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ABSTRACT 

 
Fixed Speed Electric Motors driving Centrifugal Compressors are designed considering the pressurized start-up as the most critical 

condition in terms of the torque requirement. Their capability is checked during the design phase by means of dynamic simulation, 

which unfortunately suffers from uncertainties, especially in the low speed range. 

String Test (Complete Unit Test as defined by API 617) is a powerful mean to validate and refine the dynamic simulation so to predict 

more accurately the behavior of the compressor train at site conditions and ensure the capability of the driver to start-up the 

compressor from Settled-Out condition. 

The present paper describes a new methodology to leverage Direct-On-Line Centrifugal Compressor String Test results to improve 

predictability of on-site pressurized start-up thanks to an enhanced dynamic simulation model. 

A case study is also presented showing how the methodology has been successfully applied to a reinjection compressor string. 

 

1. INTRODUCTION 

 
In the Oil & Gas Industry, Centrifugal Compressor driven by Direct-On-Line (DOL) Fixed Speed Electric Motor (FSEM) is a widely-

used train configuration that has advantages in terms of CAPEX, OPEX, maintenance, availability, reliability and reduced footprint. 

Criticalities of this configuration, from an Operability standpoint, are concentrated mainly in the start-up phase where, especially in 

case of pressurized start-up, due to the high torque absorbed by the compressor, the electric network of the plant is highly stressed and 

the capability of the Motor is the main constraint on the start-up feasibility. 

API 617 and API 541 regulate acceptance criteria for start-ups of DOL Motor driven compressors. The motor developed torque, with 
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80% of rated voltage at the motor terminals, shall exceed the load torque by a minimum of 10% (motor rated torque as base) at all 

locations throughout the speed range up to the motor breakdown torque point. In addition, the time required to accelerate the train 

shall be below the safe hot stall (locked rotor) time by an amount specified in the API Standards. 

These requirements are checked during the design phase by means of Electric Motor and Centrifugal Compressor train and gas loop 

dynamic simulation. 

In an advanced stage of project execution, String Test (Complete Unit Test as defined by API 617 [1], in section 6.3.3.2 of Part 2, 

carried out testing together all the components that make up the complete unit) is also used to verify the start-up capability of the 

driver, but the test cannot replicate exactly the conditions that will be experienced at site due to different piping layout, plant volumes, 

equipment, electric network characteristic and initial pressure achievable at test bench. 

However, String Test results are still an important information to validate and refine dynamic simulation so to predict more accurately 

the behavior of the compressor train at site conditions. 

The paper is organized as follows: an overview on DOL FSEM criticalities and verification is given in Section 2; in Section 3, the new 

methodology to enhance dynamic simulation model leveraging String Test data is presented; Section 4 describes a case study where 

the new methodology has been applied to an industrial application; next steps to further improve the methodology are presented in 

Section 5; conclusions are given in Section 6. 

 

2. DOL FSEM VERIFICATION 

 
Generally, the DOL FSEM capability of starting-up the compressor train shall be checked from pressurized condition called settling 

out pressure (SOP) condition. In that condition the suction density can be even an order of magnitude higher than the normal suction 

condition one that causes the increase of the required torque to ramp up the train above the rated torque in normal conditions. The 

compressor absorbed torque during ramp up is a fraction of the compressor rated torque at the rated speed; that fraction can be 

estimated with the square ratio of the speeds (rated and actual) according to the affinity law. This is valid only if the compressor inlet 

conditions in terms of pressure, temperature and gas composition are kept constant all along the ramp up. Under this hypothesis, since 

the polytrophic head and the volumetric flow are, in the first approximation, functions of speed only, the fluid torque scaling rule 

mentioned above applies.  

Typically, the compressor inlet conditions during a pressurized start-up change continuously all along the ramp up, then similitude 

conditions are not fulfilled and affinity law does not apply. Only dynamic simulations can correctly predict the absorbed fluid torque 

from zero to rated speed taking into account the interaction among compressor, valves and all the other plant components. Thus, 

during the design phase, Electric Motor and Centrifugal Compressor train and gas loop dynamic simulation is developed to reproduce 

the behavior of the system at site condition with the aim of: 

• Verifying Driver capability to start-up the train from Settled Out Pressure (SOP) as per API requirements; 

• Calculate the maximum pressure at which the Driver is capable to start-up the train; 

• Define the correct start-up sequence that minimizes the compressor absorbed torque so that depressurization of the gas loop is not 

required or minimized in case the Driver is not capable of starting-up the train from SOP. 

 

The acceptance criterion for the driver start-up capability is based on the comparison between the driver torque capability and the 

driven machine absorbed torque. A sufficient margin shall be kept in order to ensure enough accelerating torque and guarantee the 

start-up feasibility. Equation (1) shall be verified during the entire start-up: from zero to rated speed. 

 

𝑇𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑇𝐸𝑀−𝑇𝐶𝐶

𝑇𝐸𝑀,𝑟𝑎𝑡𝑒𝑑
=

𝐼∙𝜔̇

𝑇𝐸𝑀,𝑟𝑎𝑡𝑒𝑑
> 10%  Eq. 1 

 

In Equation (1), the driver available torque is calculated at the actual speed, which changes during the start-up event. 

The compressor absorbed torque includes the contribution of compressor fluid torque, mechanical losses and Break-Away Torque, as 

described by Equation (2). 

 

𝑇𝐶𝐶 = 𝑇𝑓𝑙𝑢𝑖𝑑 + 𝑇𝑙𝑜𝑠𝑠𝑒𝑠 + 𝑇𝐵𝐴𝑇   Eq. 2 

 

• Fluid torque is defined by Equation (3). 

 

𝑇𝑓𝑙𝑢𝑖𝑑 =
𝑚𝑖𝑛𝑙𝑒𝑡∙𝐻𝑝𝑜𝑙

𝜂𝑝𝑜𝑙∙𝜔
  Eq. 3 

 

• Mechanical loss torque includes the contribution of the bearings, Dry Gas Seal and gearbox (if any); 

• Break away torque is the torque required at zero speed to overcome the static friction forces in the compressor bearings and 

gearbox wheels and bearings to start rotating the shaft line. 
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It is expected that other plant electrical items are running during the compressor train start-up and so the network voltage may be less 

than the rated one. Thus, it is conservative to use a reduced voltage for startup studies (80% as suggested by API) and the consequent 

reduced output torque.  

Figure 1 shows an example of dynamic simulation outputs for a successful start-up. The plot shows that the critical range is around 

70-90% of rated speed where the difference between the motor available torque and the load torque is at the minimum. 

 

 

Figure 1. Typical start-up dynamic simulation outputs 

 

For FSEM, it shall also be verified that the starting time is lower than the maximum allowable one specified by electric motor OEM. 

Usually, hot rotor locked time is taken as the start-up time limit (the rotor locked time is the maximum permitted starting time, in view 

of a dangerous temperature rise that could affect the service life of the motor itself). 

If start-up acceptance criteria described above are not met, there are several possible solutions to decrease the starting torque and make 

the start-up feasible. Usually one of the following solutions are adopted: partial depressurization of the compressor loop, partial 

closure of suction throttling valve or partial closure of anti-surge valve. 

 

Partial depressurization from SOP 

 
Depressurizing the compression loop from SOP to a lower pressure, venting the gas to the flare, reduces startup fluid torque, since 

suction gas density and consequently inlet mass flow is reduced.  

This is one of the simplest solution to make the start-up successful, since it does not require the installation of additional devices. 

However, venting the compression loop gas to the flare has economic and environmental impacts. 

In order to avoid gas flaring, alternate solutions to depressurize the compression loop can be possible. In case no check valve is 

present at compressor suction, a small by-pass line around the suction isolation valve can be kept open: in this way, the process gas 

will migrate to the suction header and the pressure in the compression loop shall decrease down to a value close to suction header 

pressure. Another option consists in depressurizing the compression loop to a portion of the plant at lower pressure, compared to the 

SOP. 

 

Suction throttling valve 

 
The mass conservation applied to the compressor loop during a start-up in closed loop (neglecting the effect of the gas temperatures 

and compressibility factor variation) can be expressed using Equation (4). 

 

𝑃𝑆 ∙ 𝑉𝑆 + 𝑃𝐷 ∙ 𝑉𝐷 = 𝑆𝑂𝑃 ∙ (𝑉𝑆 + 𝑉𝐷)  Eq. 4 

 

Being 𝑉𝑅 the ratio between discharge and suction compressor loop volumes and 𝑃𝑅 the ratio between discharge and suction 

pressures, Equation (4) can be rearranged in Equation (5). 

 

𝑃𝑆 =
𝑆𝑂𝑃∙(1+𝑉𝑅)

1+𝑃𝑅∙𝑉𝑅
  Eq. 5 

 

Installing a throttling valve upstream of the compressor suction, inside the recirculation loop (see Figure 2), and partially closing it 

during the start-up, allows to maximize both 𝑉𝑅 and 𝑃𝑅, thus minimizing the suction pressure. This results in reducing the suction gas 
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density and then the compression fluid torque. 
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Figure 2. Installation of throttling valve to reduce torque requested for start-up  

 

The throttling valve is a solution that requires the installation of an additional device if was not foreshadowed by the control 

philosophy of the compressor. It shall be fail open and shall be fitted with a mechanical stop to prevent, in any circumstance, the 

complete closure of the valve.  

 

Anti-surge valve partial closure 

 
Generally, moving the compressor operating point towards the Surge Control Line, the compressor absorbed power decreases (see 

Figure 3). 

 

 

Figure 3. Torque reduction by partial closure of anti-surge valve 

 

Based on this, partial closing of anti-surge valve during startup could help to reduce the fluid torque to a certain extent. This due to the 

fact partial closure of the anti-surge valve shall reduce the volume flow being circulated within the compression loop, resulting in less 

power consumption at startup and hence less torque. However, partial closing of the anti-surge valve is less effective than using a 

throttling valve because it does not minimize the volume ratio. 

 

3. THE NEW METHODOLOGY 

 
Start-up verification performed during the design phase through dynamic simulation analysis is subject to uncertainties, especially in 

the low speed range, where friction factors for Break-Away Torque (BAT) calculation are based on conservative assumptions and 

compressor thermodynamic behavior cannot be precisely defined due to lack of test data in this speed range. 

However, dynamic simulation model reliability can be enhanced by leveraging the String-Test results, thus improving predictability of 

on-site pressurized start-up. 
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The methodology to refine the dynamic simulation model developed during the design phase concept is described below. 

First, a String Test dynamic simulation model shall be developed, implementing test bench piping layout, volumes and equipment 

(coolers, valves, scrubbers, etc.). The model shall reflect String Test condition also in terms of initial start-up pressure and gas 

composition, which may differ from the one that will be present at site. 

Since the main scope of the present procedure is to find any discrepancy between simulated and measured compressor absorbed 

torque, a data matching of the measured data is required. Thus, in order to replicate String Test results using the dynamic model, the 

simulation shall be run by imposing the speed ramp measured during the String Test. Doing so, the simulation results in terms of gas 

flow rate processed by the compressor and suction and discharge pressures can be compared to the measured data. 

At this point, the simulation model shall be adjusted to match the test data. The adjustments that may be required are mainly due to 

any possible misalignment between test bench equipment behavior and design data that has been used to build the dynamic simulation 

model. The scope is to reproduce the pressure profiles along the compressor loop during the entire start-up by tuning the pressure drop 

and/or volume of each equipment. In this procedure, a critical role is played by the anti-surge valve which is the element that produces 

the highest pressure drop in the loop. At the end of the dynamic model tuning, the operating point path in the compressor performance 

envelope estimated by the simulation should match the one measured during the String Test start-up. 

Compressor absorbed torque estimated by the dynamic model can now be compared with the torque measured in the test. Usually a 

torque meter is installed in the train shaft and can be used to retrieve the compressor absorbed torque, however it is advisable to 

calculate the torque from train acceleration using the torque balance equation (Equation (6)). 

 

𝑇𝐶𝐶 = 𝑇𝐸𝑀 − 𝐼 ∙ 𝜔̇  Eq. 6 

where: 

o 𝐼 is a design data 

o 𝜔̇ is measured during the test 

o 𝑇𝐸𝑀 is given by the Electric Motor speed-torque curve measured during the Electric Motor Factory Tests and scaled 

according to the voltage applied at the motor terminals during the compressor String Test 

 

The discrepancy between simulated and measured absorbed torque is eventually used to refine the dynamic simulation model to better 

predict start-up behavior and driver capability at site conditions. 

 

Electric Motor speed-torque characteristic 

 
It is evident that, for the described procedure, the knowledge of the real speed-torque curve of the Electric Motor is critical. The 

speed-torque characteristic of the Electric Motor can be measured, per IEEE Standard 112, with any one of the following four 

methods: 

• “Measured output”: A DC generator, that has its losses previously determined, is coupled or belted to the motor being tested and 

an AC power supply of rated frequency is connected to the motor terminals. The torque of the motor is calculated at different 

speeds measuring DC generator power output and knowing its losses (including friction and windage). The speed of the motor for 

each test point is controlled by varying the load on the generator. 

• “Acceleration”: The motor is started with no load, and the value of acceleration is determined at various speeds. The torque at 

each speed is determined from the acceleration of the mass of the rotating parts, as per Equation (7). 

 

𝑇𝐸𝑀 = 𝐼 ∙ 𝜔̇  Eq. 7 

 

Accurate measurements of speed and acceleration are an essential requirement of this method. The acceleration time should be 

long enough so that electrical transient effects in the instruments and in the motor do not distort the speed-torque curve, and also 

to permit recording the necessary number of mechanical and electrical measurements with sufficient accuracy for plotting the 

required curves. 

• “Input”: The motor torque is determined by subtracting the losses in the machine from the input power. This method is a valuable 

check on the other methods, but in practice, it is approximate because the stator losses cannot be readily determined for the actual 

operating conditions and, therefore, must be approximated. This method is also subject to error in the case of special machines 

that may have substantial positive or negative harmonic torques that are not readily evaluated. 

• “Direct measurement”: The motor torque and current are measured as the machine is loaded at various speeds with a 

dynamometer or mechanical brake.  

 

Usually, acceleration method is used as it is simple to execute and gives accurate results. The test is carried out imposing a constant 

voltage (rated or reduced) to the motor terminals and the speed-torque characteristic is measured at that voltage.  

As detailed in [4], the Electric Motor available torque during the start-up can be calculated solving the approximate per phase 

equivalent circuit of induction motors shown in Figure 4. 
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Figure 4. Approximate per phase equivalent circuit of induction motors 

 

Electric Motor torque results in being a function of motor electric circuit resistances (𝑅1, 𝑅2) and inductances (𝐿1, 𝐿2), supply 

frequency 𝜔𝑒, number of pole pairs 𝑝, the slip 𝑠 (that can be correlated with actual rotor speed) and finally the square of supply 

voltage 𝑉𝐸𝑀
2 as detailed in Equation (8). 

 

𝑇𝐸𝑀 =
3∙𝑝∙𝑉𝐸𝑀

2 

𝑠∙𝜔𝑒

𝑅2

(𝑅1+
𝑅2
𝑠

)
2

+𝜔𝑒
2∙(𝐿1+𝐿2)2

  Eq. 8 

 

For a given Electric Motor and electric network (i.e. with constant values of resistances, inductances, supply frequency and number of 

pole pairs), the torque supplied by Electric Motor is a function only of the slip (i.e. rotor speed) and the square of supply voltage. 

Hence, speed-torque characteristic relevant to different voltages from the one at which torque measurements has been performed, can 

be estimated scaling the speed-torque curves measured with the square of supply voltage. 

However, it should be recognized that, because of saturation of the leakage flux paths, the torque may increase by a ratio somewhat 

greater than the square of the voltage. The relationship varies with design; but scaling the torque with the square of voltage can be a 

good first approximation. 

 

4. CASE STUDY 

 
The methodology of improving dynamic simulation model leveraging on String-Test start-up results described in Section 3 has been 

successfully applied to the reinjection compressor string shown in Figure 5. 

 

 

Figure 5. Case Study compressor string configuration 

 

The train shaft line includes a 3.33MW 1500rpm Fixed Speed Electric Motor coupled to barrel type Centrifugal Compressor 

BCL305/C through a double helical Gear Box. Maximum allowable start-up times of the FSEM specified by Electric Motor OEM are 

reported in Table 1. The compressor has a nominal speed of 11700 rpm, a design suction pressure of 197.5 bar and a design discharge 

pressure of 371.0 bar. Inertia of each element in the shaft line is reported in Table 2. 

 

Table 1. Maximum allowable EM starting times 

Starting Voltage Hot condition Cold condition 

80 % 29 s 37 s 

85 % 23 s 30 s 

90 % 20 s 27 s 
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Table 2. Shaft line Inertia referred to Low Speed Shaft 

 Inertia @ LSS [kg×m2] 

Compressor 15.1 

Coupling Compressor-Gear 4.8 

Gear Box 214.1 

Coupling Gear-Driver 6.2 

Electric Motor 306.7 

TOTAL 546.9 

 

Start-Up Simulation 

 
During design phase, start-up simulation from settled-out condition has been carried out to verify the driver capability. Outputs of the 

analysis are reported in Figure 6. 

Results of dynamic simulations show that, even if the starting time is within the maximum limit imposed by the OEM, the electric 

motor is not able to start-up the train from SOP with ASV fully open respecting the Torque Margin limit of 10% imposed by API. The 

reason resides mainly in the high flow processed by the compressor due to the size and the complete opening of the ASV that moves 

the compressor operating path toward the choke region. 

 

 

Figure 6. Design phase start-up simulation results 

 

Two solutions have been studied and proposed to End User: partial closure of ASV during start-up or partial depressurization of the 

compressor loop. Partial closure of suction throttling valve was not considered as the valve is placed outside the anti-surge loop and so 

it does not affect the compressor operating condition in full recycle. 

Both solutions allow to start-up the train successfully with similar margins as shown in Figure 6. The partial closure of ASV reduces 

both the flow processed by the compressor and the suction gas density thanks to the higher pressure ratio generated. The partial 

depressurization does not affect the operating path of the compressor, but decreases the overall level of gas density, resulting in a 

lower power absorbed by the compressor. A depressurization from 285 to 242 bar is required to reach the 10% torque margin. 

Dynamic simulation is a proven and reliable tool for predicting the compressor train behavior during start-up, as it contains the know-

how and experience of compressor and electric motor OEMs. However, some residual uncertainty is always present and String Test 

data can be used to validate or refine simulation results. 
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String Test Arrangement 

 
Test bench configuration for the compressor String Test is reported in Figure 7. 

The testing loop was equipped with two recycle solenoid valves with different size installed in parallel, so as to give flexibility and 

accuracy in controlling the compressor operating point position in the performance envelope. A gas cooler was installed at the suction 

of the compressor. Four dynamic pressure transducers and four thermocouples were installed on suction and discharge of the 

compressor. Flow rate measurement was performed by differential pressure transducers installed on suction.  

 

 

Figure 7. Test Bench configuration 

 

During the String Test, the following activities and tests have been conducted: 

• Pre-test activities: 

o Calibration of Project/Shop instruments 

o Instrumentation and electrical equipment insulation and continuity tests 

o Control loops check and functional test 

o Safety and protection devices operational checks 

o Mechanical equipment alignment check 

o Lube oil system flushing and cleanliness test 

• Compressor performance test ASME PTC10 type 1: the test has the aim to demonstrate satisfactory performance of centrifugal 

compressor 
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• Full speed full load string test and noise test: the test has the aim to demonstrate the satisfactory mechanical behavior of the 

complete compressor package under full load condition and to demonstrate the functionality of the main auxiliary systems of the 

package 

• Electric Motor star-up in DOL verification: the test has the aim to verify the Motor starting capability at site settle out pressure 

• Post-test inspections: 

o Centrifugal compressor bearing inspection 

o Dry Gas Seals removal and internal inspection 

 

Testing procedures are reported in Figure 8 and Figure 9. 

 

 

Figure 8. Performance test & Start-up in DOL verification sequences 

 

 

Figure 9. Full load test sequence 

 

String Test start-up simulation 

 
As first step, a dynamic simulation model of the test bench has been developed including all the main equipment of the compressor 

loop. The model has been built with the AspenTech HYSYS® v7.3 simulation software, configured with Peng-Robinson equation-of-

state and the Lee-Kesler option for the calculation of enthalpies. 

Before the String Test execution, the dynamic simulation model of the test bench has been used to find the initial gas temperature and 

pressure of the loop and the ASV opening, to reproduce the loading curve and compressor operating path estimated for the site 
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condition. The partial depressurized start-up with ASV fully open, giving the 10% torque margin, has been taken as reference. 

The initial pressure and ASV opening calculated in this way is a good indication to perform a DOL start-up test that replicates with the 

highest accuracy the most critical start-up conditions that will be experienced at site. 

 

Data Matching 

 
After the string start-up tests, the simulation model has been adjusted to match the measured data. The adjustments were needed 

mainly because the initial pressure and temperature (and composition) used during the tests were different from the ones suggested in 

advance by the simulation. In fact, it is difficult to match pressure and temperature values during the test bench compressor loop 

pressurization, considering that also a certain gas composition has to be achieved when pressurizing the loop with different gas 

reservoirs. 

Moreover, also the opening of the ASV at the indicated value is not enough to guarantee that the expected compressor operating path 

in the performance envelope can be reproduced. This is because of a possible misalignment between ASV and/or other equipment 

behavior and their datasheet. 

Expected trend of pressures, flow, speed and compressor operating path compared to measured ones are reported in Figure 10 and 

Figure 11. Data match of the same variables after the adjustment done on the String Test simulation model are reported in Figure 12. 

 

 

Figure 10. Expected trend of pressures and gas flow in String Test start-up Vs. measured one 

 

 

Figure 11. Expected trend of train speed in String Test start-up Vs. measured one 
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Figure 12. Simulated pressures and gas flow in String Test start-up Vs. measured one after model adjustment 

 

Expected Vs. Measured Torque Comparison 

 
Additional output of the adjusted simulation model is the compressor absorbed torque that can now be compared with the measured 

one. As discussed in Section 3, train absorbed torque is computed from the speed acceleration using Equation (6), given the overall 

inertia of the train and the Electric Motor speed-torque curve. 

The torque supplied by Electric Motor has been estimated scaling the speed-torque curves measured by OEM during Factory Tests 

with the square of supply voltage, in accordance with Equation (8). Voltage applied at Electric Motor terminals and measured during 

the String Tests is reported in Figure 13. 

 

 

Figure 13. Voltage measured at the Electric Motor terminals during the String Test 

 

An average value of the voltage measured at the Electric Motor terminals during the start-up test (85%) was used to scale the driver 

available torque curve measured during the Electric Motor Factory Tests. Resulting Electric Motor torque -speed curve used in 

Equation (6) is shown in Figure 14. 

Electric Motor OEM tested the machine according to the IEEE Standard 112 using the acceleration method and provided speed-torque 

curves at 100% and 80% of nominal voltage. Figure 15 shows the high degree of similitude of the two curves, which have been used 

to calculate the speed-torque characteristic of the Electric Motor at other voltages. 
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Figure 14. Electric Motor Factory Tests speed-torque curves 

 

 

Figure 15. Electric Motor Factory Tests speed-torque curves similitude plot 

 

The discrepancy between simulated and measured compressor string absorbed torque is reported in Figure 16. Only compressor fluid 

torque and mechanical friction losses from simulation has been considered, letting the discrepancy to incorporate also the BAT. 

 

 

Figure 16: Discrepancy between simulated and measured compressor string absorbed torque 

 

Figure 16 shows that the discrepancy between simulated and measured compressor string absorbed torque is concentrated mainly in 
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the low speed range. Being higher than the expected absorbed torque, at least a higher starting time is expected, with respect to the one 

calculated during the design phase of the project. 

The reason of this discrepancy has to be mainly attributed to uncertainties with BAT, mechanical losses and thermodynamic behavior 

in the low speed range and deep choke operation due to lack of testing data on compressors, as well as electric motors. 

In the 80-90% speed range, i.e. in the region where the train absorbed torque approaches the driver available one, the difference 

between simulated and measured torque drops and becomes almost negligible, suggesting that the torque margin calculated during the 

design phase will not change. 

 

Enhanced Dynamic Model applied to site condition 

 
The dynamic simulation model of the real plant has been modified including the results obtained from the String Test start-up data 

analysis. The discrepancy in the train absorbed torque (Figure 16) has been scaled according to the final absorbed power at full speed 

and added to the fluid and friction compressor torque. 

Start-up scenario results of the enhanced dynamic model is shown in Figure 17 where the two solutions proposed to the End User for a 

successful start-up in accordance with API requirements (partial closure of ASV during start-up and partial depressurization of the 

compressor loop) are presented. 

The main conclusions drawn in the design phase are confirmed. 

As expected, the minimum torque margin has not been affected: it is still in the range of 10-15%. Only the starting time increased due 

to the higher absorbed train torque in the low speed range. However, the starting time increase (2-3 seconds) is small enough to remain 

far below the maximum limit indicated by the electric motor OEM. 

 

 

Figure 17. Enhanced dynamic simulation model start-up results 

 

5. FUTURE DEVELOPMENT 

 
During the start-up of the motor, at zero speed (𝑠 = 1) the start-up current is around 3-7 times the rated current, which leads the 

voltage supply to drop due to the impedances of the electrical network related to cables, transformers, etc. 
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Figure 18. Electrical model scheme of Electric Model and electric network 

 

𝑉𝐸𝑀 = 𝑉𝑔𝑟𝑖𝑑 − ∆𝑉𝑔𝑟𝑖𝑑 = 𝑉𝑔𝑟𝑖𝑑 − 𝑍𝑔𝑟𝑖𝑑 ∙ 𝐼𝐸𝑀  Eq. 9 

 

While motor accelerates (𝑠 → 𝑅𝑎𝑡𝑒𝑑 𝑆𝑙𝑖𝑝), the current decreases with the rule described by Equation (10) and voltage applied at 

motor terminals increases back. 

 

𝐼𝐸𝑀 =
𝑉𝐸𝑀

√ ((𝑅1+
𝑅2
𝑠

)
2

 + 𝜔𝑒
2(𝐿1+𝐿2)2)

  
Eq. 10 

 

This analytical behavior is confirmed by test data as shown in Figure 13. 

Therefore, considering a constant voltage applied to the Electric Motor terminals, then a fixed torque-speed curve (Figure 14), is an 

assumption that may not be valid: the motor voltage heavily affects the available driver torque, and during the DOL start-up, the 

voltage changes significantly. 

To further refine the dynamic simulation for a better prediction of the DOL start-up, the next step is to drop this assumption and 

develop an electrical model of the motor and the electrical network of the plant to be used in place of a fixed torque-speed curve. Such 

a model could be used to improve both site and String Test dynamic simulations, connecting it to the compressor loop model as shown 

in Figure 19. 

The integrated electrical and process simulation model will be able to also predict the voltage drop expected at site during the 

compressor start-up and to consider the effective electric motor available torque. 

With the integrated model, the API requirement of considering only 80% voltage at electric motor terminals could be relaxed and it 

will be possible to assess if the compressor train can actually be started-up at site from the settled-out conditions, or what the real 

depressurization level is required to allow a safe start-up. 

 

6. CONCLUSIONS 

 
A new methodology to use Direct-On-Line Centrifugal Compressor String Test results in improving the predictability of on-site 

pressurized start-up has been presented. 

The methodology has been successfully applied to a reinjection compressor string composed of a Fixed Speed Electric Motor, a Gear 

Box and a Centrifugal Compressor. The case study showed how the discrepancy between expected and measured train absorbed 

torque is concentrated principally in the low speed range, which is related to the uncertainties with BAT, mechanical losses and 

thermodynamic behavior in this speed range. 

Nevertheless, in the 80-90% speed range, the difference between expected and measured torque is minimal and becomes almost 

negligible, meaning that the analysis performed during the design phase through dynamic simulations can be considered reliable in 

estimating the minimum torque margin and therefore relevant API requirement can be verified at the project design stage. 

When maximum starting time of the DOL Electric Motor imposed by OEM is the main constraint of the driver capability in starting 

up the compressor train, then a good knowledge of the train absorbed torque along the entire speed range (from zero to rated speed) 

shall be vital. Accordingly, enhancing the dynamic simulation model by leveraging String Test data becomes essential. 

The new methodology proposed can be improved by including in the simulation the electrical model of the motor and the electrical 

network of the plant. In this way, the compressor train dynamic simulation model will be further refined, thus allowing to minimize 

the design margins of train driver, and the associated cost, thanks to the improved predictability. 
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Figure 19. Electrical model scheme and integration with compressor loop dynamic simulation 

 

NOMENCLATURE 

 
Variables 

 
𝐼  = Overall train inertia     (M·L2) 

𝜔̇  = Train angular acceleration   (t-2) 

𝜔  = Train rotational speed    (t-1) 
𝑇𝐸𝑀  = Electric Motor available torque  (M·L2·t-2) 

𝑇𝑚𝑎𝑟𝑔𝑖𝑛  = Torque margin      (M·L2·t-2) 

𝑇𝐸𝑀,𝑟𝑎𝑡𝑒𝑑= Electric Motor rated torque   (M·L2·t-2) 

𝑇𝐶𝐶   = Compressor absorbed torque   (M·L2·t-2) 

𝑇𝑓𝑙𝑢𝑖𝑑 = Compressor fluid torque    (M·L2·t-2) 

𝑇𝑙𝑜𝑠𝑠𝑒𝑠 = Train mechanical friction torque  (M·L2·t-2) 

𝑇𝐵𝐴𝑇  = Break-Away torque     (M·L2·t-2) 

𝑚𝑖𝑛𝑙𝑒𝑡  = Compressor mass flow    (M·t-1) 

𝐻𝑝𝑜𝑙  = Compressor polytropic head   (L2·t-2) 
𝜂𝑝𝑜𝑙  = Compressor polytropic efficiency  (-) 
𝑃𝑆  = Suction Pressure     (M·L-1·t-2) 

𝑉𝑆  = Suction Volume     (M3) 

𝑃𝐷  = Discharge Pressure     (M·L-1·t-2) 

𝑉𝐷  = Discharge Volume     (M3) 

𝑆𝑂𝑃 = Settled Out Pressure     (M·L-1·t-2) 

𝑃𝑅  = Pressure Ratio      (-) 

𝑉𝑅  = Volume Ratio      (-) 

𝑅1, 𝑅2 = EM equivalent circuit resistances  (M L2 I-2 t-3) 

𝐿1, 𝐿2 = EM equivalent circuit inductances (M L2 I-2 t-2) 

𝜔𝑒  = EM supply frequency    (t-1) 

𝑠  = EM slip       (-) 

𝑝   = EM number of pole pairs   (-) 

𝑉𝐸𝑀  = EM supply voltage     (M L2 I-1 t-3) 

𝐼𝐸𝑀  = EM current      (I) 

𝑉𝑔𝑟𝑖𝑑 = Electric network voltage    (M L2 I-1 t-3) 
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𝑍𝑔𝑟𝑖𝑑 = Electric network impedance   (M L2 I-2 t-3) 

∆𝑉𝑔𝑟𝑖𝑑 = Electric network voltage drop  (M L2 I-1 t-3) 

 

Acronyms 

 
API  = American Petroleum Institute 

ASV = Anti-Surge Valve 

BAT = Break Away Torque 

CC  = Centrifugal Compressor 

DOL = Direct On Line 

EM  = Electric Motor 

FSEM = Fixed Speed Electric Motor 

HSS = High Speed Shaft 

LNG = Liquefied Natural Gas 

LSS  = Low Speed Shaft 

OEM = Original Equipment Manufacturer 

SOP = Settled Out Pressure 
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