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ABSTRACT

There are two problems at the interface of electrical power and economics that are examined

in this thesis. The first problem addresses the issue of optimally operating electric vehicle (EV)

charging stations, where price as well as scheduling of purchasing, storing, and charging play key

roles. The second problem addresses the challenge faced by electric power system operators who

have to balance power generation and demand at all times, and are faced with the task of maximiz-

ing the social welfare of all affected entities comprised of producers, consumers and prosumers

(e.g., homes with solar panels who may be producers at some times and consumers at other times).

For the first problem, we have developed a layered decomposition approach that permits a

holistic solution to solving the scheduling, storage and pricing problems of charging stations. The

key idea is to decompose problems by time-scale.

For the second problem, we have shown that for the special case of LQG agents, by careful

construction of a sequence of layered VCG payments over time, the intertemporal effect of current

bids on future payoffs can be decoupled, and truth-telling of dynamic states is guaranteed if system

parameters are known and agents are rational. We have also shown that a modification of the VCG

payments, called scaled-VCG payments, achieves Budget Balance and Individual Rationality for a

range of scaling, under a certain identified Market Power Balance condition.
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1. INTRODUCTION

There are two problems at the interface of electrical power and economics that are examined

in this thesis. The first problem addresses the issue of optimally operating electric vehicle (EV)

charging stations, where price as well as scheduling of purchasing, storing, and charging play key

roles. The second problem addresses the challenge faced by electric power system operators who

have to balance power generation and demand at all times, and are faced with the task of maximiz-

ing the social welfare of all affected entities comprised of producers, consumers and prosumers

(e.g., homes with solar panels who may be producers at some times and consumers at other times).

Price is the “amount of money expected, required, or given in payment for something" [1]. In

economics, price in a free market is arrived at after the interaction between supply and demand:

the price is set such that quantity supplied equals quantity demanded. However, when the seller has

great market power, it can generate more profit by dividing consumers into groups with separate

demand curves and charging different prices to each group. The idea of price discrimination plays

a fundamental role in determining the prices of EV charging in Chapter 2. Also, since the price

of electricity is time-varying, the operator has to optimize when to purchase power, how much

to store, and how to recharge customers with time deadlines. We present a layered decomposition

approach and supporting theory that permit a holistic solution to the storage, scheduling and pricing

problems of Electric Vehicle (EV) Charging Stations.

In Chapter 3, we are motivated by the problems faced by Independent System Operators (ISO)

in allocating power generations and demands for agents in a power network such that social wel-

fare is maximized, while balancing supply and demand, and satisfying network constraints. One

centralized way to determine prices and make allocations to balance supply and demand is through

calculating the values of Lagrange multipliers in an optimization problem. However, since the cen-

tral agent, the ISO, does not know the details of the producers and consumers, it cannot formulate

the optimization problem. Hence the solution will need to be based on an interaction between the

ISO and the producers and consumers. We address a key issue of designing the market bidding

1



structure that induces dynamic cooperation among agents in a dynamic decentralized fashion.

A key problem in connection with bidding is that when agents attempt to anticipate the ef-

fects of their actions on prices, strategic bidding arises, and the ability to converge to a social

welfare optimal solution, i.e., to attain efficiency of the system, degrades. The problem of de-

signing mechanisms so that truth telling is optimal for agents, called incentive compatibility, has

been well examined for static agents who only have to bid once [2]. However agents in power

systems are governed a dynamic system that is subject to stochastic uncertainties. In Chapter 4,

for a set of linear quadratic Gaussian (LQG) [3] agents, we propose a modified layered version of

the Vickrey-Clarke-Groves (VCG) [2] mechanism for payments that decouples the intertemporal

effect of current bids on future payoffs, and establish that truth-telling of dynamic states forms a

dominant strategy if system parameters are known and agents are rational. One would also like to

ensure that the mechanism is “fair" in the sense that it charges each customer a fair “price". We

further address the issue of ensuring budget balance, which ensures that the ISO does not have to

subsidize the market, and individual rationality, which ensures that agents will not drop put of the

market. We propose a modified Scaled VCG (SVCG) mechanism that satisfies incentive compati-

bility, social efficiency, budget balance and individual rationality for a power market consisting of

LQG type agents.

2



2. A LAYERED ARCHITECTURE FOR EV CHARGING STATION BASED ON

TIME-SCALE DECOMPOSITION ∗

2.1 Introduction

Infrastructures such as fast charging stations, shown in Fig. 2.1, will be crucial for the pro-

liferation of Electric Vehicles (EVs). They play a psychological role, alleviating range anxiety of

EV drivers, and also a functional role, providing incentives for higher utilization of infrastructures.

There are two issues to consider in the design and operation of such charging stations. One con-

cerns infrastructure, i.e., what kinds of devices are required, and what are the optimal quantities

and sizes of these devices from both technological and economic perspectives. The other is opera-

tional, i.e., how to set prices, and schedule power purchase, storage and charging, such that profit

is maximized while guaranteeing quality of service to arriving EVs. We focus on the latter issue in

this chapter

We consider a single charging station connected to the electricity grid. While supply of power

is thereby guaranteed, the price at which wholesale level grid power can be bought by a charging

station is variable and greatly impacts its economic operation. One solution is to introduce on-site

energy storage. Such storage also increases the number of EVs that can be charged simultaneously

by increasing the peak constraint on grid power drawn, thereby enhancing economic viability of

charging stations. Bae and Kwasinski [4] estimates charging demand for a station near a highway

exit and conclude that adequate energy storage can reduce charging price. Bayram et al. [5, 6]

demonstrates that storage capacity is key to minimizing charging cost while guaranteeing system

performance. To alleviate CO2 emissions it is desirable if renewable energy supplies are employed

to meet the increased demand of EV charging stations [7, 8].

So motivated, we analyze charging stations as in Fig. 2.2 with sufficient energy storage capac-

ity, connected to the grid from which they can buy electric power, as well as access to a source of

∗Part of this Chapter is reprinted with permission from "A Layered Architecture for EV Charging Stations based
on Time-Scale Decomposition" by Ke Ma, Le Xie, and P. R. Kumar, in 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 674-679, Nov 2014.

3



Figure 2.1: Solar Electric Vehicle Charging Station

renewable power.

There has been growing work on the problem of scheduling EVs. Zhang et al. [9] incorporates

renewable sources in the station and models it as a Markov decision process with uncertainty in

both grid power price and EV arrivals. It aims at minimizing total cost but does not consider the

influence of price on arrival rates of EVs. Chen et al. [10, 11] formulate charging as a deadline

scheduling problem and propose an on-line algorithm with admission control to achieve the max-

imum competitive ratio. They introduce a pricing function, tied to the individual utility of each

charging request, to provide economic incentives for customers to relax their deadlines. The pa-

pers utilize price to control the arrival of EVs, but do not aim at maximizing running profit. There

does not appear to exist any work that holistically addresses the operation of charging stations tak-

ing into account the optimal utilization of battery storage, the availability of renewable energy, the

fluctuation in grid power price, and the stochastic EV arrivals with rate modulated by the pricing

scheme. Our goal is to address this overall problem incorporating all of these coupled features.

4



Grid

supplying power 
at a time varying 

price

On-site 
Renewables

whose supply is
time varying

Battery

A set of EV chargers

Price modulated 
stochastic arrivals of 

EVs

Figure 2.2: Envisioned infrastructure for charging station

We propose a decomposition that is layered by time-scale to handle this overall problem. In the

top layer, a deterministic pricing scheme for EV customers is developed by considering the long-

term average grid power price and availability of renewable energy, plus price-demand curves

for different types of energy requests with different relative deadlines, i.e., remaining times to

the absolute deadlines [12]. In the middle layer, we develop an optimal policy to determine the

amounts of energy to buy from the grid and to use for charging in successive time intervals. We

model customer arrivals as a stochastic process modulated by the price determined by the top

layer and announced to customers. In the bottom layer, we fulfill all charging requests without

missing deadlines by prioritizing requests with earlier deadlines, and using the optimal charging

scheme derived in the middle layer. This three layer decomposition provides a tractable and holistic

solution, illustrated by examples in Section 2.3 – 2.5. By using wholesale electricity data from

Electric Reliability Council of Texas (ERCOT), we also show that it is beneficial to incorporate

5



storage devices in the charging station in the long run. We demonstrate that the architectural

solution proposed does not incur any significant loss of optimality [13].

The rest of the chapter is organized as follows. In Section 2.2, the charging station model

is described, followed by the layered decomposition approach. In Sections 2.3, 2.4 and 2.5, we

formulate the mathematical model of each layer and provide a solution. In Section 2.6, numerical

examples for each layer are provided. In Section 2.7, we discuss the complexity of the algorithms,

followed by the discussion of optimality and the value of a battery in Section 2.8.

2.2 Model

We assume that there are two sources of power available, as in Fig. 2.2. Grid power is avail-

able at a price that fluctuates with time, which may be partially predictable. Renewable power is

inexpensive, but its availability fluctuates with time. Energy storage that is co-located with the

charging station allows the station operator to buy power from the grid and store it when the price

is low, and it also mitigates fluctuations of power generated by the renewable resource. Customer

arrivals, energy requirements and relative deadlines are random, and are modulated by the prices

announced by the charging station. Although the price-demand curve, which we will formally

introduce in Section 2.3, is sufficient to capture the aggregate behavior of customers, the proba-

bilistic characteristics of customers may depend on the price being charged for various services by

the charging station since individual response of any customer is random. All the above give rise

to an overall real-time stochastic scheduling problem.

To deal with the overall complexity, we introduce a layered decomposition approach by ex-

ploiting the time scales involved. Wholesale electricity price changes every 15 minutes. If we

limit our focus to this time scale, then the individual demand coming from each customer is ran-

dom, grid power price fluctuates randomly, and renewable supply also varies randomly. However,

when we consider a longer time scale, for instance one day, the aggregate total demand of all cus-

tomers in a day is relatively predictable. Fluctuations of grid power price and renewable energy

averaged over a day are also comparatively smaller with respect to historical data. It is thus rea-

sonable to model grid power price and renewable power supply on a daily basis as deterministic

6



based on historical data. Total aggregate demand can also be regarded as a deterministic function

of the price as given by the price-demand curve. Thus, we address the problem of how to set

prices for different customers requesting different amounts of energy with different deadlines in a

deterministic fashion.

Subsequently, we address the decisions to be made at a shorter time scale of 15 minutes. Over

such a short time period, the charging price is constant and we can model the number of customers

arriving in each 15 minute time slot, with a specific energy requirement and deadline, as a random

variable with mean determined by the price from the demand curve. Modeling the fluctuating grid

power price also as a random process, stochastic optimal control is used to determine how much

to buy and use in each 15 minute time slot.

Finally, we consider real-time EV arrivals. We solve the scheduling problem of meeting cus-

tomer requests by simply giving priority to customers with earlier deadlines.

Combining all the algorithms in the three-layer decoupled manner, we obtain the overall solu-

tion shown in Fig. 2.3.

2.3 Top-layer

At the topmost layer, we employ a deterministic model of customer response, and determine

the optimal pricing scheme to control the total demand from customers. The relationship between

aggregate (not short-term dynamic) demand and price is captured by the price-demand curve, as is

standard in microeconomics. For each value of price p, there is a long-term asymptotic stable total

demand q from all the customers, given by the strictly monotone decreasing function p = P (q).

At a finer granularity, on the “service” side, the charging station problem can be treated as a

multi-server, multi-class, preemptive queuing system with unlimited buffer, and balking and reneg-

ing of customers. It is preemptive since the interruption and rescheduling of charging can be made

in a manner that is transparent to customers. We use the word “class" to refer to the combination

of charging quantity and relative deadline, where relative deadline is the time difference between

the deadline and the current time, i.e., the remaining time till the deadline expires. When a ve-

hicle arrives at the charging station, it observes that the queue length is x. We allow for balking

7



Top Layer (Pricing)

1. Daily average data of
wholesale electricity price

2. Daily average data of
renewable power supply

3. A set of price demand
curves w.r.t. different 
classes of charging 
requests

Price for every class 
of

charging requests:
charging quantity and
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Middle Layer (Purchase and Storage)

1. Distribution of number of
customers of each class of 
charging requests

2. Random process of
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and renewable power 
supply

Amounts of energy to 
buy from the grid and 

to use for charging 
EVs

Bottom Layer (Scheduling)

Real-time data of EVs 
arrival

Real-time scheduling 
policy for charging 

EVs

Input OutputLegend

Figure 2.3: Layered decomposition approach

by supposing that it enters the queue with probability α(x), or, balks with probability 1 − α(x).

Moreover, after a customer has been in the queue for t units of time, it may continue to remain

in the queue with probability β(t), or, renege with probability 1 − β(t). Here α and β are nonin-

creasing functions. If a relative priority is determined for each group, then one obtains a Markov

chain on a high dimensional state space. The total long-term expected revenue can be determined

as a function of price by calculating the steady state distribution of the Markov chain and utilizing

the demand curve. Such an approach however does not lead to a tractable formulation. Hence

we develop an alternative layered model and architecture that is both tractable and implementable.

Before introducing this model, we consider how price discrimination, a common technique used

to capture consumer surplus, works.

8



For each class of customer, the company would like to charge a different price. A company

can do this because it has some kind of monopoly power. The charging station market is not pure

competitive as a charging station can provide better service than other charging stations (perhaps

through providing faster charging) and not all charging stations need to be price-takers. Thus,

companies can create several consumer classes and charge different prices to different classes. In

our case, and for simplicity of exposition, let us suppose that consumers can be divided into two

classes: those with a short deadline and those with a longer deadline, both with the same energy

requirement. Customers with long deadlines are more patient than those with early deadlines. If

the charging station offers a price higher than they expect, EVs can simply go to another charging

station. As a result, customers with longer deadlines have more price-elastic demand. On the other

hand, customers with shorter deadlines are not very price-elastic, but could be regarded as being

more deadline-elastic. A common strategy called price discrimination for a profit-maximizing

company is the following: charge a higher price to consumers with smaller price elasticity, and

lower price to consumers more sensitive to price.

The prices could be advertised in various ways, e.g., displayed on a big screen as gas stations

do, thus generating a commensurate total demand since prices are relatively static and not changed

at a high rate.

More generally there can be several customer classes differentiated by charging amounts and

deadlines, with a matrix [Pij] denoting the price for customers with energy requirement Li and

relative deadline dj .

Consider the multi-stage model, where decisions are made on a daily basis. There are two

sources of cost, from the purchase of grid power, and the efficiency loss of the battery. Currently,

most batteries are deep cycle having round-trip efficiencies of about 70-80% [15]. Hence the very

act of storage incurs a cost. Consider the t-th time interval [t, t + 1]. Let S(t) denote the energy

level in the battery at the beginning of the t-th interval, R(t) the total amount of energy generated

by the renewable resource during the interval, G(t) the total amount of energy bought from the

grid, q(t) the total amount of energy used to charge the EVs (assumed equal at this layer to the

9



total energy demand of consumers), PG(t) the price of grid power, and P1(t) and P2(t) the prices

charged to customers of the classes. There is a marginal storage cost c associated with the cost

of storing electrical energy in the battery. If we assume constant round-trip efficiency loss and

factor this loss into c, we can reasonably assume c is constant [16] . Also let s0 and smax denote

the initial and maximum levels of the battery. Since S(t) is known causally at the beginning of

this time interval, the goal is to determine how much energy to buy from the grid, as well as how

services to the customer classes are to be priced, so that for a finite time horizon T , the total profit

over the time interval [0, T ] is maximized. We impose a steady-state condition S(T ) = s0 so that

in the long run one does not get infinite energy from the battery as this optimization problem is

repetitively used. One can replace this with any other suitable constraints. In particular one can

replace the lower bound of S(t) with smin if that is deemed preferable.

We assume that the battery capacity is larger than the total possible energy demand [17], the

maximum discharging rate of the battery is bigger than the peak demand rate, and that the marginal

storage cost is less than the wholesale electricity price. We do not impose an upper bound on G(t)

because a typical distribution line has a capacity of 10 MVA [18], which is much bigger than the

maximum possible rate at which the station draws power from the grid (See Section 2.6 for details).

We also assume that price-demand curves for the two classes are both linear: Pj = aj + Qj/bj

for j = 1, 2. Class 1 comprises of those customers with short deadline, i.e., a1 > a2 > 0 and

b2 < b1 < 0.

The resulting discrete optimal control problem [19] is:

max
T−1∑
t=0

2∑
j=1

bjPj(t) (Pj(t)− aj)− c · S(t)− PG(t) ·G(t)

subject to (for t = 0, 1, ..., T − 1):

S(t+ 1)− S(t) = G(t) +R(t)−
2∑

j=1

bj (Pj(t)− aj) , (2.3.0.1)

S(0) = S(T ) = s0,
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0 ≤ S(t) ≤ smax and

0 ≤ P1(t) ≤ a1, 0 ≤ P2(t) ≤ a2, G(t) ≥ 0.

with u(t) := [P1(t), P2(t), G(t)]
′
, let us denote

f0(S(t), u(t)) :=
2∑

j=1

bjPj(t) (Pj(t)− aj)− c · S(t)− PG(t) ·G(t),

f(S(t), u(t)) := G(t) +R(t)−
2∑

j=1

bj (Pj(t)− aj) .

We can replace the lower bound of S(t) with smin if needed for practical reason.

To solve this, we construct the Lagrangian:

L
(
S(0), ..., S(T );u(0), ..., u(T − 1); p(1), ...p(T );λ0, ..., λT ;α0, αT ; γ0, ..., γT

)
:=

T−1∑
t=0

f0 (S(t), u(t))−

{
T−1∑
t=0

p(t+ 1) (S(t+ 1)− S(t) −f(S(t), u(t)))

+
T∑
t=0

(λt)
′ · qt(S(t)) + α0(S(0)− s0) +αT (S(T )− s0) +

T−1∑
t=0

(γt)
′
ht(u(t))

}
,

where qt(S(t)) := [−S(t), S(t)− smax]
′
,

ht(u(t)) := [−P1(t), −P2(t), P1(t)− smax, P2(t)− smax, G(t)]
′
.

Suppose S∗(0), ..., S∗(T );u∗(0), ..., u∗(T − 1) is optimal. Then, from the Karush-Kuhn-Tucker

(KKT) condition, there exist p∗(t) ∈ R1,1 ≤ t ≤ T , (λt)∗ ∈ R2, 0 ≤ t ≤ T , (αt)∗ ∈ R1, t = 0, T ,

(γt)∗ ∈ R5, 0 ≤ t ≤ T − 1, such that

∂L

∂S(t)
= 0, and

∂L

∂u(t)
= 0. (2.3.0.2)
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Denoting λt = [λt
1, λ

t
2]

′ and γt = [γt
1, γ

t
2, γ

t
3, γ

t
4, γ

t
5]

′ , from complementary slackness:

λt
1S(t) = λt

2 (S(t)− smax) = 0, t = 0, ..., T.

γt
1P1(t) = γt

2P2(t) = γt
3 (P1(t)− a1) = γt

4 (P2(t)− a2) = γt
5G(t) = 0,

t = 0, ..., T − 1. (2.3.0.3)

Noting that f0 is a quadratic concave function since b1 and b2 are negative, and that all con-

straints are linear, the solution is unique and a global maximum.

We now show that the earlier method for price discrimination in a static problem (shown in

Fig. ??) also works at every stage. For each stage t, the marginal revenue for class j is MRj(t) =

dTRj(t)/dQj(t) = aj+2Qj(t)/bj = 2Pj(t)−aj [14]. The total cost incurred in stage t is TC(t) =

c · S(t) + PG(t)G(t) = c · S(t) + PG(t) · (S(t+ 1)− S(t)−R(t) +Q(t))+, where (·)+ :=

max(·, 0), Q(t) :=
∑2

j=1Qj(t), with Q1(t) and Q2(t) denoting the quantities corresponding to

P1(t) and P2(t) on the demand curves for classes 1 and 2. Thus the marginal cost is MC(t) =

d(TC(t))/dQ(t) = PG(t) ·1Q(t)>S(t)+R(t)−S(t+1) = PG(t) ·1G(t)>0, where 1(·) is the characteristic

function.

Theorem 1. Suppose 0 < Pj(t) < aj , for j = 1, 2. Then for each stage t, MR1(t) = MR2(t) =

MC(t) if a strictly positive amount of grid power is bought, i.e., G(t) > 0.

Proof. We expand
∂L

∂u(t)
= 0 from (2.3.0.2). For j = 1, 2

∂L

∂Pj(t)
= 2bjPj(t)− ajbj − bjp(t+ 1) + γt

j − γt
j+2 = 0,

∂L

∂G(t)
= −PG(t) + p(t+ 1)− γt

5 = 0. (2.3.0.4)

Under the assumptions 0 < Pj(t) < aj and G(t) > 0, γi
1 = γi

2 = γi
3 = γi

4 = γi
5 = 0. Then

from the above, 2P1(t) − a1 = 2P2(t) − a2, which is the same as MR1(t) = MR2(t). Also,
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2P1(t)− a1 = PG(t), which is the same as MR1(t) = MC(t).

From the Lagrange multiplier, we observe the dependence of battery state on the variation of

grid power price. Also, the following theorem shows that when the increase in price is expected to

be greater than the marginal storage cost, then the battery should be charged to the full.

Theorem 2. If S(t− 1) = 0 and PG(t)− PG(t− 1) > c, then S(t) = smax.

Proof. First we notice that if S(t − 1) = 0, then from the previous assumption, the renewable

energy is little and not enough to satisfy the total demand. From the system dynamics equation

(2.3.0.1), we see G(t) > 0. By (2.3.0.3), γt−1
5 = 0. From (2.3.0.4), we see PG(t− 1)+ γt

5 = p(t).

Expanding (2.3.0.2) and substituting in PG(t− 1) = p(t), we have

PG(t)− PG(t− 1) + γt
5 + λt

1 − λt
2 = c.

Clearly, when PG(t) − PG(t − 1) − c > 0, λt
1 − λt

2 < 0. By complementary slackness, S(t) =

smax.

Section 2.6 presents a numerical example using data from the Electric Reliability Council of

Texas (ERCOT).

2.4 Middle-layer

Now we consider the middle layer where decisions are made every 15 minutes. The total

expected revenue is fixed since the prices have been fixed at the top layer and one day is long

enough for the demand to reach an equilibrium. Therefore to maximize profit, we only need to

minimize expected cost at the middle layer. The number of customers arriving in each stage is a

random variable, with the mean determined by the price-demand curve from the prices announced

at the top layer. For consistency, we assume there are two classes of customers with different

relative deadlines, both requiring the same amount of energy; this can be generalized. It should be

noted that the top layer only determines how much electricity on average, G(t), the charging station

should buy from the grid and how much to consume from the battery, Q(t). Since a battery can be
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severely damaged if it is overdrawn or overcharged, a 15-minute charging and discharging policy

needs to be specified. Thus at the middle layer, we determine the optimal policy for 15-minute

operation of the battery, which specifies the amounts to charge (i.e., purchase from the grid) and

discharge (i.e., use for charging EVs).

We adopt the same notation as for the top layer. Let S(t) denote the energy level in the battery,

and X(t) and Y (t) the numbers of customers with relative deadlines of one and two time slots. Let

M(t) denote the random number of customers that arrive in the t-th interval with deadline at the end

of the interval, and N(t) the random number of customers with deadline at the end of the (t+ 1)-

th interval. Let PG(t) denote the random wholesale price in the t-th interval, H(t) the historical

average wholesale electricity price for the t-th interval; G(t) the amount of energy to buy in the t-th

interval, W (t) the amount to discharge, i.e., to use from the battery in the t-th interval. We assume

our charging policy is work-conserving, i.e., W (t) satisfies L ·X(t) ≤ W (t) ≤ L · (X(t) + Y (t)).

The resulting multi-stage stochastic control problem is

min E

{
T−1∑
t=0

PG(t) ·G(t) + c · S(t)

}

subject to

S(t+ 1) = S(t) +G(t)−W (t), t = 0, 1, ..., T − 1,

X(t+ 1) = X(t) + Y (t)−W (t)/L+M(t+ 1), t = 0, 1, ..., T − 2,

Y (t) = N(t), t = 1, 2, ..T − 1,

M(T − 1) = 0 and N(T − 1) = 0,

S(0) = S(T ) = s0 and 0 ≤ S(t) ≤ smax, t = 0, ..., T,

G(t) ≥ 0, t = 0, ..., T − 1,

L ·X(t) ≤ W (t) ≤ L · (X(t) + Y (t)), t = 0, ..., T − 1,
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M(t) is i.i.d, with E [M(t)] = b2(P2 − a2)/96,

N(t) is i.i.d, with E [N(t)] = b1(P1 − a1)/96,

E [PG(t)] = H(t).

The minimization above is over all Markov policies [3].

Let us define: state space S := {(S,X, Y, PG)}, action space A := {(G,W )} and T :=

{0, 1, ..., T − 1}. Our goal at this layer is to find a policy π : S×T → A such that for every s ∈ S

and t ∈ T , πt(s) specifies an action in A which minimizes the expected value of the cost function.

For computational purposes we assume that the number of values that M , N and PG can

take is finite. For simplicity, we assume here that M , N , PG are independent; M is i.i.d. with

mean depending on the total quantity associated with the price announced from the top layer; N

is similar to M ; PG’s are independent, with symmetric probability mass functions, each centered

at H(t). However, the general problem is solved similarly. Using dynamic programming [3], the

value function is

Vi(S,X, Y, PG) = min
(G,W )∈A

[
PG ·G(t) + c · S+∑

h∈H

∑
n∈N

∑
m∈M

pM(m)pN(n)pPG(h) · Vi+1 (S +G−W,X + Y −W/L+m,n, h)
]
, (2.4.0.1)

VT (S,X, Y, PG) = c · S.

where pM , pN and pPG are probability mass functions of M , N and PG, respectively; M, N and

H are the finite sets of values that M , N and PG can take, respectively.

To get a closed form solution of the value function V is difficult. As we recurse backwards

from stage T , we notice that to satisfy (2.4.0.1), the value function V is piecewise, but the number

of pieces of V grows. As a consequence, instead of deriving the necessary condition for the optimal

policy by exploiting the properties of V , we employ a numerical algorithm to derive the optimal

policy, illustrated in Section 2.6 for a numerical example following the results from top-layer.
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2.5 Bottom-layer

In the bottom layer, the lookup table obtained at the middle layer, which consists of the optimal

actions (G,W ) for every possible state (S,X, Y, PG) at each time t, is used as a guideline for the

scheduling problem. The amount to use from the battery W in each time interval, which is derived

from the middle layer, equals the total amount of energy discharged from the battery during that

interval. This sets an equality constraint for the bottom layer. We seek a real-time scheduling

policy which explicitly prioritizes different classes of customers while satisfying the total energy

consumption constraints and ensuring that no deadlines are missed. While finding the optimal

real-time scheduling policy is not trivial, it is straightforward if the following assumptions hold:

• The charging rate for each charger is large enough that all requests can always be finished

within one time slot. This is true if the discharging rate of the battery is large enough.

• The number of chargers is large enough so that whenever it is decided to charge a EV, there

is an empty charger. This is feasible if the former assumption is made.

• The deadline for EVs that arrived in (t − 1, t] with a relative deadline of d is t + d, for

d = 1, 2.

Wholesale electricity prices are typically announced every 15 minutes, as is done by ERCOT in

Texas for example. Neglecting the initial opening period for the operation of the charging station,

the prescription for the middle layer can be implemented in the following manner to yield the

policy for the bottom layer:

During (t− 1, t]:

• Keep track of EVs that arrived in (t− 1, t].

At time t:

1. Obtain the latest grid power price on the website for the period (t− 1, t].

2. Read the current energy level of the battery S(t).
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3. Determine the optimal action W (S(t), X(t), Y (t), PG(t), t) from the middle layer and fol-

low it to charge the EVs that arrived in (t− 1, t], i.e., if W = X , charge all the EVs with one

time slot relative deadline; if W = X + Y , charge the EVs with a relative deadline of either

one slot or two slots at the same time; if X < W < X + Y , charge all the EVs with one slot

relative deadline and then charge (W −X)/L EVs with two slots relative deadline.

2.6 Numerical Results

2.6.1 Top-layer

We use data from ERCOT [20] and the wholesale electricity prices of Houston, from Jan. 1

– 30, 2012, as PG(t). From [20, 21], onsite renewable energy generation is random and only

accounts for 5 to 10 percent of the total demand. Therefore, we generate a random vector in that

range and fix it throughout the example. Moreover, we assume the typical battery capacity of

an EV is 16 kWh [22] and that every consumer arrives with an empty battery and requires a full

charge. For gasoline demand, the typical short term elasticity lies between 0.12 to 0.25 [14]; so we

use 0.15 and 0.25 as the elasticities of demand for urgent consumers and non-urgent consumers.

We present the results in Fig. 2.4. All the curves are normalized so they do not overlap with

each other. Compared with the daily average wholesale electricity price PG(t), the announced

prices P1(t) and P2(t) have relatively less fluctuation. This is because, from Theorem 1, the

marginal revenues of the two classes are both equal to the marginal cost, which is the grid power

price. It turns out that the charging price lies very close to the average of the highest possible price

that can be charged and the wholesale electricity price. In Fig. 2.5 we present the storage level as a

percentage of the battery’s capacity. We see that whenever the grid power price is known to rise in

the next period, a large amount of power is bought from the grid, resulting in a full battery in the

next period. Then, in the next period, all the charging requirement is fulfilled by the battery, that

is, the amount bought from the grid is zero.

With the development of smart phones, it is relatively easy for an EV driver to have access to

charging station prices in real-time. Therefore, the old fashioned gasoline pricing scheme, where

price is changed on a daily basis, needs to be reexamined. Using the same data, we show in Fig.
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Figure 2.4: Numerical result of top layer

2.6 how the total profit changes with respect to the frequency at which prices are announced by

the charging station. The horizontal axis represents the price change period, i.e., the x-coordinate

12 represents the total profit in January if price is changed every 12 hours. The total profit is of

course a decreasing function of changing price period; the total profit obtained by announcing the

price every 2 hours is larger than the profit obtained by changing the price daily, because the daily

average of wholesale electricity price cancels out the possible volatility of price during the day. A

more frequent change of pricing scheme results in a better utilization of the battery and thus earns

a larger profit.

2.6.2 Middle-layer

In the example, we assume that the numbers of customers arriving with relative deadlines of

one and two slots are both uniformly distributed. We consider the probability mass function of the

18



Figure 2.5: Battery level, grid power price and amount of grid power purchase for days 10− 18.

Table 2.1: Probability mass function of grid power price in each interval

Value H − 2 H − 1 H H + 1 H + 2
Probability 0.1 0.2 0.4 0.2 0.1

wholesale electricity price shown in Table 2.1. We take |S|= |H|= 20, |M|= |N |= 5. Because

we require that no deadlines should be missed, the size of the action space is |A|≤ |N ||S|. We use

discrete dynamic programming to solve this problem. Going backwards, we obtain a look-up table

containing all the optimal actions - how much to buy from grid and how much to use to charge

the EVs - specified for every possible state in each stage. This optimization has a time horizon

of one day and needs to run on a daily basis after the price is determined from the top layer. For

illustration purposes, we analyze eight 15-minute intervals, from Jan. 9, 9am to 11am. We use the

wholesale electricity price data from ERCOT, Houston.
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Figure 2.6: Total profit in January as a function of the periodicity of price change.

To illustrate the optimal policy, we exhibit a single sample path in Fig. 2.7. In the figure, D(t)

is the total charging requirement – the sum of energy required by customers with relative deadlines

of one time slot and two slots. On this sample path, the maximum rate at which the station draws

power from the grid is 2 MWh, which happens at t = 1. This justifies the assumption that the

upper bound on G(t) can be ignored.

During the first five intervals, D(t) and W (t) coincide, which means that all the requests are

fulfilled even if the relative deadline is two time slots. Consider for example t = 3. The battery is

full, responding to the rise of grid power price during the first two intervals. There is no need to

buy from the grid and the best one can do is to fulfill all the pending requests. However at t = 6,

W (t) < D(t), which means that requests of customers with a relative deadline of two slots are

deferred to the next interval. This may result from the fact that the grid power price is high but

the battery level is low, since fulfilling the requests of both classes will necessitate buying a lot of
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Figure 2.7: The evolution of the optimal policy for a specific sample path

Table 2.2: Average costs of different policies

Policy Name Conservative Radical Optimal
Average Cost ($) 156.9 157.8 152.8

expensive energy from the grid.

We also compare the performance of the optimal policy against two simple policies, one “con-

servative” and the other “radical”. The conservative policy always fulfills all charging requests

immediately, even those with a relative deadline of two time slots. The radical policy fulfills only

those requests needing to be attended to at the moment – deferring all the requests with relative

deadline of two time slots to the next interval. Table 2.2 shows the average costs incurred by the

three policies. Clearly, by incorporating the anticipation of future wholesale electricity prices and

number of customers arriving into its planning, the optimal policy is able to do the best job.
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2.7 Computation complexity

We now examine the computational complexity of the above approach in the general setting.

In the top layer, there are altogether (3K+6)N+5 variables to solve, where K = |I|×|J | denotes

the number of entries in the price matrix P . The resulting quadratic programming problem is com-

putationally feasible for reasonable values of K and N , using CPLEX [23]. At the middle layer,

the number of discrete values for each variable directly influences computational complexity. The

time complexity is O
(
(n× |S|2×|H|×

∏J
j=1

∏I
i=1 cij)N

)
. Here I and J are the numbers of rows

and column in the price matrix P respectively, with |I|×|J |= K; Cij is the the set of values that the

number of ij-th class customers’ arrivals can take and cij = |Cij|; n =
∑J

j=1

∑I
i=1maxp∈Cij {p}.

Clearly, this is polynomial in the number of stages N ; however, it is extremely sensitive to how

finely we discretize the state and action spaces, as one may expect.

2.8 The Cost of the Layered Policy and the Value of Battery

The above analysis guarantees that the architectural solution is implementable in the real-time

market operation of an EV charging station. However, as the time-scale decomposition is only

a suboptimal solution of the overall stochastic scheduling problem, another important aspect is

to evaluate the performance of the approach, and to determine if the architectural decomposition

incurs a significant loss of profit. An upper bound on the total profit can be obtained by optimizing

the top layer assuming full future information, including wholesale electricity price and renewable

generation, and changing the announced price every 15 minutes. Running the top layer once on

Jan. 1 with a horizon of 14 days, middle layer at 12:00 am everyday with a horizon of 1 day, and

bottom layer every 15 minutes shows that the total profit obtained by our top layer achieves 90.2%

of the upper bound. The middle and bottom layer together however reduce the cost and improve

the ratio to 92.6%. We also run the above algorithm from Jan. 2 to Jan. 10. The results are shown

in Fig. 2.8. It can be seen that the layered algorithm achieves 90% of the upper bound in all cases.

A higher ratio is realized on days when wholesale electricity price has small variance. This is true

if we look at the probability mass function of electricity price in our simulation. As a result, it can
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Figure 2.8: The ratio of total profit obtained by the layered algorithm to its upper bound

be concluded that the architectural solution, with three layers serving for monthly planning, daily

adjustment and real-time scheduling respectively, does not lose much with respect to optimality.

The fixed cost and the operating cost of the battery are both high. As a result, we need to justify

the benefit of introducing a battery in the charging station. We first set smax = 0 and calculate the

upper bound of the total profit in January in the same way as we do in the optimality test above.

This gives us the maximum possible total profit in January without the battery. Not surprisingly, the

total profit obtained by our algorithm in the presence of a battery is 30.2% more than the maximal

achievable profit without a battery. Similarly, we run the simulation for February and all the way

to December. The results are shown in Fig. 2.9. From the figure we can see that the maximal

achievable profit without a battery is less than the profit with a battery for every month of 2012.

During the months of July and August (summer in Texas), the difference is even bigger because

wholesale electricity has bigger fluctuations during that time. These differences, as a consequence,
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Figure 2.9: Total profit comparisons with and without battery

will definitely cover the fixed cost of the battery in the long run and therefore we conclude that it

is beneficial for the charging station owner to introduce a battery into the system.

We also obtain numerical results of how total profit in January changes as battery capacity

increases. The results are shown in Fig. 2.10. We see that as capacity increases, marginal benefit

decreases. Thus if the fixed cost of the battery is factored in, we may expect an optimal battery

capacity to be chosen at the level that maximizes rate of return.
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Figure 2.10: Total profit as a function of battery capacity
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3. OPTIMAL MARKET OPERATION WITH DER FLEXIBILITIES: PROBLEM

FORMULATION AND SOLUTION CONCEPT ∗

3.1 Introduction

In electric power systems, a key role is played by the grip operator, an entity called the Sys-

tem Operator or Independent System Operator (ISO). There are a number of unique challenges

faced by the electricity grid operator: production has to be simultaneous with demand; the costs

of different generating units vary significantly; and expected and unexpected conditions on the

transmission network affect the selection of which generating units should be used to serve load

reliably. Traditionally, given the demand of the loads (or a forecast), the role of the ISO, taking into

account these factors, is to allocate the required power among generators such that power is reli-

ably delivered to meet demand, and the cost of generation is minimized. This security constrained

unit commitment (SCUC) [24] and economic dispatch (SCED) [25] problem can be solved by so-

liciting bids (marginal cost of production curve) from each producer and then, choosing for each

hour which generator should be committed to be on-line and the output level of the corresponding

on-line generators, typically for the next 24-hour period, such that the overall cost of producing

the power demanded is minimized [26]. In real time, given the actual load and grid conditions, the

ISO must decide the production level at which each available resource from the unit commitment

stage should be operated such that overall production costs are minimized while maintaining re-

liability [27]. Adjustment of dispatch is needed because actual conditions may be different from

those forecasted in the day-ahead commitment.

The above model with a fixed demand is insufficient for power systems nowadays when re-

newable power generation is integrated in the system. When employing renewable energy, such

as solar and wind which vary unpredictably with time, demand needs to be adjusted accordingly

to match the availability of renewable energy [28]. ISO allows this additional flexibility of loads

∗Part of this Chapter is reprinted with permission from "A Theory for the Economic Operation of a Smart Grid
with Stochastic Renewables, Demand Response and Storage" by Rahul Singh, Ke Ma, Anupam A. Thatte, P. R. Kumar,
and Le Xie in in 2015 54th IEEE Conference on Decision and Control (CDC), pp. 3778-3785, Dec 2015.
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to enter the system by introducing demand bids submitted by Load Serving Entities (LSEs) dur-

ing the SCUC and SCED processes. LSEs, who have traditionally been electric utilities∗, secure

energy and transmission service (and related Interconnect Operations Services [30]) to serve the

electrical demand and energy requirements of their end-users and wholesale customers. Similar

to the dispatch problem stated above, there are two stages, or time periods, where bids from both

generators and LSEs clear: day-ahead market and real-time market. The day-ahead energy market

lets market participants commit to buy or sell wholesale electricity one day before the operating

day, where SCUC and SCED are performed to satisfy energy demand bids and to ensure adequate

scheduling of resources to meet next day’s anticipated load. The real-time energy market lets mar-

ket participants buy and sell wholesale electricity during the course of the operating day to balance

the differences between day-ahead commitments and the actual real-time demand and production

[31].

In reality, prices resulting from clearing the bids in both day-ahead and real-time markets are

not identical across different locations. This is due to physical limits of the transmission systems,

such as congestions and line losses. Prices at different locations, called Locational Marginal Prices

(LMPs), reflect the operating characteristics of and the major constraints on the transmission sys-

tem at different locations as well as losses resulting from physical limits of the transmission system.

LMPs are widely used for collecting transmission congestion charges and determining compensa-

tion for holders of Financial Transmission Rights [31].

However, in the above design of both day-ahead market and real-time market, an important fact

is neglected: power generators and loads are both dynamic systems with individual constraints. For

example, one of the most important features of fossil fuel generators is a ramping constraint: there

is a limit of increase or decrease of output level between two consecutive time intervals. Similarly,

air conditioners can be deferred for a relatively short amount of time but not indefinitely, making

loads dynamic systems. Hence both generators and loads, which may be aggregations of many

small loads, need to be modeled as dynamic stochastic systems. All variables, including power

∗This may change in the future as new business models arise and the traditional model of utilities also undergoes
a transformation [29].
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output and demand, are functions of time. Marketing clearing prices (LMPs), on the other hands,

are functions of both time and location.

In this chapter, we consider the resulting problem faced by the ISO, called the ISO Problem.

How should the ISO choose price as function of both time and locations, such that the sum of utili-

ties of all agents in the system is maximized, while maintaining the balance of supply and demand

and satisfying network constraints. The sum of the utilities of all agents is simply the benefit of

power consumption by the consumers, minus the cost of power generated by the generators, and

it is called the social welfare. Because of the competitive nature of commercial producers and the

need to protect privacy of consumers, the desired solution needs to be decentralized: the ISO needs

to operate without knowing the states/utilities/dynamics of the agents, and agents should also not

need to know states/utilities/dynamics of each other. The only sharing of information happening

between agents and the ISO and is restricted to the bidding process between the ISO and the agents

in each time period (which could be a 15 minute period, or a 5 minute period, or a 24 hour pe-

riod). This bidding process can be one-shot, or a sequence. The sequential case is considered in

[32], where the ISO announces a sequence of tentative market clearing prices over time and loca-

tions, and agents respond back with their supply/consumption bids over time with respect to the

prices. This iterative process continues until the price sequences converges, and this entire process

is repeated in each time period. The complexity of iterating on price vector over time instead of

price for one time instant is inevitable if agents do not share their states/utilities/dynamics with

the ISO. It is worth noting that similar to the tatonnement process in general equilibrium theory

[33], the system-level utility maximization problem faced by the ISO is conducted by agents in a

distributed manner, coupled only by the prices announced by the ISO. We need to mention that

in this Chapter we are only considering the non-strategic case, where agents always bid truthfully.

In [34], we have considered the case where the network constraint are absent and thus prices are

identical across different locations and in [32] the authors mention that linear constraints can be in-

corporated in the LQG case. We will consider here a complete system-wide dynamic optimization

problem faced by the ISO with both energy balancing constraints and network constraints.
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We examine both deterministic and stochastic models, which suit well the day-ahead and real-

time markets, respectively. For deterministic model, our dynamic solution leads to a social welfare

maximum under convexity assumptions of the utility functions. It is not restricted to linearity of

system or quadraticity of costs. For the stochastic model, we investigate the case where agents are

modeled as linear Gaussian systems and the cost functions are quadratic. It can be shown that a

simple scheme yields the global optimum [35]. Under this policy, each agent i needs only to track

its present state Xi(t) instead of the entire history, as in the general case of decentralized stochastic

control [36].

We compare our multi-period formulation with a single-period formulation via simulation. It

is shown that our iterative bidding solution achieves a higher social welfare than the hour-by-

hour (15-minute-by-15-minute) single-period bidding process in the day-ahead market (real-time

market).

The rest of the chapter is organized as follows. In Section 3.2, a survey of related works is

presented. This is followed by a complete description of the model and problem in Sections 3.3.

Discussions of the iterative bidding scheme in a deterministic setting and a stochastic setting are

presented in Section 3.4 and Section 3.5, respectively. Numerical results are provided in Section

3.6.

3.2 Related Works

There have been many papers addressing the problem of dynamic pricing for demand response

assuming a known demand function. Borenstein, Jaske, and Rosenfield [37] present an overview

and analysis of the possible approaches to bringing an active demand side into electricity markets.

Borenstein [38] continues the study by focusing on the long-run efficiency gains from adopting

real-time pricing (RTP) in a competitive electricity market. Using simple simulations with realistic

parameters, the author demonstrates that the magnitude of efficiency gains from RTP is likely to

be significant even if demand shows very little elasticity. Carrion, Conejo, and Arroyo propose a

risk-constrained stochastic programming framework to decide which forward contracts the retailer

should sign, and at which price it must sell electricity, so that its expected profit is maximized at
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a given risk level [39]. Conejo et al. [40] further address the optimal involvement in a futures

electricity market of a power producer to hedge against the risk of pool price volatility. These

results, however, assume implicitly that the demand function is known.

Closer to our work, there is an extensive line of work focusing on obtaining the optimal market

prices which maximizes the social welfare of a collection of loads. Joo and Ilic [41] propose a dis-

tributed optimization algorithm to solve the social welfare maximization problem with a three-layer

market structure (loads at the bottom, LSE at the middle, and the ISO at the top). By examining the

relationships between the global objectives and the local objectives in different layers, the authors

propose a set of conditions that guarantees the convergence of the algorithm. In [42], a dynamic

model of the wholesale energy market that incorporates renewable resources and real-time pricing

with demand response is proposed, and conditions under which stability of the market can be guar-

anteed are derived. Thomas and Tesfatsion [43] show that dynamic-price retail contracting can

give rise to braided cobweb dynamics consisting of two interwoven cycles for power and price lev-

els exhibiting either stability or instability depending on system conditions. The classic paper [44]

develops a theory of pricing in electrical networks over space and time; however the system model

does not incorporate dynamics of agents. To the authors’ knowledge there do not appear to be any

similar results for achieving optimal social welfare over a time period in a decentralized manner,

in a smart grid consisting of network constraints and dynamic generators and loads with stochastic

uncertainties. We show that our iterative bidding scheme achieves a higher social welfare than the

single-period bidding scheme.

3.3 Problem Formulation

We consider a smart grid consisting of N agents, which may be either producers or consumers

of electricity. We model time as consisting of discrete periods and each period corresponds to,

say, a 1-hour interval of the day-ahead market. Since we consider the problem from the ISO level,

each load bus (agent) is represented by an aggregate LSE model. Details of how to obtain such an

aggregate model are not the focus of this thesis, and the reader is referred to [45], [46] and [47].

Each agent i is modeled as a dynamic system. The motivation is that generators typically have
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ramping constraints, and consumers behind each LSE may have similar ramping constraint as well

as delays in load dynamics. The state of agent i at time t, denoted as xi(t), evolves as,

xi(t+ 1) = f t
i (xi(t), ui(t)), t = 0, 1, ..., T − 1. (3.3.0.1)

where ui(t) is the amount of energy (or equivalently, average interval power) each agent i supplies

or obtains to the grid at time t. ui(t) > 0 stands for supplying energy to the grid by agent i at time

t, while ui(t) < 0 signifies an energy consumption by agent i. A straightforward and important

constraint is that there must be a power balance at each time over the grid:
∑N

i=1 ui(t) = 0 for

all t. In addition, network constraints posed by the underlying power-flow equations need to be

incorporated. Here, for simplicity, we adopt the simplified direct-current (DC) power flow method,

which yields fast estimate of line power flows on an AC power system, to specify the network

constraints. A nonlinear model of the AC system is simplified to a linear model of DC power flow

if the following assumptions hold [48]:

• Line resistances (active power losses) are negligible, i.e. R ≪ X .

• Magnitudes of bus voltages are set to 1 per unit.

• Voltage angle differences are small, i.e. sin(θ) ≈ θ and cos(θ) ≈ 1.

Based on the above assumptions, voltage angles θi are the variables to solve given active power

injections Pi in advance. Without loss of generality, we assume agents are geographically located

at N different buses, which results in Pi = ui. Under a DC flow assumption, the active power

balance equations reduce to a set of linear equations:

ui =
N∑
j=1

Bij(θi − θj),

where Bij is the susceptance between bus i and j, or the imaginary part of the bus admittance

matrix Yij . As a result, active power flow through transmission line li between bus j and k can be
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calculated as:

Pli =
θj − θk
Xli

.

where Xli is the reactance of line li. DC power flow equations in matrix form and the corresponding

matrix relation for flows through branches are represented in (3.3.0.2) and (3.3.0.3).

Θ = B−1U, (3.3.0.2)

Pl = DAΘ, (3.3.0.3)

where

U := (u1, u2, ..., uN)
T is the vector of bus active power injections for buses 1, ..., N ,

B ∈ RN×N is a matrix whose non-diagonal elements are susceptances and diagonal elements

are the sum of non-diagonal elements in the same row,

Θ ∈ RN×1 is the vector of bus voltage angles for buses 1, ..., N ,

Pl ∈ RM×1 is the vector of branch flows (M is the number of branches),

D ∈ RM×M is a diagonal matrix with dkk equal to the negative susceptance of line k,

A ∈ RM×N is the bus-branch incidence matrix.

Substituting (3.3.0.2) into (3.3.0.3), we have:

Pl = DAB−1U = HU. (3.3.0.4)

where H := DAB−1 is an M × N matrix that maps active power injection at buses onto active

power flow on branches. Here we note that the condition
∑N

i=1 ui = 0 takes care of the issue of

slack bus, since the slack bus is created solely to balance the active power in the system. A natural

constraint on the active power flow on a transmission line is HU ≤ C, where C is the vector of

active power flow limits of the branches in the system. We note that this inequality takes care of the

direction of flows since |HU |≤ C can be equivalently written as H ′
U ≤ C where H

′
=

 H

−H

.
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Note that in this chapter, we do not consider line losses, assuming losses are not significant enough

to impact the economics of the system operation. However, our model could be generalized to

include these constraints.

We suppose that each agent i has a stage-wise utility function Fi(xi(t), ui(t)). For producers,

this could be the negative of the cost of production. We assume that Fi(xi(t), ui(t)) is the aggregate

total utility of all the loads connected to the LSE. The total utility of agent i over the time horizon

{0, ..., T−1} is
∑T−1

t=0 Fi(xi(t), ui(t)). There could be constraints on input ui for model (4.3.0.11),

such as a ramp constraints |ui(t+1)−ui(t)|≤ ri. In that case, these constraints are not dualized in

the sequel, but carry over to the dual. For simplicity we will not explicitly consider this case here,

but will incorporate such constraints in the numerical examples in Section 3.6.

With the above set-up, we are led to the following deterministic social welfare maximization

problem (DA for day-ahead):

max
N∑
i=1

T−1∑
t=0

Fi(xi(t), ui(t))

subject to

N∑
i=1

ui(t) = 0, for t = 0, ..., T − 1,

HU(t) ≤ C, for t = 0, ..., T − 1,

xi(t+ 1) = f t
i (xi(t), ui(t)), for i = 1, ..., N, t = 0, ..., T − 1.

where U(t) := (u1(t), u2(t), ..., uN(t))
T . This model automatically takes care of renewable re-

sources and uncontrollable loads since we can take Fi ≡ 0 and ui(t) as the prediction value over

the next 24 hours.

Because commercial producers are competitive and the privacy of consumers must be pro-

tected, the desired solution needs to be decentralized. In Sections 3.4 and 3.5, for the deterministic

case (day-ahead market) and stochastic case (real-time market) respectively, we will derive al-

gorithms that satisfy information and action decentralization, with communications between ISO

33



and agents restricted to ISO announcing a sequence of prices and agents responding with sup-

ply/consumption bids in response to prices.

3.4 Deterministic Case: Day-ahead Market

In the day-ahead (DA) market scenario, the ISO’s task is to determinine the T -dimensional vec-

tors Ui := (ui(0), ui(1), ..., ui(T − 1)), for i = 1, 2, ..., N , such that the social welfare
∑N

i=1

∑T−1
t=0 Fi(xi(t), ui(t))

is maximized. We start by writing the Lagrangian for the DA problem:

L(U1, U2, ..., UN , λ, µ) :=
N∑
i=1

T−1∑
t=0

Fi(xi(t), ui(t))

+
T−1∑
t=0

λ(t)

(
N∑
i=1

ui(t)

)
−

T−1∑
t=0

µT (t) (HU(t)− C) ,

(3.4.0.1)

where λ := (λ(0), λ(1), ..., λ(T − 1)) are the Lagrange multipliers associated with energy balance

constraints, and µ := (µ(0), µ(1), ..., µ(T − 1)) are the Lagrange multipliers associated with the

line constraints. The Lagrange dual function is,

D(λ, µ) := max
U1,U2,...,UN

L(U1, U2, ..., UN , λ, µ)

= max
U1,U2,...,UN

N∑
i=1

( T−1∑
t=0

Fi(xi(t), ui(t)) + λ(t)ui(t)− µT (t)Hiui(t)
)
+

T∑
i=1

µT (t) · C

= max
U1,U2,...,UN

N∑
i=1

( T−1∑
t=0

Fi(xi(t), ui(t)) + (λ(t)− µT (t)Hi)ui(t)
)
+

T−1∑
t=0

µT (t) · C,

(3.4.0.2)

where Hi ∈ RM×1 is the i-th column of matrix H . The Lagrange dual function (3.4.0.2) can be

decomposed agent-by-agent since they are only coupled by price (λ(t)− µT (t)Hi). Note that the

obtained price coincides with the locational marginal price (LMP) defined in [31], with λ being the

energy component and µT (t)Hi being the congestion component (the loss component is missing

because we do not consider line losses in the model). Because of the existence of the µT (t)Hi

term, different locations (agents) receive different prices. As a result, prices here are functions of

34



both time and location. We consider the decomposed optimization problem faced by agent i:

max
Ui

T−1∑
t=0

Fi(xi(t), ui(t)) + (λ(t)− µT (t)Hi)ui(t), (3.4.0.3)

subject to:

xi(t+ 1) = f t
i (xi(t), ui(t)), t = 0, ..., T − 1.

It maximizes agent i’s total net utility, defined as the utility Fi(xi(t), ui(t)) plus the amount (λ(t)−

µT (t)Hi)ui(t) it pays/gets paid for electricity. The optimal cost is a function of the initial condition

and the Lagrange multiplier sequence (λ, µ), and we denote it Vi(xi(0), λ, µ). Therefore,

D(λ, µ) =
N∑
i=1

Vi(xi(0), λ, µ) + CTµ · eT

where eT = (1, 1, ..., 1)T is a T -dimensional vector. The term CTµ · eT is commonly referred to as

ISO surplus [49] or congestion rent [50]. When LMPs are different across the grid, the prices paid

by wholesale consumers can diverge from the prices paid to generators. The difference between

total consumer payments and total seller receipts is a net earnings stream collected and allocated

by the ISO. When grids are modeled as lossless, LMP separation only arises in the presence of

congestion: when at least one of the branches lj reaches its capacity cj (congestion happens)

at time t, the corresponding Lagrange multiplier becomes positive with µj(t) > 0, resulting in

CTµ · eT > 0.

Since the dual function can be decomposed by agents, we observe that solving the dual problem

leads us to a decentralized problem: The ISO first announces different price vectors to different

agents with (λ(t) − µT (t)Hi), t = 1, ..., T being sent to agent i. Each agent i optimizes its own

objectives (3.4.0.3) by choosing the vector Ui. As a consequence, neither ISO nor the other agents

need to know the utilities/states/dynamics of agent i. The dual problem is:

min D(λ, µ) (3.4.0.4)
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subject to

µ(0), µ(1), ...µ(T − 1) ≥ 0.

We will assume strong duality holds, i.e., the optimal value of the DA problem and problem

(3.4.0.4) are equal. One possible sufficient condition is that the function
∑T−1

t=0 Fi(xi(t), ui(t)) is

concave in the input vector Ui, for i = 1, ..., N and the feasible region of problem DA is nonempty.

We require concavity only in the input vector Ui because xi(t) can be expressed in terms of the

inputs Ui = (ui(0), ..., ui(T−1)) and thus the utility function
∑N

i=1

∑T−1
t=0 Fi(xi(t), ui(t)) can also

be expressed solely as a function of the inputs Ui, i = 1, ..., N .

The problem faced by the ISO is how to determine the optimal price vector (λ∗, µ∗) such that

D(λ, µ) is minimized. Since D(λ, µ) is convex in λ and µ, we consider the use of subgradient for

iterating on the price vector (λ, µ) in order to converge to the optimal (λ∗, µ∗) [51]:

∂D

∂λ
=

(
N∑
i=1

u
(λ,µ)
i (0),

N∑
i=1

u
(λ,µ)
i (1), ...,

N∑
i=1

u
(λ,µ)
i (T − 1)

)
, (3.4.0.5)

∂D

∂µ(t)
= −(U (λ,µ))T (t) ·HT + CT . (3.4.0.6)

where U
(λ,µ)
i :=

(
u
(λ,µ)
i (1), u

(λ,µ)
i (2), ..., u

(λ,µ)
i (T )

)
is the vector that achieves the maximal utility

for the i-th agent for the price vector (λ, µ) in (3.4.0.3), U (λ,µ)(t) := (u
(λ,µ)
1 (t), u

(λ,µ)
2 (t),

..., u
(λ,µ)
N (t)). Note that agent i will not receive the vector (λ, µ), but rather (λ − µTHi). Here for

simplicity of exposition, we denote U
(λ+µTHi)
i as U (λ,µ)

i .

We thus obtains the price iteration Algorithm 1.

There are several choices for αk, and corresponding convergence results for the resulting sub-

gradient method [52].

Compared with the single-period scheme, our multi-period formulation achieves a higher social

welfare because single-period scheme is mathematically equivalent to a multi-period formulation

with additional constraints on U(t), which results in a smaller feasible set.
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Algorithm 1: Iterative bidding algorithm for DA problem
k = 0; Initialize (λ, µ)k to some arbitrary value;
repeat

Each agent i solves the problem

max
Ui

T−1∑
t=0

[
Fi(xi(t), ui(t)) + (λ(t)− µT (t)Hi)ui(t)

]
,

subject to
xi(t+ 1) = f t

i (xi(t), ui(t)), t = 0, ..., T − 1.

and submit their bids U (λ,µ)k

i , to the ISO.
ISO then updates the price vector, for t = 0, ..., T − 1

λk+1 = λk − αk

(
N∑
i=1

U
(λ,µ)k

i

)
,

µ(t)k+1 = max
(
µ(t)k + αk

(
HU (λ,µ)k(t)− C

)
, 0
)
.

k = k + 1.
until (λ, µ)k converges to (λ, µ)∗;

3.5 Stochastic Case: Real-time Market

In the previous section, the dynamics of the agents (4.3.0.11) were assumed to be determin-

istic, i.e., system state at the next time instant t + 1 was completely determined by the state and

input at time t. However, this might be unrealistic when considering the stochastic nature of re-

newable energy as well as consumer demands, especially in the real-time market context. Let

ωi = (ωi(1), ωi(2), ..., ωi(T )) be the “private" stochastic process affecting only agent i’s system

via:

xi(t+ 1) = f t
i (xi(t), ui(t), ωi(t)),

The stochastic process ωi is not completely observed by the other agents, and only agent i knows

the law, i.e., the probability distribution, of ωi. The social welfare maximization problem faced by
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the ISO (RT for real-time):

max E
N∑
i=1

T−1∑
t=0

Fi(xi(t), ui(t))

subject to

N∑
i=1

ui(t) = 0, for t = 0, ..., T − 1,

HU(t) ≤ C, for t = 0, ..., T − 1,

xi(t+ 1) = f t
i (xi(t), ui(t), wi(t)), for t = 0, ..., T − 1.

If the goal of the ISO is to optimize social welfare over all decentralized policies, then the ISO

needs to play a more active role in order to induce cooperation among agents: the ISO needs to

know states/utility/dynamics of each individual agent i as well as the probability distribution of its

privately observed process ωi. Then the ISO could use dynamic programming to decide the optimal

U(t) for each t, as a function of the states of the entire system. As is well known, this method

suffers from the curse of dimensionality as N increases. An optimal decentralized solution to the

RT problem however, remains an open problem and [34] presents two approximation algorithms

with reduced complexities.

In order to simplify the algorithm and at the same time maintain the iterative bidding structure,

we consider the special case of the RT problem when all agents have linear dynamics, with Gaus-

sian noises, and quadratic costs. The noises ωi are i.i.d. Gaussian random variables with mean

zero. Each agent i has a quadratic utility: Fi(xi(t), ui(t)) = qixi(t)
2 + riui(t)

2 with qi ≤ 0 and

ri < 0. We have the constrained LQG (CLQG) problem:

max E
N∑
i=1

T−1∑
t=0

(
qixi(t)

2 + riui(t)
2
)

subject to
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N∑
i=1

ui(t) = 0, for t = 0, ..., T − 1, (3.5.0.1)

HU(t) ≤ C, for t = 0, ..., T − 1, (3.5.0.2)

xi(t+ 1) = aixi(t) + biui(t) + ωi(t), for t = 0, ..., T − 1.

We will assume the same information sharing structure as in the DA problem: system dynamics

given by (ai, bi) and cost functions given by (qi, ri) are all private to agent i and communications

between ISO and agents are restricted to ISO announcing a sequence of prices and agents returning

back with supply/consumption bids in response to prices.

Similar to the bidding solution of the DA problem, we propose an iterative bidding scheme for

the CLQG problem: At time s, ISO first declares a price vector (λ(t) − µT (t)Hi) for agent i for

times t ≥ s. Agent i responds back with u
(λ,µ)
i for t ≥ s. That is, at time s, each agent bids a

vector of future supply/consumption in responses to future prices announced by the ISO, and ISO

updates the prices in return, until convergence.

The key to showing the existence of such simple bidding scheme lies in the certainty equiva-

lence property of unconstrained LQG systems [36]: A stochastic control problem is said to posses

the property of certainty equivalence if the optimal policy for the stochastic control problem co-

incides with the optimal policy for the corresponding deterministic control problem in which the

noise is absent. However, we need to be careful applying the property because certainty equiva-

lence does not hold for generally constrained LQG problem. Fortunately, constraints (3.5.0.1) and

(3.5.0.2) are both linear in U and as [53] and [54] point out, certainty equivalence continues to hold

for LQG problems with linear constraints in U . Thus we obtain the iterative Algorithm 2.

The critical feature of Algorithm 2 is that there is an iteration of bids in response to future

prices at each time s and once the price converges, the agents implement the control at only the

first time instant.

It should be noted that since the current optimal supply/consumption depends on future prices,

iteration of price at only one time instant is not sufficient to guarantee optimal decision when agents
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Algorithm 2: Iterative bidding algorithm for CLQG problem
for time s = 0 to T − 1 do

k = 0; Initialize (λ, µ)k for t ≥ s to some arbitrary value;
repeat

Each agent i solves the problem

max
T−1∑
t=s

[
qixi(t)

2 + riui(t)
2

+ (λ(t)− µT (t)Hi)ui(t)
]
,

subject to
xi(t+ 1) = f t

i (xi(t), ui(t)), t = 0, ..., T − 1.

and submit their bids u(λ,µ)k

i , t ≥ s to the ISO.
ISO then updates the price vector

λk+1 = λk − αk

(
N∑
i=1

U
(λ,µ)k

i

)
, t ≥ s.

µ(t)k+1 = max
(
µ(t)k + αk(HU (λ,µ)k(t)− C), 0

)
,

t ≥ s.

k = k + 1.
until (λ, µ)k converges to (λ, µ)∗;
Implement U∗(s)

end
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are dynamic systems. Please see Section 3.6 for detailed discussion.

3.6 Numerical Results

We illustrate the iterative Algorithms 1 and 2 by simple examples. We start with a deterministic

case, followed by a stochastic case. We consider the 30-bus system detailed in [55], with generator

data given in Appendix D.4 of [56] that includes data on the generators’ cost coefficients and ramp

rate limits. There are 9 generators and 21 LSEs in the system, which we assume are located at 30

distinct buses.

3.6.1 Deterministic dynamic case: An example

Without loss of generality, we assume linear dynamic systems and quadratic concave utilities

for agents in the following example. For LSE i, we adopt the virtual battery model [57] and let

xi(t) denote the state of charge (SOC) at time t that evolves as,

xi(t+ 1) = αixi(t) + βihi(t)− γiui(t),

where hi(t) denotes ambient heating (ambient temperature forecast) and 0 ≤ xi(t) ≤ 1. For a

supplier i, xi(t) denotes the accumulated power production up to time t, and ui(t) denotes the

power production level at time t. State xi(t) evolves as,

xi(t+ 1) = αixi(t) + ui(t),

ui ≤ ui(t) ≤ ūi, for t = 0, ..., T − 1.

−ri ≤ ui(t+ 1)− ui(t) ≤ ri, for t = 0, ..., T − 2,

where ui and ūi are the minimum and maximum power production levels, respectively, and ri is

the maximal ramp rate allowed. For LSE i, let utility

Fi(xi(t), ui(t)) = −
(
xi(t)−

1

2
(ϕ1i + ϕ2i)

)2

+mi,
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where [ϕ1i, ϕ2i] is the i-th LSE’s “desired SOC range” and mi’s are constants. For suppliers, the

one-step utility function is

Fi(xi(t), ui(t)) = −
(
aiu

2
i (t) + biui(t) + ci

)
For renewable generation and uncontrollable loads, we set Fi ≡ 0 and let ui(t) be the forecast

value. Data is from ERCOT [58].

To be consistent with the day-ahead market context, let each time interval stand for 1 hour

and let T = 24. We use QCQP (Quadratic Constrained Quadratic Programming) to solve each

agent’s individual optimal control problem (3.4.0.3). We first observe that when hi(t)’s are small,

no branch constraints are binding. This results in LMP’s being identical across all buses. When

we steadily increase hi(t) at bus 3, time t = 4, and hold other hi(t)’s constant for all t, branches

connected to this load (branch no. 2 and 4) become congested, resulting in LMP at bus 3 at time

t = 4 being higher than LMP’s at other buses at t = 4. Similar results are obtained when increasing

hi(t) at bus 19 for t = 6. To better demonstrate the performance of the algorithm, we thus choose

h3(t), h19(t) and h10(t) as in Fig. 3.1 such that there are 4 branches that are congested at least once

in the 24-hour optimization window.

Fig. 3.2 plots the evolution of the price vector (λ, µ) for t = 14, where for simplicity of

notation, from now to the end of the section, we use λi(t) to denote the true LMP λ(t)− µT (t)Hi

for agent i at time t. We see that the LMP for both congested buses and the uncongested bus

converge quickly, in less than 15 iterations.

Fig. 3.3 shows the converged LMPs at different locations. LMPs at buses with relatively high

ambient temperature are higher than those at buses with relatively low temperature, and all LMPs

are positively correlated with ambient temperature (demand).

We compare our multi-period formulation with a single-period formulation. Since current

supply/consumption depends on future prices, iteration at only one time instant is not sufficient

to guarantee optimal solutions when agents have dynamic systems. We thus want to compare
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Figure 3.1: Ambient temperature

total utility obtained by our iterative procedure (on vector of prices) to total utility obtained by

the single-period scheme. To simulate the single-period scheme, we repetitively run algorithm 1

with T = 1 and let initial state at time t + 1 equal to the final state at time t. Fig. 3.4 (additional

temperature data is obtained from [59]) shows that in general, utility obtained by algorithm 1 is

approximately 10% higher than utility obtained by the single-period scheme. We impose a steady

state constraint xi(0) = xi(T ) in order for this optimization problem to be repetitively used. This

results in a sub-optimal, or approximate value of the true maximal utility as T → ∞. We thus

calculate the total utility achieved by setting T = 720 (one month), and compare with utilities

achieved by both Algorithm 1 and the single-period scheme. Results are summarized in Fig. 3.5.

The differences in total utility between the cases having T = 24 and T = 720 are small compared

to the differences between the T = 1 and T = 24 cases. Consequently, Fig. 3.5 demonstrates that

iteration over a finite time horizon, though not optimal, attains higher total social welfare than the

single-period scheme.
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Figure 3.2: Convergence of LMPs at time t = 14

3.6.2 Stochastic case

We adopt the same notations as in the deterministic case, but modify the state equations by

adding a Gaussian random variable ωi incorporating the availability of renewables or stochasticity

of demand. For simplicity we let ωi(t) ∼ N (0, σ2
i ). To be consistent with the setting of real-time

market, we let each time interval to be 15-minute and let T = 8.

The inner loop of Algorithm 2 is similar to Algorithm 1 and thus, rapid convergence of the price

vector can be expected. It is shown in [60] that since the implementation of day-ahead market, the

convergence between day-ahead prices and real-time LMPs has been narrowing in PJM market.

Fig. 3.6 shows a similar trend as real-time prices λR(t) track the day-ahead prices λD(t) (with

a time scale of 15-minute, day-ahead hourly prices are step functions) for both congested and

uncongested buses.

In the presence of noise, it can be expected that the variance of prices λ(t) is higher than

the variance of prices in day-ahead market. It is shown in Fig. 3.7 that as variance of noise σ2
i
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Figure 3.3: LMPs at different locations

increases, variance of LMPs obtained by Algorithm 2 and LMPs obtained by the single-period

scheme both increase, and variance of congested LMPs increases faster than that of uncongested

LMPs. However, compared to the variance of LMPs obtained by the single-period scheme, vari-

ance of LMPs determined by Algorithm 2 is smaller in both congested and uncongested cases. We

also observe the change in total utility (over 4 hours) while increasing the variance of noise in Fig.

3.8.
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4. INCENTIVE COMPATIBILITY IN STOCHASTIC SYSTEMS

4.1 Introduction

Mechanism design is the sub-field of game theory that considers how to implement socially

optimal solutions to problems involving multiple self-interested agents, each with a private util-

ity function. A typical approach in mechanism design is to provide financial incentives such as

payments to promote truth-telling of utility function parameters by agents. An important example

is the Independent System Operator (ISO) problem of electric power systems in which the ISO

aims to maximize social welfare and maintain balance of generation and consumption while each

generator/load has a private utility function.

The classic Vickery-Clarke-Groves (VCG) mechanism [2] has played a central role in classic

mechanism design since it ensures incentive compatibility, i.e., truth-telling of utility functions of

all agents forms a dominant strategy, as well as social welfare optimality, i.e., the sum of utilities of

all agents is maximized. The outcome generated by the VCG mechanism is stronger than a Nash

equilibrium in the sense that it is strategy-proof, meaning that truth-telling of utility functions is

optimal irrespective of what others are bidding. In fact, Green, Laffont and Holmstrom [61] show

that VCG mechanisms are the only mechanisms that are both efficient and strategy-proof if payoffs

are quasi-linear, i.e., linear in the amount of money.

While the VCG mechanism is applicable to a static one-shot game, it does not work for stochas-

tic dynamic games. In a stochastic dynamic environment that unfolds over time, the agents’ in-

tertemporal payoffs depend on the expected future controls and payments, and a direct extension

of the VCG mechanism does not guarantee incentive compatibility. A fundamental difference be-

tween dynamic and static mechanism design is that in the former, an agent can bid an untruthful

utility function conditional on its past bids (which need not be truthful) and past allocations (from

which it can make an inference about other agents’ utility functions). For dynamic deterministic

systems, by collecting the VCG payments as a lump sum of all the payments over the entire time
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horizon at the beginning, incentive compatibility is still assured. However, for a dynamic stochas-

tic system, the states are private random variables and it is necessary to incentivize agents to bid

their states truthfully. However, it does not appear to be feasible to construct mechanisms that

ensure the dominance of dynamic truth-telling for agents comprised of general stochastic dynamic

systems.

Nevertheless, for the special case of Linear-Quadratic-Gaussian (LQG) agents, where agents

have linear state equations, quadratic utility functions and additive white Gaussian noise, we show

that a dynamic stochastic extension of the VCG mechanism does exist, based on a careful con-

struction of a sequence of layered payments over time. We propose a modified layered mechanism

for payments that decouples the intertemporal effect of current bids on future payoffs, and prove

that truth-telling of dynamic states forms a dominant strategy if system parameters are known and

agents are rational. “Rational" means that an agent will adopt a dominant strategy if it is the unique

one, and it will act on the basis that it and others will do so at future times.

An important example of a problem needing such optimal dynamic coordination of stochastic

agents arises in the ISO problem of power systems. Renewable energy resources such as solar/wind

are stochastic and dynamic in nature, as are consumptions by loads which are influenced by factors

such as local temperatures and thermal inertias of facilities. In general, agents may have different

approaches to responding to the prices set by the ISO. If each agent acts as a price taker, i.e.,

it honestly discloses its energy consumption at the announced prices, a competitive equilibrium

would be reached among agents. However, if agents are price anticipators, then it is critical for the

ISO to design a market mechanism that is strategy-proof (i.e., incentive compatible). The challenge

for the ISO is to determine a bidding scheme between agents (producers and consumers) and the

ISO that maximizes social welfare, while taking into account the stochastic dynamic models of

agents. Currently, the ISO solicits bids from generators and Load Serving Entities (LSEs) and

operates two markets: a day-ahead market and a real-time market. The day-ahead market lets

market participants commit to buy or sell wholesale electricity one day before the operating day, to

satisfy energy demand bids and to ensure adequate scheduling of resources to meet the next day’s
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anticipated load. The real-time market lets market participants buy and sell wholesale electricity

during the course of the operating day to balance the differences between day-ahead commitments

and the actual real-time demand and production [31]. Our layered VCG mechanism fits perfectly

in the real-time market, as we will see in the sequel.

However, there is also a fatal downside for the VCG mechanism: in general, the sum of to-

tal payments collected by the ISO may be negative. In fact, when agents have quadratic utility

functions, the total payments collected from consumers is indeed not enough to cover the total

payments to the suppliers. In effect, in order to force agents to reveal their true utility functions,

the ISO needs to subsidize the market. In this chapter we will also propose a solution to this prob-

lem. The VCG payment charges each agent i the difference between social welfare of others if

agent i is absent and social welfare of others when agent i is present. In this chapter we will ex-

hibit a solution for budget balance which consists of inflating the first term above in all the agents’

VCG payments by a constant factor c. We argue that based on historic knowledge of the market,

the ISO may be able to choose such a c that does not depend on any agent’s tactical announcement.

There are several additional issues to be addressed when proposing such a scheme. These concern

the issue of individual rationality, and whether the solution is indeed Lagrange optimal for each

agent. The magnitude of c is important; if the constant number c is chosen to be too large, an agent

may simply opt out of the whole process and not even join the market. That is, the scheme is not

individually rational. Moreover, even if a customer participates, the price and the net utility it ob-

tains, which is the utility of energy consumption minus the amount it pays, need not be Lagrange

optimal. We show that there is indeed a systematic way to choose this number c such that there is

no budget deficit for the ISO, while at the same time guaranteeing that producers and consumers

will actively participate in the market. Moreover, c can be chosen in a way such that the distortion

between the VCG payment and Lagrange payment is minimized in the worst case scenario.

The rest of the chapter is organized as follows. In Section 4.2, a survey of related works is

presented. This is followed by a description of the classic VCG framework for the static and

dynamic deterministic problem and the corresponding modified SVCG mechanism in Section 4.3.
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A layered SVCG payment scheme is introduced for the dynamic stochastic problem in Section 4.4.

4.2 Related Works

In recent years, several papers have been written with the aim of exploring issues arising in

dynamic mechanism design. In order to achieve ex post incentive compatibility, Bergemann and

Valimaki [62] propose a generalization of the VCG mechanism based on the marginal contribution

of each agent and show that ex post participation constraints are satisfied under some conditions.

Athey and Segal [63] consider an extension of the d’Aspremont-Gerard-Varet (AGV) mechanism

[64] to design a budget balanced dynamic incentive compatible mechanism. Pavan et al. [65]

derives first-order conditions under which incentive compatibility is guaranteed by generalizing

Mirrlees’s [66] envelope formula of static mechanisms. Cavallo et al. [67] considers a dynamic

Markovian model and derives a sequence of Groves-like payments which achieves Markov perfect

equilibrium. Bapna and Weber [68] solves a sequential allocation problem by formulating it as a

multi-armed bandit problem. Parkes and Singh [69] and Friedman and Parkes [70] consider an en-

vironment with randomly arriving and departing agents and propose a “delayed” VCG mechanism

to guarantee interim incentive compatibility. Besanko et al. [71] and Battaglini et al. [72] char-

acterize the optimal infinite-horizon mechanism for an agent modeled as a Markov process, with

Besanko considering a linear AR(1) process over a continuum of states, and Battaglini focusing on

a two-state Markov chain. Bergemann and Pavan [73] have an excellent survey on recent research

in dynamic mechanism design. A more recent survey paper by Bergemann and Valimaki [74] fur-

ther discusses the dynamic mechanism design problem with risk-averse agents and the relationship

between dynamic mechanism and optimal contracts.

In order to capture strategic interactions between the ISO and market participants, game theory

and mechanism design has been proposed in many recent papers. Sessa et al. [75] studies the VCG

mechanism for electricity markets and derives conditions to ensure collusion and shill bidding are

not profitable. Okajima et al. [76] propose a VCG-based mechanism that guarantees incentive

compatibility and individual rationality for day-ahead market with equality and inequality con-

straints. Xu et al. [77] shows that the VCG mechanism always results in higher per-unit electricity
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prices than the locational marginal price (LMP) mechanism under any given set of reported supply

curves, and that the difference between the per-unit prices resulting from the two mechanisms is

negligibly small. Bistarelli et al. [78] derives a VCG-based mechanism to drive users in shifting

energy consumption during peak hours. In Samadi et al. [79], it is proposed that utility compa-

nies use VCG mechanism to collect private information of electricity users to optimize the energy

consumption schedule.

There are also some related works aiming at achieving budget balance for VCG mechanism.

Moulin et al. [80] discusses the trade-off between budget balance and efficiency of the mechanism.

Cavallo [81] uses domain information regarding agent valuation spaces to achieve redistribution of

much of the required transfer payments back among the agents. Similarly, Thirumulanathan et al.

[82] propose a mechanism that is efficient and comes close to budget balance by returning much of

the payments back to the agents in the form of rebates. In [83], an enhanced (Arrow-dAspremont-

Gerard-Varet) AGV mechanism is proposed to tackle the problem of budget balance in demand

side management.

To our knowledge, there does not appear to be any result that ensures dominance of dynamic

truth-telling for agents comprised of LQG systems, let alone ensuring budget balance of the ISO

and individual rationality for all agents.

4.3 The Static and Dynamic Deterministic VCG

Let us begin by considering the simpler static deterministic case. Suppose there are N agents,

with each agent having a utility function Fi(ui), where ui is the amount of energy produced/consumed

by agent i. We will use the convention that ui ≤ 0 for a producer and ui ≥ 0 for a consumer. Fi(ui)

depends only on its own consumption/generation ui. However, for convenience of notation, we will

occasionally abuse notation and write Fi(u) with the implicit understanding that it only depends

on the i-th component ui of u.

Let u := (u1, ..., uN)
T , u−i := (u1, ..., ui−1, ui+1, ..., uN)

T , and let F := (F1, . . . , Fn).

In a power system the total energy generated must equal to the total consumed, i.e.,
∑

i ui = 0.

An independent system operator which does not know the utility functions of the agents, wishes
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to maximize the social welfare. The social welfare is defined as
∑

i Fi(ui). Hence it seeks to

solve the following optimization problem and assign the resulting generations/consumptions to the

agents: maxu1,u2,...,uN
Fi(ui), subject to

∑
i ui = 0.

However, as noted above the ISO does not know the individual utility functions of the agents.

If it asks them to disclose their utility functions they may lie in order to obtain a better allocation.

A solution to this problem of “truth-telling" is provided by the VCG mechanism. In the VCG

mechanism, each agent is asked to bid its utility function. Let us denote its bid by F̂i. The agent

can lie, so F̂i may not be equal to Fi. We denote F̂ := (F̂1, . . . F̂n). After obtaining the bids, the

ISO calculates u∗(F̂ ) as the optimal solution to the following problem:

max
u

∑
i

F̂i(ui)

subject to

∑
i

ui = 0.

Each agent is then assigned to produce/consume u∗
i (F̂ ), and is obliged to do so, accruing a utility

Fi

(
u∗
i

(
F̂
))

. Following the rule that it has announced a priori before receiving the bids, the ISO

collects a payment pi(F̂ ) from agent i, defined as follows:

pi(F̂ ) :=
∑
j ̸=i

F̂j(u
(i))−

∑
j ̸=i

F̂j(u
∗(F̂ )),

where u(i) is defined as the optimal solution to the following problem:

max
u−i

∑
j ̸=i

F̂j(uj)

subject to ∑
j ̸=i

uj = 0.
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We can see that pi is the cost to the rest of the agents due to agent i’s presence, which leads agents

to internalize the social externality.

In fact, the VCG mechanism is a special case of the Groves mechanism [84], where payment

pi is defined as:

pi(F̂ ) = hi(F̂−i)−
∑
j ̸=i

F̂j(u
∗(F̂ )).

where hi is any arbitrary function of F̂−i := (F̂1, .., F̂i−1, F̂i+1, ..., F̂N). Truth-telling is a dominant

strategy in the Groves mechanism [84]. That is, regardless of other agents’ strategies, an agent

cannot do better than truthfully declaring its utility function.

Theorem 3. [84] Truth-telling (F̂i ≡ Fi) is the dominant strategy equilibrium in Groves mecha-

nism.

Proof. Suppose agent i announces the true utility function Fi. Let F̄ := (F̂1, ...F̂i−1, Fi, F̂i+1,

..., F̂N) and F̄−i := (F̂1, ...F̂i−1, F̂i+1, ..., F̂N). Let F̄ (u) :=
∑

i F̄i(ui). Let ū∗
i be what ISO

assigns, and pi(F̄ ) be what ISO charges, when F̄ is announced by the agents. Let u∗
i be what ISO

assigns and pi(F̂ ) be what ISO charges when F̂ is announced by agents.

Note that F̄−i = F̂−i, and so hi(F̄−i) = hi(F̂−i). Hence for agent i, the difference between the

net utilities resulting from announcing Fi and F̂i is

[
Fi(ū

∗
i )− pi(F̄ )

]
−
[
Fi(u

∗
i )− pi(F̂ )

]
=Fi(ū

∗
i )− hi(F̄−i) +

∑
j ̸=i

F̂j(ū
∗
i )− Fi(u

∗
i ) + hi(F̂−i)

−
∑
j ̸=i

F̂j(u
∗
i ) = F̄ (ū∗)− F̄ (u∗) ≥ 0,

where the last inequality holds since ū∗ is the optimal solution to the social welfare problem with

utility functions F̄ .

Definition 1. We call a mechanism incentive compatible (IC) if truth-telling is a dominant strategy

for agents.
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One should note that an agent may not necessarily tell the truth even if truth-telling is dominant

since there may be another strategy that is also dominant. However, we assume that the agent is

“rational," in that if the dominant strategy is unique, then the agent will indeed tell the truth.

Definition 2. We call a mechanism efficient (EF) if the resulting allocation u∗ maximizes the

social welfare
∑

i Fi(ui).

It is seen that the VCG mechanism is IC, and if all agents declare their utility functions truth-

fully, then the VCG mechanism is also EF.

In addition to choosing a strategy that maximizes social welfare, there are two more important

properties that are sought in a solution.

Definition 3. A mechanism is individually rational (IR) if agents actively participate in the mech-

anism, which they will do if they can gain a nonnegative net utility by participating, that is,

Fi(u
∗
i )− pi ≥ 0.

Definition 4. A mechanism satisfies budget balance (BB) if the total payment made by agents

is nonnegative:
∑

i pi ≥ 0. (In our context this means that the ISO does not have to provide a

subsidy).

The VCG mechanism, in general, does not satisfy BB. In fact, more generally, Green and

Laffont [61] show that no mechanism can satisfy all the four properties (IC, EF, IR & BB) at the

same time.

If ISO knew the true utility functions of all the agents, it could solve the social welfare problem

in a centralized manner: calculate the Lagrange multiplier λ∗ (price), and collect a payment that

equals to λ∗u∗
i from agent i. We call this payment naturally defined by the Lagrange multiplier, in

the absence of strategic considerations, as the Lagrange payment and have the following definition:

Definition 5. If the optimal solution (λ∗, u∗) is unique, we call a mechanism Lagrange Optimal if

the payment pi collected from agent i is equal to the Lagrange payment λ∗u∗
i .
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We need to somehow overcome the difficulty recognized by Green and Laffont [61] noted

above. We will show in the sequel that while there is no mechanism that satisfies all four properties

(IC, EF, IR and BB) in general, there does exist such a mechanism under a “market power balance"

condition.

In order to satisfy IC, EF, IR and BB at the same time, we inflate the first term in the standard

VCG mechanism by a constant factor c:

pi(F̂ ) = c ·
∑
j ̸=i

F̂j(u
(i))−

∑
j ̸=i

F̂j(u
∗). (4.3.0.1)

We call the VCG mechanism with the above payment structure as a Scaled VCG (SVCG) mech-

anism, and c as the scaling factor. To achieve BB and IR, one could choose c as a function of the

utility bids F̂i, which unfortunately would cease to guarantee incentive compatibility since the first

term in (4.3.0.1) is not allowed to be dependent on F̂i in the Groves mechanism.

We will show below that there is a range of values of c that can ensure BB, and argue that

through its long-term operation, the ISO may be able to learn at least a subset of this range of

values of c which ensure that all four properties hold. Our presumptive argument rests on the

repetitive nature of this problem which is played out every day, allowing the ISO to be able to tune

c to avoid a net subsidy. Based on this experience, the ISO could choose a c for which BB and

IR hold at the same time. We show in the following theorem that under a certain market power

balance condition, it is possible to find such a range of values for c.

As we have shown above, truth-telling is a dominant strategy under the Groves mechanism. In

this dominant strategy equilibrium, every agent i will announce its true utility function Fi if that is

the unique dominant solution.

Theorem 4. Let u∗ be the optimal solution to the following problem:

max
∑
i

Fi(ui), subject to
∑
i

ui = 0,
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and suppose that u∗ is unique. We will also suppose that u(i) is the unique optimal solution to the

following problem:

max
∑
j ̸=i

Fj(uj), subject to
∑
j ̸=i

uj = 0.

Let Hi :=
∑

j ̸=i Fj(u
(i)), and let Hmax = maxiHi. Let F ∗ =

∑
j Fj(u

∗). If F ∗ > 0, Hi > 0

for all i, and the following Market Power Balance (MPB) condition holds:

(N − 1)Hmax ≤
∑
i

Hi, (4.3.0.2)

then there exists an interval [c, c̄] such that for any c chosen in this interval, the SVCG mechanism

satisfies IC, EF, BB and IR at the same time.

Proof. With c chosen as a constant, the SVCG mechanism is within the Groves class and thus

satisfies IC and EF. To achieve budget balance, we need

∑
i

pi = c
∑
i

Hi − (N − 1)F ∗ ≥ 0,

or equivalently, we need to have,

c ≥ (N − 1)F ∗∑
i Hi

.

To achieve individual rationality for agent i, we also need

Fi(u
∗)− pi = Fi(u

∗)− c ·Hi +
∑
j ̸=i

Fi(u
∗) ≥ 0,

or equivalently, we need to have,

c ≤ F ∗

Hi

.

Combining both the inequalities, we need to be able to choose a c such that

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

Hmax

. (4.3.0.3)
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Let c := (N−1)F ∗∑
i Hi

, and c̄ := F ∗

Hmax
. Such a c exists if

(N − 1)Hmax ≤
∑
i

Hi, F
∗ > 0, Hi > 0 for all i.

The critical condition in the above theorem is (4.3.0.2), which states that no agent that has

significantly bigger or smaller market power than others. Individual residential load customers

generally have a much smaller scale compared to power plant, and it is thus beneficial to form

load aggregators or utility companies at the consumer side as suggested by the SVCG mechanism.

This provides an economic justification for the role of load aggregators or load serving entities that

guarantee the achievement of social welfare maximization.

In general, a SVCG mechanism is however not Lagrange optimal. Within the feasible range

[c, c̄], one may like to choose a c that also achieves near Lagrange optimality. This could be

formulated as the following MinMax problem:

min
c

max
i

|di(c)|, subject to (4.3.0.3),

where di(c) := λ∗u∗
i −pi = λ∗u∗

i −c·Hi+
∑

j ̸=i Fj(u
∗). The MinMax problem can be transformed

to a linear program:

min Z

subject to

Z ≥ di(c), for all i,

Z ≥ −di(c), for all i,

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

Hmax

.

In the absence of knowledge of the utility functions, perhaps the market experience could guide

the ISO over time to an appropriate choice. Shortly, we will revisit this problem from a different,
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asymptotic, point of view. We illustrate the MinMax problem with a numerical example below.

Example 1. All agents have quadratic utility functions: Fi = riu
2
i + siui. (r1, r2, r3, r4) =

(−1,−1.1,−1.2,−1.1) and (s1, s2, s3, s4) = (1, 1.2, 4, 5). The unique Lagrange optimal solu-

tion is u∗ = (−0.86,−0.70, 0.53, 1.03), λ∗ = 2.73, and from (4.3.0.3), 1.13 ≤ c ≤ 1.19. The

optimal solution to the MinMax problem is (c∗, Z∗) = (1.14, 0.22). Thus, by choosing c = 1.14,

the SVCG mechanism satisfies IC, EF, BB and IR, and the maximum discrepancy between VCG

payment and Lagrange payments is 0.22.

In the MinMax problem, one can also replace di(c) by the ratio di(c)/λ
∗u∗

i to normalize the

nearness to Lagrange payment by the amount of the payment. It also can be written as an LP. Using

the above ratio, the optimal solution is (c∗, Z∗) = (1.18, 0.06), showing that all agents pay/receive

within 6% of their Lagrange optimal payment.

Now we consider N heterogeneous agents and show that SVCG payments converge to the

Lagrange payment as N increases. Let Fi(ui) = aiu
2
i + biui be the quadratic utility functions for

both suppliers and consumers. Denote by A = diag(a1, a2, ..., aN) the diagonal matrix consisting

of all the ai, B := [b1; ...; bN ] and U = [u1; ...;uN ]. We suppose A < 0. The ISO needs to solve

the following problem:

max UTAU +BTU (4.3.0.4)

subject to

1TU = 0. (4.3.0.5)

where 1 is the all-one vector of proper size. The solution to this problem is:

λ∗N = γ1TA−1B, (4.3.0.6)

U∗N =
1

2
A−1

(
λ∗N · 1−B

)
. (4.3.0.7)

where γ = (trace (A−1))
−1

= 1TA−11 and index N is used to keep track of the population size.

Note also that the optimal social welfare is 1
4
λ21TA−11 = 1

4
(1TA−1B)2

1TA−11
.
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Theorem 5. For the SVCG mechanism with quadratic utility functions, if (ai, bi) satisfy the fol-

lowing:

1. a ≤ ai ≤ ā < 0, 0 < b ≤ bi ≤ b̄,

2. (N − 1)Hmax(N) ≤
∑

i Hi(N), F ∗(N) > 0, Hi(N) > 0, where the argument N denotes

that the corresponding quantity refers to the system with agents 1, 2, ...N ,

then the following holds:

1. There exists a cN satisfying:

(N − 1)F ∗(N)∑
iHi(N)

≤ c ≤ F ∗(N)

Hmax(N)
.

Moreover, any such cN satisfies limN→∞ cN = 1,

2. limN→∞(λ∗Nu∗N
i − pNi ) = 0, for all i.

Proof. Without loss of generality, we provide the proof for the first agent. Let A−1 = diag(a2, ..., aN),

B−1 = [b2; ...; bN ], 1−1 be the all-one vector of dimension M+N−1 and γ−1 =
(
trace

(
A−1

−1

))−1.

We first prove the following Lemma:

Lemma 1. Let U∗ and W ∗ be the optimal solutions to the problem consisting of all agents and the

problem excluding the first agent, respectively. Then, as the number of agents increases,

lim
N→∞

[
0(N−1)×1 IN−1

]
U∗ −W ∗ = O(1/N), (4.3.0.8)

where 0(N−1)×1 is the N − 1 dimensional column vector of zeroes, and IN−1 is the N − 1 dimen-

sional identity matrix.
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Proof. According to equations (4.3.0.6) and (4.3.0.7),

[
0 I

]
U∗ −W ∗ =

=
1

2

[
0 I

]a−1
1 0

0 A−1
−1


γ ·

[
1 1T−1

]a−1
1 0

0 A−1
−1


 b1

B−1


 1

1−1

−

 b1

B−1


− 1

2
A−1

−1

(
γ−11

T
−1A

−1
−1B−11−1 −B−1

)
=

1

2

(
γa−1

1 b1 + (γ − γ−1) 1
T
−1A

−1
−1B−1

)
A−1

−11−1.

Since a ≤ ai ≤ ā < 0, γ = Θ(1/N), and γ < 0, āb
aN

≤ γa−1
1 b1 ≤ ab̄

āN
, ā2

−aN(N−1)
≤ γ − γ−1 ≤

a2

−āN(N−1)
, a2b̄
−ā2N

≤ (γ − γ−1)1
T
−1A

−1
−1B−1 ≤ ā2b

−a2N
. Therefore,

lim
N→∞

[
0 I

]
U∗ −W ∗ = 0.

Let
[
0 I

]
U∗ = V ∗. From Lemma 1, we know that v∗i − w∗

i = O( 1
N
) where vi and wi is the

i-th component of V ∗ and W ∗, respectively. Hence,

F ∗

H1

=
a1u

∗2
1 + b1u

∗
1 +

∑N
i=2(aiv

∗2
i + biv

∗
i )∑N

i=2(aiw
∗2
i + biw∗

i )

=
a1u

∗2
1 + b1u

∗
1 +

∑N
i=2 (aiw

∗2
i + biw

∗
i +G1)∑N

i=2(aiw
∗2
i + biw∗

i )
,

where G1 = (2aiw
∗
i + bi)O( 1

N
) + aiO( 1

N2 ). From equations (4.3.0.6) and (4.3.0.7), we know that

w∗
i = Θ(1). Therefore,

lim
N→∞

F ∗

H1

= 1.

Similarly, for all other i,

lim
N→∞

F ∗

Hi

= 1.
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Therefore,

lim
N→∞

c̄N = 1.

Let Hmin = mini Hi. Since (N−1)F ∗

NHmax
≤ cN ≤ (N−1)F ∗

NHmin
,

lim
N→∞

cN = 1.

Consequently,

lim
N→∞

cN = 1.

From Lemma 1, we have W ∗−V ∗ = −1
2

(
γa−1

1 b1 + (γ − γ−1) ξ
)
A−1

−11−1, where ξ = 1T−1A
−1
−1B−1

and ξ = Θ(N). The payment by Agent 1 is:

pN1 = U∗T
−1A−1U

∗
−1 +BT

−1U
∗
−1 − V ∗TA−1V

∗ −BT
−1V

∗

= (U∗
−1 + V ∗)TA−1(U

∗
−1 − V ∗) +BT

−1(U
∗
−1 − V ∗).

The difference between Lagrange payment and VCG payment is:

λ∗Nu∗N
1 − pN1

=
1

2a1
γ(a−1

1 b1 + ξ)
(
γ
(
a−1
1 b1 + ξ

)
− b1

)
− pN1

=
1

2a1
γ2(a−1

1 b1 + ξ)2 − b1
2a1

γ(a−1
1 b1 + ξ)

−
[
1

2

[(
γa−1

1 b1 + (γ + γ−1) ξ
)
1T−1 − 2BT

−1

]
A−1

−1A−1 +BT
−1

]
· −1

2

(
γa−1

1 b−1 + (γ − γ−1) ξ
)
A−1

−11−1

=
1

2a1
γ2(a−1

1 b1 + ξ)2 − b1
2a1

γ(a−1
1 b1 + ξ)

+
1

4γ−1

[
γ2a−2

1 b21 + 2a−1
1 b1γ

2ξ + (γ2 − γ−2
−1)ξ

2
]
.
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Since γ = Θ( 1
N
),

lim
N→∞

(
λ∗Nu∗N

1 − pN1
)

= lim
N→∞

[
γ2ξ2

2a1
− b1γξ

2a1
+

b1γ
2ξ

2a1γ−1

+
(γ2 − γ2

−1)ξ
2

4γ−1

]
= lim

N→∞

[
ξ2

4
(
2γ2

a1
+

γ2 − γ2
−1

γ−1

)− b1γξ

2a1
(1− γ

γ−1

)

]
= lim

N→∞

[
ξ2

4
(
γ2

a1
+ γ − γ−1)

]
.

By calculation, we have

γ2

a1
+ γ − γ−1 =

−1

a21

[
1

(
∑N

i=1
1
ai
)2(
∑N

j=2
1
aj
)

]
= O(

1

N3
).

Therefore,

lim
N→∞

(
λ∗Nu∗N

1 − pN1
)
= 0.

The above VCG scheme can be extended to the important case of deterministic dynamic sys-

tems. One can consider the entire sequence of actions taken by an agent as a vector action. That

is, one can view the problem as an open-loop control problem, where the entire decision on the

sequence of controls to be employed is taken at the initial time, and so treatable as a static problem.

For agent i, let Fi(xi(t), ui(t)) be the one-step utility function at time t. Suppose that the state

of agent i evolves as:

xi(t+ 1) = gi(xi(t), ui(t)).

The ISO asks each agent i to bid its one-step utility functions, state equations and initial condition.

Denote the one-step utility function bids made by agent i by {F̂i(xi(t), ui(t)), t = 0, 1, . . . , T −1},

its state equation bids by {ĝi, t = 0, 1, . . . , T − 1}, and its initial condition bid by x̂i,0. The ISO
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then calculates (x∗
i (t), u

∗
i (t)) as the optimal solution, assumed to be unique, to the following utility

maximization problem:

max
N∑
i=1

T−1∑
t=0

F̂i(xi(t), ui(t))

subject to

xi(t+ 1) = ĝi(xi(t), ui(t)), for ∀i and ∀t,

N∑
i=1

ui(t) = 0, for ∀t,

xi(0) = x̂i,0, for ∀i.

We denote this problem as (F̂ , ĝ, x̂0). We can extend the notion of VCG payment pi to the deter-

ministic dynamic system as follow. Let

pi :=
∑
j ̸=i

T−1∑
t=0

F̂j(x
(i)
j (t), u

(i)
j (t))−

∑
j ̸=i

T−1∑
t=0

F̂j(x
∗
j(t), u

∗
j(t)).

Here (x
(i)
i (t), u

(i)
i (t)) is the optimal solution to the following problem, which is assumed to be

unique:

max
∑
j ̸=i

T−1∑
t=0

F̂j(xj(t), uj(t))

subject to

xj(t+ 1) = ĝj(xj(t), uj(t)), for j ̸= i and ∀t,

∑
j ̸=i

uj(t) = 0, for ∀t,

xj(0) = x̂j,0, for j ̸= i.

More generally, we can consider a Groves payment pi defined as:

pi := hi,t(F̂−i)−
∑
j ̸=i

T−1∑
t=0

F̂j(x
∗
j(t), u

∗
j(t)),
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where hi,t is any arbitrary function. We first show in the following theorem that truth-telling is still

the dominant strategy equilibrium in Groves mechanism.

Theorem 6. Truth-telling of utility function, state dynamics and initial condition (F̂i ≡ Fi, ĝi ≡ gi

and x̂i,0 = xi,0) is a dominant strategy equilibrium under the Groves mechanism for a dynamic

system.

Proof. Let F̂ := (F̂1, ..., F̂i, ..., F̂N), ĝ := (ĝ1..., ĝi, ..., ĝN), and x̂0 := (x̂1,0, ..., x̂i,0, ..., x̂N,0). Sup-

pose agent i announces the true one-step utility function Fi, true state dynamics gi, and true initial

condition xi,0. Let F̄ := (F̂1, ...F̂i−1, Fi, F̂i+1, ..., F̂N), ḡ := (ĝ1, ...ĝi−1, gi, ĝi+1, ..., ĝN), and x̄0 :=

(x̂1,0, ...x̂i−1,0, xi,0, x̂i+1,0, ..., x̂N,0). Let (x̄∗
i (t), ū

∗
i (t)) be what ISO assigns and pi(F̄ , ḡ, x̄0) be what

ISO charges when (F̄ , ḡ, x̄0) is announced by agents. Let (x∗
i (t), u

∗
i (t)) be what ISO assigns and

pi(F̂ , ĝ, x̂0) be what ISO charges when (F̂ , ĝ, x̂0) is announced by agents. Let F̄ (xi(t), ui(t)) :=∑
i F̄i(xi(t), ui(t)).

For agent i, the difference between net utility resulting from announcing (Fi, gi, xi,0) and

(F̂i, ĝi, x̂i,0) is

[∑
t

Fi(x̄
∗
i (t), ū

∗
i (t))− pi(F̄ , ḡ, x̄0)

]
−
[∑

t

Fi(x
∗
i (t), u

∗
i (t))− pi(F̂ , ĝ, x̂0)

]

=
∑
t

Fi(x̄
∗
i (t), ū

∗
i (t))− hi,t(F̄−i) +

∑
j ̸=i

∑
t

F̂j(x̄
∗
i (t), ū

∗
i (t))

−
∑
t

Fi(x
∗
i (t), u

∗
i (t)) + hi,t(F̂−i)−

∑
j ̸=i

∑
t

F̂j(x
∗
i (t), u

∗
i (t))

=
∑
t

F̄ (x̄∗
i (t), ū

∗
i (t))−

∑
t

F̄ (x∗
i (t), u

∗
i (t)) ≥ 0,

since (x̄∗
i (t), ū

∗
i (t)) is the optimal solution to the problem (F̄ , ḡ, x̄0).

As in the static case, we show below that there exists a range of values c under which the scaled

VCG payment achieves IC, EF, BB and IR at the same time. As in the static case, we suppose that
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from experience, the ISO can choose a value of c in this range, which does not depend on the

agents’ bids, to achieve BB and IR.

Truth-telling is a dominant strategy under the Groves mechanism. Under the dominant strategy

equilibrium, every agent i will announce its true utility function Fi, state dynamics gi and initial

condition xi,0.

Theorem 7. Let u∗(t) be the optimal solution to the following problem:

max
∑
i

∑
t

Fi(xi(t), ui(t)),

subject to

xi(t+ 1) = gi(xi(t), ui(t)), for all i

∑
i

ui(t) = 0, for all t and xi(0) = xi,0.

and let u(i)(t) be the optimal solution to the following problem:

max
∑
j ̸=i

∑
t

Fj(xj(t), uj(t)),

subject to

xj(t+ 1) = gj(xj(t), uj(t)), for j ̸= i,

∑
j ̸=i

uj(t) = 0, for all t and xj(0) = xj,0 for j ̸= i.

Let Hi :=
∑

j ̸=i

∑
t Fj(x

(i)
j (t), u

(i)
j (t)), and let Hmax = maxi Hi. Let F ∗ :=

∑
t

∑
j Fj(x

∗
j(t),

u∗
j(t)). If F ∗ > 0, Hi > 0 for all i, and MPB (4.3.0.2) condition holds, then there exists an c and c̄,

with c ≤ c̄ such that if the constant c is chosen in the range [c, c̄], then the Scaled VCG mechanism

for the deterministic dynamic system satisfies IC, EF, BB and IR at the same time.

Proof. Because c is not a function of (F̂ , ĝ, x̂0), SVCG is within the Groves class and thus IC and
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EF. To achieve budget balance, we need,

∑
i

pi = c
∑
i

Hi − (N − 1)
∑
t

∑
j

Fj(x
∗
j(t), u

∗
j(t)) ≥ 0,

or equivalently,

c ≥ (N − 1)F ∗∑
i Hi

.

To achieve individual rationality for agent i, we need

∑
t

Fi(x
∗
i (t), u

∗
i (t))− pi =

∑
t

Fi(x
∗
i (t), u

∗
i (t))− c ·Hi

+
∑
j ̸=i

∑
t

Fj(x
∗
j(t), u

∗
j(t)) ≥ 0,

or equivalently,

c ≤ F ∗

Hi

.

Combining all the inequalities,

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

Hmax

. (4.3.0.9)

Let c := (N−1)F ∗∑
i Hi

, and c̄ := F ∗

Hmax
. To ensure c ≤ c̄, one sufficient condition is,

(N − 1)Hmax ≤
∑
i

Hi, F
∗ > 0, Hi > 0 for all i,

Similar to the static case, we may want to choose a c that achieves almost Lagrange optimality.

This can be formulated as the following MinMax problem:

min
c

max
i

|di(c)|, subject to (4.3.0.9).
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where di(c) :=
∑

t λ
∗(t)u∗

i (t) − pi =
∑

t λ
∗(t)u∗

i (t) − c · Hi +
∑

j ̸=i

∑
t Fj(x

∗
j(t), u

∗
j(t)). The

MinMax problem can in turn be transformed to a linear program:

min Z

subject to

Z ≥ di(c), for all i,

Z ≥ −di(c), for all i,

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

H
.

One can also replace di(c) by the fractional deviation di(c)/
∑

t λ
∗(t)u∗

i (t).

As in the static case, the SVCG mechanism is asymptotically Lagrange optimal as the number

of agents goes to infinity. Without loss of generality, we consider the special case where agents

have quadratic utility functions and linear state dynamics: Fi(xi(t), ui(t)) = qix
2
i (t) + riu

2
i (t) and

xi(t+ 1) = aixi(t) + biui(t). We suppose qi ≤ 0, and ri < 0.

Theorem 8. For SVCG mechanism with quadratic utility functions and linear state dynamics, if

(ai, bi, pi, qi) satisfies the following:

1. a ≤ |ai|≤ ā, b ≤ |bi|≤ b̄, q ≤ qi ≤ q̄ < 0 and r ≤ ri ≤ r̄ < 0,

2. (N − 1)Hmax(N) ≤
∑

i Hi(N), F ∗(N) > 0 and Hi(N) > 0 for all i.

then the following hold:

1. There exist cN ≤ c̄N such that for any cN ∈ [cN , c̄N ], BB and IR hold. Moreover, limN→∞ cN =

1,

2. limN→∞
(∑

t

(
λ∗N(t)uN

i (t)
)
− pNi

)
= 0, for all i.

Proof. Let X(t) = (x1(t), x2(t), ..., xN(t))
T , U(t) = (u1(t), u2(t), ..., uN(t))

T , A = diag(a1, a2,

..., aN), B = diag(b1, b2, ..., bN), Q = diag(q1, q2, ..., qN), and R = diag(r1, r2, ..., rN). The
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utility maximization problem can be rewritten as the following Linear-Quadratic (LQ) problem:

max
T−1∑
t=0

XT (t)QX(t) + UT (t)RU(t) (4.3.0.10)

subject to

X(t+ 1) = AX(t) +BU(t), (4.3.0.11)

1TU(t) = 0, for ∀t.

By substituting (4.3.0.11) into (4.3.0.10), and using the fact that open-loop optimal control is

equivalent to the closed-loop optimal solution to LQ problem, we have the following equivalent

augmented LQ problem:

max ΩT (t)WΩ(t) + V TΩ(t) (4.3.0.12)

subject to

Y TΩ(t) = 0. (4.3.0.13)

where Ω := (U1;U2; ...;UN), and Ui = (ui(0);ui(1); ...;ui(T − 1)), W and V are formed by

multiplication and addition of A,B,Q,R and Y := [IT ; IT ; ...; IT ] with N T -dimensional identity

matrix IT . More specifically, W can be partitioned into diagonal blocks: W = diag(W1, ...,WN),

where each block Wi is a T × T square matrix consisting of multiplication and addition of ai, bi,

qi, ri.

Noting that the optimization problem (4.3.0.12) and (4.3.0.13) is in the same form as (4.3.0.4)

and (4.3.0.5), the unique Lagrange multiplier λ is calculated as:

λ∗ = ΓY TW−1V,

where Γ = (Y TW−1Y )−1. The key to the proof of Theorem 5 is to show that γ is Θ(1/N). (Note

that f(N) = Ω(g(N)) if f(N) = O(g(N)) as well as g(N) = Ω(f(N))). Similarly, by expanding

Γ = (W−1
1 +W−1

2 +...+W−1
N )−1 and applying bounded inverse theorem [85], ||Γ|| is also Θ(1/N)
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since ai, bi, qi, ri are all uniformly bounded, respectively.

Let Ω∗ be the optimal solution to problem (4.3.0.12) and (4.3.0.13) consisting of all agents and

let Ψ∗ be the optimal solution to the problem excluding the first agent. By replacing A, B and 1

with W , V and Y respectively, we have

lim
N→∞

[
0(N−1)T×T I(N−1)T

]
Ω∗ −Ψ∗ = 0.

Let
[
0 I

]
Ω∗ = Φ∗. From above, we know that Φ∗

i − Ψ∗
i = O( 1

N
)1 where Φi and Ψi is the i-th

T -length component of Φ∗ and Ψ∗, respectively. Hence,

F ∗

H1

=
U∗T
1 W1U

∗
1 + V T

1 U∗
1 +

∑N
i=2(Φ

∗T
i WiΦ

∗
i + V T

i Φ∗
i )∑N

i=2(Ψ
∗T
i WiΨ∗

i + V T
i Ψ∗

i )
=

U∗T
1 W1U

∗
1 + V T

1 U∗
1 +

∑N
i=2(Ψ

∗T
i WiΨ

∗
i + V T

i Ψ∗
i +G1)∑N

i=2(Ψ
∗T
i WiΨ∗

i + V T
i Ψ∗

i )

where G1 = (2Ψ∗T
i Wi1 + V T

i 1)O( 1
N
) + 1TWi1 ·O( 1

N2 ). Since Ψ∗
i = Θ(1)1, we have

lim
N→∞

F ∗N

HN
1

= 1.

Similarly, for all other i,

lim
N→∞

F ∗N

HN
i

= 1.

Therefore,

lim
N→∞

c̄N = 1.

Let Hmin = mini Hi. Since (N−1)F ∗

NHmax
≤ cN ≤ (N−1)F ∗

NHmin
,

lim
N→∞

cN = 1.

Consequently,

lim
N→∞

cN = 1.

71



From Lemma 1, we have,

Ψ∗ − Φ∗ =
−1

2
W−1

−1 Y−1(ΓW
−1
−1 V−1 + (Γ− Γ−1)Ξ),

where W−1, V−1 are formed by removing W1 and V1 from W and V , respectively. Y−1 =

[IT ; ...; IT ] with (N − 1) T -dimensional identity matrix. Ξ = Y −1
−1 W

−1
−1 V−1 and Ξ = O(N)1.

Similarly as in Theorem 5, we have,

lim
N→∞

(
λ∗TU∗

1 − pN1
)

= lim
N→∞

[
1

2
(V T

1 W−1
1 + ΞT )ΓT [W−1

1 Γ(W−1
1 V1 + Ξ)−W−1

1 V1]

−
[
1

2

[(
ΓW−1

−1 V−1 + (Γ + Γ−1)Ξ
)T

Y T
−1 − 2V−1

]T
W−1

−1W−1 + V T
−1

]
· −1

2
W−1

−1 Y−1(ΓW
−1
−1 V−1 + (Γ− Γ−1)Ξ)

]
= lim

N→∞

(
1

4
ΞT
(
ΓTW−1

1 Γ + Γ− Γ−1

)
Ξ

)

It is straightforward to see that,

ΓTW−1
1 Γ + Γ− Γ−1

=−

(
N∑
i=1

W−1
i

)−1

W−1
1

(
N∑
i=1

W−1
i

)−1

W−1
1

(
N∑
i=2

W−1
i

)−1

=O(
1

N3
).

Consequently,

lim
N→∞

(
λ∗TU∗

i − pNi
)
= 0.
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4.4 The Dynamic Stochastic VCG

In the previous section, we have shown that the VCG mechanism can be naturally extended to

deterministic dynamic systems by employing an open-loop solution. However, when agents are

stochastic dynamic systems, we need to consider closed-loop control laws for each agent. Such

closed-loop control laws depend on the observations of the agents, which are generally private.

So the states of the system are private random variables. Hence the problem becomes one of ad-

ditionally ensuring that each agent reveals its “true" state at all times. However, since an agent’s

intertemporal payoff depends on the expected future payments and allocations in a dynamic game,

the agent’s current bid needs not maximize its current payoff. What’s more, since dishonest bids

distort current and future allocations in different ways, an agent’s optimal bid will depend on oth-

ers’ bids. This additional complication precludes a dominant strategy solution for general stochas-

tic dynamic systems. All that one can possibly hope for is a subgame perfect Nash equilibrium

where each agent can assume other agents’s strategies. Thus it appears one cannot hope to have an

incentive compatible and social welfare optimal solution for general stochastic dynamic systems.

However, as we will see, in the case of LQG agents one can indeed ensure the dominance of truth

telling strategies that reveal the true states.

For agent i, let wi(t) be the discrete-time noise process affecting state xi(t) via:

xi(t+ 1) = gi(xi(t), ui(t), wi(t)),

where xi(0) is independent of wi. The uncertainties of all the agents are independent.

The ISO aims to maximize the social welfare:

max E
N∑
i=1

T−1∑
t=0

Fi(xi(t), ui(t))

subject to
N∑
i=1

ui(t) = 0, for ∀t, (4.4.0.1)
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We first assume that Fi, gi and the distributions of the uncertainties are known to the ISO,

and that agents bid their states xi(t) as x̂i(t). A straightforward extension of the static Groves

mechanism would be to collect a payment pi(t) at time t from agent i defined as:

pi(t)

=hi(X̂−i(t))− E
∑
j ̸=i

T−1∑
τ=t

[
Fj(x̂j(τ), u

∗
j(τ)) | X(t) = X̂(t)

]

where x̂i(t) is what agent i bids for his state at time t, X̂−i(t) = [x̂1(t), ..., x̂i−1(t), x̂i+1(t),

..., x̂N(t)]
T and u∗

j(t) is the optimal solution to the following problem:

max E
N∑
i=1

T−1∑
τ=t

[
Fj(x̂j(τ), u

∗
j(τ)) | X(t) = X̂(t)

]

subject to

xi(τ + 1) = gi(xi(τ), ui(τ), wi(τ)),

N∑
i=1

ui(τ) = 0, for t ≤ τ ≤ T − 1, (4.4.0.2)

X̂(τ) = [x̂1(τ), ..., x̂N(τ)]
T .

It is easy to verify that truth-telling of states by all agents forms a subgame perfect Nash equi-

librium since truth-telling of xi(t) for agent i is a best response given that all other agents bid

truthfully for all τ ≥ t. In fact it yields the minimum net cost (payment + one step cost) at time

t. In that sense it is “myopically" optimal. However, truth-telling of states does not constitute

a dominant strategy because another agent j may bid x̂j(t + 1) at time t + 1 truthfully, but lies

about the state xj(t) at time t in order to obtain a preferable state at the next time t + 1. More

specifically, if we assume all agents will bid truthfully from t + 1 onward, then at time t, if agent

j bids some untruthful x̂j(t), truth-telling of state for agent i will be an optimal strategy only if

agent j continues to bid “an untruthful but consistent” x̂j(t) which stems from his untruthful bid

x̂j(t). By “consistent" we mean the state that would result from the untruthful x̂j(t) but with the
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truthful state noise wj(t). In other word, agent i’s will bid truthfully only if agent j “consistently”

lies about his state, which is not guaranteed using the above payment scheme.

We now show that while an incentive compatible strategy presents fundamental challenges for

general stochastic dynamic systems, there is a solution for LQG systems. We need to investigate

the structure of LQG system more carefully.

For agent i, let wi(t) ∼ N (0, σi) be the discrete-time additive Gaussian white noise process

affecting state xi(t) via:

xi(t+ 1) = aixi(t) + biui(t) + wi(t)),

where xi(0) ∼ N (0, ζi) and is independent of wi. Each agent has a one-step utility function

Fi(xi(t), ui(t)) = qix
2
i (t) + riu

2
i (t).

We suppose that qi ≤ 0 and ri < 0. Let X(t) = [x1(t), ..., xN(t)]
T , U(t) = [u1(t), ..., uN(t)]

T

and W (t) = [w1(t), ..., wN(t)]
T . Let Q = diag(q1, ..., qN) ≤ 0, R = diag(r1, ..., rN) < 0, A =

diag(a1, ..., aN), B = diag(b1, ..., bN), Σ = diag(σ1, ..., σN) > 0 and Z = diag(ζ1, ..., ζN) >

0. Let RSW :=
∑T−1

t=0 [X
T (t)QX(t) + UT (t)RU(t)] be the random social welfare, i.e., the

variable whose expectation is the social welfare of the agents, and let SW := E[RSW ] denote

the (expected) social welfare. The random social welfare could also be called the “ex-post social

welfare”. The ISO aims to maximize the social welfare:

max E
T−1∑
t=0

[
XT (t)QX(t) + UT (t)RU(t)

]
subject to

X(t+ 1) = AX(t) +BU(t) +W (t),

1TU(t) = 0, for ∀t, (4.4.0.3)

X(0) ∼ N (0, Z),W ∼ N (0,Σ).

75



We now introduce a “layered” payment structure which ensures incentive compatibility for

LQG systems. We begin by rewriting the random social welfare, and thereby also the social wel-

fare, in terms more convenient for us. We will decompose the state X(t) of the entire system

comprised of all agents as:

X(t) :=
t∑

s=0

X(s, t), 0 ≤ t ≤ T − 1, (4.4.0.4)

where X(s, s) := W (s− 1) for s ≥ 1 and X(0, 0) := X(0). Let

X(s, t) := AX(s, t− 1) +BU(s, t− 1), 0 ≤ s ≤ t− 1, (4.4.0.5)

with U(s, t) yet to be specified. We suppose that U(t) can also be decomposed as:

U(t) :=
t∑

s=0

U(s, t), 0 ≤ t ≤ T − 1. (4.4.0.6)

Then regardless of how the U(s, t)’s are chosen, as long as the U(s, t)’s for 0 ≤ s ≤ t are indeed a

decomposition of U(t), i.e., (4.4.0.6) is satisfied, the random social welfare can be written in terms

of X(s, t)’s and U(s, t)’s as:

RSW =
T−1∑
s=0

Ls,

where Ls for s ≥ 1 is defined as:

Ls : =
T−1∑
t=s

[
XT (s, t)QX(s, t) + UT (s, t)RU(s, t) (4.4.0.7)

+2

(
s−1∑
τ=0

X(τ, t)

)
QX(s, t) + 2

(
s−1∑
τ=0

U(τ, t)

)
RU(s, t)

]
,

and L0 is defined as:

L0 :=
T−1∑
t=0

[
XT (0, t)QX(0, t) + UT (0, t)RU(0, t)

]
.
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Hence,

SW = E
T−1∑
s=0

Ls.

In the scheme to follow the ISO will choose all U(s, t)’s for future t’s at time s, based on the

information it has at time s. Hence X(s, t) is completely determined by W (s− 1), and U(s, t) for

s ≤ t ≤ T − 1. Indeed X(s, t) can be regarded as the contribution to X(t) of these variables.

Here we assume that the ISO knows the true system parameters Q, R, A and B. This may

hold if the ISO has previously run the VCG bidding scheme for a dynamic deterministic system,

or equivalently, a day-ahead market, and system parameters remain unchanged when agents par-

ticipate in the real-time stochastic market.

Instead of asking agents to bid their state, we will consider a scheme where agents will be

asked to bid their state noise. At each stage, the ISO asks the agents to bid their xi(s, s) (defined

as equal to wi(s − 1)) at each time s, for 0 ≤ s ≤ T − 1. Let x̂i(s, s) be what the agents actually

bid, since they may not tell the truth. Based on their bids {x̂i(s, s) for 1 ≤ i ≤ N}, the ISO solves

the following problem:

max Ls

for the system

X̂(s, t) = AX̂(s, t− 1) +BU(s, t− 1), for t > s,

with

X̂(s, s) = [x̂1(s, s), ..., x̂N(s, s)]
T ,

subject to the constraint

1TU(s, t) = 0, for s ≤ t ≤ T − 1.

Here X̂(s, t) is the zero-noise state variable updates starting from the “initial condition” X̂(s, s).

Let U∗(s, t) denote the optimal solution.

The interpretation is the following. Based on the bids, X̂(s, s), which is supposedly a bid of

W (s − 1), the ISO calculates the trajectory of the linear systems from time s onward, assuming
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zero noise from that point on. It then allocates consumptions/generations U(s, t) for future periods

t for the corresponding deterministic linear system, with balance of consumption and production

(4.4.0.3) at each time t. These can be regarded as taking into account the consequences of the

disturbance occurring at time s.

Next, the ISO collects a payment pi(s) from agent i at time s as:

pi(s) := hi(X̂−i(s, s))−
∑
j ̸=i

T−1∑
t=s

[
qjx̂

2
j(s, t) + rju

∗2
j (s, t)

+2qj

(
s−1∑
τ=0

x̂j(τ, t)

)
x̂j(s, t) + 2rj

(
s−1∑
τ=0

uj(τ, t)

)
u∗
j(s, t)

]
,

where X̂−i(s, s) = [x̂1(s, s), ..., x̂i−1(s, s), x̂i+1(s, s), ...

, x̂N(s, s)]
T , and hi is any arbitrary function (as in the Groves mechanism).

Before we prove incentive compatibility, we need to define the notion of “rational agents”.

Definition 6. Rational Agents: We say agent i is rational at time T − 1, if it adopts a dominant

strategy whenever there exists a unique dominant strategy. An agent i is rational at time t if it adopts

a dominant strategy at time t under the assumption that all agents including itself are rational at

times t+ 1, t+ 2, ..., T − 1, whenever there is a unique such dominant strategy.

Theorem 9. Truth-telling of state x̂i(s, s) for 0 ≤ s ≤ T − 1, i.e., bidding x̂i(s, s) = wi(s − 1),

is the unique dominant strategy for the stochastic ISO mechanism, if system parameters Q ≤ 0,

R < 0, A and B are known, and agents are rational.

Proof. Below, by "net" utility, we mean the utility derived by an agent minus its payment. We

show this by backward induction. Let Agent j, j ̸= i bid x̂j(s, s) at time s. Given the bids x̂j(s, s)

of other agents, let Ji(s) be the net utility of agent i from time s onward if it bids truthful xi(s, s),

i.e., wi(s− 1), and let Ĵi(s) be the net utility if it bids possibly untruthful x̂i(s, s). Let U∗(s, t) be

the ISO’s assignments if agent i bids truthfully and let Û∗(s, t) be the ISO’s assignments if agent i

bids untruthfully.
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We will first consider time T − 1, since we are employing backward induction. Suppose that

xi(s, T − 1) for 0 ≤ s ≤ T − 2 were the past bids, and ui(s, T − 1) for 0 ≤ s ≤ T − 2,

were those portions of the allocations for the future already decided in the past. Our interest is on

analyzing what should be the current bid xi(T −1, T −1), and the consequent additional allocation

ui(T − 1, T − 1). Now

Ji(T − 1) = qix
2
i (T − 1) + riu

2
i (T − 1)− pi(T − 1)

= qi

[
xi(T − 1, T − 1) +

T−2∑
s=0

xi(s, T − 1)

]2

+ ri

[
u∗
i (T − 1, T − 1) +

T−2∑
s=0

ui(s, T − 1)

]2
− pi(T − 1).

Now xi(s, T − 1) for 0 ≤ s ≤ T − 2 depend only on previous bids xi(s, s), and thus those terms

can be treated as constants. In addition, the hi term depends only on other agents’ bids. As a

consequence, when comparing Ji(T − 1) with Ĵi(T − 1), one can just regard hi ≡ 0. Hence we

can simply write Ji(T − 1) as:

Ji(T − 1) = qix
2
i (T − 1, T − 1) + riu

∗2
i (T − 1, T − 1)

+ 2qi

(
T−2∑
s=0

xi(s, T − 1)

)
xi(T − 1, T − 1)

+ 2ri

(
T−2∑
s=0

ui(s, T − 1)

)
u∗
i (T − 1, T − 1)

+
∑
j ̸=i

[
qjx̂

2
j(T − 1, T − 1) + rju

∗2
j (T − 1, T − 1)

+ 2qj

(
T−2∑
τ=0

x̂j(τ, T − 1)

)
x̂j(T − 1, T − 1)

+ 2rj

(
T−2∑
τ=0

uj(τ, T − 1)

)
u∗
j(T − 1, T − 1)

]
.

It is seen that Ji(T − 1) is in the same form as LT−1. Ĵi(T − 1) is obtained by replacing u∗
i with
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û∗
i . We conclude that Ji(T − 1) ≥ Ĵi(T − 1) because u∗

i is the optimal solution to LT−1 when

x̂i(T − 1, T − 1) = xi(T − 1, T − 1). Moreover truth telling is the unique optimal strategy since

ri < 0.

We next employ induction and so assume that truth-telling of states is the dominant strategy

equilibrium at time k. Let Ht be the history up to time t. If agents are rational, we can take the

expectation over future X(s, s), s ≥ k, which are i.i.d. Gaussian noise vectors, and calculate

Ji(k − 1) (where, as before, we simply take the first Groves term hi ≡ 0):

Ji(k − 1) =

qix
2
i (k − 1) + riu

2
i (k − 1)− pi(k − 1) + E [Ji(k)|Hk−1]

= qi

[
xi(k − 1, k − 1) +

k−2∑
s=0

xi(s, k − 1)

]2

+ ri

[
ui(k − 1, k − 1) +

k−2∑
s=0

ui(s, k − 1)

]2
− pi(k − 1)

+ E

[
T−1∑
t=k

(
qix

2
i (t) + riu

2
i (t)− pi(t)

) ∣∣∣∣Hk−1

]
.

(4.4.0.8)

We first show that E[U∗(k, k)|hk−1] = 0. By completing the square for Lk in (4.4.0.7), we have

the following equivalent problem for the ISO to solve for the k-th layer:

max
T−1∑
t=k

[(
X(k, t) +

k−1∑
τ=0

X(τ, t)

)T

Q·

(
X(k, t) +

k−1∑
τ=0

X(τ, t)

)
+

(
U(k, t) +

k−1∑
τ=0

U(τ, t)

)T

R·(
U(k, t) +

k−1∑
τ=0

U(τ, t)

)]
(4.4.0.9)

Now, for the fixed k of interest, letting Y (t) := X(k, t) +
∑k−1

τ=0X(τ, t), and V (t) := U(k, t) +∑k−1
τ=0 U(τ, t), we see that Y (t) = AY (t− 1) + BV (t− 1) for t ≥ k + 1. The “initial" condition

is Y (k) = X(k). For this linear system, the optimal control law for the cost (4.4.0.9) under the
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balancing constraint for all t is a control law that is linear in the state. Denoting the optimal gain

by K(t), we have

U∗(k, k) +
k−1∑
τ=0

U(τ, k) = K(k)

[
X(k, k) +

k−1∑
τ=0

X(τ, k)

]
.

Similarly, at time k − 1, the ISO chooses the allocation at time k by using the same gain K(t)

applied to that portion of the state at time k resulting from disturbances up to time k − 1:

U(k − 1, k) +
k−2∑
τ=0

U(τ, k) =
k−1∑
τ=0

U(τ, k) = K(k)·[
X(k − 1, k) +

k−2∑
τ=0

X(τ, k)

]
= K(k)

[
k−1∑
τ=0

X(τ, k)

]
.

Consequently,

E[U∗(k, k)|hk−1] = K(k)E[X(k, k)|hk−1] = 0,

since all agents are truth-telling at time k, i.e., E[X(k, k)|Hk−1] = E[W (k − 1)] = 0. From

(4.4.0.5), by linearity of the system, we consequently also have E[X(k, t)|Hk−1] = 0, k < t ≤

T − 1, and E[U(k, t)|Hk−1] = 0, k < t ≤ T − 1. Therefore, for k ≤ t ≤ T − 1,

E[x2
i (t)|Hk−1] = E

[
t∑

τ=k

xi(τ, t) +
k−1∑
s=0

xi(s, t)

]2

=

[
k−1∑
s=0

xi(s, t)

]2
+ C = x2

i (k − 1, t) + 2xi(k − 1, t)
k−2∑
s=0

xi(s, t)

+

[
k−2∑
s=0

xi(s, t)

]2
+ C,

where C is a fixed term corresponding to the variance of
∑t

τ=k xi(τ, t) and
[∑k−2

s=0 xi(s, t)
]2

could
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be treated as a constant since it depends only previous bids. Similarly, we have, for t ≥ k,

E[u2
i (t)|Hk−1] =

u2
i (k − 1, t) + 2ui(k − 1, t)

k−2∑
s=0

ui(s, t) +

[
k−2∑
s=0

ui(s, t)

]2
+ C,

We also have,

E[pi(t)|Hk−1] = const.,

since E[xj(t, τ)|Hk−1] = 0 and E[uj(t, τ)|Hk−1] = 0, for τ ≥ t. By ignoring the constant term,

we now have,

Ji(k − 1) =

qix
2
i (k − 1, k − 1) + 2qixi(k − 1, k − 1)

k−2∑
s=0

xi(s, k − 1)

+riu
2
i (k − 1, k − 1) + 2riui(k − 1, k − 1)

k−2∑
s=0

ui(s, k − 1)

+
T−1∑
t=k

[
qix

2
i (k − 1, t) + 2qixi(k − 1, t)

k−2∑
s=0

xi(s, t)

]

+
T−1∑
t=k

[
riu

2
i (k − 1, t) + 2riui(k − 1, t)

k−2∑
s=0

ui(s, t)

]

−pi(k − 1)

=
T−1∑

t=k−1

[
qix

2
i (k − 1, t) + riu

2
i (k − 1, t)

+ 2qi

(
k−2∑
τ=0

xi(τ, t)

)
xi(k − 1, t)

+ 2ri

(
k−2∑
τ=0

ri(τ, t)

)
ri(k − 1, t)

]
− pi(k − 1).

It is straightforward to check that Ji(k − 1) is in the same form as Lk−1 and thus we conclude that

truth-telling x̂i(k− 1, k− 1) = xi(k− 1, k− 1) is the unique dominant strategy for agent i at time
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k − 1.

The above proof yields the following two corollaries.

Corollary 1. In the stochastic VCG mechanism, truth-telling of state constitutes a “subgame per-

fect dominant strategy equilibrium” in the sense that truth-telling of state is the unique dominant

strategy for every subgame of the original game.

Now let us consider systems where the distribution of the noise is not Gaussian, but the noises

are independent, mean zero, and have finite variance. Then the optimal centralized solution for

social welfare maximization is not necessarily linear in the states. However, one can consider the

optimal strategy in the class of linear strategies. Then the ISO can employ the same payment

scheme to ensure that the system attains this optimal social welfare in the class of linear strategies:

Corollary 2. Consider the system above, where the noises are independent, mean zero, and have

finite variance. Then the ISO can ensure through the mechanism described above that the system

attains the optimal social welfare in the class of all linear strategies.

We note that the key to proving incentive compatibility for the layered VCG mechanism lies

in the fact that the optimal feedback gain K(k) remains unchanged for each round of bids. This

is due to the fact that K(k) is only a function of Q, R, A, and B. Therefore, if bidding of system

parameters at the beginning is allowed, then the layered VCG mechanism may not be incentive

compatible. We show this by the following counterexample.

Example 2. Let T = 4. The agents’ system equations and cost matrices have the following param-

eters: (a1, a2, a3, a4) = (1, 1, 1, 1), (b1, b2, b3, b4) = (1, 1, 1, 1), (q1, q2, q3, q4) = (−1,−1,−1,−1),

(r1, r2, r3, r4) = (−1,−1.1,−1.2,−1.1), (ζ1, ζ2, ζ3, ζ4) = (0.3, 0.32, 0.31, 0.3) and (σ1, σ2, σ3, σ4)

= (0.1, 0.11, 0.11, 0.12). If system operator knows all the parameters of agents, and every agent

bid its true state, then the expected net utility of agent 1 (expected total utility minus expected total

payment) is 0.629. When agents are also allowed to bid their system parameters at the beginning,

truth-telling of state may not be incentive compatible. Suppose that agents 2, 3, 4 remain truthful,
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namely, bid their true system parameters at the beginning and their true states at all times. Sup-

pose now that agent 1 intentionally bids an untruthful q̂1 = −1.3 while bidding other parameters

truthfully at the beginning. Assume also that agent 1 always bids its state as if there is no noise

(w1(t) ≡ 0). Now agent 1’s net expected utility is 0.631. Therefore, agent 1’s optimal strategy is

not to bid its true state when it is allowed to bid its system parameters at the beginning.

The assumption that the ISO knows the system parameters of all the agents can perhaps be

justified since the ISO can learn these parameters by running the day-ahead market (a dynamic

deterministic market) where agents are guaranteed to bid their true system parameters as shown in

the previous section.

4.4.1 Budget Balance and Individual Rationality in LQG systems

We extend the notion of the SVCG mechanism to the stochastic dynamic systems as follows:

pi(s) := c ·
∑
j ̸=i

T−1∑
t=s

[
qjx̂

2
j(s, t) + rju

(i)2
j (s, t)

+ 2qj

(
s−1∑
τ=0

x̂j(τ, t)

)
x̂j(s, t) + 2rj

(
s−1∑
τ=0

u
(i)(τ,t)
j

)
u
(i)
j (s, t)

]

−
∑
j ̸=i

T−1∑
t=s

[
qjx̂

2
j(s, t) + rju

∗2
j (s, t)

+ 2qj

(
s−1∑
τ=0

x̂j(τ, t)

)
x̂j(s, t) + 2rj

(
s−1∑
τ=0

uj(τ, t)

)
u∗
j(s, t)

]
,

where u
(i)
j (s, t) is the optimal solution to the following problem:

max
∑
j ̸=i

T−1∑
t=s

[
qjx

2
j(s, t) + u2

j(s, t)

+ 2qj

(
s−1∑
τ=0

xj(τ, t)

)
xj(s, t) + 2rj

(
s−1∑
τ=0

uj(τ, t)

)
uj(s, t)

]

subject to

xj(s, t) = ajxj(s, t− 1) + bjuj(s, t− 1), for s < t ≤ T − 1,
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∑
j ̸=i

uj(s, t) = 0, for s ≤ t ≤ T − 1,

xj(s, s) = x̂j(s, s).

As in the static case, based on its prior knowledge of a suitable range for c, the ISO can choose a

range of c, which does not depend on the agents’ bids, to achieve BB and IR.

Truth-telling is a dominant strategy under the SVCG mechanism because it falls under the

Groves mechanism. Under the dominant strategy equilibrium, every agent i will bid its true state

xi(s, s), i.e., wi(s− 1).

Theorem 10. Let U∗(t) be the optimal solution to the following problem:

max E
T−1∑
t=0

[XT (t)QX(t) + UT (t)RU(t)]

subject to

X(t+ 1) = AX(t) +BU(t) +W (t),

1TU(t) = 0, for ∀t,

X(0) ∼ N (0, Z),W ∼ N (0,Σ).

Let X(i)(t) := [x1(t), ..., xi−1(t), xi+1(t), ...xN(t)]
T , and similarly let Q(i), R(i), A(i), B(i), Z(i)

and Σ(i) be the matrix with the i-th component removed. Let U (i)(t) be the optimal solution to the

following problem:

max E
T−1∑
t=0

[X(i)T (t)Q(i)X(i)(t) + UT (t)R(i)U(t)]

subject to

X(i)(t+ 1) = A(i)X(i)(t) +B(i)U(t) +W (i)(t),

1TU(t) = 0, for ∀t,
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X(i)(0) ∼ N (0, Z(i)),W (i) ∼ N (0,Σ(i)).

Let Hi := E
∑T−1

t=0 [X
(i)T (t)Q(i)X(i)(t) + U (i)T (t)R(i)U (i)(t)] and let Hmax := maxi Hi. Let

F ∗ = E
∑T−1

t=0 [X
T (t)QX(t) + UT (t)RU(t)]. If F ∗ > 0, Hi > 0 for all i, and MPB (4.3.0.2)

condition holds, there exists an c and c̄, with c ≤ c̄ such that if the constant c is chosen in the range

[c, c̄], then the SVCG mechanism for the deterministic dynamic system satisfies IC, EF, BB and IR

at the same time.

Proof. It is straightforward to verify that under the earlier dominant strategy,

E
[ T−1∑

s=0

pi(s)

]
= c ·Hi − E

[∑
j ̸=i

T−1∑
t=0

(
qjx

2
j(t) + rju

∗2
j (t)

)]

since wi’s are i.i.d. and ui(t) is linear in xi(t). Hence, to achieve budget balance, we need,

E
[∑

i

T−1∑
s=0

pi(s)

]
= c ·

∑
i

Hi − (N − 1)F ∗ ≥ 0,

or equivalently,

c ≥ (N − 1)F ∗∑
i Hi

.

To achieve individual rationality for agent i, we need

E

[
T−1∑
t=0

(
qix

2
i (t) + riu

∗2
i (t)

)
−

T−1∑
s=0

pi(s)

]
= F ∗ − c ·Hi ≥ 0,

or equivalently,

c ≤ F ∗

Hi

.

Combining both inequalities, we have

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

Hmax

.
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Let c = (N−1)F ∗∑
i Hi

and c̄ = F ∗

Hmax
. To ensure c ≤ c̄, one sufficient condition is,

(N − 1)Hmax ≤
∑
i

Hi, F
∗ > 0, Hi > 0 for all i.

4.4.2 Lagrange Optimality in LQG Systems

In general, just as for a static problem, the SVCG mechanism is not Lagrange optimal. Within

the feasible range [c, c̄], one can choose a c that achieves near Lagrange optimality. This can be

formulated as a MinMax problem:

min
c

max
i

∣∣∣∣∣ di(c)

E
∑T−1

t=0 [λ∗(t)u∗
i (t)]

∣∣∣∣∣ , subject to (4.3.0.3),

where

di(c) := E
T−1∑
t=0

[λ∗(t)u∗
i (t)− pi(t)]

= E
T−1∑
t=0

[λ∗(t)u∗
i (t)]− c ·Hi + E

[
T−1∑
t=0

(
qjx

2
j(t) + rju

∗2
j (t)

)]
.

The MinMax problem can be transformed to a linear program:

min Z

subject to

Z ≥ di(c)

E
∑T−1

t=0 [λ∗(t)u∗
i (t)]

, for all i,

Z ≥ − di(c)

E
∑T−1

t=0 [λ∗(t)u∗
i (t)]

, for all i,

(N − 1)F ∗∑
i Hi

≤ c ≤ F ∗

Hmax

.
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We illustrate the MinMax problem with a numerical example below.

Example 3. We use the same system parameters as in Example 2. The optimal solution to the

MinMax problem is (c∗, Z∗) = (0.96, 0.21). Thus, by choosing c = 0.96, the SVCG mechanism

satisfies IC, EF, BB and IR, and all agents expect to pay/receive within 21% of their expected

Lagrange optimal payments.

However, just as for deterministic systems, as the number of agents increases, the scaled-VCG

mechanism does achieve asymptotic Lagrange Optimality.

Theorem 11. If (ak, bk, pk, qk, ζk, σk) satisfy the following:

1. a ≤ |ai|≤ ā, b ≤ |bi|≤ b̄, q ≤ qi ≤ q̄ < 0 and r ≤ ri ≤ r̄ < 0

2. F ∗ > 0, Hi > 0 for all i, and MPB condition holds,

then the following holds:

1. There is a range of cN that could be chosen to achieve BB and IR, and limN→∞ cN = 1,

2. Asymptotic Lagrange Optimality: limN→∞ E
∑T−1

t=0

[
λN(t)uN

i (t)− pNi (t)
]
= 0, where λN(t)

is the stochastic process corresponding to the power balance constraint.

Proof. At each layer, the ISO is solving a deterministic LQR problem, and from Theorem 8 we

have,

lim
N→∞

L∗
s

Hs,1

= 1, for 0 ≤ s ≤ T − 1,

where L∗
s is the maximum value of Ls and Hs,1 is the maximum social welfare when agent 1 is

excluded. Moreover, as we have shown in Theorem 9, the sum of U∗(s, t) calculated at each layer

is indeed the optimal solution U∗(t) =
∑t

s=0 U
∗(s, t). Consequently,

lim
N→∞

F ∗N

HN
1

= lim
N→∞

E
∑T−1

s=0 L∗
s

E
∑T−1

s=0 Hs,1

= 1.
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Similarly we can show that limN→∞
F ∗

HN
k

= 1 for k ̸= 1. Therefore,

lim
N→∞

c̄N = 1.

Let Hmin = minHi. Since (N−1)F ∗N

NHmax
≤ cN ≤ (N−1)F ∗N

NHmin
,

lim
N→∞

cN = 1.

Hence,

lim
N→∞

cN = 1.

We next show that the total expected VCG payment converges to the total expected Lagrange

payment when N goes to infinity. To calculate λ(t), we solve the following one-step problem:

max
U(t)

XT (t)QX(t) + UT (t)RU(t) + E
[
XT (t+ 1)Pt+1X(t+ 1)

]
subject to

1TU(t) = 0.

where Pt is the Ricatti matrix of the unconstrained problem where balance constraint 1TU(t) = 0,

or u1(t) = −
∑N

i=2 ui(t) is substituted in both the objective and the state equation.

The Lagrangian is,

L = XT (t)QX(t) + UT (t)RU(t) + E
[
XT (t+ 1)Pt+1X(t+ 1)

]
− λ(t)1TU(t)
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Take partial derivative with respect to U(t) and λ(t), we have

∂L
∂U(t)

=2RU(t) + 2BTPt+1BU(t) + 2BTPt+1AX(t)− λ(t)1 = 0,

∂L
∂λ(t)

= 1TU(t) = 0.

The Lagrange multiplier λ(t) is thus calculated as:

λ(t) = 2
[
1T (R +BTPt+1B)−11

]−1 ·

1T (R +BTPt+1B)−1BTPt+1AX(t) = ΦtX(t). (4.4.2.1)

At time s, we denote λ(s, t) as the Lagrange multipliers associated with the balance constraint

1TU(s, t) = 0. From Theorem 8, we have

lim
N→∞

[(
T−1∑
t=s

λN(s, t)u∗N
i (s, t)

)
− pNi (s)

]
= 0.

Summing over s, we have

lim
N→∞

T−1∑
s=0

[(
T−1∑
t=s

λN(s, t)u∗N
i (s, t)

)
− pNi (s)

]

= lim
N→∞

T−1∑
t=0

[(
t∑

s=0

λN(s, t)u∗N
i (s, t)

)
− pNi (t)

]
= 0.

From (4.4.0.9), we have, at time s,

λ(s, t) = Φt

s∑
τ=0

X(τ, t),
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and at time s− 1,

λ(s− 1, t) = Φt

s−1∑
τ=0

X(τ, t).

Therefore,

λ(s, t) = λ(s− 1, t) + ΦtX(s, t).

The Lagrange multiplier λ(t) associated with the balance constraint 1TU(t) = 0 can be calcu-

lated as:

λ(t) = ΦtX(t) = Φt

t∑
s=0

X(s, t) = λ(t, t).

As a result,

λN(t)u∗N
i (t) = λN(t)

t∑
s=0

u∗N
i (s, t)

=
t∑

s=0

[(
λN(s, t) + Φt

t∑
τ=s+1

X(τ, t)

)
u∗N
i (s, t)

]

Because X(0) is independent of W (t) and W (t) are i.i.d.,

E[X(τ, t)u∗N
i (s, t)] = 0, for τ ≥ s+ 1,

Therefore,

lim
N→∞

E
T−1∑
t=0

[
λN(t)u∗N

i (t)− pNi (t)
]

= lim
N→∞

E
T−1∑
t=0

[(
t∑

s=0

λN(s, t)u∗N
i (s, t)

)
− pNi (t)

]
= 0.
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5. CONCLUSIONS

In Chapter 2, we have developed a layered decomposition approach that permits a holistic

solution to solving the scheduling, storage and pricing problems of charging stations. The key

idea is to decompose problems by time-scale. At the top layer, the long-term pricing is determined

with grid power price and renewable energy assumed to be their deterministic long-term averages,

and total consumption given by the static price-demand curve. The middle layer determines the

amounts of energy to buy from the grid and to use for charging, with the mean rate of the stochastic

arrivals depending on the price set at the top-layer. At the bottom layer, the resulting real-time

scheduling of EVs becomes trivial and is solved by an earliest deadline first policy.

In Chapter 3, we have formulated the ISO problem of allocating the power supply and demand

over heterogeneous energy producing or consuming agents, connected to a smart-grid in a dynamic

fashion with network flow constraints, both under a deterministic setting and a stochastic setting

when there are uncertainties affecting generation as well as consumption. We have proposed two

decentralized iterative algorithms to solve the deterministic version and stochastic version of the

problem. We have shown that under concavity assumptions, Algorithm 1 achieves the global max-

imum of social welfare in the absence of noise. The ISO will play a central role in inducing

co-operation among agents by declaring prices, and agents do not need to be aware of each oth-

ers’ states or utilities. The only communication from the ISO is the price policy, and from the

agents their energy supply or consumption in response to prices. LMPs arise when constraints on

branches for power flow are binding. Compared to the current short-sighted one-step ISO scheme,

simulation results shows that there is an increase in social welfare for both day-ahead and real-time

market when Algorithms 1 and 2 are applied respectively.

In Chapter 4, we have shown that for the special case of LQG agents, by careful construction of

a sequence of layered VCG payments over time, the intertemporal effect of current bids on future

payoffs can be decoupled, and truth-telling of dynamic states is guaranteed if system parameters

are known and agents are rational. We have also shown that a modification of the VCG payments,
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called scaled-VCG payments, achieves Budget Balance and Individual Rationality for a range of

scaling, under a certain identified Market Power Balance condition. In the asymptotic regime of

increasing population of agents, the scaled-VCG payments converge to the Lagrange payments,

that is the payments that the agents would make in the absence of strategic consideration.
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