figure 2  Surface tension and contact angle measurement results as a function of pore 

radius r. With added (r) after the parameter, they are considered size-dependent. The 

blue dash line is showing the multiply using scalar value of contact angle and surface 

tension, while the other lines represent different groups with size-dependent parameters.  

Adapted from Wang et al. (2016). 

 

Among the previous work related to study the capillary pressure in nanopores, 

Wang et al. (2016) gave the first study of the size-dependence of contact angle and 

surface tension in shales. Based on their observation, they used the Molecular Dynamics 

simulation to measure the surface tension and contact angle in nanopores. With the main 

results shown in Figure 2, both the surface tension and contact angle are not consistent 

with their scalar values, which are 475.5 mN/m and 152.5° for mercury-air-graphene 

interface, when the capillary radius is less than 10nm. However, the contact angle and 

surface tension show reverse influence on the capillary pressure value, and when both of 

them are considered size-dependent, these changes cause the capillary pressure to be less 
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in sub-10nm capillaries than obtained by the Young-Laplace equation. They argued this 

behavior in capillary pressure is dictated by the dramatic changes in the surface tension. 

Larger discrepancy is found when the capillary size is further decreased. Based on their 

work, it was shown that the corrected capillary pressure becomes much smaller as the 

capillary size is reduced below 10nm. 

  Recently, in a separate study, 20% discrepancy was found in the pore size 

distribution measurements using MICP for shale when compared with the cryogenic 

nitrogen adsorption method results. The discrepancy was eliminated by changing the 

contact angle in the Young-Laplace equation to 152.5° (Kuila and Prasad, 2013). 

However, the sources of inconsistency have not been identified yet.  

In this thesis, a new numerical approach is presented to introduce liquid mercury 

into nano-scale capillaries at extremely high pressure to directly measure the nano-

capillary effects on the estimated mercury-air capillary pressure values. Note that the 

aim of this thesis is to directly measure the capillary pressure, rather than measuring the 

contact angle and interfacial tension, and subsequently calculating the pressure. Due to 

the nature of the problem, a new molecular modeling approach is developed, where 

liquid mercury, capillary walls, and piston are developed atom-by-atom. We performed 

non-equilibrium molecular dynamics simulations of mercury intrusion into small 

capillary at high pressure using a piston model. The numerical results from the 

molecular simulations are validated using laboratory-measured density-pressure data 

from the literature and with the capillary pressure data for large capillaries based on the 

Young-Laplace equation.   
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CHAPTER II 

MOLECULAR SIMULATION SET UP 

 

2.1 Introduction to Molecular Dynamics Simulation 

We conducted molecular dynamics (MD) simulations using Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS), a globally used freeware 

(Plimpton, 1995). Based on the previous work in our research group, the Monte Carlo 

(MC) simulation has limited success for this highly-compressed mercury study due to 

massive calculation required in defining the initial equilibrium state. In this study, we 

perform MD simulations for mercury bulk density computation and for mercury 

capillary pressure threshold computation in nanocapillaries size from 1nm to 20nm. The 

computational apparatus used in this study involves an atomistic model for a piston 

which compresses liquid mercury atoms in a tank and forces them into a model capillary. 

The capillary is a single-wall carbon tube with walls made of a graphene layer. The 

locations of the carbon atoms that makes up the capillary is fixed and, hence, the 

capillary does not deform during the simulation when it interacts with the mercury under 

high pressure. Two types of atoms are used in the MD simulations: mercury and carbon. 

The carbon molecules are used either to build up different sizes of nanotubes or the 

piston wall to push the mercury. Initially, the geometry has been optimized and an initial 

equilibrium state is defined based on the local minimum molecular potential energy in 

the simulation system. 

We also used Visual Molecular Dynamics (VMD), which is a freeware program 

that displays the visual 3-D graphics and movement of the target atoms. It has multiple 
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uses and built-in functions, and in this research, it is used to visualize the movement of 

atoms and see whether the atoms behave properly, to check the final location of the 

liquid mercury atoms, and to monitor the entire progress of each simulation. VMD is 

also used to create different sizes of nanotubes and single layer of graphite atoms as the 

piston wall in the simulation, which has the length and width defined as the desired 

values.  

 In order to speed up the MD simulation, High Performance Research Computing 

(HPC) systems is used to do the parallel computation under the host of Ada from Texas 

A&M University. Each simulation takes no more than 2 hours and it is about 10-15 

minutes in average. In the mercury density computation simulation, 4 cores/cpu were 

used; while in the mercury injection simulation, 20 cores/cpu were used. It has improved 

the speed of the simulation significantly comparing with running the MD simulation on a 

personal computer.  

 

2.2    Force Field 

Generally, the forces between two molecules are categorized as bonded and non-

bonded interactions. The bonded interaction, also known as intramolecular force, is the 

force that holds atoms together within molecules. There are three subcategories in it, 

which are ionic bonding, covalent bonding and metallic bonding. The ionic bonding 

exists in between metals and nonmetals, the covalent bonding forms two nonmetals, and 

the metallic bonding actually forms within a pure metal or metal alloy. The non-bonded 

interaction, which is also called intermolecular force, is weaker than the intramolecular 
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force. It represents the interaction between neighboring molecules. Both the attractive 

and repulsive forces are found between neighboring atoms or molecules. There are four 

types of intermolecular forces, which are ionic force, dipole-dipole force, hydrogen 

bonding and van der Waals force. The ionic force, which holds ions together in ionic 

solids, is also known as electrostatic forces. This is the strongest intermolecular force, 

and it is the main interaction between charged atoms or molecules. The second type is 

dipole-dipole force. The dipole is defined as a molecule which has opposite charge on its 

two ends. For example, the interactions between H and Cl in HCl is dipole-dipole force. 

The third type is hydrogen bonding which is a special case of the dipole-dipole force, 

while the London dispersion or van der Waals force, exists between non-polar 

molecules. The van der Waals forces are the weakest type of all the intermolecular 

forces.  

To be noted, there are also other ways to represent the forces among the 

molecules/atoms. The word “particle” can be used to represent either a single atom, a 

single ion, a polyatomic ion, or a molecule. Likely, when people state the “inter-particle 

forces”, it could have different meanings, for example, ion-ion attraction, covalent 

bonding, polar covalent bonding, or van der Waals forces. It really depends on the 

circumstances that this word has been used. In this thesis, the interpartical force is 

referred as van der Waals force.  

In the MD simulations, the bonded interaction is remained as the same for the 

duration of time, while the non-bonded interaction between two atoms/molecules is 

defined using their force field within a cut-off distance (Plimpton, 1995). In order to set 
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Figure 3  Mutual potential energy between two argon atoms (adapted from Hinchliffe, 

2003) 

 

up a MD simulation, the force field of each atom/molecule should be defined 

accordingly, so that the intermolecular forces between different atoms are properly 

defined and accurate, and based on that the density and energy properties of the fluid in 

large scale could be reproduced.  

There were three groups of non-bonded interactions defined in our simulation, 

which were carbon-carbon interaction, mercury-mercury interaction, and mercury-

carbon interaction. To be noted, there was no bonded interaction defined in our 

simulation, but the carbon atoms in the same layer of graphite sheet and tube were built 

in covalent bonding, and their location was fixed.  
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In MD simulation, the force field is the functional form and parameter that are 

used to calculate the mutual potential energy between molecules and non-bonded atoms 

(Hinchliffe, 2003). When one molecule/atom is moving towards the other, the typical 

potential energy change is shown in Figure 3. When they are separated with a large 

distance, the interaction in between is negligible. In order to decrease the energy, they 

are attracted to each other and hence getting closer, until they reach the minimum 

energy, and this energy in positive value is defined as the depth of the potential wall,. 

The distance between these two molecules/atoms at this point is the equilibrium 

distance. To further decrease their distance, additional energy should be provided, and 

when the potential is equal to zero, the distance at that time is defined as the collision 

diameter , also known as length scale. If the distance is continued to decrease, they 

become to repel each other, and this repulsive force can be much larger comparing with 

the attractive force.  At the van der Waals radius, which is equal to half of the length 

scale, the two molecules/atoms reach their minimum distance.  

 To take a closer look, the potential contains a repulsive part, and an attractive 

portion when they are farer to each other. All the attractive forces fall off when the atom 

pair distance equals to 1/RAB
6. Usually, the repulsive term can be written as: 

𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 = 𝐴𝑒𝑥𝑝(−𝐵𝑅) (3) 

 

where A and B are constant values depends on the type of atoms and determined based 

on the experiment data (Hinchliffe, 2003). As a result, the total interaction U can be 

simplified using the following equation: 
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𝑈 = 𝐴𝑒𝑥𝑝(−𝐵𝑅) −
𝐶

𝑅6
 (4) 

 

where C is also varied from different atoms type and determined based on the 

experiment. This equation is also known as exp-6 potential. The well-known Lennard 

Jones (L-J) 12-6 potential is built based on this exp-6 potential where the repulsive term 

is considered being proportional to the 1/R12, written as: 

𝑈 =
𝐶12
𝑅12

−
𝐶6
𝑅6

 (5) 

 

where C12 and C6 are factors determined based on the experiment. This can be also 

rewrite with the well depth  and length scale  as: 

𝑈 = 4𝜀((
𝜎

𝑅
)
12

− (
𝜎

𝑅
)
6

) (6) 

 

Usually, people use /kB instead of when they describe the well depth, where kB is the 

well-known Boltzmann constant defined as gas constant R divided by the Avogadro 

constant NA, which equals to 1.38064853×10−23 𝐽/𝐾 (Hinchliffe, 2003). This 

Lennard-Jones potential is more suitable when used to describe the force field of noble 

gas like Argon, but when it is used in real material, it may have some limitations.  

Note that finding a suitable force field for liquid mercury and validating 

interaction parameters between the mercury and carbon atoms under high pressure 

conditions were crucial for this work due to the special properties of mercury.  

Mercury is a heavy silvery-white liquid metal at room pressure and temperature. 

Atoms of metals can easily lose their outer shell electrons, which results in a free-
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flowing cloud of electrons within its molecular arrangement. This provides its ability to 

transform heat and electricity. Mercury is relatively a poor conductor of heat but it 

conducts electricity well. Several attempts have been made to describe the pair potential 

of liquid mercury to accurately and consistently predict its properties using a 

thermodynamic model (Chen et al., 2005; Bomont and Bretonnet, 2006 and Iakovlev et 

al., 2015). The challenge was the mathematical description of the interaction between an 

atom and the surrounding electron cloud, in addition to the usual interactions based on 

van der Waals forces and electrostatic forces. In our case, there is added complexity in 

modeling liquid mercury due to the presence of many-body interactions and quantum 

effects that develops under extreme pressure. The broadly used Lennard-Jones potential 

simply cannot reproduce the experimental mercury data such as density, viscosity, or 

total energy. The electron cloud of liquid mercury is large such that the embedding 

potential between the mercury atoms cannot be ignored as typically done for the 

Lennard-Jones fluids with the dominant pair-wise interaction. We therefore choose the 

so-called Embedded Atom Model (EAM) as the force field in our simulation, which is 

often used for metals. It has previously been shown by Iakovlev et al. (2015) that using 

the EAM for liquid mercury gave the closest surface tension of mercury comparing with 

experimental data among the other density-independent or density-dependent models. 

The potential energy of metal such as mercury is then defined using the following 

equation: 

𝑈 =∑Φ(𝜌𝑖) +∑𝜑(𝑟𝑖𝑗)

𝑖<𝑗𝑖

 (7) 
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where the first term considers the embedding potential of each metal atom due to the 

many-body electronic interaction, which is basically dependent on the density of the 

metal, by including i, which represents the effective electron density at each position i. 

And the second term is the conventional Lennard-Jones potential, which represents the 

potential energy between each mercury atom pair. Previous work by Belashchenko 

(2006, 2013) provided two groups of parameterization of the EAM model for the liquid 

mercury. The first way defined the embedding energy using 

Φ = {
𝑎1 + 𝑎2(𝜌𝑖 − 𝜌0)

2 + 𝑎3(𝜌𝑖 − 𝜌0)
3, 𝜌𝑖 > 0.8 𝜌0

𝑎4√𝜌𝑖 + 𝑎5𝜌𝑖, 𝜌𝑖 < 0.8 𝜌0 
  (8) 

 

Because the effective electron density in different atom position is influenced by its 

surrounding atoms, we used the following equation to define it: 

ρi =∑Ψ(𝑟𝑖𝑗)

𝑗

  (9) 

 

where 

Ψ(r) = 𝑝1exp (−𝑝2𝑟)  (10) 

The parameters in these equation are adjusted according to experiment. However, to 

make our liquid mercury models suitable under extreme pressure (which is the condition 

in MICP experiment), the above parameters are not suitable anymore. As a result, we 

used the modified embedded atom model which was also introduced by Belashchenko 

(2013), and this is the other group of parameterization as mentioned before. Similarly, it 

defined the embedding energy but separately in each narrower range:  
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Φ =

{
  
 

  
 

𝑎1 + 𝑐1(𝜌𝑖 − 𝜌0)
2, 𝜌𝑖 > 0.8 𝜌0

𝑎𝑘 + 𝑏𝑘(𝜌𝑖 − 𝜌𝑘−1) + 𝑐𝑘(𝜌𝑖 − 𝜌𝑘−1)
2, 𝜌𝑘 < 𝜌𝑖 < 𝜌𝑘−1, 𝑘 = 2,3, … 7 

[𝑎8 + 𝑏8(𝜌𝑖 − 𝜌7) + 𝑐8(𝜌𝑖 − 𝜌7)
2] ∙ [2

𝜌𝑖
𝜌7
− (

𝜌𝑖
𝜌7
)
2

], 𝜌𝑖 ≤ 𝜌7 

𝑎9 + 𝑏9(𝜌𝑖 − 𝜌8) + 𝑐9(𝜌𝑖 − 𝜌8)
𝑚, 𝜌8 ≤ 𝜌𝑖 ≤ 𝜌9

𝑎10 + 𝑏10(𝜌𝑖 − 𝜌9) + 𝑐10(𝜌𝑖 − 𝜌9)
𝑛, 𝜌𝑖 > 𝜌9

  (11) 

 

As a result, the parameters p1, p2, a1, c1-c10, -m and n in equation (8-11) can be 

adjusted based on the experiment data of mercury. With these modifications, this model 

has good agreements with the mercury experimental density-energy data for pressure up 

to 46GPa, which is equal to 6,671,736 psi, at room temperature and for temperature up 

to 1,673K. This fully covers the pressure and temperature ranges for all of our 

simulations. The parameters we used for the mercury force field in the modified EAM 

model are adopted from Belashchenko (2013), where p1=4.8019, p2=1.3095 A-1; a1=-

0.08798 eV; c1=0.7867, c2=-1.40, c3=2.00, c4=-3.00, c5=5.42, c6=-2.00, c7=-3.20, 

c8=4.00 eV; =0.81, =0.71, To be 

noted, the reason for its limitation in other condition is due to its neglect of thermal 

energy of electrons (Belashchenko, 2013). These factors above are used to define the 

mercury force field at normal pressure. When it exceeds the normal pressure, such as in 

our simulation, the other terms are required: c9=0.980, c10= 0.230eV; 

m=1.70, n=3.00. In addition, when we used this force field for mercury in our own 

simulation, we adopted the radius of interaction breakage as 9.01A for mercury 

(Belashchenko, 2006 and Belashchenko, 2013), and the cut-off distance for other 
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interactions in our simulation was defined as 11.01A. This is going to save the 

computing time because it eliminates the calculation of non-bonded interactions.  

For carbon-carbon atomic interactions of the graphene walls, we used the 

following Lennard-Jones parameters: C-C=3.407A and C-C/kB=28.02K. We have taken 

the mercury-carbon wall interaction parameters from Chen et al. (2005) where they 

simulated a mercury drop being added on a graphite surface and concluded that the 

potential well depth Hg-C/kB is equal to 14.7K. In previous work by Wang et al. (2016), 

Hg-C value was modified because they believed that the contact angle was dependent on 

the line tension and Chen’s model was only workable at 300K. Applying Hg-C suggested 

in Wang’s paper, we tested the mercury injection simulation results. The results showed 

that the capillary pressure measurements were consistent with our previous simulations. 

Furthermore, because 298K is the temperature of MICP experiment as well as the set 

temperature in our simulation, the limitation due to the temperature would not influence 

the accuracy of our results which were measured based on the equilibrium states. The 

length scale between mercury and carbon was defined as Hg-C=3.321A, which is 

estimated by use of Lorentz-Berthelot mixing rule and using C-C=3.407A and Hg-

Hg=3.234A. 

2.3    The Ensemble 

 The ensemble is also another important input in MD simulations. There are four 

ensembles in the theory of statistical thermodynamics. The canonical ensemble, NVT, 

was performed for the capillary pressure computation simulations, in which the numbers 
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of atoms N, the volume V, and the temperature T of the simulation remains constant. 

The temperature is set to be 298K which is the room temperature and it is also the 

experimental condition of MICP. Other ensemble is microcanonical ensemble, NVE, 

where the energy instead of temperature are treated constant. However, because the 

energy itself cannot flow from one cell to the other, thus this is a really simple ensemble; 

The isothermal-isobaric ensemble, NPT, maintains the pressure constant, which was 

used in our mercury force filed validation simulations, and the last one, the grand 

canonical ensemble, VT, allowed the number of atoms in each cell fluctuated. They are 

used in other conditions. Further discussions in ensemble are also included in the 

following parts where simulation settings are going to be introduced in details.  

 

2.4    Bulk Density Simulation for Liquid Mercury 

 To begin with, the force field for mercury is validated by reproducing the mass 

density of the bulk mercury at room temperature and changing pressure, and by 

comparing the results with the experimental data given in Table 1. NPT ensemble was 

used in these simulations. Both temperature and pressure were inputs, where the 

temperature was set to be the room temperature, whereas the pressure was given a range, 

which in our simulation, the upper and lower limit were both set to be the target pressure 

for the density computation. To perform this simulation, 15,488 of mercury atoms were 

placed inside a cubic box with the length in x, y and z direction as 9.9nm. This box was 

set to be periodic in all the three directions. The periodic boundary forms the identical 

box which has the atoms move out from one side of the box and return to the box from 
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Table 1  Experimental values of mercury density at room temperature and its 

dependence on pressure from (Holman and Seldam, 1994) 

 

Pressure 

bars 

Pressure 

psi 

Experiment 

Density(kg/m3) 

0 0 13,533.6 

500 7,251.9 13,560.6 

1,000 14,503.8 13,587.2 

1,500 21,755.7 13,613.4 

2,000 29,007.6 13,639.2 

2,500 36,259.5 13,664.6 

3,000 43,511.4 13,689.6 

 

Table 2  Computed bulk mercury density varying with pressure and compared to the 

previously published experimental data 

 

Pressure 

psi 

Experiment 

Density(kg/m3) 

Simulation 

Density(kg/m3) 

Difference 

% 

12,272 13,579 13,728.9 1.1 

18,260 13,600 13,749.5 1.1 

20,730 13,609 13,756.9 1.1 

36,994 13,665 13,801.3 1.0 

45,217 13,693 13,837.2 1.1 

81,657 13,809 13,951.8 1.0 

122,861 13,928 14,082.3 1.1 

 

the other side, and hence keeps N constant in the simulation box. The system is let to 

reach its equilibrium state at the room temperature. The density of the mercury was 

calculated based on the number of the atoms and the size of the box, while the pressure 

changes with the simulation time, hence was output from the simulation. Thus, the 

density-pressure relationship is concluded from this simulation.  

The results and comparison with the experimental data published by Holman and 

Seldam (1994) are shown in Figure 4 and tabulated in Table 2. Clearly, the experimental 
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density data of mercury has been successfully reproduced using the molecular dynamics 

simulations with a discrepancy around 1%. Our validation included the pressure 

comparison up to about 120,000 psia, which is well beyond the limits of the MICP 

apparatus pressure range. Figure 4 includes the linear regression results of the 

experiment and of the simulation, which are reasonably close to each other. This 

validates our simulation. 

 

2.5 Piston Model for Mercury Intrusion into Nanocapillary 

Figure 5 shows the piston model we developed to force mercury into the single-wall 

carbon tube using molecular dynamics simulation. Clearly, the mercury injection setup 

includes a computational box on the left filled with mercury atoms, and a carbon tube on 

the right-hand side, which is connected to the mercury box. The capillary is fixed, 

meaning that the carbon atoms that make up the wall are not allowed to move. Their 

coordinates are built by VMD as stated in the 2.1 part. In an independent study, Feng 

and Akkutlu (2015) have shown that vibrating wall atoms do not change the result of 

fluid transport inside the tube significantly. The capillary diameter is set in between 1-20 

nm and the capillary length is taken 3.6nm. Similar nanotube models have been used to 

represent different sizes of nanopores inside the shale (Feng and Akkutlu, 2015; 

Riewchotisakul and Akkutlu, 2016).  

Prior to injection, the liquid mercury atoms are allowed to reach equilibrium in 

the left box, Figure 5A. During this period, the mercury box has periodic boundary in all 

three directions. Next, the boundary of the mercury box in z direction is changed to 
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Figure 4  Comparison of the computed mercury density using molecular simulation with 

the experimental mercury density data from Holman and Seldam (1994) 
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non-periodic and shrink-wrapped, and as a result the mercury atoms can move from its 

original box towards the capillary tube in z direction (from the left side to the right side 

of the simulation box). This compressing of the mercury box is performed either by 

adding an external force to the piston wall or by giving a velocity to the left boundary of 

the mercury box. Consequently, the fluid pressure in the mercury box is gradually 

increased up to the intrusion pressure, Pc, when the mercury atoms are able to move into 

the capillary, Figure 5B, and finally filling it up Figure 5D. This is captured when piston 

wall is used to push the mercury atoms as in the force-based approach. While, in the 

density-based approach, 10% of mercury atoms intrude into the capillary tube is defined 

as the intrusion moment. The corresponding pressure at that moment is recorded as the 

capillary pressure. In this work, two different numerical methods are used to calculate 

the bulk fluid pressure inside the mercury tank: force-based pressure method and 

density-based pressure method. Detailed explanations of these methods and the 

computational workflow are shown in the next Chapter. 

The major advantage of our mercury injection model is that the pressure inside 

the nanopore is in equilibrium with the bulk mercury pressure in the tank. Hence, the 

uncertainty and complexity of pressure calculation inside the nanopore are avoided by 

instead calculating the fluid pressure in the tank. 
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A.  
 

B.  

C.  

D.   
 

Figure 5  Molecular simulation snapshots of mercury injection into single wall carbon 

tube using piston at different time steps. 
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CHAPTER III 

 SIMULATION RESULTS AND DISCUSSION 

 

The important outcome of the simulation study is the capillary pressure value 

which leads to mercury intrusion. Below, two computational methods are presented to 

predict the pressure: forced-based and density-based methods. Following, a rigorous 

discussion on the applicability of the Young-Laplace equation to displacement in nano-

scale capillaries is presented. 

3.1 Force-based Pressure Approach 

In this approach, a layer of graphene was used to mimic the piston as shown in 

Figure 6. The dimension is the same as the mercury simulation box. The interaction 

between the graphene layer and mercury atoms was defined using the mercury-carbon 

interaction parameters as stated in Chapter II.  

Initially, the system is let to reach its thermodynamic equilibrium. This happens 

during the simulation, when the total energy of the system reaches a minimum level and 

stays at that level. In order to compress the mercury in the tank, a constant and uniform 

external force was applied on the carbon atoms that make up the piston. In this way, the 

structure of the wall did not change during the push. The applied external force on the 

atoms of the piston was the averaged desired force, as a result, each graphene atom 

received the same desired force. Hence, the movement of the piston was controlled by 

that force. Accordingly, the total force F on the cross sectional area of the piston is 

calculated as: 
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𝐹 = 𝑓 ∗ 𝑁𝑤𝑎𝑙𝑙 (12) 

 

where, f is the applied external force each carbon atom perceives, and Nwall is the total 

number of carbon atoms that make up the piston wall. Hence, the external pressure on 

the mercury tank is: 

𝑃 =
𝐹

𝐴
 (13) 

 

where A is the area of the piston.  

In each simulation, a particular level of constant force is applied to observe 

whether the mercury intrude into the capillary at this particular force or not.  The 

pressure at the minimum force for the mercury intrusion is the capillary pressure at this 

tube size. After we observe the intrusion, we let the simulation continue for longer time 

and check whether the mercury atoms would continue penetrating into the capillary and  

 

Figure 6  Illustration of mercury injecting to nanocapillary using force-based 

measurement for the fluid pressure in the tank. A moving wall which is made of 

graphene is introduced to the left side of the mercury tank to push it into the pore. 
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Figure 7 Illustration of mercury injecting to graphene capillary using density-based 

measurement for pressure. During the simulation, the left boundary of the simulation 

box moves to the right which results in compressing the mercury slab and force it into 

the pore. 

 

finally fill up the entire capillary tube under this external pressure. If the answer is 

positive, that pressure P is recorded as the capillary pressure Pc at this size. 

 

3.2 Density-based Pressure Approach 

 In this method, the system is also allowed to reach to its initial equilibrium as in 

the force-based case. The graphene layer (i.e., piston) was removed in this method 

because in this way the wall effect was eliminated comparing with the force-based 

method. The compression of mercury in the tank was achieved by changing the volume 

of the mercury tank. As shown in Figure 7, the left boundary is now set to move towards 

the capillary tube in a constant velocity 0.2 A/picosecond. As a result, the pressure inside 

the mercury tank increases at a somewhat constant rate. We monitored the location of 

the mercury atoms, and when the intrusion is found in the capillary tube, we freeze the 

location of the left boundary and maintained the volume of mercury tank constant. To  
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Figure 8 Local density profile in the mercury box. The left boundary of mercury tank is 

z=0 and the right boundary z=5nm, where it connected to the capillary tube. 

 

better capture the location of the mercury atoms, the number of mercury atoms inside the 

capillary tube is counted at every time step throughout the simulation. At the early stage 

of the compression, the number of mercury atoms in the capillary tube is zero. When 

10% of the mercury atoms were found inside the capillary tube, we assumed that the 

mercury intrusion occurred at that time step and freeze the location of the boundary at 

that time to do further computation for that state. 

Afterwards, we let the mercury inside the tank to reach the equilibrium state 

again. We checked the final location of the mercury atoms inside the capillary and 

counted whether there were still 10% in there. If the answer is positive, the pressure now 

inside the mercury box is the capillary pressure for that tube size. LAMMPS does not 

directly give the value of this pressure as output under the NVT ensemble; hence we 

should calculate the pressure value and, for this purpose, the density of the mercury in 
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the tank is used. The number of mercury atoms inside the tank is counted, and the 

density of mercury is calculated based on: 

𝜌 =
𝑚

𝑉
=
𝑛𝑀

𝑉
=
𝑁

𝑁𝐴
∙
𝑀

𝑉
 (14) 

 

where is the density, m the mass, V the volume, n the number of moles, M the 

molecular weight of mercury, N the atom number, NA the Avogadro’s number. Because 

the number of mercury atoms can be counted, the density of the mercury is calculated 

precisely based on equation above. Note, however, that the density inside the mercury 

box is not constant across the width of the tank as we can see in Figure 8. Apparently, 

the density is highest at a distance 4-5nm away from the capillary entrance, where the 

adsorption layer develops by the capillary. After the mercury intrusion into the capillary, 

the location of the left boundary is always in between 0-1nm in z axis. As a result, the 

average number of the mercury atoms in 1-4nm region is used for the density 

calculation. Finally, the pressure at that density is calculated using the laboratory-

measured density-pressure data phase diagram from Holman and Seldam (1994). 

 

3.3    Comparison and Discussion of Two Approaches 

The simulation results for each capillary size are plotted in Figure 9 using both 

density-based and force-based pressure data. As we can see in the plot, the simulation 

data using both approaches agree well with the Young-Laplace equation for the 

capillaries with diameters larger than 15nm, which further validates the simulation 

setting of mercury-air capillary pressure computation. The computed capillary pressure 
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based on two approaches also agree with each other in reasonable range. However, note 

that, when the capillary size is reduced to 10nm and below, the capillary pressure shows 

discrepancy between the simulation and the Young-Laplace equation. This agrees with 

the previous work by Wang et al.(2016), which also indicates that the accuracy of using 

the original Young-Laplace equation on capillary pressure computation is limited in this 

range. The simulation results are consistently higher than the values estimated from the 

classical theory. We believe that the enhanced capillary pressure is due to the increasing 

effect of the local tangential pressure in nanopores. Further on this discussion is in the 

next part.   

As shown in Table 3, however, we observe discrepancy in nanocapillaries with 

diameter in between 1-10nm in the estimated Pc values using the two computational 

methods. We hold the opinion that the simulation results of the force-based method are 

more reliable for these small capillaries and the reason for this bias can be explained in 

three points as follows. Firstly, there is difference in the piston wall movement. In the 

force-based approach, each graphene atom of the piston wall is applied the same force, 

hence all of them are moving towards the capillary tube in a constant and uniform 

velocity, additionally pushing the mercury atoms ahead to the capillary tube. In contrast, 

the density-based approach is moving the left boundary of the mercury box in a 

predefined velocity. In the latter case, due to the extreme repulsive forces from the 

mercury atoms, the boundary movement is relatively unstable with a negative 

acceleration. As a result, using a piston with an applied force is a more stable way to 

mimic the mercury injection process. Secondly, the intrusion pressure predicted with the  
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Table 3  Comparison of the simulation results with Young-Laplace equation. 

 

Capillary 

tube diameter 

Pc, Young-

Laplace 

equation 

Density-

based 

Pressure 

Percentage 

Error 

Force-based 

Pressure 

Percentage 

Error 

[nm] [psi] [psi] [%] [psi] [%] 

1.0 244,692.8  312385.5  27.7  410,610.9  67.8  

2.0  122,346.4  195287.9  59.6  195,287.9  59.6  

3.0  81,564.3  164440.0  101.6  149,313.1  83.1  

4.0  61,173.2  120433.2  96.9  88,654.6  44.9  

5.0  48,938.6  67215.7  37.3  57,858.8  18.2  

10.0  24,469.3  31758.4  29.8  23,727.6  3.0  

15.0  16,312.9  15226.2  6.7  16,333.6  0.1  

20.0  12,234.6  12223.4  0.1  12,223.4  0.1  

 

density-based computation may exceed the true capillary pressure value. The velocity of 

moving the left boundary is limited to a minimum 0.2A/picosecond (or 20m/s), and the 

trajectories of the mercury atoms are recorded every 0.5ps interval. As a result, the 

earliest intrusion moment which may appear at a particular time gap could be missed. By 

using the force-based approach, however, we can eliminate this limitation because the 

force applied on the mercury atoms was modified accurately in four decimal places;  

hence the changes in external pressure are really flexible and its accuracy of the capillary 

pressure is far better guaranteed. Thirdly, in the force-based approach, the complete 

filling of mercury inside the capillary tube is more reliable as defining an intrusion 

moment rather than just seeing 10% of the mercury atoms being forced into the capillary 

tube in the density-based approach. Therefore, in the following analysis, the force-based 

capillary pressure data is used. Furthermore, we note that the effect becomes more and 

more significant as the capillary size is decreased. Previous work also showed similar  
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Figure 9  Comparison of the computed capillary pressure with the Young-Laplace 

equation  

 

results that the surface tension and contact angle differed larger from their scalar values 

as the capillary size became smaller and smaller in sub-10nm range. 
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Figure 10  Comparison of local density inside the mercury box in different capillary 

sizes’ simulations from density-based pressure measurement. The capillary tube is 

connected to the mercury box at 5nm. 

 

3.4    Deviation in Capillary Pressure in Nanopores 

Mercury inside the nanocapillary exists in two thermodynamic states: as the 

adsorbed phase by the capillary wall and as free fluid at the central portion of the 

capillary, if the capillary is large enough. As mentioned in chapter I, the Young-Laplace 

equation only accounts for the average pressure which is valid at the macroscopic scale. 

Mercury molecules in the adsorbed phase become the majority inside the nanocapillary 

and the high tangential pressure in the adsorbed phase increases the capillary pressure 

(Bui and Akkutlu, 2015). In our simulations where the density-based pressure values 

were computed, we found that the adsorption layer at the entrance of the nanocapillary 
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where the local high density is captured, and it also contributed more as the capillary 

size was decreased shown in Figure 10. As a result, the capillary pressure in the sub-

10nm nanopores should also expected to be higher than the Young-Laplace equation 

values. In addition, as the capillary size decreases further, the discrepancy should also 

become much larger due to the higher and higher contribution of the adsorbed layer, and 

this effect is also captured in our simulation as shown in Table 3. Note that for a 1nm 

capillary the simulation gives capillary pressure that is 68% larger.  

 

3.5    Correction to Young-Laplace Equation 

 Based on the results and discussion, the following power-law modification to the 

Young-Laplace equation can be proposed in order to capture the nanocapillary effects 

observed in the simulation study: 

𝑃𝑐 =
2𝛾𝑐𝑜𝑠𝜃

𝑟
∗ 𝐺(𝑅) (15) 

 

where G is a correction factor for the capillary pressure, which is a function of 

normalized radius R. We define the normalized radius as R=r/σ(Hg-C). Here, Hg-C is the 

mercury-carbon length scale, which is equal to 3.321A, as stated earlier in the 

Methodology section. Correction factor G and its dependence on the radius R can be 

described as follows: 

𝐺(𝑅) = 𝑅𝑎𝑅
𝑏

 (16) 
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 This equation above shows that the correction factor G has this double power 

dependence to the normalized radius R. Based on the computed capillary pressure vs. 

capillary radius plot shown in Figure 9, it is power-law relationship between these two 

parameters. Note the nonlinear dependence of the correction factor to the capillary radius 

is shown in Figure 9 which is clearly indicating that the correction is major for the 

nanocapillaries with diameter below 10nm. When applying the force-based pressure data 

in Figure 9 as the target, the nonlinear regression gives the constant parameters in 

equation (16) as a=2.213 and b=-1.37 and the relative coefficient of determination of the 

curve-fit is 0.975. This value indicates that the corrected Young-Laplace equation agrees 

well with the computed capillary pressure from our simulation. In Figure 11 we plot the 

correction factor G as a function of the normalized capillary radius R using the values of 

the constants a and b. Based on the results, the modified Young-Laplace equation can be 

re-written as follows: 

𝑃𝑐 =
2𝛾𝑐𝑜𝑠𝜃

𝑟
∗ (

𝑟

𝜎𝐻𝑔−𝐶
)

2.213(
𝑟

𝜎𝐻𝑔−𝐶
)
−1.37

 (17) 

 

Note that the discrepancy between the estimated pressure values is not constant, and it 

increases as we further decrease the capillary size. Based on these observations,  we 

believe the correction should be also carried out using a power law equation, and the 

corrected portion should also be a power-law dependent function of the capillary radius. 

In order to keep the original unit for the capillary pressure and make the corrected Pc 

meaningful, we used the normalized radius R which defined the correction factor G also 

a unit less function. If we define this dimensionless R by dividing the capillary radius  
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Figure 11  The relationship between the correction factor G(R)vs. normalized capillary 

radius R. 

 

with a different parameter in length dimension, the functional form of this correction 

will not change. Only constant factors a and b will become different. The other 

requirement of the correction is that the asymptote of the correction term should be equal 

to 1 in order to have the consistent prediction for the capillary pressure. This means that 

the corrected capillary pressure should agree with the original Young-Laplace equation 

value in larger size capillaries because the original equation is still valid when the 

capillary radius is larger than 20nm.  

Figure 12 shows the quality of the curve-fitting based on equation (17). We note 

that the modified equation not only corrects the capillary pressure at small capillaries but  
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Figure 12  Comparison of the Young-Laplace equation and the Modified-Young-Laplace 

equation at capillary radius below 10nm. 

 

also recovers the values associated with the large capillaries. This indicates that the 

correction function G goes to unity in the large capillary radius limit. This is shown in 

Figure 13 for capillary radius up to 200 nm. Notice that there is a peak value for G when 

the normalized radius is equal to 2.075. To figure out the reason of this peak, the 

derivative of equation (17) is taken equal to zero: 

𝑑𝐺(𝑅)

𝑑𝑅
= 𝑅

2.213
𝑅1.37

−2.37
[2.213 − 3.03181 ln(𝑅)] (18) 
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Figure 13  Comparison of the Young-Laplace equation and the new model prediction for 

Pc at radius up to 200nm 

 

As we can see in this equation above, only when the term  2.213 − 3.03181 ln(𝑅) is 

equal to 0we will have the maximum value of G. This gives R=2.075. At this point the 

capillary radius is: 

𝑟 = 2.075 ∗ 𝜎𝐻𝑔−𝐶 = 0.0666𝑛𝑚 = 0.6𝐴 (19) 
 

Since this value is too small for the MICP measurements we decided not to worry about 

the maximum point in G function. 
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To be noted, at capillary radius equal to 10nm and 15nm, the relative error 

between the modified Young-Laplace equation and the original Young-Laplace equation  

is only 7.33% and 4.64%, respectively. For mercury-air capillary data inside graphene 

nanopores, we therefore believe that the nanopore correction using equation (17) is only 

needed for the capillary radius less than 10nm. 
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CHAPTER IV 

APPLICATION 

 

4.1    Correction to MICP Measurement using Shale Samples 

 To explore the influence of capillary pressure correction on the pore size 

distribution and total pore volume measurements using MICP, we compared our model 

results with the common analysis for the MICP data of four selected organic-rich shale 

samples shown in Figure 14. The selected samples with the MICP data are from shale 

gas basins in North America. For further clarity, we are using equations (1) and (17), 

with contact angle of 140° and surface tension of 480mN/m, which are the values 

commonly used in the industry. Clearly, the modified Young-Laplace equation has 

perfect match with pore diameter larger than 20 nm. When the pore size decreases, 

however, the discrepancy between the original and the corrected models appears, mainly 

below 10 nm.  

 As explained in the Introduction, the incremental pore volume is measured in 

small pressure increments up to 60,000psi for all the samples. The corrected model 

indicates that at the maximum injection pressure of 60,000psi, the corresponding pore 

throat diameter is now estimated 4.77nm instead of 3.6nm. As a result, the error in the 

theoretical value of the capillary pressure is 33.6% for the lowest measured pore size. 

One would argue that the discrepancy maybe even larger because of the compressibility 

of the shale rock. It is noticed that at the highest injection pressure of 60,000 psi, for a 

1cm3 sample, it could be compressed up to 0.06 cm3 (Giesche, 2006) which is 6% 

volume change in total pore volume of a core sample. Because of that, the actual  
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Table 4  Comparison between the original and corrected MICP on the total pore volume 

measurement for shale 

 

 Predicted cumulative pore volume and error 

Sample # A B C D 

MICP (mL/g) 0.007509 0.003136 0.005207 0.006887 

Corrected MICP (mL/g) 0.009210 0.004296 0.006472 0.007735 

Relative Error 18.82% 19.86% 16.14% 14.02% 

 

pore size distribution maybe shifted even further to the right due to this compressibility 

effect. The compressibility effect could have a stronger impact as the pore size 

decreases. The compressibility effect also develops for the liquid mercury in the sample 

cell. In addition, as observed in this study, the classical Young-Laplace equation results 

in an under-estimation of the total pore volume of the samples. The compressibility 

effects will be investigated in another study. 

The impact of the proposed correction to the measurements of the cumulative 

pore volume is shown in Figure 15 for four shale samples A-D. The original Young-

Laplace equation underestimates the shale total pore volume for up to 20% based on the 

4 samples we tested. The errors associated with the total pore volume measurements are 

summarized in Table 4 for the samples.  

An example calculation of total pore volume correction is shown here for sample 

A, while for other samples, similar corrections have been done and tabulated in Table 4. 

In the cumulative pore volume plots, at the corrected lower end of the MICP 

measurements, which now corresponds to 4.8 nm, we have the original measured total 

pore volume for shale sample A as 0.01566 mL/g. While the corrected total pore volume 
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is 0.0186 mL/g. Based on the difference, the error in sample A’s total pore volume 

estimation can be calculated as: 

0.0186 − 0.01566

0.01566
×100% = 18.82% (25) 

 

4.2    Discussion on Other Multi-phase Flow Studies 

The modified Young-Laplace equation is able to correct the MICP measurements 

for a more accurate pore size distribution. It brings up the interests on studying other 

fluid displacement systems, such as water displacing oil, and it also has potential 

application in understanding the multi-phase flow behavior of other nanoporous material 

using MICP. The increase in the total pore volume comes from the shale nanopores.  
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C.  

 

D.  

 

Figure 14  MICP data for samples A, B, C, D. The results are shown using the Young-Laplace equation and the modified 

Young-Laplace equation.  
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D.  

Figure 15  Predicted cumulative pore volume for Sample A-D as a function of pore 

diameter using MICP.   
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CHAPTER V 

CONCLUSION 

 

5.1 Summary 

 Resource shale is rich in nanopores. A significant portion of nanopores in shale is 

less than 10nm. It is important to better understand the pore size distribution and pore 

throat distribution of shale in order to have a deeper understanding of the fluid flow and 

transport in shale formation. The MICP experiment, as the most traditional way to 

measure the pore size distribution, has the largest range of measured pore size 

distribution comparing with the other approaches, and it costs less time and effort. The 

MICP experiment provides the injection volume as the pressure is increased in steps, and 

the Young-Laplace equation provides the basic theory to relate this injection pressure to 

the size of pores. However, recent study found that both the contact angle and surface 

tension in the Young-Laplace equation behave differently comparing with common 

knowledge and they become strongly size-dependent at sub-10 nm range. In this work, 

the molecular dynamics simulation is used to revisit the capillary pressure in nanopores, 

with the size varied from 1nm to 20nm, and a correction to the Young-Laplace equation 

is proposed to increase accuracy of the MICP experiments. Using molecular dynamics 

simulation, we overcome the current limitation of the experimental pressure, and 

measured the capillary pressure in extremely small range. We applied the corrected 

Young-Laplace equation to shale samples pore size distribution measurement, and 

captured as high as 20% error in the total volume predicted. This really matters for 

accurate shale pore size distribution measurement.  
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 Our simulation has been validated by testing the accuracy of the way we describe 

the atomic behavior using embedded force field with the experimental energy and 

density results. In addition, good agreement in between the simulation and experimental 

results using Young-Laplace equation in large pores further validated the piston 

developed. Good matches are also found when the corrected Young-Laplace equation is 

applied in the MICP experiment comparing with the original results in large pores. The 

proposed correction function consistently predicts the capillary pressure from a very 

small pore such as 1nm diameter to macropores with sizes larger than 50 nm.  

 

5.2 Conclusion 

Using molecular dynamics simulations, it is shown that the widely-known and 

used Young-Laplace equation gives errors in capillary pressure estimation up to 70% in 

the presence of nanocapillaries. Relatively, the MICP experiment only measured the 

total pore volume in the lower size range as 4.8nm instead of 3.6nm, resulting the 

underestimate in shale total pore volume. In turn, the estimated total pore volume is 

expected to be in error up to 20%, based on the measurements with four shale samples. 

We propose a power-low correction to the equation.  It is quite interesting to observe 

such a large error due to small pore correction to the Young-Laplace equation. Our 

results are therefore important for the pore size distribution measurements of nanoporous 

shale formations using MICP and indicate the need for further research in our 

understanding of multi-phase flow behavior in nanocapillaries. 
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5.3 Recommendation for Future Work 

 Future work can be continued to compare our corrected Young-Laplace equation 

for Pc calculation with experiment data for capillary pressure in sub-20nm range. In 

addition, a separate investigation is recommended to study compressibility effect on the 

pore size distribution and on the pore volume. This could be done by injecting the 

mercury into parallel tubes where multiple tubes in same size is used for capillary 

pressure computation in MD simulation. An example of the capillary tube structure is 

shown in Figure 16. By doing this, the mercury would have enough time to squeeze into 

the pore at extreme pressure comparing with the case where only one single tube was 

used to compute the capillary pressure. Reasonable agreed results should be expected 

from this future study when compared with the capillary pressure results in this thesis.   

In addition, MICP experiments with materials like monodispersed silica spheres 

and Vycor glass samples can be used to measure the capillary pressure at different sizes. 

This can further test and validate our correction to the Young-Laplace equation.  
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A.  

B.  

Figure 16  Parallel tube structure 
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APPENDIX A 

DERIVATION  OF THE YOUNG-LAPLACE EQUATION 

 

Consider capillary rise problem shown in Figure A1. At point A, the total energy change 

(∆𝐸ℎ) that is associated with the formation of the liquid column of height h is: 

∆𝐸𝑡𝑜𝑡𝑎𝑙 = ∆𝐸𝑠 + ∆𝐸𝑣 A1 

where ∆𝐸𝑠 and ∆𝐸𝑣  are the changes in surface energy and the potential energy, 

respectively.  Inside the capillary, the surface energy ∆𝐸𝑠 associated with the capillary rise 

can be expressed as follows: 

∆𝐸𝑠 = 2𝜋𝑟 ∙ (𝜎𝑠𝑙 − 𝜎𝑠𝑣)ℎ A2 

where r is the inner radius of the tube, 𝜎𝑠𝑙 the solid- liquid surface tension and 𝜎𝑠𝑣 the 

solid-vapor surface tension. The potential energy ∆𝐸𝑣 can be expressed as: 

∆𝐸𝑣 =
1

2
𝜋𝑟2𝜌ℎ𝑔ℎ =

1

2
𝜋𝑟2𝜌ℎ2𝑔 A3 

where 𝜌 is the density of the liquid in the tube, g acceleration of the gravity. Substituting 

equation (A2) and (A3) into equation (A1), equation (A4) is obtained representing the 

change in energy associated with the capillary rise: 

∆𝐸𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝑟 ∙ (𝜎𝑠𝑙 − 𝜎𝑠𝑣)ℎ +
1

2
𝜋𝑟2𝜌ℎ2𝑔 A4 

It should be noted that the solid-vapor surface tension always has a larger value than the 

solid-liquid surface tension, and thus the first term on the right side of equation (A4) is a 

negative value. As a result, in capillary rise, the gravitational energy, which is the second 

term on the right side, is always opposing the rise. Before reaching the equilibrium height,  
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Figure A1. Capillary rise of a liquid in an open cup in contact with air 

 

h*, the total energy would decrease, and, finally, when it reaches the minimum energy, we 

have: 

𝜕∆𝐸𝑡𝑜𝑡𝑎𝑙
𝜕ℎ

= 2𝜋𝑟 ∙ (𝜎𝑠𝑙 − 𝜎𝑠𝑣) + 𝜋𝑟
2𝜌ℎ∗𝑔 = 0 A5 

Solving for h*: 

ℎ∗ = −
2(𝜎𝑠𝑙 − 𝜎𝑠𝑣)

𝑟𝜌𝑔
 A6 

 

The height of the liquid in the capillary would change until it reaches ℎ∗.  Additionally, as 

it was explained before, the term (𝜎𝑠𝑙 − 𝜎𝑠𝑣) has a negative value for a system showing 

capillary rise, therefore the equilibrium height h* becomes positive. More commonly, this 

equilibrium height can be expressed in terms of the liquid-vapor surface tension 𝜎𝑙𝑣 and 

the contact angle θ as follows: 

Based on Figure A2, we can express the force balance in the y direction as: 

𝜎𝑠𝑣 = 𝜎𝑠𝑙 + 𝜎𝑙𝑣𝑐𝑜𝑠𝜃 A7 
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Figure A2: Balance of surface forces as the vectors originating from the 

intersection point 

 

Here, 𝜎𝑙𝑣 is the liquid-vapor surface tension, 𝜃  the contact angle of the liquid-vapor 

interface.  Substituting equation (A7) into equation (A6), we would obtain: 

ℎ∗ = −
2[(𝜎𝑠𝑣 − 𝜎𝑙𝑣𝑐𝑜𝑠𝜃) − 𝜎𝑠𝑣)]

𝑟𝜌𝑔
=
2𝜎𝑙𝑣 cos 𝜃

𝑟𝜌𝑔
 A8 

Thus,  

𝜌𝑔ℎ∗ =
2𝜎𝑙𝑣 cos 𝜃

𝑟
 A9 

The pressure difference ∆P exisiting in both sides of the liquid-vapor interface is the 

definition of the capillary pressure  Pc, and we have: 

∆P = 𝑃2 − 𝑃1 = 𝑃𝑐 A10 

As shown in Figure A3, because 𝑃1 = 𝑃4 =atmospheric pressure, and 𝑃3 = 𝑃4 due to the 

same level, thus 𝑃1 = 𝑃3. Hence, we also have: 
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Figure A3: Capillary rise at equilibrium state when 𝐡 = 𝐡∗ 

 

𝑃𝑐 = P2 − 𝑃3 = 𝜌𝑔h
∗ A11 

Because the pressure difference between the Point 2 and 3 can be rewrite as: 

P2 − 𝑃3 = 𝜌𝑔h∗ A12 

Thus, we have: 

𝑃𝑐 = 𝜌𝑔h∗ A13 

Combining equation (A9) and (A13) we finally have: 

𝑃𝑐 =
2𝜎𝑙𝑣 cos 𝜃

𝑟
 A14 

Moreover, when we have two immiscible liquids, we should have: 

𝑃𝑐 =
2𝛾 cos 𝜃

𝑟𝜌𝑔
 A15 

 

where 𝛾 is the interfacial tension of two immiscible liquids.  


