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ABSTRACT

Families of Cyclic Codes over Finite Chain Rings

Andrew Schmidt Nemec
Department of Computer Science and Engineering

Department of Mathematics
Texas A&M University

Research Advisor: Dr. Andreas Klappenecker
Department of Computer Science and Engineering

A major difficulty in quantum computation and communication is preventing and correcting

errors in the quantum bits. Most of the research in this area has focused on stabilizer codes

derived from self-orthogonal cyclic error-correcting codes over finite fields. Our goal is to

develop a similar theory for self-orthogonal cyclic codes over the class of finite chain rings which

have been proven to also produce stabilizer codes. We also will discuss these restrictions on

families of cyclic codes, including, but not limited to quadratic residue codes and

Bose-Chaudhuri-Hocquenghem codes. Finally, we will extend the concepts of weight

enumerators to the class of Frobenius rings and use them to derive bounds for our codes.
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CHAPTER I

INTRODUCTION

Unlike in classical computing where there is only one type of error, the bit-flip, quantum

computing must deal with an infinite number of possible errors while also being more susceptible

to them. One approach to solving this problem is to use quantum error-correcting codes, of which

the stabilizer codes are the most popular, as they can be derived from self-orthogonal classical

cyclic codes. The stabilizer codes were generalized from the binary field case to finite fields

in [13, 14], and then further generalized to Frobenius rings in [17]. Codes over Frobenius rings

are especially interesting, as the arithmetic over them is often much simpler than over finite fields,

which is extremely important when designing systems that must constantly perform these

error-correcting calculations.

In this thesis, we investigate classical cyclic codes over finite chain rings, a subclass of the

Frobenius rings, and the stabilizer codes that are derived from them. Additionally, we give some

conditions for self-orthogonal quadratic residue codes and Bode-Chaudhuri-Hocquenghem

(BCH) codes and develop some symplectic weight enumerators over Frobenius rings and the

bounds derived from them.

Frobenius and finite chain rings

Let R be a finite ring of order n. A character of the additive group (R,+) of R is a homomorphism

χ : (R,+)→ C∗, and the values of χ are the nth roots of unity [2]. Denote the set of irreducible

character of (R,+) by Irr(R). An irreducible character χ of (R,+) is called generating if and only

if Irr(R) = {χb|b ∈ R}, where χb (x) = χ (bx). A ring that admits a left or right generating

character is called a Frobenius ring. One special subclass of the Frobenius rings are the finite

chain rings, which are local rings with the additional constraint that the lattice of its left ideals

(equivalently, right ideals) form a chain under set inclusion [17].

For a ring R, the Jacobson radical J(R) is the instersection of all maximal left ideals (equivalently,
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the intersection of all maximal right ideals). If R is a finite chain ring, this means that J(R) =M,

where M is the unique maximal ideal of R. The nilpotency index of J(R) is the smallest positive

integer ν such that Jν(R) = {0}. If the residue field R/J(R) has q elements, then |R|= qν [17].

Error bases and stabilizer codes

Let R be a finite ring with q elements. Let {|x〉 |x ∈ R} be an orthonormal basis of Cq. For a,b ∈ R

define a shift operator X (a) : Cq→ Cq and a multiplication operator Z (b)Cq→ Cq by

X (a) |x〉= |x+a〉 , Z (b) |x〉= χ (bx) |x〉 , where χ is an irreducible character of the additive

group (R,+). Define the set of error operators E = {X (a)Z (b) |a,b ∈ Rn} . If R is a Frobenius

ring with generating character χ , then E is a nice error basis on Cqn
, that is a) it contains the

identity matrix, b) the product of two matrices in E is a new scalar multiple of another element in

E , and c) the trace Tr
(
A†B

)
= 0 for distinct A,B ∈ E . Define the error group Gn as

Gn = {ωcX (a)Z (b) |a,b ∈ Rn,c ∈ Z} , where ω is a primitive mth root of unity, ω = exp(2πi/m),

and m is the exponent of the additive group of R (the characteristic of R).

Let S be a subgroup of Gn. There is a stabilizer code Fix(S) associated with the subgroup S, given

by Fix(S) =
{

v ∈ Cqn|Ev = v,∀E ∈ S
}
.

Structure of cyclic codes

Cyclic codes over fields are defined as a principle ideal of the ring Fq[x]/〈xn−1〉. Over the field,

xn−1 factors into two important polynomials, the generator polynomial g(x) and the check

polynomial h(x) = (xn−1)/g(x). The generator and check polynomials themselves are products

of basic irreducible factors of xn−1 The code consists of a single generating element g(x) and all

shifts of g(x), shown as xmg(x) for all 1≤ m < n where n is the degree of the polynomial.

Let R be a commutative finite chain ring with residue field R and denote by − : R [x]→ R [x] the

natural projection from R [x] onto R [x].
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Lemma 1. (Hensel’s Lemma, [7, Theorem 2.4]) Let f be a polynomial over R and assume

f = g1g2 · · ·gr are pairwise coprime polynomials over R. Then there exist pairwise coprime

polyniomials f1, f2, . . . , fr over R such that f = f1 f2 · · · fr and fi = gi for i = 1,2, . . . ,r.
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CHAPTER II

QUADRATIC RESIDUE CODES

Let R be a commutative finite chain ring with maximal ideal J (R) and residue field Fq = R/J (R).

Denote by − the natural projection R [x]→ Fq [x]. Let n be an odd prime coprime to q, and let α

denote a primitive nth root of unity in some extension field of Fq. Denote by

Q =
{

r2 (mod n) |r ∈ Z,1≤ r ≤ (n−1)/2
}

the set of quadratic residues modulo n and by

N = {1, . . . ,n−1}\Q

the set of quadratic non-residues modulo n. Let

fQ (x) = ∏
r∈Q

(x−α
r) and fN (x) = ∏

r∈N
(x−α

r) .

Then xn−1 = (x−1) fQ (x) fN (x) ∈ Fq [x]. By Hensel’s lemma [7, Theorem 2.4], there exist

monic polynomials (x−a), qQ (x), qN (x) ∈ R [x] that are pairwise coprime and satisfying

(x−a) = (x−1), qQ (x) = fQ (x), qN (x) = fN (x), and xn−1 = (x−a)qQ (x)qN (x) ∈ R [x].

Substituting 1 into the equation, we obtain (1−a)qQ (1)qN (1) = 0; since qQ (1) = fQ (1) 6= 0

and qN (1) = fN (1) 6= 0, qQ (1) and qN (1) are both invertible elements of R, therefore a = 1 and

xn−1 = (x−1)qQ (x)qN (x) ∈ R [x].

We say that a codeword x = x1x2 · · ·cn ∈ Rnis even-like if ∑
n
i=1 xi = 0 and is odd-like otherwise.

We say that a code is even-like if it has only even-like codewords and that it is odd-like if it is not

even-like.

The quadratic residue codes CQ,C′Q,CN ,C′N are the cyclic codes generated by qQ (x),

(x−1)qQ (x), qN (x), (x−1)qN (x) respectively. CQ and CN have parameters [n,(n+1)/2,d]R,
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and C′Q and C′N , the even-like subcodes of CQ and CN respectively, have parameters

[n,(n−1)/2,d′]R, with d′ ≥ d.

Square root bound

Denote by Rn the ring R [x]/〈xn−1〉. The cyclic complement CC of a cyclic code C is a code

satisfying CC +C = Rn, CC∩C = {0}, and CC is cyclic.

Theorem 2. Let C be a cyclic code of length n over R with generator polynomial g(x) and

generating idempotent e(x). Let CC be the cyclic complement of C. Then CC has generator

polynomial ĝ(x) = (xn−1)/g(x) and generating idempotent 1− e(x).

Proof. Since ĝ(x) is a divisor of xn−1, 〈ĝ(x)〉 is cyclic. Since g(x) and ĝ(x) are coprime,

〈g(x)〉+ 〈ĝ(x)〉= R [x], therefore 〈g(x)〉+ 〈ĝ(x)〉= Rn. Additionally, since they are coprime we

also have that 〈g(x)〉∩ 〈ĝ(x)〉= {0}, therefore 〈ĝ(x)〉=CC.

Let 1 = e1 (x)+e2 (x), where e1 (x) ∈ 〈g(x)〉 and e2 (x) ∈ 〈ĝ(x)〉. Then there exist a(x) ,b(x) ∈ Rn

such that e1 (x) = a(x)g(x) and e2 (x) = b(x) ĝ(x). Then

e1 (x)
2 = e1 (x)(1− e2 (x)) = e1 (x)− e1 (x)e2 (x) = e1 (x)−a(x)g(x)b(x) ĝ(x) = e1 (x), so e1 (x)

is an idempotent of C, thus e1 (x) = e(x). Similarly, e2 (x)
2 = (1− e(x))2 = 1− e(x) is the

idempotent of CC.

Lemma 3. Let h(x) = 1
n

(
1+ x+ x2 + · · ·+ xn−1), a(x) = ∑

n−1
i=0 aixi ∈ Rn, and C a cyclic subcode

of Rn with generating polynomial g(x). Then

1. h(x) is the generating idempotent of the repetition code of length n over R

2. a(x) is even-like if and only if a(1) = 0 if and only if a(x)h(x) = 0

3. a(x) is odd-like if and only if a(1) 6= 0 if and only if a(x)h(x) = αh(x), α 6= 0

Proof. Expanding (h(x))2, we find that

(
1
n

(
1+ x+ · · ·+ xn−1))2

=
1
n

(
1+ x+ · · ·+ xn−1) ,
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so h(x) is an idempotent of Rn. Additionally, the codewords of the repetition code are all of the

form f (x) = a
(
1+ x+ x2 + · · ·+ xn−1) for a ∈ R, so

f (x)h(x) = a
n

(
1+ x+ x2 + · · ·+ xn−1)2

= a
(
1+ x+ x2 + · · ·+ xn−1)= f (x), so h(x) is the

generating idempotent for the repetition code of length n over R. If a(x) = ∑
n−1
i=0 aixi is in Rn, then

a(x)h(x) =

(
n−1

∑
i=0

ai

)
1
n

(
1+ x+ x2 + · · ·+ xn−1) ,

so if a(x) is even-like, ∑
n−1
i=0 ai = 0, so a(x)h(x) = 0; additionally, a(x) is even-like precisely

when ∑
n−1
i=0 ai = 0. This is the same as saying that a(1) = 0. If a(x) is odd-like, ∑

n−1
i=0 ai 6= 0, then

a(x)h(x) = αh(x), for some α ∈ R, α 6= 0, which is also the same as saying a(1) 6= 0.

Lemma 4. Let En denote the collection of even-like codewords in Rn. Then:

1. En is an [n,n−1] cyclic subcode of Rn

2. E ⊥n is the repetition code with generating idempotent h(x) = 1
n

(
1+ x+ x2 + · · ·+ xn−1)

3. En has generating idempotent 1−h(x)

Proof. Let x,y ∈ En and a,b ∈ R. Since a∑
n
i=1 xi = 0 and b∑

n
i=1 yi = 0, we have

∑
n
i=1 (axi +byi) = 0, so (ax+by) ∈ En, and therefore En is a subcode of Rn, and must therefore be

cyclic. Since Rn can be partitioned into |R| equally sized partitions based on the parity of the

codewords, En is an [n,n−1] subcode of Rn, giving (1). Since En is an [n,n−1] cyclic code, E ⊥n

must be an [n,1] cyclic code, so E ⊥n is the repetition code. By Lemma 3, the repetition code has

generating idempotent h(x) = 1
n

(
1+ x+ x2 + · · ·+ xn−1). Finally by [22, Theorem 2], En has

generating idempotent 1−h(x)µ−1 = 1−h(x).

Define the function µa : Zn→ Zn, where a and n are coprime, by µa (i) = ia (mod n). This

function is known as a multiplier. The multiplier can also act on polynomials by

µa : Rn→ Rn, f (x) 7→ f (xa).

Theorem 5. Let f (x) ,g(x) ∈ Rn, e(x) be an idempotent of Rn, and a be an integer coprime to n.

Then:

1. if b≡ a (mod n), then µb = µa
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2. µa is an automorphism of Rn

3. e(x)µa is an idempotent of Rn.

Proof. All of the results follow from straightforward calculations.

Theorem 6. Let C be a cyclic code of length n over R with generating idempotent e(x), and let a

be an integer coprime to n. Then Cµa = 〈e(x)µa〉 and e(x)µa is the generating idempotent of the

cyclic code Cµa.

Proof. Using Theorem 5,

Cµa = {(e(x) f (x))µa| f (x) ∈ Rn}

= {e(x)µa f (x)µa| f (x) ∈ Rn}

= {e(x)µah(x) |h(x) ∈ Rn}

= 〈e(x)µa〉

as µa is an automorphism of Rn by Theorem 5. Hence Cµa is cyclic and has generating

idempotent e(x)µa by Theorem 5.

Let e1 (x) and e2 (x) be two even-like idempotents with C1 = 〈e1 (x)〉 and C2 = 〈e1 (x)〉. The codes

C1 and C2 form a pair of even-like duadic codes if

1. the idempotents satisfy

e1 (x)+ e2 (x) = 1−h(x) (II.1)

2. there is a multiplier µa such that

C1µa =C2 and C2µa =C1. (II.2)

By Theorem 6, we have that e1 (x)µa = e2 (x) and e2 (x)µa = e1 (x) if and only if C1µa =C2 and

C2µa =C1, so we can replace equation (II.2) by

e1 (x)µa = e2 (x) and e2 (x)µa = e1 (x) . (II.3)
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Associated to the pair of even-like duadic codes is the pair of odd-like duadic codes

D1 = 〈1− e2 (x)〉 and D2 = 〈1− e1 (x)〉. (II.4)

Lemma 7. Let C be a cyclic code over R with generating idempotent i(x) and let Ce be the

subcode of all even-like codewords in C. If C 6=Ce, then i(x)−h(x) is the generating idempotent

of Ce.

Proof. Since Ce is the even-like subcode of C, Ce =C∩En. By [22, Theorem 1], the generating

idempotent of Ce is i(x)(1−h(x)) = i(x)− i(x)h(x). Since i(x) is the generating idempotent of

C, but not the generating idempotent of Ce it is necessarily odd-like, so by Lemma 3

i(x)− i(x)h(x) = i(x)−αh(x), where α = ∑
n−1
k=0 ik is a nonzero element of R. Let b(x) be an

odd-like codeword in C. Then b(x) i(x) = b(x). Evaluating this equation at x = 1 gives

∑
n−1
k=0 bk = ∑

n−1
k=0

(
bk ∑

n−1
j=0 i j

)
= α ∑

n−1
k=0 bk. Since b(x) is an odd-like codeword, ∑

n−1
k=0 bk 6= 0, so

α = 1, giving i(x)−h(x) as the generating idempotent of Ce.

Theorem 8. Let C1 = 〈e1 (x)〉 and C2 = 〈e2 (x)〉 be a pair of even-like duadic codes of length n

over R. Suppose that µa gives the splitting for C1 and C2. Let D1 and D2 be the associated

odd-like duadic codes. Then:

1. e1 (x)e2 (x) = 0

2. C1∩C2 = {0} and C1 +C2 = En

3. C1 and C2 each have dimension (n−1)/2

4. D1 is the cyclic complement of C2 and D2 is the cyclic complement of C1

5. D1 and D2 each have dimension (n+1)/2

6. Ci is the even-like subcode of Di, for i = 1,2

7. D1µa = D2 and D2µa = D1

8. D1∩D2 = 〈h(x)〉 and D1 +D2 = Rn

9. Di =Ci + 〈h(x)〉= 〈h(x)+ ei (x)〉, for i = 1,2
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Proof. Multiplying equation (II.1) by e1 (x) gives e1 (x)e2 (x) = 0 by Lemma 3 so 1) holds.

By [22, Theorem 1], C1∩C2 and C1 +C2 have generating idempotents e1 (x)e2 (x) = 0 and

e1 (x)+ e2 (x)− e1 (x)e2 (x) = e1 (x)+ e2 (x) = 1−h(x) respectively, so 2) holds by Lemma 4. By

equation (II.2), C1 and C2 are equivalent and hence have the same dimension. By 2) and Lemma 4

this dimension is (n−1)/2, giving 3). The cyclic complement of Ci has generating idempotent

1− ei (x) by Theorem 2; thus 4) is immediate from the definition of Di. Part 5) follows from the

definition of cyclic complement and parts 3) and 4). As D1 is odd-like with generating idempotent

1− e2 (x) by Lemma 7, the generating idempotent of the even-like subcode of D1 is

1−e2 (x)−h(x) = e1 (x). Thus C1 is the even-like subcode of D1; analogously, C2 is the even-like

subcode of D2 yielding 6). The generating idempotent of D1µa is

(1− e2 (x))µa = 1− e2 (x)µa = 1− e1 (x) by Theorem 6 and equation (II.3). Thus D1µa = D2;

analogously D2µa = D1, producing 7). By [22, Theorem 1], D1∩D2 and D1+D2 have generating

idempotents (1− e1 (x))(1− e2 (x)) = 1− e1 (x)− e2 (x) = h(x) and

(1− e1 (x))+(1− e2 (x))− (1− e1 (x))(1− e2 (x)) = 1 respectively, as e1 (x)e2 (x) = 0. Thus 8)

holds as the generating idempotent of Rn is 1. Finally by 3), 5), and 6), Ci is a subspace of Di of

codimension 1, as h(x) ∈ Di \Ci, Di =Ci + 〈h(x)〉. Also, Di = 〈h(x)+ ei (x)〉 by equations (II.1)

and (II.4), which proves 9).

Theorem 9. (Square Root Bound) Let D1 and D2 be a pair of odd-like duadic codes of length n

over R. Let d0 be their (common) minimum odd-like weight. Then the following holds:

1. d2
0 ≥ n,

2. if the splitting defining the duadic codes is given by µ−1, then d2
0−d0 +1≥ n.

Proof. Suppose that the splitting defining the duadic codes is given by µa. Let c(x) ∈ D1 be an

odd-like codeword of weight d0. Then c′ (x) = c(x)µa ∈ D2 is also odd like and

c(x)c′ (x) ∈ D1∩D2 as D1 and D2 are ideals in Rn. But D1∩D2 = 〈h(x)〉 by Theorem 8. By

Lemma 3, c(x)c′ (x) is odd-like and in particular nonzero. Therefore c(x)c′ (x) is a nonzero

multiple of h(x), and so wt(c(x)c′ (x)) = n. The number of terms in the product c(x)c′ (x) is at

most d2
0 , so 1) follows. If µa = µ−1, then the number of terms in c(x)c′ (x) is at most d2

0−d0 +1

because d0 terms contribute to the coefficient of x0 in c(x)c′ (x), so 2) follows.
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Gleason-Prange theorem

Let Ĉ denote the extended code of C.

Lemma 10. Let C be an [n,k,d]R code.

1. Suppose that MAut(C) is transitive. Then the n codes obtained from C by puncturing C on a

coordinate are monomially equivalent.

2. Suppose that MAut
(

Ĉ
)

is transitive. Then the minimum weight d of C is its minimum

odd-like weight d0. Furthermore, every minimum weight codeword of C is odd-like.

Proof. Since MAut(C) is transitive, 1) is obvious. For 2), assume that the automorphism group of

Ĉ is transitive. Applying 1) to Ĉ, we conclude that puncturing Ĉ on any coordinate gives a code

monomially equivalent to C. Let c be a minimum weight codeword of C, and assume that c is

even-like. Then wt(ĉ) = d where ĉ ∈ Ĉ is the extended codeword. Puncturing Ĉ on a coordinate

where c is nonzero gives a codeword of weight d−1 is a code monomially equivalent to C, a

contradiction.

Definition 11. Let v be a codeword of blocklength n over the ring R. Let ω be an element of order

n in either R or some extension ring of R. The Fourier transform of v is another codeword V of

blocklength n over R whose components are given by

Vj =
n−1

∑
i=0

ω
i jvi, j = 0, . . . ,n−1.

The codeword V is known as the spectrum of v. The inverse Fourier transform is given by

vi =
1
n

n−1

∑
j=0

ω
−i jVj, i = 0, . . . ,n−1.

We will use χ (i) denote the Legendre symbol defined by

χ (i) =


0, if i is a multiple of p

1, if i is a nonzero square (mod p)

−1, if i is a nonzero nonsquare (mod p)

.
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Additionally, the Gaussian sum is defined as

θ =
p−1

∑
i=0

χ (i)ω
i.

Lemma 12. In the finite chain ring R with characteristic q, the element ∑
p
i=1 1R is a unit for p

coprime to q.

Proof. Since p and q are coprime, there exists a,b ∈ Z such that ap+bq = 1 which implies that

ap≡ 1 (mod q). But this means that ap ·1R = (∑a
i=1 1R)

(
∑

p
i=1 1R

)
= 1R, so ∑

p
i=1 1R is a unit in

R.

Lemma 13. [5, Theorem 1.11.2] The Gaussian sum satisfies θ 2 = pχ(−1).

Note that as a consequence of the previous lemma, θ is also a unit.

Definition 14. Let v =
(
v0,v1, . . . ,vp−1,v∞

)
be a codeword of blocklength p+1, where p is

prime, over a finite chain ring R of characteristic q, where p and q are coprime. The

Gleason-Prange permutation of v is the codeword u =
(
u0,u1, . . . ,up−1,u∞

)
defined by

ui = χ
(
−i−1)v−i−1 , i = 1, . . . , p−1

u0 = χ (−1)v∞

u∞ = v0

Theorem 15. (Gleason-Prange Theorem) Let p be a prime. Suppose that over R, a finite chain

ring of characteristic q coprime to p, the codeword v =
(
v0,v1, . . . ,vp−1,v∞

)
satisfies

1. if j ∈ {0,1, . . . , p−1} is a nonzero square, then Vj = 0

2. v∞ = −θ

p ∑
p−1
i=0 vi.

Then the Gleason-Prange permutation of v satisfies these same two conditions.
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Proof. Suppose that Vj = 0 whenever j is a nonzero square modulo p. The inverse Fourier

transform of v can be written as

vi =
1
p

(
V0 +

p−1

∑
k=1

ω
−ikVk

)

=
1
p

(
−p
θ

v∞ +
p−1

∑
k=1

ω
−ikVk

)
.

The Gleason-Prange permutation gives that

ui = χ
(
−i−1)v−i−1

=
1
p

χ
(
−i−1)(−p

θ
v∞ +

p−1

∑
k=1

ω
i−1kVk

)

for i 6= 0 and that u0 = χ (−1)v∞. Further,

U j = u0 +
p−1

∑
i=1

ω
i jui

= χ (−1)v∞ +
p−1

∑
i=1

ω i jχ
(
−i−1)
p

(
−p
θ

v∞ +
p−1

∑
k=1

ω
i−1kVk

)

= v∞

(
χ (−1)− 1

θ

p−1

∑
i=1

χ
(
−i−1)

ω
i j

)
+

1
p

p−1

∑
i=1

ω
i j

χ
(
−i−1) p−1

∑
k=1

ω
i−1kVk.

Denote the two summands as A j and B j respectively so that U j = A j +B j.

Consider A j:

A j = v∞

(
χ (−1)− 1

θ

p−1

∑
i=1

χ
(
−i−1)

ω
i j

)

= χ (−1)v∞

(
1− χ ( j)

θ

p−1

∑
i=1

χ (i j)ω
i j

)

= χ (−1)v∞

(
1− χ ( j)θ

θ

)
.

Therefore A j = 0 whenever j is a nonzero square modulo p.
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Now consider B j:

B j =
1
p

p−1

∑
i=1

ω
i j

χ
(
−i−1) p−1

∑
k=1

ω
i−1kVk

=
1
p

χ (−1)
p−1

∑
i=1

ω
i j

p−1

∑
k=1

ω
i−1k

χ
(
i−1k

)
χ (k)Vk

=
−1
p

χ (−1)
p−1

∑
i=1

ω
i j

p−1

∑
k=1

ω
i−1k

χ
(
i−1k

)
Vk.

The last equality hold since Vk = 0 whenever χ (k) 6=−1. Redefine the indices using the Rader

permutation i = πr, j = πt ,k = π−s, where π is a primitive element in Fp. The sums remain

unaffected as the permutations simply reorder the elements in the sums. Therefore we have

Bπ−s =
−1
p

χ (−1)
p−2

∑
r=0

ω
πr−s

p−2

∑
t=0

ω
π−r+t

χ
(
π
−r+t)Vπt .

This is a double cyclic convolution which we can rewrite as

B′−s =
p−2

∑
r=0

gr−s

p−2

∑
t=0

g′t−rV
′

t ,

where V ′t =Vπt , B′s =
−p

χ(−1)Bπs , gr = ωπ−r
, and g′r = χ (πr)ωπ−r

= (−1)r
ωπ−r

. If t is even then

V ′t = 0 since if j is a nonzero square Vj = 0. We can write this double convolution in polynomial

form as

B′
(
x−1)= g(x)g′ (x)V ′ (x)

(
mod xp−1−1

)
where g(x)

p−2
∑

r=0
ωπ−r

xr and g′ (x) =
p−2
∑

r=0
(−1)r

ωπ−r
xr. Since they only differ in the sign of the

odd-indexed terms, the product g(x)g′ (x) has only even-indexed coefficients nonzero. The

polynomial V ′ (x) has only odd-indexed coefficients nonzero, so the product g(x)g′ (x)V ′ (x) has

all even-indexed coefficients equal to zero. Therefore B′s = 0 when s is even and so U j = 0

whenever j is a nonzero square.
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Now we will show that u∞ = −θ

p ∑
p−1
i=0 ui.

p−1

∑
i=0

ui = χ (−1)v∞ +
p−1

∑
i=1

χ
(
−i−1)v−i−1

= χ (−1)v∞ +
p−1

∑
i=1

χ (i)vi.

We can expand this sum out to

p−1

∑
i=1

χ (i)vi =
1
p

p−1

∑
i=1

χ (i)

(
p−1

∑
k=1

ω
−ikVk +V0

)

=
χ (−1)

p

p−1

∑
i=1

p−1

∑
k=1

χ (−i)ω
−ikVk

=
χ (−1)

p

p−1

∑
k=1

Vkχ (k)θ .

In the same way as in the previous part of the proof, we can replace χ (k) with −1 since Vk = 0

whenever χ (k) 6=−1.
p−1

∑
i=1

χ (i)vi =
−χ (−1)θ

p

p−1

∑
k=1

Vk

=
−χ (−1)θ

p
(pv0−V0) .

Since c∞ = −θ

p V0, we have

p−1

∑
i=0

ui =−χ (−1)θc0 =−χ (−1)θd∞.

Because θ 2 = pχ (−1) and χ2 (x) = 1, we have that χ (−1)θ = p/θ , and thus

p−1

∑
i=0

ui =
−p
θ

u∞.

Therefore u satisfies the same two conditions as v.
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Using compositions of the shift permutation and the Gleason-Prange permutation, it is possible to

send any coordinate to any other coordinate in Ĉ, so by Lemma 10, the minimum weight d of the

code C is its minimum odd-like weight d0.

Stabilizer codes

Theorem 16. [17, Theorem 9] Let C1 and C2 denote two classical linear codes with parameters

[n,k1,d1]R and [n,k2,d2]R such that C⊥2 ≤C1. Then there exists a [[n,k1 + k2−n,d]]R stabilizer

code with minimum distance d = min
{

wt(c) |c ∈
(
C1 \C⊥2

)
∪
(
C2 \C⊥1

)}
that is pure to

min{d1,d2}.

Theorem 17. [3, Proposition 4.3] Let Di, i ∈ {1,2} be the odd-like duadic codes over R, where

Di = 〈gi (x)〉 and (x−1)g1 (x)g2 (x) = xn−1, and let Ci be the even-like duadic codes over R,

where Ci = 〈(x−1)gi (x)〉. Then

1. if the splitting is given by µ−1, then D⊥1 =C1 and D⊥2 =C2

2. if the splitting is not given by µ−1, then D⊥1 =C2 and D⊥2 =C1

Theorem 18. Let n be a prime of the form n≡ 3 (mod 4), and let (q,n) = 1. If q is a quadratic

residue modulo n, then there exists a pure [[n,1,d]]R stabilizer code with distance d satisfying

d2−d +1≥ n.

Proof. The code CQ has parameters [n,(n+1)/2,d]R and since n≡ 3 (mod 4), by [13, Lemma

6.2.4] we know that −1 is not a square modulo n, so µ−1 gives the splitting for CQ and CN .

Therefore by Theorem 17 we know that C⊥Q =C′Q, so CQ is self-orthogonal. By Theorem 9 we

know that the minimum distance d is bounded by d2−d +1≥ n. Furthermore,

wt
(

CQ \C⊥Q
)
= wt(CQ) = d, since the minimum weight of CQ is its minimum odd-like weight.

We can therefore construct a [[n,(n+1)−n,d]]R stabilizer code by Theorem 16.

Theorem 19. Let n be a prime of the form n≡ 1 (mod 4), and let (q,n) = 1. If q is a quadratic

residue modulo n, then there exists a pure [[n,1,d]]R stabilizer code with distance d satisfying

d ≥
√

n.
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Proof. The code CQ has parameters [n,(n+1)/2,d]R and since n≡ 1 (mod 4), by [13, Lemma

6.2.4] we know that −1 is a square modulo n, so µ−1 does not give a splitting for CQ and CN .

Therefore by Theorem 17 C⊥Q =C′N , that is C⊥Q ≤CN . By Theorem 9 we know that the minimum

distance d is bounded by d ≥
√

n. Moreover,

wt
(
CQ \C⊥N

)
= wt

(
CN \C⊥Q

)
= wt(CQ) = wt(CN) = d since the minimum weight of CQ and CN

is their (common) minimum odd-like weight. Therefore we obtain a pure

[[n,(n+1)/2+(n+1)/2−n,d]]R stabilizer code by Theorem 16.
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CHAPTER III

BCH CODES

Preliminaries

Let A be a local finite commutative ring with maximal ideal M and residue field K= A/M= Fpm

for some prime p and m ∈ N. Let f be a monic polynomial of degree h such that f is irreducible

over K and therefore also irreducible over A. Let R denote the ring of residue classes A [x]/〈 f (x)〉

with maximal ideal m= 〈M f (x)〉/〈 f (x)〉 and residue field K= R/m. Following are several

theorems given without proof from [1]:

Theorem 20. [1, Theorem 2.1] There is only one maximal cyclic subgroup of R∗ having order

relatively prime to p. This cyclic subgroup is denoted by Gs and has order s = pmh−1.

Theorem 21. [1, Theorem 2.2] Suppose that α generates a subgroup of order s (a divisor of

pmh−1) in R∗. Then xs−1 can be factored as xs−1 = (x−α)
(
x−α2) · · ·(x−αs) if and only if

α has order s in K∗.

Definition 22. [1, Definition 2.3] Let α be a primitive element of Gn. Then a cyclic BCH code

defined over the ring A is a cyclic code of length n generated by a minimal degree polynomial

g(x) (over A) whose roots are αb+1,αb+2, . . . ,αb+2t , for some b≥ 0 and t ≥ 1.

In this case, the parity-check matrix H is given by

H =


1 αb+1 α2(b+1) · · · α(n−1)(b+1)

1 αb+2 α2(b+2) · · · α(n−1)(b+2)

...
...

... . . . ...

1 αb+2t α2(b+2t) · · · α(n−1)(b+2t)

 .

Stabilizer codes

Lemma 23. Let H be the parity-check matrix of a code C. Then C⊥ ⊆C if and only if HHT = 0.

Proof. Suppose C⊥ ⊆C. By definition of the parity-check matrix, xHT = 0 for all x ∈C.

Therefore we have xHT = 0 for all x ∈C⊥. Since H generates C⊥, the rows of H are elements of
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C⊥ and therefore HHT = 0. Now suppose that HHT = 0. Since H generates C⊥, every x ∈C⊥ is

a linear combination of the rows of H, so xHT = 0, meaning that x ∈C, so C⊥ ⊆C.

Theorem 24. Let C be a cyclic BCH code of length `n over the ring R for ` ∈ N and n = pmh−1

for an odd prime p. If 2t = `n, then C⊥ ⊆C.

Proof. The parity-check matrix of C is given by (H)i, j = α(i−1)(b+ j). Then

(
HHT)

i, j =
2t

∑
k=1

α
(i−1)(b+k)

α
( j−1)(b+k)

=
`n

∑
k=1

α
(b+k)(i+ j−2)

= α
b(i+ j−2)

`n

∑
k=1

α
k(i+ j−2)

= α
b(i+ j−2)

`−1

∑
x=0

n

∑
y=1

α
(xn+y)(i+ j−2)

= α
b(i+ j−2)

`−1

∑
x=0

α
xn(i+ j−2)

n

∑
y=1

α
y(i+ j−2).

Focusing on the inner sum, we see that

n

∑
y=1

α
y(i+ j−2) =

n/2

∑
y=1

α
y(i+ j−2)+

n

∑
y=(n/2)+1

α
y(i+ j−2)

=
n/2

∑
y=1

α
y(i+ j−2)+α

n/2
n/2

∑
y=1

α
y(i+ j−2)

=
n/2

∑
y=1

(
α

y(i+ j−2)−α
y(i+ j−2)

)
= 0.

By substituting the inner sum back into the original expression, we have that
(
HHT)

i, j = 0 for all

values of i, j, so by Lemma 23 we have that C⊥ ⊆C.

Theorem 25. Let R be a finite chain ring with residue field Fpm for an odd prime p. Then there

exists an
[[

pmh−1,0,2t
]]

R stabilizer code.

Proof. Follows directly from Theorems 16 and 24.
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CHAPTER IV

CONCLUSION

One of the largest issues in quantum computing is the inherent instability of the quantum systems

used in the qubits. While there has been previous work done on the existence of stabilizer codes

over the more general class of Frobenius rings in [17], there has been little to no work done on

constucting these codes. In this paper we focused on stabilizer codes based on classical codes

over finite chain rings and gave a method for explicitly constructing stabilizer codes from

quadratic reside and BCH codes over finite chain rings using a CSS construction. We also

extended the Gleason-Prange theorem to the class of finite chain rings which allowed us to

exactly characterize the minimum distance of the quadratic residue quantum stabilizer codes as

the minimum odd-like weight of the classical quadratic residue code.

The codes that we have constructed over the finite chain rings are important because although

they have been shown to never have minimum distances that beat their counterparts over finite

fields, they may make up for this with simpler arithmetics, which reduces the amount of time that

needed to perform calculations. This could be important especially with reguards to error

correcting on a quantum computer, which must be done constantly to keep the qubits stable. One

future direction of study would be to determine which of these stabilizer codes over finite chain

ring perform better than their finte field analogues, as these codes might be of interest to

researchers actively developing quantum systems.

Another future direction of study would be to find better bounds for the stabilizer codes we have

constructed. One way to do this would be to use the symplectic weight enumerators of the codes

and then to constuct a linear programming bound similar to the one in [14] for codes over finte

fields.
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