
DYNAMIC QUALITY OF SERVICE IN SOFTWARE-DEFINED 

NETWORKS 

 

 

An Undergraduate Research Scholars Thesis 

by 

THOMAS STEP 

 

 

Submitted to the Undergraduate Research Scholars program at  
Texas A&M University 

in partial fulfillment of the requirements for the designation as an 
 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by Research Advisor:              Dr. Guofei Gu 

 

 

May 2018 

 

 

Major: Computer Engineering 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/187126556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................................. 1 

DEDICATION .............................................................................................................................. 2 

ACKNOWLEDGMENTS ............................................................................................................ 3 

NOMENCLATURE ..................................................................................................................... 4 

CHAPTER  

I. INTRODUCTION ...................................................................................................... 5 

II. METHODS ............................................................................................................... 11 

III. RESULTS ................................................................................................................. 16 

IV. CONCLUSION ......................................................................................................... 23 

REFERENCES ........................................................................................................................... 28 

  



1 

ABSTRACT 

Dynamic Quality of Service in Software-defined Networks 
 
 

Thomas Step 
Department of Computer Science and Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Guofei Gu 
Department of Computer Science and Engineering 

Texas A&M University 
 
 

Quality of service is a necessary function of today’s networks. A proper quality of service 

ensures that packets are delivered effectively and fast. In traditional networks, quality of service 

has to be manually configured on each piece of hardware in the network. This manual procedure 

makes the process of implementing a quality of service in a network costly. Not to mention, if 

part of the configuration is incorrect, or a mistake is made during the configuration, everything 

must be corrected on each piece of affected hardware. In this paper, I will be exploring the effect 

of using a software-defined network controller and a quality of service to handle certain flows of 

traffic in a network. The main tool used is the OpenFlow defined queue. Queues and flow rules 

will allow a switch to control individual flows and the network resources that each flow 

consumes. Factors that will be explored are the bandwidth usage of a flow and the time taken by 

the network to implement new flow rules. While bandwidth usage is taken into account in 

traditional networks, changing a quality of service is a new dynamic. 

 

 



2 

DEDICATION 

 

 This is dedicated to my mother and father who encouraged me throughout the process as 

well as throughout my years studying at Texas A&M University, and to Bernard Natho who 

introduced me to Texas A&M University and has been a supporter of my work and studies. 

  



3 

ACKNOWLEDGEMENTS  

 

I would like to thank my honors advisor, Dr. Welch, for helping and supporting me 

during my years here at Texas A&M University.  

Another thank you to my father who helped me through the process of research and 

writing a thesis. 

  



4 

NOMENCLATURE  

 

QoS  Quality of Service 

VoIP  Voice Over IP  

SDN  Software-defined Network 

OVS  Open vSwitch 

Mbps  Megabit per second 

Gbps  Gigabit per second  



5 

CHAPTER I 

INTRODUCTION 

 

Networks deal with traffic from different connections made from one computer to 

another. Traffic is made up of a continuous stream of pieces of data. Those pieces of data are 

called packets and can consist of pieces of a website being downloaded, frames of a video being 

streamed, or portions of a voice call happening over the Internet. Another name for traffic is 

flow. Flows are the basis of how the software-defined networking protocol OpenFlow is able to 

control a network. A network needs a quality of service in order to utilize its resources to the 

fullest extent, and a key component in a quality of service is identifying the flows that need to be 

slowed down or allowed to move through the network as fast as they can. 

Quality of service is a necessary functionality of today’s networks. It provides certain 

types of traffic with improved bandwidth, less latency, or less jitter depending on the type of 

traffic. With Voice over IP and video streaming becoming more and more popular, quality of 

service is more relied upon to keep our networks running smoothly. For example, VoIP traffic 

needs minimal latency in order to make a phone call run smoothly and not sound jumpy. A good 

quality of service will note which packets belong to a VoIP call and make sure that those packets 

are forwarded first to minimize latency. 

In traditional networks, quality of service is manually configured on each router and 

switch. If the quality of service needs to change or is incorrectly configured on a piece of 

hardware, then someone needs to manually reconfigure it. This additional work is time 

consuming and prone to human error. One comprehensive way of solving a problem such as this 

is to use a software-defined network. A software-defined network gives an engineer more control 



6 

over an entire network from a central location because the control plane is abstracted away from 

the data plane. 

The attractiveness of software-defined networks is the decoupling of the control plane 

and the data plane. Instead of having decisions made on each individual piece of networking 

hardware, the decision making is done by a controller. The controller connects to each switch in 

the network and communicates with those switches using the OpenFlow protocol. The protocol 

allows the controller to relay any updates in the decision making, thus making configuration of 

an entire network more simplistic for an engineer. The switches in the network solely forward 

packets based on the rules given to them by the controller. 

Figure 1 shows a simple linear topology with three switches and three hosts from a 

traditional network. Something to note here is the lack of a central control plane. Instead, each 

switch possesses its own control plane for decision making. It is not explicitly highlighted, but 

the control plane and the data plane are contained within each switch. 

 

 

Figure 1. Linear Topology in a Traditional Network Environment. 

 

As previously discussed, each switch’s control plane must be configured before it can 

become part of the network. As a network grows the amount of overall time spent configuring 

switches increases with that growth. 



7 

Figure 2 shows the same linear topology but in a software-defined network environment. 

The biggest difference here is the centralized control plane, the network controller. The 

controller is represented as a server connected to each switch in the network. 

 

 

Figure 2. Linear Topology in a SDN Environment. 

 

Since the controller is responsible for all of the decision making, the switches are left 

only with moving information around the network. Data would move just as it would in the 

traditional network, but the controller’s connection to each switch enables the decision making 

changes to be communicated. The traditional idea of quality of service positively affecting how 

traffic moves through the network still applies because of this. The difference is the way in 

which a network engineer can tell the switches in the network of a change in their configuration. 

The SDN environment allows the network to be changed from the singular control point, while 

the traditional environment requires reconfiguration at every switch. 

In order to setup quality of service on switches that speak using the OpenFlow protocol, 

the switch must first have queues added to it manually. This does not take much time, and other 

necessary setup can be completed at the same time that the queues are added. After the switch is 



8 

setup, it can be deployed into the network. At this point in time, the controller would start to 

communicate with the switch to send and receive messages using the OpenFlow protocol. The 

controller can be programed to tell the switch of a certain quality of service policy based on 

different events that have transpired or a given situation within the network.  

During the configuration of a quality of service on a traditional network the priorities of 

certain traffic must be statically defined and cannot change throughout the course of a certain 

deployment unless every single switch and router is reconfigured. With a software-defined 

network, multiple policies with different priorities for different types of traffic can be 

interchanged by simply writing a program for the controller. Some events that may warrant a 

need for change in the quality of service would be companywide emails, streaming events, or 

periodic updates. In statically defined quality of services, the priorities of those certain types of 

traffic might not be high which would cause the traffic to fall behind in queues if the network 

was already congested. If a network were told to let those certain types of traffic through before 

they were flooded into the network, the overall traffic flow would be improved. This research 

will explore this new concept. During certain times of the day or during certain events, a network 

may benefit by changing the priorities of different traffic flows in order to run more efficiently. 

This idea stems from the fascination with software-defined networks as a whole. Topics 

surrounding this technology include transforming traditional networking concepts into a more 

dynamic and programmable setting. Quality of service is one of these traditional networking 

concepts that can be applied to a software-defined network environment to possibly benefit from 

the inherent programmability. Traditionally, a quality of service must be carefully planned out by 

network engineers to meet the needs of a network because it should only be configured on 

networking hardware once. Part of the planning process is weighing advantages and 



9 

disadvantages for putting different priorities on packets. However, now that software-defined 

networks offer a way to alter an entire network from a central location, quality of service can be 

thought of in a different light. If a network wide quality of service can be manipulated quickly, 

the advantages given to certain flows will not detract from other types of flows. The possibility 

of using a network to its fullest potential at all times is not possible with a static quality of 

service in a traditional network. There will always be times when the quality of service policies 

could be better. In a software-defined network with a dynamic quality of service, this is possibly 

achievable. By changing the policies with respect to a given situation, a network can possibly 

work to its fullest potential for a greater amount of time than a traditional network could. 

Quality of service in software-defined networks has already been a topic discussed within 

the networking community. Ryan Wallner has worked to create an experimental version of 

quality of service for the Floodlight controller [1] [3]. The beta version contains type of service 

as well as other common ways to distinguish traffic in quality of service policies. The module 

keeps track of policies and pushes any new updates to switches in the network. This module 

simply applies the traditional concept of quality of service to software-defined networks.  

Other researchers have taken the traditional concept of quality of service and completely 

redesigned it such as OpenQoS [5]. Instead of using the more common methods of either IntServ 

or DiffServ, OpenQoS reroutes traffic based on a specific flow’s needs. This type of quality of 

service is definitely dynamic in the sense of routing, but it does not involve changing quality of 

service policies. However, this type of dynamic rerouting in tandem with policy changing could 

possibly be more beneficial for a network overall. 

This research does not redefine quality of service but explores new ways of making the 

most of an existing QoS with some enhancements. I will be observing how changing a given set 



10 

of quality of service policies affects the network as a whole in terms of speed and reliability. As I 

have previously mentioned, a network may need to change traffic priorities if presented with a 

given situation. The situation is variable but can include a certain time of day or network wide 

event. The certain event may benefit from a new network wide quality of service or even just 

policies in a certain section of that network. Using a software-defined network together with a 

changing quality of service can possibly increase the efficiency of a network over a given period 

of time, and I will investigate the feasibility of changing policies to possibly benefit a network in 

situations like these. 

  



11 

CHAPTER II 

METHODS 

 

The main testing revolved around how efficiently and reliably we can change the 

network’s quality of service. In an actual network, a network engineer would want to also test 

how different types of traffic utilized the newfound benefit of a policy. For example, if a server 

needed to send out updates to every computer on a network, the traffic could be given a higher 

priority. However, if the traffic never fully utilized the bandwidth freedom that it is given, then 

the change in policies would be a waste. We would also need to know how or if other flows in 

the network are negatively affected. Measuring the usefulness of changing certain quality of 

service policies is hard to quantify. The amount of time saved with a new policy in place versus 

the old policy is a good indicator of the usefulness of a swap. However, the actual time saved 

depends heavily on other factors that cannot be controlled by the network controller. Those 

factors include average bandwidth usage and duration that a policy change is in place. In these 

tests, I will assume that the policy change is beneficial overall to all flows. This will allow me to 

simply test the efficiency of those changes. 

Another observable measurement is the amount of time taken by the controller to inform 

the OpenFlow enabled switches regarding the policy exchange. This measurement is strictly 

overhead. Taking a start time at the controller and measuring the end time when the switch 

receives and implements the new flow rule can help us measure this overhead. It would be up to 

the network engineer to determine whether or not the network would benefit from changing the 

quality of service policies or to just remain in the state that it is in. 



12 

 In order to test my hypotheses on feasibility, I used a single computer to run the 

Floodlight controller and a virtualized network using Mininet. The computer used for this 

research is an Apple MacBook Pro with a 2.4 GHz Intel Core i5 processor with 8 GB of 1600 

MHz DDR3 RAM. The laptop was using macOS High Sierra Version 10.13.2 as its operating 

system. The controller was a forked version of the original Floodlight controller with its own 

beta version of a quality of service implemented. The exact code can be found at the appropriate 

GitHub repository [1]. Mininet was used to virtualize a test network. I used a virtual machine 

that was provided by Mininet at their website [2]. The virtual machine was run using VirtualBox 

version 5.1.26. I first started the controller using a command from the directory where the 

controller code was located. After the controller was started I remotely started the Mininet 

virtualized network by using an SSH session to connect to the virtual machine. One topology 

used for the network was a linear topology of three OVS switches; each switch had one 

connected host. Once the network was running and the connectivity was tested using built in 

Mininet functions, I added queues to the switches using a script that I created. The script adds 

queues to each switch in the network. This is the one step that has to be configured manually by 

a network engineer before the switch can be deployed into the network. Most switches now need 

more configuration than this before they are deployed, so adding in this simple step would most 

likely not demand more time from an engineer than is already necessary.  

I changed the quality of service policies through the REST API provided by Floodlight. I 

found this to be the most time efficient way of manipulating a quality of service in my case. I 

wrote a program in Python that allowed me to add and delete rules from the switches’ flow 

tables, while also allowing the network to continue running. This program requires the 

appropriate queues to already be installed on the switches. 



13 

 After the switches in the network had the queues implemented on them, I tested the 

bandwidth of a connection using the iperf tool on the Mininet virtual machine. Iperf is commonly 

used to test maximum and minimum bandwidth between two connected hosts on a network. 

Using iperf, I could verify that the queues were correctly configured on the switches that I 

deployed into the network. Iperf can also verify that the quality of service policy is properly 

working on the affected flows. By measuring the bandwidth of traffic from one host to another 

before and after a policy is pushed to a switch, we can determine if the policy was enacted and 

exactly how long it took to be pushed from the controller to the switch. 

 Using the three switches in the network, I was able to apply a certain policy to two 

switches and observe how it affected the network as a whole. The switch that was not directly 

affected by the policy change experienced some delay due to how the network had to react.  

Figure 3 shows the setup for my tests with the three switch linear topology. This topology 

is similar to Figure 2. 

 

 

Figure 3. Three Switch Linear Topology Used for Testing. 

  Symbolizes affected interface. 

 



14 

 I have included arrows to show how and where the QoS policy changes were pushed. I 

also exchanged the server from Figure 2 for a laptop to show that the controller is indeed running 

from my laptop. The circles at the connection ports for the two outside switches connecting to 

hosts show where the QoS policy changes were enacted. Furthermore, the policy changes that I 

enacted were only supposed to affect flows between the two outermost hosts and not the middle 

host. After the policy changes are communicated from the controller on my laptop to the 

switches, the switches will enact a rule on the circled interfaces. 

 I was also able to perform similar functions on a network with more than just three 

switches. Most enterprise networks have more than three switches, so it was important to test my 

hypothesis on a larger network as well as the smaller one. For this purpose, I used a network with 

eight switches. Similar operations and policy changes were performed on this network to observe 

how the overall network reacted. Of course this is not as large as an enterprise network would be, 

but I was able to observe how the time of changing policies scaled with a larger network. 

Figure 4 shows the eight switch linear topology used in more complicated tests. This is 

still a linear topology like the one shown in Figure 3, but there are eight switches instead of just 

three. 

 

 

Figure 4. Eight Switch Topology Used for Testing. 



15 

 

 Using a larger topology allowed me to test the scalability of changing QoS policies. This 

topology was also used to test the effects having some flows belonging to a queue and other 

flows not belonging to a queue. I did not explicitly circle any interfaces in this diagram because I 

performed different types of changes to this topology.  



16 

CHAPTER III 

RESULTS 

 

Expected and unexpected benefits and drawbacks made themselves clear during testing. I 

expected that the controller could quickly and easily push a new flow rule to a switch, but I 

expected the switch to take longer to actually implement the new flow rule. Throughout multiple 

tests I observed a single policy change taking between 6.1779 and 8.8689 milliseconds as can be 

seen in Table 1. If a network needs multiple rules changed for multiple switches, this will take 

longer of course; however, observing a time of less than one second was an unexpected positive 

result. As I increased the amount of new rules to be pushed to switches, I observed a linear 

increase in time. Pushing ten rules took me between 63.0262 and 81.9299 milliseconds, and 

pushing one hundred rules took me between 604.7258 and 763.2890 milliseconds. The linear 

increase in time makes sense for this problem. The controller must make a connection with a 

different switch for each new rule and push that rule. There is definitely overhead associated 

with all of that, but the addition of a new flow rule to a switch’s table should be a constant time 

cost. The results in Table 1 show the time needed to tell the controller of the policy change and 

actually show a change on the switch for different amounts of policy changes. I ran tests on 

different amounts of policy changes because I wanted to see how this concept scaled into larger 

networks.  

 

 

 

 



17 

Table 1. Timing Results (milliseconds) for Changing Different Amounts of Policies. 

 

 

 Figure 5 is the graph of Table 1. It is obvious from Figure 5 that the results demonstrate a 

strong linear trend. I have also included a trend line. The R-squared value for this line is 0.9938, 

so I can be confident in saying that time needed to push flow rules is a linear function. My results 

show an increase of 6.2922 milliseconds for each additional flow rule change, which even 

matches up well with the timings I observed for pushing one rule. This result may change 

depending on the hardware used in the network, current traffic in the network, and link 

bandwidth between the controller and switches. All of my results were measured without any 

extra traffic in my network. I did this to measure time needed to change flow rules only because I 

was not interested in how traffic in a network affected the bandwidth between a controller and 

switches. 

 

 



18 

 

Figure 5. Timing Results for Pushing Different Amounts of Flow Rules 

 

This result alone could save an abundant amount of time for a network engineer if a 

network has been misconfigured or needs to be initially configured. If a certain quality of service 

has been implemented network wide on all of a network’s switches, there would be a lot of 

necessary reconfiguration if any part of that quality of service were misconfigured. If the 

network was a software-defined network, any part of the quality of service could quickly be 

changed if the process for a single switch takes less than one second. Observing this result can 

also give insight into how simple implementing a quality of service network wide would be. 

Instead of logging onto every switch and configuring the quality of service, the policies can be 

pushed remotely, thus using less time overall. 

This result also shows that it is possible to entirely change a network wide quality of 

service relatively quickly. Of course the amount of flow rules that need to be changed is the 

largest factor in determining how quickly this can be done. Nevertheless, this result will be a 

y	=	6.2922x	
R²	=	0.9938	

0.0000	

100.0000	

200.0000	

300.0000	

400.0000	

500.0000	

600.0000	

700.0000	

0	 20	 40	 60	 80	 100	 120	

Ti
m
e	
(m

ill
is
ec
on

ds
)	

Flow	Rule	Changes	

Time	vs.	Flow	Rule	Changes	

Time	vs.	Number	of	
Flow	Rules	

Linear	(Time	vs.	
Number	of	Flow	
Rules)	



19 

major piece to help determine whether or not a quality of service change will ultimately benefit a 

network or not. 

The queues that have been designed on the switches are what keep the traffic at 

acceptable rates. While designing the quality of service, the maximum and minimum rates for the 

queues should be taken into consideration before switch configuration. It is possible to set the 

maximum and minimum rates of a specific queue to be the same number. In this case, the switch 

will try to maintain a rate of that certain traffic to fit the given rate no matter the load on the 

network. I have observed rates with amounts of variation above and below the given rate of a 

queue, which can be seen in Table 2. Of course, my testing was conducted on a specific switch, 

so rates and the rate tolerance may change depending on the types and brands of switches used 

within a network. 

 

Table 2. Actual Rates of Flows Compared to Queue Rates 

 

 

The results seen in Table 2 are not what I expected. I expected the flow rates to remain 

fairly true to the set queue rate limits. However, I observed quite a bit of variation in the actual 

rates as a queue’s set rate limit increased. This result can be observed in Figure 6 as a graph. The 

amount of variation increases greatly in queue rate limits up to 100 Mbps, but after that threshold 

the increase of variation declines. I expected to see a constant rate of variation for this result. I 

believe that it is still possible to work with this type of result, but this observation needs to be 



20 

taken into account. At a 1 Gbps rate limit on the queue, I observed rates fluctuating 26 Mbps. A 

queue rate limit of 26 Mbps provides for a 3.44% tolerance, while a queue rate limit of 2 Mbps 

results in 50% tolerance. I calculated tolerance as the ratio of range to average rate, and I expect 

tolerance to remain lower for higher queue rate limits. 

 

 

Figure 6. Flow Rate Range Compared to Rate Limit 

 

Another interesting result, which can be seen in Table 2, is the average rate of the flows. I 

expected the average rate to remain closer to the set rate limit, but this was not the case. Figure 7 

shows the average rate of a flow versus the queue’s upper rate limit. This graph shows a strong 

linear trend. The cause of this may possibly be internal and require more research into why this is 

happening. Nevertheless, the linear trend may possibly help network engineers determine what 

value of the queue should be configured in order to achieve the desired rate. 

 

0.0000	

5.0000	

10.0000	

15.0000	

20.0000	

25.0000	

30.0000	

0	 200	 400	 600	 800	 1000	 1200	

Ra
ng
e	
(M

bp
s)
	

Upper	Bound	(Mbps)	

Range	vs.	Upper	Bound	

Range	vs.	
Upper	Bound	



21 

 

Figure 7. Average Flow Rate Compared to Queue Rate Limit. 

 

Assigning two traffic flows to the same queue on a switch will ensure that both flows 

receive similar minimum and maximum bandwidth. Flooding a network with traffic without 

assigning flows to specific queues does not ensure this; the traffic is not even given equal priority 

in the network but, instead, is given preference depending on when the flow was established. 

Ensuring that traffic is given the correct priority requires a queue with the correct maximum and 

minimum rates allowed and a flow rule that directs traffic to the appropriate queues. 

Another way that traffic is affected in and out of queues can be seen through the 

interaction of some flows being pushed to queues and other flows without queue assignments. 

The flows without queue assignments are negatively affected by all of the OpenFlow matches 

occurring. Since each packet has to be checked through the flow tables in an OpenFlow switch, 

the packets that are not placed into queues have access to significantly less bandwidth. Before 

enabling any sort of queues or quality of service on my virtualized network, I observed 

y	=	0.7588x	+	13.897	
R²	=	0.99672	

0.0000	
100.0000	
200.0000	
300.0000	
400.0000	
500.0000	
600.0000	
700.0000	
800.0000	
900.0000	

0	 200	 400	 600	 800	 1000	 1200	

Av
er
ag
e	
Ra

te
	(M

bp
s)
	

Upper	Bound	(Mbps)	

Average	Rate	vs.	Upper	Bound	

Average	Rate	
vs.	Upper	
Bound	

Linear	
(Average	
Rate	vs.	
Upper	
Bound)	



22 

bandwidth as high as 25.6 Gigabits per second. After the queues had flows pushed to them and 

any sort of quality of service was on the switch, the flows without a queue assignment dropped 

down to between 2.10 and 3.50 Megabits per second. The first number is not as important 

because that is the default bandwidth given to a switch in Mininet on my computer. The second 

number does bear some significance though. I believe that this number is tied to the queues that 

are being utilized. I did further testing with different networks, and I have reason to believe that 

the flows that are not specifically given queue assignments are still rate limited by a queue that 

the switch is using. 

After noticing that the flows that were not supposed to be rate limited were experiencing 

lower bandwidth, I tested the network by installing the normal queues on the switches. However, 

instead of applying all of the quality of service rules to the network, I only applied one rule. 

During performance testing, I observed that pathways would exhibit bandwidth similar to what 

they would if they have quality of service rules on them. It seems as if the switches are queuing 

the packets even though they should not. If the appropriate rules were later installed on the 

network, the switches behaved how I expected them to by limited the bandwidth the appropriate 

amount.   



23 

CHAPTER IV 

CONCLUSION 

 

The most exciting result that I observed was the speed at which a quality of service rule 

could be exchanged. The longest time that I observed for a single rule was 8.8689 milliseconds, 

which was under my expectation of this taking around one second. With a time this low, a switch 

that is deployed into a network can populate its flow table in minimal time with the required 

rules for a quality of service. In traditional networks, a switch is normally configured outside of 

the network environment with the correct QoS policies before it is deployed into a network. With 

this information, a switch can first be deployed into a network and connected to a controller, 

which then informs the switch of what it should do with the incoming flows. The proper queues 

would still need to be configured on a switch before it is deployed; however, I believe that this 

can be done in less time than it takes a network engineer to initially configure quality of service 

on a switch in a traditional setting. The proper commands can be written in a script that 

configures the queues on a switch requiring minimal work from a network engineer. 

My suggestion for queue configuration is to determine a few default rates and to think 

ahead to different possible QoS policies that might be changed or implemented in the network. 

The default rates could correspond to certain proportions of the available bandwidth like a 

traditional quality of service. Those queues could have multiple types of flows pushed to them. 

As I have shown in my testing, the queues will keep the rates of all flows pushed to it as close to 

the maximum allowed rate. The minimum rates put on the queues should work together as well. 

Whenever the network’s bandwidth is fully used, the minimum rates should show the true form 

of how the network handles certain types of flows. 



24 

The other possible queues that might be useful to configure on a switch depends on how a 

network engineer thinks they will change the quality of service. There might be two completely 

different sets of queues used in two different qualities of service that can be interchanged. 

Another possibility is to predict how the policies might be changed to benefit from the 

preexisting quality of service with some minor tweaks. This would mean minimal extra queues 

on top of the default queues. However, I believe that there could be enough combinations with 

the said default queues to be able to effectively change the QoS policies to benefit the network. 

Increasing or decreasing the priorities on different types of traffic flows could benefit the 

network. 

The way in which the flow rules are pushed to the switches can be done remotely, and I 

have shown that little time needed to perform this. All of the flow rules will also be accessible 

from a central location, namely the network controller. This is just another benefit of this type of 

environment. In a traditional network, a network engineer would log into each individual switch 

and configure the quality of service from there. However, in an SDN environment, the controller 

can be thought of as containing all of the configurations for the switches that it communicates 

with. The configuration can be given to the controller as the switch is deployed, and the switch’s 

quality of service can come online almost as soon as it starts receiving packets. The time needed 

before a switch is ready includes first time flow rule pushing. The overhead that I mentioned in 

the results section plays a role here. As the rules required increases, the amount of time needed to 

push the rules from the controller to the switch increases linearly. However, I do not believe that 

this initial setup time for the switch will take any longer than it takes a network engineer to 

manually configure a quality of service on a switch for a traditional network. Being able to 

automate this process would also bring down the time needed on the network engineer’s behalf. 



25 

The interaction of queues amongst each other should also be noted while configuring 

default queues and extra queues on the switches. My testing showed that multiple flows can be 

assigned to a single queue and maintain the appropriate bandwidth. This means that a network 

engineer should not create unnecessary queues. However, once the network is at maximum 

capacity, the flows that share a queue will fight for bandwidth. Two different flows assigned to 

two different queues with the same maximum and minimum rates will do their best to maintain 

the minimum bandwidth for each individual flow. These results should be taken into account 

while determining how many queues to initially configure on the switch.  

Another interesting result that I found is the interaction between flows that are assigned 

to a queue with flows that are not assigned to a queue. As mentioned in my results, the flows that 

are not assigned to queues are not given much or any priority in the network. The results that I 

found were quite confusing and not always consistent. For this reason, my suggestion is to assign 

every flow to a queue. If the miscellaneous flows only need best effort service, then I suggest 

placing them in a queue with a low minimum bandwidth. Sorting every possible flow into a 

respective queue will keep the network running more predictably. 

I believe that my hypothesis can be proven with some stipulations. The original 

hypothesis was to prove the feasibility of changing policies given a certain situation. I believe 

that this approach is feasible depending on the situation and how long the new policies will be in 

place. The variation in the situation can be great. It is possible for a network to be working under 

its maximum potential, which could lead to an overall time loss between queuing and dropping 

packets while there is still available bandwidth. In this type of situation, a policy change would 

be of great benefit. The alternative to this would be a situation in which the network is working 

under its full potential but is not dropping enough packets to warrant a policy change. In this 



26 

case, a policy change could benefit the flows with dropped packets, but it could also harm other 

flows more. Meaning that a policy change would be an overall time loss. 

The duration that the new policies will be in place is also related to network benefits over 

that time period. If a new quality of service is pushed to every switch in the network, the 

overhead can add up quickly. Pushing possibly hundreds of new flow rules to different switches 

could take seconds to complete. By that time the network could be in a completely new situation 

that would require yet another quality of service. A better scenario is changing a quality of 

service or just a few rules then leaving them in place for long enough to experience the benefits. 

The amount of time that they would have to be left in place is a wide variable. The benefits will 

never be seen though unless the quality of service is a net benefit, meaning it benefits more flows 

than it hinders. 

One use case for this information is to have a quality of service to be interchanged 

depending on predetermined situations. Some of those situations could be companywide updates 

or video conferences. In these cases, a network could benefit from changing priorities of those 

more important flows. A network engineer would also know the situation that the network will 

be in as well as how long the new quality of service will be in place. This known information can 

be the reason that policy changes are beneficial to the network. 

One technology that I originally wanted to use in this research was the OpenFlow meter. 

Meters are a way of programmatically changing the rates of a queue as well as gathering the 

packet rate. This technology would have kept most of my testing in OpenFlow itself instead of 

relying on other technologies to measure bandwidth and timing. However, meters were not 

implemented into the switches that I used in my virtualized network at the time of this research. I 

believe that one future area of research for this topic would include incorporating OpenFlow 



27 

meters into a dynamic quality of service. This would allow the controller to contain all of the 

relevant information for the QoS and the network engineer would be able to retrieve that 

information from the controller. 

Another future area of research on this topic would include automating the interchanging 

of policies. Either through simple scripting or even machine learning. As I have previously 

mentioned, there are a few considerations to take into account before changing policies. If the 

network engineer knows of certain recurring situations, a simple script might be the best option. 

However, changing out policies without supervision might require machine learning so the 

network can analyze what the best outcome would be depending on how the policies are 

changed.  

  



28 

REFERENCES 

 

[1] Ryan Wallner. 2012. floodlight-qos-beta. (December 2012). Retrieved September 16, 2017 
from https://github.com/wallnerryan/floodlight-qos-beta. 
 

[2] Mininet Team. 2009. Getting Started with Mininet. (December 2009). Retrieved September 
16, 2017 from http://mininet.org/download/#option-1-mininet-vm-installation-easy-
recommended. 
 

[3] Ryan Wallner and Robert Cannistra. 2013. An SDN Approach: Quality of Service using Big 
Switch’s Floodlight Open-source Controller. Proceedings of the Asia-Pacific Advanced Network 
35, 14-19. DOI: http://dx.doi.org/10.7125/APAN.35.2 
 

[4] Murat Karakus and Arjan Durresi. 2016. Quality of Service (QoS) in Software-defined 
Networking (SDN): A survey. Journal of Network and Computer Applications 80, 15 (February 
2017), 200-218. DOI: https://doi.org/10.1016/j.jnca.2016.12.019 
 

[5] Hilmi E. Egilmez, S. Tahsin Dane, K. Tolga Bagci, and A. Murat Tekalp. 2012. OpenQoS: 
An OpenFlow Controller Design for Multimedia Delivery with End-to-End Quality of Service 
over Software-Defined Networks. Signal Information Processing Association Annual Summit 
and Conference, 17 (January 2012), 1-8. 
 

[6] Open Networking Foundation. 2012. OpenFlow Switch Specification. Retrieved from 
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.1.pdf. 
 

[7] William Stallings. 2013. Software-Defined Networks and OpenFlow. The Internet Protocol 
Journal 16, 1 (Mar. 2013), 2-14. 


