
CRITICALLITY STACKS IMPLEMENTED VIA KERNEL

FREQUENCY GOVERNOR FOR POWER SAVINGS IN ARM

MOBILE ARCHITECTURE

An Undergraduate Research Scholars Thesis

by

CESAR LOPEZ CARRASCO

Submitted to the Undergraduate Research Scholars Thesis program
Texas A&M University

in partial fulfillment of the requirements for the degree of

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Paul Gratz

May 2018

Major: Electrical Engineering

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 3

ACKNOWLEDGMENTS . 4

NOMENCLATURE . 5

LIST OF FIGURES . 6

LIST OF TABLES . 7

1. INTRODUCTION . 8

1.1 Motivation . 8
1.2 Power Savings, A Case for DVFS . 9

2. PREVIOUS AND CONCURRENT WORKS 15

2.1 Criticallity Stacks . 15
2.2 Scalability and Criticality Stacks Simulation 16
2.3 Hardware Testing Via Software Implementation 19

3. HARDWARE SELECTION AND TESTING METHODS 20

3.1 Hardware Selection . 20
3.2 DVFS in ARM . 21
3.3 Benchmarking Selection . 22

4. EXPERIMENTAL RESULTS . 23

4.1 Setup . 23
4.2 Results . 23

5. SUMMARY AND CONCLUSIONS . 27

5.1 Conclusion . 27
5.2 Challenges . 27

5.3 Future Work . 27

REFERENCES . 28

APPENDIX . 29

ABSTRACT

Criticallity Stacks Implemented Via Kernel Frequency Governor for Power Savings in
ARM Mobile Architecture

Cesar Lopez Carrasco
Department of Electrical Engineering

Texas A&M University

Research Advisor: Dr. Paul Gratz
Department of Electrical and Computer Engineering

Texas A&M University

With the advent of mobile computing devices such as smartphones, modern mobile

processors are designed by compromising two opposite characteristics. In one hand, per-

formance needs to be maximized in order to hold up with increasingly demanding appli-

cations such as virtual reality, real-time image processing, and intense multitasking. On

the other hand, power consumption needs to be minimized, these devices typically run

off portable batteries which have had unchanged capacities throughout the last half of the

decade.

The two methods to have performance on demand, and regulate power consumption

are having two different types of processors a.k.a big.LITTLE (one perfomance oriented

and one energy saving oriented) and Dynamic Voltage-Frequency Scaling (DVFS). Ide-

ally, performance scales linearly with the frequency of the processor; however, most of the

systems on a SoC run slower than the CPU making an increase in CPU frequency not re-

sult in an increased performance because the processor is idle or waiting. On the contrary,

power consumption increases as a function of the cube of the frequency. Determining how

1

to adapt frequency in order to maximize performance while optimizing energy consump-

tion is the objective of DVFS. The gap between big and LITTLE processors is shrinking

in modern mobile architectures, this necessitates more aggressive DVFS algorithms re-

search. This study aims at adapting a DVFS algorithm that uses Criticality Stacks applied

to scalable for the ARM microarchitechture using the Linux kernel. This algorithm has

been tested in simulated hardware with generic benchmarks through pseudo-hardware im-

plementation. A parallel research in Texas A&M is working into adapting this algorithm

into a software implementation via the Linux kernel in a x86 architecture. Forking from

that code, the algorithm was adapted to work on ARM on two separate Single Board

Computers. As a result the algorithm was tested in multiple versions of ARM with a dif-

ferent range of frequencies and varying architecture complexities. Finally the Algorithm

was adapted to be used to determine CPU migration mechanisms that are implemented in

ARM big.LITTLE

The end result of this research is the verification of the previous simulated hardware

which yielded 12% powersavings with 4% reduction in performance. Testing the algo-

rithm in real silicon allowed to validate these results and as well as the feasibility and

constraints of this implementation.

2

DEDICATION

"There is no threshold that makes us greater than the sum of our parts, no inflection point

at which we become fully alive. We can’t define consciousness because consciousness

does not exist. Humans fancy that there’s something special about the way we perceive

the world, and yet we live in loops, as tight and as closed as the hosts do, seldom

questioning our choices, content, for the most part, to be told what to do next. No, my

friend, you’re not missing anything at all." - Westworld

Break the loop.

To my father, whose effort has brought me this far.

3

ACKNOWLEDGMENTS

I will like to Acknowledge Bryan Elliot for giving me guidance while modifying his

code. Dr. Gratz for patiently taking the time to discuss progress every week and for the

flexibility and effort that have been necessary for the conclusion of this study. Finally

I would like to acknowledge every person who have supported and encouraged me even

when I’ve been to busy to spend more time together.

4

NOMENCLATURE

DVFS Dynamic Voltage Frequency Scaling

SOC System On a Chip

SBC Single Board Computer

F Frequency

V Voltage/Volts

ARM Advanced RISC Machine (Mobile Computer
Architecture)

x86 Intel Designed ISA, popular on Desktops

A Amperes (Current)

5

LIST OF FIGURES

FIGURE Page

1.1 Battery capacity on smartphones throughout the years c©Eason 2012 . . . 9

1.2 Migration Methods for SMP. Cluster Migration vs CPU Migration 11

1.3 Dynamic IQ use of the CPU in 4+4 configuration 12

2.1 Criticallity stacks: Additions to stack after each time slice. 16

2.2 Criticallity stacks: Criticallity stack after each time slice 17

2.3 Frequency slack with respect to criticality 18

4.1 Blackscholes Perfomance . 25

4.2 Blackscholes Powersave . 25

1 Power Measuring Tool . 29

6

LIST OF TABLES

TABLE Page

3.1 Raspberry Pi Specs . 20

3.2 Hikey 960 Specs . 21

4.1 Power Consumption vs frequency for BlackScholes 24

4.2 Power Consumption vs frequency for StreamCluster 24

7

1. INTRODUCTION

1.1 Motivation

Nowadays,Virtually every mobile device runs on the ARM mobile architecture. As the

popularity of this architecture increased, so has increased the variety and the performance

demands of the software that runs on it. Mobile phones are no longer limited to single

threaded applications like light web browsing. High-end devices are designed to run in

CPU demanding environments such as Virtual Reality applications and heavy multitask-

ing. This has been achieved by requiring the demanding applications to rely strongly upon

multithreading.

As performance demands increase, mobile phones have to deal with the fact that they

are power constrained. As seen in figure 1.1, Eason [1] notes that from 2004 to 2011,

the battery capacity has been almost constant. This changed several years after due to

the introduction of larger phones which could accommodate a larger battery, not to im-

provement in battery technology. Eason [1] states that batteries improve very slowly while

mobile processors improve in according to Moore’s law. As a result, the performance

has to improve while keeping the battery capacity constant. As a result, improving CPU

efficiency is crucial for maintaining (and sometimes expanding) battery life, benefiting

their mobile phone users. Taking all this into consideration, researching power savings

techniques in mobile devices is justified.

With a majority of these mobile devices running the Linux kernel through Android;

novel per-core frequency scaling mechanisms that take advantage of the available per-

formance while minimizing power consumption can be implemented through Over-the-

Air updates. The Motivation of this Research is to determine if applying these methods

(namely a combination of Scalability and Criticality Stacks) translate into power savings

8

Figure 1.1: Battery capacity on smartphones throughout the years c©Eason 2012

with minimal performance loss.

Given that these concepts have already been proven to yield power savings through

simulation, the expected outcome is to validate these simulations by implementing them

through the Linux Kernel on real silicon chips and testing them using real world applica-

tions and synthetic benchmarks. This will be done by making modifications to the Linux

Kernel which will eventually be submitted as a patch to the main Linux Kernel.

1.2 Power Savings, A Case for DVFS

1.2.1 Current Technologies

Walshe [2] states that ARM has been a fundamental part of mobile computing since the

early 90’s and currently it is an industry leader with 96% of total market-share. With such

market-share ARM is designed around its power constraint. Combined with a simple ar-

chitecture ARM implements heterogeneous processors a way of saving power. big.LITTLE

9

which consists of one part of the processor using performance optimized (but power hun-

gry) cores and the other part uses energy optimized (although slower) cores. big.LITTLE

uses one of these blocks at a time as a way of extending battery life when needed and

delivering peak performance on demand. ARM [3] states that the power optimized cores

are typically in use 95% of the time and performance optimized the other 5%.

In order to determine how to optimally use these two types of processors, ARM imple-

ments several migration methods. For the sake of simplicity we will assume that we are

using Symmetrical Multiproccessors (SMP). SMPs consist of processors are designed on

a symmetrical configuration (2 big+2 LITTLE or 4b+4L). As explained by Yoo [4], there

is a switching cost as a result of the overhead when switching operation from one proces-

sor to another (Usually big to LITTLE or viceversa). The optimization of these switching

methods is important. Using SMPs the two typical migration methods are Cluster migra-

tion and CPU Migration [5]. For Cluster Migration, the OS can only see two clusters with

the same amount of cores, depending on the workload, it will decide to switch from one

cluster to the other (Only one cluster is used at a given time). For CPU Migration, the

OS will see n clusters (where n is the the amount of either big or little processors). Each

cluster contains a big and LITTLE processor and it will change between them depending

on the load. Only one of the processors of each cluster can be used at a given time. These

two migration Mechanism are visually explained in figure 1.2.

1.2.2 Future Technologies

It is worth noting that in the coming years, ARM will introduce DynamicIQ which

permits all cores to be used at a given as seen on figure 1.3. This will not only improve

performance, but also it will permit a wider range of configurations without much switch

overhead. Taking into account the reduction in power consumption produced by new man-

ufacturing methods (like Samsung’s 10nm), future high-end processors will feature more

10

Figure 1.2: Migration Methods for SMP. Cluster Migration vs CPU Migration

big (performance optimized) and less LITTLE (power optimized) cores given that nowa-

days there is very little difference in the big vs Little Processors. This is evident in the

case of processors with the Qualcomm 835 Chip which instead of using ARM designed

LITTLE cores, it implements big.LITTLE with two blocks of big processors with a differ-

ence in frequency. In a non-distant future, it is likely that mobile processors can run on 8

homogeneous cores, which calls for other solutions for additional power savings.

1.2.3 DVFS and CPU Migration

Clarke proposes [6] that another method for dealing with power savings is extending

Dynamic Voltage Frequency Scaling (DVFS). DVFS is a method of adjusting CPU fre-

quency on a per core level in order to reduce processor iddle time. Clarke claims [6] that

this should be leveraged with a wider gamut of frequencies so DVFS can also be used as a

11

Figure 1.3: Dynamic IQ use of the CPU in 4+4 configuration

method to save energy. The top of the line processors in 2017 are based on the Cortex A73

architecture where the frequency scales up to around 2.4GHz, something unprecedented

in mobile processors and very close to their desktop grade counterparts. This not only

allows but necessitates the creation of more efficient frequency scalers that take advantage

of the available frequency ranges. These new methods for implementing DVFS have to be

adapted to high core count CMPs. Although some already exist in the Linux Kernel like

the OnDemand Frequency Governor, different methods to maximize performance through

frequency setting should be explored.

12

Kidd [7] explains how the power consumed in a digital circuit (i.e. Processor) obtained

by changing the frequency follows a linear trend modeled by equation 1.1. while C *a is

constant, the voltage and frequency can be set. For maximum performance, a processor

will run at maximum frequency and operate at maximum voltage. This is very power de-

manding nonetheless, and ideally, it needs to be avoided. The voltage and the frequency

are tied together, and a reduction in the frequency permits for the reduction in the voltage.

This means that decreasing the frequency translates into a linear reduction in power con-

sumption and allows for a reduction in the operating voltage. Decreasing the frequency

allows a reduction in the Voltage which finally results in a cubic reduction of the power.

As a result the Power is affected exponentially by the change of the frequency.

P = (C ∗ a) ∗ f ∗ V 2 (1.1)

With respects to workload migration, even though frequency setting on a homogeneous

processor (or big/LITTLE cluster) is a direct benefit of DVFS, another added advantage

of exploring more DVFS methods is workload determination. As explained before, the

big.LITTLE processor will migrate between big or Little processors with respect to the

load. The burden of the load is determined by DVFS [8], thus researching and contrasting

new and current methods in the ARM architecture benefits more than direct frequency

setting.

One of this methods was explored by Girdhar [9] who used the critically stacks concept

introduced by Du Buois [et. al] [10] as a way to implement DVFS when the processor is

running code that scales its performance with respect to core frequency. His results yielded

the expected outcome while simulating in an ARM processor using GEM5. Performance

dropped minimally (2-4%) while reducing power consumption by up to 12%. However

this simulation was limited to a frequency range from 1.6-2.66GHz in synthetic bench-

13

marks. Testing this concept on real silicon with wider frequency ranges in both real world

applications (code compilation) and synthetic benchmarks is a better method of testing this

concept. At the same time, if the desired power savings are obtained, this ARM frequency

scaler will be a useful addition to the linux Kernel.

14

2. PREVIOUS AND CONCURRENT WORKS

2.1 Criticallity Stacks

The concept of Criticallity stacks was introduced by Du Bois [et. al] [10] as a method

of determine which thread is holding the others of performing work. This is done by

determining which of the threads in a running program is more critical by assigning a

"criticallity score" to each thread. A score is dynamically assigned to a thread depending

on how many concurrent tasks are running. Du Bois [et Al] assume that if a thread is

running by itself in a given time slice, while the rest are not performing any job, this

means that this thread is performing work that is needed by the rest to continue, thus

slowing them down. As a result, this thread will be "critical". On the oposite, if given

a time slice, all threads are performing work, this means that they are equally important,

thus they share the same criticallity is added to their stack.

In order to dynamically assign a score the time is divided into equal time slices. Each

thread starts with a stack of 0, after the first time slice, the algorithm checks which threads

are running, then it adds 1/(number of threads running) to their stack. A visual represen-

tation of the additions performed after each time slice is seen in figure 2.1. The represen-

tation of the stack after each time slice in figure 2.2

The underlying purpose of this method is to find the Critical thread. It is non-trivial

for the hardware or the operating system to analyze which thread is more critical and has

other threads waiting. It is claimed by DuBois [10] that current methods used to calcu-

late criticality are based on cache misses and Bottleneck Identification and Scheduling;

nonetheless, by using solely Criticality Stacks, the performance is increased as a result of

a more accurate identification of the critical thread (s). In his tests, changing this algorithm

resulted in speedups of 1.67x for 8 core systems and 2.16x for 16 core. These speedups

15

Figure 2.1: Criticallity stacks: Additions to stack after each time slice.

permit the reduction of the frequency of the non critical threads without impacting per-

formance. By accelerating only the critical threads, performance was stable and power

consumption was reduced by 3.8% and 3.2% for 8 and 16 cores respectively. speedup for

2.2 Scalability and Criticality Stacks Simulation

Although the Criticality Stacks algorithm has proven itself useful for identifying the

critical thread. Parting from the fact that only accelerating one thread ignores the power

savings obtained by reducing the other threads, Ghirdar [9] used this algorithm. In order

to account for this, Ghirdar uses the criticality score difference between a given thread and

the critical thread as a Slack. This slack ration is useful to identify how much the frequency

can be reduced. For example, for an nth thread, slack is calculated in equation 2.1.

Slack = 100 ∗ Ccritical − Cn

CCritical

(2.1)

16

Figure 2.2: Criticallity stacks: Criticallity stack after each time slice

For the example in figure 2.2, we identify our Critical thread to be the one running on

CPU1 given that it has a the largest criticality at any given time. Using 2.1, we can cal-

culate the slack at the end of each time slice to be as shown in figure 2.3. In this figure

we can see that the inactive CPU3 has an available slack of 100% until the moment that

it starts running when its slack starts decreasing continuously. The same thing happens

for CPU2 when its stops running, its slack continuously drops. In order to reset the stack

and get a slack stabilized over time, Ghirdar accumulates the stack and makes a DVFS

desision until a fixed control period time has passed. In his case it is 3 ms (whenever the

OS Scheduled is called).

Ideally the original concept of criticality stacks would suffice in a world were the

processor has 100% of cache hits, predicts correctly every branch and it is not waiting for

any other slower subsystem inside the SOC. Lets assume a thread is determined to be most

critical, however given the small caches in ARM, this thread spends a significant amount

17

Figure 2.3: Frequency slack with respect to criticality

of time waiting due to cache misses, the original concept of criticallity stacks does not

asses wether it would be worth or not to increase the CPU frequency, taking into account

the exponential power penalty we have to pay for this increase in frequency.

This concept is also part of Ghirdar’s Algorithm[9] under the name of Scalability. Scal-

ability assigns a score to a CPU given the correlation between increases in frequency and

increases in speed. The Scalability of a thread is determined by using the L1 and L2 cache

misses and combining adding a weighted sum of them portrayed in equation 2.2. The

ProActive Load Balancing Algorithm (PALBA) balances available slack and scalability of

the code in order to asses assign a frequency to each core on the next controlled period.

S = 0.994 − 0.00000908 ∗ L1,misses − 0.000148 ∗ L2,misses (2.2)

18

2.3 Hardware Testing Via Software Implementation

Given that DuBois proved the efficacy of the algorithm when running in multiple

Threads, a concurrent study from Texas University by Bryan Elliot is translating this al-

gorithm into a Linux Kernel Frequency Governor. Taking into account that the underlying

nature of Linux multithreaded parallelism is that processes are ran as threads, instead of

tracking the Criticality on a per CPU way, this patch calculates the Criticality and Salabil-

ity for each process. This way, if the process is active, the OS can add the corresponding

values to the Criticallity stack. When the Scheduler is ran, the OS calculates the slack.

The scalability is ran in a similar fashion. The On-Chip performance counters (perf) are

started for the CPU instructions and the two levels of cache. Every 10ms that the Sched-

uler is called, the algorithm calculates the performance as a ratio of 1000. Although the

Ultimate goal of the study done by Mr. Elliot is corroborating these simulation in x86 with

an abundance of processors, the goal of this study is to adapt and test this code for testing

in ARM.

19

3. HARDWARE SELECTION AND TESTING METHODS

3.1 Hardware Selection

3.1.1 Raspberry Pi

The Rapsberry Pi 3 Model B was selected to conduct the initial round of testing of the

frequency governor because it only has one block of A53 LITTLE processors. Thanks to

this, Migration between blocks does not need to be accounted for because by default it

does not happen. Secondly, both perf counters and two-level caches are available in order

to calculate the scalability value. Finally the Pi has extensive documentation and support

for compiling the linux kernel, making it ideal for a first round of testing. Detailed specs

of the Pi as configure when testing are included in table 3.1. Finally, the simpler, smaller

A53 is useful in order to see the effect of frequency scaling in simple processors

Table 3.1: Raspberry Pi Specs

Model Raspberry Pi 3 Model B
Frequency Range (MHz) 600-1200
Processor 4 LITTLE (A53)
Instruction set ARMV7 (32 bit)
L1 Cache 16KB
L2 Cache 128KB
RAM 1 GB

3.1.2 HiKey 960

Once the proof of concept was tested in the Raspberry Pi, there is a necessity of testing

the new frequency governor in a processor similar to modern smart phones. Given its

wider frequency range (Up to 2.4 GHz) the Hikey 960 was selected as a testing platform

20

given that it is built for running Linux. Initially the big processor will be used without

CPU migration to replicate the test with a larger cache, larger frequency range but equal

core count. Finally, the 960 has a big.LITTLE arrangement, in where DVFS can be tested

for the diferent CPU migration mechanisms available. The full specs are included in table

3.2.

Table 3.2: Hikey 960 Specs

Model Hikey 960
Frequency Range (MHz) 600-2400
Processor 4 LITTLE (A53) 4 big (A73)
Instruction set ARMV8 (64 bit)
L1 Cache 64KB
L2 Cache 1MB
RAM 3 GB

3.2 DVFS in ARM

In order to be able to see the direct effect of power consumption, when performance

is reduced, a generic DVFS driver already present in the Linux source was included in the

Kernel mounted. This was done by modifying the default .config file from each board to

include this driver and its respective scalers for each governor. This setting is changed

by calling make menuconfig loading the default .config file from each board and enabling

Device Drivers-> Generic Dynamic Voltage and Frequency Scaling (DVFS) Support as

well as the governors inside it. This setting ensures that when the frequency is changed,

the voltage is also changed to a lower voltage. This so the power consumption can follow

the cubic relationship explained in equation 1.1.

21

3.3 Benchmarking Selection

3.3.1 Parsec

PARSEC was selected as a benchmark due to the natural parallelism of its different

tests and the variety of tests available. One particular advantage of PARSEC is being able

to simulate close to real life scenarios [11]. PARSEC includes several data-sets; however,

given that testing was being done in real sillicon, the native data-set was selected, as it is

large enough for extensive testing. Another benefit is the varying degrees of Data sharing

and rates of Exchange. Data sharing has a direct correlation to L1, L2 cache Hit/Miss

and Scalability. The Exchange rate are the number of Barriers and Conditions that stop

other threads from running, hence creating Critical threads. The specialty of the Scalable

Criticality Stacks algorithm is acceleration by identifying the Critical Thread and running

it faster than the other ones. However given the absence of Critical threads, one can test

the general efficacy of this algorithm in cases where the threads are completely Orthogonal

like real life multitasking. PARSEC is built to test the this principle by having tests like

BlackScholes that have 8 barriers (8 Critical Threads) to StreamCluster which has arround

130,000 barriers (Several thousands of Critical threads).

22

4. EXPERIMENTAL RESULTS

4.1 Setup

The only variable that we are interested in is the power consumption of the CPUs,

nonetheless in SOCs it is virtually impossible to completely isolate this given that in-

side the same system, the Chip includes Memory, CPU , Networking, Image processors,

GPUs... In order to create more accurate readings and taking into account the power con-

sumption of these ever present systems, the setup was configured to make the least use

of non-CPU components as possible. This meant turning off Networking modules, ISPs

GPUs and limiting the system to operation via serial interfaces. Also in order to reduce

internal thermal resistance buildup, Tests are ran with heatsinks over the board and a fan

at a static speed directly blowing on such heatsinks.

In order to test power consumption an Arduino M0 that has the capability of logging 0-

3.3V at a 12 bit resolution was used in conjunction with an INA169 circuit that paired with

a 100Ω resistor makes a conversion of current from 1mA=1mV. The Raspberry Pi runs at

5V and the Kikey 960 runs at 12V. In order to get these voltages to a readable range, a

potentiometer-calibrated voltage divider of V/4 was applied to the voltage before reading

and multiplied after the reading inside the micro controller. The values were printed to a

serial interface every 10ms where they were collected with their respective timestamp for

further analysis.

4.2 Results

4.2.1 Control Testing in Raspberry Pi

In order to test the direct response of power consumption vs frequency, two different

frequency governors were set while running both the BlackScholes and StreamCluster tests

23

from the PARSEC 3 benchmark suite. These governors set the frequency statically to the

maximum, the minimum. The total time to perform this benchmark using the native data-

set was taken as a measurement of the performance. As explained on previous section, the

native data set was used and the tests were run spawning 4 parallel threads. This setup was

selected as control for several reasons:

• Because the CPU power consumption cannot be fully isolated in the SBC, this test

permits to test the effectiveness of DVFS on CPU power consumption.

• While being monitored, Powersave and Perfomance provide the minimum and max-

imum power consumption possible.

• Conversely, these tests show the direct impact of frequency on performance.

The results for Blackscholes and StreamCulster are shown in tables 4.1 and 4.2.

Table 4.1: Power Consumption vs frequency for BlackScholes

Governor frequency (MHz) Mean Power Consumption (mW) Run time (s)
Performance 1200 7328 611
Powersave 600 6433 615

Table 4.2: Power Consumption vs frequency for StreamCluster

Governor frequency (MHz) Mean Power Consumption (mW) Run time (s)
Performance 1200 8712 1609
Powersave 600 7456 1664

The transient data collection for the blackscholes benchmark is also shown in figures

4.1 and 4.2

24

Figure 4.1: Blackscholes Perfomance

Figure 4.2: Blackscholes Powersave

25

4.2.2 Hikey960

Although, On Paper, the Huawei Hikey 960 should not have this same shortcomings

(specially in the A73 cores), this board is extremely limited. Designed to be used as

for Android Device Prototyping, the only implementation of a barebones linux system

is an unstable version of Debian only accessible by a custom UART (1.8V) and without

access to its built-in wifi, usb, usbc or m.2 ports. As a result the only software that can be

loaded is through an SD card, and kernel configuration and crosscompiling documentation

is nonexistent. Given said shortcomings and until this system fully supports debian, this

testing is also unfeasible.

Although other boards were studied, there are no other Single Board Computers that

are powered by recent big cores. This is a result of these boards being designed to run

lightweight applications. High Performance processors are limited to Mobile phones or

niche products like NVIDIA Development boards. These products usually contain more

power hungry components (GPUs, Screens, 4g antennas...) that make power tracking

virtually imposible.

26

5. SUMMARY AND CONCLUSIONS

5.1 Conclusion

In Conclusion, although in Simulation this load Balancing algorithm has shown to be

promising, the existing tools are not adequate to be tested on real life. Given the inability

of linux on ARM of being able to obtain real-time information of the CPU in which the

thread is running at, Mr. Elliot’s implementation would need to track the CPUs directly as

opposed to tracking a thread. Although the Raspberry Pi is not versatile enough to be able

to determine performance of a memory intensive test as a function of the frequency, the

960 should provide a better insight. The only shortcoming of this specific board is that it

is not targeted and does not have a fully functional implementation of linux in which these

tests could be performed.

5.2 Challenges

As mentioned in last section, the main issue was low availability of ARM based linux

boards that are performanced centered. Also, the difficulty of isolating CPU power con-

sumption inside a system limits the possibilities in which DVFS algorithms of applications

can be tested.

5.3 Future Work

Given that the Kernel was not tested, a clear continuation is adapting the kernel code

to read CPU info from within a thread indirectly. After that, and given the possibility of

future availability of Linux for Performance Oriented SBC, validation of these results can

be performed. Finally, after it is tested as a frequency scaler, it can also be tested as a CPU

Migration Mechanism.

27

REFERENCES

[1] E. Eason, “Smartphone battery inadequacy,”

[2] B. Walshe, “A brief history of arm: Part 2,” tech. rep., 2015. Accessed August 18
2017.

[3] ARM, “Arm big.little technology explained.” https://www.youtube.com/watch?v=KClygZtp8mA,
2014. Accessed August 18 2017.

[4] S. Yoo, Y. Shim, S. Lee, S.-A. Lee, and J. Kim, “A case for bad big.little switching:
How to scale power-performance in si-hmp,” in Proceedings of the Workshop on
Power-Aware Computing and Systems, HotPower ’15, (New York, NY, USA), pp. 1–
5, ACM, 2015.

[5] “big.little technology: The future of mobile: Making very high performance avail-
able in a mobile envelope without sacrificing energy efficiency,” tech. rep., 2013.

[6] P. Clarke, “London calling: Are arm’s big-little days numbered?,” tech. rep., EE
times, 2013.

[7] T. Kidd, “Why p scales as c*v2*f is so obvious,” tech. rep., Intel Developer zone,
2015.

[8] “Arm cortex -a series: Programmers guide for armv8- version 1.0a,” tech. rep., 2015.

[9] N. Girdhar, “Palba: Pro active load balancing algoritghm using thread criticallity and
scalability prediction,” Master’s thesis, Texas A&M University, 2016.

[10] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks: Iden-
tifying critical threads in parallel programs using synchronization behavior,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 511–522, 2013.

[11] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

28

APPENDIX

Figure 1 shows the setup between the voltage divider (Top Left), the INA169 (Bottom

Left) and the Arduino M0 (Right). The power source comes from the bottom and the de-

vice being measured is connected to the wires leaving in the top of the picture. The current

goint to the voltage divider is excluded from the INA169 and the entire divider has a resis-

tance of 4k Ω, which only consumes 6.25mW @ 5V or 36mW @ 12V which is negligible

given that the power Supplies are rated for 12,000mW and 25,000mW respecitvely.

Figure 1: Power Measuring Tool

29

