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ABSTRACT 

 

Utilizing renewable resources can address toxicological and environmental issues 

associated with commodity plastics and engineering materials.  In addition, scientists can 

exploit the various structures and chemistries of naturally occurring feedstocks to create 

a myriad of polymers with unique functionalities and tunable properties.  With this in 

mind, linear polycarbonates incorporating glucose into the main chain were synthesized 

by AA’/BB polymerizations of phosgene, diphosgene or triphosgene and one of four 

different glucose-based regioisomeric diols.  Each monomer exhibited unique 

reactivities and produced polymers with varying thermal properties.  Monomers bearing 

hemiacetal functionalities produced polymers with low molecular weights, (>10,000 

Da), whereas the remaining monomers permitted higher molecular weights (>30,000 

Da).  Polymers with the carbonate linkage connected to the anomeric center of the 

glucose ring were more thermally sensitive, with onset decomposition temperatures (Tds) 

ranging from 137 to 230 °C.  TGA-MS analysis revealed early degradation was due to 

loss of carbon dioxide and benzyl protecting groups.  In addition, by modifying the 

monomer synthetic scheme to produce AA’A’A bis-adducts, regioregular polymers 

possessing high molecular weights (>100,000 Da) and elevated glass transition 

temperatures were obtained. 

Functional linear polycarbonates bearing an endocyclic alkene were formed via 

organocatalyzed ring-opening polymerization of a six-membered carbonate monomer 

synthesized from ᴅ-glucal.  Using 1,5,7-triazabicyclo[4.40]dec-5-ene catalyst (1 mol %) 
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a polymer with a molecular weight of 9900 Da and polydispersity of 1.21 was obtained, 

whereas a 1,8-diazabicyclo[5.4.0]undec-7-ene and 1-(3,5-bis(trifluoromethyl)phenyl)-3-

cyclohexyl-2-thiourea cocatalyst system (2 mol%) afforded a polymer with a molecular 

weight of 5000 Da and a unimodal polydispersity of 1.20.  Both catalyst systems reached 

full conversions in dichloromethane under argon at 30 °C in fewer than ten minutes, 

forming amorphous polymers with a Tg at 65 °C and Tds ca. 200 °C.   

Tunable three-dimensional polycarbonate networks were synthesized from quinic 

acid, a polyhydroxyl natural product, similarly structured to glucose.  Solvent-free 

thiol−ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid and a 

variety of multifunctional thiol monomers to obtain poly(thioether-co-carbonate) 

networks with a wide range of achievable thermomechanical properties including glass 

transition temperatures from −18 to +65 °C.  Addition of diallyl carbonate was explored 

as a comonomer, which allowed for the lowering of glass transitions (38 to 65°C), 

without altering rubbery modulus.  Control force cyclic testing demonstrated excellent 

shape memory; high percent recoverable strains were obtained, reaching 100% recovery 

during fourth and fifth cycles. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Background and Motivation 

 

Over the past few decades, there has been a significant push by researchers and 

various consumer markets to utilize polymers that originate from natural products, in 

order to diminish dependence on petrochemical resources, reduce landfill accumulation 

of waste, and curtail CO2 emissions.  Moreover, demand for renewable polymers is 

growing, the production and commercialization of renewable bio-based polymers are 

expected to continuously grow by 2030.  In fact, the bio-based plastics market is 

expected to reach ca. €5.2 billion by 2030.
1
  Although, it has been the general goal for 

renewable polymers to resemble and replace existing polymeric materials derived from 

petrochemicals, the discussion does not need to be limited to the discussion to the 

development of new commodity plastics.  One area of research that can not only utilize 

renewable resources as a cost effective feedstock, but could also benefit from their use as 

synthetic starting materials, is the development of biomedical materials, specifically 

those as degradable orthopedic implants for bone fixation.  

Bone tissue is susceptible to fracture as a result of trauma, pathology, and 

resorption.
2,3

  In fact, every year more than 5.5 million orthopedic surgeries are 

performed in the United States alone, with open reduction of fractures by internal 

fixation representing 80,000 of those.
4
  Internal fixation entails the use of implants such 



 

2 

 

as plates, screws, pins and wires holding bone fragments in place during bone healing; 

for rigid fixation, plates and screws are most commonly used.
5
  Types of materials that 

are used for bone fixation can be classified into two groups according to their 

degradation profiles: bio-inert and biodegradable.
6,7

  Bio-inert fixation and repair devices 

are fabricated with stainless steel, titanium, cobalt-chromium, and their alloys, which 

have been employed successfully for the majority of fracture fixation devices,
8-10

 albeit 

with several issues.  First of all, there is a remarkable difference in the mechanical 

properties of the metals used and cortical bone (Table 1.1), which leads to a condition 

called stress-shielding.  The compressive stress-shielding at the fracture-interface 

immediately after fracture-fixation delays callus formation and bone healing leading to 

lower density bone tissue around the fixation device.  Likewise, the tensile stress-

shielding of the layer of bone underneath fixation plates can cause osteoporosis and 

decrease in tensile strength of the bone.
11

  In several cases where spinal cages were used 

during spinal fusion surgery, stress-shielding from metal implants retarded the vertebrae 

fusion process, eventually leading in pseudoarthrosis, corrosion, wear, and ultimately 

implant migration.
12-14

  This drawback combined with the findings such as corrosion 

leading to reduced mechanical strength and toxic by-products have led to the pursuit of 

alternate materials.
15

  Finally, the main disadvantage associated with metal implants is 

the need for secondary surgical removal of hardware, which not only increases the 

hospitalization time and health care cost but also elevates the chance of infection and 

other complications.   
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In many surgical applications, tissue requires temporary augmentation or fixation 

while regrowth of natural tissue occurs.  In such circumstances, degradable polymers are 

being increasingly used in place of traditional metallic materials.  There are multiple 

reasons for the use of a degradable material, but the most basic begins with the simple 

desire to have a device that can be used as an implant and will not necessitate a second 

surgery for removal.  In addition to eliminating the need for surgical removal, long-term 

implant-related complications are averted.  Bioabsorbable polymers typically retain 

strength to support the tissue into which they are placed for defined periods of time, 

which may vary from a few days to several months.  The degradation products must be 

compatible with living tissue, at least at the concentration in which appear, so that the 

healing process may occur unimpeded.  Development of biodegradable polymers has 

generally been accomplished by incorporating hydrolytically unstable linkages 

throughout the backbone.  Common hydrolytically labile linkages include anhydrides, 

orthoesters, carbonates, amides, and, most commonly, esters.
16

  As a result, several 

polymers have been investigated and used clinically as degradable orthopedic implants.  

Today, nearly every orthopedic manufacturer has an extensive line of bioresorbable 

devices to offer, predominantly composed of two polyesters, poly(glycolic acid) (PGA) 

and poly(lactic acid) (PLA). 
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1.2  Biodegradable Polymers Used in Orthopedic Materials 

 

Biodegradable polymer materials were introduced in surgical sutures over 40 

years ago and the idea of using them for surgical implants was proposed as early as 

1966.
17

  Although a wide variety of polymers have been used for biomedical 

applications, polyesters are most extensively investigated due to their biocompatibility 

and tunable degradation properties.  In fact, they laid the foundation for the development 

of the first synthetic degradable sutures and implants.  The first biodegradable bone 

fixation implant was a degradable rod made out of PGA, which was first employed to 

treat an ankle fracture in 1984.
18

  PGA is the simplest aliphatic polyester, with a single 

methylene group in the polymer backbone.  Polymers can be prepared by the 

polycondensation of glycolic acid, however it is not the most efficient method, as it leads 

to low molecular weight products.  Alternatively, PGA can be produced from the 

glycolide monomer, which is synthesized from the dimerization of glycolic acid, and 

polymerized through ring-opening polymerization to form high molecular weight 

materials with high crystallinity (45-55%), high melting points (220-225 °C) and glass 

transitions temperatures ranging from 35 to 40 °C.
10

  With a high degree of crystallinity, 

PGA has low solubility in most solvents, with the exception of highly fluorinated 

organic solvents such as hexafluoroispropanol.
19

  As a result, use of PGA homopolymers 

is limited.  Fibers from PGA exhibit high strength and modulus but are too stiff to be 

used as sutures, except as a braided material.  To avoid these problems, PGA has been 

used as self-reinforced foam
20

 or is copolymerized with other degradable polymers to 
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reduce stiffness in the final material.  PGA materials hydrolytically and enzymatically 

degrade back into glycolic acid, which is either hepatically metabolized into CO2 and 

H2O, or excreted renally.
21

  Biodegradation, low aggregation, and lack of cytotoxic 

response have been the main advantages for using PGA as a degradable material; 

however complications have arisen when PGA materials have been used clinically.   

 

Table 1.1.  Mechanical properties of bone and clinically used implant materials.
19,22-27

 

      In vivo loss times 

Material Tg (°C) Tm (°C) 

Tensile 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

Strain to 

Failure 

(%) 

Strength 

(weeks) 

Mass 

(months) 

Cancellous 

bone 
- - 0.2-0.5 10-20 5-7 - - 

Cortical 

bone 
- - 3.3-17.0 51-193 1-3 - - 

SS (316L) - 1375-1400 200 550-965 20-50 - - 

Ti - 1650-1700 100 620 18 - - 

PGA 35-40 225-230 4.0-7.0 75-142 15-20 3-6 6-12 

PLLA 56-65 170-178 2.7-5.1 40-140 5-10 12-26 
>24 (up to 

10 years) 

PDLLA 55-60 Amorphous 1.9 42-51 3-10 12-16 12-36 

 

 

PGA has a high degradation rate due to its hydrophilic nature and its mechanical 

strength after implantation drops significantly, limiting the usefulness for load bearing 

applications.  Several clinical studies have reported issues with PGA implant 

degradation, which includes fluid accumulation, sinus formation, and osetolysis.
28

  In 
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certain cases, side reactions were severe enough to require revision surgery or 

arthrodesis.  PGA continues to be used for a variety of biomedical applications, however 

it is often copolymerized with other polymers in order optimize the mechanical and 

degradation properties to produce materials more suitable for orthopedic applications. 

Since PGA was observed to degrade too rapidly for orthopedic applications, 

slower degrading polylactic acid (PLA) became widely utilized material for orthopedic 

fixation implants.  PLA, an aliphatic polyester, is predominantly synthesized in a similar 

fashion to PGA from the cyclic monomer, lactide, which exists as two isomers D-lactide, 

and L-lactide.  The two different isomers allow for control over the final polymer 

properties, allowing for PLA to be tailored to a wider variety of applications than PGA.
29

  

The homopolymer of L-lactide (PLLA) is a semicrystalline polymer and, like PGA, 

exhibits high tensile strength and low elongation.  Consequently, PLLA has a high 

modulus that makes it more applicable than other amorphous polyesters for orthopedic 

fixation devices and sutures.  Unlike PLLA, the random distribution of both isomers 

found in poly(DL-lactide) (PDLLA) prevents the polymer from arranging into a 

crystalline organized structure.  The amorphous nature of PDLLA gives the material a 

lower tensile strength, higher elongation, and a much more rapid degradation time.
30

  

Ability for tuning through control of stereoregularity, crystallinity, molecular weight, 

molecular weight distribution and morphology has made PLA materials attractive for a 

variety of applications, however there are limitations to the use of PLA as an orthopedic 

material.  PLA has poor toughness and is a very brittle material with less than 10% 

elongation at break.
31

  The poor toughness limits its use in applications that need plastic 



 

7 

 

deformation at higher stress levels experienced by orthopedic fixation devices.
32

  PLA, 

additionally, is relatively hydrophobic, which in turn affects degradation and cell 

affinity.  The degradation rate is often an important selection criterion for biomedical 

applications.  Slow degradation rate leads to a long in vivo life time, which could several 

years in some cases.  There have been reports of a second surgery almost three years 

after implantation to remove PLA-based implants.
28

   

 

 

 

Figure 1.1.  Structures of commonly used degradable polymers for orthopedic materials. 

 

In order to produce suitable PLA materials, PLA is often copolymerized with 

other polyesters or bulk-modified, the most common of which is the copolymer is 

poly(lactide-co-glycolide) (PLGA).  Although PLGA has been extensively used in a 
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variety of clinical applications, its use is limited in the field of orthopedics.
33

  The reason 

for this is notably due to hydrophobic nature of PLGA which does not support cell 

adhesion for promoting bone in-growth.
34

  By altering the monomer ratio of glycolide to 

lactide and the molecular weight, biodegradation and mechanical strength can be 

controlled, but even with optimization, PLGA is not an ideal candidate to be used for 

load bearing applications due to the low mechanical strength.
33

   

The degradation kinetics and brittleness of PGA and PLA can be improved by 

using polymers that have a lower glass temperatures, such as poly(ε-caprolactone) 

(PCL), polyethylene glycol (PEG), or poly(trimethylene carbonate) (PTMC).
10

  PTMC, 

its copolymers, and its derivatives have been extensively studied for use in biomedical 

applications.  PTMC can be prepared by a ring-opening polymerization (ROP) of 

trimethylene carbonate using both conventional organometallic catalysts
35-38

 and 

emerging organocatalysts.
39,40

  PTMC is a hydrophobic non-crystalline polymer with a 

glass transition temperature (Tg) of around −20 °C.  Therefore, PTMC is usually used as 

a soft material in a scaffold application for soft tissue regeneration.  In addition, 

resistance to non-enzymatic hydrolysis, generation of nonacidic degradation products, 

and enzymatic degradation with a surface erosion mechanism, allows PTMC to be used 

applications in biomedical devices that could not be achieved with traditional aliphatic 

polyesters.
41

  However, progress in current medical technologies has led to the 

requirement for more complex and higher level functional materials.  Thus, the 

integration of multiple functions has been explored for synthetic biodegradable polymers 

by various approaches, including polymer blends, composites, copolymerization, and 
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functional pendant groups, in order to respond to a broad range of applications.  These 

aims can be achieved by utilizing alternate monomer saccharide-based feedstocks, which 

would ultimately lead to hydroxyl decorated polymers that allow formation of 

hierarchical structures through hydrogen bonding and also post-polymerization.   

 

1.3  Development of Saccharide-Based Aliphatic Polycarbonates 

 

Although, aliphatic polycarbonates were first synthesized by Carothers over 80 

years ago,
42

 research and development of polycarbonates have almost exclusively 

focused around aromatic compounds.  With their characteristic low melting points and 

high susceptibility to hydrolysis, which were considered inferior to the properties 

displayed by many other polymers [e.g., polyester, polyamide, poly(methyl 

methacrylate)] developed in the era for fiber production and commodity plastics, 

aliphatic polycarbonates were not pursued commercially.  Unlike aromatic 

polycarbonates, which garnered immediate commercial attention when bisphenol-A 

polycarbonates was first developed, aliphatic polycarbonates remained largely 

unexplored commercially and received little attention from the research field until the 

1990s.  Early studies of aliphatic polycarbonates focused on the improvement of 

mechanical properties and thermal stabilities of the readily available PTMC through its 

blending with polymers having complementary properties for applications such as 

engineering thermoplastics, albeit with limited commercial success.
43

  Despite the 

relatively slow development of aliphatic polycarbonates, they have received significant 
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renewed interest in recent years.  An increasing demand for more versatile, degradable 

materials has revived interest in aliphatic polycarbonates for biomedical applications,
44,45

 

for which their degradability, low glass transition temperatures, and elasticity, once 

perceived as major drawbacks, lend them a competitive advantage over existing polymer 

systems.
44,45

  In addition the recent surge in aliphatic compounds has also resulted from 

new progress in polymerization techniques,
39,46-51

 functional monomer synthesis,
52-62

 and 

the new applications being explored.
63-66

   

Within this same time frame, interests in the development of polycarbonate 

feedstocks based on renewable materials, namely carbohydrates, has intensified, due to 

the low biodegradability of petroleum-based polymers and the exhaustible nature of the 

oil reserved.  Carbohydrate-based polymers that retain the chiral, cyclic main chain 

structure of natural polysaccharides and that can be prepared by controlled synthetic 

methods are of interest for both basic studies and applications.  Specifically, novel 

polymeric structures having a hydrophilic pyranose backbone not joined with ether 

linkages are interesting because these materials are not found in nature and provide new 

molecular architectures to be explored.  In addition, polymers based on naturally 

occurring products represent promising new materials, with novel technical potential and 

enhanced properties with regard to biocompatibility and biodegradability.  

Consequently, the production of environmentally friendly and sustainable materials and 

the development of biomass-based polymers constitute a steadily growing field of 

attention.   
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Unfortunately, polymerization of monomers derived from sugars is not 

straightforward.  First of all, the multifunctionality of saccharides must be minimized, by 

removal or masking through use of appropriate protecting groups, to prevent side 

reactions leading to undesirable products.  Secondly, in order to obtain regio- and 

stereoregular polymers, strict control throughout the course of monomer synthesis and 

polymerization is required.  Otherwise, random orientation of chiral units can lead to ill-

defined atactic polymers.  Much work has focused on the development of synthetic 

carbohydrate-based polymers and glycopolymers, however they predominantly rely on 

poly(vinylsaccharides)s and other conventional functionalized polymers having sugars 

as groups pendant from the main chain of the polymer.
67-71

  Our focus is the 

development is the synthesis of sugar-based monomers which will lead to 

polycarbonates having sugar units incorporated into the main chain.  The interest in this 

kind of carbohydrate-based polymer has been steadily increasing and a considerable 

number of papers have been published on the subject during the last few years.
72

  The 

following sections reports on the synthesis and polymerization of this type of sugar-

derived monomers in the past and present work. 

 

1.3.1  Polycondensation of Anhydroalditols 

 

Research of polycarbonates sourced from anhydroalditols, namely isosorbide, 

precluded the recent surge in aliphatic polycarbonate development by several decades as 

a potential replacement for poly(bisphenol-A carbonate) and related plastics.  
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Poly(bisphenol-A carbonate) is widely used for engineering materials and commodity 

plastics due to its outstanding toughness, transparency, heat resistance, thermal oxidative 

stability, and electrical properties.
73

  Its rigid aromatic backbone that provides excellent 

thermal stability and mechanical properties as well as a flexible carbonate linkage that 

provides improved processability and toughness.  The combination of high toughness 

and good transparency makes it a promising material when producing special function 

materials, such as prescription glasses, aircraft windows, and bullet-proof glass.  The 

high refractive index, clarity, and UV absorption makes poly(bisphenol-A carbonate) an 

ideal material for eyewear, lenses, and safety glasses.
74

  Despite its commercial success 

and attractive thermomechanical and physical properties, bisphenol-A is not a 

sustainable monomer from two different viewpoints.  Bisphenol-A represents a non-

renewable and potentially harmful feedstock, as it is derived from petroleum and can act 

as an endocrine disruptor.
75-77

  Isosorbide, on the other hand, is derived from the 

reduction and dehydration of glucose and is non-toxic.  The use of isosorbide and other 

dianhydrohexitols (isomannide and isoidide) in polymers, more specifically 

polycondensates, can be motivated by several features; they are rigid molecules, chiral, 

non-toxic, thermally stable, and readily available.  For these reasons, there are 

expectations that polymers with high glass transition temperatures and/or with special 

optical properties can be synthesized.  Also, the innocuous character of the molecules 

opens the possibility of additional applications in areas of packaging or medicine. 

The interfacial polycondensation of bisphenol-A with phosgene or diphosgene, 

the technique used to obtain over 90% of the poly(bisphenol-A carbonate) produced,
78

 is 
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not useful with alditols because they are extremely hydrophilic and less acidic than 

diphenols.  Much effort has gone into finding alternative methods to synthesize 

isosorbide polycarbonates.  The synthesis of poly(isosorbide carbonate) homopolymers 

may be carried out through other methods, such as transesterification of isosorbide with 

diphenyl carbonate
79-82

 and dimethyl carbonate.
83

  This method requires high reaction 

temperatures (220-300 °C) and long reaction times, which, often with heterocyclic diols, 

leads to branching and cross-linking, forming brown non-homogenous material.  

Solution-based polymerization has been primarily attempted because it can precisely 

control chemical reaction heat and viscosity and prevent auto-acceleration reactions.  

Condensation with phosgene,
84,85

 diphosgene,
79,84

 or with bischloroformate 

functionalized isosorbide comonomers
86

 proved to be more successful at producing high 

molecular weight polymers, with few side reactions.  Isosorbide-based polycarbonates 

generally exhibit relative resistance to hydrolysis and high Tgs, reaching 175 °C.
87

  This 

can be explained by the rigid fused-ring structure of the isosorbide monomer which 

would lead to low mobility of the poly(isosorbide carbonate) polymer chain.   

 

1.3.2  Polycondensation of O-Protected Saccharides 

 

The most common O-protecting groups of the secondary hydroxyl groups found 

on the saccharide monomers are acetal, ester, and ether groups.  The ether group is the 

most resistant O-protecting group of the alditol monomers under the polycondensation 

reaction conditions, but also the most difficult to remove from the resulting polymers.  
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Sugar-based polymers, protected alditol derivatives, can be prepared from commercially 

available diethyl L-tartrate, pentoses (arabinitol, xylitol and ribose), and hexitols 

(mannitol) to prepare various aliphatic polycarbonates.
88-90

   

Biodegradable polymers having pendant functionalities are of particular interest, 

being capable of covalent prodrug formation and other functionalities.  With 

derivatization of pendant functional groups, variations in hydrophobicity, physical 

properties, and biodegradation can be achieved.  This concept was explored in various 

studies in which functional polycarbonates were synthesized from four, five, and six 

carbon sugars.  Biodegradable poly(hydroxyalkylene carbonate)s from optically active 

and racemic 2,3-O-ispropylidene-threitol and 2,4:3,5-di-O-isopropylidene-ᴅ-mannitol 

were prepared
91

 with diethyl carbonate in the presence of diethyl tin oxide.  After 

isopropylidene protecting groups were hydrolyzed, polymers with free hydroxyl groups 

were derivatized with esters, orthoesters, and carbamates producing polycarbonates with 

varying physical properties.  Deprotected polycarbonates were water-soluble, and 

degraded in a few weeks by a mechanism in which hydroxyl groups were shown to 

participate.  Similarly structured threitol-based polycarbonates with pendant 

isopropylidene functional groups were synthesized from L-tartaric acid, a natural 

compound found in a large variety of fruits, by the enzymatic catalyzed ring opening of 

a seven membered cyclic carbonate.   

Galbis et al have described the use of 2,3,4-tri-O-methyl-L-arabinitol and 2,3,4-

tri-O-methyl-xylitol in the synthesis of polycarbonates and polyesters.
92

  These pentitols 

were polycondensed using a commercial solution of phosgene in toluene (20% phosgene  
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Figure 1.2.  Protected alditol monomers used to form saccharide-based polycarbonates 

via AA-BB and AB polycondensation. 

 

 

in toluene); whereby, sugar-based homopolycarbonates and copolycarbonates with 

bisphenol-A were obtained in high yields.  Both showed high resistance to chemical 

hydrolysis, however, they were enzymatically degraded in different degrees.  The fastest 

degradation promoted by lipase B from Candida antartica was observed for the fully 
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xylitol-based polycarbonate, followed by copolycarbonates also based on xylitol, which 

revealed a marked stereospecificity of the enzyme towards this sugar. 

In addition to utilizing saccharides to form functional polycarbonates for 

biomedical applications, synthetic DNA analogues have been synthesized from poly(2’-

O-deoxyadenosine carbonate)s via AB polycondensation.
93

  Protected monomers were 

synthesized with triisopropylsilyl (TIPS) ether and carbonylimidazolide at the 3’- and 5’-

positions of the 2’-deoxyribonucleoside ring.  In the presence of cesium fluoride, 

removal of the TIPS protecting group afforded a reactive alkoxide in situ, which in turn 

attacks the carbonylimidazolide group, affording the corresponding polycarbonate 

together with the cyclic oligomers.  However, the deprotection of the N-benzoyl group 

resulted in the scission of the polymer main chain.  Thus, the N-unprotected 2’-

deoxyadenosine monomers were examined for polycondensation.  This led to undesired 

reaction between the adenine amino group and the carbonylimidazolide to form the 

carbamate linkage.  In order to exclude this unfavorable reaction, dynamic protection 

was employed.  Strong hydrogen bonding was used in place of the usual covalent 

bonding for reducing the nucleophilicity of the adenine amino group, allowing for the 

production of polycarbonates with the almost regular 3’-5’ carbonate linkages. 

 

 

 

1.3.3  Ring-Opening Polymerization of Cyclic Furanoses and Pyranoses 

 

Carbohydrate-based polymers that retain the chiral, cyclic main chain structure of 

natural polysaccharides that can be prepared by controlled synthetic methods are of 
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interest for various applications.  Specifically, novel polymeric structures having a 

hydrophilic pyranose backbone joined with carbonate linkages are interesting because 

these polymers provide rigid molecular architectures that may lead to robust materials 

with high glass transition temperatures.  A number studies from the Gross lab have 

investigated the  synthesis  and  characterization  of  polycarbonates  and   poly(ester-co- 

 

 

 

 

Figure 1.3.  Sugar derived five-membered and six-membered cyclic carbonate 

monomers used to form polycarbonates via  ROP.  Unlike previously synthesized 

saccharide linear polycarbonates, these polymers incorporate intact saccharide rings into 

the main chain of the polymer. 
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carbonate)s derived from the natural sugar, xylose.  Chen and Gross synthesized high-

molecular weight derived from L-lactide and 3,5-cyclic carbonate of 1,2-O-

isopropylidene-D-furanose
94

 in the presence of organometallic catalyst, Sn(Oct)2.  Even 

though the monomer reactivity ratio of L-lactide is much greater than that of the xylose 

monomer, short xylose segment lengths were formed.  This observation was explained 

by intramolecular exchange reactions, xylose monomer insertion reaction during 

propagation, or by other more complicated phenomena.  The same xylose monomer was 

also used to form homopolymers
95

,  though even with different organometallic catalysts 

such as methylaluminoxane (MAO), isobutyl aluminoxane (IBAO), AlEt3-0.5 H2O, 

ZnEt2-0.5 H2O, Et2AlOEt, and Y(O-i-Pr)3 the investigators failed to recreate polymers of 

similar chain length from the previous study.  In addition, anionic catalyst, tert-butoxide, 

an effective catalyst for the polymerization of ε-caprolactone and other cyclic esters, was 

also tested, however polymerization for the xylose monomer occurred at a much slower 

rate, which was attributed to steric constraints imposed by the vicinal ketal-protected 

diol.  The polymers created exhibited high glass transitions (Tg) for aliphatic 

polycarbonates and three different types of carbonate linkages (head-head, head-to-tail, 

and tail-to-tail) in ratios that indicate a random propagation mechanism.  Following this 

study, the same authors also polymerized the xylose monomer with trimethylene 

carbonate in the presence of organometallic catalyst.
96

  Copolymers containing 8 to 83% 

of xylose presented an alternating structure and amorphous nature.  The ketal 

deprotection was also carried out and the resulting polymers were soluble in 

dimethylformamide (DMF), indicating low degree of cross-linking.  The original 
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polymers presented increased Tgs as the xylose content increased, whereas the Tg of the 

unprotected compolymers decreased, further supporting original claims of the Tg 

elevating effect by the substituents attached to the 1,3-dioxane-2-one-ring.
95

 

Additional functional copolymers with control of the quantity and the proximity 

of hydroxyl groups along the main chain were synthesized by copolymerization of L-

lactide with a six-membered cyclic carbonate monomer derived from glucose.
97

  The 

new 4’4-cyclic carbonate monomer of 1,2-isopropylidne-3-benzyloxy-ᴅ-pentofuranose 

was copolymerized with L-lactide in the presence of Sn(Oct)2 at 130 °C.  The benzyl 

ether and ketal groups were selectively removed by hydrogenolysis or acid catalyzed 

hydrolysis so that the units within the copolymers could have one, two, or three free 

hydroxyl groups.   

More recently, the Endo group has focused on the ring opening polymerization of 

glucose-based monomers with five-membered cyclic carbonates.
98,99

  It is known that 

anionic ring opening polymerizations of six- and seven-membered cyclic carbonates, 

such as trimethylene carbonate and tetramethylene carbonate easily proceed under 

anionic conditions.  Anionic ring-opening polymerizations of five-membered cyclic 

carbonates, on the other hand, usually require more vigorous conditions with higher 

temperatures, and often proceed with the elimination of carbon dioxide resulting in 

poly(carbonate-co-ether)s.  Despite the unfavorable thermodynamic nature of anionic 

ROP of five-membered cyclic carbonates, Haba et al were able to produce 

polycarbonates from a five-membered cyclic carbonate containing glucopyranoside via 

anionic polymerization by potassium-tert-butoxide (t-BuOK) and 1,8-
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diazabicyclo[5.4.0]undec-7-ene (DBU), without elimination of carbon dioxide.
98

  DBU 

proved to be a more effective initiator, however, the polymerization proceeded in a non-

controlled fashion as polymers with relatively high polydispersity indexes (>1.4) were 

formed.  Further investigations showed that the rate and mechanism was dependent on 

both initiator and solvent used.  Polymerizations initiated with n-BuOLi, t-BuOLi, n-

BuONa, n-BuOK, and DBU proceeded smoothly to yield corresponding polycarbonates 

in high yields.  Interestingly though, when using DBU as an initiator in DMF rather than 

THF, the polymerization proceeded at a faster rate and under an alternate zwitterionic 

mechanism.  In fact, when copolymerized with L-Lactide, methyl 4,6-O-benzylidene-

2,3-O-carbonyl-α,D-glucopyranoside (MBCG) shared similar reactivity ratio and 

copolymers were composed of a random distribution of monomer units in ratios that 

corresponded to their respective monomer feed ratios.
100

 

The unusually good ability of the reported MBCG to polymerize was reported to 

be caused by the ring strain of the five-membered ring, more specifically, due to the 

trans-fusing to the pyranose ring.
101

  The same phenomenon was observed when applied 

to other pyranoside monomers.  To investigate the relationship between steric structures 

and stereochemistry of five membered cyclic carbonates, the anionic ring-opening 

polymerization of three different monomers: MBCG, methyl 4,6-O-benzylidene-2,3-O-

carbonyl-α,D-galactopyranoside (MBCGa), and methyl 4,6-O-benzylidene-2,3-O-

carbonyl-α,D-mannopyranoside (MBCM).
102

  Similar to previous polymerizations of 

MBCG, the polymerization of MBCGa proceeded without the elimination of CO2, while 

the polymerization of MBCM did not proceed.  Ring-closing reactions revealed the 
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preference of the mannopyanoside-based hydroxycarbonate to produce cyclic carbonate, 

while others did not give cyclic carbonates.  This finding along with X-ray 

crystallography data indicated that the trans-fused carbonate rings of MBCG and 

MBCGa are less stable than that of the cis-fused MBCM carbonate ring, and thus more 

favorable for ROP.   

Mannose was also used as a starting material for the synthesis of cyclic 

carbonates, which could undergo ROP to yield renewable linear polycarbonates.
103

  

Interestingly, the authors utilized a novel approach to form the cyclic carbonate that does 

involve the use of dangerous compounds, such as phosgene.  Reaction of the protected 

mannose (methyl-2,3-O-isopropylidene-α-D-mannopyranoside) with carbon dioxide in 

the presence of DBU, afforded the six-membered cyclic carbonate in relatively good 

yields (57%).  The cyclic monomer was subsequently polymerized via organocatalyzed 

ROP with TBD catalyst and methylbenzyl alcohol initiator, producing regioregular 

homopolymers with Tgs and high-temperature resistance.  

The Wooley group has an interest in developing renewable glucose-based 

polycarbonates having well-defined structures and high thermal stabilities.  With the 

advancement of organocatalyzed ROP of six-membered cyclic carbonates, monomers 

were synthesized bearing a fused 4,6-cylic carbonate and polymerized with the 

hydrogen-bonding, bifunctional catalyst, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), and  

methylbenzyl alcohol initator.
104

  In contrast to the ROP of five-membered 

glucopyranoside carbonate monomers, the ROP of methyl-2,3-O-methyl-4,6-O-

carbonyl-glucopyranoside afforded well defined amorphous poly(ᴅ-glucose carbonate)s 
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(PDGC) with low PDIs (<1.2) and well-defined end-groups.  Polymerization of PDGC 

homopolymers progressed at an accelerated rate when compared to other six-membered 

ring systems (full conversion was reached in under 10 min, DPn = 50, PDI = 1.13), 

namely due to the torsional strain applied to the carbonate by the bicyclic system.  

Importantly, the controlled ROP forms PDGC in a rapid and efficient manner and also 

proved compatible with other polymer systems in the formation of diblock-co-

polymers,
105

 which was carried out via chain extension of a polyphosphoester (PPE) 

macrointiator.
106,107

  Polyphosphoester-block-poly(glucose carbonate)s represent a new 

functional architecture prepared from renewable materials that can be rapidly 

transformed into a diverse array of amphiphilic diblock copolymers, with the potential to 

break down into natural byproducts.   

 

1.4  Current Work 

 

With advances in biomedical sciences, it is necessary to develop polymers that 

meet more demanding requirements.  In this work we attempt to utilize synthetic organic 

chemistry to produce a class of renewable polycarbonates that can tackle drawbacks 

associated with aliphatic polyesters used in biomedical applications.  By utilizing 

polycarbonate linkages, we hope to build robust materials that do not degrade into acidic 

byproducts.  In addition use of polyhydroxyl natural products, namely glucose, have 

rigid cyclic core units together with polar, hydrogen-bonding hydroxyl groups to lead to 

strong and tough materials for engineering and biomedical and other applications, where 
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the combined properties and degradation can be properly utilized.  The primary goals of 

the research in this body of work were: 

1. to advance the field of aliphatic polycarbonates by developing novel 

degradable polymers from naturally occurring polyhydroxyl natural products, 

namely D-glucose and quinic acid; 

2. to synthesize renewable polycarbonates via polycondensation containing 

intact heterocycles in the main chain from various O-protected 

glucopyranoside diols 

3. to investigate the structure-property relationship of glucose-based 

polycarbonates and the effect of regiochemistries on monomer reactivity and 

the physical properties of the resulting polymers; 

4. to develop polycarbonates with “clickable” functionalities via ROP of a 

glucose-sourced, glucal monomer in order to establish a novel 

multifunctional polymer system that lends itself to facile post-polymerization 

functionalization 

5. to utilize rapid crosslinking methods, specifically incorporation of thiol-ene 

chemistry, as means to generate robust quinic acid-based three-dimensional 

crosslinked networks.  

 

 Chapter II focuses on the transformation of ᴅ-glucose, Nature’s building and 

energy storage block, into monomers for the synthesis of sophisticated degradable 

polycarbonates.  Through a series of chemical transformations, selective hydroxyl 
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groups on ᴅ-glucose were capped with benzyl or methyl protecting groups, and four 

distinct diol monomers were formed.  A series of polymerization conditions were tested 

with each monomer to determine optimal polymerization conditions.  Differences in 

reactivity of each monomer were assessed by the resulting molecular weight of each 

polymer.  Two monomers where able to give high molecular weights (>20kDa).  The 

two monomers bearing hemiacetal functionalities proved to be less reactive than their 

counterparts, and thus produced low molecular weight polymers (<10 kDa).  The 

thermal properties of each polymer were analyzed by differential scanning calorimetry 

(DSC).  All polymers exhibited amorphous behaviors with glass transition temperatures 

ranging from 44-85 °C, depending on regiochemical connectivity and molecular weight.  

The polymers additionally underwent thermogravimetric analysis (TGA) and it was 

found that the thermal stability of each polymer also varied, correlating with the 

differences in chemical makeup of carbonate linkages.  Polymers in which the carbonate 

linkage ran through C1, or in which the carbonate linkage was adjacent to an acetal 

functional group, had significantly lower onset decomposition temperatures.  It was 

hypothesized that the anomeric center of glucose, played a role in the in thermal 

breakdown of the polymer, leading to the facile evolution carbon dioxide as a 

degradation product.  However, our originally proposed degradation mechanism was not 

fully supported, when additional ions were detected at lower temperatures during 

thermal decomposition.  When analyzed by TGA coupled mass spectrometry         

(TGA-MS), degradation fragments were observed early in the decomposition at 
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increments of m/z 77, 78, 91, 92, 105, and 106, which correspond to phenyl, toluyl, and 

benzoyl radicals, respectively, signifying a more complicated degradation mechanism. 

In Chapter III, modifications were made to the monomer structure when various 

polymerization conditions failed to produce polymers with Mn over 10 kDa.  Since the 

monomers with primary alcohols yielded polycarbonates with higher molecular weights, 

bis-adducts of two of the previous monomers were synthesized, by incorporating an 

additional synthetic step to produce monomers with two primary alcohols.  These two 

new monomers proved to be more reactive than previously synthesized glucose-based 

monomers in Chapter II, yielding polymers with molecular weights reaching over 100 

kDa and polydispersities ranging from 1.5 to 1.9.  Due to the regioregularity and high 

molecular weights of the polymers, each regioisomeric poly(glucose carbonate) 

exhibited relatively high glass-transition temperatures for aliphatic polycarbonates,      

92 °C to 101 °C.  The polymers also exhibited relatively high thermal stability, with 

onset decomposition temperatures (Td) near 300 °C, as revealed by TGA. 

 Chapter IV moves away from polycondenstion polymers and introduces a new 

glucal-based monomer with a six-membered cyclic carbonate, suitable for ROP.  Unlike, 

condensation polymerizations, ROP allows for greater control over polymer size and 

distribution, affording polymers with narrow polydispersity indexes.  Recently, the 

Wooley group developed a glucose-based monomer suitable for ROP by utilizing 

hydroxyl groups on C4 and C6 to create a six-membered ring.  Additionally these 

polymers could be easily modified by changing the protecting groups and thus adding 

additional functionality.  In this investigation, a cyclic carbonate was synthesized from 
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tri-acetyl-D-glucal, an abundant glucose derivative commonly used as a chiral feedstock 

in organic chemistry.  Glucal was chosen as the starting material in order to incorporate 

alkene functionality in the polymer backbone to make post-polymerization modification 

via click-chemistry available.  Interestingly, the incorporation of the double bond had an 

important effect on the thermodynamics of the polymerization.  Previously, ROP of 

glucose-based utilized TBD required 2-5 hours to reach complete conversion.  When 

using similar conditions, polymerization proceeded significantly faster and full 

conversion was achieved in under a minute.  As a result, a milder cocatalyst system of 

DBU and TU was used in this study to produce well-defined polymers.  Finally these 

polymers were analyzed by TGA and DSC, revealing amorphous polymers with high Tg 

and early onset decomposition temperatures. 

 In Chapter V, investigations into a rapid, solvent-free, UV-promoted thiol-ene 

crosslinking reaction was conducted, building upon linear quinic acid-based 

polycarbonates reported by the Wooley lab.  Previously, the synthesis of poly(quinic 

acid carbonate)s was investigated by copolymerization of tert-butyldimethylsilyloxy 

(TBS)-protected 1,4- and 1,5-diol monomers of quinic acid and diphosgene in pyridine.  

Although the polymers exhibited high glass transition temperatures [209 °C for poly(1,4-

quinic acid carbonate) and 229 °C for poly(1,5-quinic acid carbonate)], they possessed 

poor mechanical strength, which likely resulted from limited molecular weights and high 

glass transition temperatures.  To introduce mechanically robust polycarbonates, a 

crosslinking strategy utilizing thiol-ene “click” chemistry to synthesize three-

dimensional networks was employed.  The synthesis and thermomechanical 
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characterization of covalently crosslinked networks derived from QA are reported in this 

study.  Transformation of hydroxyl groups on the quinic acid lactone to allyloxy 

carbonate functional groups was performed by reaction with allyl chloroformate to 

produce the tris(alloc)quinic acid (TAQA) alkenyl monomer.  Solvent-free thiol-ene 

chemistry was utilized in the copolymerization to obtain poly(thioether-co-carbonate) 

networks with a wide range of achievable thermomechanical properties, including glass 

transition temperatures from -18 to 65 °C and rubbery moduli from 3.8 to 20 MPa.  

Further tunability of thermomechanical properties was achieved by varying              

“ene-content” through the introduction of diallyl carbonate as a comonomer.  Networks 

were synthesized with glass transition temperatures ranging from -15 to 63 °C without 

significantly varying rubbery moduli.  Finally, control force cyclic testing by DMA 

showed excellent shape memory behavior for 1,2-EDT-co-TAQA and 1,2-EDT-co-

TAQA-co-DAC materials.  High percent recoverable strains were obtained, reaching 

100% recovery during fourth and fifth cycles.    
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CHAPTER II  

REGIORANDOM POLYCARBONATES DERIVED FROM FOUR DISTINCT 

GLUCOSE-BASED AA’ MONOMERS 

 

2.1  Original Publication Information* 

 

This chapter contains excerpts from the article Four Different Regioisomeric 

Polycarbonates Derived from One Natural Product, ᴅ-Glucose.

  Modifications to the 

original document are cosmetic and used only to conform to the format of this document 

or provide uniformity of enumeration.  Additional studies as well as contents found in 

the supporting information, which was originally a separate document, have been 

included in the chapter, and schemes and figures have been renumbered to the style of 

this document. 

 

2.2  Overview 

 

The design and synthesis of new biomaterials, particularly those derived from 

biomolecule-based monomers, remains an area of considerable research effort.  Herein 

the synthesis and characterization of polycarbonates based on the renewable resource, 

                                                 

*Reprinted with permission from “Four Different Regioisomeric Polycarbonates Derived from 

One Natural Product, ᴅ-Glucose”, by Alexander T. Lonnecker, Young H. Lim, Simcha E. Felder, 

Céline J. Besset and Karen L. Wooley, 2016, Macromolecules, 49(20), 7857-7867, DOI: 

10.1021/acs.macromol.6b00591), Copyright 2016 by The American Chemical Society. 
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glucose, are reported.  Three different synthetic methods were studied with respect to 

their ability for the preparation of high molecular weight poly(glucose carbonate)s from 

four distinct benzyl and methyl protected glucose diols.  The polymers possess glass 

transitions temperatures (Tg) ranging from 44 °C to 85 °C and onset thermal 

decomposition temperatures (Td) ranging from 137 °C to 325 °C depending on the 

regiochemistry of the polymer.  Polymers synthesized from monomers possessing 

hemiacetal functionalities exhibited lower Tgs and significantly lower thermal stabilities.  

Further investigation of thermal decomposition by tandem TGA-MS showed early 

degradation due to the loss of carbon dioxide and benzyl protecting groups. 

 

2.3  Introduction 

 

The past few decades have seen a paradigm shift from non-degradable polymeric 

materials to those with inherent degradability for medical and related applications.
108-110

  

Examples of these new materials vary widely from sutures and orthopedic devices,
111

 to 

engineered tissues,
110

 and drug delivery systems.
112

  The major driving force for the 

development of advanced degradable materials for use in biomedical applications 

include ethical and technical concerns associated with the long-term biocompatibility of 

implants generally resulting in follow-up procedures to expedite their replacement or 

removal.
108

  The advancement of degradable polymers in biomedicine has been limited 

to variations on traditional polymers such as aliphatic polyesters and 

polyanhydrides,
113,114,115

   To create the  next generation of biomaterials, with improved 
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Figure 2.1.  Ideal life cycle of glucose-based polycarbonates. 

 

 

functionality, degradability, and biocompatibility, new monomeric systems should be 

explored.  To improve biocompatibility, the use of biodegradable materials obtained 

from natural resources, such as monosaccharides,
116

 terpenes,
117,118

 menthides,
119,120

 

capable of degrading into bioresorbable products are currently receiving increased 

attention as an alternative to traditional petroleum based materials.
121

 

We envision glucose-based polycarbonates would serve as ideal degradable 

polymeric biomedical materials, since the starting materials can be obtained from 

abundant renewable compounds and the degradable byproducts are ubiquitous in the 

human body, avoiding complex issues with clearance and toxicity.  In addition, multiple 

hydroxyl groups on each saccharide repeat unit would form intermolecular hydrogen 

bonds with oxygen atoms on neighboring chains, creating strong, reinforced materials.  
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In naturally occurring support materials like cellulose and chitin, this high-degree of 

intermolecular bonding leads to the formation of microfibrils with high tensile strength.  

Our approach to generating natural product-based polymeric materials is to develop 

saccharide-based polycarbonates.  With this in mind there are several reported 

polycarbonates derived from monosaccharides, often with the saccharide moiety as a 

side chain substituent,
122,123

 as an opened ring in the main chain of copolymers,
91,92

 or as 

an intact saccharide ring in the polymer backbone.
93,96,98,99,124-128

  In addition, much 

interest has been devoted to modified saccharide feedstocks, such as alditols and 

anhydroalditols,
129

 which lend themselves to facile synthetic strategies as well as 

generation of high performing engineering polymers.  Simplification of carbohydrate 

structures, like in the case of isosorbide, produces monomers that are capable of forming 

high molecular weight engineering materials, however they lose their structural diversity 

and multiple functionalities that gives them their interesting bioactivity.  This has led us 

to focus on the development of polymeric materials that are synthesized from, and 

undergo hydrolytic degradation into, the same natural product starting materials. 

In this context, we have investigated the synthesis of polycarbonates built from 

glucose, an abundant natural product that is prevalent both in nature and the human 

body, to afford a unique family of bio-sourced, potentially degradable, engineering 

polymers: poly(ᴅ-glucose carbonate)s (PDGCs).  Glucose is an important carbohydrate, 

acting as an energy source, a metabolic intermediate, and a monomeric repeat unit in 

many polymeric support structures.  These features, along with an established field of 

carbohydrate protection and deprotection chemistry, make glucose an appealing starting 
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material for the synthesis of linear polycarbonates.  This article reports the design, 

synthesis, and rigorous characterization of polycarbonates prepared from four different 

benzyl-protected glucose monomers via condensation polymerization to evaluate the 

efficacy of different glucose monomers to yield high molecular weight polymer and the 

effect of backbone connectivity on physiochemical and thermal properties. 

 

2.4  Experimental 

 

2.4.1  Materials 

 

Unless otherwise noted, all reagents were used as received.  Dichloromethane 

(DCM) was purified by passage through a solvent purification system (J.C. Meyer 

Solvent Systems) and used as a dried solvent.  Monomers 4, 8, 11, and 12 were dried 

under reduced pressure, over P2O5 and stored under Ar environment.  Column 

chromatography was performed on a combiflash Rf4x (Teledyne ISCO) with RediSep 

Rf Columns (Teledyne ISCO). 

 

2.4.2  Characterization 

 

The 
1
H NMR (500 MHz) and 

13
C NMR (125 MHz) spectra were obtained on an 

Inova 500 MHz spectrometer using the solvent as an internal reference.  Glass transition 

(Tg) temperatures were measured by differential scanning calorimetry (DSC) on a 
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Mettler Toledo DSC822e apparatus (Mettler Toledo, Columbus, OH) with a heating rate 

of 10 °C/min.  The measurements were analyzed using Mettler-Toledo Star
e
 v. 10.00 

software.  The Tg was taken as the midpoint of the inflection tangent, upon the third 

heating scan. Thermogravimetric analysis (TGA) was performed under an Ar 

atmosphere using a Mettler Toledo model TGA/SDTA851
e
 apparatus with a heating rate 

of 10 °C/min that was coupled to a Pfeiffer TermoStar/GSD320T3 mass spectrometer.  

Ions generated during TGA ranging from 0-300 amu were detected over a span of 30 sec 

(10ms/amu) during the run of the TGA with a steady flow of Ar (10 mL/min).  Gel 

permeation chromatography (GPC) was conducted on two Waters Chromatography, Inc. 

(Milford, MA) systems eluted with either tetrahydrofuran (THF) or dimethylformamide 

(DMF) at a flow rate of 1.00 mL/min.  Both GPCs were equipped with an model 1515 

isocratic pump, a model 2414 differential refractometer, and a three-column set of 

Polymer Laboratories (Amherst, MA) Styragel columns (PLgel 5 μm Mixed C, 500 Å, 

and 104 Å, 300 x 7.5 mm columns) for the THF system equilibrated at 35 °C, or a four-

column set of 5 μm Guard (50 × 7.5 mm), Styragel HR 4 5 μm DMF (300 × 7.5 mm), 

Styragel HR 4E 5 μm DMF (300 × 7.5 mm), and Styragel HR 2 5 μm DMF (300 × 7.5 

mm) equilibrated at 70 °C.  Polymer solutions were prepared at a known concentration 

(ca. 3 mg/mL), and an injection volume of 200 μL was used.  Data collection and 

analyses were performed with Precision Acquire software and Discovery 32 software, 

respectively (Precision Detectors, Inc.).  The differential refractometer was calibrated 

with standard polystyrene materials (SRM 706 NIST) for the THF system and 

poly(ethylene glycol) for the DMF system.  IR spectra were recorded on an IR Prestige 
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21 system (Shimadzu Corp., Japan), equipped with an ATR accessory, and analyzed 

using IRsolution v. 1.40 software. 

 

2.4.3  Synthesis 

 

Synthesis of Glucose Monomer 4 

Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (2).  Methyl-

4,6-benzylidene-α-D-glucopyranoside (10.4 g, 36.8 mmol), 1, potassium hydroxide 

(14.1 g, 251 mmol), and benzyl bromide (42.8 g, 251 mmol) were suspended in 150 mL 

of toluene and heated to reflux.  Water generated in situ was collected with a Dean-Stark 

apparatus.  The reaction was monitored by TLC until complete consumption of starting 

material and allowed to cool to room temperature after 2 hours.  The mixture was 

washed with water and the aqueous layer was extracted with DCM.  The organic layer 

was dried with magnesium sulfate and concentrated under vacuum.  The residue was 

then purified by column chromatography (SiO2, 85:15 hexane, acetone) resulting in a 

white solid (15.6 g, 92%). 

Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (2).  
1
H NMR 

(500 MHz, CDCl3) δ 7.50-7.26 (m, 15H), 5.55 (s, 1H), 4.94-4.90 (d, J = 11.2 Hz, -

OCH2Ar, 1H), 4.88-4.84 ( d, J = 12.1 Hz, -OCH2Ar, 1H), 4.85-4.82 (d, J = 11.2 Hz, -

OCH2Ar, 1H), 4.72-4.68 (d, J = 12.1 Hz, -OCH2Ar, 1H), 4.60-4.59 (d, J1-2 = 3.7 Hz, 1H, 

H1), 4.29-4.24 (dd, J6eq-6ax = 9.9 Hz, J6eq-5 = 4.6 Hz, 1H, H6eq), 4.08-4.02 (t, J3-2 = J3-4 = 

9.3 Hz, 1H, H3), 3.87-3.79 (dt, J5-4 = J5-6ax = 9.9 Hz, J5-6eq = 4.6 Hz, 1H, H5), 3.74-3.67 
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(t, J6ax-5 = J6ax-6eq = 9.9 Hz, 1H, H6ax), 3.63-3.57 (dd, J4-5 = 9.9 Hz, J4-3 = 9.3 Hz, 1H, 

H4), 3.58-3.54 (dd, J2-3 = 9.3 Hz, J2-1 = 3.7 Hz, 1H, H2), 3.40 (s, 3H, -OCH3) ppm;  
13

C 

NMR(125 MHz, CDCl3): δ 138.7, 138.1, 137.4 (Aripso), 128.9, 128.4, 128.3, 128.2, 

128.1, 128.0, 127.9, 127.6, 126.0 (Ar), 101.2 (-OCHAr), 99.2, (C1), 82.1 (C4), 79.1 

(C2), 78.6 (C3), 75.4 (-OCH2Ar), 73.8 (-OCH2Ar), 69.0 (C6), 62.3 (C5), 55.4 (-OCH3) 

ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3100–3000, 3950–2800, 1450, 1367, 1329, 1175, 

1084, 1050, 1028, 964, 732, 692, 652;  +ESI MS: calculated [M + Li]
+
 for C28H30O6: 

469.2202, found: 469.2191. 

Methyl 2,3,6-tri-O-benzyl-α-ᴅ-glucopyranoside (3).  Compound 2 (14.8 g, 32.0 

mmol) was suspended in 500 mL of THF under N2 and sodium cyanoborohydride (14.5 

g, 230 mmol) was added.  After stirring for 45 min at room temperature (r.t.), the 

temperature was decreased to 0 °C and aluminum chloride (38.4 g, 288 mmol) was 

added.  Following an additional hour of stirring the reaction mixture was filtered to 

remove the aluminum salts.  The filtrate was extracted with 500 mL of DCM and 

washed with water.  The aqueous phase was extracted with 250 mL of DCM and the two 

organic layers were combined, dried with Na2SO4, and then concentrated under vacuum.  

The residue was purified by column chromatography on silica gel, eluting with a 7:3 

mixture of hexanes and ethyl acetate, to produce colorless oil (12.6 g, 85%). 

Methyl 2,3,6-tri-O-benzyl-α-ᴅ-glucopyranoside (3).  
1
H NMR (500 MHz, CDCl3) 

δ 7.38-7.26 (m, 15H, Ar), 5.02-4.99 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.78-4.76 (d, J = 

12.0 Hz, 1H, -OCH2Ar), 4.75-4.72 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.67-4.62 (d, J = 

12.0 Hz, 1H, -OCH2Ar), 4.64-4.63 (d, J1-2 = 3.5 Hz, 1H, H1), 4.60-4.58 (d, J = 11.8 Hz, 
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1H, -OCH2Ar), 4.55-4.53 (d, J = 11.8 Hz, 1H, -OCH2Ar), 3.80-3.77 (t, J3-2 = J3-4 = 9.4 

Hz, 1H, H3), 3.61-3.58 (dd, J5-4 = 9.5 Hz J5-6 = 3.9 Hz, 1H, H5), 3.57-3.56 (d, J6-5 = 3.9 

Hz, 2H, H6), 3.51-3.47 (dt, J4-3 = J4-5 = 9.4 Hz, J4-OH = 2.1 Hz, 1H, H4), 3.44-3.41 (dd, 

J2-3 = 9.4 Hz, J3-1 = 3.5 Hz, 1H, H2), 3.39 (s, 3H, -OCH3), 2.22-2.21 (d, JOH-4 = 2.1 Hz, 

1H, HOH-4) ppm;  138.9, 138.2, 138.1 (Aripso), 128.7, 128.6, 128.5, 128.3, 128.1, 128.1, 

128.0, 127.8, 127.7 (Ar), 98.3, (C1), 81.6 (C3), 79.7 (C2), 75.6, 73.7, 73.3 (-OCH2Ar), 

70.8 (C4), 70.0 (C5), 69.6 (C6), 55.4 (-OCH3) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3456 

(broad – OH stretch), 3030, 2915, 2875, 2840, 1496, 1453, 1397, 1359, 1328, 1283, 

1242, 1208, 1192, 1158, 1135, 1085, 1069, 1049, 1027, 909, 844, 734, 695;  HRMS 

(+ESI) m/z calc’d for C28H32O6 [M+K]
+
 :  503.18, found 503.1754. 

2,3,6-Tri-O-benzyl-ᴅ-glucopyranoside (4).  Compound 3 (4.0 g, 5.6 mmol) was 

dissolved in 120 mL of acetic acid at r.t.  The solution was heated to 110 °C and 40 mL 

of HCl (4 N) was added.  The reaction was monitored by TLC and stopped after 35 min.  

The reaction mixture was added into 500 mL of water and neutralized by the addition of 

2 M NaOH.  The solution was extracted with 500 mL of DCM.  The organic layer was 

dried with Na2SO4 and concentrated under vacuum.  The residue was purified by 

chromatography on silica gel, eluting with a 7:3 mixture of hexanes:ethyl acetate and 

then concentrated under vacuum.  The product was recrystallized in a 7:1 mixture of 

hexanes to ethyl acetate resulting in 1.3 g (32%) of a 1:1 mixture of  2,3,6-tri-O-benzyl-

α-ᴅ-glucopyranoside and 2,3,6-tri-O-benzyl-β-ᴅ-glucopyranoside 4, which was used 

without further purification. 
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2,3,6-tri-O-benzyl-α-ᴅ-glucopyranoside (4α).  
1
H NMR (500 MHz, CDCl3) δ 

7.50-7.26 (m, 15H, Ar), 5.23 (t, J1-2 = J1-OH = 2.8 Hz, 1H, H1α), 5.00-4.96 (d, J = 11.4 

Hz, 1H, -OCH2Ar), 4.78-4.74 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.78-4.74 (d, J = 11.8 Hz, 

1H, -OCH2Ar), 4.71-4.67 (d, J = 11.8 Hz, 1H, -OCH2Ar), 4.62-4.58 (d, J = 12.2 Hz, 1H, 

-OCH2Ar), 4.55-4.51 (d, J = 12.2 Hz, 1H, -OCH2Ar), 4.02-3.96 (td, J5-4 = 9.7 Hz, J5-6 = 

4.2 Hz, 1H, H5) 3.82-3.76 (t, J3-2 =  J3-4 = 9.2 Hz, 1H, H3), 3.68-3.67 (d, J6-5 = 4.2 Hz, 

2H, H6), 3.64-3.60 (dd, J2-3 = 9.4 Hz, J2-1 = 2.8 Hz, 1H, H2), 3.58-3.53 (dd, J4-5 = 9.4 

Hz, J4-OH = 3.5 Hz, 1H, H4), 2.96-2.95 (d, JOH-4 = 3.5 Hz, 1H, OH-4), 2.38-2.37 (d, JOH-1 

= 3.0 Hz, 1H, OH-1) ppm;  
13

C NMR(125 MHz, CDCl3): δ 138.8, 137.9, 137.9 (Aripso), 

128.7, 128.7, 128.6, 128.5, 128.5, 128.3, 128.2, 128.1, 128.01, 128.0, 128.0, 127.9, 

127.9 (Ar), 91.4 (C1), 81.2 (C3), 79.8 (C2), 75.5, 73.8, 73.1 (-OCH2Ar), 71.0 (C4), 70.2 

(C5), 69.8 (C6) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3500–3300, 3100–3000, 2950–

2800, 1498, 1453, 1337, 1216, 1132, 1101, 1048, 1024, 910, 865, 755, 695;  +ESI MS: 

calculated [M + Li]
+
 for C27H30O6: 457.2202, found: 457.2195. 

2,3,6-tri-O-benzyl-β-ᴅ-glucopyranoside (4β).  
1
H NMR (500 MHz, CDCl3) δ 

7.50-7.26 (m, 15H, Ar), 5.49-5.46 (dd, J1-2 = 10.0 Hz, J1-OH = 2.8 Hz, 1H, H1β), 5.00-

4.96 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.78-4.74 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.78-

4.74 (d, J = 11.8 Hz, 1H, -OCH2Ar), 4.71-4.67 (d, J = 11.8 Hz, 1H, -OCH2Ar), 4.62-

4.58 (d, J = 12.2 Hz, 1H, -OCH2Ar), 4.55-4.51 (d, J = 12.2 Hz, 1H, -OCH2Ar), 3.77-

3.74 (dd, J5-4 = 8.0 Hz, J5-6 = 3.0 Hz, 1H, H5), 3.68-3.67 (d, J6-5 = 3.0 Hz, 2H, H6), 3.53-

3.49 (td, J4-3 = J4-5 = 8.8 Hz, 1H, H4), 3.48-3.45 (t, J3-2 = J3-4 = 8.8 Hz, 1H, H4), 3.39-

3.36 (dd, J2-1 = 10.0 Hz, J2-3 = 8.8 Hz, 1H, H2), 3.12 (s, 1H, HOH-1), 2.43-2.42 (d, JOH-4 = 
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3.5 Hz, 1H, HOH-4) ppm;  
13

C NMR(125 MHz, CDCl3): δ 138.6, 138.4, 137.8 (Aripso), 

128.7, 128.7, 128.6, 128.5, 128.5, 128.3, 128.2, 128.1, 128.01, 128.0, 128.0, 127.9, 

127.9 (Ar), 97.6 (C1), 84.0 (C3), 82.7 (C2), 75.4, 74.7, 74.3 (-OCH2Ar), 73.7 (C4), 71.2 

(C5), 70.2 (C6) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3500–3300, 3100–3000, 2950–

2800, 1498, 1453, 1337, 1216, 1132, 1101, 1048, 1024, 910, 865, 755, 695;  +ESI MS: 

calculated [M + Li]
+
 for C27H30O6: 457.2202, found: 457.2195. 

 

Synthesis of Glucose Monomer 8 

Methyl 2,3,4,6-tetra-O-benzyl-α-ᴅ-glucopyranoside (6).  NaH (60% 

suspension in mineral oil, 41.2 g, 1.03 mol) was washed with hexanes under N2.  

Hexanes was removed and NaH was suspended in dry DMF (500 mL).  Methyl 

glucopyranoside (24.8 g, 0.128 mol) was dissolved in 200 mL of dry DMF and added 

dropwise the reaction mixture at 0 °C, and allowed to stir for 30 min until bubbles 

ceased to be produced.  Tert-butyl ammonium iodide (5.2100 g, 0.014105 mol) was 

added, followed by the dropwise addition of benzyl bromide (83.2 g, 0.486 mol).  The 

reaction mixture was allowed to warm to room temperature and stir for 22 hours.  To 

quench the reaction, H2O (100 mL) was added dropwise over 20 min.  The mixture was 

extracted with DCM and washed with brine.  The organic layers were collected, dried 

with MgSO4, filtered, and concentrated under reduced pressure.  The resulting residue 

was purified my column chromatography (SiO2, gradient hexane:ethyl acetate) to yield 

the perbenzylated product (58.6 g, 82.7%). 
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Methyl 2,3,4,6-tetra-O-benzyl-α-ᴅ-glucopyranoside (6).  
1
H NMR (500 MHz, 

CDCl3) δ 7.37-7.12 (20H, m, Ar), 4.99-4.97 (d, J = 11.0 Hz, 1H, -OCH2Ar), 4.84-4.81 

(d, J = 10.6 Hz, 1H, -OCH2Ar), 4.83-4.81 (d, J = 11.0 Hz, 1H, -OCH2Ar), 4.81-4.78 (d, 

J = 12.2 Hz, 1H, -OCH2Ar), 4.67-4.65 (d, J = 12.2 Hz, 1H, -OCH2Ar), 4.63-4.62 (d, J1-2 

= 3.6 Hz, 1H, H1), 4.61-4.59 (d, J = 12.2 Hz, 1H, -OCH2Ar), 4.48-4.46 (d, J = 12.2 Hz, 

1H, -OCH2Ar), 4.47-4.45 (d, J = 10.6 Hz, 1H, -OCH2Ar), 4.00-3.96 (t, J3-2 = J3-4 = 9.2 

Hz, 1H, H3), 3.76-3.72 (ddd, J5-4 = 9.3 Hz J5-6a = 3.7, J5-6b = 2.0 Hz, 1H, H5), 3.74-3.70 

(dd, J6a-6b = 13.6 Hz, J6a-5 = 3.7 Hz, 1H, H6a), 3.65-3.62 (dd, J6b-6a = 13.6 Hz, J6b-5 = 2.0 

Hz, 1H, H6b), 3.65-3.61 (t, J4-3 = J4-5 = 9.3 Hz, 1H, H4), 3.57-3.54 (dd, J2-3 = 9.3 Hz, J2-1 

= 3.6 Hz, 1H, H2), 3.38 (s, 3H, -OCH3) ppm;  
13

C NMR (125 MHz, CDCl3) δ: 138.9, 

138.4, 138.3, 137.0 (Aripso), 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 128.0, 127.8, 

127.8, 127.7 (Ar), 98.3 (Cl), 82.3 (C3), 79.9 (C2), 77.8 (C4), 75.9, 75.2, 73.6, 73.5 (-

OCH2Ar), 70.2, (C5), 68.6 (C6), 55.3 (-OCH3) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 

3088, 3062, 3030, 2899, 2864, 1496, 1452, 1359, 1325, 1207, 1192, 1157, 1134, 1085, 

1070, 1043, 1026, 1002, 910, 850, 732, 694, 650;  HRMS (+ESI) m/z calc’d for 

C35H38O6 [M+Li]
+
 :  561.28, found 561.2828. 

1,6-Di-O-acetyl-2,3,4-tri-O-benzyl-ᴅ-glucopyranoside (7).  Concentrated 

sulfuric acid (1 mL) was added dropwise to a stirred solution of 6 (5.4651 g, 9.8529 

mmol) in acetic acid: acetic anhydride (1:1, 50 mL) at 0 °C.  After an hour, thin layer 

chromatography (72:25 hexanes/ethyl acetate) indicated complete consumption of the 

starting material.  The reaction mixture was washed with 50 mL of sat. aq. NaHCO3 and 

50 mL of ice water.  The aqueous phase was extracted with DCM (3x75 mL) and the 
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combined organic layers were washed with brine, dried with MgSO4, filtered and 

concentrated in vacuo.  The residue was purified by column chromatography over silica 

gel (gradient 100% hexanes to 70:30 hexanes/ethyl acetate) to afford the diacetate, 7, 

(3.3131 g, 1:0.3, α:β, 62.3%) as a pale yellow oil. 

1,6-Di-O-acetyl-2,3,4-tri-O-benzyl-α-ᴅ-glucopyranoside (7α)  
1
H NMR (500 

MHz, CDCl3) δ 7.38-7.25 (m, 15H, Ar), 6.32-6.31 (d, J1-2 = 3.5 Hz, 1H, H1), 5.00-4.98 

(d, J = 10.8 Hz, 1H, -OCH2Ar), 4.90-4.88 (d, J = 10.7 Hz, 1H, -OCH2Ar), 4.84-4.82 (d, 

J = 10.8 Hz, 1H, -OCH2Ar), 4.72-4.70 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.65-4.63 (d, J = 

11.4 Hz, 1H, -OCH2Ar), 4.58-4.56 (d, J = 10.7 Hz, 1H, -OCH2Ar), 4.32-4.26 (dd, J6a-6b 

= 12.2 Hz, J6a-5 = 3.7 Hz, 1H, H6a), 4.26-4.21 (dd, J6b-6z = 12.2 Hz, J6b-5 = 2.3 Hz, 1H, 

H6b), 4.01-3.95 (dd, J3-2 = 9.6 Hz, J3-4 = 9.0 Hz, 1H, H3), 3.96-3.91 (ddd, J5-4 = 10.0 Hz, 

J5-6a = 3.7 Hz, J5-6b = 2.3 Hz, 1H, H5), 3.69-3.65 (dd, J2-3 = 9.6 Hz, J2-1 = 3.6 Hz, 1H, 

H2) 3.60-3.54 (dd, J4-5 = 10.0 Hz, J4-3 = 9.0 Hz, 1H, H3), 2.15 (s, 3H, -COOCH3), 2.03 

(s, 3H, -COOCH3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 170.8, 169.45 (-COOCH3), 

138.5, 137.7, 137.6 (Aripso), 128.7, 128.6, 128.5, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9 

(Ar), 89.8 (C1), 81.7 (C3), 78.9 (C2), 76.7 (C4), 75.9, 75.4, 73.3 (-OCH2Ar), 71.2 (C5), 

62.8 (C6), 21.2, 21.0 (-COOCH3) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3088, 3062, 

3030, 2914, 2873, 1741, 1496, 1454, 1361, 1226, 1151, 1070, 1008, 933, 912, 734, 696;  

HRMS (+ESI) m/z calc’d for C31H34O8 [M+Li]
+
 : 541.24, found 541.2414. 

1,6-Di-O-acetyl-2,3,4-tri-O-benzyl-β-ᴅ-glucopyranoside (7β)  
1
H NMR (500 

MHz, CDCl3) δ 7.38-7.25 (m, 15H, Ar), 5.61-5.60 (d, J1-2 = 8.2 Hz, 1H, H1), 5.00-4.98 

(d, J = 10.8 Hz, 1H, -OCH2Ar), 4.90-4.88 (d, J = 10.7 Hz, 1H, -OCH2Ar), 4.84-4.82 (d, 
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J = 10.8 Hz, 1H, -OCH2Ar), 4.72-4.70 (d, J = 11.4 Hz, 1H, -OCH2Ar), 4.65-4.63 (d, J = 

11.4 Hz, 1H, -OCH2Ar), 4.58-4.56 (d, J = 10.7 Hz, 1H, -OCH2Ar), 4.32-4.26 (dd, J6a-6b 

= 12.2 Hz, J6a-5 = 3.7 Hz, 1H, H6a), 4.26-4.21 (dd, J6b-6a = 12.2 Hz, J6b-5 = 2.9 Hz, 1H, 

H6b), 4.01-3.95 (dd, J3-2 = 9.6 Hz, J3-4 = 9.0 Hz, 1H, H3), 3.96-3.91 (ddd, J5-4 = 10.0 Hz, 

J5-6a = 3.7 Hz, J5-6b = 2.9 Hz, 1H, H5), 3.78-3.72 (dd, J2-3 = 9.6 Hz, J2-1 = 8.2 Hz, 1H, 

H2) 3.60-3.54 (dd, J4-5 = 10.0 Hz, J4-3 = 9.0 Hz, 1H, H4), 2.15 (s, 3H, -COOCH3), 2.03 

(s, 3H, -COOCH3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 170.8, 169.45 (-COOCH3), 

138.5, 137.7, 137.6 (Aripso), 128.7, 128.6, 128.5, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9 

(Ar), 89.8 (C1), 81.7 (C3), 78.9 (C2), 76.7 (C4), 75.9, 75.4, 73.3 (-OCH2Ar), 71.2 (C5), 

62.8 (C6), 21.2, 21.0 (-COOCH3) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3088, 3062, 

3030, 2914, 2873, 1741, 1496, 1454, 1361, 1226, 1151, 1070, 1008, 933, 912, 734, 696;  

HRMS (+ESI) m/z calc’d for C31H34O8 [M+Li]
+
 : 541.24, found 541.2414. 

2,3,4-Tri-O-benzyl-ᴅ-glucopyranoside (8).  To a stirred solution of 1,6-di-O-

acetyl-2,3,4-tri-O-benzyl-β-ᴅ-glucopyranoside, 7, (1.9940 g, 3.7299 mmol) in anhydrous 

methanol/THF (3:1, 32 mL) was added sodium methoxide (25% in methanol, 1.5 mL) at 

O °C for 30 min.  Upon consumption of the starting material, the reaction was 

neutralized with 1 M NaHSO4 solution.  The reaction mixture was diluted with 100 mL 

of ethyl acetate, washed with 75 mL of distilled water and brine, dried with MgSO4, 

filtered and concentrated in vacuo.  Crude was purified by column chromatography 

(SiO2, 1:1 hexanes/ethyl acetate) to afford 1.6465 g of 2,3,4-tri-O-benzyl-ᴅ-

glucopyranoside (8), as a white solid (98%, 1:1 α:β). 
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2,3,4-Tri-O-benzyl-α-ᴅ-glucopyranoside (8α).  
1
H NMR (500 MHz, CDCl3) δ 

7.36-7.26 (m, 15H, Ar), 5.19-5.18 (d, J1-2 = 3.6 Hz, 1H, H1α), 4.97-4.62 (m, 6H, -

OCH2Ar), 4.02-3.98 (t, J3-2 = J3-4 = 9.3 Hz, 1H, H3), 3.97-3.93 (ddd, J5-4 = 10.0 Hz, J5-6b 

= 4.4 Hz, J5-6a = 2.3 Hz, 1H, H5), 3.82-3.79 (dd, J6a-6b = 12.1 Hz, J6a-5 = 2.3 Hz, 1H, 

H6a), 3.69-3.65 (dd, J6b-6a = 12.1 Hz, J6b-5 = 4.4, 1H, H6b), 3.56-3.49 (dd, J2-3 = 9.3 Hz, 

J2-1 = 3.6 Hz, 1H, H2), 3.56-3.49 (dd, J4-5 = 10.0 Hz, J4-3 = 9.3 Hz, 1H, H4) 3.00 (s, 1H, 

OH-1), 1.66 (s, 1H, OH-6) ppm;  
13

C NMR (125 MHz, CDCl3): δ 138.7, 138.5, 138.4 

(Aripso), 128.9, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8 (Ar), 91.3 

(C1), 81.7 (C3), 80.2 (C2), 77.6 (C4), 75.8 (-OCH2Ar), 75.2 (-OCH2Ar), 73.4 (-

OCH2Ar), 71.1 (C5), 62.0 (C6) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3433, 3307, 3088, 

3062, 3028, 2916, 2900, 2872, 1496, 1452, 1359, 1319, 1234, 1215, 1147, 1109, 1085, 

1060, 1028, 1016, 987, 748, 731;  HRMS (+ESI) m/z calc’d for C27H30O6 [M+Li]
+
:  

457.22, found 457.2214. 

2,3,4-Tri-O-benzyl-β-ᴅ-glucopyranoside (8β).  
1
H NMR (500 MHz, CDCl3) δ 

7.36-7.26 (m, 15H, Ar), 4.97-4.62 (m, 6H, -OCH2Ar), 4.73-4.71 (d, J1-2 = 7.8 Hz, 1H, 

H1β), 3.87-3.84 (dd, J6a-6b = 12.1 Hz, J6a-5 = 2.3 Hz, 1H, H6a), 3.70-3.64 (dd, J6b-6a = 

12.1 Hz, J6b-5 = 4.4 Hz, 1H, H6b), 3.53-3.49 (t, J3-2 = J3-4 = 9.3 Hz, 1H, H3), 3.56-3.49 

(dd, J4-5 = 9.9 Hz, J4-3 = 9.3 Hz, 1H, H4) 3.43-3.39 (ddd, J5-4 = 9.9 Hz, J5-6b = 4.4 Hz, J5-

6a = 2.3 Hz, 1H, H5) 3.39-3.35 (dd, J2-3 = 9.3 Hz, J2-1 = 7.8 Hz, 1H, H2), 3.27 (s, 1H, 

OH-1), 1.95 (s, 1H, OH-6) ppm;  
13

C NMR (125 MHz, CDCl3): δ 138.1, 138.0, 137.9 

(Aripso), 128.9, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8 (Ar), 97.4 

(C1), 84.6 (C3), 83.3 (C2), 77.7 (C4), 75.9 (-OCH2Ar), 75.5 (C5), 75.2 (-OCH2Ar), 75.0 
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(-OCH2Ar), 62.0 (C6) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3433, 3307, 3088, 3062, 

3028, 2916, 2900, 2872, 1496, 1452, 1359, 1319, 1234, 1215, 1147, 1109, 1085, 1060, 

1028, 1016, 987, 748, 731;  HRMS (+ESI) m/z calc’d for C27H30O6 [M+Li]
+
 :  457.22, 

found 457.2214. 

 

Synthesis of Monomers 11 and 12 

Methyl 3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (9) and  methyl 

2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (10).  Methyl-4,6-O-benzylidene 

glucopyranoside, 1, (10.2 g, 36.1 mmol), benzyl bromide (10.5 g, 61.4 mmol), and 

tetrabutylammonium hydrogensulfate (2.53 g, 7.44 mmol) were dissolved in 600 mL of 

DCM.  To this solution, 50 mL of 5% NaOH (aq.) solution was added and the mixture 

was heated to reflux and left for 26 hours.  The mixture was separated and the aqueous 

layer was extracted with 50 mL of DCM.  The organic layers were combined, dried with 

MgSO4, filtered and concentrated under reduced pressure.  The resulting residue was 

purified by column chromatography (SiO2, gradient hexane to ethyl acetate) to afford 

methyl 2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 9 (7.61 g, 57%) and methyl 

3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 10 (5.42 g, 40%) as white solids. 

Methyl 3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (9).  
1
H NMR (500 

MHz, CDCl3) δ 7.50-7.25 (m, 10H, Ar), 5.57 (s, 1H, -OCHAr), 4.98-4.95 (d, J = 11.8 

Hz, 1H, -OCH2Ar), 4.82 (d, J1-2 = 3.3 Hz, 1H, H1), 4.80-4.78 (d, J = 11.8 Hz, 1H, -

OCH2Ar), 4.31-4.28 (dd, J6eq-5 = 9.9 Hz, J6eq-6ax = 4.6 Hz, 1H, H6eq), 3.85-3.81 (td, J5-4 = 

J5-6ax = 9.9 Hz, J5-6eq = 4.5 Hz, 1H, H5), 3.85-3.81 (t, J3-2 = J3-4 = 9.9 Hz, 1H, H3), 3.78-



 

44 

 

3.74 (t, J6ax-5 = J6ax-6eq = 9.9 Hz, 1H, H6eq), 3.75-3.71 (ddd, J2-3 = 9.9 Hz, J2-OH = 6.9 Hz, 

J2-1 = 3.3 Hz, 1H, H2), 3.67-3.63 (t, J4-3 = J4-5 = 9.9 Hz, 1H, H4), 3.45 (s, 3H, -OCH3), 

2.31-2.30 (d, JOH-2 = 6.9 Hz, 1H, HOH-2) ppm;  
13

C NMR (125 MHz, CDCl3): δ 138.4, 

137.3 (Aripso), 129.0, 128.4, 128.2, 128.0, 127.7, 126.0 (Ar), 101.3 (-OCHAr), 99.9 (C1), 

81.9 (C4), 78.4 (C3), 74.8 (-OCH2Ar), 72.4 (C2), 69.0 (C6), 62.6 (C5), 55.4 (-OCH3) 

ppm;  FTIR (ATR) υmax (neat, cm 
-1

): 3302 (broad), 3032, 2924, 2870, 1450, 1365, 1280, 

1064, 987;  HRMS (+ESI) m/z calc’d for C21H24O6 [M+H]
+
: 372.16; observed 373.1614. 

Methyl 2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (10).  
1
H NMR (500 

MHz, CDCl3) δ 7.50-7.30 (m, 10H), 5.52 (s, 1H, -OCHAr), 4.80-4.78 (d, J = 11.9 Hz, 

1H, -OCH2Ar), 4.72-4.70 (d, J = 11.9 Hz, 1H, -OCH2Ar), 4.62-4.61 (d, J1-2 = 3.8 Hz, 

1H, H1), 4.28-4.25 (dd, J6eq-6ax = 9.5 Hz, J6eq-5 = 4.6 Hz, 1H, H6eq), 4.18-4.13 (td, J3-2 = 

J3-4 = 9.5 Hz, J3-OH = 2.1 Hz, 1H, H3), 3.84-3.79 (td, J5-4 = J5-6ax = 9.5 Hz, J5-6eq = 4.7 

Hz, 1H, H5), 3.73-3.68 (t, J6ax-5 = J6ax-6eq = 9.5 Hz, 1H, H6ax), 3.52-3.48 (t, J4-3 = J4-5 = 

9.5 Hz, 1H, H4), 3.48-3.46 (dd, J2-3 = 9.5 Hz, J2-1 = 3.8 Hz, 1H, H2), 3.38 (s, 3H, -

OCH3), 2.53-2.52 (d, JOH-3 = 2.1 Hz, 1H, HOH-3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 

137.9, 137.1 (Aripso), 129.2, 128.6, 128.3, 128.1, 126.3 (Ar), 102.0 (-OCHAr), 98.6 (C1), 

81.2 (C4), 79.5 (C2), 73.4 (-OCH2Ar), 70.3 (C3), 70.0 (C6), 62.0 (C5), 55.4 (-OCH3) 

ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3456 (broad), 2924, 2846, 1458, 1357, 1334, 1080, 

1026, 972, 918, 856;  HRMS (+ESI) m/z calc’d for C21H24O6 [M+Li]
+
: 379.17; found 

379.1675. 

Methyl 3,4-di-O-benzyl-α-ᴅ-glucopyranoside (11).  To a solution of 7 (0.824 g, 

2.21 mmol) in 22 mL of dry DCM, in a flame dried round bottom schlenk flask with 3Å 
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molecular sieves, was added borane-tetrahydrofuran complex (1M in THF, 11 mL) and 

trimethylsilyl trifluoromethanesulfonate (0.100 mL, 0.250 mmol) under N2 nitrogen.  

After 90 min the reaction was quenched by addition of 10 mL of methanol and 1.5 mL 

of triethylamine.  The solution was filtered, concentrated, co-evaporated with 50 mL of 

methanol 3 times and then purified by column chromatography (SiO2, 1:0 to 5:5 

Hex/EtOAc) to yield 1.7306 g (84%) of a white solid. 

Methyl 3,4-di-O-benzyl-α-ᴅ-glucopyranoside (11).  
1
H NMR (500 MHz, CDCl3) 

δ 7.39-7.26 (m, 10H), 4.93-4.91 (d, J = 11.2 Hz, 1H, -OCH2Ar), 4.90-4.87 (d, J = 11.0 

Hz, 1H, -OCH2Ar), 4.88-4.86 (d, J = 11.0 Hz, 1H, -OCH2Ar), 4.77-4.76 (d, J1-2 = 3.8 

Hz, 1H, H1), 4.67-4.65 (d, J = 11.0 Hz, 1H, -OCH2Ar), 3.84-3.80 (dd, J6a-6b = 11.2 Hz, 

J6a-5 = 5.3 Hz, 1H, H6a), 3.80-3.77 (t, J3-2 = J3-4 = 8.9 Hz, 1H, H3), 3.76-3.72 (dd, J6b-6a = 

11.2 Hz, J6b-5 = 5.3 Hz, 1H, H6b), 3.69-3.65 (dt, J2-3 = J2-OH = 8.4 Hz, J2-1 = 3.8 Hz, 1H, 

H2), 3.68-3.65 (dd, J5-4 = 9.8 Hz, J5-6 = 5.3 Hz, 1H, H5), 3.56-3.52 (dd, J4-5 = 9.8 Hz, J4-3 

= 8.4 Hz, 1H, H4), 3.42 (s, 3H, -OCH3), 2.14-2.13 (d, JOH-2 = 8.4 Hz, 1H, HOH-2), 1.73 (s, 

1H, HOH-6) ppm;  
13

C NMR (125 MHz, CDCl3): δ 138.7, 138.2 (Aripso), 128.6, 128.6, 

128.1, 128.0, 127.9 (Ar), 99.5 (C1), 83.2 (C3), 77.4 (C4), 75.5, 75.1 (-OCH2Ar), 73.1 

(C2), 71.1 (C5), 61.9 (C6), 55.4 (-OCH3) ppm;  FTIR (ATR) υmax (neat, cm 
-1

): 3525–

3225, 3100–3000, 2950–2775, 1500, 1452, 1358, 1329, 1206, 1142, 1093, 1059, 1026, 

901, 760, 731, 692;  +ESI MS: calculated [M + Li]
+
 for C21H26O6: 381.1889, found: 

381.1898. 

Methyl 2,4-di-O-benzyl-α-ᴅ-glucopyranoside (12).  To a solution of 2 (05 g, 

5.50 mmol) in 60 mL of DCM , in a flame dried round bottom schlenk flask with 3Å 
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molecular sieves, was added borane-tetrahydrofuran complex (1M in THF, 28 mL) and 

trimethylsilyl trifluoromethanesulfonate (0.25 mL, 1.4 mmol) under N2 nitrogen.  After 

90 min the reaction was quenched by addition of 30 mL of methanol and 3 mL of 

triethylamine.  The solution was filtered, concentrated, coevaporated with 75 mL of 

methanol three times and then purified by column chromatography (SiO2, a gradient of 

1:0 to 5:5 Hex:EtOAc) to yield 12 as a white solid (1.73 g, 84%). 

Methyl 2,4-di-O-benzyl-α-ᴅ-glucopyranoside (12).  
1
H NMR (500 MHz, CDCl3, 

25 °C) δ 7.38-7.27 (m, 10H, Ar), 4.92-4.89 (d, J = 11.2 Hz, 1H, -OCH2Ar), 4.73-4.70 (d, 

J = 12.3 Hz, 1H, -OCH2Ar), 4.71-4.69 (d, J = 11.2 Hz, 1H, -OCH2Ar), 4.69-4.66 (d, J = 

12.3 Hz, 1H, -OCH2Ar), 4.60-4.59 (d, J1-2 = 3.8 Hz, 1H, H1), 4.12-4.08 (dt, J3-2 = J3-2 = 

9.8 Hz, J3-OH = 1.9 Hz, 1H, H3), 3.81-3.77 (ddd, J6a-6b = 12.0 Hz, J6a-OH = 6.9 Hz, J6a-5 = 

3.8 Hz, 1H, H6a), 3.74-3.70 (ddd, J6b-6a = 12.0 Hz, J6b-OH = 6.9 Hz, J6b-5 = 3.8 Hz, 1H, 

H6b), 3.64-3.61 (td, J5-4 = 9.7 Hz, J5-6a = J5-6b = 3.7 Hz, 1H, H5), 3.46 (t, J4-3 = J4-5 = 9.8 

Hz, 1H, H4), 3.36-3.33 (dd, J2-3 = 9.8 Hz, J2-1 = 3.5 Hz, 1H, H2), 3.32 (s, 3H, -OCH3), 

2.47 (d, JOH-1 = 1.9 Hz, 1H, HOH-1), 1.66 (t, JOH-6 = 6.9 Hz, 1H, HOH-6) ppm;  
13

C NMR 

(125 MHz, CDCl3) δ 138.40, 138.02 (Aripso), 128.2, 128.3, 128.3, 128.2, 128.2, 128.0 

(Ar), 97.6 (C1), 79.8 (C2), 77.3 (C4), 74.69 (-OCH2Ar), 73.6 (-OCH2Ar), 73.2 (C3), 

70.4 (C5), 62.1 (C6), 55.3 (-OCH3) ppm;  FTIR (ATR) υmax (neat, cm 
-1

): 3400–3150, 

3100–3000, 2975–2775, 1454, 1367, 1192, 1101, 1065, 1028, 993, 301, 841, 732, 694, 

636;  +ESI MS: calculated [M + Li]+ for C21H26O6: 381.1889, found: 381.1881. 
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General Procedures for initial screening of polymerization conditions by Plackett-

Burman experiment plane with diol 4. 

Triphosgene was added to a cold solution (0 °C) of the appropriate diol in 

anhydrous pyridine at a concentration of 400mg/mL under N2.  The reaction was 

allowed to stir for 5 min. and then warmed to r.t. and allowed to react for 48 hours.  The 

reaction was then quenched with a saturated solution of sodium bicarbonate (ca. 2 mL) 

until no further evolution of carbon dioxide was observed.  The residue was diluted with 

dichloromethane; the organic layer was washed with 10% aq. HCl and then dried with 

MgSO4, filtered and concentrated under reduced pressure. 

 

General Procedures of the Copolymerization between Diols 3, 6, 8, 10 and 

Triphosgene in DCM and pyridine. 

Triphosgene, dissolved in dry DCM, was added dropwise to solution of the 

appropriate diol in DCM and anhydrous pyridine at a concentration of 0.12 M to 1.0 M 

under N2 atmosphere.  The reaction was allowed to stir for 1 to 48 h.  The reaction was 

then quenched with a saturated solution of Na2CO3 (ca. 2 mL) until no further evolution 

of carbon dioxide was observed.  The residue was diluted with dichloromethane; the 

organic layer was washed with 10% aq. HCl and then dried over MgSO4, filtered, and 

concentrated under reduced pressure.   
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Procedure for Polycondensation of diol 8 with diphosgene in dioxane. 

Diol 8 and diphosgene were dissolved in dry dioxane and a solution of anhydrous 

pyridine in dry dioxane was added dropwise.  After stirring for 24 hr at 25 °C, the 

reaction mixture was poured into cold methanol and precipitate was filtered and dried in 

vacuo.  Analogous experiments were conducted with a slight excess of diphosgene. 

 

Poly(2,3,6-tri-O-benzyl-ᴅ-glucopyranoside)carbonate (13).  
1
H NMR (300 MHz, 

CDCl3, 25 °C) δ 7.40-7.05 (m, 15H, Ar), 6.23-5.95 (m, 0.55, H1α), 5.53-5.45 (m, 0.45, 

H1β), 5.13-3.90 (m, 8H, -OCH2Ar and H6), 3.81-3.32 (m, 4H);  FTIR (ATR) υmax (neat, 

cm 
-1

): 3100–3000, 3000–2800, 1755, 1454, 1356, 1248, 1070, 1026, 1001, 735, 696;   

Polymer 13a.  GPC: Mp = 9.0 g/mol;  DSC Tg = 44 °C.  TGA in Ar:  (Td)onset = 137 °C, 

(Td)50 = 315 °C, 137-354 °C, 91% mass loss, 9% mass remaining at 500 °C. 

Polymer 13b.  GPC: Mw = 6800 g/mol, Mn = 6100 g/mol, PDI = 1.10;  DSC: Tg not 

observable by DSC;  TGA: (Td)onset = 179 °C, (Td)50 = 315 °C, 179-345 °C, 77% mass 

loss, 23% mass remaining at 500 °C. 

Polymer 13j.  GPC: Mw = 5500 g/mol, Mn = 5000 g/mol, PDI = 1.13;  DSC: Tg, = 33 °C.  

TGA in Ar: (Td)onset = 171 °C, (Td)50 = 317 °C, 267 °C, 15% mass loss; 345 °C, 74% 

mass loss; 26% mass remaining above 345 °C. 

 

Poly(2,3,4-tri-O-benzyl-ᴅ-glucopyranoside)carbonate (14).  
1
H NMR (300 MHz, 

CDCl3, 25 °C) δ 7.42-7.13 (m, 15H, Ar), 6.11 (m, 0.4, H1α), 5.49 (m, 0.6, H1β), 5.01-

4.52 (m, 6H, -OCH2Ar), 4.52-4.25 (m, 2H, H6), 4.13-4.08 (m, 1H), 4.03-3.95 (m, 1H), 
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3.80-3.36);  FTIR (ATR) υmax (neat, cm 
-1

): 3100–3000, 3000–2800, 1747, 1454, 1361, 

1338, 1246, 1126, 1047, 1001, 785, 735, 696.   

Polymer 14d.  GPC: Mw = 21000 g/mol, Mn = 15000 g/mol, PDI = 1.40;  DSC: Tg = 63 

°C;  TGA in Ar: 379 °C, 82% mass loss; 18% mass remaining above 379 °C.   

Polymer 14i.  GPC: Mw = 4800 g/mol, Mn = 4400 g/mol, PDI = 1.09;  DSC: Tg = 63 °C;  

(Td)onset = 230 °C, (Td)50 = 310 °C, 230-364 °C, 94% mass loss, 6% mass remaining at 

500 °C. 

 

Poly(methyl-3,4-di-O-benzyl-ᴅ-glucopyranoside)carbonate (15).  
1
H NMR (500 MHz, 

CDCl3) δ 7.34-7.21 (m, 10H, Ar), 4.89-4.68 (m, 5H, -OCH2Ar, H2), 4.59-4.54 (m, 1H, -

OCH2Ar), 4.38-4.26 (m, 2H, H6), 4.03 (s, 1H, H3), 3.82 (s, 1H, H5), 3.58-3.52 (m, 1H, 

H4), 3.31-3.12 (m, 3H, -OCH3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 155.1, 154.7, 

154.3 (carbonate), 138.4, 138.2, 137.7 (Aripso), 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 

127.8, 127.6, 127.6 (Ar), 96.9 (C1), 80.1 (C3), 80.0 (C2), 77.1 (C4), 75.7, 75.5 (-

OCH2Ar), 68.8 (C5), 66.6 (C6), 55.3 (-OCH3) ppm;  FTIR (ATR) υmax (neat, cm
-1

): 

FTIR (ATR): 3100–3000, 3000–2800, 1747, 1454, 1361, 1338, 1246, 1126, 1047, 1001, 

785, 735, 696; 

Polymer 15d:  GPC: Mw = 32100 g/mol, Mn = 19200 g/mol, PDI = 1.67; DSC: Tg = 85 

°C;  TGA in Ar: 397 °C, 82% mass loss; 18% mass remaining at 500 °C. 

Polymer 15k:  GPC: Mw = 11600 g/mol, Mn = 10000 g/mol, PDI = 1.16; DSC: Tg = 70 

°C;  (Td)onset = 325,  (Td)50 = 359, 325-406 °C, 86% mass loss, 14% remaining at 500 °C 
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Poly(methyl-3,4-di-O-benzyl-ᴅ-glucopyranoside)carbonate (16).  
1
H NMR (500 MHz, 

CDCl3) δ 7.35-7.09 (m, 10H, Ar), 5.50-5.31 (m, 1H, H3), 4.70-4.22 (m, 6H, -OCH2Ar, 

H1, H6), 4.18-4.06 (m, 1H, H6), 3.89-3.76 (m, 1H, H5), 3.55-3.43 (m, 2H, H2,H4), 

3.31-3.10 (m, 3H, -OCH3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 154.9, 154.6, 154.3 

(carbonate), 137.9, 137.2 (Aripso), 128.8, 128.6, 128.6, 128.5, 128.5, 128.3, 128.2, 128.2, 

128.2, 128.1, 128.0, 128.0, 127.9 (Ar), 97.7 (C1), 79.0 (C3), 75.6 (C2), 74.7 (C4), 74.1, 

72.9 (-OCH2Ar), 68.3 (C5), 66.5 (C6), 55.3 (-OCH3) ppm; FTIR (ATR) υmax (neat, cm
-

1
): 3100–2800, 1753, 1454, 1369, 1238, 1070, 1041, 1028, 999, 905, 781, 736, 696, 605. 

Polymer 16b:  GPC: Mw = 21000 g/mol, Mn = 15000 g/mol, PDI = 1.40;  DSC: Tg,midpoint 

= 83 °C.  TGA in Ar: 379 °C, 82% mass loss; 18% mass remaining above 379 °C. 

Polymer 16e:  GPC: Mw = 10800 g/mol, Mn = 9800 g/mol, PDI = 1.10;  DSC: Tg = 71 

°C;  (Td)onset = 336 °C, (Td)50 = 361 °C, 85% mass loss, 15% mass remaining at 500 °C. 

 

2.5  Results and Discussion 

 

Based upon our overall goal of producing engineering types of polymers that are 

derived from glucose and modeled from cellulose, yet capable of undergoing hydrolytic 

degradation without the requirement of cellulase enzymes, we initially designed a 1,4-

diol monomer of glucose, and then expanded the scope to other regioisomeric glucose 

diol analogs.  It was hypothesized that a series of glucose-derived diols could be 

copolymerized with a carbonylation agent to afford a series of regioisomeric 

polycarbonates.  The series of poly(ᴅ-glucose carbonate)s were designed to mimic 
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certain aspects of cellulose and also glycogen.  The 1→4-β-D-glycosidic linkages of 

cellulose facilitate chain packing to create crystallinity and provide for appropriate 

mechanical properties.  The crystallinity also contributes to the relative hydrolytic 

stability and its need of enzymatic catalysis for degradation.
130

  Unlike glucose, 

glycogen, connected by linear α-1,4- and 1,6-repeat units as well as branching 1,4,6-

repeat units, does not share the same hydrolytic stability and mechanical strength.  In 

contrast to the relative stability of the 1,4-glycosidic linkages of cellulose, 1,4-carbonate 

connectivity of the glucose repeat units was expected to reduce hydrolytic and thermal 

stability, due to the carbonate linkage being through a hemiacetal functionality of the 

anomeric site.  With proper understanding of structure-property relationships with 

regards to various regiochemistries of possible glucose monomers, a polymer system 

with the ability to fulfill a myriad of applications can be developed.  Therefore, a series 

of monomers and corresponding polymers having 1,4-, 1,6-, 2,6- and 3,6- 

regiochemistries was investigated. 

 

2.5.1  Monomer Synthesis  

 

Starting from commercially available methyl-α-ᴅ-glucopyranoside and methyl-

4,6-benzylidene-α-ᴅ-glucopyranoside, four different regioisomeric monomers having 

1,4- (4), 1,6- (8), 2,6- (11), and 3,6- (12) diols  were prepared by three different 

sequences (Scheme 2.1 and 2.2).  The 1,4- diol, 4, methyl-4,6-benzylidene-α-D-

glucopyranoside was prepared by protecting the alcohols at positions carbon 2 (C2) and 
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C3 positions with benzyl groups to afford the completely protected glucose derivative 

(2).  Selective benzylidene ring opening, using NaCNBH3 and AlCl3, was then 

performed to give a free alcohol at C4 as the major product (84%).  Demethylation under 

acidic conditions afforded the 1,4 diol in 35% yield after column chromatography, and 

the structure was confirmed by 
1
H, 

13
C, COSY, HSQC NMR and IR spectroscopies and 

high-resolution mass spectrometry. 

For the preparation of monomers 11 and 12, single benzylation of methyl-4,6-O-

benzylidene-α-D-glucopyranoside (1) occurred in a biphasic system utilizing a bulky 

phase transfer agent, tetra-butyl ammonium hydride to afford two products, 9 and 10 in 

near 1:1 ratio.  Electronically, the C3 alcohol is more reactive than the C2 alcohol and is 

protected first under various protection reactions.  Moreover, initial protection with 

sodium hydride in DMF afforded only C3-benzylated compound as the major product.  

However, the use of a bulky phase transfer agents decreases electronic control on the 

reaction and favorability of the C3 alcohol, thus affording near equal quantities of each 

mono-benzylated product.  Conversion to monomers 11 and 12, respectively, was 

performed by selective benzylidene ring opening in high yields with trimethylsilyl 

trifluoromethanesulfonate and borane-THF complex. 

Initial attempts to synthesize the 1,6 diol monomer 6 were via a similar strategy 

used for the synthesis of 4.  However, with isolation of a single product during the final 

demethylation step of methyl 2,3,4-tri-O-benzyl-α-ᴅ-glucopyranoside proving difficult, 

an alternate strategy was explored.  Per-benzylation of methyl-α-ᴅ-glucopyranoside (5) 

was carried out by reaction with sodium hydride, benzyl bromide and a catalytic amount  
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Scheme 2.1.  Synthesis of 1,4- and 1,6- glucose-based diol monomers, 4 and 8 

respectively. 

 

 

of TBAI in dimethyl formamide (DMF) to give 4 in 80% yield.  The removal of the 

methyl group at C1 and the benzyl group on C6 was performed by acid catalyzed 

acetolysis as described by Lam and Gervay-Hague
131

 to afford the diacetate 7 (65%), 

which was subsequently converted to 8 in near quantitative yield by deprotection with 

sodium methoxide in methanol. 
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Scheme 2.2.  Synthesis of 2,6- and 3,6- glucose-based diol monomers, 11 and 12 

respectively. 

 

 

2.5.2  Initial screening of Polymerizations of diol 4, with Phosgene, Diphosgene, and 

Triphosgene in Pyridine 

 

Testing for optimal polycondensation reaction conditions was performed using 4, 

since, of the four monomers, it would generate a polycarbonate most analogous to 

cellulose, having 1,4-backbone connectivity.  In addition, since monomer 4 possesses a 

secondary alcohol and hemiacetal functionalities, as supposed to primary alcohols, it was 

predicted to be the most difficult to polymerize.  Initial screening efforts were focused 

on employing alternative carbonylation reagents to phosgene, such as diphenyl, di-p-
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nitrophenyl, dimethyl, and diethyl carbonates.  While successful with commercially 

available diols, such as cylcohexanediol and cyclohexane dimethanol, it was observed 

that these conditions were either too harsh, causing degradation of the starting material, 

or not conducive to forming large molecular weight polymers, as monitored by NMR 

spectroscopy or GPC.  As a result, testing of traditional polycarbonate reaction 

conditions utilizing phosgene, diphosgene, or triphosgene was pursued. 

 

 

 

Scheme 2.3.  Synthesis of benzyl-protected 1,4-poly(glucocarbonate)s. 

 

 

Variations in reaction duration, monomer concentration, and the quantity of 

phosgene analogues, i.e., phosgene, diphosgene, or triphosgene, were tested with a 

Plackett-Burman experimental design matrix. (matrix 4
3
, where 4 is the number of 

factors and 3 is the number of levels tested for each factor).
132,133

  Nine different 

experiments were carried out  based on nine experimental conditions (Table 2.1, 

Experiments 1–9) conducted on scales of 150 mg of monomer in the volume of solvent 

needed to give the three desired monomer concentrations (combined pyridine and 

toluene (in the case of phosgene reagent)).  Summary of the impact of each condition, 
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calculated with Equation 2.1., can be reviewed in Table 2.2 and Figure 2.2.  To calculate 

the value of effectiveness for each factor, reactions sharing the same conditions, are 

averaged, and to this value, the average of all the experiments is subtracted.  For 

example, experiments 3, 4, and 8 utilized triphosgene as a carbonylation agent.  The 

resulting molecular weights of these three reactions average to 7.0 kDa.  Subtracting the 

average of all the experiments (6.7 kDa) gives an effectiveness of value of 220.  

According to the survey, conditions with the larger (most positive) impact value are 

more effective at producing large molecular weight polymers. 

This study of the effects of individual factors indicated that PGCs with the 

highest molecular weights could be produced under polymerization conditions that 

included a monomer concentration of 400 g/L, phosgene as the carbonylation agent at a 

stoichiometry of one molar equivalence, and a reaction time of 48 h (Table 2.2).  

Reaction conditions with a concentration of 400g/L (0.9 M) produced polymers with a 

Mp ranging from 5.6 to 8.8 kDa.  Reactions lasting longer than 24 hours led to larger Mp, 

although reactions lasting 48 hours produced polymers with the largest Mp values.  Since 

molecular weight is dependent on stoichiometric ratios of monomer during step-growth 

polymerizations, it is no surprise that reactions that exceeded one molar equivalent of 
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Table 2.1.  Condition and results of the experimental design for the copolymerization 

between 1,4-glucose diol, 4, and phosgene in toluene/pyridine, diphosgene in pyridine, 

and triphosgene in pyridine. 

 

Experiment Polymer 
Concentration

(mg/mL)
a
 

Duration

(h) 
Equivalents

b
 

Carbonylation 

Agent 

Mp
c
 

(kDa) 

1 13a 200 48 1 Phosgene 9.0 

2 13b 200 72 2 Diphosgene 5.5 

3 13c 200 24 3 Triphosgene 5.6 

4 13d 400 48 2 Triphosgene 8.7 

5 13e 400 72 3 Phosgene 8.8 

6 13f 400 24 1 Diphosgene 5.6 

7 13g 600 48 3 Diphosgene 5.6 

8 13h 600 72 1 Triphosgene 6.6 

9 13i 600 24 2 Phosgene 5.6 

 

 

 

 

 

  

a
Concentration of 4 in anhydrous pyridine.  

b
Number of equivalents of carbonylation agent.  

c
Estimated by 

GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards. 
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Effect = ŷ – x 

ŷ: average of each factor 

x: average of all experiments 

 

Equation 2.1. Plackett Burman equation. 

 

 

 

Table 2.2.  Results and analysis from Plackett-Burman experiment plane. 

 

  
Experiments Ŷ (kDa) Effect (ŷ-x) 

Concentration 

(g/L) 

200 1,2,3 6.7 -82 

400 4,5,6 7.7 930 

600 7,8,9 5.9 -850 

Duration (h) 

24 3,6,9 5.6 -1200 

48 1,4,7 7.8 1000 

72 2,5,8 6.9 170 

Equivalents of 

Carbonylation 

Agent 

1 1,6,8 7.0 280 

2 2,4,9 6.6 -170 

3 3,5,7 6.7 -100 

Carbonylation 

Agent 

Phosgene 1,5,9 7.8 1000 

Diphosgene 2,6,7 5.5 -1200 

Triphosgene 3,4,8 7.0 220 
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Figure 2.2.  Effect of each factor evaluated during the experimental design. 

 

phosgene, diphosgene, or triphosgene comonomer produced lower molecular weight 

polymers.  Phosgene and triphosgene were more successful than diphosgene, which 

failed to produce polymers with molecular weights above 5.6 kDa.  Although phosgene 

produced the highest molecular weight polymers, it was precluded from further study 

because of its instability and safety concerns associated with its use.  Experiments with 

triphosgene, a more stable, solid alternative to phosgene, also provided PGCs with 

reasonably high molecular weights (Mn, of 8.7 kDa), and was also considered as a 

carbonylation agent later in this study.   

The poly(glucose carbonate)s prepared with phosgene in pyridine were 

characterized by IR, 
1
H and 

13
C NMR spectroscopies.  The characteristic carbonyl 
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vibration of the carbonate linkage was observed at 1759 cm
-1

 in the IR spectra.  The 

copolymerizations of the diol with phosgene was demonstrated with 
1
H NMR 

spectroscopy by observation of the downfield shifts for majority of the protons from the 

glucose ring and, in particular, the significant downfield shift of the protons on the 

carbons involved in the formation of the carbonate linkages; H1 and H6.  With the 

amount of polymer isolated, 2D NMR techniques, such as COSY, proved difficult and 

thus could identify all signals in the 
1
H NMR.  However, synthetic analogues, 

phenylcarbonate-2,3,4,6-O-tetra-acetate-α-ᴅ-glucopyranoside and phenylcarbonate-

2,3,4,6-O-tetra-acetate-β-ᴅ-glucopyranoside, allowed for the deduction of H1 signals.  

The H6 protons shifted slightly downfield 0.3 ppm (3.83 to 4.41 ppm) whereas the 

anomeric protons had much larger downfield shifts of 0.91 and 0.79 for H1α and H1β, 

respectively.  The 
1
H NMR spectra, however, did not reveal clearly detectable end group 

signals.  The 
13

C NMR spectra displayed three carbonate signals at 155 ppm having 

intensity ratios near 1:2:1, indicating a random sequence of head-to-head, head-to-tail, 

and tail-to-tail connected carbonate groups.   

 

2.5.3  Polymerization of Monomer 8 with Phosgene Generated in situ from Diphosgene 

in Pyridine and Dioxane. 

 

Concerned with the stability of the chloroformate in the presence of high 

concentrations of pyridine, changes were made to the reactions conditions determined 

tested previous.  The second series of polycondensations was conducted in way that both 
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the 1,6 monomer, 8, and diphosgene were dissolved in dioxane and a solution of 

pyridine was subsequently added, to limit the exposure of chloroformate to pyridine.  

Kricheldorf et al. previously reported that this procedure prevented an excess pyridine 

from decomposing diphosgene and chloroformate groups.
79

  In their studies, side 

reactions between chloroformate chain ends and pyridine led to low molecular weight 

linear polymers (Scheme 2.4).  It was rationalized that nucleophilic attack of 

chloroformates by pyridine was taking place, resulting in the degradation of chain ends 

to form alkoxide chain ends.  As a result, polymerizations utilizing pyridine as a solvent 

needed an excess of phosgene in order to regenerate lost chloroformate chain ends.  Loss 

of the chloroformate group through nucleophilic attack represents a unique challenge for 

monomers 4 and 8, as the glucopyranoside anion can undergo ring-opening and lead to 

several different products (Scheme 2.4).  The authors were able to reduce side reactions 

by modifying the polymerization conditions, in which lower amount of pyridine (near 1 

equivalent) was added to the reaction mixture.  Instead of adding 

phosgene/diphosgene/triphosgene solution to the diol monomer dissolved in pyridine, 

the authors dissolved a diol monomer and diphosgene in dioxane and subsequently 

added pyridine dropwise.  With these reaction conditions, lower amounts of diphosgene 

was needed to afford linear polymers; maximum molecular weights, as measured by 

viscosity, were achieved when using between 0 and 0.2 mol % excess of phosgene 

generated in situ from diphosgene.   
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Scheme 2.4.  High concentrations of pyridine may lead to decomposition of 

chloroformate chain ends due to nucleophilic attack by pyridine, as described  

by Kricheldorf et al.  Complications may arise with monomers 4 and 8,  

as ring opening of the glycosidic anion may lead to several side products. 
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Scheme 2.5.  Synthesis of benzyl-protected 1,6-poly(glucose carbonate)s via 

polycondensation of monomer 8 with diphosgene in pyridine and dioxane. 

 

 

Application of these conditions to the 1,6 monomer, 8, saw a reduction in side 

reactions and polymers were formed, as demonstrated by the higher molecular weights 

(Mn = 10.6 kDa) observed by GPC (Table 2.3).  In addition, the nature of the reaction 

was remarkably different for series of polymerizations.  Previously, reactions in pyridine 

resulted in a dark brown gel, which may indicate the insolubility of products in pyridine.  

Reactions utilizing these new conditions ceased to produce a dark brown gel, but rather 

were clear with white precipitate, similar to other high molecular weight producing 

reactions experienced with monomers 11 and 12, which will be discussed in the next 

section.  These are promising conditions for the monomers bearing hemiacetal 

functionalities, however further investigations are needed to complete this study.  

Additional tests with higher amounts of diphosgene need to be performed to determine if 

higher molecular weights can be achieved.  Also, it cannot be determined which factor 

was the primary cause for the success of these reactions as multiple factors (solvent and 

carbonylation agent and monomer) were changed to conduct this study.  Upon further 

inquiry, optimized conditions can be used on the 1,4 diol, in attempts to synthesize a 

high molecular weight polycarbonate that resembles cellulose in structure.  
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Figure 2.3.  GPC traces of polycarbonates resulting from the copolymerization of the 

1,6 diol, 8, and diphosgene in dioxane. 

 

 

 

 

 

Table 2.3.  Summary of polymerization conditions with 1,6 diol, 8, and diphosgene in 

dioxane. 

 

Sample Polymer 
Diphosgene 

Equivalents 
Mn (kDa)

a
 Mw (kDa)

a
 PDI

a
 % Yield

b
 

1 14b 0.50 8.4 10.0 1.18 79 

2 14c 0.55 7.5 8.6 1.15 82 

3 
14d 0.60 10.6 15.9 1.50 90 

 a
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards.  

b
Yield calculated from 

dried, filtered samples after precipitation in cold methanol. 
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2.5.4  Polymerization of Four Regioisomeric Diols, 4,8,11,and 12, with Phosgene 

Generated in Situ from Triphosgene, as a Comonomer and Pyridine as a Base 

 

Triphosgene was reexamined as a possible carbonylation agent while employing 

lessons from previous polymerization attempts with favorable results.  Using the 

conditions from the polymerization survey, four regioisomeric polymers 13, 14, 15, and 

16, were synthesized from each diol monomer, 4, 8, 11, and 12, respectively (Scheme 

2.6).  In addition, with concerns of instability of chloroformate instability in the presence 

of high concentration of pyridine, dichloromethane was chosen as the primary solvent 

and the amount of pyridine was reduced, ranging from 2.0 to 4.7 mol percent.  Since 

favorable results in previous attempts resulted from reaction conditions with a monomer 

concentration of 400 mg/mL (0.9 M), similar concentrations were tested.  

Polycarbonates are typically synthesized using an excess of the carbonyl donor (i.e. 

triphosgene), which hinders the control over final molecular weight due to step-growth 

polymerization’s dependence on stoichiometry.  Earlier we found that only one 

equivalent of phosgene and a slight excess of diphosgene was necessary for the 

production of high molecular weight polymers.  Therefore, the 2,6 monomer, 11, was 

initially copolymerization with 0.33 equivalent of triphosgene in DCM with 2 

equivalents of pyridine at a monomer concentration of 0.5 M over 24 h (Table 2.4, Entry 

13), affording polymers with Mn of 38.0 kDa.  Increasing the amount of pyridine to 4 

equivalents increased the molecular weight and led to the polymers with the highest   
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Scheme 2.6.  Synthesis of four different regioisomeric polycarbonates from monomers 

4, 8, 11, and 12 with triphosgene in pyridine and dichloromethane. 
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Table 2.4.  Summary of reaction conditions and resulting molecular weights of 

copolymerizations of monomers 4, 8, 11, and 12 with triphosgene in DCM and pyridine. 
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n
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a
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M
w
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a
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P
D
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1 1,4 (4) 13j DCM 1 0.40 2.5 0.56 5.0 5.5 1.13 

2 1,4 (4) 13k DCM 5 0.40 4.2 0.57 6.2 6.7 1.08 

3 1,4 (4) 13l DCM 24 0.40 4.7 0.26 7.8 8.5 1.09 

4 1,4 (4) 13m DCM 24 0.33 4.0 1.0 no ppt 

 

5 1,6 (8) 14e DCM 1 0.40 3.8 0.12 5.7 6.6 1.16 

6 1,6 (8) 14f DCM 24 0.33 2.0 1.0 5.9 7.0 1.20 

7 1,6 (8) 14g DCM 24 0.33 4.0 0.50 7.1 8.2 1.16 

8 1,6 (8) 14h DCM 24 0.33 4.0 0.50 11.2 11.7 1.04 

9 1,6 (8) 14i DCM 24 0.33 4.0 1.0 4.4 4.8 1.09 

10 1,6 (8) 14j Dioxane 24 0.33 4.0 1.0 5.1 5.3 1.03 

 

11 2,6 (11) 15a DCM 24 0.33 4.0 0.50 334.0 557.0 1.67 

12 2,6 (11) 15b DCM 24 0.33 4.0 0.50 93.0 134.3 1.44 

13 2,6 (11) 15c DCM 24 0.33 2.0 0.50 38.0 52.0 1.37 

14 2,6 (11) 15d DCM 24 0.33 4.0 0.50 19.2 32.1 1.67 

15 2,6 (11) 15e DCM 1 0.33 4.0 0.50 12.4 15.1 1.22 

16 2,6 (11) 15f DCM 12 0.33 4.0 0.50 15.5 19.4 1.25 

17 2,6 (11) 15g DCM 24 0.33 4.0 0.50 31.4 38.4 1.22 

18 2,6 (11) 15h DCM 48 0.33 4.0 0.50 25.0 30.1 1.20 

19 2,6 (11) 15i DCM 24 0.5 4.0 0.50 42.0 57.0 1.36 

20 2,6 (11) 15j DCM 24 0.5 2.0 0.50 17.0c 18.0c 1.06c 

 

21 3,6 (12) 16a Bulk 24 0.50 4.0 - 28.4 38.0 1.34 

22 3,6 (12) 16b DCM 24 0.33 4.0 0.50 15.0 21.0 1.40 

23 3,6 (12) 16c DCM 24 0.33 4.0 0.50 34.2 41.6 1.21 

24 3,6 (12) 16d DCM 72 0.33 4.0 0.50 21.2 25.3 1.19 

 

 

a
Molar concentration of monomer after addition of triphosgene solution.  

b
Estimated by GPC (DMF, 0.05 

M LiBr) calibrated with polystyrene standards.  
c
Lower retention time segment of bimodal GPC trace. 
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molecular weights (334.0 kDa and 93.0 kDa).  To confirm the need for stoichiometric 

balance, monomer 11 was copolymerized with 0.5 equivalents of triphosgene, leading to 

lower molecular weight polymers (Table 2.4, entries 19 and 20).  Even though high 

molecular weights were already achieved, previous polymerization attempts needed 

longer durations to achieve high molecular weights, questioning the necessity to quench 

the reaction after 24 hours.  The results of the experiments quenched after 1, 12, 24, and 

48 h (Table 2.4, entries 15-18) showed that a 24 h duration was the optimal duration for 

polymerization of the 2,6 diol, 11.  Similar observations were made when the optimized 

experimental conditions for the polymerization of 11 were applied to the 3,6 monomer 

12.  High molecular weights were observed after 24 h (34.2 kDa) whereas lower weight 

polymer was produced after 72 h (Table 2.4, entries 14 and 15). 

The optimized experimental conditions for the polymerizations of 11 and 12, 

were applied to the anomeric monomers 4 and 8.  These conditions led to polymers with 

Mn of 11.2 kDa, however in low yields (Table 2.4, entry 11).  Increasing the monomer 

concentration to 1 M, closer to the concentration of earlier tests (400 mg/mL), led to an 

increase in in polymer yield, while changing the solvent to dioxane led to smaller Mn 

polymers (Table 2.4, entries 4 and 5).  Applying these conditions to the 1,4 monomer, 4, 

failed to produce any precipitate after 24 hours.  The copolymerizations of the diol 

monomers 11 and 12, with triphosgene to give polycarbonates 15 and 16, were clearly 

demonstrated by 
1
H NMR spectroscopy by observation of the downfield shifts for most 

of the protons from the glucose ring and, in particular, the significant downfield shift 

(1.0 to 1.2 ppm) of the protons on the carbons involved in the formation of the carbonate 



 

69 

 

linkages; H2 and H6 for 15, H3 and H6 for 16.  The carbonate linkages were directly 

observed by the introduction of 
13

C resonances ca. 155 ppm, with three sets of observed 

signals, arising to regiorandom ordering.  Additionally, the presence of the carbonate 

was confirmed by the absorbance band at 1751 cm
-1

 in the IR spectra. 

 

2.5.5  Differential Scanning Calorimetry 

 

Thermal characterization by differential scanning calorimetry (DSC) showed a 

single glass transition for each polymer, dependent on the regiochemistry and Mw of 

each polymer system.  All polymers exhibited amorphous properties with relatively high 

glass transition temperatures.  The Tgs (Table 2.5) were considerably higher than 

typically observed for aliphatic polycarbonates such as poly(ethylene carbonate) (Tg = 5-

20 °C) and poly(1,3-trimethylene carbonate) (Tg = -15 °C). In comparison, the more 

common polycarbonates based on aromatic bisphenol A monomer have Tgs ca. 150 °C 

and aromatic polycarbonate biomaterials based on tyrosine have Tgs between 50 °C and 

90 °C, depending upon the particular structure.  Presumably the ring structure of the 

monomers imparts a degree on chain rigidity and the benzyl side groups increase chain 

entanglement, leading to high Tg for aliphatic polycarbonates.  In addition, the Tg 

appeared to be both dependent on molecular weight and regiochemistry of the polymer.  

The polymers that exhibited the highest glass transitions were those synthesized from 2,6 

monomers (11) and 3,6 monomers (12), 83 and 85 °C, respectively.  Despite having 

similar polymer connectivity (1,3 in respect to the six-membered ring), the 1,6 polymer  
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Table 2.5.  Properties of protected poly(glucose carbonate)s. 

 

Entry Polymer Mn (kDa)
a
 PDI

a
 Tg (°C)

b
 Td

5
 (°C)

c
 Td

50
 (°C)

d
 

1 13a 9.0
e
 - 44 137 315 

2 13b 6.2 1.1 - 179 315 

3 13j 5.0 1.13 33 171 317 

4 14d 10.6 1.50 63 230 310 

5 14i 4.4 1.09 33 163 331 

6 15d 19.2 1.67 85 363 382 

7 15k 10.0 1.16 70 325 359 

8 16b 15.0 1.40 83 336 361 

9 16e 9.8 1.10 71 321 353 

 

 

(14d) exhibited a Tg almost 10 °C lower than that of the 2,6 and 3,6 polymers (15k and 

16e) with similar Mn.  This could be in part to the differences in monomer compositions.  

The 3,6 monomer was a single isomer, whereas the 1,6 monomer was a mixture of 

diastereomers (ca. 1:1 α/β), which could hinder the chain-chain packing in the final 

polymer.  In addition, a transition was observed at 44 °C for the 1,4 polymer.  The 

difference could also be attributed to the fact that 1,4 polymer  was a mixture of α and β 

connectivities and was lower in molecular weight. 

a
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards.  

b
Glass transition 

temperature determined by DSC.  
c
Temperature degradation onset (5% mass loss) observed by TGA.  

d
Temperature at 50% mass loss observed by TGA.  

e
Mp value from GPC 
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2.5.6  Thermogravimetric Analysis 

 

Polymers with different regiochemistries exhibited significantly different 

properties in terms of thermal stability.  Based on TGA data, the polymers can be 

separated into two classes, those that incorporate the anomeric carbon in the carbonate 

linkage (13 and 14) and those that do not (15 and 16).  The non-anomeric 2,6 polymer, 

15d, exhibited thermal properties in agreement with other highly rigid polymers, by 

possessing high thermal stability and a sharp decomposition profile, with a Td
onset

 at    

363 °C and Td
50

 at 382 °C.  Other polymers in the same class (15k, 16b, and 16e) also 

demonstrated high thermal stabilities, with Tgs > 320 °C. 

On the other hand, the polymers with the carbonate linkage running through the 

anomeric center of the glucose ring, which contained carbonates of acetals, were much 

thermally sensitive, having lower onset decompositions.  Two versions of the 1,4 

polymer, 13a and 13b, were formed under different polymerization and workup 

conditions.  Polymer 13a underwent an aqueous workup, which would have removed 

any residual chloroformate groups, leaving hydroxyl chain ends, whereas the reaction 

mixture containing polymer 13b, as well as polymers 14, 15 and 16, was directly 

precipitated into methanol, which would have reacted with any residual chloroformate 

groups to form methylcarbonate chain ends.  The different chain ends seemed to have an 

effect on the thermal stability of the polymers, as seen in Table 2.5 and Figure 2.4.  

Thermal degradation of polymer 13a proceeded at lower temperatures (137-315 °C for 

initial to complete mass loss, Figure 2.4) than that of polymer 13b (179-315 °C for 
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Figure 2.4.  Thermogravimetric analysis of (a) 1,4- PDGCs (13a, 13b, 13j), (b) 1,6- 

PDGCs (14d, 14e), (c) 2,6- PDGCs (15d, 15k), and 3,6- PDGCs (16b, 16e). 
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initial to complete mass loss, Figure 2.4) which could be attributed to the difference in 

chain ends.  The 1,6 polymers, 14d and 14e, also exhibited low onset decomposition 

temperature with 5% mass loss an onset decomposition temperature at 230°C.   

Initially, it was proposed that the endocyclic oxygen in the glucose ring was 

playing a role in the thermal degradation, similar to previously reported carbonate 

sugars,134,135 accelerating the decomposition of the backbone.  To test this hypothesis, the 

degradation products were analyzed by mass spectrometry.  Tandem TGA-MS detected 

a release of ions with m/z of 44, which could be attributed to the loss of CO2
+
, during the 

initial degradation period, ca. 150–220 °C, which can be seen in Figure 2.5.  While this 

finding supports our initial degradation mechanism, the mass loss that occurred during 

the first phase of degradation is too great to be attributed to the loss of only CO2.  In 

addition, peaks were also observed early in the decomposition of the polymer at 

increments of m/z 77, 91 and 92, as well as 105 and 106, which correspond to phenyl, 

toluyl, and benzoyl radicals, respectively (Figure 2.5).  To account for these additional 

fragments, a more complicated mechanism must be occurring (Scheme 2.7).  The 3,6 

polymer was also analyzed by tandem TGA-MS.  As hypothesized, no fragments were 

observed at lower temperatures (Figure 2.6).  The difference in Tds of the various 

regioisomers are an interesting finding, and adds to the tunability of this new class of 

polycarbonates, making these polymers attractive for a wide ranging of applications that 

require various thermal stabilities.   
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Figure 2.5.  TGA-MS data of polymer 13.  During the initial stage of thermal 

decomposition (ca. 150 to 200 °C) fragments with the m/z of 44 were observed, 

corresponding to the release of CO2.  Additional fragments with m/z of 77/78, 91/92 and 

105/106, corresponding to phenyl, toluyl, and benzoyl radicals, was also observed at low 

temperatures (ca. 200 °C). 
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Figure 2.6.  Thermal decomposition of polymer 15 as seen by TGA (a) and 

TGA-MS (b-h) data with respect to temperature for select ions.  Unlike the 1,4 polymer, 

13, fragments from the loss of carbon dioxide and benzyl protecting groups were not 

observed during the thermolysis of 15 until higher 

temperatures were reached (ca. 300 °C). 
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Figure 2.7.  Proposed mechanisms for initial thermal degradation of 1,4-benzyl 

protected poly(glucose-carbonate)s resulting in the liberation of carbon dioxide as well 

as benzoyl, toluyl, and phenyl fragments. 
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2.6  Conclusions 

 

The synthesis of four different polycarbonates from a readily-available glucose 

starting material and their differences in physical properties are reported.  Monomers 

exhibited different reactivities depending on its regiochemistry and functionality; 

monomers with hemiacetal functionalities afforded polycarbonates with lower molecular 

weights when exposed to phosgene, diphosgene, and triphosgene as compared to 

monomers bearing primary and secondary alcohols.  The 1,4- and 1,6-monomers with 

anomeric centers proved difficult to polymerize, reaching Mns near 10 kDa, whereas the 

2,6- and 3,6-monomers, those with primary and secondary alcohols, were able to form 

polymers with molecular weights above 35 kDa, reaching over 300 kDa in certain 

instances.  Different regiochemistry in the polymer backbone also had an effect on the 

resulting physical properties of each resulting polymer. The two polymers, 15 and 16, 

not incorporating the anomeric position into the polymer backbone, behaved like rigid 

polymers, exhibiting high thermal stability and a sharp decomposition profile, with onset 

decomposition temperature, Td,onset, at 363 and 336 °C, respectively.  Meanwhile, as 

predicted, polymers with the carbonate linkage connected through the anomeric center 

showed much lower thermal stabilities.  For example, 13 had two different Td,onset values, 

with the first onset, Td1,onset appearing at 171 °C and the second, Td2,onset at 267 °C.  

Similarly, 14 had Td1,onset at 163 °C and Td2,onset.at 294 °C.  Initially it was hypothesized 

that the acetal carbonate linkage at the anomeric position plays a role in the thermal 

degradation and thus accelerates decomposition, however, further investigation of the 
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thermally sensitive of the 1,4-polymer, 13, by TGA-MS showed loss of CO
+

, CO2
+

, 

phenyl, toluyl, and benzoyl ions, evidence that the carbonate linkage interacts with the 

primary benzyl protecting group during thermal degradation.  These synthetic 

methodology developments are important steps towards the use of glucose as an 

effective and innovative feedstock for polycarbonate-based materials.  Furthermore these 

findings show that a wide range of polycarbonates, with varying molecular weights, 

glass transitions, and thermal properties can be formed from these glucose monomers, 

making this monomer system attractive for a wide range of potential applications.  In 

addition, simple modifications to the monomer protection chemistry that may influence 

the polymer properties could be established to further increase the tunability of these 

glucose-based polycarbonates.  Further studies on the mechanical characterization of 

deprotected polymers are currently being investigated.  This study represents the first 

step in the development of viable glucose-based biomedical materials. 
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CHAPTER III 

SYNTHESIS OF REGIOREGULAR POLYCARBONATES DERIVED FROM 

AA’A’A GLUCOSE DIOL MONOMERS 

 

3.1  Overview 

 

Strategies for the preparation of high molecular weight, bio-sourced 

polycarbonates were developed using protected polyhydroxyl monomer repeat units, 

derived from glucose.  The design and synthesis of regioselectively methyl- (Me) and 

benzyl- (Bn) protected 2,2'-glucopyranosyl-glucopyranoside and 3,3'-glucopyranosyl-

glucopyranoside monomers was followed by the copolymerization with phosgene, 

generated in situ from trichloromethyl chloroformate, to yield protected poly(6,2-2’,6’-

glucose carbonate) and poly(6,3-3’,6’-glucose carbonate). The molecular weights (Mw) 

reached over 100 kDa, corresponding to degrees of polymerization of ca. 50, with 

polydispersities ranging from 1.5 to 1.9, as measured by gel permeation chromatography 

(GPC) using tetrahydrofuran as the eluent and with polystyrene calibration standards.  

Due to the regioregularity and high molecular weights of the polymers, each 

regioisomeric poly(glucose carbonate) exhibited relatively high glass-transition 

temperatures for aliphatic polycarbonates, 92 °C for poly(6,2-2’,6’-glucose carbonate) 

and 101 °C for poly(6,3-3’,6’-glucose carbonate).  The polymers also exhibited 

relatively high thermal stability, with onset decomposition temperatures (Td
5
) near      

300 °C, as revealed by thermogravimetric analysis (TGA). 
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3.2  Introduction 

 

Polymers derived from natural resources have gained interest not only to form 

commodity plastics and high performing engineering polymers, which decrease the 

dependence on petroleum based products, but also to form materials with biocompatible 

degradation products.  Degradable polymers have been used in various biomedical 

applications, where issues of biocompatibility and biodegradability are paramount.  For 

this purpose, the polymers used are typically polyesters, capable of hydrolytically 

degrading to afford products that contain carboxylic acid and alcohol functional groups, 

which in turn can be metabolized or expelled from the body.  However, the inherent 

nature of the polyester backbone can pose significant issues in the application of these 

materials.  The process in which hydrolytic degradation occurs and nature of degradation 

products creates acidic microenvironments that can lead to local aseptic 

inflammation.
30,136,137

  In addition, polyesters have been used in drug-delivery systems 

for delivering pH sensitive materials with limited success.
138-140

 

Recently the Wooley lab has have expanded the field of polycarbonates by using 

natural products such as ferulic acid,
141

 quinic acid,
142

 and glucose
104,105

 to develop 

compatible biodegradable materials.  In Chapter II, we explored the synthesis of 

polycarbonates from four different monomers, exhibiting different regiochemistries.  

The different regiochemistries had a significant effect on the monomer reactivity and the 

resulting polymer physical properties.  Despite the polymerization technique used, 

certain monomers did not readily form high molecular weight (>10kDa) polymers in 
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Figure 3.1.  Development of second generation glucose diol monomers, symmetrical 

AA’A’A dimers. 
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high yields, while other monomers, possessing primary alcohols, formed much higher 

molecular weight polymers in higher yields.  By adjusting the design of the monomer, 

changing reactive chain ends from secondary to primary alcohols, it could be possible to 

form high molecular weights polymers in high yields, regardless of the polymerization 

conditions.  A monomer with two primary alcohols can be achieved, without changing 

the chemical composition of the polymer, by initially forming a carbonate-linked dimer.  

The addition of a single synthetic step can also add increased flexibility and tunability to 

the resulting polymers as a variety of linkages could be utilized, allowing for the 

incorporation of additional functionalities and greater control over chemical and physical 

properties.  This chapter reports the design, synthesis, and characterization of 

polycarbonates from 2,2’- and 3,3’-glucose dimers, and comparisons to previously 

synthesized regiorandom glucose polycarbonates with similar functionalities and 

regiochemistries. 
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3.3  Experimental 

 

3.3.1  Materials 

 

Unless otherwise noted, all reagents were used as received.  Dichloromethane 

(DCM) was purified by passage through a solvent purification system (J.C.  Meyer 

Solvent Systems) and used as a dried solvent.  Anhydrous pyridine was used as received 

from Sigma Aldrich.  Monomers 4, 11, 12, 18, and 20 were dried under reduced 

pressure, over P2O5 and stored under Ar environment.  Column chromatography was 

performed on a combiflash Rf4x (Teledyne ISCO) with RediSep Rf Columns (Teledyne 

ISCO).  

 

3.3.2  Characterization 

 

The 
1
H NMR (500 MHz) and 

13
C NMR (125 MHz) spectra were obtained on an 

Inova 500 MHz spectrometer using the solvent as an internal reference.  IR spectra were 

recorded on an IR Prestige 21 system (Shimadzu Corp., Japan), equipped with an ATR 

accessory, and analyzed using IRsolution v. 1.40 software.  High resolution mass 

spectrometry analyses were conducted on an Applied Biosystems PE SCIEX QSTAR 

instrument by Texas A&M University Laboratory for Biological Mass Spectrometry.  

Glass transition (Tg) temperatures were measured by differential scanning calorimetry on 

a Mettler Toledo DSC822e apparatus (Mettler Toledo, Columbus, OH) with a heating 
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rate of 10 °C/min.  The measurements were analyzed using Mettler-Toledo Star
e
 v. 10.00 

software, and the Tg was taken as the midpoint of the inflection tangent, upon the third 

heating scan.  Thermogravimetric analysis (TGA) was performed under an Ar 

atmosphere using a Mettler Toledo model TGA/SDTA851
e
 apparatus with a heating rate 

of 10 °C/min.   

Gel permeation chromatography (GPC) was conducted two Waters systems using 

THF and DMF eluents.  The THF system was composed of a Waters 1515 HPLC 

(Waters Chromatography, Inc.) equipped with a Waters 2414 differential refractometer, 

a PD2026 dual-angle (15 and 90º) light scattering detector (Precision Detectors, Inc.), 

and a three column series PLgel 5 μm Mixed C, 500 Å, and 10
4
 Å, 300 × 7.5 mm 

columns (Polymer Laboratories, Inc.).  The system was equilibrated at 35 ºC in 

anhydrous THF, which served as the polymer solvent and eluent with a flow rate of 1.0 

mL/min.  Polymer solutions were prepared at a known concentration (ca. 3 mg/mL) and 

an injection volume of 200 μL was used.  Data collection and analysis were performed, 

respectively, with Precision Acquire software and Discovery 32 software (Precision 

Detectors, Inc.).  Interdetector delay volume and the light scattering detector calibration 

constant were determined by calibration using a nearly monodispersed polystyrene 

standard (Pressure Chemical Co., Mp = 90 kDa, Mw/Mn < 1.04).  The differential 

refractometer was calibrated with standard polystyrene reference material (SRM 706 

NIST), of known specific refractive index increment dn/dc (0.184 mL/g).  The dn/dc 

values of the analyzed polymers were then determined from the differential 

refractometer response. 
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The DMF GPC was equipped with an model 1515 isocratic pump, a model 2414 

differential refractometer, and a three-column set of Polymer Laboratories (Amherst, 

MA) Styragel columns (PLgel 5 μm Mixed C, 500 Å, and 104 Å, 300 x 7.5 mm columns) 

for the THF system equilibrated at 35 °C, or a four-column set of 5 μm Guard (50 × 7.5 

mm), Styragel HR 4 5 μm DMF (300 × 7.5 mm), Styragel HR 4E 5 μm DMF (300 × 7.5 

mm), and Styragel HR 2 5 μm DMF (300 × 7.5 mm) equilibrated at 70 °C.  Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL), and an injection 

volume of 200 μL was used.  Data collection and analyses were performed with 

Precision Acquire software.  The differential refractometer was calibrated with standard 

polystyrene materials (SRM 706 NIST) of known specific refractive index increment 

dn/dc (0.184 mL/g).  The dn/dc values of the analyzed polymers were then determined 

from the differential refractometer response. 

 

3.3.3  Synthesis 

 

Methyl 2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (9) and methyl 3-

O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (10)  Methyl-4,6-O-benzylidene 

glucopyranoside, (10.2 g, 36.1 mmol), benzyl bromide (10.5 g, 61.4 mmol), and 

tetrabutylammonium hydrogensulfate (2.53 g, 7.44 mmol) were dissolved in 600 mL of 

DCM.  To this solution, 50 mL of 5% NaOH (aq.) solution was added and the mixture 

was heated to reflux and left for 26 hours.  The mixture was separated and the aqueous 

layer was extracted with 50 mL of DCM.  The organic layers were combined, dried with 
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MgSO4, filtered and concentrated under reduced pressure.  The resulting residue was 

purified by column chromatography (SiO2, gradient hexane/ethyl acetate) to afford 

methyl 3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside 9 (5.42 g, 40%) and methyl 

2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside 10 (7.61 g, 57%) as white solids. 

Methyl 3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (9).  
1
H NMR (500 

MHz, CDCl3) δ 7.50-7.25 (m, 10H, Ar), 5.57 (s, 1H, -OCHAr), 4.98-4.95 (d, J = 11.8 

Hz, 1H, -OCH2Ar), 4.82 (d, J1-2 = 3.3 Hz, 1H, H1), 4.80-4.78 (d, J = 11.8 Hz, 1H, -

OCH2Ar), 4.31-4.28 (dd, J6eq-5 = 9.9 Hz, J6eq-6ax = 4.6 Hz,1H, H6eq), 3.85-3.81 (td, J5-4 = 

J5-6ax = 9.9 Hz, J5-6eq = 4.5 Hz, 1H, H5), 3.85-3.81 (t, J3-2 = J3-4 = 9.9 Hz, 1H, H3), 3.78-

3.74 (t, J6ax-5 = J6ax-6eq = 9.9 Hz, 1H, H6eq), 3.75-3.71 (ddd, J2-3 = 9.9 Hz, J2-OH = 6.9 Hz, 

J2-1 = 3.3 Hz, 1H, H2), 3.67-3.63 (t, J4-3 = J4-5 = 9.9 Hz, 1H, H4), 3.45 (s, 3H, -OCH3), 

2.31-2.30 (d, JOH-2 = 6.9 Hz, 1H, HOH-2) ppm;  
13

C NMR (125 MHz, CDCl3): δ 138.4, 

137.3 (Aripso), 129.0, 128.4, 128.2, 128.0, 127.7, 126.0 (Ar), 101.3 (-OCHAr), 99.9 (C1), 

81.9 (C4), 78.4 (C3), 74.8 (-OCH2Ar), 72.4 (C2), 69.0 (C6), 62.6 (C5), 55.4 (-OCH3) 

ppm;  FTIR (ATR) υmax (neat, cm 
-1

): 3302 (broad), 3032, 2924, 2870, 1450, 1365, 1280, 

1064, 987;  HRMS (+ESI) m/z calc’d for C21H24O6 [M+H]
+
: 372.16; observed 373.1614. 

Methyl 2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (10).  
1
H NMR (500 

MHz, CDCl3) δ 7.50-7.30 (m, 10H), 5.52 (s, 1H, -OCHAr), 4.80-4.78 (d, J = 11.9 Hz, 

1H, -OCH2Ar), 4.72-4.70 (d, J = 11.9 Hz, 1H, -OCH2Ar), 4.62-4.61 (d, J1-2 = 3.8 Hz, 

1H, H1), 4.28-4.25 (dd, J6eq-6ax = 9.5 Hz, J6eq-5 = 4.6 Hz, 1H, H6eq), 4.18-4.13 (td, J3-2 = 

J3-4 = 9.5 Hz, J3-OH = 2.1 Hz, 1H, H3), 3.84-3.79 (td, J5-4 = J5-6ax = 9.5 Hz, J5-6eq = 4.7 

Hz, 1H, H5), 3.73-3.68 (t, J6ax-5 = J6ax-6eq = 9.5 Hz, 1H, H6ax), 3.52-3.48 (t, J4-3 = J4-5 = 
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9.5 Hz, 1H, H4), 3.48-3.46 (dd, J2-3 = 9.5 Hz, J2-1 = 3.8 Hz, 1H, H2), 3.38 (s, 3H, -

OCH3), 2.53-2.52 (d, JOH-3 = 2.1 Hz, 1H, HOH-3) ppm;  
13

C NMR (125 MHz, CDCl3): δ 

137.9, 137.1 (Aripso), 129.2, 128.6, 128.3, 128.1, 126.3 (Ar), 102.0 (-OCHAr), 98.6 (C1), 

81.2 (C4), 79.5 (C2), 73.4 (-OCH2Ar), 70.3 (C3), 70.0 (C6), 62.0 (C5), 55.4 (-OCH3) 

ppm;  FTIR (ATR) υmax (neat, cm
-1

): 3456 (broad), 2924, 2846, 1458, 1357, 1334, 1080, 

1026, 972, 918, 856;  HRMS (+ESI) m/z calc’d for C21H24O6 [M+Li]
+
: 379.17; found 

379.1675. 

 

Synthesis of 6,2-2’,6’-Glucose Monomer 

Methyl-2-O-[(1-O-methyl-3-O-benzyl-4,6-O-benzylidene-α-ᴅ-

glucopyanoside)carbonyloxy]-3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside 

(17).  To a 25 mL flame dried schlenk flask, 9 (5.6189 g, 15.128 mmol) was added under 

N2 and dissolved in dry toluene (12 mL) and anhydrous pyridine (2 mL).  The reaction 

mixture was cooled to 0 °C, and triphosgene (0.7600 g, 0.169 mmol) in 6 mL of toluene 

was added dropwise over an hour.  The reaction was allowed to warm to room 

temperature and stir for an additional six hours.  The reaction mixture was diluted with 

50 mL of DCM and washed with 50 mL sat. NaHCO3 solution, 50 mL 0.5 HCl (2x), and 

50 mL of brine.  Organic layer was dried with MgSO4, filtered and concentrated in 

vacuo to afford a white foam.  The crude sample was purified by column 

chromatography (3:1 Hex/EtOAc) yielding 7.4631 g of 17 as a white solid (64%).  

Methyl-2-O-[(1-O-methyl-3-O-benzyl-4,6-O-benzylidene-α-ᴅ-

glucopyanoside)carbonyloxy]-3-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (17).  
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1
H NMR (500 MHz, CDCl3) δ 7.50-7.24 (m, 20H, Ar), 5.59 (s, 2H, -OCHAr), 4.92-4.90 

(d, J = 11.8 Hz, 2H, -OCH2Ar), 4.88-4.87 (d, J1-2 = 3.7 Hz, 2H, H1), 4.84-4.82 (dd, J2-3 

= 9.6 Hz, J2-1 = 3.7 Hz, 2H, 2H), 4.79-4.76 (d, J = 11.8 Hz, 2H, -OCH2Ar), 4.32-4.29 

(dd, J6eq-6ax = 9.6 Hz, J6eq-5 = 4.7 Hz, 2H, H6eq), 4.10 (t, J3-2 = J3-4 = 9.6 Hz, 2H, H3), 

3.90-3.85 (dt, J5-4 = J5-6ax = 9.5 Hz, J5-6eq = 4.7 Hz, 2H, H5), 3.79 (t, J6ax-5 = J6ax-6ax = 9.6 

Hz, 2H, H6eq), 3.72 (t, J4-3 = J4-5 = 9.6 Hz, 2H, H4), 3.28 (s, 6H, -OCH3) ppm;  
13

C 

NMR(125 MHz, CDCl3): δ 154.4 (C=O), 138.4, 137.2 (Aripso), 129.0, 128.2, 127.6, 

127.5, 126.0 (Ar), 101.3 (-OCHAr), 97.7 (C1), 82.0 (C3), 76.5 (C2), 76.0 (C4), 74.7 (-

OCH2Ar), 68.9 (C5), 62.3 (C6), 55.3 (-OCH3) ppm,;  FTIR (ATR) (neat, cm
-1

) 3034, 

2928, 2908, 2839, 1774 (C=O), 1745 (C=O), 1452, 1371, 1307, 1240, 1055, 1043, 974. 

748, 696; HRMS (+ESI) m/z calc’d for C43H46O13 [M+Li]
+
 : 777.31, found 777.3071. 

Methyl-2-O-[(1-O-methyl-3,4-O-benzyl-α-ᴅ-glucopyanoside)carbonyloxy]-

3,4-O-benzyl-α-ᴅ-glucopyranoside (18).  To a solution of 7 (0.8580 g, 1.113 mmol) in 

dry DCM (20 mL), a 1 M solution of BH3THF (11 mL, 11 mmol) was added, followed 

by the dropwise addition of TMSOTf (0.1 mL, 0.5 mmol).  The solution was stirred 

under N2 at room temperature for 3 hours.  The reaction was quenched by the addition of 

Et3N (1 mL), followed by the careful addition of MeOH (>0.5 mL) until the evolution of 

H2 ceased.  The mixture was concentrated and the residue was coevaporated with MeOH 

(3x50 mL).  Purification by column chromatography (7:3 Hex/EtOAc) afforded 18 

(0.7676 g) as white solid in an 89% yield. 

Methyl-2-O-[(1-O-methyl-3,4-O-benzyl-α-ᴅ-glucopyanoside)carbonyloxy]-3,4-

O-benzyl-α-ᴅ-glucopyranoside (18).  
1
H NMR (500 MHz, CDCl3) δ 7.35-7.25 (m, 20H 
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Ar), 4.86-4.84 (d, J = 11.1 Hz, 4H, -OCH2Ar), 4.81-4.79 (d, J = 11.1 Hz, 2H, -OCH2Ar), 

4.80-4.79 (d, J1-2 = 3.6 Hz, 2H, H1), 4.76-4.73 (dd, J2-3 = 9.9 Hz, J2-1 = 3.6 Hz, 2H, H2), 

4.66-4.63 (d, J = 11.1 Hz, 2H, -OCH2Ar),4.08-4.05 (dd, J3-2 = 9.9 Hz, J3-4 = 8.7 Hz, 2H, 

H3), 3.83-3.79 (ddd, J6-6’ = 11.8 Hz, J6-OH = 5.3 Hz, J6-5 = 2.6 Hz, 2H, H6) 3.75-3.70 

(ddd, J 6’-6 = 11.8 Hz, J6’-OH = 7.6 Hz, J6’-5 = 3.8 Hz, 2H, H6’), 3.69-3.66 (ddd, J5-4 = 9.8 

Hz, J5-6’ = 3.8 Hz, J5-6 = 2.6 Hz, 2H, H5) 3.64-3.60 (dd, J4-5 = 9.8 Hz, J4-3 = 8.7 Hz, 2H, 

H4), 3.20 (s, 6H, -OCH3), 1.69-1.66 (dd, JOH-6’= 7.6 Hz, JOH-6 = 8.7 Hz, 2H, OH) ppm;  

13
C NMR(125 MHz, CDCl3): δ 154.5 (C=O), 138.5, 138.0 (Aripso), 128.6, 128.5, 128.2, 

128.1, 127.8, 127.7 (Ar), 97.1 (C1), 79.9 (C3), 77.4 (C2), 77.3 (C4), 75.5 (-OCH2Ar), 

75.2 (-OCH2Ar), 71.0 (C5), 61.8 (C6), 55.2 (-OCH3) ppm;  FTIR (ATR) (neat, cm
-1

) 

3516 (br), 2991 2937 2872, 1753 (C=O), 1496, 1454 1361, 1310, 1246, 1120, 1089, 

1043, 1026, 1018, 898, 738, 696; HRMS (+ESI) m/z calc’d for C43H50O13 [M+Li]
+
 : 

781.34, found 781.3411. 

 

Synthesis of 6,3-3’,6’-Glucose Monomer 

Methyl-3-O-[(1-O-methyl-2-O-benzyl-4,6-O-benzylidene-α-ᴅ-

glucopyanoside)carbonyloxy]-2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside 

(19).  To a 25 mL flame dried schlenk flask, 10 (3.3454 g, 8.9831 mmol) was added 

under N2 and dissolved in dry toluene (5.5 mL) and anhydrous pyridine (0.8 mL).  The 

solution was cooled to 0 °C, and triphosgene (0.4412 g, 0.1655 mmol) dissolved in 

toluene (2.5 mL) was added dropwise over an hour.  The reaction was allowed to warm 

to room temperature and stir for an additional four hours.  The reaction mixture was 
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diluted with 50 mL of DCM and washed with 50 mL sat. NaHCO3 solution, 50 mL 0.5 

HCl (2x), and 50 mL brine.  Organic layer was dried with MgSO4, filtered and 

concentrated in vacuo to afford a white foam.  Crude was recrystallized in hexanes/Et2O 

to give the desired di-3-glucopyranoside carbonate as colorless crystals in 70% yield.   

Methyl-3-O-[(1-O-methyl-2-O-benzyl-4,6-O-benzylidene-α-ᴅ-

glucopyanoside)carbonyloxy]-2-O-benzyl-4,6-O-benzylidene-α-ᴅ-glucopyranoside (19).  

1
H NMR (500 MHz, CDCl3) δ 7.33-7.11 (m, 20H Ar), 5.42 (t, J 3-2 = J3-4 = 9.9 Hz, 2H, 

H3), 5.38 (s, 2H, -OCHAr), 4.48-4.28 (d, J1-2 = 3.7 Hz, 2H, H1), 4.44-4.42 (d, J = 12.6 

Hz, 2H, -OCH2Ar), 4.30-4.28 (d, J = 12.6 Hz, 2H, -OCH2Ar), 4.25-4.22 (dd, J 6eq-6ax = 

9.9 Hz, J6eq-5 = 4.8 Hz, 2H, H6eq), 3.90-3.85 (td, J 5-4 = J5-6ax = 9.9 Hz, J5-6eq = 4.8 Hz, 

2H, H5), 3.67 (t, J 6ax-5 = J6ax-6eq = 9.9 Hz, 2H, H6ax), 3.60 (t, J 4-3 = J4-5 = 9.9 Hz, 2H, 

H4), 3.55-3.52 (dd, J 2-3 = 9.9 Hz, J2-1 = 3.7 Hz, 2H, H2), 3.35 (s, 6H, -OCH3) ppm;  
13

C 

NMR(125 MHz, CDCl3): δ 153.7 (C=O), 137.8, 136.9 (Aripso), 129.1, 128.4, 128.3, 

128.2, 128.0, 126.2 (Ar), 101.8 (-OCHAr), 99.2 (C1), 79.3 (C4), 76.8 (C2), 75.7 (C3), 

73.1 (-OCH2Ar), 69.1 (C6), 62.3 (C5), 55.6 (-OCH3) ppm;  FTIR (ATR) (neat, cm
-1

) 

3064, 3034, 2929, 2907, 2839, 1774, 1745, 1454, 1371, 1309, 1238, 1213, 1091, 1043, 

975. 748;  HRMS (+ESI) m/z calc’d for C43H46O13 [M+H]
+
 : 771.30, found 770.3017. 

Methyl-3-O-[(1-O-methyl-2,4-O-benzyl-α-ᴅ-glucopyanoside)carbonyloxy]-

2,4-O-benzyl-α-ᴅ-glucopyranoside (20).  To a solution of 19 (5.0020 g, 6.4891 mmol) 

in dry DCM (60 mL), a 1 M solution of BH3THF (40 mL, 40 mmol) was added, 

followed by the dropwise addition of TMSOTf (0.18 mL, 0.99 mmol).  The solution was 

stirred under N2 at room temperature for 2.5 hours.  The reaction was quenched by the 
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addition of Et3N (8 mL), followed by the carful addition of MeOH (>2 mL) until the 

evolution of H2 ceased.  The mixture was concentrated and the residue was coevaporated 

with MeOH (3x200 mL).  Purification by column chromatography (7:3 Hex/EtOAc) 

afforded 20 as white solid in 86% yield. 

Methyl-3-O-[(1-O-methyl-2,4-O-benzyl-α-ᴅ-glucopyanoside)carbonyloxy]-2,4-

O-benzyl-α-ᴅ-glucopyranoside (20).
 1

H NMR (500 MHz, CDCl3) δ 7.27-7.21 (m, 20H 

Ar), 5.50-5.47 (dd, J 3-2 = 9.9 Hz, J3-4 = 8.3 Hz, 2H, H3), 4.73-4.71 (d, J = 11.4 Hz, 2H, -

OCH2Ar), 4.54-4.51 (d, J = 12.8 Hz, 2H, -OCH2Ar), 4.46-4.44 (d, J = 11.4 Hz, 2H, -

OCH2Ar) 4.40-4.39 (d, J1-2 = 3.6 Hz, 2H, H1), 4.37-4.35 (d, J = 12.8 Hz, 2H, -OCH2Ar), 

3.68-3.55 (m, 6H, H4+H5+H6), 3.60-3.55 (ddd, J6’-5 = 8.5 Hz, J6’-OH = 7.8 Hz, J6’-6 = 3.2 

Hz, 2H, H6’), 3.54-3.51 (dd, J 2-3 = 9.9 Hz, J2-1 = 3.6 Hz, 2H, H2), 3.35 (s, 6H, -OCH3) 

1.41-1.39 (dd, JOH-6’ = 7.8 Hz, J OH-6 = 5.1 Hz, 2H, OH) ppm;  
13

C NMR(125 MHz, 

CDCl3): δ 154.3 (C=O), 138.0, 137.6 (Aripso), 128.6, 128.6, 128.5, 128.4, 128.1, 128.0 

(Ar), 97.9 (C1), 79.1 (-OCH2Ar), 77.4 (C3), 75.4 (C2), 74.15 (C5), 72.9 (-OCH2Ar), 

70.2 (C4), 61.6 (C6), 55.23(-OCH3) ppm;  FTIR (ATR) (neat, cm
-1

) 3435 (br), 2950, 

2917, 1774, 1745, 1437, 1332, 1309, 1238, 1213, 1091, 1043, 975. 748;  HRMS (+ESI) 

m/z calc’d for C43H50O13 [M+Li]
+
 : 781.34, found 781.3411. 

 

General Polycondensation Protocol.  The following protocol was used to synthesize 

0.25 g of poly(1,4-cyclohexane)carbonate (Table 3.1, Entry 2).  The same protocol was 

used to synthesize polymers 13n, 15k, 16e, 21 and 22. Alterations to the protocol 

(duration of triphosgene addition) and the effect on molecular weight are outlined in 
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Table 3.1.  To a solution of 1,4-cyclohexane diol (0.275 g, 2.367 mmol) in pyridine 

(0.712 g, 9.00 mmol) and 3 mL of DCM at room temperature was added dropwise a 

solution of triphosgene (0.279 g, 0.940 mmol) in 0.6 mL of DCM over 1 hour.  After 

complete addition, the mixture was allowed to stir for an additional hour, followed by 

the direct precipitation into methanol.  The resulting white fibrous solid was collected by 

filtration, dissolved in DCM and precipitated into methanol two additional times.  

Polymer was dried under vacuum and characterized. 

 

Poly(6,2-2’,6’-glucose)carbonate (21).  
1
H NMR (500 MHz, CDCl3) δ 7.36-7.20 (m, 

10H, Ar), 4.89-4.73 (m, 5H, -OCH2Ar+H1+H2), 4.60-4.54 (d, J = 11.2 Hz, 1H, -

OCH2Ar), 4.40-4.23 (m, 2H, H6RP), 3.86-3.77 (t, J3-2 = J3-4 = 9.5 Hz, 1H, H3), 3.73-3.64 

(m, 0.22H, H6CE), 3.60-3.50 (t, J4-3 = J4-5 = 9.5 Hz, 1H, H4), 3.18 (s, 6H, OCH3) ppm;  

13
C NMR(125 MHz, CDCl3): δ 154.9 (2,2’ carbonate), 154.1 (6,6’ carbonate), 138.2, 

137.6 (Aripso), 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 127.5, 127.4 (Ar), 96.8 (C1), 

79.9 (C3), 72.2 (C4), 76.9 (C2), 75.4 (-OCH2Ar), 75.1 (-OCH2Ar), 68.6 (C5), 66.5 (C6), 

55.1 (-OCH3) ppm;  FTIR (ATR) (neat, cm
-1

) 3031, 2910, 2839, 1753 (C=O), 1497, 

1456, 1380, 1239, 1196, 1161, 1072, 1043, 1028;  Mn (NMR) 12000 g/mol;  Mn (GPC) 

15000 g/mol;  PDI = 1.53;  Tg = 92 °C;  TGA in Ar: Td
5%

 = 280 °C, Td
50%

 = 364 °C. 

 

Poly(6,3-3’,6’-glucose)carbonate (22).  
1
H NMR (500 MHz, CDCl3) δ 7.38-7.18 (m, 

10H, Ar), 5.49 (t, J3-2 = J3-4 = 9.4 Hz, 1H, H3), 4.72-4.69 (d, J = 10.7 Hz, 1H, -OCH2Ar), 

4.54-4.52 (d, J = 12.7 Hz, 1H, -OCH2Ar), 4.41-4.40 (d, J1-2 = 3.3 Hz, 1H, H1), 4.39-4.36 
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(d, J = 10.7 Hz, 1H, -OCH2Ar), 4.37-4.34 (d, J = 10.7 Hz, 1H, -OCH2Ar), 4.20-4.14 (m, 

2H, H6RP), 3.88-3.84 (m, 1H, H5), 3.71-3.68 (m, 0.04H, H6CE), 3.59-3.55 (t, J4-3 = J4-5 = 

9.4 Hz, 1H, H4), 3.57-3.55 (dd, J2-3 =  9.4 Hz, J2-1 = 3.3 Hz, 1H, H2), 3.23 (s, -OCH3) 

ppm;  
13

C NMR(125 MHz, CDCl3): δ 154.7 (3,3’ carbonate), 154.2 (6,6’ carbonate), 

137.8, 137.0 (Aripso), 128.5, 128.4, 128.3, 128.0, 127.9, 127.8 (Ar), 97.6, (C1), 78.9 

(C3), 77.1 (C4), 75.4 (C2), 74.0 (-OCH2Ar), 72.8 (-OCH2Ar), 68.0 (C5), 66.4 (C6), 55.2 

(-OCH3) ppm;  FTIR (ATR) (neat, cm
-1

) 3062, 3030, 2908, 2839, 1753 (C=O), 1497, 

1454, 1371, 1238, 1161, 1072, 1043;  Mn (NMR) 41600 g/mol;  Mn (GPC) 56600 g/mol;  

PDI = 1.86;  Tg = 101 °C;  TGA in Ar: Td
5%

 = 311 °C, Td
50%

 = 348 °C. 

 

3.4  Results and Discussion 

 

Since the utility of a material can be expense-limited, we set out to design a 

straightforward and high yielding synthetic route to make polycarbonates by using the 

fewest number of synthetic steps from an abundant renewable compound.  Previously, 

four different diol monomers were synthesized in two to four steps (Chapter 2, Schemes 

2.1 and 2.2) and copolymerized with phosgene, diphosgene, or triphosgene in DCM and 

pyridine to afford low molecular weight polycarbonates.  Initially, we experienced 

difficulties in achieving polycarbonates with molecular weights above 10 kDa in high 

yields, leading to weak materials too difficult to mechanically characterize by traditional 

methods.  Due to this, different methods were explored to achieve polymers with 
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molecular weights that are consistent with other prominent polymeric materials used for 

biomedical applications. 

 Polycarbonates are typically synthesized using an excess of the carbonyl donor 

(i.e. phosgene), which complicates the control over the final molecular weight by 

stoichiometric imbalances.  In a study performed by Zelikin and Putnam,
143

 control of 

molecular weight and yield was achieved by using the rate of triphosgene addition as a 

variable parameter.  Polycarbonates were synthesized from the diol, dihydroxyacetone 

(DHA), an intermediate in glucose metabolism, with molecular weights ranging from ca. 

37 kDa (56% yield) to 43 kDa (76% yield), by varying the rate of triphosgene addition.  

These conditions seemed attractive, as they utilized triphosgene, a solid phosgene 

analogue with fewer safety issues than phosgene, and led to high molecular weight poly- 

 

 

 

Table 3.1.  Polymerization testing with 1,4-cylcohexanediol and 1,4-cyclohexane 

dimethanol, via polycondensation with triphosgene in DCM and pyridine. 

 

Entry n 

Triphosgene 

Addition 

Duration 

Mn (Da)
a 

Mw (Da)
a
 PDI

a
 Yield (%)

b
 

1 0 5 11600 13900 1.20 54.3 

2 0 60 21500 32700 1.52 73.2 

3 1 60 42700 84400 1.98 80.1 

a
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards.  

b
Yield calculated from 

dried, filtered samples after precipitation in methanol three times. 
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mers from monomers sharing a similar chemical structure to the AA’ glucose diols.  

Results from the testing of similar conditions with two model compounds, 1,4-

cyclohexanediol and 1,4-cyclohexane dimethanol are shown in Table 3.1.  In agreement 

with previously reported, slowing the rate of addition of triphosgene led to a slight  

 

Table 3.2.  GPC results of polymerization conditions applied to Generation I monomers. 

 

 

Sample Polymer Mn (Da)
a
 Mw (Da)

a
 PDI

a
 Yield (%)

b
 

1 1,4 (13n) 6200 6700 1.08 5.1 

2 2,6 (15k) 10000 11600 1.16 46.2 

3 3,6 (16e) 9800 10800 1.10 53.0 

a
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards.  

b
Yield calculated from 

dried, filtered samples after precipitation in methanol three times. 
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increase in Mn, from 11.6 kDa to 21.5 kDa (Table 3.1, entries 1 and 2) and increased 

yields by nearly 20%.  Polymers with a Mn above 40 kDa were achieved when these 

conditions were applied to a monomer with two primary alcohols, 1,4-cyclohexane 

dimethanol (Table 3.1, entry 3). 

After successful results were achieved with the model compounds, similar 

conditions were applied to previously synthesized glucose monomers, 4, 11 and 12 

(Table 3.2).  Unfortunately, number average molecular weights above 10 kDa were not 

achieved with these monomers.  The 2,6 diol, 3, resulted in Mn of 9800 Da in a 53% 

yield, whereas the 1,4 diol, 1, gave a lower Mn polymer in much lower yields (5.1 %).  

Differences in yields and molecular weights can be explained by the different chemical 

compositions of each monomer; in accord with findings in Chapter 2; monomers with 

hemiacetals formed lower molecular weights, with Mns ranging from 5.0 to 11.2 kDa.  

Since higher molecular weights were obtained with monomers containing a more 

nucleophilic and less sterically hindered alcohol, we sought to design a new glucose-

based monomer containing two primary alcohols.  

 

3.4.1  Monomer Synthesis 

 

The existing monomer design (Chapter 2, Scheme 2.1 and 2.2) can be adapted to 

synthesize glucose-based AA’A’A bis-adduct monomers (where A represents a primary 

alcohol functionality and A’ represents a secondary alcohol functionality) in three steps 

in high yields (Scheme 3.1) from the same starting material, initially used to synthesize 
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Scheme 3.1.  Synthetic route for AA’A’A diol monomers, 18 and 20, based on dimers of 

protected glucopyranosides. 
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monomers 4, 11, and 12.   Monobenzylation of commercially available,  methyl-4,6- 

benzylidene-α-ᴅ-glucosyl pyranoside, in near equal quantities was performed in the 

presence of benzyl bromide, aqueous sodium hydroxide, and a bulky phase-transfer 

agent, to afford the corresponding 2-O-benzyl ether, 9, and the 3-O-benzyl ether, 10, in 

40% and 57% yields, respectively.  An additional step was added at this point to form 

benzylidene protected glucose-based dimers, which could subsequently be ring-opened 

to selectively afford primary alcohols.  A number of linkages could be used to make 

various dimers, however a carbonate functional group was chosen in order to produce 

polymers with similar chemical compositions as previously synthesized glucose 

polycarbonates.  When compared to previously synthesized monomers, these monomers 

will only form head-to-head/tail-to-tail connections and since all chemical compositions  

will remain the same, structure-property relationships due to regioregularity can be 

determined. 

Compounds 9 and 10 were dimerized with a carbonate linkage by reaction with 

triphosgene in toluene and pyridine, to afford bis-adducts 17 and 19 in 64% and 70% 

yields, respectively.  Addition of the carbonate group was evident by IR and NMR 

spectroscopies.  In the IR spectrum, disappearance of broad OH stretches around 3500 

cm
-1

 and the addition of a strong absorbance at 1754 cm
-1

, characteristic of carbonyl 

stretching, were observed.  The emergence of a single peak at ca. 155 ppm in the 
13

C 

NMR spectrum, with no 
1
H coupling (determined by HSQC) in both products, 17 and 19 

was also observed.  A large downfield shift of the proton on C2, from ca. 3.8 to 4.8 ppm 

for the 2,2’-bis-adduct could be observed and the proton on C3 shifted from 4.15 to 5.5  



 

99 

 

 

 

Scheme 3.2.  Polymerization of bis-adduct monomers, 18 and 20, to afford polymers 21 

and 22, respectively. 

 

 

ppm for the 3,3’-bis-adduct.  An increase in mass that corresponded to the expected 

dimer was also observed by ESI HRMS; a m/z of 771.3017 [M+H] for 17 and 777.3071 

[M+Li] for 19.  Both benzylidene cyclic acetals underwent reductive ring opening using 

BH3ˑTHF and a catalytic amount of TMSOTf at room temperature to afford, 18 and 20 in 

89% and 86% yields, respectively.  With the ring opening, two H6 protons could no 

longer be differentiated by their axial or equatorial positions by 
1
H NMR, with a 0.7 ppm 

upfield shift for the H6eq signals and no observed axial-axial coupling constants.  Loss of 

a benzylidene 
1
H and 

13
C signals and addition of hydroxyl signals in IR and 

1
H NMR 

spectra further demonstrate successful synthesis of AA’A’A dimer monomers.  
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3.4.2  Polymer Synthesis 

 

The copolymerization between the dimer monomers, 18 and 20, and triphosgene 

were conducted as previously described; triphosgene (1.2 eq) dissolved in DCM was 

added dropwise over an hour to a solution of diol dissolved in DCM and dry pyridine, 

which was precipitated directly into methanol after stirring for an additional hour.  Using 

this method gave higher molecular weights and much higher yields (Table 3.3), up to 

88% yield and a number average molecular weight of 56.6 kDa., as estimated by THF 

GPC using a polystyrene standard.  Attempts to copolymerize the 6,2-2’,6’ diol (18) 

with allyl alcohol (0.1 eq), in order to produce polymers with alkene functionalized 

chain ends, ultimately led to polymers with a lower Mn of 15 kDa and, unfortunately, 

without noticeable allyl functional groups by 
1
H NMR spectroscopy. 

 

 

Table 3.3.  Molecular weights of polycarbonates, 21 and 22, formed from 

glucopyranoside dimers, 18 and 20, respectively.  

 

 NMR THF GPC DMF GPC 

Polymer 
Yield

a
 

(%) 
Mn

b
 

Mn
c
 

(Da) 

Mw
c
 

(Da) 
PDI

c
 

Mn
d
 

(Da) 

Mw
d
 

(Da) 
PDI

d
 Mn

e
 Mw

e
 PDI

e
 

21 78 12000 15000 23000 1.53 16800 22000 1.31 35400 46000 1.30 

22 88 41600 56600 105200 1.86 - - - 76500 210200 2.75 

a
Yield calculated from dried, filtered samples after precipitation in methanol three times.  

b
Estimated by 

1
H NMR spectroscopy.  

c
Estimated by GPC (THF) calibrated with polystyrene standards.  

d
Estimated by 

GPC (THF) using a light-scattering detector.  
e
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with 

polystyrene standards. 
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The structure of polycarbonate was confirmed by IR, 
1
H NMR and 

13
C NMR 

spectroscopies.  The assignments of the 
1
H and 

13
C NMR spectra were carried out by 

COSY and HSQC NMR analyses.  The characteristic carbonyl vibration of the carbonate 

linkage was observed at 1754 cm
-1

 in the IR spectra.  The copolymerizations of the diol 

monomers 18 and 20 with triphosgene to give poly(6,2-2,’6’-glucose)carbonate, 21, and 

poly(6,3-3’,6’-glucose)carbonate, 22, were demonstrated by 
1
H NMR spectroscopy by 

observation of significant downfield shifts (0.7 ppm) of the H6 protons, similar to the 

other protons which are involved in the carbonate linkages.  As a result, the molecular 

weight could also be estimated by the ratio of the integral for the methylene H6 protons  

 

 

Figure 3.2.  
13

C NMR spectra of 6,2-2’,6’ monomer (18, below) and 6,2-2’,6’ polymer 

(21, above). 
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of the chain ends (3.65 to 3.70 ppm) to that of the methylene H6 protons in the repeat 

unit (4.45 to 4.15 ppm for poly(622’6-glucose)carbonate, 21, and 4.25-4.10 for 

poly(633’6-glucose)carbonate, 22), which were in close accord with GPC-estimated 

values.  Slight downfield shifts of the C6 signals, from 61 to 66 ppm, were also observed 

in the 
13

C NMR spectra.  The carbonate linkages were observed by the introduction of 

13
C NMR resonances at 154 ppm, in addition to the already present head-to-head signals 

(Figure 3.4 and Figure 3.5).  As expected, there are two clear and distinct carbonate 

linkages, which correspond to the head-to-head (2-2’ and 3-3’) and tail-to-tail (6-6’) 

connections, indicating a regioregular order. 

 

 

Figure 3.3.  
13

C NMR spectra of 6,3-3’,6’ monomer (20, below) and 6,3-3’,6’ 

polymer (22, above). 
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3.4.3  Thermal Analysis 

 

The thermal properties of the glucose polycarbonates were evaluated by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) under 

inert atmosphere (Figure 3.7).  Both regioregular polymers exhibited similar 

decomposition profiles as the regiorandom 2,6 and 3,6 regiorandom glucose 

polycarbonates with onset thermal decomposition temperatures (Td
5
) at high 

temperatures, greater than or equal to 280 °C.  The 6,2-2’,6’ polycarbonate, 21, had an  

 

 

 

Figure 3.4.  TGA characterization of 6,2-2’,6’ polymer (a) and 6,3-3’,6’ polymer (c); 

DSC characterization of 6,2-2’,6’ polymer (b) and 6,3-3’,6’ polymer (d). 
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initial 5% mass loss at 280 °C and 50% mass loss at 364 °C whereas, the 6,3-3’,6’ 

polycarbonate, 22, had a slightly higher onset decomposition temperature, with 5% mass 

loss at 311 °C and lost 50% mass at 348 °C.  It cannot be concluded, though, that the 

regioregularity, had the only effect on the glass transitions of the resulting materials, as 

this generation of polymers were much larger than the previously synthesized 

regiorandom 2,6 and 3,6 polymers.  Polycarbonate 21 exhibited a Tg almost 15 °C higher 

than the regiorandom polymer 15d, however, the polymer had a larger molecular weight.  

Polycarbonate 22 also had an elevated Tg at 101 °C, however, as mentioned previously, 

some of the increase could be attributed to the larger molecular weight rather than the 

different regiochemistries.   

 

 

Table 3.4.  Thermal properties of glucose-based polycarbonates with various 

regiochemistries and regioregularities.  

 

Monomer Polymer Mn (kDa)
a
 Tg (°C)

b
 Td

5
 (°C)

c
 Td

50
(°C)

c
 

1,4 (4) 13n 6.2 -
d 

179 315 

1,6 (8) 14d 10.6 62 218 308 

2,6 (11) 15d 19.2 85 339 382 

3,6 (12) 16b 15.0 83 327 361 

6,2-2’,6’ (18) 21 35.4 92 280 364 

6,3-3’,6’ (20) 22 76.5 101 311 348 

a
Estimated by GPC (DMF, 0.05 M LiBr) calibrated with polystyrene standards.  

b
Determined by DSC.  

c
Determined by TGA, Td

5
 = 5% mass loss and Td

50
 = 50% mass loss.  

d
Tg not observed. 
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3.5  Conclusions 

 

The design and synthesis of high molecular weight polycarbonates based on 

glucose, a widely available renewable and biocompatible resource has been reported.  

After difficulties in producing polycarbonates above 10 kDa from glucose based AA’ 

diol monomers, changes in the synthetic design were made to afford AA’A’A monomers 

bearing to primary alcohols with expectations that more nucleophilic and less hindered 

hydroxyl groups would lead to higher molecular weight polymers.  Benzylidene 

protected glucosyl pyranosides were coupled via a carbonate link and subsequently ring-

opened to afford symmetrical dimers with two primary alcohols.  In contrast to 

previously synthesized regiorandom glucose polycarbonates, dimerized monomers 

afforded high molecular regioregular polymers in high yields.  A good overall control 

over of the regioselectivity of the resulting monomers was achieved by careful design of 

the monomers and led to the synthesis of poly(glucose carbonate)s, possessing head-to-

head and tail-to-tail sequences exclusively.  Although thermal degradation of the 

poly(glucose carbonate)s were similar between polymers of similar regioisomers, the 

glass transitions differed significantly, most likely due to regioselectivity and chain 

length.  Regioregular polymers with similar and greater molecular weights exhibited an 

increased Tg of ca. 20 °C and 30 °C, respectively.  Glucose-based polycarbonates with 

high molecular weights and high Tg with respect to common aliphatic polycarbonates are 

attractive for a broad range of potential applications.  Moreover, modifications to the 

polymer protection chemistry can influence the polymer properties, introducing another 
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variable for modification and tunability.  For example, removal of benzyl protecting 

groups will afford polymers with free hydroxyl groups, which may lead to hydrogen-

bonded materials with enhanced mechanical properties.  It is envisioned that bio-based 

polycarbonates derived from glucose could potentially undergo hydrolytic breakdown 

and lead to biologically beneficial byproducts and carbon dioxide.  Further studies to 

investigate the degradation and mechanical properties will need to be performed in order 

to assess the efficacy of these polymers to fulfill roles as engineering plastics, 

biomedical materials, and other applications where mechanical strength and degradation 

are both desired. 
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CHAPTER IV  

RING-OPENING POLYMERIZATION OF GLUCAL-DERIVED CYCLIC 

CARBONATES VIA AN ORGANOCATALYTIC APPROACH: A NOVEL 

PLATFORM FOR TUNABLE, MULTIFUNCTIONAL BIOMATERIALS 

 

4.1  Original Publication Information* 

 

This chapter contains excerpts from the article Functional Polycarbonate of D-

Glucal-Derived Bicyclic Carbonates via an Organocatalytic Ring-Opening 

Polymerization.

  Modifications to the original document are cosmetic and used only to 

conform to the format of this document or provide uniformity of enumeration.  Contents 

found in the supporting information, which was originally a separate document, has been 

included in the chapter, and schemes and figures have been renumbered to the style of 

this document. 

 

4.2  Overview 

 

Herein we demonstrated the synthesis of a glycal-based cyclic carbonate 

monomer in three steps and its controlled ROP via organocatalysis with initiation by 4-

                                                 

*
Reprinted with permission from “A Functional Polycarbonate of a ᴅ-Glucal-Derived Bicyclic 

Carbonate via Organocatalytic Ring-Opening Polymerization”, by Alexander T. Lonnecker, 

Young H. Lim and Karen L. Wooley, 2017, ACS Macro Lett., 6, 748-753, DOI: 

10.1021/acsmacrolett.7b00362), Copyright 2017 by The American Chemical Society. 
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methylbenzyl alcohol.  The ROP was studied as a function of time, catalyst type, and 

catalyst concentration by gel permeation chromatography (GPC) and 
1
H NMR.  Using a 

1,5,7-triazabicyclo[4.40]dec-5-ene (TBD) catalyst (1 mol %) a polymer with a molecular 

weight of 9900 g/mol and a unimodal polydispersity (PDI) of 1.21 whereas a 1,8-

diazabicyclo[5.4.0]undec-7-ene/1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexyl-2-

thiourea (DBU/TU) catalyst system (2 mol%) afforded a polymer with a molecular 

weight of 5000 g/mol and a unimodal polydispersity of 1.20.  Both catalyst systems 

reached full conversion in dichloromethane under argon at 30 °C in fewer than ten 

minutes.  Glucal-based polycarbonates analyzed by differential scanning calorimetry 

(DSC) and thermogravimetric analysis (TGA) exhibited an amorphous character with a 

high glass transition temperature (Tg) at 65 °C and an onset decomposition temperature 

(Td) at 200 °C.  This new polymer represents a functional architecture that can be rapidly 

transformed into a diverse variety of polymers through thiol-ene “click chemistry” along 

the polycarbonate backbone or through the addition of pendant functionalities to the 

monomer for further post-polymerization modification.  

 

4.3  Introduction 

 

Polycarbonates, polymers with backbones containing repeating carbonate 

linkages, can be categorized into two families based on their structural composition: 

aromatic polycarbonates and aliphatic polycarbonates (APCs).  The former has been 

widely utilized as an engineering and commodity plastic for over 60 years, owing to 



 

109 

 

attractive processing and unique physical properties, including, in particular, mechanical 

strength, temperature and impact resistance, as well as optical transparency.  These 

properties make aromatic polycarbonates, in particular poly(bisphenol-A-carbonate)s, 

desirable not only for use in everyday materials but also for engineering plastics used in 

automotive industry, aircraft components, as electronics, for data storage, in 

construction, and as biomedical materials. 

Despite their discovery in the 1930s by Carothers
42

, APCs were largely 

overlooked until well into the 1990s.  Their comparatively poor thermal stability and 

susceptibility to hydrolysis were considered inferior to properties displayed by other 

polymers [e.g., polyesters, polyamide, poly(methyl methacrylate)] developed at the time 

for fiber applications.
144

  Although aliphatic polycarbonates have been proposed as 

alternative materials for films, packaging and rigid plastics applications, the current 

industrial applications are still limited as low-molecular weight macromonomers for the 

production of polyurethanes and other copolymers.  

Since the 1990s, APCs have gained a renewed interest, particularly as soft 

materials for biomedical applications, for the same reasons that were deemed inferior in 

decades past.  An increasing demand for more versatile degradable materials have led 

scientists to utilize APCs alongside aliphatic polyesters, since they possess important 

properties such as biocompatibility, biodegradability, low glass transitions and elasticity, 

which are important to a number of applications including, medical devices, drug 

delivery systems and engineered tissues.
44,45

  For medical applications, the hydrolytic 

instability of APCs is actually an attractive advantage from the perspectives of safety 
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concerns and biofunctional requirements.  For example, biodegradable polymeric 

materials do not require removal after implantation, thereby avoiding a second surgical 

procedure that would otherwise be necessary for removal of a permanent device.   

So far, aliphatic polyesters are predominantly used in the development of 

synthetic degradable polymers for many applications in the vast field of biomedical and 

pharmaceutical sciences.  However, the inherent nature of the polyester backbone can 

pose significant issues in the application of these materials.  The process in which 

hydrolytic degradation occurs and nature of degradation products creates acidic 

microenvironments that can lead to local aseptic inflammation.
30,136,137

  In addition, 

polyesters have been used in drug-delivery systems for delivering pH sensitive materials 

with limited success.  In previous work, inactivation of proteins and plasmid DNA 

encapsulated in poly(lactic-co-glycolic acid)(PLGA) particles was observed in the 

course of polymer degradation.
138-140

  In comparison, the advantage of APCs is 

embodied in the absence of acidic compounds during in vivo degradation.
145-147

  In 

addition, the degradation rate of polycarbonates is generally slower than polyesters, 

which is desirable for applications in need of relatively long-term durability in the 

body.
148,149

 

Early study of APCs has focused on the improvement of the mechanical 

properties and thermal stability of poly(trimethylene carbonate) (PTMC) or on the 

improvement of existing materials.  Copolymers of polycarbonates such as PTMC with 

other polymers such as PLA or PGA have already found application in sutures and 

fixation devices and in other biomedical fields such as drug delivery.  While this field  
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Figure 4.1.  Platform design rational for glucal-based cyclic carbonate monomer for the 

synthesis of multifunctional polycarbonates. 

 

 

continues to grow, it heavily relies on materials studied for more than 40 years.  To 

create the next generation of materials, with improved biodegradation characteristics and 

biocompatibility, the expansion of feedstocks to include the use of natural products has 

become a significant focus.  The preparation and application of polysaccharide or sugar-

based polymers is one of the most attractive research subjects the biomedical field due, 

apart from being sourced from an abundant natural product, to their anticipated 

biocompatibility.  The Wooley lab recently developed a novel glucose-based bicyclic 

carbonate monomer that undergoes ring-opening polymerization with catalysis by an 

organic base, TBD, to yield an amorphous poly(D-glucose carbonate) (PDGC).
104,105

  

PDGC is particularly attractive, as its hydrolytic degradation is expected to produce 
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carbon dioxide plus the (protected) monosaccharide.  A similar approach can be applied 

to other types of saccharide feedstocks to develop degradable polycarbonates with a 

wide range of functionalities.  Herein, we report the synthesis of a glucal-based bicyclic 

carbonate monomer, 4, and it’s controlled ROP with an organocatalytic system.  We 

wanted to build from previous glucose-based polycarbonates and expand to make a 

flexible platform that can be easily modified to apply towards a broad range of 

applications.  In order to achieve this goal, we sought to incorporate four goals when 

synthesizing the monomer: 

1) Design a streamlined synthetic strategy that utilizes a glucose-based 

feedstock 

2) Monomer must possess a six-membered cyclic carbonate functional group  

3) Demonstrate facile ROP via organocatalyst to afford well-defined polymers 

4) Increase the utility of the polymer platform by allowing the possibility of 

multiple functional groups in the final monomer to increase the ability for 

orthogonal post-polymerization modifications 

 

 

 

 

 

 

 



 

113 

 

4.4  Experimental 

 

4.4.1  Materials 

 

Reagents were available from Sigma Aldrich and used as received unless 

otherwise noted.  TU was prepared as previously reported;
150

 TU, 4-methylbenzyl 

alcohol (99%) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD; 98%) were dried by 

stirring in dry THF with CaH2, filtering and removing solvent in vacuo; 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU, 98%) was stirred over CaH2, vacuum distilled, 

then stored over molecular sieves (3 Å).  Dichloromethane (DCM) was purified by 

passage through a solvent purification system (J.C.  Meyer Solvent Systems) and used as 

a dried solvent.  Monomer 4, was dried under reduced pressure, over P2O5 and stored 

under an Ar environment.  Column chromatography was performed on a combiflash 

Rf4x (Teledyne ISCO) with RediSep Rf Columns (Teledyne ISCO). 

 

4.4.2  Characterization 

 

The 
1
H NMR (500 MHz) and 

13
C NMR (125 MHz) spectra were obtained on an 

Inova 500 MHz spectrometer using the solvent as an internal reference.  Glass transition 

(Tg) temperatures were measured by differential scanning calorimetry on a Mettler 

Toledo DSC822e apparatus (Mettler Toledo, Columbus, OH) with a heating rate of      

10 °C/min.  The measurements were analyzed using Mettler-Toledo Star
e
 v. 10.00 
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software.  The Tg was taken as the midpoint of the inflection tangent, upon the third 

heating scan.  Thermogravimetric analysis (TGA) was performed under an Ar 

atmosphere using a Mettler Toledo model TGA/SDTA851
e
 apparatus with a heating rate 

of 10 °C/min.  Gel permeation chromatography (GPC) was conducted on two Waters 

Chromatography, Inc. (Milford, MA) systems eluted with either tetrahydrofuran (THF) 

or dimethylformamide (DMF) at a flow rate of 1.00 mL/min.  Both GPC instruments 

were equipped with an model 1515 isocratic pump, a model 2414 differential 

refractometer, and a three-column set of Polymer Laboratories (Amherst, MA) Styragel 

columns (PLgel 5 μm Mixed C, 500 Å, and 104 Å, 300 x 7.5 mm columns) for the THF 

system equilibrated at 35 °C, or a four-column set of 5 μm Guard (50 × 7.5 mm), 

Styragel HR 4 5 μm DMF (300 × 7.5 mm), Styragel HR 4E 5 μm DMF (300 × 7.5 mm), 

and Styragel HR 2 5 μm DMF (300 × 7.5 mm) columns equilibrated at 70 °C.  Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL), and an injection 

volume of 200 μL was used.  Data collection and analyses were performed with 

Precision Acquire software and Discovery 32 software, respectively (Precision 

Detectors, Inc.).  The differential refractometer was calibrated with standard polystyrene 

materials (SRM 706 NIST) for the THF system and poly(ethylene glycol) for the DMF 

system.  IR spectra were recorded on an IR Prestige 21 system (Shimadzu Corp., Japan), 

equipped with an ATR accessory, and analyzed using IRsolution v. 1.40 software. 
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4.4.3  Synthesis 

 

Isopropyl 4,6-di-O-acetyl-2,3-dideoxy-α-ᴅ-erythro-hex-2-enopyranoside (1).  

Tri-O-acetyl ᴅ- glucal (12.0997, 44.443 mmol)  was added to a 150 mL flamed dried 

schlenk flask under nitrogen and dissolved in 100 mL of anhydrous dichloromethane and 

4.20 mL of isopropyl alcohol (54.9 mmol).  After cooling to 0 °C, boron trifluoride 

diethyl etherate (2.2 mL, 18 mmol) was added dropwise.  The reaction mixture was 

removed from the ice bath allowed to stir for an additional 30 min, or until the solution 

turned a deep purple color.  The reaction was quenched by the addition of 150 mL 

saturated solution of NaHCO3, at which point the color of the solution was discharged.  

The aqueous layer was extracted with dichloromethane (100 mL) and the combined 

organic layers were dried with MgSO4 and the solvent was removed under reduced 

pressure, resulting in a light amber syrup.  The crude was purified by column 

chromatography (SiO2; 9:1 hexanes/ethyl acetate), resulting in 10.8427 g (89.6%) of 1 

(9:1, α/β) as a colorless syrup. 

Isopropyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (1α).
  

1
H NMR (500 MHz, CDCl3) δ 5.88-5.86 (ddd, J3-2 = 10.2 Hz, J3-4 = 1.7 Hz, J3-1 = 1.5 

Hz, 1H, H3), 5.82-5.79 (ddd, J2-3 = 10.2 Hz, J2-1 = 2.8 Hz, J2-4 = 1.9 Hz, 1H, H2), 5.31-

5.28 (ddd, J4-5 = 9.6 Hz, J4-2 = 1.9 Hz, J4-3 = 1.7 Hz, 1H, H4), 5.14-5.12 (dd, J1-2 = 2.8 Hz, 

J1-3 = 1.5 Hz, 1H, H1), 4.25-4.22 (dd, J6-6’ = 11.6 Hz, J6-5 = 5.6 Hz, 1H, H6), 4.19-4.16 

(dd, J6’-6 = 11.6 Hz, J6’-5 = 2.5 Hz, 1H, H6’), 4.17-4.13 (ddd, J5-4 = 9.6 Hz, J5-6 = 5.6 Hz, 

J5-6’ = 2.5 Hz, 1H, H5), 4.02-3.95 (septet, J = 6.2 Hz, 1H, CH(CH3)(CH3)), 2.09 (s, 3H, 
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OAc), 2.08 (s, 3H, OAc), 1.26-1.25 (d, J = 6.6, 3H, -CH(CH3)(CH3)), 1.19-1.18 (d, J = 

6.6, 3H, -CH(CH3)(CH3)) ppm;  
13

C NMR (125 MHz, CDCl3): δ 170.9 (OCOCH3), 

170.5 (OCOCH3), 128.9 (C=C), 128.6 (C=C), 92.9 (C1), 70.9 (CH(CH3)(CH3)), 66.9 

(C5), 65.5 (C4), 63.2 (C6), 23.6 (OCOCH3), 22.1 (OCOCH3), 21.1 (CH(CH3)(CH3)), 

20.9 (CH(CH3)(CH3));  FTIR (ATR) υmax (cm
-1

) 2972, 2931, 1739, 1369, 1222, 1099, 

1028, 981.  ESI MS: calculated [M + Li] for C13H20O6, 279.2345; found, 279.1138. 

Isopropyl 4,6-di-O-acetyl-2,3-dideoxy-β-D-erythro-hex-2-enopyranoside (1β).  

1
H NMR (500 MHz, CDCl3) δ 5.97-5.93 (ddd, J3-2 = 10.3 Hz, J3-4 = 3.7 Hz, J3-1 = 1.8 

Hz, 1H, H3), 5.91-5.88 (ddd, J2-3 = 10.3 Hz, J2-4 = 1.5 Hz, J2-1 = 1.0 Hz, 1H, H2), 5.22-

5.20 (ddd, J4-5 = 7.8 Hz, J4-3 = 2.5 Hz, J4-2 = 1.5 Hz, 1H, H4), 5.21 – 5.20 (dd, J1-3 = 1.8 

Hz, J1-2 = 1.0 Hz, 1H, H1), 4.29-4.25 (dd, J6-6’ = 11.6 Hz, J6-5 = 6.0 Hz, 1H, H6), 4.19-

4.16 (dd, J6’-6 = 11.6 Hz, J6’-5 = 2.5 Hz, 1H, H6’), 4.17-4.13 (ddd, J5-4 = 7.8 Hz, J5-6 = 6.0 

Hz, J5-6’ = 2.5 Hz, 1H, H5), 4.10-4.02 (septet, J = 6.3 Hz, 1H, CH(CH3)(CH3)), 2.09 (s, 

3H, OAc), 2.08 (s, 3H, OAc), 1.24-1.23 (d, J = 6.1 Hz, 3H, -CH(CH3)(CH3)), 1.18-1.17 

(d, J = 6.0 Hz, 3H, -CH(CH3)(CH3)) ppm;  
13

C NMR (125 MHz, CDCl3): δ 170.9 

(OCOCH3), 170.5 (OCOCH3), 131.0 (C=C), 125.8 (C=C), 93.2 (C1), 72.7 (C5), 70.2 

(CH(CH3)(CH3)), 64.5 (C4), 63.5 (C6), 23.6 (OCOCH3), 22.1 (OCOCH3), 21.1 

(CH(CH3)(CH3)), 20.9 (CH(CH3)(CH3));  FTIR (ATR) υmax (cm
-1

) 2972, 2931, 1739, 

1369, 1222, 1099, 1028, 981.  ESI MS: calculated [M + Li] for C13H20O6, 279.2345; 

found, 279.1138. 
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Isopropyl-2,3-dideoxy-α-ᴅ-erythro-hex-2-enopyranoside (2).  A solution of 1 

(10.5 g, 58.6 mmol) in 180 mL of dry methanol under nitrogen at room temperature was 

treated with a solution of sodium methoxide in methanol (0.80 mL, 4.37 M, 3.5 mmol); 

the reaction mixture was stirred at room temperature for 45 min.  Solid NH4Cl (0.5 g) 

was added, and the mixture was stirred 15 min and then diluted with 200 mL of acetone.  

The solids were removed by filtration, and the filtrate was concentrated in vacuo to 

afford 2 (7.26 g, 9:1 α/β) in quantitative yields, which was used directly in the next 

reaction.  

Isopropyl-2,3-dideoxy-a-ᴅ-erythro-hex-2-enopyranoside (2α).  
1
H NMR (500 

MHz, CDCl3) δ 5.96-5.94 (dt, J3-2 = 10.2 Hz, J3-1 = J3-4 = 1.2 Hz, 1H, H3), 5.75-5.72 

(ddd, J2-3 = 10.2 Hz, J2-4 = 3.0 Hz, J2-1 = 2.1 Hz, 1H, H2), 5.10-5.08 (dd, J1-2 = 2.1 Hz, 

J1-3 = 1.2 Hz, 1H, H1), 4.24-4.19 (dddd, J4-5 = 9.2 Hz, J4-OH = 8.5 Hz, J4-2 = 3.0 Hz, J4-3 

= 1.7 Hz, 1H, H4), 4.01-3.93 (septet, J = 6.3 Hz, 1H, CH(CH3)(CH3)), 3.91-3.84 (m, 2H, 

H6+H6’), 3.77-3.74 (dt, J5-4 = 9.2 Hz, J5-6 = J5-6’ = 4.6 Hz, 1H, H5), 1.97-1.93 (t, JOH-6 = 

JOH-6’ =7.5 Hz, 1H, OH), 1.84-1.81 (d, JOH-4 = 8.5 Hz, 1H, OH), 1.25-1.24 (d, J = 6.2 Hz, 

3H, -CH(CH3)(CH3)), 1.19-1.17 (d, J = 6.2 Hz, 3H, -CH(CH3)(CH3)) ppm;  
13

C NMR 

(125 MHz, CDCl3): δ 133.3 (C=C), 126.9 (C=C), 92.7 (C1), 71.39 (C5), 70.60 

(CH(CH3)(CH3)), 64.4 (C4), 62.8 (C6), 23.8 (CH(CH3)(CH3)), 22.1 (CH(CH3)(CH3));  

FTIR (ATR) υmax (cm
-1

) 3500-3150 (br), 2968, 2933, 2877, 1384, 1037, 945.  ESI MS: 

calculated [M + Li] for C9H16O4, 195.1209; found, 195.1201. 

Isopropyl-2,3-dideoxy-β-ᴅ-erythro-hex-2-enopyranoside (2β).  
1
H NMR (500 

MHz, CDCl3) δ 6.04-6.01 (ddd, J3-2 = 10.3 Hz, J3-1 = 3.4 Hz, J3-4 = 1.7 Hz, 1H, H3), 
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5.78-5.75 (dt, J2-3 = 10.3 Hz, J2-1 = J2-4 = 1.7 Hz, 1H, H2), 5.22-5.21 (dd, J1-3 = 3.4 Hz, 

J1-2 = 1.7 Hz, 1H, H1), 4.20-4.16 (m, 1H, H4), 4.07 (septet, J = 6.3 Hz, 1H, 

CH(CH3)(CH3)), 3.91-3.82 (m, 2H, H6+H6’), 3.77-3.74 (dt, J5-4 = 9.2 Hz, J5-6 = J5-6’ = 

4.6 Hz, 1H, H5), 2.54-2.51 (t, JOH-6 = JOH-6’ = 6.7 Hz, 1H, OH), 1.84-1.81 (d, JOH-4 = 8.5 

Hz, 1H, OH), 1.25-1.24 (d, J = 6.2 Hz, 3H, -CH(CH3)(CH3)), 1.19-1.17 (d, J = 6.2 Hz, 

3H, -CH(CH3)(CH3)) ppm;  
13

C NMR(125 MHz, CDCl3): δ 131.2 (C=C), 128.7 (C=C), 

94.23 (C1), 71.4 (C5), 70.6 (CH(CH3)(CH3)), 64.4 (C4), 63.3 (C6), 23.8 

(CH(CH3)(CH3)), 22.1 (CH(CH3)(CH3));  FTIR (ATR) υmax (cm
-1

) 3500-3150 (br), 2968, 

2933, 2877, 1384, 1037, 945;  ESI MS: calculated [M + Li] for C9H16O4, 195.1209; 

found, 195.1201. 

 

Isopropyl 4,6-carbonate-2,3-dideoxy-α-ᴅ-erythro-hex-2-enopyranoside (3). 

The diol, 2, (2.4089 g, 14.923 mmol) was dissolved in dry dichloromethane (600 mL) 

and anhydrous pyridine (3.6 mL, 45 mmol).  Triphosgene (2.2166 g, 7.4696 mmol) 

dissolved in 25 mL of dry dichloromethane was added dropwise over 10 min and the 

reaction mixture was allowed to stir at room temperature for 3.5 hours.  After quenching 

with 25 mL of saturated NaHCO3, the organic layer was washed with saturated NH4Cl 

solution (25 mL) and brine (25 mL), dried with MgSO4, and concentrated in vacuo.  The 

crude was purified by column chromatography (SiO2; 1/1 hexane/ethyl acetate) and 

recrystallized (ether/hexanes) to afford 3 (1.2788 g, 40.0%, 1:0 α/β) as white needle-like 

crystals.  The monomer was dried in a desiccator over P2O5, for three days and stored in 

a glovebox. 
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Isopropyl 4,6-carbonate-2,3-dideoxy-a-ᴅ-erythro-hex-2-enopyranoside (3).  
1
H 

NMR (500 MHz, CDCl3): δ 6.12-6.10 (ddd, J3-2 = 10.0 Hz, J3-4 = 2.7 Hz, J3-1 = 1.4 Hz, 

1H, H3), 5.86-5.83 (dt, J2-3 = 10.0 Hz, J2-1 = J2-4 =2.5 Hz, 1H, H2), 5.20-5.18 (dd, J1-2 = 

2.5 Hz, J1-3 = 1.4 Hz, 1H, H1), 4.66-4.63 (ddd, J4-5 = 9.1 Hz, J4-3 = 2.7 Hz, J4-2 = 2.5 Hz, 

1H, H4), 4.53-4.50 (dd, J6eq-6ax = 9.7 Hz, J6eq-5 = 6.0 Hz, 1H, H6eq), 4.32-4.28 (dd, J6ax-5 

= 10.4 Hz, J6ax-6eq = 9.7 Hz, 1H, H6ax), 4.20-4.15 (ddd, J5-6ax = 10.4 Hz, J5-4 = 9.1 Hz, J5-

6eq = 6.0 Hz, 1H, H5), 3.96 (septet, J = 6.0 Hz, 1H, CH(CH3)(CH3)), 1.26-1.25 (d, J = 

6.2 Hz, 3H, -CH(CH3)(CH3)), 1.22-1.21 (d, J = 6.2 Hz, 3H, -CH(CH3)(CH3));  
13

C 

NMR(125 MHz, CDCl3): δ 148.0 (carbonate), 129.4 (C=C), 126.83 (C=C), 93.6 (C1), 

72.6 (C4), 71.5 (CH(CH3)(CH3)), 70.3 (C6), 60.9 (C5), 23.8 (CH(CH3)(CH3)), 22.0 

(CH(CH3)(CH3));  FTIR (ATR) υmax (cm
-1

) 2976, 2907, 1755 (carbonate), 1396, 1267, 

1238, 1183, 1130, 1120, 1010, 952, 933.  ESI MS: calculated [M + H] for C10H14O5, 

215.0919; found, 215.0917. 

 

General procedure for polymerization of 3 using TBD (polymers 4 and 5).  

Solutions of the initiator, 4-methylbenzyl alcohol and catalyst, TBD, in dry DCM with a 

concentration of 10 mg/mL were prepared prior to polymerization.  In a 5 mL vial 

containing a magnetic stir bar in the glovebox, 3 (0.100 g, 0.467 mmol, 1 eq) and 4-

methylbenzyl alcohol (228 μL, 0.0187 mmol, 0.04 eq) were dissolved in DCM (974 μL).  

DBU (355 μL, 0.0234 mmol, 0.05 eq) was then added to initiate polymerization.  The 

reaction was allowed to stir at 30 °C and aliquots of samples were taken to monitor the 

monomer conversion and evolution of 
1
H NMR spectroscopy and GPC.  After 10 min, 
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the reaction mixture was quenched by addition of Amberlyst 15 H resin (20-50 mg).  

The product was precipitated from DCM to methanol and dried in a falcon tube under 

reduced pressure, yielding a white powder.   

 

General procedure for polymerization of 3 using DBU (polymers 6, 8, and 

10).  Solutions of the initiator, 4-methylbenzyl alcohol and catalyst, DBU, in dry DCM 

with a concentration of 10 mg/mL were prepared prior to polymerization.  In a 5 mL vial 

containing a magnetic stir bar in the glovebox, 3 (0.100 g, 0.467 mmol, 1 eq) and 4-

methylbenzyl alcohol (228 μL, 0.0187 mmol, 0.04 eq) were dissolved in DCM (974 μL).  

DBU (355 μL, 0.0234 mmol, 0.05 eq) was then added to initiate polymerization.  The 

reaction was allowed to stir at 30 °C and aliquots of samples were taken to monitor the 

monomer conversion and evolution of 
1
H NMR spectroscopy and GPC.  After 10 min, 

the reaction mixture was quenched by addition of Amberlyst 15 H resin (20-50 mg).  

The product was precipitated from DCM to methanol and dried in a falcon tube under 

reduced pressure, yielding a white powder.   

 

General procedure for polymerization of 3 using DBU+TU (polymers 7 and 

9).  Solutions of the initiator, 4-methylbenzyl alcohol and catalysts, DBU and TU, in dry 

DCM with a concentration of 10 mg/mL were prepared prior to polymerization.  In a 5 

mL vial containing a magnetic stir bar in the glovebox, 3 (0.117 g, 0.546 mmol, 1 eq), 4-

methylbenzyl alcohol (267 μL, 0.0218 mmol, 0.04 eq), and TU (1011 μL, 0.0273, 0.05 

eq) were dissolved in DCM (126 μL).  DBU (416 μL, 0.0273 mmol, 0.05 eq) was then 
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added to initiate polymerization.  The reaction was allowed to stir at 30 °C and aliquots 

of samples were taken to monitor the monomer conversion and evolution of 
1
H NMR 

spectroscopy and GPC.  After 10 min, the reaction mixture was quenched by addition of 

Amberlyst 15 H resin (20-50 mg).  The product was precipitated from DCM to methanol 

and dried in a falcon tube under reduced pressure, yielding a white powder. 

Poly(hex-2-enopyranoside)carbonate (4).  
1
H NMR (500 MHz, CD2Cl2) δ 7.27-

7.26 (d, Ar), 7.19-7.17 (d, Ar), 5.96-5.91 (m, H3), 5.85-5.79 (m, H2), 5.16-5.08 (m, 

H4+H1), 4.43-4.23 (m, H6), 4.18-4.10 (m, H5), 3.99-3.90 (septet, -CH(CH3)(CH3)), 2.34 

(s, -OCH3Ar), 1.21-1.20 (d, -CH(CH3)(CH3)), 1.16-1.14, (d, -CH(CH3)(CH3)) ppm;  
13

C 

NMR(125 MHz, CD2Cl2): δ 155.5-154.6 (carbonate), 129.7 (C=C), 128.2 (C=C), 93.2 

(C1), 71.3 (C4), 68.4 (-CH(CH3)(CH3)), 67.1 (C6), 66.9 (C5), 23.9 (-CH(CH3)(CH3)), 

22.2 (-CH(CH3)(CH3));  FTIR (ATR) υmax (cm
-1

) 2968, 2933, 2877, 1751, 1384, 1037, 

945; Mn (NMR) 11800 g/mol;  Mn (GPC) 9800 g/mol;  PDI = 1.31;  Tg = 65 °C;  TGA in 

Ar: Td
5%

 = 190 °C, Td
50%

 = 296 °C. 

 

4.5  Results and Discussion 

 

Expanding from previous glucose-based polycarbonates, we sought to create a 

flexible platform that can be easily modified to apply towards a broad range of 

applications.  In order to achieve this goal, we designed a streamlined synthetic strategy 

that utilizes a glucose-based feedstock, tri-O-acetyl-ᴅ-glucal, to create a monomer 

possessing a six-membered cyclic carbonate that can be easily polymerized via ROP 
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with an organocatalyst, affording well-defined polymers.  Glycals are used extensively 

as a chiral feedstock in organic chemistry for the preparation of non-carbohydrate 

natural products as well as biologically important complex carbohydrates and 

glycoconjugates.  Tri-O-acetyl ᴅ-glucal, is decorated with fewer alcohol than glucose, 

leading to fewer protection/deprotection steps and a carbon-carbon double bond for post-

polymerization functionalization and making it an attractive starting point for monomer 

synthesis.  In addition, a Ferrier rearrangement reaction can allow for the incorporation 

of a seemingly endless variety of functional groups, allowing for an even greater degree 

of modifications, which increases the utility of the polymer.  Finally, removal of an 

acyloxy functional group during allylic rearrangement leaves behind a masked 1,3 diol, 

leading to a streamline synthesis with few individual protection and deprotection steps. 

 

4.5.1  Monomer Synthesis 

 

Our approach involves a three step synthesis of a bicyclic carbonate, 3, from tri-

O-acetyl-D-glucal, a versatile synthon, for a family of functionalized carbonated 

monomers.  In the presence of Lewis acids, cyclic enol ethers, having leaving groups at 

the allylic sites, readily undergo nucleophilic displacement reactions, otherwise known 

as the Ferrier Rearrangement.  In the presence of BF3-EtO2, the departure of an acyloxy 

leaving group from the C3 position forms a stabilized allyloxycarbenium ion, upon 

which an O- nucleophile species attacks at the C1 position.  Initially, methanol was 

utilized as a nucleophile which afforded the 2,3-unsaturated glycosyl product in high  
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Scheme 4.1.  Three-step synthesis of glucal-based cyclic carbonate monomer, 3. 

 

yields.  However, removal of residual glucal proved difficult as the starting material and 

product share similar Rf and solubility.  The 
1
H NMR signal of the methoxy group also 

resided in the anticipated area of the methyl group of the intended polymerization 

initiator, 4-methylbenzyl alcohol, which could have created difficulty when calculating 

Mn by end group analysis.  To avoid these complications, isopropyl alcohol was chosen 

as an appropriate nucleophile for this proof of concept, which afforded 1 in high yield 

(95%) favoring the α product in a 9:1 ratio.  Bis-deacetylation of 1 under Zemplén 

conditions, afforded the somewhat unstable pseudoglycal, 2, in quantitative yields and 

was used in the next step unpurified.  Several conditions have been developed to form 

cyclic carbonates that do not utilize phosgene as a carbonylation agent, however due the 

previous difficulty in forming the glucose-bicyclic carbonate
104,105

 and the anticipated 

increase in ring strain due to the double bond, a more reactive carbonylation agent was 
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employed.  The cyclization reaction was performed successfully using triphosgene in the 

presence of pyridine in DCM at room temperature yielded the cyclic carbonate 

monomer, 3, in modest yields (40%).  In addition, it is important to note the stability of 

compounds 2 and 3.  When left under ambient conditions the white solid, 2, decomposed 

into a brown sludge within a week and was only stable when stored under dry conditions 

at -20 °C for 1-2 months.  However, after formation of the cyclic carbonate, the 

monomer proved stable indefinitely (+1 year) when stored in a glovebox (Ar, 30 °C). 

 

4.5.2  Ring-Opening Polymerization Optimization 

 

To test the suitability of these glucal-derived monomers for polymerization, we 

examined the organocatalyzed ROP of monomer, 3, to afford glucose-based 

polycarbonates bearing an endocyclic alkene, or (PDGC-ene) and compared it to the 

ROP of other glucose-based cyclic carbonates
104,105

 and other six-membered cyclic 

carbonates.
39,55

  The ROP of 3 was conducted via an initiator/chain-end activation 

mechanism and studied as a function of time, catalyst type, and catalyst concentration.  

Table 4.1 summarizes the examination of the two-component catalyst consisting of the 

Lewis acid 1-(3,5-bis(trifluoromethyl)-phenyl)-3-cyclohexyl-2-thiourea (TU) with the  

Lewis base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and alternatively the superbase 

catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD).  The number-average molecular 

weights (Mn) were estimated using gel-permeation chromatography (GPC) and 

calculated using 
1
H NMR spectroscopy by comparing the resonance for the methyl  
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Table 4.1.  ROP optimization of glucal based monomer, 3, via organocatalysis by TBD 

or DBU/TU with initiation by 4-methylbenzyl alcohol.
a 

 

 

 
 

Entry Polymer Catalyst 
Catalyst 

mol % 
[M]0/[I]0

b [M]c 
Time 

(min) 
Conv. 

(%) d 
Mn 

(Da) e 

Mn 

(Da)  

f 

Mw 

(Da)  

f 

PDI 
f 

1 4 TBD 2 50 0.3 2 >99 11800 9800 12500 1.31 

2 5 TBD 1 50 0.3 

2 96 7500 8500 10800 1.27 

6 >99 11000 9400 11400 1.21 

10 >99 11000 9900 12900 1.30 

3 6 DBU 5 25 0.3 

1 89 3100 2100 2600 1.24 

5 98 4000 3400 3900 1.15 

10 >99 4000 3800 4300 1.13 

4 7 TU/DBU 5 25 0.3 

1 >99 4600 3300 3700 1.12 

5 >99 4600 3400 3800 1.12 

10 >99 4800 3700 4200 1.14 

5 8 DBU 2 25 0.3 

1 49 800 950 1300 1.37 

5 68 1000 1000 1400 1.40 

10 86 1600 1600 2100 1.31 

6 9 TU/DBU 2 

 

0.3 

1 36 1200 780 810 1.03 

25 5 >99 5300 5000 6000 1.20 

 10 >99 5700 5000 5900 1.18 

7 10 DBU 1 25 0.3 

1 29 400 210 220 1.05 

5 41 400 480 590 1.23 

10 57 1200 610 840 1.38 
aThe polymerization of 3 was carried out with TBD or DBU/TU in the presence of 4-methylbenzyl alcohol in CH2Cl2 at 30 °C under 
argon.  bmonomer/initiator feed ratio.  cConcentration of 3 in mol/L.  dEstimated by 1H NMR analysis in CDCl3.  eEstimated using 1H 

NMR spectra in CDCl3. fEstimated by GPC (THF eluent) using polystyrene standards.  
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protons of the initiator with that of the methine proton on the isopropyl group of the 

repeat unit.  Similar conditions to those used in previously reported glucose-based 

polycarbonates synthesized in the Wooley lab were used as a starting point (Table 4.1, 

Entry 1).  Despite more dilute conditions (0.3 M as compared to 1.0 M), the conversion 

of 3 reached >99% within 2 min, much quicker than previously encountered with the 

methoxy-protected glucose-based cyclic carbonate monomer.
104,105

  Lowering the 

catalyst loading to 1 mol% slowed the reaction, allowing for 96% conversion within 2 

min and full conversion within 6 min, which, again, is significantly quicker than 

glucose-carbonate monomers
104,105

 and trimethylene carbonate.
39

  The GPC traces 

showed bimodal polymer peaks with high molecular weight shoulders (Figure 4.2) and 

PDIs ranging from 1.21 to 1.31, indicating the polymerization proceeded in an 

uncontrolled fashion.  The use of TBD has been reported to broadening of polydispersity 

via transcarbonation of the polymer chains, which could explain the high PDIs.
55

  To 

ensure uniform growth of glucal-based polymer, without allowing for adverse 

transesterification reactions found with the use of TBD, a less reactive catalyst system, 

TU-DBU, was explored.   

By using TU-DBU catalyst and lowering the concentration to 2 mol %, 

conversion of 3 was able to be completed within 10 min but at a rate that could be easily 

monitored.  The product, 9, maintained a comparable number-average degree of 

polymerization (DPn = 25) and PDI under 1.2.  Under these conditions, 

transesterification was minimized, allowing for conversion in a controlled fashion.  

Additionally, conditions that did not utilize the Lewis acid, TU, suffered from slower  



 

127 

 

 

Figure 4.2.  GPC traces of 5 (Table 2.1, entry 2, 6 min) and 9 (Table 4.1, entry 6, 10 

min). 

 

 

rates and higher PDIs.  This could be due to the introduction of an alternate zwitterionic 

reaction mechanism.  Takashi Endo was able to form linear polycarbonates from 

glucose-based five membered cyclic carbonates, using such a technique.  Traditionally, 

anionic ring-opening of five-membered cyclic carbonates is more difficult than six- or 

seven-membered rings and usually require vigorous conditions with higher temperature 

and often proceed with the elimination of carbon dioxide, however, polymerization took 

place in the presence of DBU via a zwitterionic reaction mechanism, resulting in linear 

polymers with high PDIs (1.5-2.6).
98,99

  The ease of ROP with low amounts of TU-DBU 

may be explained by the increase in ring strain due to the addition of the double-bond 

within the bicyclic ring system.  Ring strain of the carbonate is evident from a shift in 

the carbonyl absorption band in the IR spectrum.  The carbonyl band of trimethylene 
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carbonate
151

 and various substituted six membered cyclic carbonates
151,152

 occur around 

1730 cm
-1

 (neat).  In the case for fused bicyclic sugar systems shift can be observed in 

the carbonyl absorption band of about 25 cm
-1

, occurring at 1755 cm
-1

(neat), which is 

also slightly higher than the methoxy-protected glucose based cyclic carbonate monomer 

(1751 cm
-1

, neat).
104

  An increase in ring strain allowed for the use of a milder TU-DBU 

catalyst system in low quantities to produce well defined linear polycarbonates in a 

controlled fashion, with a low degree of transesterification. 

The structure of the polycarbonate was confirmed by IR, 
1
H NMR, and 

13
C 

spectroscopies.  Assignments of 
1
H NMR and 

13
C NMR spectra were performed by 

using COSY and HSQC NMR analyses.  The characteristic carbonyl vibration of the 

carbonate linkage was observed at 1755 cm
-1

 in the IR spectra.  As illustrated by the 
1
H 

NMR spectra of 3 and 5 (Figure 4.3) the most significant proton resonance differences 

between the monomer and the polymer occurred for the pyranoside methine proton 

(labeled as 4, Figure 4.3), the methylene protons α to the carbonate linkage (6), and the 

alkenyl proton on C3.  Compared to the monomer, the resonance of polymer proton 4 

was shifted downfield from ca. 4.6 to 5.1 ppm, whereas the methylene protons shifted 

upfield from two distinct doublet of doublet peaks at 4.5 and 4.3 ppm to a single 

multiplet at 4.3 ppm.  In addition, the alkenyl proton on C3 also had a slight upfield shift 

from 6.1 to 5.9 ppm.  These shifts could arise from an electronic effect of the adjacent 

carbonyl group and the geometric conformational changes on the glycosidic ring upon 

opening of the six-membered cyclic carbonate during.  Due to the simplicity of the 

monomer and choice of functional groups, the proton resonances lead to facile 
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calculations of conversions and molecular weights.  The upfield shift of the alkenyl 

proton 3 created two non-overlapping peaks which allowed for the straightforward 

calculation of conversion rates. The values of Mn estimated by 
1
H NMR analysis [based 

on the ratio of the integral for the methine isopropyl proton in the repeat unit (4.0 ppm) 

to that of the methyl protons of the initiator at the α-chain end (2.3 ppm)] were in close 

accord with GPC-estimated values and theoretical values of 10833 Da (DP50) and 5477 

Da (DP25). 

 

Figure 4.3.  
1
H NMR spectra (CD2Cl2) of glucal-based monomer, 3 (bottom), and 

PDGC-ene polymer 9 (top). 

 

 

The 
13

C NMR spectra showed the characteristic downfield shift, from 148 to 155 

ppm, of the carbonate resonance upon ring opening (Figure 4.4).  Expanding the 

carbonyl carbon region shows three sets of observed signals.  The dual-activation ring-  



 

130 

 

 

Figure 4.4.  
13

C NMR spectra (CD2Cl2) of glucal-based monomer, 3 (bottom), and 

PDGC-ene polymer 9 (top). 

 

 

opening polymerization mechanism catalyzed by TU-DBU involves an activated alcohol 

attacking the cyclic carbonate in a nucleophilic acyl-substitution reaction whereby the 

hydroxyl nucleophile first adds to the C=O of the carbonate to give a hydrogen bonded 

tetrahedral intermediate that subsequently collapses to a hydroxyalkylcarbonate.  In this 

case, acyl oxygen bond cleavage at the different sides of the carbonyl leads to two 

possible hydroxyalkylcarbonates.  Successive addition of glucal based monomers at one 

of the two types of chain terminal alcohols can lead to three different types of linkages:  
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head-to-head (HH), head-to-tail (HT) and tail-to-tail (TT) (see Figure 4.4).  Similar 

trends were also observed in the ROP of glucose-based carbonates, which was further 

supported through ESI tandem MS analysis, which may be influenced by the methoxy 

protecting groups.
104

  It has been demonstrated excessively bulky substituents (e.g. 2,2-

diphenyl) can impede the ring-opening of six-membered cyclic carbonates and different 

types of substituents can have an effect on regiochemical preferences.  Recently in the 

Wooley lab, several variations of the glucose-based cylic carbonate monomers, sporting 

different types of protecting groups on positions 2 and 3, have been synthesized and 

displayed different trends in regioregularity.  The two different classes of side groups 

(ether and carbonate) showed distinct distributions in terms of regiochemistries of the 

resulting polymers, as demonstrated by 
13

C NMR.  Ether type protecting groups 

possessed similar regiorandom distributions, similar to previously reported methoxy 

protected polymers, whereas the carbonate protected monomers led to regioregular 

polymers, predominately HT linkages.  These trends could be explained by steric or 

electronic effects created by the carbonyl groups.  Interestingly, removal of large side 

groups and inserting a double bond into the ring has had an effect on the polymer 

regioregularity.  Resonances from all three types of linkages are present in the 
13

C NMR 

spectrum; however the intensity of the HT signal is significantly greater than the HH and 

TT signals.  If the acyl-oxygen bond cleavage occurs randomly at either side of the 

carbonyl, than the probability ratio of HH:HT:TT should be 1:2:1.  The integration of the 

three signals in Figure 4.4 was 1.0 : 4.3 : 0.9, which indicates that the acyl-oxygen bond 

cleavage occurs preferentially on one side of the carbonate carbonyl.   
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4.5.3  Thermal Characterization 

 

The thermal properties of the glucal based polycarbonates were evaluated by 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) under 

inert atmosphere (Figure 4.5).  A single endothermic peak was present in all three 

heating cycles of the DSC thermogram displayed in Figure 4.5, representing a glass 

transition (Tg) temperature at 65 °C.  The increased chain rigidity due to cyclic structure 

incorporated into the main chain makes the Tg significantly higher than common 

aliphatic polycarbonates.  However, the absence of side chains on C2 and C3 positions 

reduces the degree of interchain entanglement, and thus Tg is not as elevated as other 

homopolymers synthesized from sugar-based six-membered cyclic carbonates.  No 

information to indicate crystallinity was observed, though heating scans did not exceed 

150 °C in temperature due to concerns of thermal degradation.  These polymers exhibit 

amorphous properties, like previously synthesized PDGCs, however further studies by 

X-ray diffraction (XRD) would need to be completed to confirm these observations. 

Thermal degradation initiated at relatively low temperatures (200-310 °C for 

initial to complete mass loss; (Figure 4.5).  The addition of the carbon-carbon double 

bond to the glycosidic ring has made the polymer more thermally sensitive, when 

compared to previously synthesized PDGCs.
104

  The double bond could make the repeat 

unit prone to elimination and loss of carbon dioxide, which in terms of the percent loss 

of mass (20%) correlates to the contribution of carbon dioxide to the repeat unit.   
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Figure 4.5. Thermal analysis by DSC (top) and mass loss as a function of temperature 

(bottom) of PDGC-ene polymer 4. 
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4.6  Conclusions 

 

In summary, we have demonstrated the synthesis of a glucal-based cyclic 

carbonate monomer and its controlled ROP via the organobase DBU and organic 

cocatalyst TU to afford a polycarbonate having regioregular properties, well-defined end 

groups and narrow molecular weight distributions.  Design of highly-strained monomers 

led to rapid reactions that could polymerize in dilute conditions with low catalyst 

loading.  These synthetic methodology developments expanded the use of glucose as a 

monomer feedstock to create polycarbonate-engineering materials with complex 

functionalities.  Furthermore, thermal analysis revealed that this glucal-based 

polycarbonate exhibits an amorphous character and comparably high Tg than common 

aliphatic polycarbonates, making it attractive for a broad range of potential applications.  

In particular, such materials may impact numerous fields ranging from hydrolytically or 

thermally degradable materials to tissue engineering and nanotherapeutic delivery 

vehicles.  Moreover, the synthetic design allows for simple modification to incorporate 

into the monomer a wide range of functionality that allow for the creation of large family 

of polycarbonates with varying properties.  This new architecture constitutes a step 

towards the next generation of biomaterials, designed from renewable resources with 

improved properties, biocompatibility, and degradation characteristics.   
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CHAPTER V 

TUNABLE, MULTIFUNCTIONAL, POLY(THIOETHER-CO-CARBONATE) SHAPE 

MEMORY BIOMATERIALS PREPARED FROM THE NATURAL PRODUCT, 

QUINIC ACID 

 

5.1  Original Publication Information* 

 

 This chapter contains excerpts from the article Photo-cross-linked 

Poly(thioether-co-carbonate) Networks Derived from the Natural Product Quinic Acid.

  

Contents concerning with the synthesis and mechanical testing by DMA found in the 

article and supporting information, which was originally a separate document, have been 

included in the chapter, and schemes and figures have been renumbered to the style of 

this document.  Submersion DMA testing, tensile testing, and comparisons to TATATO-

based thioether thermosets were excluded.  Additional shape memory testing by DMA of 

select samples, not found in the article, is also included in this chapter. 

 

 

 

                                                 


*Reprinted with permission from “Photo-crosslinked Poly(thioether-co-carbonate) Networks 

Derived from the Natural Product Quinic Acid” by Lauren A. Link, Alexander T. Lonnecker, 

Keith Hearon, Jeffery E. Raymond, Duncan J Maitland, and Karen L. Wooley, 2014, ACS Appl. 

Mater. Interfaces, 6(20), 17370-17375, DOI: 10.1021/am506087e, Copyright 2014 by The 

American Chemical Society.  
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5.2  Overview 

 

Polycarbonate networks derived from the natural product, quinic acid, that can 

potentially return to their natural building blocks upon hydrolytic degradation are 

described herein.  Solvent-free thiol–ene chemistry was utilized in the copolymerization 

of tris(alloc)quinic acid (TAQA), diallyl carbonate (DAC), and a variety of 

multifunctional thiol monomers to obtain poly(thioether-co-carbonate) networks with a 

wide range of achievable thermomechanical properties including glass transition 

temperatures from −18 to +65 °C, storage moduli from 357 to 1440 MPa at 25 °C, and 

rubbery moduli from 3.8 to 20 MPa at 100 °C.  Control force cyclic testing by DMA 

showed excellent shape memory behavior for 1,2-EDT-co-TAQA and 1,2-EDT-co-

TAQA-co-DAC materials.  High percent recoverable strains were obtained, reaching 

100% recovery during fourth and fifth cycles. 

 

5.3  Introduction 

 

Polymers derived from natural resources have attracted increased attention not 

only for their ability to form renewable commodity plastics, which decrease dependence 

on petroleum processes, but also for their ability to form biocompatible materials with 

resorbable degradation products.
153

  An important application of degradable polymers is 

biomedicine, where incorporation of biocompatibility and biodegradability is paramount. 

Recently the Wooley lab has expressed interest in developing degradable polycarbonates 
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from renewable resources, such as quinic acid,
133

 glucose,
104,105

 and ferulic acid.
141

  

Quinic acid, a naturally occurring compound found in coffee beans and other plants that 

is known for its growth-promoting properties, was previously investigated as a feedstock 

for unique degradable polycarbonates.  It was originally selected as a starting material 

because of easy access to a bicyclic diol-monomer by known lactonization and selective 

silylation, which could lead to materials possessing high-temperature thermal transitions.  

Polymers with modest high molecular weights (Mn = 7.5-7.7 kDa) were produced with 

copolymerization with diphosgene in pyridine.  As a result of the bicyclic structure of 

the monomer, these polymers exhibited thermal properties similar to other highly rigid 

polymers, with glass transition temperatures over 200 °C.  However, difficulties arose 

during initial attempts of mechanical testing.  With such high glass transition 

temperatures and low molecular weights (<7 kDa), the resulting films were brittle and 

not strong enough to form films that could undergo mechanical characterization by 

DMA or tensile testing.  One possible solution to this problem would be to cross link the 

polymers to afford more robust films.  With this in mind, a synthetic scheme was 

proposed to modify the existing monomer to form fully crosslinked materials. 

Reported herein, are the synthesis and characterization of amorphous 

polycarbonate thermosets derived from the natural product quinic acid.  Solvent-free 

thiol-ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid 

(TAQA) and a variety of multifunctional thiol monomers to obtain poly(thioether-co-

carbonate) three-dimensional networks with a wide range of thermomechanical 

properties.  In addition, diallyl carbonate (DAC) was also used as a potential 
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comonomer, to allow for additional thermomechanical tunability without changing 

chemical composition of the system.  

 

5.4  Experimental 

 

5.4.1  Materials 

 

Quinic acid, Amberlyst 15 ion-exchange resin, N,N,N’,N’- 

tetramethylethylenediamine, allyl chloroformate, diallyl carbonate, 2,2-dimethoxy-2-

phenylacetophenone (DMPA), 1,2-ethanedithiol, 2,3-butanedithiol, 1,6-hexanedithiol, 

trimethylolpropane tris(3- mercaptopropionate), and triallyl-1,3,5-triazine-2,4,6-trione 

were purchased from Sigma Aldrich.  Tetraethylene glycol bis(3-mercaptopropionate) 

was purchased from Wako Chemical.  These chemicals were used as received.   

 

5.4.2  Characterization 

 

 Monomer Synthesis and Characterization.  Quinic acid lactone and tris-alloc-

quinic acid monomer (TAQA) were characterized by 
1
H, 

13
C, COSY, and HSQC nuclear 

magnetic resonance (NMR) obtained on an Inova 500 MHz spectrometer using the 

solvent as an internal reference.  IR spectra were obtained on a Shimadzu IR Prestige 

attenuated total reflectance Fourier-Transform infrared spectrometer (ATR-FTIR).  
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Spectra were analyzed using IRsolution v. 1.40 software (Shimadzu Corp., Japan).  High 

resolution (HRMS) was conducted on an Applied Biosystems PE SCIEX QSTAR.   

Thermal Characterization.  Differential scanning calorimetric (DSC) studies 

were performed on a Mettler-Toledo DSC822
e 

(Mettler-Toledo., Columbus OH), with a 

heating rate of 10 °C/min.  The Tg was taken as the midpoint of the inflection tangent, 

upon the third heating scan. Thermogravimetric analysis was performed under argon 

atmosphere using a Mettler-Toledo model TGA/DSC 1 Star
e
 system, with a heating rate 

of 10 °C/min.  DSC and TGA measurements were analyzed using Mettler-Toledo Star 

software version 10.00c.   

Dynamic Mechanical Analysis.  DMA experiments were run in strain mode in 

tension to determine thermomechanical profiles for the thermoset poly(thioether-co-

carbonate) samples.  Rectangular DMA specimens (4 mm x 25 mm x 0.4 mm) were 

machined using a Gravograph LS100 40 W CO2 laser machining device.  All laser 

machined samples were sanded around the edges using 400, then 600 grit sandpaper.  

DMA was performed using a TA Instruments Q800 Dynamic Mechanical Analyzer in 

the DMA Multifrequency/Strain mode in tension using a deformation of 0.1% strain, a 

frequency of 1 Hz, a force track of 150%, and a preload force of 0.01 N.  Each 

experiment was run from -20 to 180°C using a heating rate of 2°C/min.   

Shape Memory Characterization.  Rectangular DMA specimens (4 mm x 25 

mm x 0.4 mm) were machined using a Gravograph LS100 40 W CO2 laser machining 

device.  All laser machined samples were sanded around the edges using 400, then 600 

grit sandpaper.  In the DMA strain rate mode in tension, the rectangular samples were 
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heated to Tg + 10 °C or Tg + 15 °C, allowed to equilibrate for 30 min, and then strained 

to deformation of 20% and 25%.  The strained samples were then cooled to 0 °C and 

allowed to equilibrate for an additional 30 min.  During free strain recovery experiments, 

which were used to measure the recovery stress of the materials, the drive force of the 

DMA instrument was set to zero after equilibration at 0 °C, after which 20% or 25% 

prestrained  samples were reheated to 100 °C at 2 °C/min as recoverable strain was 

measured, and upon reaching 100 °C, the samples were cooled back to T = Tg +10 °C or 

T = Tg + 15 °C, and four more free strain recovery cycles were subsequently carried out 

to afford a five-cycle experiment.  Percent recoverable deformation was recorded using 

TA instruments QSeries software. 

 

5.4.3  Synthesis 

 

Quinic acid lactone (1). A mixture of D-(–)-quinic acid (9) (50.0 g, 260.2 

mmol), Amberlyst® 15 ion-exchange resin (7 g, 35 mmol), benzene (500 mL) and DMF 

(125 mL) was refluxed under a Dean-Stark trap for 16 h. The reaction mixture was 

cooled to 23 °C and filtered over a pad of Celite.  The filtrate was then evaporated under 

reduced pressure to afford a clear thick oil, which was diluted with CH2Cl2 (150 mL).  

Hexanes (250 mL) was added and the resulting mixture was allowed to sit at 23 °C for 2 

h.  The product was collected by vacuum filtration, and was further dried in vacuo to 

afford lactone in 96% yield.  Spectroscopic and MS data are in good accord with 

previously described synthesis.
154
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Tris-alloc-quinic acid (TAQA). QA lactone (4.081 g, 23.43 mmol) was added 

to a flame-dried 250-mL schlenk flask nitrogen, DCM (30 mL) was added and the 

solution was cooled to -5 °C.  TMEDA (14.5 mL, 96.8 mmol) was added and allowed to 

stir at -5 °C for 20 min.  To an addition funnel equipped with a pressure equalizing side 

arm, allyl choroformate (17.8 mL, 168 mmol) was added and diluted with DCM (10 

mL).  Dropwise addition (ca. 1 drop/5 s) of the allyl chloroformate and DCM mixture to 

the flask proceeded for about 4 h.  The reaction was maintained between -5 °C and -10 

°C, stirring rapidly for 2 h after the addition was complete.  The reaction was allowed to 

warm to room temperature and stirred overnight.  The thick white solid that remained 

was dissolved in DCM and filtered.  The filtrate was washed twice with deionized water, 

once with a 10 wt% CuSO4 solution, dried with MgSO4, filtered and concentrated.  The 

crude product was purified by column chromatography (SiO2,  hexane-ethyl acetate, 3:2) 

to afford 7.406 g of tris(alloc) quinic acid (74%).  

Tris-alloc-quinic acid (TAQA).  Tm = -21 °C. 
1
H NMR (CDCl3, 300 MHz): δ 

5.97-5.88 (m, 3H, H10), 5.41 (t, 1H, J = 5.1, 4.6 Hz, H4) 5.41-5.27 (m, 6H, H11), 5.04 

(ddd, 1H, J = 11.7, 6.9, 4.5 Hz, H5), 4.96-4.94 (dd, 1H, J = 6.0, 4.9 Hz, H3), 4.65-4.62 

(m, 6H, H9) 3.22-3.18 (ddd, 1H, J = 11.6, 6.1, 2.8 Hz, H2), 2.57-2.55 (d, 1H, J = 11.4 

Hz, H2), 2.46-2.41 (ddd, 1H, J = 12.1, 6.9, 2.8, H6), 2.35 (t, 1H, J = 11.9, H6); 
13

C 

NMR (CDCl3, 125 MHz): δ 170.6 (C7-lactone), 153.8 (C8-carbonate), 153.3 (C8’-

carbonate), 152.3 (C8”-carbonate), 131.2 (C10-alkene), 131.0 (C10’-alkene), 130.8 

(C10”-alkene), 119.9 (C11-alkene), 119.8 (C11’-alkene), 119.46 (C11”-alkene), 77.5 

(C1), 73.4 (C3), 69.6 (C9), 69.5 (C9’), 69.4 (C5), 69.3 (C9”), 67.9 (C4), 33.5 (C2), 33.4 



 

142 

 

(C6);  FTIR-ATR (neat, cm
-1

): 2985, 2956, 1809 (C=O), 1747 (C=O), 1651, 1448, 1425, 

1417, 1367, 1274, 1228, 1211, 1161, 1145, 1103, 1083, 1039, 989, 937, 781, 750; 

HRMS (+ESI) m/z calc’d for C19H22O11 [M+K]+ : 465.08, found 465.0794. 

 

General Procedure for Thermoset Film Fabrication.  Mixtures of 

multifunctional thiol and TAQA and/or DAC were prepared in ratios to afford equal 

stoichiometric amounts of thiol functional groups to double bonds.  The amount of 

photoinitiator, 2,2-dimethoxy-2-phenylacetophenone (DMPA), was massed to 1 wt% of 

each mixture.  DMPA was first dissolved in the multifunctional thiol and then TAQA 

was added and blended thoroughly.  Neat films were cast by injecting the solutions 

between two glass slides separated by a 0.5 mm slide-cover spacer, and exposed to UV 

light (365 nm) for 15 min.  A release agent, PDMS, was used in the mold casting of 

films, to prevent adherence to the glass slides.  After exposure to UV light, the glass 

molds were removed and the freestanding films were post-cured at 100 °C, at ambient 

pressure for 120 min, or as otherwise noted.  Films produced with DAC were made in 

the same fashion with the exception of the addition of DAC to TAQA before mixing 

with the multifunctional thiol.  
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5.5  Results and Discussion 

 

5.5.1  Monomer Synthesis 

 

Scheme 5.1.  Efficient two-step synthesis of TAQA monomer from ᴅ-(-)-quinic acid. 

 

To introduce mechanical robustness into quinic acid materials, a tri-ene-

functionalized quinic acid-based monomer was synthesized in two steps (Scheme 5.1).  

The first step in the monomer synthesis was a well-established lactonization of quinic 

acid under acidic conditions.
154

  Quinic acid and acidic Amberlyst resin were suspended 

in benzene and N,N’-dimethylformamide and heated to reflux with azeotropic removal 

of water to afford the bicyclic triol quinic acid lactone in 96% yield.  To install the three 

allyloxycarbonyl (alloc) protecting groups, which would ultimately serve as reactive 

centers during thiol-ene polymerization, allyl chloroformate was added dropwise to 

quinic acid lactone suspended in N,N,N’N’-tetramethylethylenediamine and 

dichloromethane to give 74% yield of TAQA as a clear, viscous oil.  The structure of 

TAQA was confirmed by FTIR and electrospray ionization mass spectrometry, as well 

as 
1
H, 

13
C, COSY, and HSQC NMR spectroscopies.   
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Scheme 5.2.  General scheme for photo-crosslinking of poly(thioether-co-carbonate) 

networks and example of resulting cured thermoset (above).  Structures and 

abbreviations of alkene and thiol monomers found below. 

. 
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5.5.2  Polymerization by Solvent Free, UV-catalyzed Thiol-Ene Reaction and Post-Cure 

Optimization 

 

Three-dimensional networks were formed by photo-catalyzed thiol-ene reaction of 

TAQA with a series of polythiols.  Solvent-free crosslinking copolymerization by thiol-

ene radical addition in the presence of 1 wt % 2,2-dimethoxy-2-phenylacetophenone 

(DMPA) photoinitiator was performed by mixing TAQA and multifunctional thiols 

based on equal molar functional groups, until a homogenous solution was achieved, 

mold casted, and exposed to UV light (λ = 365 nm) for five minutes to produce films 

with uniform thickness (0.4 mm).  To ensure complete thiol-ene reaction between 

comonomers, the films were subjected to an additional post-curing phase at 120 °C.  A 

series of films were produced to study the effect of varying post-cure times and to 

determine the minimum time needed to ensure complete cross-linking.  Four different 

films were made with TAQA and 1,2-EDT, which were subjected to post-cure for 0 min, 

120 min, 6 h, and 24 h (Figure 5.1).  Analysis by dynamic mechanical analysis (DMA) 

revealed that at least 120 min was needed to ensure complete cross-linking; glass 

transitions, as approximated by the tan delta peaks and storage moduli, shifted from ca. 

45 °C to 65 °C.  In addition, the tan δ went from a broad peak to a sharp monomodal 

peak, evidence of a formation of a more uniform network.  Minimal variation between 

the glass transition region of the storage modulus and tan δ peak occurred beyond 120 

min of post-cure.  In addition, samples were characterized by FTIR to verify 

consumption of alkene (1650 cm
-1

) and thiol (2750 cm
-1

) groups upon network 
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formation.  As a result, all film formulations were subjected to at least 120 min of post-

cure at 120 °C. 

 

 

(a) 

(b) 

 

Figure 5.1.  Effect of post-cure time at 120°C on storage modulus (a) and tangent delta 

(b) of TAQA-co-1,2-EDT thermosets.  
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Table 5.1.  Thermal transitions and moduli exhibited by poly(thioether-co-carbonate) 

networks derived from quinic acid monomer, TAQA. 

 

Sample Thiol Ene 
Tg 

(°C)
a
 

Tan δ 

(°C)
b
 

Td
5
 

(°C)
c
 

E’ 

(MPa)
d
 

Er 

(MPa)
e
 

1 TEGBMP TAQA -18 36 264 357 7.3 

2 TMPTMP TAQA 43 55 275 1290 14 

3 1,6-HDT TAQA 48 59 261 1110 12 

4 2,3-EDT TAQA 51 64 261 1440 3.1 

5 1,2-EDT TAQA 65 63 262 1400 10 

6 1,2-EDT 
TAQA (0.75) 

DAC (0.25) 
- 62 - 1400 10 

7 1,2-EDT 
TAQA (0.71) 

DAC (0.29) 
- 53 - 1200 10 

8 1,2-EDT 
TAQA (0.50) 

DAC (0.50) 
- 38 - 1200 10 

9 1,2-EDT 
TAQA (0.25) 

DAC (0.75) 
- -15 - - 4.0 

a
Determined by DSC.  

b
Tan δ measured by DMA.  

c
Onset of thermal decomposition determined by 

thermogravimetric analysis.  
d
Storage modulus at 25 °C determined by DMA.  

e
Rubbery modulus 

determined by DMA at 100 °C. 

 

 

 

5.5.3  Study of Thermomechanical behavior by DMA 

 

A variety of multifunctional thiols was investigated including, 1,2-ethanedithiol 

(1,2-EDT), 2,3 butanedithiol (2,3-BDT), 1,5 hexanedithiol (1,6-HDT), 

trimethylolpropane tris(3-mercaptopropionate) (TMPTMP), and tetraethylene glycol bis-

(3-mercaptopropionate) (TEGBMP).  The DMA results in Table 5.1 show the relative 
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Figure 5.2.  Storage modulus measurements of TAQA films copolymerized with various 

multifunctional thiols by DMA as a function of temperature. 

 

 

thermomechanical behavior in tension of cured samples synthesized from TAQA and 

various thiol comonomers.  This behavior is consistent with amorphous, crosslinked 

polymers, which include a glassy modulus plateau at temperatures below the glass 

transition, a transition region in which the modulus decreases with increasing 

temperature, and a rubbery region in which the modulus remains relatively constant with 

increasing temperature.  The crosslinking density of a thermosetting polymer is 

proportional to its rubbery modulus plateau in accordance to an ideal rubber.  Materials 

incorporating TMPTMP had the highest crosslink density because of its increased thiol 

functionality compared to the other thermosets.  The relatively low cross link density of 

the 2,3-BDT-co-TAQA networks, when compared to the other materials, can be 

attributed to the ineffective cross linking due to the steric hindrance by the secondary 
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Figure 5.3.  Storage modulus measurements of 1,2-EDT-co-TAQA films with varying 

amounts of DAC by DMA as a function of temperature. 

 

 

thiols of 2,3-BDT.  The Tg values, as determined by DSC, are consistent with the onset 

of the glass transition in the storage modulus of each sample.  The 1,2-EDT-co-TAQA 

contained the greatest mass fraction of the rigid, bicylic TAQA monomer and the lowest 

mass fraction of aliphatic spacer atoms and, thus, exhibited the highest Tg value (65 °C).  

In contrast, the TEGBMP-co-TAQA system’s longer and more flexible glycol spacer 

resulted in an elastomeric material with a Tg well below room temperature (-18 °C). 

In addition to variation in thiol-functionality, manipulation of the ene-portion of 

the polymer system was explored by utilizing diallyl carbonate (DAC) as a third 

comonomer.  Diallyl carbonate was chosen as a potential comonomer in order to modify 

materials’ glass transition without changing the chemical makeup of the polymer system.  



 

150 

 

Films were formed in the same fashion as previously described, DAC, TAQA, 1,2-EDT, 

and DMPA were mixed thoroughly to form a homogenous solution, which was then 

casted between two glass slides, cured under UV light, and post-cured at 120 °C for 2 

hours.  DAC, along with TAQA was varied to maintain equal molar amounts of ene and 

thiol functional groups (Table 5.1, Entries 5-8).  The 1,2-EDT-co-TAQA sample 

contains the greatest mass amount of the rigid bicyclic monomer and thus, has the 

highest glass transition of the 1,2-EDT-containing samples.  It was hypothesized that the 

introduction of the flexible DAC comonomer would reduce the mass amount of the rigid 

TAQA monomer in the system and lower the amount of crosslinking, both of which 

would afford materials with lower Tgs.  Confirmed by DMA, an inverse correlation 

between DAC amount and Tg was found; as DAC content increased, the Tg of the films 

decreased.  The film with the highest amount of DAC (75% DAC, 25% TAQA), 

possessed the transition at the lowest temperature, with a tan δ peak at -15 °C.  

Interestingly, as DAC content was varied from 0% to 50%, in regards to alkene molar 

concentrations, the tan δ of the material was able to shifted from 65 °C to 38 °C without 

affecting the rubbery moduli, which was found to be 10 MPa at 100 °C for formulations 

with 0-50% DAC content.  However, materials with higher DAC content exhibited 

lower rubbery moduli (4.0 MPa at 100 °C) as seen in Figure 5.3. 
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5.5.4  Study of Shape-Memory Behavior by DMA 

 

Shape memory polymers (SMPs) are a class of stimuli-responsive materials that 

exhibit geometric transformations in response to subjection to external stimuli such as 

heating or light exposure, and a number of SMP-based biomedical implant devices are 

currently being proposed.
155

  Various applications may demand SMPs with tailorable 

actuation temperature, recoverable strain, recovery stress, modulus at physiological 

conditions and toughness, in addition to good biocompatibility.
156

  The moduli, 

toughness, and processability of many SMP systems has been shown to be highly 

dependent on the nature and extent of crosslinking in the SMPs.
157

  As demonstrated 

earlier, the thermomechanical behavior of TAQA-based thermosets are highly dependent 

on the chemical and physical nature of the thiol and alkene comonomers.  For a 

thermally actuated, one-way SMP, the polymer constituents that undergo thermal 

transitions upon heating or cooling across the SMP switching temperature Ttrans are 

referred to as “switching segments,” and crosslinks, whether covalent, physical, or other 

are referred to as “netpoints.”  Netpoints prevent switching segment chains from 

permanently sliding past one another during straining to a secondary geometry by 

effectively acting as anchors that enable shape recovery to occur.
158

  Covalently 

crosslinked SMP systems often exhibit advantages in mechanical behavior over those of 

physically crosslinked SMP systems, including better cyclic shape memory and greater 

percent recoverable strains.   
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(a)

(b) 

 

Figure 5.4.  Demonstration of the shape memory effect over five cycles of 20% applied 

strain for poly(thioether-co-carbonate) thermoset made from TAQA and 1,2-EDT.  

Greater than 99% recoverable strains were recovered during cycles 4 and 5. 

 

  

Select samples (1,2-EDT-co-TAQA and 1,2-EDT-co-TAQA-co-DAC) 

underwent control force cyclic testing by DMA in order to test their effectiveness as a 

shape memory material.  The shape memory characterization data provided in Figure 5.4 

demonstrates that the polymers synthesized from TAQA and 1,2-EDT exhibited good 

shape memory behavior.  In the warm drawing mode, the sample was heated to 75 °C 
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(Tg + 10 °C) and stretched (to 20% strain) and then cooled to 0 °C before suppressing the 

applied stress.  The free strain recovery data in Figure 5.4 show a five-cycle 

thermomechanical cycling of 20% prestrained TAQA-1,2-EDT sample in (a) strain-time 

and stress time and (b) strain-temperature planes.  As seen in Figure 5.7b, the recovery 

strain, εrec, was 85% for the first cycle, 95% for the second run and greater than 99% for 

cycles 3-5.  According to previous studies, covalent cross-linking is expected to result in 

good shape recovery and materials with uniform distribution of cross-linking is key to 

achieving fully recoverable strain capacity, which these thermosets possess.
159

  In 

addition to uniform distribution, identical chain segments between netpoints, as present 

in these materials, are important to developing predictable shape recovery.  Herein, we 

report similarly behaving materials with narrow transitions.  

As it is important to be able to control the temperature at which thermal transition exists, 

DAC was added in various amounts to reduce the amount of crosslinking and mass 

content of the rigid bicyclic comonomer, TAQA.  Addition of DAC afforded materials 

with lower Tgs without introducing new chemical functionalities.  To confirm that the 

introduction of DAC would lead facile Tg tuning without affecting shape-memory 

behavior, which is critical for thermally activated shape-memory systems, the film 

containing (0.75 TAQA: 0.25 DAC)-co-1,2-EDT (Table 5.1, Sample 6) was subjugated 

to thermomechanical cycling of 20% prestrained sample in (a) strain-time and stress 

time and (b) strain-temperature planes.  As seen in Figure 5.8b, the recovery strain, εrec, 

was 90% for the first cycle, greater than 99% for cycles 4-5.  The homogeneous nature 

of the thiol-ene free radical addition polymerization mechanism resulted in thermoset  
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  (a) 

  (b) 

 

Figure 5.5.  Demonstration of the shape memory effect over five cycles of 20% 

applied strain for poly(thioether-co-carbonate) thermoset synthesized from TAQA 

and DAC (0.75: 0.25 ratio, respectively) and 1,2-EDT.  Greater than 99% 

recoverable strains were recovered during cycles 4 and 5.   

 

 

 

networks with sharp glass transition regions, which were tailorable over the range of 35-

80°C.  The shape memory effect is thus demonstrated to present this novel 

polycarbonate thermoset system as a platform material system for multi-functional 

advanced materials applications. 
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5.6  Conclusions 

 

We presented a series of photo-crosslinked polymer networks derived from the 

natural product, quinic acid, with controlled Tg values from -18 to 63 °C and rubbery 

modulus values ranging from 3.8 to 14 MPa by variation in multifunctional thiol 

comonomers.  The network containing the highest weight percent of the rigid bicyclic 

monomer exhibited the highest Tg of 63 °C and a storage modulus of 1.4 GPa, properties 

comparable to those of common degradable polyesters currently used in orthopedic 

applications.  Additionally, by varying the ene-component of the network with the 

introduction of diallyl carbonate, the Tg values of networks of 1,2-EDT-co-TAQA-co-

DAC, fell within a continuum, from 63 to -15 °C without changing the chemical 

composition of the resulting materials.  Interestingly, films with ≥50% TAQA, in terms 

of ene molar functionality, exhibited decreasing Tgs with increasing DAC content, 

without a decrease in rubbery moduli.  Early studies revealed that these materials exhibit 

shape-memory properties and show promise as thermal responsive actuating materials.  

The homogenous nature of the highly crosslinked network led to materials with sharp Tg 

regions and fast actuation speeds.  Control force cyclic testing by DMA showed high 

percent recoverable strains, reaching 100% recovery during fourth and fifth cycles for 

1,2-EDT-co-TAQA and 1,2-EDT-co-TAQA-co-DAC materials.  This system of alloc-

protection and synthesis of poly(thioether-co-carbonate) represents a viable way to 

produce materials with a wide-range of achievable properties from non-petroleum based 

products.  In fact, this method has already been applied to the production of elastic 
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materials produced from isosorbide, a bicyclic diol produced from the dehydration of 

glucose.  These compounds represent an expansion of this polymerization system, 

allowing for the production of additional elastic materials with further tuning of existing 

quinic acid-based networks via copolymerization.   
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CHAPTER VI 

CONCLUSIONS 

 

This body of work has expanded on the field of polycarbonates synthesized from 

carbohydrates and other naturally occurring polyhydroxyl products.  Linear 

polycarbonates incorporating glucose into the main chain were synthesized by AA’/BB 

polymerizations of phosgene, diphosgene or triphosgene with one of four different 

regioisomeric diols.  Monomers were synthesized by selective protection of ᴅ-glucose, 

affording 2,3,6-tri-O-benzyl-α-ᴅ-glucopyranoside (1,4 diol), 2,3,4-tri-O-benzyl-α-ᴅ-

glucopyranoside (1,6 diol), methyl 3,4-di-O-benzyl-α-ᴅ-glucopyranoside (2,6 diol), and 

methyl 2,4-di-O-benzyl-α-ᴅ-glucopyranoside (3,6 diol).  Polymerization screening with 

the 1,4 monomer failed in the production of high molecular weight polymers (>10 kDa).  

Initial attempts at polymerization of the 1,4 monomer proved unsuccessful due to the 

reactivity of the anomeric hemiacetal group in pyridine.  It was later discovered, that 

monomers with hemiacetal functional groups (1,4 and 1,6 monomers) were significantly 

less reactive than the 2,6 and 3,6 diols (which possessed primary and secondary 

alcohols), producing polymers with lower molecular weights (≤10 kDa) when 

polymerized with triphosgene.  Reaction conditions involving stoichiometric amounts of 

triphosgene in DCM were conducive for producing large molecular weight polymers 

(≥30 kDa) with 2,6 and 3,6 monomers.   

Thermal analysis by DSC and TGA demonstrated that the thermal properties of 

resulting polycarbonates were dependent on the monomer composition.  Depending on 



 

158 

 

connectivity and molecular weight, polymers with varying Tg values were produced, 

ranging from 44 to 85 °C.  In addition, the thermal stability also was affected by the 

connectivity of each polymer.  Polymers with carbonate linkages connected to the 

anomeric center of the glycosidic ring were more thermally sensitive and possessed low 

onset decomposition temperatures.  We hypothesized that polymers made from 1,4 and 

1,6 monomers would be more sensitive to thermal and hydrolytic degradation as the 

acetal linkage at the anomeric position would accelerate the decomposition of the 

backbone, however, the mass loss and tandem TGA-MS data did not fully support our 

proposals.  Additional observed MS signals indicated a more complicated degradation 

mechanism, in which the carbonate group interacts with the benzyl protecting groups, 

leading to loss of carbon dioxide and benzaldehyde compounds. 

Using lessons learned from the first family of glucose-diol monomers, changes in 

the synthetic design were made to give AA’A’A monomers bearing to primary alcohols 

with the expectations that the more nucleophilic and less hindered hydroxyl groups 

would lead to higher molecular weight polymers.  As predicted, bis-adduct monomers 

with led to higher molecular weight polymers, exceeding 100 kDa in one case, with high 

Tg values and high thermal stability.  As a result of this step-wise monomer synthesis, 

polymers with only head-to-head and tail-to-tail connections were produced.  Direct 

comparison could be made with previous generation of polymers shedding more light on 

their regiorandom connectivites.  The stepwise synthesis not only allowed for the 

synthesis of larger molecular weight polymers but also gives us greater flexibility in 

their design.  Different linkages or monomers can be incorporated into the main chain to 
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alter the chemical composition and chain length, allowing for a great deal of control over 

the final properties of the resulting material.   

Our initial goal was to form glucose-based polycarbonates with the glucose ring 

incorporated into the main chain in order to mimic the structure of cellulose, leading to 

strong renewable materials.  Ideally we could produce robust polymers that have the 

similar degrees of intermolecular hydrogen bonding and crystallinity as cellulose, while 

introducing the ability for hydrolytic degradation by the replacing β1→4 glycosidic 

linkages with carbonate groups.  To this point, we have been successful in formation 

protected polymers.  Further studies would need to be performed to assess the utility of 

the polymer in hard tissue biomedical applications and other engineering materials.  

Removal of benzyl protecting groups through hydrogenolysis is currently being 

performed.  It will be interesting to see how the increased degree in intermolecular 

hydrogen bonding will affect the mechanical properties of the polymers or amplify any 

morphological differences between polymers with different stereo- or regiochemistries. 

We have demonstrated the synthesis of a glucal-based cyclic carbonate monomer 

and it’s controlled ROP via the organobase DBU and organic cocatalyst TU to afford 

polymers with well-defined end groups and narrow molecular weight distributions.  

Analysis by 
13

C NMR revealed the formation of polycarbonates having regioregular 

properties, favoring the formation of head-to-tail polymers.  This finding was surprising, 

considering previously synthesized glucose analogues with sterically larger side groups 

polymerized in a random fashion.  Absence of 2,3-O-functionality and introduction of a 

double-bond in the glycosidic ring introduced ring strain to the six-membered cylic 
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carbonate, allowing for the monomer to polymerize at a much faster rate with much 

lower catalyst concentrations than other monomer systems.  Thermal analysis revealed 

that this glucal-based polycarbonate exhibited an amorphous character and comparably 

high Tg than common aliphatic polycarbonates, making it attractive for a broad range of 

potential applications.   

Design of highly-strained monomers led to rapid reactions that could polymerize 

in dilute conditions with low catalyst loading, expanding the use of glucose as a 

monomer feedstock to create polycarbonate materials with complex functionalities.  In 

order to understand the role of the double bond during the polymerization, further 

assessment of the ring strain of cyclic carbonate is needed.  Computational studies are 

currently being performed to better understand how the double bond affects the 

polymerization thermodynamics and ring-opening mechanism.  Furthermore, to truly 

assess the novelty of this monomer system as a platform for the synthesis of tunable 

materials, preparation of copolymers and post-polymerization functionalization should 

take place to assess the compatibility of this monomer with other monomer systems and 

the viability of the cyclic-ene group, or any other functional group added via Ferrier 

reaction, for polymer modification.   

In Chapter V, we presented a series of photo-crosslinked polymer networks 

derived from the natural product, quinic acid, with controlled Tg values from -18 to      

63 °C and rubbery modulus values from 3.8 to 14 MPa.  The network containing the 

highest weight percent of the rigid bicyclic monomer exhibited the highest Tg of 63 °C 

and a storage modulus of 1.4 GPa, properties comparable to those of common 
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degradable polyesters currently used in orthopedic applications.  By varying the ene-

component of the network, by introduction of diallyl carbonate, the Tg values of 

networks of 1,2-EDT-co-TAQA-co-DAC, were also able to varied, from 63 to -15°C, 

without significantly altering the rubbery modulus or changing the chemical composition 

of the resulting materials.  Early studies revealed that these materials exhibit shape-

memory properties and show promise as thermal responsive actuating materials.  The 

homogenous nature of the highly crosslinked network led to materials with sharp Tg 

regions and fast actuation speeds.  Control force cyclic testing by DMA showed 

excellent shape memory behavior for 1,2-EDT-co-TAQA and 1,2-EDT-co-TAQA-co-

DAC materials.  High percent recoverable strains were obtained, reaching 100% 

recovery during fourth and fifth cycles.  This system of alloc-protection and synthesis of 

poly(thioether-co-carbonate) represents a viable way to produce materials with a wide-

range of achievable properties from non-petroleum based products.  In fact, this method 

has already been applied to the production of elastic materials produced from isosorbide, 

a bicyclic diol produced from the dehydration of glucose.  These compounds represent 

an expansion of this polymerization system, allowing for the production of additional 

elastic materials with further tuning of existing quinic acid-based networks via 

copolymerization.   

These materials show promise as degradable biomedical materials, however little 

is known of their degradation dynamics.  Future investigations will need to focus on the 

degradation kinetics in vitro and in vivo of these materials, as well as on strategies for 

incorporating other chemistries and other functional components.  In addition, we need 
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to test the biodegradability and cytotoxicity of these polymer systems, which can be 

elucidated by cell viability studies.  Utilizing naturally occurring poly-hydroxyl 

compounds should benefit in the production of benign biomedical materials.  However, 

the thiol comonomers, the aliphatic thioether segments of the crosslinked material, or 

processing methods could cause undesirable cytotoxicity.  Copolymerization with 

alternate comonomers, synthesized from naturally occurring thiol-bearing compounds, 

such as cysteine, could not only help improve the biological compatibility of these 

materials, but also further expand the field of green materials.   

In all, this body of work will impact how next-generation renewable materials are 

synthesized, characterized and modified to generate a family of renewable degradable 

polycarbonates that are of interest for both fundamental studies and numerous applications.  

These novel polymeric structures are interesting materials that are not found in nature and 

provide new molecular architectures to be explored.    
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