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ABSTRACT 

 

Body-focused repetitive behaviors (BFRBs) such as hair pulling and skin picking 

are common practices that are part of ordinary grooming, but can proliferate excessively 

into maladaptive habits. Despite their negative consequences, affected individuals often 

experience great difficulty in stopping pulling/picking and report strong urges and 

hedonic reward associated with symptoms. Unfortunately, the psychobiological 

mechanisms underlying sensory features of BFRBs have been insufficiently studied. The 

current study aimed to explore potential sensory processing abnormalities in adults with 

Trichotillomania and Excoriation Disorder using several self-reported instruments and a 

vibrotactile behavioral battery. A total of 46 adults with either Trichotillomania or 

Excoriation Disorder were recruited, along with an age-matched sample of 46 healthy 

control participants. Participants completed clinician-rated interviews regarding their 

symptom severity and self-report instruments regarding interoceptive awareness and 

sensory gating. The vibrotactile battery consisted of several tests that assessed reaction 

time, sensorimotor integration, detection threshold, feed-forward inhibition, lateral 

inhibition, temporal processing, and duration discrimination. 

 Persons with BFRBs reported increased interoceptive awareness, a greater 

propensity to worry about their body states, and less trust in their own body. In addition, 

the BFRB group reported greater perceptual inundation, sensory distractability, over-

inclusion, and a propensity to experience sensory abnormalities while fatigued or 

distressed. Persons with BFRBs did not display behavioral deficits in sensorimotor 
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integration, quickly adapting lateral inhibition, temporal processing, or duration 

discrimination. However, the BFRB group had lower tactile thresholds and deficient 

feed-forward inhibition. Deficient feed-forward inhibition was correlated with skin 

picking severity. These findings indicate that increased sensitivity to sensory stimuli and 

an inability to filter out excess sensory input is associated with a propensity to engage in 

BFRBs, perhaps as a method of distracting oneself from an aversive perceptual state. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Problem Statement 
 Body-focused repetitive behaviors (BFRBs) are aberrant grooming routines such 

as hair pulling and skin picking. Occasional engagement in BFRBs is common and often 

benign, but when BFRBs are performed at extreme levels, they cause significant 

physical and psychosocial impairment (Tucker et al., 2011; Woods et al., 2006). 

Pathological hair pulling is diagnosable as a psychiatric condition known as 

Trichotillomania (TTM), and pathological skin picking is diagnostically referred to as 

Excoriation Disorder (ExD) (American Psychiatric Association, 2013). 

 Research suggests that BFRBs can be conceptualized as pathological habits that 

are maintained by cognitive, affective, and sensory antecedents and consequences 

(Mansueto et al., 1997). Most research on TTM and ExD has investigated cognitive and 

affective factors, but comparatively little research has investigated sensory factors. This 

research is important for several reasons. First, behavioral and self-report research 

indicate that symptoms of TTM are accompanied by sensory phenomena, but there is a 

paucity of research on experiential aspects of sensory phenomena in BFRBs or their 

underlying causes. This makes it difficult to understand the experience of persons 

affected by BFRBs and determine the involvement of sensory phenomena in BFRB 

etiology. Second, despite our limited understanding of sensory phenomena in BFRBs, 

existing behavioral treatments attempt to address them by teaching patients to resist 

engaging in symptoms when sensory phenomena occur, which is thought to facilitate 
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habituation to urges and a symptom extinction process. However, the notion that urge 

habituation occurs during treatment is speculative, and there is currently no 

understanding of how sensory phenomena are affected by treatment. In fact, recent data 

cast doubt on the notion that habituation of symptom-instigating affective and sensory 

variables (e.g., fear, urges) consistently occurs or is related to treatment outcome in 

related conditions such as anxiety and tic disorders (Craske, Treanor, Conway, 

Zbozinek, & Vervliet, 2014; Houghton et al., 2017). Perhaps a better understanding of 

the mechanisms supporting sensory phenomena would enable the development of 

measurement technologies and subsequent investigation of how they are affected by 

BFRB treatment. Third, research has demonstrated that sensory phenomena occur in 

similar obsessive-compulsive related disorders, meaning that sensory phenomena could 

be an underlying endophenotype that support obsessive-compulsive psychopathology 

across diagnostic boundaries.   

 In the following sections, I describe evidence-based models of BFRBs and 

propose how an improved understanding of sensory phenomena will lead to improved 

conceptualization and treatment of BFRBs. It is then proposed that an investigation of 

sensory phenomena in BFRBs can begin by examining the cortical mechanisms involved 

in sensory processing through behavioral psychophysics.  

1.2 Habits: Friend and Foe 
 Habits are a common human behavior. Individuals prefer to engage in activities 

that are familiar and that have been previously reinforced (Thorndike, 1913), meaning 

that behavior tends to become shaped into routines. Reinforcement contingent upon a 

behavior makes that behavior more likely to occur in future similar contexts, and thus 
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continued reinforcement can create stable behavior patterns. For example, many 

individuals prefer to drive the same route to work every single day, eat meals at the same 

time, wear their favorite clothes repeatedly, and engage in ritualistic morning and 

bedtime routines. A habit can be defined as a behavior that is learned, occurs repeatedly, 

is performed automatically, and follows a structured action sequence (Graybiel, 2008).   

The idiom, “we are creatures of habit” speaks to the tendency for human 

behavior to follow predictable patterns and resist deviation from established routines. 

Indeed, the habitual nature of behavior is so ubiquitous that the subject has spurred 

debate amongst researchers about the existence of free will (Baumeister, 2008; Skinner, 

1971). From an evolutionary perspective, habits are adaptive, as they are often 

associated with positive outcomes and facilitate behaviors that are safe and effective 

(e.g., looking both ways before crossing the street, brushing one’s teeth every night 

before bed). Habits are also cognitive and behavioral shortcuts, in that they help 

individuals make fewer decisions about their actions and repeat behavioral patterns that 

consistently lead to rewarding outcomes.  

However, inasmuch as habit formation promotes adaptive behavior, habits can 

also be maladaptive. The operant contingencies that control behavior need to be linked 

closely in time, ideally just a few seconds. Longer-term consequences (i.e., those that 

come hours or days later) have a reduced degree of influence on behavior. Thus, operant 

conditioning is short-sighted, leaving an opportunity for maladaptive behaviors to 

emerge. Numerous behaviors can be initially pleasurable but ultimately socially 

unacceptable, risky, and/or unhealthy (e.g., promiscuous sexual activity, tobacco 
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smoking), and behaviors that are initially adaptive can become maladaptive when 

performed excessively (e.g., binge eating, exercise addiction).  

Thus, if pathological habits can be thought of as behaviors that are immediately 

reinforced but proliferate excessively, one way to conceptualize BFRBs is that they 

originate as part of normal grooming routines. This notion is supported by research on 

the prevalence and function of grooming behaviors in humans and animals. Non-human 

animals such as birds, mice, and apes engage in grooming habits such as licking and 

combing the fur, feather picking, barbering (hair plucking), and parasite removal 

(Feusner, Hembacher, & Phillips, 2009). Humans also engage extensively in grooming 

behaviors such as bathing, skin exfoliation, teeth cleaning, and nail clipping. Grooming 

habits serve hygienic purposes, but they also have important psychological and social 

functions. For instance, grooming in animals helps form social bonds (Pellis & Pellis, 

2010), aids in communication (Ferkin & Leonard, 2010), and helps establish social 

hierarchies (Pellis & Pellis, 2010). Evidence suggests that grooming is an important part 

of many animals’ daily routines, as mammals commonly spend between 20% and 40% 

of the day grooming (Spruijt, Vanhoff, & Gispen, 1992). Human grooming serves an 

important role in social status, attractiveness, and cultural rituals related to adorning the 

body (e.g., hair styles, makeup, artificial hair and nails) (Wax, 1957). Indeed, non-

pathological BFRBs are commonly performed for such purposes. Eyebrow plucking is 

practiced by many individuals (Blume-Peytavi, 2011), and people commonly pluck grey 

hairs or pick at split ends (Dawber, 2003). Non-pathological skin picking occurs 

commonly when individuals pick at rough scabs, pimples, or other skin imperfections 
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(e.g., ingrown hairs, dry or cracked skin) (Wilhelm et al., 1999). These behaviors could 

sometimes be considered adaptive, as modern beauty norms emphasize cosmetic features 

achieved through extensive grooming such as shapely eyebrows, smooth skin, and 

manicured nails (Benbow-Buitenhuis, 2014; Lennon & Rudd, 2000; Patton, 2006). As 

such, grooming behaviors are most likely encouraged by general social reinforcement 

(e.g., positive interactions with others), specific social reinforcement (e.g., being asked 

on a date), and internal reward (e.g., self-confidence).  

Although a moderate frequency of grooming behavior that occurs as part of an 

individual’s normal routine might be adaptive, excessive grooming has significant 

negative consequences. When captive mice and chimpanzees engage in excessive 

barbering/hair plucking, the result is irregular patches of hair loss that can increase risk 

for hypothermia (Findley, Marchant, & Brand, 2015; Garner, Weisker, Dufour, & 

Mench, 2004). A similar behavior occurs in dogs, whereby normal licking of the fur 

becomes excessive in a condition known as acral lick dermatitis, which causes fur loss, 

lesions, and infections (Patel, 2010). In addition, about 10% of avian populations engage 

in feather picking (Levine, 1984), which serves no known functional benefit and can 

result in flight impairment, infection, hypothermia, and even fatal hemorrhages when 

“blood feathers” are picked (Grindlinger, 1991). Excessive hair pulling and skin picking 

in humans results in abnormal hair loss and skin lesions, respectively (Mostaghimi, 

2012). Hair pulling can occur on any site of the body where hair grows, but the most 

frequent topographical targets are the scalp, eyebrows, and eyelashes (Woods et al., 

2006). Most hairs are pulled from the root. Individuals with pathological hair pulling 
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also frequently pick at the skin near pulling sites, which can cause inflammation, 

erythema, and scarring alopecia (Mostaghimi, 2012). When individuals pull in diffuse 

patterns, thinning of the hair in the targeted area can occur, but when pulling is directed 

at a specific location, there are often clearly definable bald spots (Haaga et al., 2016; 

Houghton et al., 2016). The most common sites for skin picking includes the face, neck, 

back, chest, arms, hands, and legs (Arnold et al., 1998; Wilhelm et al., 1999). Healthy 

skin is often a target of picking, but skin imperfections such as pimples, scabs, insect 

bites, or existing lesions are also frequently picked. The physical consequences of 

excessive skin picking can range from minor sores to severe tissue damage, with some 

individuals creating deep craters, bleeding frequently, incurring infections, and causing 

up to over 100 lesions (Wilhelm et al., 1999).  

In addition to physical costs of BFRBs, affected individuals suffer considerable 

psychological consequences. Studies on the immediate consequences of symptoms have 

shown that individuals experience increased anger, guilt, and sadness after 

pulling/picking (Diefenbach, Mouton-Odum, & Stanley, 2002; Snorrason, Smari, & 

Olaffson, 2010). Persons with TTM and ExD also report that they use alcohol or 

substances to cope with pulling/picking and believe that symptoms create other 

emotional problems such as anxiety, depression, life impairment, and stress (Calikusu, 

Yucel, Polat, & Baykal, 2003; Flessner & Woods, 2006; Hayes, Storch, & Berlanga, 

2009; Lewin et al., 2009; Tucker et al., 2011; Woods et al., 2006). Additionally, research 

suggests that an overwhelming majority of people with TTM and ExD experience 

feelings of physical unattractiveness, shame, poor body image, and worthlessness (Casati 
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et al., 2000; Soriano et al., 1996; Stemberger, Thomas, Mansueto, & Carter, 2000; 

Weingarden & Renshaw, 2015). The psychosocial distress associated with BFRBs is 

sometimes so extreme that it increases suicidal ideation (Arnold et al., 1998).  

As a result of the taboo nature of hair pulling, skin picking, and their physical 

sequelae, persons with BFRBs suffer in social domains. Indeed, hair pulling is viewed 

negatively by peers (Marcks, Woods, & Ridosko, 2005; Woods, Fuqua, & Outman, 

1999). Studies have found that persons who pull their hair are rated as less socially 

acceptable and less likely to be hired for a job than persons who do not pull (Boudjouk et 

al., 2008; Long et al., 1999), that greater hair loss and more intense pulling is associated 

with more negative social perceptions by others (Ricketts, Brandt, & Woods, 2012; 

Woods, Fuqua, & Outman, 1998), and that people rate severe hair loss from TTM as 

indicative of medical and psychological problems (Ricketts et al., 2012). Persons with 

TTM have reported that their social lives and ability to maintain social relationships with 

others have been damaged by pulling (Woods et al., 2006), and a majority of persons 

with ExD report sometimes refraining from engaging in an intimate relationship because 

of skin picking (Flessner & Woods, 2006). Indeed, a recent study found that there is a 

negative association between hair pulling severity and relationship satisfaction, 

perceived social support, and intimacy, and a positive association with social anxiety and 

perceived criticism (Falkenstein & Haaga, 2016).  

Efforts to hide BFRBs and their consequences are quite significant, with over 

25% of adults spending at least 15 minutes per day applying makeup, styling their hair, 

or affixing wigs to conceal hair loss (Woods et al., 2006). A substantial number of adults 
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with TTM also admit to avoiding vacations, restricting daily activities, social events, and 

group activities as a result of their pulling (Mansueto et al., 1997; Wetterneck, Woods, 

Norberg, & Begotka, 2006; Woods et al., 2006). In ExD, several studies have found that 

affected individuals feel socially embarrassed and avoid social situations because of their 

picking (Arnold et al., 1998; Bohne et al., 2002; Keuthen et al., 2000; Wilhelm et al., 

1999). More specifically, Flessner and Woods (2006) found that many individuals with 

ExD avoid group activities, formal events, entertainment activities, restaurants, and 

vacations because of skin picking. The use of cosmetics, bandages, and clothing to 

conceal skin picking is also reported in persons with ExD (Flessner & Woods, 2006; 

Keuthen et al., 2000; Wilhelm et al., 1999). Moreover, one study showed that one-

quarter of persons with TTM had not told their closest friend about their disorder, and 

one-fifth had not told their romantic partner (Falkenstein & Haaga, 2016).  

The pernicious effects of hair pulling and skin picking also appear to permeate 

the school and workplace environments, as impact in areas of academic and occupational 

functioning are common (Flessner & Woods, 2006; Wetterneck et al., 2006). Persons 

with TTM and ExD have reported quitting their jobs because of pulling/picking, 

increased absenteeism, failing to pursue job advancements or interviews, and being 

negatively impacted in their ability to work productively (Flessner & Woods, 2006; 

Tucker et al., 2011; Woods et al., 2006). Persons who are in school report missing 

schooldays, difficulties in performing school-related activities, and difficulty studying 

(Flessner & Woods, 2006; Tucker et al., 2011; Woods et al., 2006).  
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More globally, most studies indicate the quality of life is abnormally low in 

BFRBs. Although one study found no differences in quality of life between persons with 

TTM and healthy controls (Keuthen, Dougherty, Franklin, & Bohne, 2004), two other 

studies found that persons with TTM had poorer quality of life (Diefenbach, Tolin, 

Hannan, Crocetto, & Worhunsky, 2005; Odlaug, Kim, & Grant, 2010). Comorbid mood 

problems might greatly affect the negative impact of TTM on quality life, as evidenced 

by correlational evidence showing that depression is associated with negative quality of 

life in TTM samples (Odlaug et al., 2010), even after controlling for TTM severity 

(Diefenbach et al., 2005; Houghton et al., 2016; Keuthen et al., 2004; Tung et al., 2014). 

In ExD, quality of life is lower than healthy controls, may be poorer than in TTM, and is 

negatively correlated with skin picking severity (Nejatisafa, Mohammadi, Balighi, 

Farnia, & Arbabi, 2008; Odlaug, Kim, & Grant, 2010). 

Given the highly negative consequences associated with BFRBs, it is unclear 

why individuals would continually engage in the behavior. Research has shown that the 

frequency of behavior is proportionate to the amounts of reinforcement and punishment 

available for that behavior (Herrnstein, Laibson, & Rachlin, 2000). If more 

reinforcement than punishment is available for a behavior, frequency of the behavior 

increases, and vice versa. This means that the rate of BFRB symptoms should 

correspond to the ratio between amounts of reinforcement and punishment received for 

symptoms. However, research on habit formation shows that goal-directed behavior can 

become automated into habitual behavior through neuroplastic processes in cortico-

striatal circuity (Burguiere, Monteiro, Feng, & Graybiel, 2013; Burguiere, Monteiro, 
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Mallet, Feng, & Graybiel, 2015; Graybiel, 2008; Smith & Graybiel, 2013). Habitual 

behavior thus becomes more resistant to self-control and extinction, meaning that once 

BFRBs become habitual, affected individuals may become insensitive to devaluation of 

rewards associated with BFRB performance, and punishing consequences may have 

little influence on BFRBs. This would mean that BFRB performance becomes so 

automatic that it does not matter whether pulling/picking continues to serve a cosmetic 

purpose or whether it leads to negative consequences. In exploring this hypothesis, the 

following section will describe the habit formation processes, evidence for pathological 

habit formation in BFRBs, and how treatments aim to disrupt BFRB habits.  

1.3 How Habits Develop 
 Habits are important to the science of repetitive behavior because they involve a 

dichotomy between higher-order, goal-directed behavioral control and lower-order, 

stimulus-response behavior patterns (Graybiel, 2008). On one end of the behavioral 

control spectrum, humans are able to bypass their ‘basic instincts’ in order to facilitate 

behavior in accordance with complex, abstract goals. Indeed, the brainpower associated 

with higher-order cognition allows humans to maintain control over our behavior, solve 

complex problems, avoid anti-social behaviors, and create abstract mental 

representations. At the neural level, goal-directed behavior is enabled primarily through 

a highly evolved cerebral cortex, specifically the prefrontal cortex (Fuster, 1988), which 

is significantly larger in humans than in other animal species and primates (Roth & 

Dicke, 2005). In contrast, the opposite end of the behavioral control spectrum is 

characterized by lower-order behavioral control, such as reflexes, motor regulation, 

stimulus-response behavior, and basic instincts. Lower-order behavior is facilitated 
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mostly by subcortical brain structures including the basal ganglia and mesencephalon. 

These regions guide our behavior absent of deliberate control. 

There appears to be a differentiation between behavior that is guided by 

conscious thought/long-term goals and behavior that follows habitual patterns. Indeed, 

research has shown that goal-directed behavior and habitual behavior are mediated 

through different neural circuits. When the brain structures involved in declarative 

learning (i.e., hippocampus, medial temporal lobe) are damaged, subjects have difficulty 

learning facts and solving problems involving contextual cues but show no deficits in 

procedural learning (Bayley et al., 2005; Packard & McGaugh, 1996; Salat et al., 2006). 

In contrast, damage to the brain structures involved in procedural learning (i.e., basal 

ganglia) impairs performance on tasks involving stimulus-response and probabilistic 

associations but does not affect declarative memory (Knowlton, Mangels, & Squire, 

1996; Poldrack et al., 2001). This double-dissociation illustrates the unique contributions 

of different brain structures to different types of learning (Packard, 2009). Evidence 

shows that both areas are active during various learning scenarios, but one area is more 

highly active when tasks demands favor the type of learning facilitated by that structure. 

Striatal activity is relatively stronger than medial temporal activity during tasks that 

favor implicit learning, whereas the opposite is true with tasks that favor explicit 

learning (Foerde et al., 2006; Poldrack et al., 2001; Willingham et al., 2002). Moreover, 

evidence suggests that habit formation systems coordinate activity with explicit learning 

systems during extensive training, such that when conditional procedures are extensively 

learned, connections between the striatum and hippocampus become highly coordinated 
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(DeCoteau et al., 2007). This means that learned behaviors are often both somewhat 

goal-directed and habitual, and that both types of behavioral decision-making should be 

employed flexibly. However, in some cases, habitual behavior might override goal-

directed behavior, and a shift of behavioral control occurs. 

A series of studies conducted on reward-based learning in rodents demonstrated 

how behavior can shift from being primarily goal-oriented to habitual (Adams & 

Dickinson, 1981; Balleine & Dickinson, 1998; Colwill & Rescorla, 1985). During the 

initial stages of learning, all behaviors are primarily goal directed. For example, the 

typical goal of maze paradigms is that an animal is working to obtain food. Goal-

oriented, action-outcome (AO) behaviors such as food searching only occur when the 

value of the reinforcer is sufficient to motivate effort. For instance, if a rat is satiated 

with food, it is unlikely to enter the maze to find food. However, upon extended training, 

rats will often begin performing trained behaviors repeatedly when cued, even when the 

reward is devalued (i.e., when the rat is satiated or when food is paired with noxious 

stimuli). This habitual pattern of responding can be termed stimulus-response (SR) 

behavior. As such, AO behaviors are performed for current or future goals, while SR 

behaviors are performed through associations between antecedent stimuli and previous 

goals. Studies utilizing lesion and optogenetic methodologies have demonstrated that 

shifts from AO to SR behavior occur through transitions in neural circuits mediating the 

behaviors. Lesioning either the sensorimotor striatum or infralimbic prefrontal cortex 

causes rats to exhibit sensitivity to reward value, such that they will reduce responding 

when rewards are devalued and fail to show SR behavior (Killcross & Coutureau, 2003; 
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Yin & Knowlton, 2004). In contrast, lesions to either the caudomedial striatum or 

prelimbic prefrontal cortex reduce sensitivity to reward devaluation and cause rats to 

shift quickly to SR behavior (Killcross & Coutureau, 2003; Yin, Knowlton, & Balleine, 

2005). In one study, researchers overtrained rats in a T-maze task to induce habitual 

behavior and recorded spike activity in cortical and striatal sites during training (Smith 

& Graybiel, 2013). Results showed that shifts from purposeful to habitual behavior were 

accompanied by changes in neural spiking and timing in the infralimbic neocortex and 

sensorimotor striatum. Shifts in neural activity were required in both areas in order for 

habits to crystallize, but optogenetic stimulation of infralimbic activity prevented habit 

formation, suggesting that increased activity in pre-frontal cortical regions can reduce 

vulnerability to pathological habits. Further, another study found that habits could be 

reversed by stimulating cortical-striatal circuits with optogenetics (Burguiere, Monteiro, 

Feng, & Graybiel, 2013). Mutant mice with deficient behavioral response inhibition 

showed defective down-regulation of striatal projections from cortical neurons and 

developed habitual responses to maze tasks after overtraining. When focused 

optogenetic stimulation was applied to the lateral orbitofrontal cortex and its terminals in 

the striatum, behavioral response inhibition was restored and habitual responding 

decreased.  Thus, habit formation can be caused by deficient top-down regulation of 

cortical neuronal activity onto the striatum, and can be both induced and reversed via 

neuroplastic processes within cortico-striatal circuits. 

Based on these findings and converging evidence from computational 

neuroscience, researchers have proposed a model of dual behavioral controllers (e.g., 
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Daw et al., 2005; Smith & Graybiel, 2013). This first behavioral controller is model-

based, and uses a step-by-step reinforcement system that explores potential actions and 

their outcome values, makes outcome predictions, and updates subsequent behavioral 

models based on these outcomes. Thus, the model-based controller facilitates goal-

directed behavior. Habitual behavior is facilitated through a model-free controller in the 

striatum that determines a fixed value for behaviors that is stored but not updated, 

meaning that it is inflexible and supports SR behavior.  

1.4 Neurobiology of Pathological Habit Disorders 
 According to the dual behavioral controller model of habit formation, BFRBs 

might begin as goal-directed behaviors and become habitual, thus developing excessive 

frequency and resistance to change. However, not all persons who pull their hair or pick 

their skin develop pathological BFRBs, meaning that some etiological risk factor must 

facilitate a shift from voluntary to compulsive BFRB performance. Indeed, research 

suggests that deficits in goal-directed control might predispose individuals to develop 

rigid habits (Everitt & Robbins, 2005; Graybiel & Rauch, 2000).  

A series of studies by Gillan and colleagues demonstrated that over-reliance on 

model-free versus model-based reinforcement learning is associated with obsessive-

compulsive disorder and similar conditions characterized by habitual behavior (e.g., 

addiction). Using a well-validated reinforcement learning task designed to measure the 

degree to which persons rely on model-free and model-based learning styles (de Wit, 

Niry, Wariyar, Aitken, & Dickenson, 2007), OCD patients showed deficits in goal-

directed action and a bias toward habitual behavioral responding (Gillan et al., 2011). 

Indeed, biases toward habitual behavioral responding on this task are also evident in 



 

 15 

persons with binge eating disorder and methamphetamine addiction, and this habit 

formation bias has been associated with reduced gray matter in the caudate and medial 

orbitofrontal cortex (Voon et al., 2015). Another study examined the ability of 

individuals with OCD to use counterfactual decision making, which involves making 

economic choices among various prospective action-outcome scenarios (Gillan et al., 

2014a). OCD patients showed increased reliance on the pre-determined value of 

economic choices (i.e., habits), demonstrating impaired ability to use counterfactual 

comparisons to guide decision making (i.e., goal-directed behavior). This tendency to 

rely on habitual decision making in OCD appears to cut across approach and avoidant 

behavioral paradigms, as individuals with OCD show increased avoidance habits as 

compared to healthy controls (Gillan et al., 2014b). Participants were trained to avoid 

electric shocks to the hands by pressing foot levels rapidly after stimulus presentation. 

Stimulus devaluation was performed by visibly disconnecting the wire providing electric 

shocks to one hand and testing whether participants still responded by foot pressing 

when stimuli were presented to the previously signaled impending shock on the 

disconnected hand. After overtraining, persons with OCD continued to respond by foot 

pressing when presented with a devalued stimulus more so than healthy controls, thus 

showing evidence of increased avoidance habits and deficits in goal-directed control. A 

follow-up study found that avoidance task-related performance in OCD patients was 

correlated with increased activation in the caudate and medial orbitofrontal cortex 

(Gillan et al., 2015a). Furthermore, results showed that activation in the caudate was 

positively correlated with obsession severity, and activation in the medial orbitofrontal 



 

 16 

cortex occurred during the acquisition of habits. There is also evidence that intact model-

based learning protects against habit learning, as persons with increased model-based 

learning are sensitive to reward devaluation and do not develop habit-based responding 

(Gillan et al., 2015b). Broadly, deficits in goal-directed control appear to specifically 

increase risk for compulsive psychopathology, as such deficits in a community sample 

have shown to be correlated with symptoms of compulsive behavior and intrusive 

thought and not non-compulsive aspects of psychopathology (Gillan et al., 2016). 

1.5 Evidence for Increased Habit Formation in BFRBs 
 Behavioral research on BFRBs supports the notion that symptoms develop into 

rigid and stereotypic habits, but evidence from cognitive neuroscience is mixed. Support 

for the habit hypothesis of BFRB symptoms comes primarily from brain imaging studies 

showing abnormalities in cortico-striatal circuits, which are involved in cognitive control 

over behavior, motivation, and reward dependent learning (Bornstein & Daw, 2011). 

However, evidence for neurocognitive deficits in motor control and executive functions 

(i.e., impulsivity, planning, and organization) is more mixed. These areas of research are 

discussed below. 

Considerable evidence from neuroimaging and electrophysiology suggest that 

BFRBs are associated with reduced top-down control over behavior. One study that 

compared cortical thickness between persons with ExD, TTM, and healthy controls 

(Roos, Grant, Fouche, Stein, & Lochner, 2015) found that persons with ExD had greater 

volumes in the ventral striatum bilaterally and reduced cortical thickness in right frontal 

areas than persons with TTM and the healthy controls, whereas persons with TTM had 

greater thickness in the right parahippocampal gyrus compared to ExD and healthy 
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participants. Because the parahippocampal gyrus may play a role in dissociative 

symptomatology, this may explain the presence of ritualized, automatic hair pulling 

episodes seen in persons with TTM (Flessner et al., 2007). Studies finding support for 

impaired top-down control and reward insensitivity in TTM found increased gray matter 

densities in the left striatum and the bilateral cingulate, supplementary motor area, and 

frontal regions (Chamberlain et al., 2008), as well as increased cortical thickness in 

right/inferior frontal gyri (Odlaug et al., 2014). Two studies with nearly identical 

findings found that persons with ExD and TTM showed disorganization in white matter 

tracts in the right frontal gyrus, anterior cingulate cortex, and presupplementary motor 

area, which are involved in motor generation and suppression (Chamberlain et al., 2010; 

Grant, Odlaug, Hampshire, Schreiber, & Chamberlain, 2013). Furthermore, one study 

showed reduced resting state functional connectivity between the anterior cingulate 

cortex and nucleus accumbens in TTM (White et al., 2013), which could also signal 

reduced top-down cognitive control. Evidence from psychophysiology has found 

decreased response monitoring in TTM, as measured by smaller error-related negativity 

signals from the anterior cingulate region (Roberts, Stanley, Franklin, & Simons, 2014). 

This could signal impaired action monitoring, which is consistent with reduced goal-

directed control. Finally, one study examined organization of white matter tracts in 

frontal-striatal-thalamic pathways and found that greater disorganization in these tracts 

was associated with longer TTM duration and increased TTM severity (Roos, Grant, 

Fouche, Stein, & Lochner, 2014).  
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Despite evidence supporting altered cognitive control over behavior in BFRBs, 

there is little evidence of abnormalities in neural structures supporting habitual behavior 

in the basal ganglia. Roos et al. (2015) did show increased volumes in the ventral 

striatum bilaterally in persons with ExD, which could signal alterations in reward 

sensitivity. However, Rauch et al. (2007) found no alterations in performance on an 

implicit learning task in persons with TTM, nor was there greater activation in the 

striatum, hippocampus, or any other brain regions during the task. Two studies have 

found no differences in caudate volumes between persons with Trichotillomania and 

healthy controls (Odlaug et al., 2014; Stein, Coetzer, Lee, Davids, & Bouwer, 1997). 

However, O’Sullivan et al. (1997) found reduced putamen volumes, which might reflect 

alterations in movement control, particularly during instrumental and implicit learning.    

The data on top-down cognitive control over BFRBs symptoms using 

neuropsychological tasks are more mixed. One study found that when individuals with 

ExD engaged in an executive planning task (the tower test), patients showed reduced 

activation in a neural circuit involving the bilateral dorsal striatum, anterior cingulate, 

and right medial frontal regions (Odlaug, Hampshire, Chamberlain, & Grant, 2015). 

Indeed, a more recent study found similar deficits in spatial planning and organization in 

children with TTM (Flessner, Brennan, Murphy, & Francazio, 2016). These results 

suggest a general deficit in planning and action monitoring in BFRBs. In contrast, there 

are considerable mixed findings regarding whether persons with TTM and ExD have 

deficits in response inhibition using the stop signal and Go/No-go tasks (Bohne, Savage, 

Deckersbach, Keuthen, & Wilhelm, 2008; Brennan, Francazio, Gunstad, & Flessner, 
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2015; Chamberlain, Fineberg, Blackwell, Robbins, & Sahakian, 2006; Martin et al., 

1993; Grant, Odlaug, & Chamberlain, 2011; Odlaug, Chamberlain, Derbyshire, Leppink, 

& Grant, 2014; Odlaug, Chamberlain, & Grant, 2010; Snorrason et al., 2011). However, 

strong evidence for deficits in response inhibition came from Chamberlain et al. (2014), 

who found that performance on response inhibition tasks was associated with genetic 

association to TTM, in that unaffected first-degree relatives of persons with TTM had 

better response inhibition than persons with TTM but poorer response inhibition than 

unrelated, healthy controls. In addition, studies on cognitive flexibility – the ability to 

shift attentional focus - in BFRBs have been mixed. There is evidence for intact 

cognitive flexibility in TTM (Chamberlain, Fineberg, Blackwell, Robbins, & Sahakian, 

2006; Chamberlain et al., 2007; Flessner, Brennan, Murphy, & Francazio, 2016), and 

mixed evidence regarding cognitive flexibility in ExD (Grant et al., 2011; Odlaug et al., 

2010).  

 In summary, converging evidence primarily points to impaired goal-directed 

control in BFRBs. This neurobiological research has supplemented the findings from 

behavioral researchers, who long suspected that BFRBs could be habitually controlled 

(e.g., Azrin, Nunn, & Frantz, 1972). Such behavioral accounts argued that hair pulling 

and skin picking function to reduce tension and/or provide tactile stimulation 

(Miltenberger, Long, Rapp, Lumley, & Elliot, 1998; Rapp, Miltenberger, Galensky, 

Ellingson, & Long, 1999; Woods, & Miltenberger, 1995). Like any problematic 

behavior, researchers suggested that BFRBs could be managed through techniques 
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derived from applied behavior analysis. These approaches are described in the following 

section. 

1.6 Methods of Treating BFRBs  
 Because symptoms of BFRBs are thought to be habitually controlled, it follows 

that they are highly resistant to self-control, which is supported by research showing that 

BFRBs tend to be chronic conditions (Bohne, Keuthen, & Wilhelm, 2005). In addition, 

phenomenological research has shown that BFRB symptoms are frequently performed 

automatically, requiring little conscious awareness (Flessner et al., 2007; Walther et al., 

2009). Thus, in order to facilitate fewer instances of symptom performance, behavioral 

treatments have been employed to block symptom performance and initiate extinction of 

the BFRB habit. It is believed that upon continued abstinence from the BFRB symptoms, 

reinforcement is no longer delivered, and the behavior should become less frequent over 

time.  

 Basic behavioral treatments based on contingency management have been 

successfully applied to BFRBs, particularly in children. Studies have shown that 

reinforcement of alternative behaviors (e.g., verbally praising appropriate behavior and 

ignoring hair pulling), aversive taste treatment (e.g., applying a bad tasting substance to 

the skin), and response prevention (e.g., having the child wear gloves or orthodontic 

splints) are effective means of stopping hair pulling, skin picking, cheek biting, nail 

biting, and thumb sucking in children (Woods & Houghton, 2015). However, such 

interventions are not always practical or well-tolerated. Moreover, they do not address 

the fact that habitual behaviors are often insensitive to reward devaluation and can 

spontaneously re-emerge.  
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As such, a more contemporary form of behavior therapy known as Habit 

Reversal Training (HRT; Azrin & Nunn, 1972) has been implemented. HRT consists of 

3 components: Awareness Training, Competing Response Training, and Social Support. 

In the first stage, awareness training, the client and therapist engage in exercises aimed 

at increasing awareness of BFRB symptoms and the urges that provoke symptoms. 

Competing response training then prescribes a competing behavior that is incompatible 

with hair pulling behavior, such that the individual can perform the competing response 

instead of symptoms. Finally, social support includes verbal reinforcement provided for 

therapeutic effort, and in some cases a tangible reward system, which can be particularly 

useful in children. Behavioral treatment packages for TTM and ExD also typically 

incorporate functional analysis/intervention and stimulus control. Functional analyses 

are performed in order to elucidate contextual variables that exacerbate hair pulling or 

skin picking behavior, such as certain settings (e.g., bathroom mirrors, riding in the car) 

or activities (e.g., watching television, reading before bed). In turn, functional 

interventions are aimed at avoiding or mitigating problematic environmental influences 

on symptoms (e.g., limiting time in front of the mirror, placing a plush toy in the hands 

while watching television). Stimulus control procedures are derived from traditional 

behavioral approaches, whereby one physically removes variables that tend to elicit 

symptoms. For instance, it might be recommended that clients throw away tweezers, use 

moisturizer to combat dry skin, strictly limit time in front of bathroom mirrors, or trim 

their fingernails.  
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There is significant evidence supporting HRT for hair pulling and skin picking, 

as clinical trials have shown that HRT outperforms placebo and wait-list control 

treatments. A randomized controlled trial of HRT versus massed negative practice (a 

placebo treatment) found that HRT was nearly twice as effective (Azrin, Nunn, & 

Frantz, 1980). However, although the authors reported that many participants were 

pulling at near-zero rates, their outcome measure (self-monitoring) was not 

psychometrically validated. Moreover, most participants experienced some degree of 

relapse at follow-up. A similar trial compared HRT to wait-list control for ExD and 

found that HRT produced greater changes at post-treatment and follow-up (Teng, 

Woods, & Twohig, 2006). There was no evidence of significant relapse, but the mean 

number of picking episodes per day remained at 6.2 for the HRT group, indicating that 

picking was still frequently occurring in treatment responders. HRT has also been tested 

in an internet-based delivery system for ExD and appears to be effective, showing a 50% 

response rate as compared to 33% who received an unverified de-coupling treatment 

(Moritz, Fricke, Treszl, & Wittekind, 2012). Most recently, a stepped-care clinical trial 

for TTM provided HRT to those who didn’t respond to internet-based care (Rogers et 

al., 2014), and found that 36% showed clinically significant improvement, which was 

statistically significant when compared to a wait-list control group. However, there was 

some relapse at 3-month follow-up. Collectively, studies on HRT for TTM and ExD 

show that it is superior to no treatment or placebo, but may not be very strong and 

durable.  



 

 23 

The fact that BFRBs are somewhat resistant to change via HRT could be due to 

the intractable nature of pathological habits. HRT is designed to prevent engagement of 

hair pulling and skin picking by giving patients a competing response that helps resist 

engaging in symptom performance in the presence of urges and other symptom-

provoking stimuli. As such, HRT is an enhanced self-control strategy. Functional 

analysis/intervention and stimulus control components also help patients avoid 

contextual variables that exacerbate symptoms, thus providing additional self-control 

methods. The combination of HRT and a high degree of motivation might indeed help 

individuals refrain from pulling/picking for prolonged periods, such as during acute 

treatment. As a result of prolonged abstinence from pulling/picking in the presence of 

antecedents that normally trigger pulling (i.e., cognitions about hair, familiar pulling 

settings, anxiety), the association between those antecedents, pulling/picking, and 

reinforcing consequences of pulling/picking is thought to be weakened. Accordingly, 

pulling and picking should happen less frequently in the presence of antecedents that 

formerly triggered pulling and picking, resulting in disorder remission.  

However, research on pathological habits (e.g., drug addiction) suggests that as 

neural activity shifts from goal-directed to habit-driven behavior, plasticity occurs in 

multiple brain regions that alters the predominant activity in a given learning context 

over time. For instance, as addictions are formed, pleasurable sensations provided by 

drug administration activate the ventral tegmental area, ventral pallidum, and shell of the 

nucleus accumbens (Smith, Mahler, Pecina, & Berridge, 2010), but the neural activity of 

drug administration after established addiction is associated with the core of the nucleus 
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accumbens and neocortical regions (Sellings & Clarke, 2003). Once addictions are 

formed, cues associated with the addictive behavior create increased dopaminergic 

activity in the striatum, neocortex, and amygdala (Phillips et al., 2003). These 

neuroplastic changes could explain why persons with addiction experience cue-reactive 

cravings long after maintaining abstinence (Hunt, Barnett, & Branch, 1971; Herd, 

Borland, & Hyland, 2009; Ludwig & Wikler, 1974; Wilson et al., 2005). Indeed, 

research has found that individuals with TTM show increased attentional disengagement 

from hair-related stimuli, which may represent attempts to down-regulate negative 

emotions that are associated with hair pulling-related cues (Lee, Franklin, Turkel, Goetz, 

& Woods, 2012). This suggests that once BFRBs are established pathologically, cues 

may continue to elicit cravings to pull or pick for long after treatment ends.  

Another explanation for why HRT has a less than desirable effect size and 

durability is because it may not address all of the contingencies that support hair pulling 

and skin picking. Mansueto et al. (1997) proposed a comprehensive behavioral model of 

TTM in which symptoms are maintained through various cognitive, affective, sensory, 

motoric, and environmental contingencies. For instance, just as BFRB symptom can be 

classically conditioned to occur in specific environments (e.g., when in front of the 

bathroom mirror), symptoms could also become associated with certain internal 

experiences (e.g., boredom, anxiety, stress). Moreover, evidence has suggested that hair 

pulling and skin picking modulate uncomfortable internal experiences (described 

below). HRT treatment packages that include functional analysis/intervention and 

stimulus control primarily address motoric and environmental cues for pulling and 
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picking. For instance, when an individual finds themselves resting their head on their 

hand, this could be seen as a ‘high risk’ zone for pulling to occur, in which a competing 

response should be performed. Stimulus control procedures, such as wearing gloves, 

could also be seen as combating the motoric automaticity in which symptoms are 

typically initiated. Finally, sensory cues for pulling/picking are only addressed by HRT 

insofar as noting that hair pulling and skin picking are often triggered by aversive 

physiological sensations, or urges. Clients are encouraged to identify these feelings and 

perform competing responses in their presence. However, cognitive and affective 

contingencies for pulling and picking are neglected in HRT, and, as the next section will 

discuss, are an important part of BFRB psychopathology.  

Just as compulsions modulate obsessions (Gillan & Sahakian, 2015), symptoms 

of BFRBs have soothing effects on several cognitive and affective experiences. Hair 

pulling and skin picking are often performed in response to obsession-like cognitions 

such as over-focusing on skin imperfections (Arnold et al., 2001), thoughts that the 

hairline is asymmetrical (Woods et al., 2006), or that one has too many grey hairs 

(O’Sullivan, Mansueto, Lerner, & Miguel, 2000). Several studies have shown that 

affected individuals report that hair pulling and skin picking are preceded by negative 

affect (e.g., anxiety, tension, and boredom) and that the behaviors facilitate reductions in 

negative affect (Diefenbach, Mouton-Odum, & Stanley, 2002; Meunier, Tolin, & 

Franklin, 2009; Snorrason, Smari, & Olafsson, 2011; Roberts, O’Connor, Aardema, & 

Belanger, 2015). Furthermore, research has found that BFRBs are associated with 

maladaptive emotion regulation (Begotka, Woods, & Wetterneck, 2004; Calikusu, 
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Yucel, Polat, & Baykal, 2002; Houghton et al., 2014; Norberg et al., 2007; Roberts, 

O’Connor, & Belanger, 2013; Wetterneck et al., 2016), meaning that affected 

individuals tend to cope with unpleasant emotions via avoidance and other maladaptive 

behaviors. 

Based on these findings, researchers have tested HRT-based behavioral treatment 

packages that include techniques derived from cognitive therapies to address cognitive 

and affective facets of symptoms (Lerner, Franklin, Meadows, Hembree, & Foa, 1999; 

Rangaswami, 1997). Two randomized controlled trials examined the efficacy of 

cognitive-behavioral therapy (CBT) for adults with TTM and found that CBT was 

superior to selective serotonin reuptake inhibitors and placebo/wait-list (Ninan, 

Rothbaum, Marsteller, Knight, & Eccard, 2000; van Minnen, Hoogduin, Keijsers, 

Hellenbrand, & Hendricks, 2003). Furthermore, one open-label trial found that CBT for 

children with TTM resulted in significant change in symptoms (Tolin et al., 2007), and a 

randomized controlled trial of CBT for children with TTM showed that CBT was 

superior to psychotherapy placebo (Franklin et al., 2011). For ExD, one randomized 

controlled trial found that CBT was superior to wait-list (Schuck, Keijsers, & Rink, 

2011). Similar treatments incorporating elements of acceptance and commitment therapy 

and dialectical behavior therapy have shown evidence of effectiveness in TTM and ExD 

(Crosby, Dehlin, Mitchell, & Twohig, 2012; Keuthen et al., 2012; Twohig & Woods, 

2004; Twohig, Hayes, & Masuda, 2006; Woods, Wetterneck, & Flessner, 2006). The 

addition of cognitive techniques to HRT appears to have been warranted, as evidence 
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suggests that they improve the efficacy of behavior therapy for TTM (McGuire et al., 

2014), but no similar analyses has been done on behavioral treatments for ExD. 

Still, despite the evidence supporting CBT and similar treatments for BFRBs, 

there is significant room for improvement. The effect sizes of behavior therapy for TTM 

and ExD are medium to large (pooled standardized mean difference for TTM = 1.41, for 

ExD = 0.69) (McGuire et al., 2014; Schumer, Barley, & Bloch, 2016), and response rates 

are generally satisfactory at between 38% to 85.7% (Franklin et al., 2011; Keuthen et al., 

2012; Lerner et al., 1998; Schuck et al., 2011; Twohig & Woods, 2004; van Minnen et 

al., 2003; Woods, Twohig, & Masuda, 2006; Woods, Wetterneck, & Flessner, 2006). 

However, complete remission of symptoms is infrequent (Woods & Houghton, 2014), as 

persons who are classified as treatment responders often continue to endorse occasional 

symptoms (Houghton et al., 2015). This means that many individuals are not immune 

from continued problems associated with pulling or picking, and they may often be 

vulnerable to relapse. Indeed, evidence indicates that somewhere between 11-75% of 

participants in clinical trials who were acute responders show long-term remission, 

meaning the durability of CBT is highly variable (Falkenstein et al., 2015; Keuthen et 

al., 2012; Lerner et al., 1998; Twohig & Woods, 2004; Woods, Twohig, & Masuda, 

2006).  

As such, although it appears that CBT for BFRBs is an effective treatment, 

improving response rates and durability of gains might be achieved through continued 

research on the processes maintaining symptoms. As researchers discover more about 

compulsive symptomatology in BFRBs, we might better understand how to deliver CBT 
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and reinstate goal-directed control over symptoms. Moreover, burgeoning research on 

cognition and affect regulation in TTM and ExD might further enhance cognitive 

therapy approaches. However, one area of research on BFRBs that has been almost 

completely neglected involves sensory phenomena. The paucity of research in this area 

is particularly troublesome given that hair pulling and skin picking are self-defacing 

behaviors that have obvious impacts on the sensory and perceptual system. Yet, few 

studies have specifically examined sensory phenomena in BFRBs. In the next section, 

previous research on sensory aspects of BFRBs will be discussed along with a rationale 

for why additional research is vital for understanding the function of BFRBs and 

providing insights on treatment. 

1.7 Sensory Features of BFRBs 
1.7.1 Sensory Antecedents 
 Early behavioral research on BFRBs utilizing self-reports and behavioral analysis 

found that sensory cues were part of BFRB habit formation. Sensory cues for hair 

pulling and skin picking include visual and tactile sensations, such as undesired colors 

(e.g., gray hairs, blemishes) or other aesthetic qualities (e.g., visual skin imperfections or 

curly, split, out of place hairs) (Mansueto et al., 1997; Wilhelm & Margraf, 1993). 

Tactile cues for BFRBs include urges, itching (pruritus), tingling, pressure, burning 

sensations, and other cutaneous stimuli (e.g., rough scabs, coarse hair, pimples, brittle 

nails, dry and cracked skin) (Christenson & Mansueto, 1999; Tucker et al., 2011; 

Wilhelm & Margraf, 1993; Woods et al., 2006). A recent study investigated the 

phenomenology of urges in TTM by comparing urges to pull hair with urges to eat 

unhealthy food, and found that urges to pull hair were rated as more intense and less 
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controllable than unhealthy food urges (Madjar & Sripada, 2016). In addition, rituals 

involving tactile stimulation are often performed prior to pulling and picking, whereby 

individuals comb through the hair and over the skin, tug at individual hairs, and stroke 

parts of the skin (Woods & Houghton, 2014).  

1.7.2 Sensory Consequences 
There are a variety of sensory consequences that reinforce pulling and picking. 

Most individuals with BFRBs report that they experience a sense of pleasure, 

gratification, or relief after symptom performance (Christenson, Mackenzie, & Mitchell, 

1991; Bohne et al., 2002; Keuthen et al., 2000; Meunier et al., 2009; Tucker et al., 2011; 

Woods et al., 2006). Post-pulling and -picking rituals also have sensory-perceptual 

effects, such as rolling hair between the fingers and mouthing or consuming hair and 

skin (Woods & Houghton, 2014). Beyond self-report data, two behavior analytic studies 

support the notion that pulling is maintained by automatic sensory reinforcement. The 

first study recorded one adult and one child who pulled their hair in various settings and 

found that pulling most often occurred when participants were alone as compared to 

when anxious or upset (Miltenberger, Long, Rapp, Lumley, & Elliot, 1998), supporting 

the notion that hair pulling was performed to achieve a sensation. The second study 

replicated these findings in an adult with hair pulling and found that hair pulling reduced 

in frequency while the participant played with pulled hairs and while the participant 

wore a rubber glove (Rapp, Miltenberger, Galensky, Ellingson, & Long, 1999), further 

supporting the presence of automatic sensory reinforcement for hair pulling. Moreover, 

studies indicate that persons with ExD and TTM experience cravings for the feelings 

associated with pulling and picking, and that pulling and picking create feelings of 
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hedonic reward (Grant, Odlaug, & Potenza, 2007; Snorrason, Olafsson, Houghton, 

Woods, & Lee, 2015; Snorrason, Smari, & Olafsson, 2011). There is no known 

mechanism of hair pulling or skin picking that creates pleasurable sensations, suggesting 

that the topic of self-generated somatic reward in BFRBs deserves further empirical 

attention. 

1.8 Sensory Processing Deficits in OC-Spectrum Disorders 
Preliminary evidence suggests that altered sensory processing mechanisms could 

produce sensory phenomena in BFRBs. Several studies have shown that individuals with 

BFRBs report increased interoceptive awareness (Teng, Woods, Twohig, & Marcks, 

2002; Woods, Miltenberger, & Flach, 1996), meaning that persons may experience 

heightened aversive sensations and cutaneous stimuli, leading to increased urges to 

pull/pick. Furthermore, preliminary data show that individuals with pathological BFRBs 

report abnormal sensory patterns in six modalities: auditory, visual, taste/smell, 

movement, body position, and touch (Houghton, Alexander, Bauer, & Woods, 2018). 

Using a well-validated self-report measure of sensory processing, the Adult/Adolescent 

Sensory Profile (AASP; Brown, Tollefson, Dunn, Cromwell, & Filion, 2001), persons 

with pathological BFRBs reported increased sensitivity to sensation and a tendency to 

avoid sensory stimulation. These data suggest that BFRBs may be associated with 

pathological sensory hypersensitivity and intolerance.  

Evidence for sensory abnormalities in BFRBs is bolstered by extensive evidence 

for altered sensory experiences in related disorders, such as Tourette Disorder (TD) 

(Houghton, Capriotti, Conelea, & Woods, 2014) and Obsessive-Compulsive Disorder 

(OCD) (Ferrao et al., 2012). This research has primarily involved affected individuals’ 
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self-reported experiences with everyday stimuli, psychophysiological indications of 

sensory functions, and structural and functional neuroimaging research on neural 

structures/regions involved in sensory processing. 

Persons with TD and OCD experience urge phenomena that instigate symptoms, 

and symptoms appear to result in short-term reductions in aversive urges (Capriotti, 

Brandt, Turkel, Lee, & Woods, 2014; Gillan & Sahakian, 2015). In TD, these urges 

generally take on specific somatic properties and are described as itches, tension, 

pressure, energy surges, or “not just right” feelings (Woods, Piacentini, Himle, & Chang, 

2005). Compulsions in OCD are largely maintained by cognitive obsessions (i.e., fear of 

contamination), but research has found that individuals with OCD commonly report 

bodily and mental sensations such as physical urges, energy surges, and feelings of 

incompleteness that are sometimes perceived as more severe than obsessions (Ferrao et 

al., 2012; Miguel et al., 2000). Like in BFRBs, individuals with TD and OCD report 

abnormal interoceptive awareness and sensory intolerance, such that they are more 

sensitive to bodily sensations and tend to avoid sensory input (Belluscio, Jin, Watters, 

Lee, & Hallett, 2011; Ben-Sasson & Podoly, 2017; Dar, Kahn, & Carmeli, 2012; Eddy 

& Cavanna, 2013; Ganos et al., 2015; Lewin, Wu, Murphy, & Storch, 2014; Woods, 

Miltenberger, & Flach, 1996). Moreover, recent research has shown that individuals who 

report sensory intolerance are more likely to have a lifetime history or current diagnosis 

of TD and/or OCD (Taylor, Conelea, McKay, Crowe, & Abramowitz, 2014; Wu, Lewin, 

Murphy, & Storch, 2014). Psychophysiological research has echoed these findings and 

shown that TD and OCD are associated with abnormal sensory gating (Ahmari, 
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Risbrough, Geyer, & Simpson, 2012; Castellanos et al., 1996; Orth & Munchau, 2013; 

Rossi et al., 2005; Savage et al., 1994; Smith & Lees, 1989; Swerdlow et al., 1993, 2001; 

Zerbardast et al., 2013) and that individuals with OCD have amplified neural activity in 

response to somatic stimulation (Shagass, Romer, Straumanis, & Josiassen, 1984).  

Neuroimaging research has shown that individuals with TD have stronger 

activation in the somatosensory cortex just prior to symptom onset, and a positive 

association has been discovered between regional volumes in that area and the strength 

of tic-related urges (Draganski et al., 2010; Wang et al., 2011). Potentially shedding light 

on the physiology underlying urges to tic, one study found evidence of increased resting 

state connectivity between the insula (which is believed to facilitate premonitory urges 

[Jackson et al., 2011]) and the sensorimotor cortex in TD (Tinaz et al., 2014). 

Concerning urge phenomena in OCD, grey matter volume increases in the left and 

bilateral sensorimotor cortices are associated with premonitory urges (Subira et al., 

2015), and research has provided evidence of functional and structural abnormalities in 

regions controlling sensory-related cues for action such as the anterior cingulate, the 

insulo-opercular region, and the temporal cortex (Brennan et al., 2015; Choi et al., 2006; 

Pujol et al., 2004).   

Collectively, evidence suggests that obsessive-compulsive spectrum conditions 

are associated with sensory phenomena. Research showing problematic sensory gating 

and excess sensory neural activity implicates dysfunctional inhibitory processes, which 

may represent the cortical substrates of sensory phenomena that maintain symptoms. For 

instance, excess sensory information could lead to persistent feelings of discomfort and 
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unrest, urges to relieve distress through symptom performance, and abnormal 

experiences of relief or pleasure after symptom performance. Indeed, researchers have 

suggested that deficient sensory inhibition mechanisms could be important parts of the 

psychopathology of obsessive-compulsive related disorders (Abruzzese & Berardelli, 

2003; Russo et al., 2014). According to this notion, the motoric symptoms of BFRBs and 

other compulsive disorders do not occur spontaneously; symptoms are preceded by 

instigating stimuli.  

Several reviews have argued that the pathophysiology of TD and OCD involves 

not only dysfunctional top-down control in pre-frontal areas and motor generation 

systems in the basal ganglia, but that abnormal sensory inhibition and integration 

processes may be responsible for the intrusive, irresistible urges to engage in symptoms 

(Abbruzzese & Berardelli, 2003; Rajagopal, Seri, & Cavanna, 2013). They argued that 

tics are primarily a subcortical condition characterized by excessive motoric activity in 

the basal ganglia, but that disinhibited afferent sensory inputs may continuously 

innervate striatal areas, the pre- and supplementary motor areas, and the motor cortex, 

creating intrusive urges to move and activating tic-generation pathways. This hypothesis 

converges with a cognitive-psychophysiological model of TD (O’Connor, 2002), which 

argues that heightened physiological awareness creates a tendency to continuously enact 

action patterns to facilitate relief and induce relaxation. Similar speculations on OCD 

suggest that altered sensory-motor integration could underlie symptoms. Russo and 

colleagues argued that impaired inhibition of sensory afferents could lead to intrusive 

urges to enact compulsions (Russo et al., 2014). Using paired-pulse transcranial 
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magnetic stimulation (TMS), they demonstrated that impaired gating of afferent stimuli 

resulted in increased neural motor output, shedding light on how sensory information 

might cause increased urges to perform repetitive actions in OCD. Unfortunately, no 

studies have investigated sensorimotor integration in BFRBs, but the fact that BFRBs 

show similar sensory phenomenology to TD and OCD suggest that similar 

psychophysiological mechanisms may be in place. 

1.9 Possible Mechanisms of Sensory Phenomena in BFRBs 
An operant conditioning model applied to compulsive behaviors would suggest 

that aversive sensations are attenuated by symptom performance, resulting in a negative 

reinforcement process that incentivizes symptom performance when future aversive 

sensations arise. Likewise, the pleasurable sensations that result from symptoms might 

activate a positive reinforcement process that increases the hedonic reward of 

pulling/picking. The incentive salience and hedonic reward associated with addictive and 

compulsive behaviors involve dopaminergic neural circuits in the basal ganglia that 

subserve reward and reward-related cues (Berridge, 2007; Berridge, Robinson, & 

Aldridge, 2009; Robinson & Berridge, 1993). Studies have shown that persons with ExD 

and TTM have abnormalities in the striatum (Chamberlain et al., 2010; Roos et al., 

2015). Yet, whereas some addictive behaviors and substances are known to activate 

dopaminergic reward centers (e.g., gambling, eating, cocaine) (Berridge, Ho, Richard, & 

DiFeliceantonio, 2010; Linnet, 2014; Robinson & Berridge, 1993), there is no known 

effect of hair pulling or skin picking that produces such reward.  

However, a growing body of literature suggests that grooming-related behaviors 

have stress and anxiety-reducing properties. In non-human animals, ethological research 
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has documented a range of non-functional stereotypic behaviors that occur during 

stressful contexts, such as feather fanning, hair grooming, skin scratching, and 

behavioral stereotypies (Troisi, 2002). Humans also show similar patterns of stress-

induced behaviors, such as self-contact actions (e.g., stroking the skin), that are 

perceived as signs of anxiety (Ekman & Friesen, 1972; Troisi, Spatella, & Pasini, 1998; 

Waxer, 1977), disapproval (Rosenfeld, 1966), and emotional conflict (Shreve et al., 

1988). These actions are known as “displacement behaviors” due to their purported 

ability to temporarily attenuate or distract oneself from the subjective state of unwanted 

arousal (Triosi et al., 1998). Indeed, evidence suggests that the activation of neural 

structures mediating anxiety-related behaviors and administration of anxiogenic 

compounds elicits scratching in monkeys (Ninan et al., 1982; Redmond & Huang, 1979), 

whereas anxiolytic drug administration attenuates scratching behavior (Maestripieri et 

al., 1992; Schino et al., 1991). Non-pathological tactile processes (e.g., petting, stroking, 

contact) can also have calming, stress-reducing, and prosocial effects in both non-human 

animals and people (Field, 2001; McGlone et al., 2007; Panksepp, 1998; Pellis & Pellis, 

2010; Schino et al., 1988). Perhaps body-focused actions have soothing perceptual 

properties, and abnormalities in the sensory nervous system could increase the incentive 

salience or hedonic reward associated with these behaviors. This possibility is explored 

below. 

1.10 Cortical Sensory Processing 
The central nervous system is responsible for processing sensory input, which is 

important for cognition and behavior (Fruhstorfer et al., 1970; Grissom & Bhatnagar, 

2009). The human body has an immense sum of sensory receptors, including 



 

 36 

chemoreceptors, photoreceptors, mechanoreceptors, thermoreceptors, and nociceptors. 

Sensory receptors are rarely, if ever at complete rest, meaning they are constantly 

conveying afferent sensory messages to the brain. In fact, most sensory neurons fire 

steady streams of low-rate action potentials even in the absence of stimuli (Hendry & 

Hsiao, 2013). The brain has to decipher important information from streams of afferent 

sensory inputs that occur in complex temporal patterns (Arabzadeh, Petersen, & 

Diamond, 2003), which is accomplished via an intricate sensory processing network 

involving both subcortical and cortical structures (Hendry & Hsiao, 2013). Sensory 

processing is instrumental for enabling accurate cognitive representations of the physical 

world and the body. If this complex procedure of sensory processing did not occur, one 

would be overwhelmed with cascades of mostly irrelevant sensory information, which 

would impede perception, attention, cognitive operations, and adaptive behavior.  

One of the most important neural mechanisms involved in sensory processing is 

integration, which occurs through a balance of excitatory and inhibitory neural activity 

(Isaacson & Scanziani, 2011). Sensory integration confers numerous benefits, such as 

sharpened spatial and temporal resolution as well as increased processing speed 

(Gabernet, Jadhav, Feldman, Carandini, & Scanziani, 2005; Isaacson & Scanziani, 2011; 

Pioulle & Scanziani, 2001; Swadlow, 2002). Disruption of sensory processing can occur 

through alterations in cortical white matter structure (Kercher et al., 2012; Tamnes, Fjell, 

Westlye, Ostby, & Walhovd, 2012) and gamma-aminobutyric acid (GABA) 

concentration (Stagg et al., 2011; Tavassoli, Auyeung, & Murphy, 2012). Importantly, 

GABAergic neurons propagate inhibitory post-synaptic potentials, and GABAergic 
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interneurons in somatosensory cortical white matter tracts facilitate sensory integration 

processes.   

Dysfunctional sensory processing has measurable behavioral correlates on 

psychophysical tasks (Puts et al., 2013). Reaction time and detection threshold are well-

researched sensory functions, and performance on these tasks is sensitive to cortical 

white matter structure (Kercher et al., 2012; Tamnes et al., 2012). Other sensory 

discrimination tasks such as feed-forward inhibition, lateral inhibition, temporal 

processing, and event timing involve more complex sensory integration processes. Feed-

forward inhibition is a regulatory process that influences the timing and population 

coding of afferent sensory signals. When sensory neurons in subcortical regions 

propagate afferent signals, they innervate cortical sensory neurons and GABAergic 

interneurons, the latter of which produce inhibitory signals and regulate signal 

transmission (Isaacson & Scanziani, 2011). Similarly, lateral inhibition works through 

GABAergic interneurons that span laterally across nearby somatotopic sensory tracts 

and regulate simultaneous signal transmission in order to sharpen sensory input. When 

sensory receptors are located nearby somatotopically, such as digits 1 and 2 on the same 

hand, they are often activated simultaneously. In order to determine specific properties 

of sensory stimuli (e.g., timing, frequency, and amplitude) that activate both digits, 

inhibitory interneurons regulate excitatory afferents between the parallel digit sensory 

streams to the cortex. Temporal processing works by determining the timing properties 

of stimuli applied quickly and repeatedly (e.g., tapping quickly on the skin). Timing 

stimuli are encoded via periodic firing of neuronal groups in the somatosensory cortex 
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that are regulated by GABA. Increased GABA concentration in the somatosensory 

cortex improves frequency discrimination (Puts et al., 2011), whereas GABA antagonists 

impair periodic firing and disrupt frequency discrimination (McLaughlin & Juliano, 

2005). Finally, event timing, or the ability to determine how long a stimulus occurs, is 

controlled by a series of neural networks including a fronto-parietal stream and a fronto-

cortico-cerebellar stream (Belin et al., 2002), and evidence points to the particular 

importance of the cerebellum (Keele & Ivory, 1990; Miall & Reckess, 2002). The ability 

to accurately determine the duration of stimuli is important for a number of tasks, 

particularly motor coordination and predictive timing (i.e., perception of physical reality) 

(Keele & Ivory, 1990).  

Disrupted sensory processing and poor sensory filtering is believed to cause 

individuals to experience abnormal response to sensory information, such as hyper/hypo-

sensitivity and an inability to habituate to sensory experiences. For instance, persons 

with autism spectrum disorder experience sensory difficulties such as increased sensory 

sensitivity and intolerance to certain stimuli (e.g., elastic sock bands, bright lights) 

(Rogers & Ozonoff, 2005), and recent work has attempted to characterized these sensory 

deficits via psychophysical paradigms. Several studies have found that child and adults 

found that adults with autism spectrum disorder showed reduced feed-forward inhibition 

as compared to healthy controls (Puts, Wodka, Tommerdahl, Mostofsky, & Edden, 

2014; Tannan et al., 2008), and similar deficits in adaptive spatial discrimination and 

temporal judgment have also been found to be deficient in this population (Tommerdahl, 

Tannan, Cascio, Baranek, & Whitsel, 2007; Tommerdahl, Tannan, Holden, & Baranek, 
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2008). Because autism spectrum disorder has similar behavioral characteristics to 

obsessive-compulsive spectrum disorders (e.g., repetitive, stereotypical behaviors 

[American Psychiatric Association, 2013]), it has been suggested that the same sensory 

processing deficits are evident in obsessive-compulsive disorders (Güçlü et al., 2015; 

Puts et al., 2015).  

1.11 Altered Sensory Processing in OC-Spectrum Disorders 
Using a vibrotactile behavioral battery that is sensitive to somatosensory cortical 

dynamics (Puts, Edden, Wodka, Mostofsky, & Tommerdahl, 2013), one study 

investigated sensory processing in TD (Puts et al., 2015). In addition, GABA 

concentration in the sensory and motor cortices was measured using Magnetic 

Resonance Spectroscopy. A group of 23 children with TD were compared to 67 healthy 

children (HC) on behavioral tasks and imaging data. There were no differences in 

reaction time between groups, meaning that there were no deficits in gross sensorimotor 

control in TD. On a measure of detection threshold, however, the TD group showed 

higher detection thresholds than healthy controls, meaning that they had trouble 

detecting the presence of weak stimuli. A dynamic detection threshold task was used to 

activate feed-forward inhibition processes. In a dynamic detection threshold task, instead 

of providing a static stimulus at a certain amplitude and asking the subject to respond if 

they detect the stimulus, a sub-threshold stimulus is applied and steadily increased in 

amplitude until detected. This dynamic increased in stimulus intensity activates feed-

forward inhibition, which should raise detection thresholds beyond those seen in static 

detection threshold tasks. The TD group showed no change in detection thresholds 

between dynamic and static detection threshold task conditions, whereas the HC group 



 

 40 

showed increased detection thresholds between tasks, reflecting a lack of feed-forward 

inhibition in the TD group. Participants were also subjected to an amplitude 

discrimination task meant to activate lateral inhibition. During this task, participants 

were asked to determine which of two different stimuli applied to adjacent digits had 

greater amplitude. A deficit in the ability to make amplitude distinction reflects 

problematic lateral inhibition. The TD group and HC group showed no differences in 

amplitude discrimination. However, when an adapting stimulus was presented on one 

digit just prior to amplitude discrimination trials, the HC group’s thresholds increased 

while the TD group’s thresholds remained unchanged. The adapting stimulus generally 

reduces the perceived intensity of the subsequent test stimulus through GABAergic 

inhibition (Whitsel et al., 1989), meaning that amplitude discrimination should be 

impaired when the GABAergic system responds flexibly. In contrast, the TD group 

showed a lack of adaptive, ongoing, GABA-mediated lateral inhibition. Finally, 

participants completed a frequency discrimination task designed to measure GABAergic 

frequency encoding. Interestingly, results showed that the TD group outperformed the 

HC group on the frequency discrimination task wherein stimuli were presented 

simultaneously to adjacent digits, which is thought to disrupt GABAergic frequency 

encoding. When results on this task were compared to imaging data, it was discovered 

that GABA concentration was correlated with frequency discrimination performance in 

HC subjects and not TD subjects. The authors reasoned that children with TD may be 

less dependent on GABA-driven frequency encoding, and thus compensate by using 
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some other neural communication method in order to make fine judgments between 

simultaneous stimuli.  

In a similar study, Güçlü et al. (2015) administered many of the same vibrotactile 

behavioral tasks to thirty-two children and adolescents with OCD and thirty-two age- 

and gender-matched healthy controls. The authors also conducted comparative analyses 

within OCD subgroups. These subgroups consisted of (a) younger versus older 

participants (younger = 7-12; older = 13-18), (b) different genders, (c) tic- related OCD 

(25%) versus non-tic-related OCD (75%), and (d) the presence of sensory phenomena 

(e.g., tactile obsessions/compulsions and “just right” perceptions) (59%) versus the lack 

of sensory phenomena (41%). Results replicated the findings in TD, showing that OCD 

subjects had increased detection thresholds compared to healthy controls. When a 

dynamic detection threshold procedure was implemented to activate feed-forward 

inhibition, there were no differences between all OCD subjects and healthy controls, 

suggesting no generalized deficits in feed-forward inhibition. However, when subgroup 

analyses were performed, certain persons with OCD appeared to have deficits in feed-

forward inhibition. Those with OCD who experience sensory phenomena and those with 

tic-related OCD showed impaired dynamic detection thresholds. The OCD group also 

showed overall poorer amplitude discrimination, suggesting that OCD is associated with 

impaired lateral inhibition.  

As such, existing evidence suggests there are abnormalities in the cortical 

dynamics underlying sensory inhibition in TD and OCD. Because BFRBs, TD, and OCD 

have similar sensory and perceptual abnormalities, there is a strong possibility that 
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sensory inhibition deficits are also present in BFRBs. There also remain several 

important questions to be answered by research on sensory processing in BFRBs. If the 

deficits in sensory inhibition found in TD and OCD are also present in BFRBs, these 

problems could be seen as representing endophenotypes of obsessive-compulsive 

spectrum psychopathology. Thus, by investigating sensory processing abnormalities in 

an additional group of related conditions, identification of a common etiological 

mechanism is made possible. In addition, researchers examining sensory processing in 

TD and OCD speculated that their results could be the neural signatures of the cortical 

mechanisms supporting urge phenomena and other sensory abnormalities in TD and 

OCD. However, only the study on OCD determined whether performance on sensory 

processing tasks were associated with the presence or absence of certain sensory 

phenomena (Güçlü et al., 2015). This question is important because individuals with 

obsessive-compulsive spectrum disorders report varying frequency and intensity of urges 

(Houghton et al., 2015; Miguel et al., 2000; Woods et al., 2005). If disturbances in 

sensory processing do lead to urge phenomena, then the magnitude of sensory 

processing dysfunction should positively correlate with behavioral reports of sensory 

phenomena. Moreover, neither study examined whether the proposed sensory processing 

deficits are associated with symptom severity, which makes it difficult to understand the 

causal role of these deficits on behavior. 

1.12 Current Hypotheses 
Based on these gaps in the literature, the current study will employ the same 

vibrotactile battery as Puts et al. (2014, 2015) and Güçlü et al. (2015) to measure sensory 

processing in BFRBs.  
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For the primary aim of this study, we will determine whether individuals with 

BFRBs demonstrate abnormal sensory processing as compared to healthy controls. It is 

hypothesized that individuals with BFRBs will show abnormal performance on 

vibrotactile tasks reflecting poor sensory inhibition, relative to healthy controls. 

Specifically, it is predicted that individuals with BFRBs will possess deficits in feed-

forward inhibition. Several other potential sensory abnormalities were also tested, 

including lateral inhibition, temporal processing, and event timing. These hypotheses 

were tested using a cross-sectional, between-groups design. 

The secondary aim of this study is to determine if the magnitude of sensory 

processing dysfunction in individuals with BFRBs predicts the self-reported severity of 

sensory phenomena and BFRB symptoms. If the purported deficits in cortical sensory 

processing do indeed underlie the sensory phenomena that maintain symptoms, then 

performance on the vibrotactile battery should correlate with self-reported measures of 

sensory phenomena and BFRB severity.  

I also intend to conduct exploratory analyses to determine whether any 

phenomenological characteristics of BFRBs are associated with vibrotactile task 

performance. Should I find that individuals with BFRBs indeed show task performances 

indicative of abnormal cortical sensory processing, it is important to elucidate whether 

these neural mechanisms are associated with any specific behavioral phenotype. First, I 

will determine whether task performances are affected by BFRB severity, such that 

increased severity of the disorder should be associated with greater deficits in the 

purported etiological substrate. Second, I will determine if phenomenological variables 
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such as pulling style are associated with task performance. This is important because 

there could be subgroups of hair pullers and skin pickers whose symptoms have different 

functions. For instance, those who pull in a less automatic manner may have a stronger 

connection between their symptoms and sensory phenomena, whereas other groups may 

pull/pick for other functions (i.e., emotion regulation).  
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CHAPTER II 

METHOD 

 

2.1 Participants 
From November 2016 until June 2017, participants were recruited through 

several methods. Participants with BFRBs were recruited from the Texas A&M 

University – College Station community and from a BFRB specialty clinic in Houston, 

Texas. At Texas A&M, email advertisements were distributed through the Campus 

General Interest listserv, which includes all faculty, staff, and students (except those who 

have opted out) (See Appendix A).  

 Upon responding to the recruitment email, participants were given more 

information about the study and asked to provide a brief description of their BFRB prior 

to scheduling a study appointment. Those eligible and interested were scheduled for an 

in-person study appointment, where they provided informed consent and completed the 

study. Participants were compensated with $15. 

 At Psychology Houston, flyers describing the study were placed in the waiting 

room (See Appendix B), and staff psychologists provided eligible participants brief 

information about the study. Those interested in the study were referred to the study 

coordinator, whereupon a study appointment was scheduled. Informed Consent and 

participation took place in a room typically reserved for psychotherapy sessions at 

Psychology Houston.  

 Inclusion criteria for participants with BFRBs consisted of (1) age ≥ 18 and ≤ 65 

and (2) participant met all DSM-5 criteria for Trichotillomania or Excoriation Disorder. 
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Exclusion criteria consisted of (1) diagnosis of Autism, a Psychotic disorder, or a 

neurological disorder and (2) participant was currently taking medications with 

GABAergic properties, such as anti-epileptics and benzodiazepines. Children and older 

participants were not included for several reasons. First, BFRBs tend to onset during 

early adolescence (Snorrason, Belleau, & Woods, 2012), and evidence suggests that the 

sensory states associated with BFRBs tend to evolve as symptoms become more 

established (Meunier et al., 2009). This finding suggests that neuroplastic processes in 

the sensory/perceptual qualities of hair pulling and/or skin picking may occur during the 

early stages of disorder onset. Thus, measurement of sensory phenomena, which are 

thought to maintain pathological symptoms, should be conducted only once symptoms 

have become stable and chronic. Moreover, the focus of the current study is to examine 

sensory and perceptual factors that purportedly maintain BFRBs, not initiate them. To 

reduce the amount of variance associated with disorder onset, only adults were recruited 

for the current study.  

There is also significant evidence that age-related changes in the nervous system 

lead to diminished reaction time and tactile perceptual abilities in older adults (Zhang, 

Francisco, Holden, Dennis, & Tommerdahl, 2011), particularly after age 65 (Deshpande, 

Metter, Ling, Conwit, & Ferrucci, 2009; Gescheider, Bolanowski, Hall, Hoffman, & 

Verrillo, 1994; Stevens, 1991), making age a possible confound. Persons with the 

aforementioned diagnoses were excluded because sensory experiences would be 

expected to deviated from population norms in persons with autism spectrum disorders 

(Puts et al., 2014), substance use disorders (Thoma et al., 2011), psychosis (Siegel, 
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Waldo, Mizner, Adler, & Freedman, 1984), and many neurological disorders. Finally, 

persons on GABAergic, glutamatergic, or dopaminergic medications were excluded 

because these medications likely act on the dependent variables of the current study. 

 Healthy control subjects were recruited from email advertisements that were 

distributed through the Texas A&M University Campus General Interest listserv (See 

Appendix C). Interested respondents whose ages matched a participant in the BFRB 

group were invited to participate. All participants in the healthy control group provided 

informed consent prior to participation and were compensated with $15. Healthy control 

participants were subjected to the same inclusion and exclusion criteria as participants in 

the BFRB group, but were also excluded if they met criteria for any psychological 

disorder as measured by the MINI International Neuropsychiatric Interview (described 

below).  

 A total of 46 participants with BFRBs were recruited and completed the study, as 

well as an age-matched sample of 46 healthy control subjects. Age-matching was 

performed in order to account for any possible age-related differences in sensorimotor 

abilities. A total of 8 participants provided informed consent but did not complete the 

study. There were 6 participants who presented and claimed to have a BFRB but did not 

meet full diagnostic criteria for either Trichotillomania or Excoriation Disorder. An 

additional participant who presented with a BFRB recalled halfway through the study 

that they were taking Topiramate, and the participant was asked to discontinue 

participation and their data were not included in analyses. Yet another participant, who 
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would have participated as a healthy control subject, withdrew their consent after having 

to suddenly leave the testing session for personal reasons.  

The age range of participants was 18-47, and a full description of demographic 

information between groups can be found in Table 1. As can be seen, participants in the 

BFRB group presented with significant frequencies of comorbid psychopathology. 

Several participants in the healthy control group met DSM-4 criteria for substance 

(marijuana) or alcohol abuse, but had not consumed substances recently (i.e., in the 24 

hours prior to participation) and did not appear to be intoxicated or suffering from 

withdrawal symptoms. In addition to the MINI diagnostic information, participants in 

the BFRB group reported significant frequencies of other psychiatric problems. For 

instance, 4 persons reported that they had been previously hospitalized for a psychiatric 

issue, 5 persons had a history of non-suicidal self-injury (none were currently self-

harming), and 5 persons reported that they had been diagnosed with attention-

deficit/hyperactivity disorder. A significant portion (12 persons, 26.1%) also reported 

some degree of suicidal ideation. By comparison, no individuals in the healthy control 

group reported psychiatric diagnoses, but 1 participant did report occasional, mild 

suicidal ideation (and did not meet criteria for major depression). 
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Table 1. Demographic Information and Psychiatric Comorbidity by Group 

  

Clinical 

BFRBs 

 

Healthy  

Controls 

Gender   

          Female 39 (84.8%) 33 (71.7%) 

          Male 7 (15.2%) 13 (28.3%) 

Ethnicity   

          Hispanic 9 (19.6%) 9 (19.6%) 

          Non-Hispanic 37 (80.4%) 37 (80.4%) 

Race   

         White  42 (91.3%) 34 (73.9%) 

         Asian 2 (4.3%) 10 (21.7%) 

         “Other” 1 (2.2%) 2 (4.3%) 

Age: M(SD) 24.85 (8.05) 24.87 (7.97) 

Current Psychiatric Diagnoses - Any 19 (41.2%) 4 (8.7%) 

         Major Depression 1 (2.2%) 0 

         Bipolar I 2 (4.3%) 0 

         Bipolar II 1 (2.2%) 0 

         Bipolar NOS 0 0 

         Panic Disorder 2 (4.3%) 0 

         Agoraphobia 6 (13.0%) 0 
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Table 1. Continued 

 Clinical 

BFRBs 

Healthy  

Controls 

         Social Phobia 3 (6.5%) 0 

         Obsessive-Compulsive Disorder 3 (6.5%) 0 

         Posttraumatic Stress Disorder 4 (8.7%) 0 

         Alcohol Dependence 1 (2.2%) 0 

         Alcohol Abuse 4 (8.7%) 3 (6.5%) 

         Substance Dependence 0 0 

         Substance Abuse 0 1 (2.2%) 

         Psychotic Disorder 0 0 

         Mood Disorder with Psychotic 

         Features 

0 0 

         Anorexia Nervosa 1 (2.2%) 0 

         Bulimia Nervosa 2 (4.3%) 0 

         Binge Eating Disorder 0 0 

         Generalized Anxiety Disorder 9 (19.6%) 0 

         Antisocial Personality Disorder 0 0 

Multiple Current Psychiatric 

Diagnoses 

12 (26.0%) 0 

Note. One participant in the BFRB group did not provide their ethnicity. 
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The presence of psychoactive medications was also more frequent in the BFRB 

group than in the healthy control group. In the BFRB group, 30.4% had taken selective 

serotonin reuptake inhibitors (SSRIs), 15.2% had taken other types of antidepressants 

(e.g., atypical antidepressants, selective norepinephrine reuptake inhibitors, tricyclics), 

10.9% had taken mood stabilizers, 4.3% reported a past history of glutamate modulators 

(none were current), 15.2% reported a past history of psychostimulants, 17.4% reported 

a past history of anticonvulsants (none were current), and 8.7% reported a past history of 

benzodiazepines (none were current). No participants reported a history of neuroleptic 

medication. In the healthy control group, 2.2% reported a past history of SSRI 

medication, 2.2% reported a past history of benzodiazepines, and 2.2% reported past 

Botox injections in the face.  

Participants self-reported any significant medical problems, and any problems 

that might affect the current study were queried by the experimenter to ensure they 

wouldn’t affect the participant’s ability to complete the study or confound their results. 

No participant was removed from the study for a medical issue. However, 5 participants 

in the BFRB group and 6 participants in the healthy control group reported at least 1 past 

concussion or traumatic brain injury, but none of these persons reported any lingering 

neurological symptoms resulting from their head injuries.   

The BFRB group was primarily composed of persons with Excoriation Disorder, 

and a smaller number of participants were diagnosed with Trichotillomania or both 

conditions. There were 39 participants with a diagnosis of Excoriation disorder, and 3 of 

those persons also reported subclinical hair pulling. There were 10 participants 
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diagnosed with Trichotillomania, and 4 of those persons also reported subclinical skin 

picking. Only 3 participants met criteria for both Trichotillomania and Excoriation 

Disorder. Based on the HDI and participants’ responses on self-report measures of 

BFRB severity (described below), the experimenter classified participants on their 

overall level of hair pulling or skin picking severity using the Clinical Global 

Impressions Scale (described below). Regarding hair pulling severity, 3 participants 

were rated as “borderline ill”, 1 participant was rated as “mildly ill”, 7 participants were 

rated as “moderately ill”, 1 participant was rated as “markedly ill”, and 1 person was 

rated as “severely ill”. Regarding skin picking severity, 2 participants were rated as 

“borderline ill”, 3 participants was rated as “mildly ill”, 23 participants were rated as 

“moderately ill”, 13 participants were rated as “markedly ill”, and 1 participant was rated 

as “severely ill”. The average score on the self-report measure of hair pulling severity 

(The Massachusetts General Hospital Hairpulling Scale, described below) was 15.31, 

and the average score on the self-report measure of skin picking severity (the Skin 

Picking Scale, described below) was 11.63. Collectively, these data indicate that the 

sample consisted primarily of participants with moderate hair pulling and/or skin picking 

severity.  

2.2 Measures 
As previously mentioned, several different assessments were used to make 

diagnoses and quantify BFRB severity. These measures are described below. 

The MINI International Neuropsychiatric Interview (Sheehan et al., 1998) is a 

structured, clinician-rated diagnostic interview that assesses for common psychiatric 

conditions. The MINI was designed to establish both principal and co-occurring DSM-
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IV diagnoses. Studies that have validated the MINI have found it to possess good 

psychometric properties (Lecrubier et al., 1997; Sheehan et al., 1997, 1998).  

The Habit Disorder Interview (HDI) was developed by the authors for the 

purpose of the current study (See Appendix D). The HDI is a structured, diagnostic 

assessment consisting of items derived from DSM-5 criteria for BFRBs. After a trained 

interviewer checked diagnostic criteria for each BFRB, he or she summarized these 

criteria endorsements into diagnostic decisions (i.e., Clinical BFRB, Subclinical BFRB, 

or No BFRB). No psychometric data are available on the HDI, but it was constructed 

based on the Trichotillomania Diagnostic Interview (Rothbaum & Ninan, 1994), which 

has been used extensively as a Trichotillomania diagnostic instrument. The HDI was 

designed to assess for diagnoses related to pathological hair pulling (Trichotillomania) 

and pathological skin picking (Excoriation Disorder). 

 The Massachusetts General Hospital Hairpulling Scale (MGH-HPS; Keuthen et 

al., 1995) is a 7-item self-report questionnaire that measures frequency, resistance, and 

control of hair-pulling urges and behaviors as well as distress associated with hair 

pulling (See Appendix E). Each item is rated on a 5-point rating scale ranging from 0 

(lower severity) to 4 (higher severity). The total score is acquired by summing the 

responses for all 7 items. The MGH-HPS has consistently demonstrated strong internal 

consistency (α = 0.89) and test-retest reliability (r = 0.97; Keuthen et al., 1995; 

O’Sullivan et al., 1995), as well as acceptable convergent and divergent validity 

(O’Sullivan et al., 1995). 
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 The Skin Picking Scale (SPS; Keuthen et al., 2001) is a 6-item self-report 

questionnaire that measures skin picking frequency, urges to pick, time spent picking, 

interference and distress, and functional impairment (See Appendix F). Each item is 

rated on a 5-point rating scale ranging from 0 (lower severity) to 4 (higher severity). The 

total score is acquired by summing the responses for all 6 items. The SPS has 

demonstrated moderate internal consistency, good convergent and divergent validity, 

and good predictive validity (Keuthen et al., 2001).  

 Several additional self-report scales were used to measure the phenomenology of 

hair pulling. The Milwaukee Inventory of Subtypes of Trichotillomania – Adult Version 

(MIST-A; Flessner et al., 2008) is a 15-item self-report measure that assesses the degree 

to which individuals engage in “focused” and “automatic” pulling styles (See Appendix 

G). Each style of pulling is assessed using a unique subscale, and items are scored on a 

10-point Likert scale ranging from 0 (“not true for any of my pulling”) to 9 (“true for all 

of my hair pulling”). The MIST-A has demonstrated acceptable reliability and validity 

(Flessner et al., 2008). The Milwaukee Inventory for the Dimensions of Adult Skin 

Picking (MIDAS; Walther et al., 2009) is a 21-item self-report measure that assesses the 

degree to which individuals engage in “focused” and “automatic” picking styles (See 

Appendix H). Each style of picking is assessed using a unique subscale, and items are 

scored on a 5-point Likert scale ranging from 1 (“not true for any of my picking”) to 5 

(“true for all of my picking”). The MIDAS has adequate reliability and good validity 

(Walther et al., 2009).  
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Several self-report measures were used to measure abnormal sensory experiences 

(See Appendices I and J). The Sensory Gating Inventory (SGI; Hetrick et al., 2012) is a 

self-report measure of sensory gating. It has 36 items that are rated on a 6-point rating 

scale ranging from Never True to Always True. There are 4 subscales derived from factor 

analysis: Perceptual Modulation, Distractibility, Over-Inclusion, and Fatigue and Stress 

Vulnerability. A total severity score is comprised of the sum of all 36 items. The SGI has 

demonstrated strong reliability and validity (Hetrick et al., 2012), and has been used in 

research on TD (Sutherland Owens, Miguel, & Swerdlow, 2011). The Multidimensional 

Assessment of Interoceptive Awareness (MAIA; Mehling et al., 2012) is a 32-item self-

report measure of interoceptive awareness and self-regulation of body states. It has 8 

subscales: Noticing, Not-Distracting, Not-Worrying, Attention Regulation, Emotional 

Awareness, Self-Regulation, Body Listening, Trusting. Each subscale score is calculated 

by summing the corresponding item scores, which are scored on a 5-point rating scale 

ranging from 1-Never to 5-Always. The measure possesses strong validity and internal 

consistency (Mehling et al., 2012). 

 Finally, the CM6 Vibrotactile Behavioral Battery (Puts et al., 2013), a 

psychophysical behavioral measure of sensory processing was used as the primary 

assessment of reaction time, sensorimotor integration, detection threshold, feed-forward 

inhibition, lateral inhibition, temporal processing, and event timing. The CM6 is a small 

desktop-mounted device with two independently controlled vibrating nodes that 

stimulate the glabrous tissue of digits three and four of the left hand. The technique has 

been validated in children and adults (Puts et al., 2013), as well as used to measure 
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sensory phenomena in TD and OCD (Güçlü et al., 2015; Puts et al., 2015) and other 

clinical populations such as concussion (Tommerdahl et al., 2016), Parkinson’s disease 

(Kursun, Tommerdahl, & Favorov, 2013), Autism (Khan et al., 2015; Puts, Wodka, 

Tommerdahl, Mostofsky, & Edden, 2014; Puts et al., 2016), Carpal Tunnel Syndrome 

(Maeda et al., 2014), and alcohol abuse (Nguyen et al., 2013). 

2.3 Procedure 
After consenting to participate in the study, potential participants were screened 

for inclusion/exclusion criteria using the MINI and HDI. If not screened out at that stage, 

participants completed several self-report measures of demographics, BFRB severity, 

sensory processing, and subtypes of BFRBs. Then, the vibrotactile behavioral battery 

was administered on the left hand. Several vibrotactile protocols were employed: 

reaction time, detection threshold, amplitude discrimination, frequency discrimination, 

and duration discrimination. These tasks are described below. 

The reaction time task requires participants to press a computer mouse with their 

opposite hand as soon as they detect a vibration on their testing hand. Reaction time 

measures general sensorimotor integration and serves to establish a baseline level of 

sensory function. Two conditions are used within the reaction time task: a Simple 

Reaction Time (sRT) task, in which only one stimulus must be detected, and a Choice 

Reaction Time (cRT) task, in which the participant must not only respond to the stimulus 

but also indicate which finger was stimulated (of two possible choices). The sRT task 

reflects basic sensorimotor integration and reaction time abilities, whereas the cRT task 

reflects one’s reaction time abilities with added attentional, cognitive, and sensorimotor 

coordination demands. For both the sRT and cRT tasks, there was 1 training trial and 10 
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test trials. Stimulus amplitude was set at 300µm, frequency at 25Hz, and duration at 

400ms.  

The detection threshold task involves two similar processes whereby participants 

press a computer mouse with their opposite hand as soon as they detect a vibratory 

stimulus on their testing hand. In the Static Detection Threshold (sDT) task, the 

amplitude of the vibratory stimulus is steadily decreased from supra-threshold levels to 

sub-threshold levels, and the level at which an individual can reliably detect the stimulus 

becomes that individual’s detection threshold. In the sDT task, the initial stimulus is 

delivered at 25µm, 25Hz, and 40ms. A total of 3 training trials and 20 test trials were 

delivered (inter-trial-interval [ITI] = 5s), and depending on correct or incorrect responses 

the amplitude of the stimulus was either increased or decreased by 1µm. In the Dynamic 

Detection Threshold (dDT) task, each test stimulus is preceded by lower, sub-threshold 

stimulus, which steady increases in amplitude and activates FFI processes, thus raising 

detection thresholds. There were no practice trials, and after a variable delay of 0-

2,500ms each 25Hz stimulus started at 0µm and was ramped up at a rate of 2µm/s. A 

total of 7 trials were conducted in 10-second intervals. If FFI processes are intact, one 

should observe an increase in dynamic detection threshold as compared to the static 

detection threshold (Puts et al., 2013).  

The amplitude discrimination task involves two processes whereby individuals 

must determine which of two simultaneously presented vibratory stimuli was stronger. 

In the ‘without adaptation’ condition (Simultaneous Amplitude Discrimination 

[simAD]), the difference between stimulus amplitude decreases across trials until a 
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reliable threshold of discrimination is established. Both stimuli were 25Hz and 500ms. 

The standard stimulus amplitude was 200µm and the initial comparison stimulus 

amplitude was set to 400µm, and the comparison stimulus was adjusted by 20µm after 

each trial. There were 3 test trials and 20 test trials (ITI = 5s). The simAD task reflects 

individuals’ ability to detect subtle differences in intensity between two simultaneously 

delivered stimuli, which involves attentional and perceptual factors. In the ‘Single-Site 

Adaptation’ (SSA) condition, one of the two stimuli is preceded by a stimulus (200µm, 

25Hz, 500ms) that participants are told to ignore, which is thought to activate lateral 

inhibition and raise the amplitude discrimination threshold (Puts et al., 2013). A 

considerable body of evidence shows that sensory neurons respond adaptively to the 

recent sensory events (Kohn, 2007; Kohn & Whitsel, 2002). Indeed, the addition of this 

‘adapting’ stimulus is believed to decrease neural firing in response to subsequent 

stimulus input, thereby reducing the perceived intensity of subsequent stimulation 

(Whitsel et al., 1989; Whitsel et al., 2003). Tannan et al. (2008) found that the addition 

of a single adapting stimulus to the simAD task disrupted performance in healthy adults 

by increasing their amplitude detection difference limen. However, studies have found 

that this effect is absent in children and adults with Autism Spectrum Disorder (ASD) 

(Puts, Wodka, Tommerdahl, Mostofsky, & Edden, 2014; Tommerdahl et al., 2008), 

suggesting that ASD is associated with reduced neural adaptation to repeated sensory 

stimuli and potential problems with sensory habituation. This effect is reversed when 

both digits receive an adapting stimulus. Indeed, in the ‘Dual-Site Adaptation’ (DSA) 

condition, both of the two stimuli are preceded by stimuli (200µm, 25Hz, 500ms) that 
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participants are told to ignore. The application of dual adapting stimuli has been found to 

improve amplitude discrimination in healthy individuals (Tannan, Simons, Dennis, & 

Tommerdahl, 2007) but not individuals with autism (Tommerdahl et al., 2007). Evidence 

has shown that dual adapting stimuli not only reduce the perceived intensity of 

subsequent stimuli, but they also enhance discrimination accuracy, perhaps because they 

reduce neural activity and sharpen sensory input (Goble & Hollins, 1993; Tannan et al., 

2007). Again, the absence of this effect in ASD may reflect reduced neural adaptation 

and poor adaptive sensory discrimination abilities. 

The frequency discrimination task measures temporal processing by applying 

sequential and simultaneously applied stimuli. The ability to discriminate between the 

frequencies of sequentially applied stimuli (seqFD) is determined by GABA 

concentration in the sensorimotor cortex, but simultaneously applied stimuli (simFD) 

disrupt temporal encoding and impair discrimination in persons with intact cortical 

synchrony and lateral inhibition (Puts et al., 2013). In the seqFD task, the lag between 

stimuli was 500ms. There were 3 training trials and 20 test trials. The standard stimulus 

was set to 300µm, 25Hz, and 500ms, while the initial comparison stimulus was set to 

identical amplitude and duration but 35Hz frequency. The frequency of the comparison 

stimulus was changed by 1Hz between trials, which were presented in 5s intervals. 

Parameters were identical in the simFD task except for the lack of a lag time between 

stimuli presentation. 

The duration discrimination (DD) task measures event timing by applying 

sequentially applied stimuli of different durations. There were 3 training trials and 20 
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test trials and an initial lead lag time of 500ms. The standard stimulus was set at 300µm, 

40Hz, and 500ms, while the initial comparison stimulus had identical amplitude and 

frequency but 750ms duration. The duration of the comparison stimulus was changed by 

25ms depending on right or wrong answers, and the trials were presented in 5s intervals.  

The ability to discriminate between the durations of sequentially applied stimuli is sub-

served by fronto-cerebellar white matter tracts. 

The simple reaction time task was administered again at the conclusion of the 

battery in order to measure the influence of fatigue or performance effects. An increase 

in reaction time was operationalized as an indicator of fatigue, whereas a decrease in 

reaction time was operationalized as an indicator of performance effects. 

2.4 Analyses 
Groups were tested for any differences in behavioral processes related to sensory 

processing dysfunction, including sensory gating and interoceptive awareness. These 

differences were tested via two-group independent-samples tests. It was then tested 

whether groups differed on basic sensorimotor processes, including reaction time and 

sensorimotor integration, as such differences would likely affect performance on 

subsequent tasks. A 2x2 (task x group) factorial ANOVA was performed comparing the 

groups’ performance on the Simple Reaction Time and Choice Reaction Time tasks.  

In order to test whether individuals with BFRBs possess faulty sensory 

processing mechanisms that cause poor sensory inhibition, several factorial ANOVAs 

were performed testing performance on vibrotactile tasks according to experimental 

group. Because the detection threshold task, amplitude discrimination task, and 

frequency discrimination task all involve two conditions (i.e., static vs. dynamic 



 

 61 

detection threshold), a series of 2x2 (task condition x group) factorial ANOVAs were 

used to test main effects of task condition, experimental group, and interactions between 

task condition and group. Additionally, post-hoc tests were employed to examine 

significant interaction effects in more detail. Two-group, independent-samples tests were 

used to measure differences on the duration discrimination task. Furthermore, in order to 

test whether the level of sensory processing dysfunction is associated with behavioral 

symptoms related to sensory gating, interoceptive awareness, and symptom severity, 

those variables were regressed upon the differences between performances between task 

conditions.  

Finally, prior to analyses, variables which could theoretically confound results 

(i.e., gender) were tested as potential covariates. Differences in performance on the 

Simple Reaction Time task were entered as covariates into all analyses except the first 

tests of Simple Reaction Time and Choice Reaction Time (where it would be unlikely 

for fatigue or performance effects to occur). In addition, because the cerebellum, as well 

as frontal areas, are often impacted by traumatic brain injuries and concussion (Jantzen, 

Anderson, Steinberg, & Kelso, 2004; MacDonald et al., 2013; Talavage et al., 2014), 

which are also known to lead to deficits in event and predictive timing (Ivry, Spencer, 

Zelaznik, & Diedrichsen, 2002; Maruta, Lee, Jacobs, & Ghajar, 2010), the presence of a 

self-reported concussion or traumatic brain injury was controlled for in analyses on the 

duration discrimination task. Data were examined both visually and statistically to 

ensure that all participants had produced adequate data and that the data met the 

assumptions required for parametric null hypothesis significance tests. 
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CHAPTER III 

RESULTS 

 

3.1 Tests of potential covariates 
There were no differences between the BFRB group and healthy control group 

with regard to gender (t(90) = 1.52, p = .13) or age (t(90) = 0.01, p = .99). As such, 

gender and age were not introduced into any subsequent analyses as a covariate. There 

was also no difference in fatigue/performance between groups on the vibrotactile battery 

(t(90) = -.38, p = .71), but both groups showed evidence of performance effects over 

time (See Figure 1) (t(45) = 5.92, p < .001; t(45) = 6.57, p < .001).  

3.2 Behavioral Data 
All participants provided usable data on the SGI Perceptual Modulation Subscale 

and all subscales of the MAIA, but the other three SGI subscales had one missing data 

point each (2 from participants with BFRBs, 1 from a healthy control participant). Data 

did not meet the assumption of normal distribution, as evidenced by significant Shapiro-

Wilks tests. As such, Mann-Whitney U tests were used for all comparative analyses on 

behavioral data. In addition, a bonferonni correction was applied to significance levels to 

combat Type I errors that could be caused by multiple comparisons (α = .005).  

 Consistent with predictions, there were numerous differences on self-reported 

sensory gating and interoceptive awareness between groups (See Table 2). Participants 

with BFRBs reported greater problems associated with sensory gating on all subscales of 

the Sensory Gating Inventory. Furthermore, participants with BFRBs reported greater 

attention toward interoceptive sensations, a greater propensity to worry about their body 
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states, and less trust in their own body. There were no differences between groups on the 

Not Distracting subscale, the Attention Regulation subscale, the Emotional Awareness 

subscale, and the Self-Regulation subscale.  

Table 2. Group differences on behavioral data 
 
Scale 

BFRB Mean 
(SD) 

Healthy Control 
Mean (SD) 

 
U 

 
p-value 

 
Sensory Gating Inventory 

    

Perceptual Modulation 35.57 (14.49) 22.61 (6.16) 467.50 < .001* 

Distractibility 28.07 (9.58) 17.36 (7.31) 408.00 < .001* 

Overinclusion 21.04 (7.74) 13.65 (5.39) 466.00 < .001* 

Fatigue/Stress 
Vulnerability 

16.76 (5.58) 10.39 (4.28) 395.00 < .001* 

 
Multidimensional Assessment of  
Interoceptive Awareness 

   

Noticing 12.54 (3.73) 9.04 (4.57) 602.50 < .001* 

Not Distracting 6.39 (2.53) 7.39 (3.11) 875.00 .15 

Not Worrying 7.17 (3.63) 9.46 (2.73) 685.50 .003* 

Attention Regulation 19.50 (6.65) 20.78 (7.13) 935.00 .34 

Emotional Awareness 16.59 (4.07) 14.15 (5.82) 815.50 .06 

Self-Regulation 9.28 (4.68) 11.67 (4.02) 730.50 .01 

Body Listening 5.98 (3.70) 5.41 (3.74) 956.50 .43 

Trusting 9.57 (3.40) 11.57 (2.82) 683.00 .003* 
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3.3 Reaction Time and Basic Sensorimotor Function 
All 92 participants produced adequate data on sRT and cRT. Data were not 

normally distributed, as evidenced by significant Shapiro-Wilks’ tests. This is 

unsurprising given that reaction time data are often skewed (Miller, 1998; Taylor, 1965). 

However, the data did meet the assumption of homogeneity of variance. Because the 

validity of t-tests are vulnerable to violations of normality (Erceg-Hurn & Mirosevich, 

2007) while ANOVA is robust to this assumption violation (Schmidner, Ziegler, Danay, 

Beyer, & Bühner, 2010), Mann-Whitney U tests and Wilcoxon Signed Ranks tests were 

substituted for t-tests.  

See Figure 1 for descriptive statistics regarding outcome variables. There were 

no baseline differences between groups on either the sRT (MdnBFRB = 258.80, MdnHC = 

250.70; U = 978.50, p = .55) or the cRT (MdnBFRB = 435.60, MdnHC = 437.70; U = 

1008.00, p = .70). There was a large main effect of condition (F[1, 90] = 339.99, p < 

.001, ηp
2 = .79), suggesting that the increased attentional and sensorimotor demand of 

cRT as compared to sRT significantly affected reaction times in both groups. There was 

no main effect of group (F[1, 90] = .07, p = .70), and no task by group interaction (F[1, 

90] = .07, p = .79). This suggests that the BFRB group did not show any greater change 

in reaction times between conditions. Results also indicated that there were no 

differences in consistency or accuracy between groups on SRT and CRT. There was no 

difference in the variability in reaction times on SRT between groups (MdnBFRB = 23.00, 

MdnHC = 17.60; U = 996.50, p = .63), and there was no difference in percent correct on 

CRT between groups (MdnBFRB = 90.00, MdnHC = 100.00; U = 857.00, p = .08). This 
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suggests that persons with BFRBs have normally developed sensorimotor integration on 

tasks requiring quick motor reactions.  

Figure 1. Performance on Reaction Time Tasks Between Groups. 

 

3.4 Detection Threshold 
Due to a programming error, data from the sDT task were invalid for 6 

participants in the BFRB group. As such, their data and the healthy controls with whom 

they were age-matched were excluded. Furthermore, due to technical failure during 

administration, 1 participant in the BFRB group and 1 participant in the healthy control 

group did not complete the dDT task. Significant Shapiro-Wilks’ tests indicated that the 

data are not normally distributed, and Levene’s test of equality of variances was 

significant for sDT (F[1, 76] = 5.66, p = .02). The violation of heteroscedasticity in the 

sDT condition was likely caused by a floor effect in the sDT data, whereby there was a 

strong positive skew and the modal result was the second lowest observed result 
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(6.20µm). As such, non-parametric tests were again substituted for t-tests, and results 

from the ANOVA should be interpreted with caution.  

See Figure 2 for descriptive statistics for detection threshold performances 

between groups. Participants in the BFRB group had lower detection thresholds on both 

the sDT task (MdnBFRB = 7.80, MdnHC = 8.40; U = 583.50, p = .036) and the dDT task 

(MdnBFRB = 8.10, MdnHC = 10.00; U = 457.00, p = .002). Likewise, there was a 

significant main effect of group (F[1, 76] = 10.65, p = .002, ηp
2 = .12). This suggests that 

persons with BFRBs have greater tactile sensitivity and lower overall detection 

thresholds. There was also a significant main effect of condition (F[1, 76] = 4.71, p = 

.033, ηp
2 = .058) and a significant interaction between group and condition (F[1, 76] = 

5.18, p = .026, ηp
2 = .064). Indeed, the detection thresholds of persons in the healthy 

control group increased between the sDT and dDT task (Z = -2.55, p = .011) while the 

detection thresholds of persons in the BFRB group showed no change between tasks (Z 

= -.34, p = .73). To ensure that pre-mature response tendencies (i.e., guessing) did not 

affect these results, the ANOVA was conducted once more with the percent correct on 

the dDT task entered as a covariate. When percent correct on dDT was entered as a 

covariate, effect sizes increased substantially, and there was still a significant main effect 

of condition (F[1, 75] = 19.99, p < .001, ηp
2 = .21), a significant main effect of group 

(F[1, 75] = 13.94, p < .001, ηp
2 = .16), and a significant interaction between condition 

and group (F[1, 75] = 8.58, p = .004, ηp
2 = .103). These results support the hypothesis of 

faulty feed-forward inhibition in BFRBs.  
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Figure 2. Performance on Detection Threshold Tasks Between Groups 

 

 

 

 

 

 

 

 

 

3.5 Amplitude Discrimination 
All 92 participants provided usable data on the amplitude discrimination tasks. 

Significant Shapiro-Wilks’ tests indicated that the data are not normally distributed, and 

Levene’s test of equality of variances was significant for simAD (F[1, 90] = 7.04, p = 

.009), indicating a violation of heteroscedasticity. In addition, Mauchly’s test of 

sphericity was significant (X2 = 16.49, p < .001). As such, ANOVA was interpreted with 

caution through Greenhouse-Geisser corrections, and non-parametric tests were 

substituted for t-tests.  

See Figure 3 for descriptive statistics regarding performances on amplitude 

discrimination tasks between groups. There were no differences between groups on the 

simAD task (MdnBFRB = 68.00, MdnHC = 60.00; U = 930.50, p = .32), SSA task 

(MdnBFRB = 116.00, MdnHC = 124.00; U = 961.00, p = .45), or DSA task (MdnBFRB = 

58.00, MdnHC = 46.00; U = 863.50, p = .13). There was a main effect of condition (F[2, 

 * 
 * 
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180] = 56.01, p < .001, ηp
2 = .38), but no main effect of group (F[1, 90] = .05, p = .83) 

and no interaction between group and condition (F[2, 180] = .77, p = .45). There was no 

evidence of a different increase in scores between simAD and SSA between groups 

(MdnBFRB = 41.50, MdnHC = 62.00; U = 952.50, p = .41), and no evidence of a different 

decrease in scores between SSA and DSA (MdnBFRB = 65.50, MdnHC = 83.00; U = 

927.50, p = .31). As such, these results do not suggest any abnormalities in lateral 

inhibition and/or dynamic sensory adaptation in BFRBs.  

Figure 3. Performance on Amplitude Discrimination Tasks between groups 

 

3.6 Frequency Discrimination 
All 92 participants provided usable data on the frequency discrimination tasks. 

Significant Shapiro-Wilks’ tests indicated that the data are not normally distributed, and 

Levene’s tests of equality of variances were non-significant. As such, non-parametric 

tests were substituted for t-tests but ANOVA can be interpreted with confidence.  
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See Figure 4 for descriptive statistics regarding performances on frequency 

discrimination tasks between groups. There was a main effect of condition (F[1, 90] = 

7.80, p = .006, ηp
2 = .08), indicating that it was more difficult for participants to judge 

differences in frequency between vibrations applied simultaneously than vibrations 

applied sequentially. However, there was no main effect of group (F[1, 90] = 1.13, p = 

.29) and no interaction between group and condition (F[1, 90] = .50, p = .48), and there 

were no differences between groups on the seqFD task (MdnBFRB = 4.60, MdnHC = 4.20; 

U = 975.00, p = .52) or simFD task (MdnBFRB = 6.30, MdnHC = 6.20; U = 1023.50, p = 

.79). This indicates that the groups did not have different performance on each of the 

tasks, and there was no differential effect of the tasks on the group’s performances. 

Overall, data indicate that BFRBs are not associated with any deficits in temporal 

processing. 

Figure 4. Performance on Frequency Discrimination Tasks between groups. 
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3.7 Duration Discrimination 
All 92 participants provided valid data on the duration discrimination task. 

Significant Shapiro-Wilks’ tests indicated that the data are not normally distributed, so a 

Mann-Whitney U test was substituted for a t-test. Furthermore, as previously mentioned, 

11 participants (5 with BFRBs, 6 healthy controls) reported a history of concussions or 

traumatic brain injuries. The presence of a concussion or traumatic brain injury was 

introduced into analyses as a covariate in a one-way ANCOVA. Levene’s test was non-

significant, meaning the ANOVA can be interpreted with confidence.  

See Figure 5 for descriptive statistics regarding performances on the duration 

discrimination task between groups. Without controlling for head injuries, there was no 

difference in performance on the duration discrimination task between groups (MdnBFRB 

= 57.5, MdnHC = 65.00; U = 876.00, p = .15). Results of the one-way ANCOVA 

controlling for head injuries was similarly non-significant (F[1, 89] = 1.84, p = .18). As 

such, results do not support the presence any abnormalities in event timing in persons 

with BFRBs. 
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Figure 5. Performance on Duration Discrimination Tasks between groups. 

 

3.8 Association Between Performance and Self-Report 
The only group differences that emerged from vibrotactile data between groups 

were that persons with BFRBs showed lower detection thresholds on sDT and reduced 
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such, performance on the sDT task and the differences between sDT and dDT task were 

used as predictors in a series of regression analyses predicting behavioral data from 
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with BFRBs. Both predictor variables were not normally distributed, as was the MAIA 

Self-Regulation subscale. Accordingly, log transformations were performed on sDT data 

and the Self-Regulation subscale to meet the assumptions of linear regression. Because 
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some values of the difference between sDT and dDT were less than 0, log 

transformations could not be performed, and thus regression should be interpreted with 

some caution.  

Significant relationships were observed when detection threshold predicted the 

Fatigue/Stress Vulnerability subscale of the Sensory Gating Inventory and when FFI 

predicted skin picking severity (See Table 3). These differences would not survive a 

bonferroni correction for multiple comparisons (α = .001). As such, the hypotheses that 

performance on vibrotactile tasks would symptom severity and behavioral reports of 

sensory phenomena were only partially supported.  
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Table 3. Regression analyses predicting behavioral data from vibrotactile performance. 
 Predictor 
 Detection Threshold FFI 
Outcome Beta t-value p-value Beta t-value p-value 
MGH-HPS .10 .32 .76 -.51 -1.89 .088 

SPS .17 .97 .34 .40 2.48 .018* 

MIST-A Focused -.15 -.47 .65 -.42 -1.47 .17 

MIST-A Automatic -.13 -.41 .69 .50 1.83 .097 

MIDAS Focused .11 .64 .53 .19 1.08 .29 

MIDAS Automatic .05 .31 .76 .07 .37 .71 

SGI – Perceptual 
Modulation 

-.12 -1.08 .28 .07 .63 .53 

SGI – Distractibility -.14 -1.24 .22 .12 1.03 .31 

SGI – Overinclusion -.10 -.88 .39 .12 1.07 .29 

SGI – Fatigue/Stress 
Vulnerability 

-.31 -2.81 .006* .06 .51 .61 

MAIA – Noticing .05 .46 .65 .02 .14 .89 

MAIA – Not 
Distracting 

-.01 -.09 .93 -.05 -.40 .69 

MAIA – Not 
Worrying 

.07 .62 .54 -.08 -.66 .51 

MAIA – Attention 
Regulation 

.12 1.02 .31 -.04 -.37 .71 

MAIA – Emotional 
Awareness 

.06 .57 .57 .04 .36 .72 

MAIA – Self-
Regulation 

.14 1.22 .23 .01 .09 .93 

MAIA – Body-
Listening 

.08 .73 .47 -.13 -1.12 .27 

MAIA – Trusting .16 1.44 .16 .004 .04 .97 

* = significant difference 
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CHAPTER IV 

DISCUSSION 

 

4.1 Review of Findings 
Results of the current study suggest that BFRBs are associated with several 

sensory and perceptual abnormalities. Persons with BFRBs reported increased 

interoceptive awareness, increased worry about body sensations, and less trust and/or 

feelings of security in their own bodies. In addition, persons with BFRBs reported more 

frequent and intense experiences associated with deficient sensory gating as compared to 

healthy adults. Results from the vibrotactile psychophysics battery showed that BFRBs 

were associated with decreased tactile detection thresholds and faulty FFI but no other 

sensory or motor abnormalities. In linking quantitative sensory abnormalities to 

phenomenology, it appears that increased sensitivity to tactile stimuli may be related to 

vulnerability to experiencing sensory phenomena while fatigued and/or distressed and 

that FFI may be related to BFRB severity.  

The finding that individuals with BFRBs report increased interoceptive 

awareness is consistent with previous research. Two studies have found that individuals 

with BFRBs report increased perceived somatic activity. Teng et al. (2002) and Woods 

et al. (1996) found that persons with BFRBs reported increased frequencies of various 

somatic symptoms (e.g., eyes watering, itchy eyes or skin, ringing in ears) as compared 

to individuals with no BFRBs. However, prior to the current study, it was difficult to 

interpret the meaning of findings from those previous studies because several different 

factors can contribute to the perception of increased somatic experiences, such as 
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increased attention toward bodily processes as well as abnormally low detection 

thresholds. Our results indicate that persons with BFRBs report that they notice more 

bodily sensations, that they tend to worry more about their body sensations, and that they 

feel decreased trust in their own body sensations. Yet, there were no differences between 

the BFRB group and healthy control group on MAIA subscale scores related to 

propensity to distract oneself from bodily sensations, ability to direct attention toward 

body sensations, or the tendency to listen to one’s own body. As such, it appears that 

persons with BFRBs have increased awareness of interoceptive experiences and that 

they tend to catastrophize about interoceptive and/or vestibular sensations and take a 

hypochondriac approach to their bodily processes. BFRBs do not appear to be associated 

with altered attention to bodily processes, and thus it would be incorrect to assume that 

persons with BFRBs report more bodily sensations due solely to increased attention 

toward their internal states. It is also important to note that the current results related to 

the MAIA Self-Regulation subscales were significant at the 95% confidence level, but 

this differences would not survive the bonferroni correction for multiple comparisons. 

This means that perhaps persons with BFRBs are also less able to adaptively self-

regulate their internal states.  

The notion that persons with BFRBs are more perceptive of their internal states, 

are less able to regulate their body states, and tend to assign negative valence toward 

bodily sensations is consistent with our findings regarding the SGI. Results showed that 

persons with BFRBs reported increased feelings of perceptual inundation, problems 

focusing on one stimuli to the exclusion of others, having lower sensory detection 
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thresholds, and being vulnerable to sensory phenomena when fatigued or distressed. As 

such, it is possible that BFRBs are not only associated with greater awareness of internal 

sensations, but that they feel overwhelmed with additional external stimuli in their 

environment, that they cannot shut out redundant sensory information, and that they are 

particularly vulnerable to perceptual anomalies when fatigued or distressed.  

In addition to these self-reported abnormalities that speak to the abnormal 

sensory experiences felt by those with BFRBs, results from the vibrotactile behavioral 

battery provide insight into potentially underlying psychobiological endophenotypes. In 

addition, the fact that the current study yielded few but quite specific findings related to 

tactile abilities provides clear targets for future research.  

Results revealed that individuals with BFRBs have lowered detection thresholds 

(increased sensitivity) and deficient feed-forward inhibition as compared to the healthy 

control group. Indeed, not only was there a main effect of group on the repeated 

measures test of performance on both the sDT and dDT tasks, but the BFRB group had 

lower detection thresholds on both tasks. These results clearly demonstrate an increased 

ability to detect low intensity tactile information in persons with BFRBs. In addition, 

results showed that the BFRB group’s performance was unaffected by change in task, 

providing evidence of deficient FFI processes in BFRBs. FFI is facilitated by 

GABAergic inhibitory interneurons, and it is thought that FFI is a powerful and efficient 

method for suppressing neural activity in cases where sub-optimal, spurious, or 

redundant afferent information is perceived by the peripheral nervous system (Swadlow, 

2002).  
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The other results point to intact neural inhibition in other sensory domains. There 

were no differences between the performances of persons with BFRBs and healthy 

controls on any of the amplitude discrimination tasks, which are believed to be sensitive 

to deficits in lateral inhibition and short-term sensory habituation. As such, while BFRBs 

may be associated with abnormal inhibitory interneuron activity that mediate the spiking 

of somatosensory neurons in response to ongoing stimuli, it does not appear that the 

receptive fields of sensory neurons – lateral inhibitory connections between closely 

connected somatotopic areas – or short-term sensory learning processes are affected in 

BFRBs. We should thus not expect individuals with BFRBs to exhibit poor spatial 

resolution with regard to somatosensory sensitivity, nor should we expect them to have 

difficulty habituating to stimuli presented intermittently. These results have several 

behavioral and phenomenological implications. First, it does not appear that individuals 

with BFRBs suffer from any impairments in their ability to accurately perceive their 

environments. Second, while individuals with Autism Spectrum Disorders (who perform 

abnormally on amplitude discrimination tasks) exhibit symptoms such as insistence on 

sameness, sensitivity to departures from routine, and trouble orienting to complex and 

rich sensory environments (Baranek, Little, Parham, Ausderau, & Sabatos-DeVito, 

2014), there is no evidence that individuals with BFRBs report these symptoms nor 

show any neurophysiological abnormalities that might support such phenomena. Third, 

individuals with TD do show altered performance on the SSA task as compared to 

healthy controls (Puts et al., 2015), which may reflect altered sensory habituation 

processes in persons with tics. Furthermore, individuals with OCD have shown poor 
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simAD task performance as compared to healthy individuals (Güçlü et al., 2015), which 

may reflect poor lateral inhibition. When compared to results from the current study, this 

suggests that altered spatial resolution and short-term sensory habituation may not be 

features that span disorders across the Obsessive-Compulsive spectrum. 

Results showing normal performance on the frequency discrimination tasks and 

duration discrimination task suggest that individuals with BFRBs have normal-

functioning neuronal circuitry in somatosensory cortex and cortico-cerebellar tracts that 

are responsible for coding the temporal dynamics of stimuli. The ability to discriminate 

between periodic vibrations applied to the skin is accomplished through quickly adapting 

neurons in the somatosensory cortex, which represent the rate of stimulus frequency via 

spiking periodicity and rate (Hernandez, Zainos, & Romo, 2000). Event timing is sub-

served by coordinated neural populations located primarily in the cerebellum (Buhusi & 

Meck, 2005). The cerebellum is also involved in sensorimotor control and sensory 

anticipation (Teshe & Karhu, 2000), and research has found evidence of reduced 

cerebellar volumes in TTM (Keuthen et al., 2007). Moreover, researchers have 

speculated about the role of motor control and response inhibition in BFRBs (Bohne et 

al., 2008; Brennan, Francazio, Gunstad, & Flessner, 2015; Chamberlain et al., 2006; 

Grant, Odlaug, & Chamberlain, 2011; Leppink et al., 2016; Martin, 1993; Odlaug et al., 

2014; Odlaug, Chamberlain, & Grant, 2010; Snorrason et al., 2011). However, the 

presence of abnormal cerebellar function in TTM or ExD does not appear to be reflected 

in the current study. 
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In summary, it appears that BFRBs are associated with abnormally high 

sensitivity to tactile and interoceptive sensations, feelings of worry and mistrust in their 

bodily sensations, perceptual anomalies, and dysfunctional sensory inhibition processes. 

Such dysfunctional inhibition may account for a modest proportion of symptom severity, 

and affected individuals may feel overly sensitive to stimuli while fatigued or stressed. 

Implications for the etiology of BFRBs are discussed below. 

4.2 The Potential Role of Sensation in BFRB Psychopathology 
  BFRBs have been traditionally viewed as problems related to behavioral control. 

Indeed, research reviewed herein suggests that compulsive habits may be driven by 

excessive reliance on stimulus-response behavioral control systems. However, there is 

inconclusive research regarding the role of habit learning and impulse control in BFRBs, 

and the factors that instigate and maintain BFRBs are poorly understood. Although some 

research suggests that BFRBs can be part of a maladaptive emotion regulation strategy 

(Roberts et al., 2013), it may not be that BFRBs are initiated and performed solely to 

modulate cognitive/affective states. Rather, phenomenological research suggests that one 

important role of BFRBs involves the sensations preceding and/or accompanying 

symptoms (Mansueto et al., 1997), and the results of the current study suggest that 

BFRBs are associated with neurophysiological abnormalities in sensory thresholds and 

gating. Below, I present a preliminary framework of a model delineating the relationship 

between sensory abnormalities and BFRBs. 

 As previously mentioned, grooming behaviors are extremely common amongst 

animals and serve a variety of purposes, including hygiene, social bonding, and affect 

regulation. Grooming is also important in humans for a variety of purposes. In addition, 
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evidence indicates that self-manipulation of the body surface is a basic and fundamental 

motor pattern that emerges during infancy and follows a developmental trajectory. 

Humans exhibit BFRBs in utero (Murphy & Langley, 1963), and movement patterns 

involving self-manipulation such as face touching and thumb sucking tend to onset later 

during gestation along with other complex movement patterns, which may represent 

neurodevelopmental milestones (e.g., rehearsing the rooting reflex; Birnholz, Stephens, 

& Faria, 1978). Infants typically show various rhythmic body movements, including 

BFRBs, which are thought to help infants learn about the physical properties of their 

own bodies and develop sensorimotor skills (Kravitz & Boehm, 1971). Young children 

also often show behavioral stereotypies (e.g., finger wiggling, body rocking) and fixation 

on objects with certain sensory characteristics (e.g., cherished blankets, tight-fitting 

swaddles, stuffed animals), which may provide physical comforts related to the womb 

environment or be experienced as pleasing to the infant in a world that is filled with 

copious unpleasant stimuli. BFRBs most often occur during infancy and young 

childhood (Mehegran, 1970, Wright & Holmes, 2003) and wane in frequency as age 

increases (Evans et al., 1997; Foster, 1998). Research also suggests that early-onset 

BFRBs tend to spontaneously remit (Swedo, Leonard, Lenane, & Rettew, 1992) and thus 

have a more favorable course than later-onset BFRBs (Lewin et al., 2009; Santhanam, 

Fairley, & Rogers, 2008;  Tay, Levy, & Metry, 2004). It may be that BFRBs can initiate 

as part of normal human sensorimotor development and function as comfort mechanisms 

in the complex and often aversive sensory environment that young children encounter, 

but as children develop and achieve a more balanced perceptual homeostasis (Murphy & 
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Hochberg, 1951) these behaviors are reinforced less and extinguish. By comparison, 

children with developmental disabilities, who often show sensory abnormalities (Green 

et al., 2013, 2015), tend to exhibit chronic patterns of ritualistic behavior, including 

BFRBs, possibly because these behaviors are continuously invoked by aversive sensory 

states. Persons at risk for BFRBs may also be abnormally sensitive to stimuli and less 

able to inhibit extraneous sensory information, meaning that BFRB symptoms are 

continuously reinforced and resistant to spontaneous extinguishing. 

 As for how BFRBs are automatically reinforced, it has been argued that BFRBs 

are particularly intriguing behaviors for children because body areas with hair, skin, and 

nails are densely populated with sensory receptors and easily stimulated (Penzel, 2003). 

As such, gently stroking or toying with one’s body surface could often be experienced as 

pleasurable, particularly when bored or under-stimulated. Evidence indicates that more 

extreme self-cutaneous actions, such as scratching, may provide intense pleasure in 

certain contexts such as itching (Ayres, 1964). Self-contact actions may also be 

instigated under other circumstances, such as when an individual feels perceptually over-

included. The fact that displacement behaviors are often seen under conditions of stress 

and tension is consistent with the notion that self-contact and cutaneous stimulation 

attenuates aversive over-stimulation. However, this view may seemingly stand in 

contrast to common sense, as it does not follow that someone who is over-stimulated 

would seek more stimulation, but rather more likely withdraw from stimulation. Yet 

researchers in occupational therapy have posited that when over-stimulated, persons tend 

work to distract themselves from unpleasant stimuli by engaging in behaviors that result 
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in more pleasant stimulation, which compete for attention and distract one from the more 

aversive stimuli (Dunn, 2000).  

Stimulus seeking is typically linked to impulsive, risky behaviors such as 

substance abuse and thrill-seeking (Whiteside & Lynam, 2003), which are then thought 

to stem from reward deficiency and under-stimulation (Blum et al., 2013). However, a 

link between over-stimulation and repetitive behavior can be established when one views 

organisms as acting in constant sensorimotor interaction with their environment. In this 

view, most behavior is performed automatically in stimulus-response (i.e., habitual) 

patterns. Humans possess highly advanced sensory processing and motor programming 

cortical regions, which afford an enormous range of complex behavioral possibilities 

that an individual must constantly select from when confronted by stimuli. This creates a 

“selection problem” by virtue of the range of possible behaviors that one could chose 

from in response to a given stimulus or context (Kozoil, Budding, & Chidekel, 2011, pp. 

774). Action selection occurs in the basal ganglia through several parallel circuits, but 

they primarily follow direct and indirect pathways that facilitate desired behaviors and 

inhibit competing behaviors, respectively (Kaji, Urushihara, Murase, Shimazu, & Goto, 

2005). Furthermore, action selection occurs in concert with perception, and these 

processes are inexorably linked (Dewey, 1896; Iverson, 2010; Nip, Green, & Marx, 

2010; Raab, Johnson, & Heekeren, 2009). Researchers have suggested that there are four 

to five parallel cortico-striatal circuits that have significant overlap and receive 

projections from various cortical regions and the cerebellum, thereby allowing motor 

control to be influenced by cognitive, motivational, and sensory factors (Kozoil et al., 
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2011). When disruptions in sensation and perception occur, including sensory excesses 

and gating failures, cortico-striatal motor selection circuity are thus affected (Kaji, 2001; 

Kaji et al., 2005). Hence, action selection is disrupted, possibly due to deficient 

inhibition of the indirect motor pathway and reduced suppression of unwanted behaviors 

(Kozoil et al., 2011). Accordingly, in the case of OC-related disorders such as BFRBs, 

excessive sensory innervation of motor control areas may result in a lowered threshold 

of discriminant stimulus intensity for symptoms to be elicited.  

The potential involvement of neurophysiological sensory abnormalities in 

movement disorders and compulsive behaviors has been hypothesized in several 

accounts. Indeed, disorders that are traditionally associated with impaired motor control 

and basal ganglia dysfunction, such as Parkinson’s disease, Huntington’s chorea, 

dystonia, Tourette’s disorder, restless leg syndrome, and akathisia have been linked to 

alterations in sensory input that result in dysfunctional sensorimotor integration (Kaji et 

al., 2005; Patel, Jankovic, & Hallett, 2014). A recent study also found evidence for 

increased motor excitability and reduced short-term sensory inhibition in persons with 

OCD (Russo et al., 2014), suggesting that a combination of perceptual hypersensitivity 

and reduced motor control is associated with compulsive behavior. Further evidence 

indicates that a range of compulsive, ritualistic, and impulsive behaviors are associated 

with sensory processing impairment. Indeed, while sensory abnormalities have been well 

documented in Autism Spectrum Disorders (Green et al., 2013, 2015), evidence 

indicates that increases in perceptual sensitivity positively correlate with repetitive 

behavior severity in affected individuals (Baranek, Foster, & Berkson, 1996; Boyd et al., 
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2010; Gabriels et al., 2008). Sensory processing abnormalities are also present in other 

disorders associated with repetitive and stimulus-seeking behavior, such as attention-

deficit/hyperactivity disorder (Engel-Yeger & Ziv-On, 2011; Ghanizedah, 2011), bipolar 

disorder (Parker, Paterson, Romano, & Graham, 2017), and anxiety disorders (Burón, 

Bulbena, & Bulbena-Cabré, 2015; Clepce, Reich, Gossler, Kornhuber, & Thuerauf, 

2012; Hofman & Bitran, 2007; Pause, Adolph, Prehn-Kristenson, & Ferstl, 2009; 

Segalàs et al., 2011).  

As such, there is substantial empirical support for the notion that impairments in 

sensory inhibition and heightened perceptual awareness are associated with increased 

unwanted, compulsive behaviors. Yet, due to the complexity of sensory neurophysiology 

and the intricacies of sensorimotor integration, as well as the fact that sensory 

dysfunctions appear to cut across various forms of psychopathology, it is still somewhat 

unclear which specific neurophysiological and behavioral abnormalities cause these 

sensory phenomena. There are only a few studies on “sensory processing disorders” to 

provide insight into the etiology of sensory impairments in traditionally recognized 

psychopathology. These studies point to abnormal white matter microstructure in the 

posterior corpus callosum, posterior corona radiate, and posterior thalamic radiations 

(Owens et al., 2013), as well as developmental delays in sensory gating (Davies, Chang, 

& Gavin, 2009). As such, there is a clear need for more research on the etiology of 

sensory impairments associated with psychopathology and behavior problems.  

At this time, the clearest evidence suggests that sensory excesses are associated 

with affective problems, which have been more traditionally linked to the 
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psychopathology of BFRBs. Indeed, BFRBs appear to wax and wane with concurrent 

fluctuations in stress and negative affect (Bohne et al., 2005). Other studies have found 

that children who report greater perceptual sensitivity have reduced parental bonding and 

poorer anxiety and depression (Liss, Timmel, Baxley, & Killingsworth, 2005), and 

perceptual sensitivity in adults is correlated with increased depression, anxiety, 

psychosocial distress, social introversion, interpersonal problems, perfectionism, anger, 

self-doubt, family and work problems, and substance abuse (Ben-Avi, Almagor, & 

Engel-Yeger, 2012). Because BFRBs appear to regulate both aversive emotions and 

sensations, it follows that affect and perception are intimately linked. Indeed, evidence 

indicates that aversive stimulation, including nociception as well as other somatic 

experiences are associated with stress, sadness, and fear, are processed in the amygdala 

through thalamic, insular, and other cerebral GABAergic projections (Avery et al., 2014; 

Jasmin, Rabkin, Granato, Boudah, & Ohara, 2003; Veintante, Yalcin, & Barrot, 2013). 

The amygdala integrates multiple nociceptive units of information, is influenced by 

higher-order brain centers involved in affect and cognition, and projects to pre-motor 

and cortical areas involved in behavioral and affective responses to nociception. As 

such, during periods of negative affect and cognition (e.g., stress), aversive stimuli may 

be more likely to result in maladaptive behavior.   

There is also experimental evidence suggesting that negative affect can influence 

sensory thresholds. During periods of increased stress or fear, it may be beneficial for 

survival to heighten one’s attention to certain sensory cues but decrease sensitivity to 

other sensory stimuli. For instance, when confronted with danger/fear/stress, improved 
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identification of threats is facilitated by increased visual acuity (Öhman, Flykt, & 

Esteves, 2001; Stolarova, Keil, & Moratti, 2006) and olfactory sensitivity (Ahs, Miller, 

Gordon, & Lundström, 2013; Hoenen, Wolf, & Pause, 2017; Jones, Choi, Davis, & 

Ressler, 2008; Kass et al., 2013; Krusemark & Li, 2012; La Buissonnière-Ariza, Lepore, 

Kojok, & Frasnelli, 2013; Lukowiak et al., 2008; Pacharra, Schäper, Kleinbeck, 

Blaszkewicz, & van Thriel, 2016; Sung et al., 2009). With regard to tactile sensitivity, it 

appears that detection thresholds are raised during acute fear (Kelley & Schmeichel, 

2014), but stress and anxiety are consistently associated with decreased detection 

thresholds and increased interoceptive awareness (Chen, Lu, Yang, Ding, & Zuo, 2017; 

Clark, Yang, & Janal, 1986; Crettaz et al., 2013; Domschke, Stevens, Pfleiderer, & 

Gerlach, 2010; Kopp & Gruzelier, 1989; Lehofer, Liebmann, Moser, & Schaunstein, 

1998; Marcinkiewcz et al., 2009). There is even evidence to suggest that prenatal stress 

is associated with increased infantile tactile sensitivity (Schneider et al., 2008), and it 

appears that early life stress can exert long-term changes in somatosensation, such as 

decreased sensory thresholds (Takatsura & Koibuchi, 2015) and disruption of 

glutamatergic synapses that balance sensory excitability/inhibition (Toya et al., 2014). 

BFRBs may become paired with aversive perceptual experiences in persons 

whose grooming behavior becomes conditionally associated with affect and/or sensory 

regulation. For instance, evidence indicates that BFRBs are much more common in 

females than males (Snorrason, Belleau et al., 2011). Females tend to spend more time 

self-grooming than men, place more emphasis on cosmetics, and frequently report that 

their body hair is unwanted (Blume-Peytavi, 2011; Cash, 1988). Cosmetic use is 
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positively correlated with body image and positive affect in women (Cash & Cash, 1982; 

Cash, Dawson, Davis, Bowen, & Galumbeck, 1989), and women who are more self-

conscious about their appearance tend to wear more makeup (Miller & Cox, 1982; 

Theberge & Kernaleguen, 1979). Further, evidence indicates that social grooming 

promotes tension reduction amongst male and female primates (Grandi & Ishida, 2015; 

Schino, Scucchi, Maestripieri, Turillazzi, 1988), facilitates trust and courtship in human 

romantic relationships (Nelson & Geher, 2007), and engages endogenous opioids in 

humans (Nummenmaa et al., 2016). Research has shown that stimulation of the 

hypothalamic region that is commonly activated during grooming promotes release of 

hypothalamic corticosterone and cerebrospinal substance P (Kruka et al., 1998; 

Morhenn, 2000), which can function to down-regulate aggressive behavior, negative 

affect, anxiety and stress. Grooming also provides pleasurable sensations through 

stimulation of unmyelinated mechanosensory nerves that are tuned to grooming-related 

behaviors (McGlone, Walker, & Ackerley, 2016). It thus stands to reason that grooming 

behavior may not only be experienced as pleasurable, but also be positively reinforced 

(i.e., improvements in self-image, pleasurable sensations) and negative reinforced (i.e., 

removal of unwanted bodily imperfections), particularly in females.  

In summary, BFRBs may be part of normal human motor development and 

grooming routines. Persons with sensory dysregulation issues and who are more highly 

sensitive to environmental stimuli may experience reduced control over their behavior, 

thus leading to maladaptive behaviors such as BFRBs. Furthermore, negative affective 
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experiences may be associated with sensory/perceptual changes that further promote 

BFRB performance.  

4.3 Limitations and Future Directions 
4.3.1 Etiology 

The current study tested sensory processing in BFRBs solely within the 

mechanoreceptive domain. While tactile sensations are likely relevant to BFRB 

phenomena, which typically involve cutaneous stimulation, there are other types of 

sensory experiences that may play an important role in hair pulling and skin picking. 

Hair follicles are primarily innervated by unmyelinated A fibers (Winkelmann, 1959). 

These fibers respond to touch stimulation, particularly when the hair is brushed or 

tugged at (Paus & Cotsarelis, 1999). However, various other types of sensory nerve 

responses and perceptual experiences associated with pulled hairs “popping” out of the 

skin are likely associated with hair pulling, and may be important. Furthermore, skin 

picking largely involves perturbing the outer layers of the dermas and exposing nerve 

endings, eliciting both primary and secondary pain. Thus, pain may play an important 

role in skin picking, and the current study did not investigate pain-related phenomena. 

The current study also did not investigate sensory processing in other domains, such as 

hearing and olfaction. If persons with BFRBs showed generalized sensory processing 

abnormalities across sensory modalities, this would indicate that the origin of such 

abnormalities occurs in central sensory processing neural areas. Future research should 

incorporate a wider range of sensory tasks in order to identify which specific deficits 

exist, which could lead to targeted neurophysiological investigations. 
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 Regarding urges to pull or pick, results of the current study suggest that 

individuals with TTM and ExD experience tactile hypersensitivity, over-inclusion by 

sensory stimuli, and discomfort in their own bodies. However, while these results would 

seem to provide support for the notion that BFRB symptoms are driven largely by 

aversive sensory experiences, such as urges, evidence indicates many individuals with 

BFRBs do not report such experiences (Christenson & Mansueto, 1999; Conelea, 

Walther, & Flessner, 2012; du Toit, van Kradenburg, Niehaus, & Stein, 2001; Houghton 

et al., 2015; Lochner, Seedat, & Stein, 2010; Woods et al., 2006). It is possible that there 

is a subtype of persons with BFRBs who demonstrate altered sensory processing and 

pull/pick primarily to reduce somatosensory discomfort, whereas another group of 

persons with BFRBs possess normal perceptual abilities and perform symptoms for other 

reasons. Another possibility is that BFRBs are universally associated with abnormal 

sensory experiences, yet affected individuals become accustomed to sensory discomfort 

and fail to notice that specific sensory experiences elicit pulling/picking. Stated another 

way, perhaps affected individuals live in a state of perpetual sensory over-inclusion, and 

thus are less apt to notice when specific instances of sensory over-inclusion elicit 

symptoms. In order to investigate these possibilities, larger sample sizes need to be 

collected, and cluster analyses could be used to determine whether sensory processing 

dysfunction clusters with BFRB diagnosis or is only present in some persons with 

BFRBs.  

 Regarding the specificity of sensory processing dysfunction to BFRBs, it appears 

that deficits in sensory gating and low detection thresholds are present in several other 
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psychiatric and neurological conditions. Indeed, deficits in sensory gating have been 

documented in not only in Tourette’s Disorder and OCD but also Schizophrenia, 

Huntington’s disease, nocturnal enuresis, Autism Spectrum Disorder, 22q11 syndrome, 

Kleinfelter syndrome, fragile-X syndrome, and blepharospasm (Swerdlow, Braff, & 

Geyer, 2016). As such, researchers have speculated that sensory gating is most broadly 

regulated by descending forebrain circuity, disturbances of which are present in various 

psychiatric disorders (Swerdlow & Koob, 1987). This would mean that multiple 

psychopharmacological and neurophysiological abnormalities may create various 

neuronal “gating” deficits that result in a somewhat diverse spectrum of phenotypes 

(Swerdlow et al., 2016). Future research should seek to elucidate the risk factors that 

lead to deficits in sensory gating, the exact neurophysiological mechanisms related to 

how such deficits produce perceptual phenomena, and how these factors initiate and 

maintain specific symptoms or related types of symptoms, such as compulsive and 

repetitive behavior. Thus far these processes have only been theoretically linked, but a 

comprehensive account would provide insight into the causal mechanisms of repetitive 

behaviors and possibly lead to more effective interventions. 

 A potentially fruitful avenue of future research would be to longitudinally track 

sensory gating in developing children and investigate the association between delayed 

sensory gating and the development of psychopathology. The current study focused on 

adults with BFRBs in order to minimalize the effects of developmental differences 

during childhood. A logical future direction would be to investigate whether children 
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with BFRBs demonstrate the same deficits. If so, research should focus on whether the 

onset of sensory processing abnormalities precedes the onset of symptoms. 

4.3.2 Treatment 
The results of the current study offer several implications for treatment, such that 

interventions may be enhanced by addressing sensory processing abnormalities. As 

previously mentioned, existing treatments that pay limited attention to sensory aspects of 

BFRBs possess evidentiary support but lack powerful effect sizes (Falkenstein et al., 

2015; Keuthen et al., 2012; Woods, Wetterneck, & Flessner, 2006). There is a promising 

new behavioral treatment for BFRBs that targets heightened sensorimotor activation. 

Termed cognitive psychophysiological treatment (CPT; O’Connor, 2002). The premise 

of CPT is that individuals with BFRBs have an over-active and over-prepared style of 

planning and action, which leads to tension and a desire to relieve tension through 

sensorimotor means. Thus, CPT involves helping patients reduce elevated sensorimotor 

activation and frustration. A recent uncontrolled trial of CPT in adults showed a 

significant improvement in hair pulling symptoms, and 74% of patients showed 

clinically significant improvement (O’Connor, Lavoie, Desaulniers, & Audet, 2017). 

CPT appears to be a promising treatment for BFRBs, but future trials should test this 

treatment in children and in comparison to an active control condition.  

 In addition to CPT, perhaps interventions that have been used for sensory-related 

issues in other conditions could be applied to BFRBs. For instance, Autism Spectrum 

Disorder is associated with heightened perceptual sensitivity (Leekham, Nieto, Libby, 

Wing, & Gould, 2007), which has been addressed behaviorally with an occupational 

therapy treatment known as sensory integration therapy. However, a recent systematic 
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review found that most studies on sensory integration therapy produced null results, and 

many had serious methodological flaws (Lang et al., 2012). A different potential 

treatment avenue may be to apply behavioral treatments that have been successful for 

conditions associated with sensory intolerance, such as misophonia (or selective sound 

sensitivity syndrome). Several case series and an uncontrolled trial have found that a 

cognitive-behavioral intervention shows preliminary efficacy for treating misophonia 

(Bernstein, Angell, & Dehle, 2013; Dozier, 2015a, b; Johnson et al., 2013; McGuire, 

Wu, & Storch, 2015; Webber, Johnson, & Storch, 2014). The key component of CBT for 

misophonia appears to be counterconditioning, a procedure in which the aversive 

stimulus (i.e., high-pitched noises) is paired with a soothing stimulus (i.e., harp music) in 

order to decrease the aversive salience of the aversive stimulus. Perhaps such procedures 

could be applied to BFRBs by deliberately inducing aversive sensory states, such as is 

done with interoceptive exposure for panic (Lee et al., 2006) and exposure and response 

prevention in OCD (Foa, Yadin, & Lichner, 2012), and teaching patients how to self-

soothe and use various coping mechanisms.  

 Other than behavioral treatments, perhaps pharmacological approaches could be 

used to address sensory abnormalities in BFRBs. However, the existing evidence for 

medications that address sensory hypersensitivities and sensory gating abnormalities 

points to options which have costs that may outweigh potential benefits. For instance, 

ketamine has been shown to alter central sensitization that occurs post-operatively 

(Stubhaug, Breivik, Eide, Kreunen, & Foss, 1997), but ketamine is an extremely 

powerful sedative with hallucinogenic properties. Sensory gating deficits in 



 

 93 

schizophrenia have been shown to respond to nicotine administration (Adler et al., 1998; 

Adler, Hoffer, Griffith, Waldo, & Freedman, 1992; Adler, Hoffer, Wiser, & Freedman, 

1993), and there is some evidence suggesting that second-generation anti-psychotics 

improve auditory sensory gating (Potter, Summerfeldt, Gold, & Buchanan, 2006). 

However, the negative health effects of nicotine and potential for adverse side-effects in 

anti-psychotics make these options unsuitable for BFRBs. More research is needed on 

addressing abnormal sensation and sensory gating in psychiatric disorders via 

pharmacotherapy, but experts suggest that future research investigate noradrenaline 

reuptake inhibitor drugs and methods of decreasing brain-derived neurotrophic factor 

(Nijs, Malfliet, Ickmans, Baert, & Meeus, 2014).  

4.4 Conclusions 
 This is the first study, to my knowledge, that has found evidence of objective 

sensory abnormalities in BFRBs. Thus, the role of sensory features in BFRBs should no 

longer be ignored but rather integrated with parallel lines of research on affect regulation 

and cognitive factors. Furthermore, the next generation of treatments for BFRBs should 

include techniques that address heightened sensation and deficient sensory inhibition in 

BFRBs. It may be that, if effective, these techniques would not only lead to decreased 

symptoms but also increased quality of life and perceptual comfort. 
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APPENDIX A 

Research participants sought for study on body-focused habits and sensation. 

The Department of Psychology at Texas A&M University is conducting a study that 
aims to better understand how people with body-focused habits perceive sensory 
information in the brain. Adults between the ages of 18-65 can participate in the current 
study. We are looking for the following types of individuals:  

(a) Those with body-focused repetitive behaviors (BFRBs) including hair pulling and 
skin picking.  
(b) The hair pulling or skin picking must be frequent enough to cause hair loss or skin 
lesions. 

Participating in this study requires that you complete one visit to the psychology 
department on campus for about 45 minutes to 1 hour. During this visit, you will learn 
more about the study, fill our several questionnaires and complete interviews about 
common psychiatric concerns, and complete a vibrotactile behavioral battery. The 
vibrotactile behavioral battery tells us how your brain processes sensory information. It 
is painless and has games that involve a laptop computer. Once you have completed the 
study, you will be compensated $15 for your time and effort. 

If you’re interested in this study and think you might be eligible, contact David 
Houghton at 281-797-2130 or davidhoughton@tamu.edu.  

Thank you, 

David C. Houghton, M.S. 
Psychology Department, Milner Hall, Room 002 
davidhoughton@tamu.edu 
(281)797-2130 
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APPENDIX B 

Research Participants With Body-Focused 

Repetitive Behaviors Wanted 

In collaboration with Texas A&M University, we are looking for 50 adults to participate in a research 

study on how body-focused habits might be related to sensory processing abnormalities. 

Do you have Trichotillomania or Excoriation Disorder? 

Are you between the ages of 18-69? 

Interested in making $15? 

For more information, talk to your therapist or the front desk, or contact David Houghton at 

(281)797-2130 or davidhoughton@tamu.edu 
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APPENDIX C 

Research participants sought for study on sensation and perception. 

The Department of Psychology at Texas A&M University is conducting a study that 
aims to better understand how people with habits perceive sensory information in the 
brain. We are looking for generally healthy people who do not have any psychiatric 
conditions, particularly hair pulling and skin picking.  

Participating in this study requires that you complete one visit to the psychology 
department on campus for about 45 minutes to 1 hour. During this visit, you will learn 
more about the study, fill our several questionnaires and complete interviews about 
common psychiatric concerns, and complete a vibrotactile behavioral battery. The 
vibrotactile behavioral battery tells us how your brain processes sensory information. It 
is painless and has games that involve a laptop computer. Once you have completed the 
study, you will be compensated $15 for your time and effort. 

If you’re interested in this study and think you might be eligible, contact David 
Houghton at davidhoughton@tamu.edu.  

Thank you, 

David C. Houghton, M.S. 
Psychology Department, Milner Hall, Room 002 
davidhoughton@tamu.edu 
(281)797-2130 

IRB Number: IRB2016-0607D; Approval Date: 10/11/2016;  
Expiration Date: 10/01/2017 
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APPENDIX D 

Habit Disorders Interview – Trichotillomania 

0 = inadequate information 1 = absent 2 = subthreshold    3 = threshold/true 

Questions Criteria Score 

1a. Do you currently pull 

out hair from anywhere on 

your body? Yes No 

1b. Where do you pull hair 

from? Scalp 

Eyelashes 

Eyebrows 

Pubic hair 

Mustache 

Other 

Beard 

Trunk 

Armpits 

Arms 

Legs 

1c. Do you have hair loss in 

the areas that you pull? 

A. Recurrent pulling out of 

one’s hair, resulting in hair 

loss. 
0        1        2        3 
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2. Have you tried to stop 

pulling out your hair? 

 

B. Repeated attempts to 

decrease or stop hair pulling. 

 

 

0        1        2        3 

3. Does the pulling bother 

you a lot? Does the pulling 

get in the way of your life? 

 

 

C. The hair pulling causes 

clinically significant distress 

or impairment in social, 

occupational, or other 

important areas of 

functioning. 

 

 

 

 

 

 

 

0        1        2        3 

4. Do you have any skin 

rash, eczema, or other skin 

condition that may explain 

D. The hair pulling or hair 

loss is not attributable to 

another medical condition 

0        1        2        3 
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the hair loss? (e.g., a dermatological 

condition). 

 

 

 

5. Why do you pull out 

your hair?  Are you trying 

to “fix” your appearance? 

E. The hair pulling is not better 
explained by the symptoms of 
another mental disorder (e.g., 
attempts to improve a perceived 
defect or flaw in appearance in 
body dysmorphic disorder). 

 

 

0        1        2        3 

 

DIAGNOSIS (Circle One) 

 

No Trichotillomania Subclinical Trichotillomania Clinical Trichotillomania 

 

 

Notes: 
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Habit Disorders Interview – Skin Picking 

 

0 = inadequate information 1 = absent 2 = subthreshold 3 = threshold/true 

Questions 

 

Criteria 

 

Score 

 

1a. Do you currently pick or 

scratch at your skin? 

 

 

Yes No 

1b. What areas of your body 

do you pick skin from? 

 

 

 

 

 

Face  

Arms 

Shoulders 

Back 

Chest 

 

Other 

Fingers 

Legs 

Toes 

Stomach  

1c. Do you have damage to the 

skin in the areas you pick? 

 

A. Recurrent skin picking 

resulting in skin lesions. 

 

 

 

 

0        1        2        3 
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2. Have you tried to stop 

picking your skin? 

 

B. Repeated attempts to decrease or 
stop skin picking. 

 

 

 

0        1        2        3 

3. Does the picking bother you 

a lot? Does the picking get in 

the way of your life? 

 

 

C. The skin picking causes 

clinically significant distress 

or impairment in social, 

occupational, or other 

important areas of functioning. 

 

 

 

 

 

 

0        1        2        3 

4. Do you have any, eczema, 

skin rash, or other skin 

condition that may explain 

picking? 

D. The skin picking is not 

attributable to the 

physiological effects of a 

substance (e.g., cocaine) or 

another medical condition 

(e.g., scabies). 

0        1        2        3 
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5. Why do you pick your skin?  

Are you trying to “fix” your 

appearance? Do you see things 

that aren’t there? Are you 

attempting to harm yourself? 

E. The skin picking is not better 
explained by symptoms of another 
mental disorder (e.g., delusions or 
tactile hallucinations in a psychotic 
disorder, attempts to improve a 
perceived defect or flaw in 
appearance in body dysmorphic 
disorder, stereotypies in stereotypic 
movement disorder, or intention to 
harm oneself in nonsuicidal self-
injury). 

 

 

0        1        2        3 

 

DIAGNOSIS (Circle One) 

 

No Skin Picking  Subclinical Skin Picking  Clinical Skin Picking 

 

 

Notes: 
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APPENDIX E 
 
 

MGH Hairpulling Scale 

Instructions:  For each question, pick the one statement in that group which best 
describes your behaviors and/or feelings over the past week.  If you have been having 
ups and downs, try to estimate an average for the past week.  Be sure to read all of the 
statements in each group before making your choice. 
 

For the next three questions, rate only the urges to pull your hair. 

1.! Frequency of urges.  On an average day, how often did you feel the urge to pull 
your hair? 

0! This week I felt no urges to pull my hair. 
1! This week I felt an occasional urge to pull my hair. 
2! This week I felt an urge to pull my hair often. 
3! This week I felt an urge to pull my hair very often. 
4! This week I felt near constant urges to pull my hair. 

2.! Intensity of urges.  ON an average day, how intense or ‘strong’ were the urges to 
pull your hair? 

0! This week I did not feel any urges to pull my hair 
1! This week I felt mild urges to pull my hair 
2! This week I felt moderate urges to pull my hair 
3! This week I felt severe urges to pull my hair. 
4! This week I felt extreme urges to pull my hair. 

3.! Ability to control the urges.  On an average day, how much control do you have 
over the urges to pull your hair? 

0! This week I could always control the urges, or I did not feel urges to pull 
my hair. 

1! This week I was able to distract myself from the urges to pull my hair 
most of the time. 

2! This week I was able to distract myself from the urges to pull my hair 
some of the time. 

3! This week I was able to distract myself from the urges to pull my hair 
rarely. 

4! This week I was never able to distract myself from the urges to pull my 
hair. 
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For the next three questions, rate only the actual hairpulling 

4.! Frequency of hairpulling.  On an average day, how often did you actually pull 
your hair? 

0! This week I did not pull my hair. 
1! This week I pulled my hair occasionally. 
2! This week I pulled my hair often. 
3! This week I pulled my hair very often. 
4! This week I pulled my hair so often it felt like I was always doing it. 

 

5.! Attempts to resist hairpulling.  On an average day, how often did you make an 
attempt to stop yourself from actually pulling your hair? 

0! This week I felt no urges to pull my hair. 
1! This week I tried to resist the urge to pull my hair almost all of the time. 
2! This week I tried to resist the urge to pull my hair some of the time. 
3! This week I tried to resist the urge to pull my hair rarely. 
4! This week I never tried to resist the urge to pull my hair. 

 
6.! Control over hairpulling.  On an average day, how often were you successful at 

actually stopping yourself from pulling your hair? 
0! This week I did not pull my hair. 
1! This week I was able to resist pulling my hair almost all of the time 
2! This week I was able to resist pulling my hair most of the time. 
3! This week I was able to resist pulling my hair some of the time. 
4! This week I was rarely able to resist pulling my hair. 

 

For the last question, rate the consequences of your hairpulling. 

7.! Associated distress.  Hairpulling can make some people feel moody, ‘on edge’, 
or sad.  During the past week, how uncomfortable did your hairpulling make you 
feel? 

0! This week I did not feel uncomfortable about my hairpulling. 
1! This week I felt vaguely uncomfortable about my hairpulling. 
2! This week I felt noticeably uncomfortable about my hairpulling. 
3! This week I felt significantly uncomfortable about my hairpulling. 
4! This week I felt intensely uncomfortable about my hairpulling. 

 

 
 

 



 

 137 

APPENDIX F 
 
 

SPSS 

For each item, pick the one answer which best describes the past week. If you have been 
having ups and downs, try to estimate an average for the past week. Please be sure to 
read all answer choices in each group before making circling your answer. 
 

1.! How often do you feel the urge to pick your skin? 

 0  No urges 
 1  Mild, occasionally experience urges to skin pick, less than 1hr/day 
 2 Moderate, often experience urges to skin picking, 1-3 hrs/day 

3  Severe, very often experience urges to skin pick, greater than 3 and up to 
8 hrs/day 

 4  Extreme, constantly or almost always have an urge to skin pick 
2. How intense or “strong” are the urges to pick your skin? 

 0 Minimal or none 
 1 Mild 
 2 Moderate 
 3 Severe 
 4 Extreme  
3. How much time do you spend picking your skin? How frequently does it occur? 
How much longer than most people does it take you to complete routine activities 
because of your picking? 
 0 None 
      1 Mild, spend less than 1 hr/day picking my skin, or occasional skin 

picking 
 2 Moderate, spend 1-3 hrs/day picking my skin, or frequent skin picking 

3 Severe, spend more than 3 and up to 8 hrs/day picking my skin, or very 
frequent skin picking 

4 Extreme, spend more than 8 hrs/day picking my skin, or near constant 
skin picking 
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4. How much does your skin picking interfere with your social or work (or role) 
functioning? (If currently not working determine how much your performance would 
be affected if you were employed.) 
 0 None 
 1 Mild, slight interference with social or occupational 

2 Moderate, definite interference with social or occupational performance, 
but still manageable 

3 Severe, causes substantial impairment in social or occupational 
performance 

4 Extreme, incapacitating 
5. How much distress do you experience as a result of your skin picking? How 
would you feel if prevented from picking your skin? How anxious would you 
become? 
 0 None 

1 Mild, only slightly anxious if skin picking prevented, or only slight 
anxiety during skin picking 

2 Moderate, anxiety would mount but remain manageable if skin picking 
prevented, or anxiety increases to manageable levels during skin picking 

3 Severe, prominent and very disturbing increase in anxiety if skin picking 
is interrupted, or prominent and very disturbing increase in anxiety during 
skin picking  

4 Extreme, incapacitating anxiety from any intervention aimed at 
modifying activity, or incapacitating anxiety develops during skin picking 

 
6. Have you been avoiding doing anything, going any place, or being with anyone 
because of your skin picking? If yes, then how much do you avoid? 
 0 None 
 1 Mild, occasional avoidance in social or work settings 
 2 Moderate, frequent avoidance in social or work settings 
 3 Severe, very frequent avoidance in social or work settings 
 4 Extreme, avoid all social and work settings as a result of the skin picking 
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APPENDIX G 
 
 

The Milwaukee Inventory for Subtypes of Trichotillomania – Adult Version 
(MIST-A) 

 
Please choose a number which best represents how the question fits your hairpulling  

behavior over the last two weeks. 
 

0----------1----------2----------3----------4----------5----------6----------7----------8----------9 
not true      true for about    true for all 
for any of my      half of my pulling   of my hair 
pulling          pulling 

 
 
1.! I pull my hair when I am concentrating on another activity          ______ 

2.! I pull my hair when I am thinking about something unrelated to hair   ______ 
pulling. 

3.! I am in an almost “trance-like” state when I pull my hair.           ______ 

4.! I have thoughts about wanting to pull my hair before I actually pull.    ______ 

5.! I use tweezers or some other device other than my fingers to pull         ______ 
my hair. 
 

6.! I pull my hair while I am looking in the mirror.             ______ 

7.! I am usually not aware of pulling my hair during a pulling episode.     ______ 

8.! I pull my hair when I am anxious or upset.             ______ 

9.! I intentionally start pulling my hair.              ______ 

10.!I pull my hair when I am experiencing a negative emotion, such as      ______ 
stress, anger, frustration, or sadness. 

11.!I have a “strange” sensation just before I pull my hair.            ______ 

12.!I don’t notice that I have pulled my hair until after it’s happened.        ______ 

13.!I pull my hair because of something that has happened to me during    ______ 
the day. 
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14.!I pull my hair to get rid of an unpleasant urge, feeling, or thought.       ______ 

15.!I pull my hair to control how I feel.              ______ 
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APPENDIX H 
 
 

The Milwaukee Inventory for the Dimensions of Adult Skin Picking (MIDAS) 

 
Directions: please read each statement, and using the scale below, select a number that 
best represents how that statement applies to your skin picking. 
 
1------------------------2-------------------------3-------------------------4-------------------------5 
not true for    true for about                     true for 
any of my picking   half of my picking         all of my picking
               
1. I pick my skin when I am experiencing a negative emotion such as   ____ 
stress, anger, frustration, or sadness.  
 
2. I pick my skin because of something that has happened to me    ____ 
during the day.  
 
3. I intentionally start picking my skin.       ____ 
 
4. I have a “strange” sensation just before I pick my skin.     ____ 
 
5. I pick my skin when I am thinking about something     ____ 
unrelated to skin picking.  
 
6. I pick my skin while I am looking in the mirror.      ____ 
 
7. I pick my skin when I am anxious or upset.     ____ 
 
8. I am usually not aware of picking my skin during the picking episode.   ____ 
 
9. I pick my skin when I am concentrating on another activity.    ____ 
 
10. I am in an almost “trance-like” state when I pick my skin.    ____ 
 
11. I experience an intense urge to pick before I pick my skin.    ____ 
 
12. I don’t notice that I have picked my skin until after it’s happened.   ____ 
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APPENDIX I 
 
 

Sensory Gating Inventory 

Below you will find a list of statements. Please indicate how true or untrue each 
statement is for you by selecting one answer on each line. 
 Circle one number on each line 

 Never 
True 

Mostly 
Not True 

Somewhat 
Not True 

Somewhat 
True 

Mostly 
True 

Always 
True 

My hearing is so 
sensitive that 
ordinary sounds 
become 
uncomfortable. 

1 2 3 4 5 6 

There have been 
times when it seems 
that sights and 
sounds are coming in 
too fast. 

1 2 3 4 5 6 

For several days at a 
time I have such 
heightened awareness 
of sights and sounds 
that I cannot shut 
them out.  

1 2 3 4 5 6 

Every now and then 
colors seem more 
vivid to me than 
usual. 

1 2 3 4 5 6 

At times I have 
feelings of being 
flooded by sounds. 

1 2 3 4 5 6 

Sometimes it seems 
like someone has 
turned the volume 
up—things seem 
really loud. 

1 2 3 4 5 6 

I have feelings of 
being flooded by 
visual experiences, 
sights, or colors. 

1 2 3 4 5 6 

It seems like I take in 
too much. 

1 2 3 4 5 6 
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Sometimes I find it 
difficult to focus on 
one visual site to the 
exclusion of others. 

1 2 3 4 5 6 

I hear sounds but I 
can’t make sense of 
them all because it’s 
like trying to do 2 or 
3 things at once. 

1 2 3 4 5 6 

It’s not bad when just 
one person is 
speaking but if others 
join in, then I can’t 
pick it up at all. I just 
can’t get in tune with 
that conversation.  

1 2 3 4 5 6 

Sometimes I notice 
background noises 
more than usual. 

1 2 3 4 5 6 

Background noises 
are just as loud or 
louder than the main 
noises. 

1 2 3 4 5 6 

I can’t focus on one 
sound or voice to the 
exclusion of others. 

1 2 3 4 5 6 

It seems like I hear 
everything at once. 

1 2 3 4 5 6 

There are days when 
indoor lights seem so 
bright that they 
bother my eyes. 

1 2 3 4 5 6 

At times I have 
trouble focusing 
because I am easily 
distracted. 

1 2 3 4 5 6 

I am easily 
distracted. 

1 2 3 4 5 6 

I have more trouble 
concentrating than 
others seem to have. 

1 2 3 4 5 6 
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I find it had to 
concentrate on just 
one thing. 

1 2 3 4 5 6 

It is hard to keep my 
mind on one thing 
when there’s so much 
else going on. 

1 2 3 4 5 6 

There are times when 
I can’t concentrate 
with even the 
slightest sounds 
going on. 

1 2 3 4 5 6 

I find it difficult to 
shut out background 
noise and that makes 
it difficult for me to 
concentrate. 

1 2 3 4 5 6 

When I am in a group 
of people I have 
trouble listening to 
one person. 

1 2 3 4 5 6 

Not only the color of 
things fascinates me 
but all sorts of little 
things, like markings 
in the surface, attract 
my attention too. 

1 2 3 4 5 6 

I notice background 
noises more than 
other people. 

1 2 3 4 5 6 

Everything grips my 
attention even though 
I am not particularly 
interested in any of it. 

1 2 3 4 5 6 

The silliest little 
things that are going 
on interest me. 

1 2 3 4 5 6 

Maybe it’s because I 
notice so much more 
about things that I 
find myself looking 
at them for a longer 
time. 

1 2 3 4 5 6 

I seem to hear the 
smallest details of 
sounds. 

1 2 3 4 5 6 
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I seem to always 
notice when 
automatic appliances 
turn on and off (like 
the refrigerator or the 
heating and cooling 
system). 

1 2 3 4 5 6 

When I’m tired 
sounds seem 
amplified. 

1 2 3 4 5 6 

It seems that sounds 
are more intense 
when I’m stressed. 

1 2 3 4 5 6 

When I’m tired, the 
brightness of lights 
bothers me. 

1 2 3 4 5 6 

I cannot focus on 
visual images when I 
am tired or stressed. 

1 2 3 4 5 6 

When I am driving at 
night, I am bothered 
by the bright lights 
on oncoming traffic. 

1 2 3 4 5 6 
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APPENDIX J 
 

Multidimensional Assessment of Interoceptive Awareness 

Below you will find a list of statements. Please indicate how often each statement 

applies to you generally in everyday life. 

 Circle one number on each line 
 Never                        Always                                                                                                           

When I am tense, I notice where the tension is 
located in my body  

    0     1     2      3      4     5 

I notice when I am uncomfortable in my body     0     1     2      3      4     5 

I notice where in my body I am comfortable      0     1     2      3      4     5      

I notice changes in my breathing, such as whether it 
slows down or speeds up 

    0     1     2      3      4     5      

I do not notice physical tension or discomfort until 
they become more severe 

    0     1     2      3      4     5      

I distract myself from sensations of discomfort     0     1     2      3      4     5       

When I feel pain or discomfort, I try to power 
through it  

    0     1     2      3      4     5    

When I feel physical pain, I become upset     0     1     2      3      4     5      

I start to worry that something is wrong if I feel any 
discomfort  

    0     1     2      3      4     5      

I can notice an unpleasant body sensation without 
worrying about it  

    0     1     2      3      4     5       

I can pay attention to my breath without being 
distracted by things happening around me  

    0     1     2      3      4     5       

I can maintain awareness of my inner bodily 
sensations even when there is a lot going on around 
me  

    0     1     2      3      4     5      

When I am in conversation with someone, I can pay 
attention to my posture 

    0     1     2      3      4     5      

I can return awareness to my body if I am distracted      0     1     2      3      4     5      

I can refocus my attention from thinking to sensing 
my body  

    0     1     2      3      4     5      
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I can maintain awareness of my whole body even 
when a part of me is in pain or discomfort  

    0     1     2      3      4     5      

I am able to consciously focus on my body as a 
whole  

    0     1     2      3      4     5      

I notice how my body changes when I am angry      0     1     2      3      4     5     

When something is wrong in my life I can feel it in 
my body  

    0     1     2      3      4     5       

I notice that my body feels different after a peaceful 
experience  

    0     1     2      3      4     5 

I notice that my breathing becomes free and easy 
when I feel comfortable  

    0     1     2      3      4     5       

I notice how my body changes when I feel 
happy/joyful  

    0     1     2      3      4     5      

When I feel overwhelmed I can find a calm place 
inside  

    0     1     2      3      4     5      

When I bring awareness to my body I feel a sense 
of calm  

    0     1     2      3      4     5      

I can use my breath to reduce tension      0     1     2      3      4     5       

When I am caught up in thoughts, I can calm my 
mind by focusing on my body/breathing  

   0     1     2      3      4     5       

I listen for information from my body about my 
emotional state 

   0     1     2      3      4     5       

When I am upset, I take time to explore how my 
body feels  

   0     1     2      3      4     5      

I listen to my body to inform me about what to do     0     1     2      3      4     5       

I am at home in my body     0     1     2      3      4     5      

I feel my body is a safe place     0     1     2      3      4     5       

I trust in my body sensations     0     1     2      3      4     5        

 


