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ABSTRACT

Solving the RMTP with an Unknown Bound on Reordering using Bounded Counters

Grant Kirchhofer
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Jennifer Welch
Department of Computer Science and Engineering

Texas A&M University

This research analyzes the reliable message transmission problem, or RMTP, with a

different set of constraints than has been previously studied. The RMTP describes the task

of simulating a reliable computer communication channel on top of an unreliable one. The

unreliable channel can exhibit undesirable behavior, including message loss, duplication,

and reordering. The reliable channel exhibits none of these. Prior research has proposed

an algorithm that solves the RMTP using bounded message counters when the channel

exhibits duplication and bounded reordering, where the bound on reordering is known.

This paper studies a variation of that configuration with an unknown bound on reorder-

ing. Using well documented C++ code, data collected from experimental executions of

that code, and formal logical and mathematical proofs, we show that for several classes

of algorithms, there is no possible algorithm that solves the RMTP where the bound on

reordering is unknown. We also develop an algorithm that can, with enough input, solve

the RMTP when the reordering bound is unknown but is within a known range.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background

The reliable message transmission problem, or RMTP, is the problem of implement-

ing a reliable layer of communication on top of an unreliable layer, where an unreliable

channel displays undesirable behavior. The RMTP is important because no communica-

tion channel, especially a wireless one, is absolutely reliable. Safeguards against inherent

unreliability must be implemented in order to simulate reliability as closely as possible.

An unreliable communication channel exhibits certain types of undesirable behavior.

The three main types of undesirable behavior are loss, duplication, and reordering. Loss is

when a message is sent through the channel, but is not received on the other end. Duplica-

tion is when a message is received multiple times for only one message sent. Reordering is

when a message is sent before but received after another message. However, it is assumed

that the contents of the messages are preserved through the channel. This research will

not study message data corruption. In the context of distributed algorithms and commu-

nication channels, asynchronous means that the time between the message being sent and

received is unknown and unbounded.

1.2 Prior Research

Older research in this area [1] has found that in purely asynchronous systems, assigning

unbounded sequence numbers to messages allows for the tolerance of unbounded loss,

duplication, and reordering. However, unbounded sequence numbers require unbounded

space to store them, which is not ideal in real systems. The Alternating Bit Protocol

[2] assigns a single identifier bit to each message, and it solves the RMTP when only

loss or only duplication is considered. For both loss and duplication, additional header
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information is required. When loss and reordering with duplication is considered, the

sender must send an unbounded number of copies of the same message until the receiver

has notified the sender of receipt [3]. When duplication and reordering are considered, no

bounded solution is possible [4].

More recent work, in particular that of Ortiz-Lopez and Welch [5], has studied par-

tially synchronous systems, where the undesirable behavior is bounded. In other words, a

message can only be duplicated so many times, only so many consecutive messages can

be lost, and two messages sent one after another can only have so many messages received

between them. The KJ Protocol in [5] solves the RMTP when considering unbounded

duplication and bounded reordering. It does this using bounded counters; a counter be-

tween zero and an upper bound is attached to each message. The Extended KJ Protocol in

[5] is similar but also considers bounded loss and handles it by sending n copies of each

message, where n is one more than the bound on the number of consecutive messages that

can be lost.

My research will build upon the study of partially synchronous systems. Specifically,

I will develop an algorithm that addresses the RMTP when loss is bounded, duplication

is unbounded, and reordering is bounded with an unknown bound, as opposed to a known

bound. I will see whether it is possible to solve this scenario using bounded counters.

1.3 Overview of Contribution

I have developed several theorems with formal proofs that show that under various

circumstances, no algorithm can solve the RMTP. For convenience, I have named certain

classes of Sender-Receiver algorithms; the Tag Class, and the Backchannel Class.

The first theorem states that when the Sender is the KJ Sender, as in [5], no algorithm

can solve the RMTP with an unknown reordering bound. The second theorem states when

the Sender is a Tag Class Sender, no algorithm can solve the RMTP with an unknown
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reordering bound. The third theorem states that the RMTP with an unknown reordering

bound cannot be solved using the Adjustment Interface, a high-level description of a way

to use a Backchannel Class Sender-Receiver.

I have also developed an algorithm that solves the RMTP with an unknown reordering

bound, but only when the bound is within a known range. This algorithm assumes that it

is preferable to use less memory per message, and so tries to minimize the amount of extra

data attached to each message.

I wrote a C++ program in Visual Studio 2015 that implements this algorithm. This

implementation can be found at https://github.com/cyber5/AdjustmentInterfaceRMTP.

1.4 Structure of Thesis

The rest of this thesis is organized into sections as follows. Section 2 reviews relevant

definitions and terms that will be used in the rest of the thesis, as well as some useful

properties. Section 3 contains multiple theorems and impossibility proofs concerning the

RMTP with an unknown reordering bound when using various classes of Sender algo-

rithms. Section 4 contains a description and pseudocode of an algorithm that can, with

enough input, solve the RMTP when the reordering bound is unknown but falls within

a certain known range. Section 5 contains a conclusion and thoughts about what further

research may yield.
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2. INTRODUCION TO KEY CONCEPTS

2.1 Definition of Terms

We define a Sender that contains an algorithm whose attributes will be specified before

each theorem. We define a Receiver that contains no specified algorithm. We have an

unreliable channel that transmits low-level messages from the Sender to the Receiver. The

channel is described in greater detail later.

We define an algorithm to be a combination of a Sender and a Receiver, both modeled

as state automata. An algorithm takes a sequence of high-level messages as input; the

Sender produces low-level messages and sends them to the Receiver across the unreliable

channel; the algorithm’s output is the sequence of high-level messages produced by the

Receiver. Typically, the purpose of an algorithm is to simulate a reliable channel using the

Sender and Receiver. This means correcting the unreliable behavior of the channel. We

define a correct algorithm to be one that produces an output that matches the input exactly.

We define four types of events that can occur:

SEND(M) — the Sender takes the next high-level message M from the input se-

quence

send(m) — the Sender sends low-level message m across the channel

receive(m) — the Receiver receives low-level message m from the channel

RECEIV E(M) — the Receiver produces high-level message M and appends it to

the output sequence

The Sender in the KJ Protocol, the "KJ Sender," is simple and straightforward. In

the KJ Protocol, SEND(M) creates a low-level message m from high-level message M ,

assigns it a bounded counter, and inserts it into a FIFO queue. It also increments the

counter, which wraps around upon reaching the bound. The event send(m) removes the

5



message at the head of the queue and sends it across the channel.

We define low-level messages with bounded counters and unbounded counters, the

same as in the KJ Protocol. The unbounded counters are only read during the proofs, not

during the execution of any algorithm.

We define M0M1...Mn−1 to be the finite sequence of n high-level messages that is

input to the algorithm. It is also possible for the input sequence to be infinite (M0M1...).

We define mi to be a low-level message that contains high-level message Mi. We define

mx
i to be mi appended with the bounded counter x.

Event E is said to be enabled at state S if S can transition to another state as a re-

sult of E. We define an execution to be a sequence of alternating states and events,

S0E1S1E2S2...EnSn beginning with the initial state of the automata and ending with the

final state of the automata. An execution can also be infinite, provided that the input se-

quence is infinite. The initial state, S0, describes the state of the Sender and Receiver

before the algorithm begins and before input is received. For every subsequent Si−1EiSi

in the execution, it must be the case that Ei is the event that transforms the automata from

the state Si−1 to the state Si. The final state, Sn, describes the state of the Sender and

Receiver after the entire output sequence has been produced and the algorithm is finished.

We define a schedule of an algorithm to be a sequence of events that occur over the course

of the algorithm’s execution; in other words, an execution without the states. We only

consider fair executions, meaning that an event cannot be continually enabled but never

occur.

We define the r-schedule to be the subsequence of a schedule made up only of the

receive events. We define rm to be the sequence of low-level messages in the r-schedule.

We define rm
′ to be any prefix of the full sequence rm.

All correct executions exhibit both safety (meaning that in a prefix of the execution, the

sequence of high-level messages in the RECEIV E events is a prefix of the sequence of
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high-level messages in the SEND events) as well as liveness (meaning that the number of

RECEIV E events equals the number of SEND events). Additionally, in correct execu-

tions, RECEIV E(M) and receive(m) cannot appear before SEND(M) and send(m),

respectively.

We say that mi is enabled if receive(mi) is enabled. We define the enabled-set, E, to

be the set of low-level messages that are enabled with respect to a certain execution prefix,

or a given rm
′ . E is static for a given rm

′ and dynamic across the entire sequence rm.

We define the trivially-enabled-set, T, to be the subset of E containing only messages

m for which receive(m) would not remove any messages from E (i.e., no messages would

become disabled). Note that the enabled-set is not concerned with which send events have

occurred; we assume that any receive(m) is preceded by send(m) in a schedule.

The channel exhibits unbounded but finite duplication (meaning that there is no limit

to the number of times the message will duplicate, but the duplication is guaranteed to stop

eventually), no loss, no corruption, and bounded reordering with a bound of δ. The formal

definition of the reordering bound δ is as follows: suppose we have low-level messages

mi and mj , where j ≥ i + δ. Then the first occurrence of receive(mj) in the schedule

must occur after the last occurrence of receive(mi). It follows that receive(mi) is enabled

for a given rm
′ if every message mi−δ, mi−δ−1, ... mi−1 is in rm

′ , and no message mi+δ,

mi+δ+1, ... mn is in rm
′ .

2.2 Useful Properties of the Enabled-Set

There are some properties about E and T that can be beneficial for understanding them.

While they are not used in this paper’s theorems, they formed a basis for developing the

algorithm.

Property 1. If a message m has appeared in rm
′

and m ∈ E, then m ∈ T .

Proof. By the definition of enabled, whether a message is enabled is solely dependent on
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which messages appear in rm
′ . Since m has already appeared in rm

′ , receive(m) would

not change which messages appear in rm
′ . Therefore no messages would become enabled

or disabled. Since no messages would become disabled, no messages would be removed

from E. By definition of the trivially-enabled-set, it follows that m ∈ T .

Property 2. Once a message is removed from E, it cannot rejoin E.

Proof. If a message mi is removed from E, that means a message mi+x, where x ≥ δ, has

appeared in rm
′ . Since the presence of mi+δ in rm

′ prevents mi from being enabled, and

messages are not removed from rm
′ , mi will never be enabled again. In other words, mi

will not be added to E again.

Property 3. A message cannot be removed from E unless it has appeared in rm
′
.

Proof. There is no message loss, so each low-level message must appear in rm at least

once. By Property 2, once a message is removed from E, it cannot rejoin E. Therefore, a

message cannot be removed from E until it has appeared in rm
′ , or else it will never appear

and message loss will occur.

Property 4. A message cannot be removed from E unless it’s in T.

Proof. By Property 3, a message cannot be removed from E unless it has appeared in rm
′ .

By Property 1, if a message has appeared in rm
′ and is in E, it is also in T. Therefore a

message cannot be removed from E unless it’s in T.

Property 5. When rm
′

is empty, |E| = δ.

Proof. By the definition of enabled, all messages m0,m1, ...,mδ−1 are enabled when rm
′

is empty since the messages that would need to be present in rm
′ for them to be enabled

do not exist. m0,m1, ...,mδ−1 total δ messages, so |E| = δ when rm
′ is empty.

Property 6. When rm
′

is empty, |T | = δ.
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Proof. The message with the smallest subscript that would disablem0 if it appeared in rm
′

is mδ. The messages required to disable all other messages in E have subscripts greater

than or equal to δ. Therefore, none of the messages in E when rm
′ is empty would cause

any other messages in E to be disabled. So by definition of the trivially-enabled-set, all the

messages in E are also in T when rm
′ is empty, so |T | = |E| = δ when rm

′ is empty.

Property 7. At any selected rm
′
, |T | = δ.

Proof. For some selected rm
′:

E = T ∪ {mi+y,mi+y+1, ...,mi+y+x−1}

|E| = y + x

T = {mi,mi+1, ...,mi+y−1}

|T | = y

Suppose in contradiction that y < δ. Then receive(mi+y) would not remove any

messages from E, because it would disable messages with subscript i + y − δ < i, none

of which are in E. Therefore mi+y would by definition be in T, creating a contradiction.

Therefore y cannot be less than δ.

Suppose in contradiction that y > δ. Then receive(mi+y−1) would remove mi from E.

By definition of T, mi+y−1 would not be in T, creating a contradiction. Therefore y cannot

be greater than δ.

Since y cannot be less than or greater than δ, y = δ.

Property 8. At any selected rm
′
, |E − T | ≤ δ.

Proof. For some selected rm
′ , we have the same conditions as in Property 7. Suppose

in contradiction that x > δ. Then receive(mi+y+x−1) would at the least disable mi+y.

But mi+y /∈ T , and by Property 4, a message cannot be removed from E unless it’s in T.

Therefore we have a contradiction, and x ≤ δ.
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Property 9. δ ≤ |E| ≤ 2δ

Proof. Based on the properties of sets, |E| = |T | + |E − T |. From Property 7, |T | = δ.

From Property 8, 0 ≤ |E − T | ≤ δ. Therefore:

0 ≤ |E − T | ≤ δ

δ ≤ δ + |E − T | ≤ 2δ

δ ≤ |T |+ |E − T | ≤ 2δ

δ ≤ |E| ≤ 2δ

So the minimum size of E is δ, and the maximum size is 2δ.
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3. IMPOSSIBILITY PROOFS RELATED TO THE RMTP WITH

AN UNKNOWN REORDERING BOUND

If the reordering bound δ is known, then an algorithm can be developed that is depen-

dent on knowing δ [5]. But what if δ is unknown? In the following section, we will prove

that using the KJ Sender paired with any Receiver algorithm, an unknown δ makes the

RMTP unsolvable. We refer to a particular guess for the value of δ as γ.

3.1 Impossibility Proof using the KJ Protocol Sender

Theorem 1. If the channel exhibits unbounded but finite duplication, reordering bounded

by an unknown bound δ, no loss, and no corruption, there exists no correct algorithm for

the RMTP using the KJ Sender algorithm.

Proof. Since the theorem specifies that the sender algorithm is the KJ Sender algorithm,

we need to prove that a correct Receiver algorithm is impossible under these circum-

stances. We will prove this by contradiction. Suppose there is an algorithm in the Receiver

that can produce the correct high-level output. Since we are using the KJ Sender, γ will

act in place of δ in the KJ Sender code, and the bounded counters used for the low-level

messages will be in the range [0, 2γ]. We examine two different executions of the algo-

rithm that are possible when γ is equal to an arbitrary positive integer i, δ = 2i + 2 and

the high-level input is M0M1 ... M2i+1.

Execution 1: rm = m0
0m

1
1 ... m2i

2im
0
2i+1

This low-level sequence is clearly possible under the given circumstances because

none of the messages were received out-of-order. Since our hypothetical receiver algo-

rithm is correct, the high-level output will be M0M1 ... M2i+1.

Execution 2: rm = m0
2i+1m

1
1 ... m2i

2im
0
0
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This low-level sequence is possible under the given circumstances because by the def-

inition of δ, all of the low-level messages are enabled immediately. Since our hypothetical

algorithm is correct, the high-level output will be M0M1 ... M2i+1.

However, there is a contradiction present between these two executions. The sequence

of bounded counters received by the hypothetical Receiver algorithm is identical in both

cases (it is 0, 1, ... 2i, 0), but the actual sequence of messages is different. The transforma-

tion performed on the low-level sequence in Execution 1 to arrive at the correct high-level

output is different from the transformation in Execution 2. In Execution 1, the messages

are output in the order they are received, whereas in Execution 2, the first message that is

received is output last, and vice versa. The only information that any Receiver algorithm

can receive from the KJ Sender algorithm is a sequence of bounded counters and γ. If the

sequence of counters is the same, and γ is the same, then the algorithm will behave in the

same way. Therefore we have a contradiction, and Theorem 1 is proven.

3.2 Introduction to the Tag Class of Algorithms

The KJ Sender is rather simple; it simply takes each high-level message, assigns the

next bounded counter to the low-level message equivalent, and sends the low-level mes-

sage through the channel. Next, we will develop a theorem similar to Theorem 1 for an

expanded class of Sender algorithms. We will concern ourselves with Sender algorithms

for which every low-level message consists of the information in a particular high-level

message appended with some tag with bounded size. Any Receiver algorithm is allowed.

However, like the KJ Sender, we do not allow for these Senders to make use of messages

sent from the Receiver to the Sender. We will refer to this class of algorithms for the

RMTP as the Tag Class. It should be noted that the KJ Sender is in the set of Tag Class

Senders.

Sender algorithms in the Tag Class might not use bounded counters. However, we can
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generalize the use of bounded counters as a number of bits attached to every low-level

message, which we call a tag. Realistically, any tag attached to a low-level message will

be represented as a sequence of B bits, and as such, can only take 2B forms. Therefore

the number of bits required to represent x different tags is dlog2xe. We will refer to the

number of bits in a tag as B, and the number of tags used as t.

Because of this expanded consideration, Theorem 1 does not apply to Senders in the

Tag Class, because Theorem 1 relies on the Sender algorithm using bounded counters in

a sequential manner as the KJ Sender does. For example, we don’t know the tags that m0

andm2i+1 will have appended to them, let alone that they share the same tag. We will have

to develop another theorem to prove that no Tag Class algorithm can solve the RMTP with

an unknown δ.

We don’t know exactly how γ will be used in a particular Tag Class Sender, but we

can imagine that the Tag Class Sender will either use γ to decide how many bits each tag

will contain, or have this length hard-coded. Since the length of the high-level messages

might not be constant, we must use the same number of bits for each tag, so that an

algorithm always knows where the tag is located in a low-level message. Since the high-

level messages do not have to be sent across the channel in order as the KJ Sender does,

we refer to the sequence of low-level messages sent across the channel as sm = ml0ml1 ...

mln−1 ... where ml0 denotes the first low-level message sent by the Sender, ml1 designates

the second low-level message sent by the Sender, and so on. We should note that while a

Tag Class Sender will send at least n low-level messages, one for each high-level message,

it is possible that it will send more. However, we can ignore messages mlnmln+1 ... for the

purposes of the following lemmas and theorem without loss of generality.
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3.3 Impossibility Proof for the Tag Class

Lemma 1. For the Tag Class, the number of high-level messages input to the Sender

cannot be communicated to the Receiver.

Proof. The number of high-level messages input to the Sender cannot be communicated

to the Receiver using a tag, because then the size of the tags would be unbounded, which

violates the definition of the Tag Class. All low-level messages contain only a high-level

message and a tag, therefore the number of high-level messages input to the Sender cannot

be reliably communicated to the Receiver at all.

We can demonstrate this using a proof by contradiction. Suppose that there is some

Tag Class Sender that can communicate the number of high-level messages to the Receiver.

Since the size of the tags is bounded, the tag can only take 2B forms. What if 2B +1 high-

level messages are sent? By the pigeonhole principle, the tag that tells the Receiver that

there are 2B + 1 high-level messages must be identical to some tag that tells the Receiver

that there are X high-level messages, where 1 ≤ X ≤ 2B. This contradicts the premise of

our hypothetical algorithm, and thus Lemma 1 is proven.

In the KJ Sender, since the number of bounded counters is calculated to be 2γ + 1,

the number of bounded counters is always odd. In terms of the Tag Class, t can be odd or

even. We develop two lemmas for the Tag Class depending on whether t is odd or even.

Lemma 2. For a given channel with unbounded but finite duplication, no loss, no corrup-

tion, and an unknown reordering bound δ, if t is odd, and if t < 2δ + 1, then no Tag Class

algorithm will work on this particular channel.

Proof. We will prove by contradiction. Suppose we are using t tags, where t is odd, and

the reordering bound of the channel is δ. Suppose that t < 2δ+1, which we can rearrange

14



to be δ > t−1
2

, and that there is an RMTP algorithm that will work without two-way

communication. Let us examine two cases:

Case 1: input = M0M1 ... Mt

sm = ml0ml1 ... ml t−1
2

ml t−1
2

... mlt−1mlt ...

Since there are t+1 high-level messages sent, there will be at least one pair of messages

that share a tag in the first t + 1 low-level messages sent. Without loss of generality, let’s

assume that ml0 and mlt share a tag.

rm = ml1 ... ml t−1
2

ml0mltml t+1
2

... mlt−1 ...

Since δ > t−1
2

, by the definition of δ it is possible for ml0 to appear after ml t−1
2

and for

mlt to appear before ml t+1
2

.

Case 2: input = M0M1 ... Mt−1

sm = ml0ml1 ... ml t−1
2

ml t+1
2

... mlt−2mlt−1 ...

Notice that one fewer high-level message was input.

rm = ml1 ... ml t−1
2

ml0ml0ml t+1
2

... mlt−1 ...

Notice that the only difference in rm between the two cases is that in Case 2, ml0

is received again instead of mlt . But since ml0 and mlt share a tag, the two cases have

identical sequences of tags received by the Receiver. By Lemma 1, the Receiver does not

know whether t or t+ 1 high-level messages were sent, and therefore cannot differentiate

between the high-level input in Case 1 and the high-level input in Case 2. In Case 2, one

of the ml0 must be discarded in the Receiver algorithm, but in Case 1, neither ml0 nor mlt

should be discarded. Since the two cases result in identical tag sequences but different

actions, there is a contradiction, and Lemma 2 is proven.

When expressing tags in terms of bits, the maximum number of unique tags is 2B. If

the algorithm is going to make use of every available bit, then the number of tags will

always be even, because all powers of two with positive integer exponents are even. In
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this case, Lemma 2 does not apply, because it relied on the number of tags being odd.

However, we can prove something very similar when the number of tags is even.

Lemma 3. For a given channel with unbounded but finite duplication, no loss, no corrup-

tion, and an unknown reordering bound δ, if t is even, and if t < 2δ, then no Tag Class

algorithm will work on this particular channel.

Proof. We will prove by contradiction. Suppose we are using t tags, where t is even,

and the reordering bound of the channel is δ. Suppose that t < 2δ, which we can rear-

range to be δ > t
2
, and that there is an RMTP algorithm that will work without two-way

communication. Let us examine two cases:

Case 1: input = M0M1 ... Mt

sm = ml0ml1 ... ml t−2
2

ml t
2

ml t+2
2

... mlt−1mlt ...

Since there are t+1 high-level messages sent, there will be at least one pair of messages

that share a tag in the first t + 1 low-level messages sent. Without loss of generality, let’s

assume that ml0 and mlt share a tag.

rm = ml1 ... ml t−2
2

ml t
2

ml0mltml t+2
2

... mlt−1 ...

Since δ > t
2
, by the definition of δ it is possible for ml0 to appear after ml t

2

and for mlt

to appear before ml t+2
2

.

Case 2: input = M0M1 ... Mt−1

sm = ml0ml1 ... ml t−2
2

ml t
2

ml t+2
2

... mlt−2mlt−1 ...

Notice that one fewer high-level message was input.

rm = ml1 ... ml t−2
2

ml t
2

ml0ml0ml t+2
2

... mlt−1 ...

Notice that the only difference in rm between the two cases is that in Case 2, ml0

is received again instead of mlt . But since ml0 and mlt share a tag, the two cases have

identical sequences of tags received by the Receiver. By Lemma 1, the Receiver does not

know whether t or t+ 1 high-level messages were sent, and therefore cannot differentiate
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between the high-level input in Case 1 and the high-level input in Case 2. In Case 2, one

of the ml0 must be discarded in the Receiver algorithm, but in Case 1, neither ml0 nor mlt

should be discarded. Since the two cases result in identical tag sequences but different

actions, there is a contradiction, and Lemma 3 is proven.

Theorem 2. If the channel exhibits unbounded but finite duplication, reordering bounded

by an unknown bound δ, no loss, and no corruption, there exists no correct Tag Class

algorithm for the RMTP.

Proof. Lemma 2 and Lemma 3 show that no matter how many unique tags are used in a

Tag Class algorithm (i.e. no matter the value of t), if t is sufficiently small in relation to

the reordering bound, then no algorithm will work. Although an algorithm could work on

a particular channel if there are enough tags, there could exist a different channel with a

large enough reordering bound to render the number of tags too small.

3.4 Introduction to Backchannel Class and the Adjustment Interface

We will now examine another class of algorithms that is a superset of the Tag Class.

This class, which we will call the Backchannel Class, allows for two-way communication;

that is, the Receiver is allowed to send messages to the Sender, which can then act upon

the information in those messages. We also allow for different types of messages to be

sent between the Sender and Receiver. In addition the format of low-level messages in

the Tag Class, low-level messages in the Backchannel Class can contain other information

that does not pertain to a high-level message. However, the algorithms in the Backchannel

Class are not permitted to send partial high-level messages; high-level messages can only

be sent as the whole message appended with some tag.

The most obvious use for two-way communication with regards to working with an

unknown δ is for the Receiver to try to detect some minimum value of δ, and based on

that, determine whether the Sender used enough unique tags to be able to solve the RMTP.
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If too few tags were used, the Receiver could send a message to the Sender that the number

of tags needs to be increased. The Sender could then start appending its messages with

larger tags to accommodate the greater number of unique tags, and inform the Receiver of

the new size.

Note that this hypothetical method would not necessarily guarantee a totally correct

algorithm, but over time, the algorithm would "tend towards correctness" as the number of

tags is adjusted again and again. The only way that the output could be guaranteed to be

correct is if at some point the Sender knows that the high-level input is complete and thus

has knowledge of the entire sequence of high-level messages (in other words, the Sender

knows that a particular SEND event is the final SEND event). It is also important to

realize that any messages that the Receiver sends to the message, as well as any that the

Sender sends to the Receiver concerning a new tag size, are subject to the same undesirable

channel behavior that every other message is.

We define "tending towards correctness" as follows. If a Backchannel algorithm tends

towards correctness, then for an infinite input sequence, the input and output sequences

share some infinite suffix. In other words, at some point in the input sequence, all sub-

sequent messages will appear in the correct order beginning at some point in the output

sequence.

An algorithm that uses two-way communication in this way can be encapsulated with

an interface on top of the Sender and Receiver. We will call this interface the Adjustment

Interface. Both the Sender and Receiver contain a variable for t, the number of unique

tags currently in use, as well as for γ, the assumed value of δ. The Receiver contains

a variable called tagQuality, which is initially set to "unknown." As the Receiver gets

low-level messages, at some interval will run the Analyze() routine, which examines the

tags of the messages that have been received (in other words, rm
′) to detect a tag that

contradicts γ. If a contradiction to γ is detected, tagQuality is set to "bad", the Receiver
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increases t and γ by some amounts, and the Receiver sends a "BAD" message to the

Sender. Then tagQuality is reset to "unknown." Upon receipt of the "BAD" message, the

Sender increases t and γ by the same amounts and resumes operation with a new number

of unique tags. Any implementation of the Adjustment Interface must account for the

channel’s undesirable behavior.

We will show that if the number of tags is lower than the reordering bound itself, no

Backchannel algorithm can rely on the Adjustment Interface to tend towards correctness.

Note that this is a tighter restriction of the number of tags compared to δ than those con-

sidered in the Tag Class lemmas.

3.5 Impossibility Proof for the Backchannel Class with Adjustment Interface

Theorem 3. If the channel exhibits unbounded but finite duplication, reordering bounded

by an unknown bound δ, no loss, and no corruption, no Backchannel algorithm can rely

on the Adjustment Interface to tend towards correctness.

Proof. Suppose there is a Backchannel Receiver that can correctly determine when it is

necessary to set tagQuality to "bad." In other words, the Receiver’s Analyze() routine

works. We examine the scenario in which δ > t and the high-level input is M0M1...Mt.

The proof depends on an integer relative to t that is expressed differently based on whether

t is odd or even. We will call this value thalf . When t is even, thalf = t
2
. When t is odd,

thalf =
t−1
2

.

If a message appears thalf or more places out of order (meaning that δ > thalf ), then

Analyze() sets tagQuality to "bad". This is because by Lemmas 2 and 3, if δ > thalf , there

are not enough tags to correctly solve the RMTP. The low-level sequence, rm, is at least

t+ 1 messages long since t+ 1 high-level messages were sent. By the definition of δ, the

first t+ 1 messages are trivially enabled. Since there are t possible tags, but at least t+ 1

messages, there will be at least one pair of low-level messages that share a tag in the first
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t+1 messages. Note that we are referring to a sequence of low-level messages before they

are sent through the channel (sm), not after (rm).

No matter which pair of messages share a tag, there are at least two possible rm that

have the same sequence of tags but from which a correct Analyze() routine would draw

different conclusions. In other words, a correct Adjustment Interface would set tagQuality

to "bad" for one possible rm but would not for the other possible rm. The function below,

called ProduceContradiction, can produce two such rm for any pair of messages in sm

that share a tag. We will refer to the pair of messages that share a tag as the sharing pair.

In the function, SeqOK denotes the rm for which the Adjustment Interface’s Ana-

lyze() routine does not change the value of tagQuality. SeqBad denotes the rm for which

the Analyze() routine sets tagQuality to "bad". Note that the parameters x and y are posi-

tions of the message in sm, and are therefore determined by the Sender algorithm, not the

channel’s behavior. A precondition of the function is that 0 ≤ x < y ≤ t.

ProduceContradiction(x, y):

1: Seq = ml0ml1 ... mlt−1mlt //this is sm

2: if (y − x < thalf ) then //we must reposition one of the messages in the sharing

pair so that they are at least thalf spaces apart

3: if (y + thalf − 1 > t) then //if mly is too close to the end of sm, reposition mlx

4: SeqOK = swap mlx−thalf+1 and mlx in Seq

5: else //reposition mly to be at least thalf spaces away from mlx

6: SeqOK = swap mly and mly+thalf−1 in Seq

7: end if

8: else //if the sharing pair are at least thalf spaces apart, swapping their positions

will show that δ > thalf

9: SeqOK = Seq
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10: end if

11: SeqBad = swap mlx and mly in SeqOK //this swap causes a message in

SeqBad to be at least thalf places out of order

12: return SeqOK and SeqBad

end function

The intuition for the function ProduceContradiction can be explained as follows.

If the sharing pair are at least thalf spaces apart in sm, then if the channel swaps their

positions for rm (SeqBad), the Analyze() will know that messages appeared thalf or more

places out of order. Therefore δ > thalf and tagQuality should be set to bad. However, if

the channel does not exhibit any bad behavior for this input and rm equals sm (SeqOK),

tagQuality should not be set to bad because Analyze() cannot tell that δ > thalf . The

contradiction arises based on the fact that the rm in these two cases have the same sequence

of tags since the only difference between them is the sharing pair swapping positions.

If the sharing pair are less than thalf spaces apart, it is a little trickier to show that a

contradiction is possible. The key is that it is always possible for the sharing pair to be

repositioned by the channel to be at least thalf spaces apart by only moving one of the

messages fewer than thalf spaces. The rm for which this repositioning is the only change

from sm (SeqOK) does not indicate to Analyze() to set tagQuality to "bad" because the

reordering that takes place is not thalf or greater. If in another rm (SeqBad) the sharing

pair are in swapped positions from the repositioned rm (SeqOK), Analyze() must set

tagQuality to "bad" since the message that was swapped in the repositioning but is not part

of the sharing pair has a position in sm that is at least thalf different from the position in sm

of the message in the sharing pair that was not repositioned. Once again, the contradiction

arises based on the fact that the rm in these two cases have the same sequence of tags since

the only difference between them is two messages with the same tag swapping positions.
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Since a potential contradiction is unavoidable regardless of whether t is odd or even,

we conclude that our hypothetical Receiver algorithm that has a working Analyze() routine

that can reliably set tagQuality to "bad" does not exist.

Since t < δ, it follows that t < 2δ and t < 2δ + 1. Based on Theorem 2, if t < 2δ + 1

for an odd t, or t < 2δ for an even t, then a Tag Class algorithm cannot work. If tagQuality

is never set to "bad", then no two-way communication will take place, so the algorithm will

functionally behave as a Tag Class algorithm. By these inequalities, and the fact that the

algorithm will behave as a Tag Class algorithm, the algorithm will continue to produce

incorrect output even for an infinite input sequence and will not tend towards correctness.

Therefore if t < δ, then the Adjustment Interface cannot be relied upon, and the

Backchannel algorithm may remain incorrect without ever tending towards correctness.

Since there is no way to guarantee that the channel will not have t < δ, Theorem 3 is

proven.
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4. AN IMPLEMENTATION OF THE ADJUSTMENT INTERFACE

GIVEN A RANGE FOR THE REORDERING BOUND

4.1 Background

Although there is currently no known method for solving the RMTP with a totally

unknown reordering bound, it is possible to implement the Adjustment Interface and tend

towards correctness if the unknown reordering bound lies within a known range; i.e., we

know that a ≤ δ ≤ b, where a and b are known positive integers.

In order to implement the Adjustment Interface, we need a method for setting tagQual-

ity to "bad" at the appropriate time. This algorithm accomplishes this using a data structure

in the Receiver called expected_enabled. This data structure is a map that contains (tag,

bool) key-value pairs, and represents the enabled-set of tags if the guess at the reordering

bound is correct. Using a guess at the reordering bound (γ), and the number of unique tags

in use (t), the ANALY ZE() routine will update expected_enabled after every tag that is

received from the channel. If the received tag is not in expected_enabled, then tagQuality

is set to "bad", since clearly the reordering bound guess is incorrect if a tag is received that

would not have been enabled if the guess were correct.

Given a ≤ δ ≤ b, if b is not too much larger than a, the RMTP could be solved

by assuming the worst case scenario, that δ = b. This is because by Theorem 2, if t is

great enough to solve the RMTP when δ = b, then t ≥ 2b, and 2b is greater than the

number of tags needed for any value of δ that is less than b. Therefore, this algorithm

is situationally useful, where the user wants to minimize the size of tags appended to the

low-level messages. Given a known range that δ can fall within, the algorithm will guess

the lowest possible value of δ so that if this guess is correct, the tag size in bits is the
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smallest it can be.

But how should the algorithm select the number of tags to use initially? As we showed

in Theorem 3, the number of tags t must be at least as large as the reordering bound δ.

However, this does not necessarily mean that if δ ≤ t < 2δ, then the Adjustment Interface

will always work.

This implementation of the Adjustment Interface will not work if it is at all possible for

a tag to be in expected_enabled, and at the same time, for two different messages with that

tag to be enabled in reality. The expected_enabled data structure will change in different

ways depending on which of those two messages will be received, and it is impossible to

reliably predict which one will be received. It is valid for there to be two messages with

the same tag in E if that tag is not in expected_enabled, because then no matter which

of the two messages is received, tagQuality will be set to "bad", and expected_enabled

becomes irrelevant until the number of tags has been increased.

For every available space in the real enabled-set (E) in excess of the number of tags, it is

possible that a duplicate tag occupies that space. Therefore it is possible that E can contain

up to MaxSize(E)− t duplicate tags at once. The difference between the number of tags

and the maximum size of expected_enabled needs to be at leastMaxSize(E)−t, because

there need to always be at least that many tags that cannot be in expected_enabled. An

implementation of the Adjustment Interface in this manner can then ensure that the tags

that are duplicate in E are always the tags that are absent from expected_enabled. We can

express this with the inequality:

t−MaxSize(expected_enabled) ≥MaxSize(E)− t

We know from Property 9 that the maximum size of E is 2δ, and therefore the maxi-

mum size of expected_enabled is 2γ. So the inequality can be rearranged to:

t− 2γ ≥ 2δ − t

2t ≥ 2δ + 2γ
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t ≥ δ + γ

Initially our guess γ is the lowest possible value of δ, but we need to account for the

possibility that δ is in fact its highest possible value. Therefore, given a ≤ δ ≤ b, we set

our initial number of tags to be t = δ + γ = b+ a.

For example, given 10 ≤ δ ≤ 20, the initial number of tags would be t = 20+10 = 30.

It only takes 5 bits to express 30 unique tags. If δ falls in the range [13, 20], then the

Adjustment Interface implementation will eventually increase the number of tags to the

range [33, 40], which will require 6 bits. However, if used on channels for which δ falls

in the range [10, 12], the number of tags used once γ = δ will be in the range [30, 32],

requiring only 5 bits and saving a bit per low-level message that would be used if δ had

been assumed to be the highest possible value, 20, from the onset. It is not possible to save

more than one bit of space per message using this algorithm, because the ratio of the largest

and smallest possible values of t, which is 2b
a+b

, cannot be greater than 2, and increasing t

by a factor of 2 requires using one more bit. Therefore, the algorithm may be most useful

when the message contents are very small and a very large number of messages must be

stored.

4.2 High-Level Explanation of the Algorithm

This algorithm that implements the Adjustment Interface is heavily based on the KJ

Protocol [5]. We provide pseudocode below for the Sender, Channel, and Receiver algo-

rithms, as well as some procedures that the Receiver algorithm executes. The constants

delta_min and delta_max are the bounds on the known range of δ, and are known by the

Sender and Receiver. Instances of δ in the Sender and Receiver have been replaced with

the guess, γ. The variable AuxA is an auxiliary counter attached to each message that is

useful for analyzing and testing the algorithm. However, no part of the algorithm depends

on the value of AuxA, and a true implementation of the algorithm that has a bound on the
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message size would not use them. One key difference between this algorithm and the KJ

Protocol is that in addition to a bounded counter, a message’s tag also consists of t, the

number of unique tags in use when the message was sent across the channel. This t can

be considered a generation identifier for the low-level messages, if all the messages sent

between each correction of γ are considered a generation.

The SEND event is mostly unchanged from the KJ Protocol. A high-level message is

converted to a low-level message by appending to the message a bounded counter and the

number of tags currently in use. The low-level message is entered into the send_pending

queue, and the bounded counter and auxiliary counter variables are incremented. The

send event as an output event for the Sender is unchanged from the KJ Protocol; the

head of send_pending is removed and sent across the channel. The receive event as an

input event to the Sender is new. The message received by the Sender only consists of

an integer that represents the new guess at the reordering bound. If this number is greater

than the Sender’s current guess γ, then γ and the number of tags are increased, the bounded

counter variable is reset, and all the messages in send_pending are updated with the new

bounded counters (which will have one more unique value than before). The reordering

and duplication of these messages sent from the Receiver to the Sender is not problematic,

since the value of γ will only ever increase, so larger values that are received by the Sender

are known to be more recent.

The Channel algorithm is unchanged from the KJ Protocol. However, this algorithm

uses two Channel algorithms. One Channel has input events that are the Sender’s output

events and output events that are the Receiver’s input events. The other Channel has input

events that are the Receiver’s output events and output events that are the Sender’s input

events.

The Receiver has undergone the most significant changes from the KJ Protocol, since

most of the Adjustment Interface implementation is in the Receiver. In the receive in-
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put event to the Receiver, if the received low-level message has an older t value, then

it is placed at the end of the lower_tagged queue. Otherwise, it is analyzed by the

ANALY ZE routine to see if the bounded counter of the message contradicts the assumed

value of the reordering bound, γ. If γ is not proven false, then the expected_enabled

data structure is updated by removing tags that have been disabled by the receipt of the

newest low-level message and by inserting tags that have been enabled by the receipt of

the newest low-level message. Then the algorithm attempts to insert the message into the

receive_pending array; the code that attempts this insertion is taken from the KJ Proto-

col. If γ is proven false, i.e. the bounded counter is not in the expected_enabled data

structure, then the message is placed at the end of the lower_tagged queue, but not before

resetting most of the Receiver’s local variables and data structures. Also at this point, γ

and the number of unique tags are increased, and a flag is set that enables the Receiver’s

send output event. This send event simply sends the current back to the Sender, and the

flag is disabled.

Finally, the RECEIV E event is similar to in the KJ Protocol. The difference is that

if the lower_tagged queue contains any messages, these have priority and are converted

to high-level messages first. This means that once a value of t is found to be too low,

no attempt is made to fix the channel’s duplication and reordering of low-level messages

with that value of t. The high-level output will probably be incorrect until messages with

the newest value of t begin to be received. This process will continue until γ = δ, at

which all subsequent high-level output will be correct. In other words, the algorithm

tends towards correctness, as described in the earlier section. If the lower_tagged queue

is empty, then the RECEIV E event behaves as in the KJ Protocol, only outputting the

head of receive_pending if its bounded counter matches the Receiver’s bounded counter

variable, and incrementing that variable if the message is output.
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4.3 Pseudocode for the Algorithtm

Algorithm 1: Algorithm for the Sender

1: counterA, an integer, initially 0

2: send_pending, a FIFO queue, initially empty

3: AuxA, an integer, initially 0

4: γ, an integer, initially delta_min

5: numTags, an integer, initially delta_min+ delta_max

6: input events:

7: event SEND(m)

8: effects:

9: send_pending.enq((m, counterA, numTags,AuxA)

10: counterA ← (counterA + 1) mod numTags

11: AuxA ← AuxA + 1

12: end event

13: event receive(c)

14: effects:

15: if c > γ then

16: γ ← c

17: numTags← γ + delta_max

18: counterA ← 0

19: for i← 0 to |sendpending| − 1 do

20: send_pending.deq((m, ∗, ∗))

21: send_pending.enq((m, counterA, numTags))

22: counterA ← (counterA + 1) mod numTags

23: end for
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24: end if

25: end event

26: output events:

27: event send(m, c, t, a)

28: preconditions:

29: (m, c, t, a) is at the head of send_pending

30: effects:

31: remove (m, c, t, a) from send_pending

32: end event
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Algorithm 2: Algorithm for the Channel

1: in_transit, array, initially empty

2: input events:

3: event send(m)

4: effects:

5: insert (m,False) at the end of in_transit

6: end event

7: output events:

8: preconditions:

9: (m, y) ∈ in_transit at some index l for some y

10: for all (m′, y′) ∈ in_transit with index ≤ l − δ, y′ = True

11: effects:

12: remove from in_transit all entries with index ≤ l − δ

13: y ← True

14: end event
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Algorithm 3: Algorithm for the Receiver

1: counterB, an integer, initially 0

2: receive_pending, array, initially empty

3: delivered, a FIFO queue, initially empty

4: lower_tagged, a FIFO queue, initially empty

5: γ, an integer, initially delta_min

6: numTags, an integer, initially delta_min+ delta_max

7: sendBackNeeded, a boolean, initially False

8: expected_enabled, a map, initially contains all key-value pairs (i 7→ False for all

i← 0 to delta_min− 1

9: input events:

10: event receive(m, c, t, a)

11: effects:

12: if t < numTags then

13: lower_tagged.enq((m, c, t, a))

14: else if ANALY ZE(c) then

15: ATTEMPTADDTORP (m, c, t, a)

16: else

17: lower_tagged.enq((m, c, t, a))

18: end if

19: end event

20: output events:

21: event send(c)

22: preconditions:

23: sendBackNeeded = True
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24: effects:

25: sendBackNeeded← False

26: end event

27: event RECEIV E(m)

28: preconditions:

29: ((m, c, t, a) is at the head of receive_pending ∧ c = counterB)∨ (m, c, t, a) is at the

head of lower_tagged

30: effects:

31: if |lower_tagged| > 0 then

32: remove (m, c, t, a) from lower_tagged

33: else

34: remove (m, c, t, a) from receive_pending

35: counterB ← (counterB + 1) mod numTags

36: delivered.enq((m, c, t, a))

37: if |delivered| = γ + 1 then

38: delivered.deq()

39: end if

40: end if

41: end event
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Algorithm 4: Procedures used by the Receiver in the receive event

1: procedure ANALY ZE(c)

2: if (c 7→ False) ∈ expected_enabled then

3: expected_enabled[c]← True

4: remove all keys i from expected_enabled, where i is a tag that should no longer

be enabled

5: insert all key-value pairs (j 7→ False) in expected_enabled, where j is a tag that

should now be enabled

6: return True

7: else if (c 7→ ∗) /∈ expected_enabled then

8: sendBackNeeded← True

9: counterB ← 0

10: γ ← γ + 1

11: numTags← γ + delta_max

12: expected_enabled.clear()

13: insert all key-value pairs (i 7→ False) in expected_enabled, for all i← 0 to γ−1

14: delivered.clear()

15: lower_tagged← lower_tagged concat receive_pending

16: receive_pending.clear()

17: return False

18: end if

19: end procedure

20: procedure ATTEMPTADDTORP (m, c, t, a)

21: total_msgs← delivered concat receive_pending

22: if (∗, c, ∗) /∈ total_msgs then
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23: α← γ

24: else

25: α← number of entries after most recent occurrence of (∗, c, ∗) in total_msgs

26: end if

27: if α ≥ γ then

28: ADDTORECEIV EPENDING(m, c, t, a)

29: end if

30: end procedure

31: procedure ADDTORECEIV EPENDING(m, c, t, a)

32: if |receive_pending| = 0 then

33: insert (m, c, t, a) in receive_pending

34: return

35: end if

36: current← tag of the most recent message in receive_pending

37: if MLT (current, c) then

38: insert (m, c, t, a) at the end of receive_pending

39: return

40: end if

41: for i← |receive_pending| − 1 to 1 do

42: current← tag of the message at index i in receive_pending

43: next← tag of the message at index i− 1 in receive_pending

44: if MLT (next, c) ∧MLT (c, current) then

45: insert (m, c, t, a) in receive_pending between the messages at indices i − 1

and i

46: return

47: end if
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48: end for

49: next← tag of the message at index 0 in receive_pending

50: if MLT (c, next) then

51: insert (m, c, t, a) in receive_pending at index 0

52: return

53: end if

54: end procedure

55: procedure MLT (c1, c2)

56: if c1 < c2 then

57: return c2 − c1 ≤ γ

58: end if

59: return c1 − c2 > γ

60: end procedure
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5. CONCLUSION AND FURTHER RESEARCH

Prior to this paper, analysis and study of the RMTP with a channel that exhibits

bounded reordering and unbounded but finite duplication assumed that the bound on re-

ordering was known. The theorems and proofs in this paper show that with various gen-

eral classes of algorithms, the RMTP cannot be solved under these circumstances with an

unknown reordering bound. This paper also provides an algorithm that extends the KJ

Protocol [5], and given a known range of values between which the reordering bound can

lie, can use the minimum amount of memory per message required to solve the RMTP,

and can increase the size of the message tags if necessary.

Further research in this area could involve several tasks, including developing a cor-

rectness proof for the algorithm implementation of the Adjustment Interface; an improve-

ment, expansion, or optimization of the aforementioned algorithm; or a general impos-

sibility proof that proves that the RMTP cannot be solved with an unknown reordering

bound under any circumstances. I strongly believe that this last task is possible, and may

be simpler than I have long suspected. If the low-level message sequences can be mapped

to certain high-level outputs, without regard to the contents of the low-level messages,

and a contradiction can be shown (i.e. a low-level sequence produces a certain output but

should produce another to be correct), then it may be proven that no algorithm can solve

the RMTP with an unknown reordering bound.
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