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ABSTRACT

Exotic species can threaten biodiversity by introducing parasites to native hosts. 

Thus, it is critical to identify if the same parasite species is infecting both native and 

exotic hosts. Developmental or environmentally induced variation in morphology, 

however, may complicate identification. Geckos are one of the most successful invasive 

families of vertebrates and are known to host lung parasites, pentastomids of the genus 

Raillietiella. Raillietiellids have a cosmopolitan distribution, which in part, may have 

been facilitated by the introductions of their hosts. Indeed, Raillietiella frenatus, a 

Southeast Asian parasite, has been reported in Texas (TX) from the exotic 

Mediterranean gecko, Hemidactylus turcicus. Here we report on the recent introduction 

(between 1998 and 2008) of a Raillietiella sp. into an established population of H. 

turcicus in Louisiana (LA). More critically, we found infections in native green anoles, a

new host record for pentastomes. Upon sequencing 604 bp of the pentastome’s 

cytochrome c oxidase gene, we observed identical sequences from parasites of anoles 

and geckos. In fact, there was no sequence variation between published sequences of R. 

frenatus from geckos and cane toads in Australia. Interestingly, we found that traditional

taxonomic analyses based on hook dimensions would have led to the false conclusion of 

two pentastome species within H. turcicus. But, as in Kelehear et al. (2011), when 

pentastome body size is accounted for the distinction between the two groups disappears.

These results along with prior moulting studies on R. frenatus suggest hook size varies 

ontogenetically. Nonetheless, even after accounting for pentastome body size, hook 
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dimensions differ significantly between host species. This result suggests these traits 

may be plastic as a result of host environment, but quantitative genetic experiments will 

be needed to disentangle phenotypic plasticity from genetic variation.
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NOMENCLATURE

ANCA Anolis carolinensis

CO1 Cytochrome c oxidase subunit 1

HEFR Hemidactylus frenatus

HETU Hemidactylus turcicus

PCR Polymerase chain reaction

RHMA Rhinella marina

SVL Snout-vent-length
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INTRODUCTION

In the continental United States, approximately 42% of native species listed as 

endangered or threatened are as a result of direct or indirect consequence of invasive 

species (Pimentel 2011). Indeed, invasive species cost the United States, the British 

Isles, Australia, Europe, South Africa, India, and Brazil, combined, as much as $300 

billion per year in damages and control (Pimentel 2011). The effects of invasive species 

are often studied for their direct ecosystem impacts on nutrient cycling or habitat 

structure (Simberloff 2011). However, there could also be indirect impacts where the 

effects may be more subtle, but not necessarily inconsequential in driving changes in the 

native community (Simberloff 2011). One possible indirect effect can arise from co-

invasive parasites, which are cases where an exotic host brings an exotic parasite and the

parasite subsequently infects native hosts (Lymbery et al. 2014). This invasion dynamic 

is referred to as spillover (Kelly et al. 2009). The conservation concern in spillover is 

that an invasive parasite represents a novel infection that could reduce the fitness of 

native hosts and hence, negatively impact the native community.

A critical initial step in studying the potential impacts of parasites in species 

invasions is to determine if there is a shared parasite between native and alien hosts and 

if so, determine if the parasite is native or alien. This initial step in itself requires correct 

identification of the parasite. Unfortunately, determining whether a parasite is native or 

introduced can be problematic and thus, lead to cryptogenic status, i.e., alien or native 

status cannot be ascertained (Carlton 1996). Anthropogenic transport of species prior to 
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taxonomic surveys was recognized early as one factor leading to cryptogenic status 

(Carlton 1996). With many parasite species, an additional issue leading to cryptogenic 

status is taxonomic ambiguity (Lymbery et al. 2014), which may result from a scarcity 

of morphological traits, investigator induced phenotypic variation during parasite 

fixation, extensive underlying genetic variation of phenotypes, or environmental-induced

(especially host-induced) phenotypic variation (Criscione and Font 2001; Perkins et al. 

2011). Clarifying cryptogenic species as alien or native is important for understanding 

several aspects of biological invasions such as knowledge of invasion corridors, 

susceptibilities of communities to invasions, and frequencies of introductions and 

successful invasions (Carlton 1996). Moreover, establishing if a parasite is native or 

exotic is important for differentiating between spillover and spillback effects. The latter 

refers to when an exotic host acquires a native parasite and subsequently amplifies the 

parasite population in native hosts (Kelly et al. 2009). Both spillover and spillback may 

manifest as an apparent competition dynamic between a native and alien host, but the 

underlying cause is different. Spillover results from the introduction of a novel enemy 

whereas spillback is the amplification of a preexisting enemy in the native host.

The subject of our study is a pentastome parasite that infects the lungs of the 

invasive Mediterranean gecko, Hemidactylus turcicus, in the southern U.S.A. Prior to 

our study there were reports of two species of pentastomes infecting H. turcicus in the 

continental U.S.A.: Raillietiella frenatus [sic] in Hidalgo, Texas (Pence and Selcer 1988)

and Raillietiella teagueselfi newly described in Houston, Texas (Riley et al. 1988). 

Recently, Kelehear et al. (2011) drew attention to ambiguities in interpreting key 
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taxonomic traits of raillietiellids. Specifically, Kelehear et al. (2011) demonstrated how 

anterior and posterior hook measurements were correlated with pentastome body size; an

indication that hook size covaries with development. They also found that hook 

measures varied significantly with pentastome sex and host species effects after 

controlling for body size. With confirmation from DNA sequence data, Kelehear et al. 

(2011) concluded that the same pentastome species infected two exotic host species, 

Hemidactylus frenatus (Asian house gecko) and Rhinella marina (cane toad), and the 

native tree frog Litoria caerulea in Australia (Kelehear et al. 2011). They concluded the 

raillietiellid species infecting these three hosts was R. frenatus [sic] (correct spelling 

should be R. frenata, discussed in Poore (2012)). However, Poore (2012) lists R. frenata 

as a junior synonym to R. indica. Therefore, we refer to the pentastome as R. indica 

henceforth.

Here, we report that R. indica (confirmed with sequence data) infects both the 

invasive Mediterranean gecko and the native green anole, Anolis carolinensis, in the 

southern U.S.A. As our study system was distinct (both in terms of location and host 

species) from that of Kelehear et al. (2011), we took this as an opportunity to provide an 

independent assessment, though differing in 2 key aspects of the analysis, as to whether 

key pentatstome taxonomic traits differed according to various host and parasite 

characteristics. First, we tested if the key morphometric hook measurements were 

themselves highly correlated and thus, would essentially represent a single trait. Second, 

using traditional raillietiellid morphometric analyses along with prior life cycle work 

(Ali and Riley 1983), we a priori designated individual pentastomes to distinct instar 
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stages. Taking these aspects (instar stage and correlated hook variables) into account, we

were able to directly test the role of, and subsequently control for development, as 

proposed by the results of Kelehear et al. (2011), on a composite hook measurement. In 

addition, a large sample size of pentastomes from H. turcicus enabled us to test if new 

factors such as host body size, host sex, and parasite density-dependence influenced 

hook morphology. Lastly, we combined data from our study and Kelehear et al. (2011) 

to test for broader host species effects on pentastome morphology.
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METHODS

Sampling

Geckos were captured by hand from locations in Metairie, LA; Ingleside, TX; 

and Port Aransas, TX at various times from 2011 through 2013. Anoles were captured 

from a location in Metairie, LA in 2012. Details on the sampling locations are given in 

Caballero et al. (2015) and Criscione and Font (2001). Data recorded from lizard hosts 

included weight, total length, snout-vent-length (SVL), and sex. The research protocols 

i.e., capture, handling, and sacrifice (decapitation followed by pithing) prior to dissection

in this study were approved by the Institutional Animal Care and Use Committee at 

Texas A&M University (AUP: 2009-23; 2012–023). Live pentastomes were recovered 

from the lungs and placed in 0.7% saline solution and then placed at 4 C for a few 

minutes to relax them. Next, 90 C water was poured on the pentastomes to heat-kill and 

fix. Pentastomes were then stored in 70% ethanol at 4 C.

DNA Extraction and Amplification

We sequenced 24 individuals: 16 from H. turcicus (8 from Metairie, LA; 4 from 

Port Aransas, TX; and 4 from Ingleside, TX) and 8 from A. carolinensis from Metairie, 

LA. For DNA extractions, a 1 mm3 piece of tissue from an individual worm was placed 

into 200 µL of 5% chelex containing 0.2 mg/mL of proteinase K. Samples were 

incubated at 56 C for 2 hours then boiled at 100 C for 8 minutes. As in Kelehear et al. 

(2011), we amplified the cytochrome c oxidase subunit 1 (CO1) of the mitochondria 

5



with the primer pair LCO1490 (5’-ggtcaacaaatcataaagatattgg-3’)/HCO2189 (5’-

taaacttcagggtgaccaaaaaatca-3’) (Folmer et al. 1994). PCR amplification was performed 

with a hot start of 95 C for 3 minutes, followed by 36 cycles of 94 C for 45 s, 55 C for 

30 s, and 72 C for 45 s, followed by a final extension of 72 C for 7 minutes. PCR 

products were purified with the Ultra Clean PCR clean-up Kit (MO BIO Laboratories, 

Inc., Solana Beach, CA) and then sent to the DNA Analysis Facility on Science Hill at 

Yale University (New Haven, CT) for sequencing.

Morphological Measurements

Traditional pentastome identification relies on measurements of the two pairs of 

anterior and posterior hooks surrounding the buccal cavity on the anterior end of the 

worm (e.g., see Figure 4 of Riley (1986)). Anterior and posterior hook measures, body 

length, shape and size of the male copulatory spicules, and number of annuli have been 

used as the primary morphological traits for species identification among raillietiellid 

pentastomes. However, Riley (1986) states “annulus counts are sometimes too close and 

overlapping to be of diagnostic value” especially among raillietiellid pentastomes (see 

Kelehear et al. (2011) for similar difficulties in using annuli counts). Therefore, we did 

not consider annuli counts in our study.

All measurements were based on microscopy photographs of whole specimens or

morphological traits. The pictures were analyzed with the segmented-line and straight 

line tools in ImageJ software (Schneider et al. 2012) where photos of a micrometer scale 

taken at corresponding magnifications were used to calibrate pixels/mm per each 
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magnification setting. Full body length measurements were done by taking pictures of 

the worms under a dissection microscope set to the highest magnification that allowed 

the entire worm to be visible. To take close-up photos, the anterior end of pentastomes 

was removed and soaked in a lactophenol solution for 10 minutes to clear the tissue 

before the sample was mounted on a slide with glycerol under a cover slip. Body length 

measurements were taken with the segmented-line tool by using enough points to keep 

the line in the middle of the worm. Anterior and posterior hook measurements followed 

that of Ali et al. (1981) (see their figure 5). Briefly, hook length measurements are split 

into two separate, straight-line measurements: blade length (AB) and shank length (BC). 

AB measurements are taken by dragging the straight line tool from the tip of the hook’s 

barb (point A) to the small projection formed where the hollow back closes (point B). 

BC measurements were taken by dragging the straight line tool from point B to the 

bottom of the hook’s flared base (point C). Kelehear et al. (2011) introduced the new 

measure of hook bluntness, which is measured by taking the area at the tip of the hook. 

The area is estimated by outlining the edges of the hook tip from point A up to 20µm 

along the hook shaft. In males, copulatory spicule length measures were taken by placing

line points in the middle of the spicule from the base to the tip of the hook and width was

taken at the widest part of the base. As the traits above are all paired (e.g., left and right 

anterior hook), we used the average measurement for all pairs of anterior hooks, 

posterior hooks, and spicules.

We make special note that in these pentastomes the anterior hooks are smaller 

and sharper than the posterior hooks and as such we found these were much more 
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difficult to measure accurately, especially from a single focal plane photograph. Hence, 

we a priori expect anterior measures to contain more error. Accordingly, we had more 

missing data for the anterior hook measures due to difficulty in orienting the smaller 

hooks on the slides. These issues are compounded in males because males are smaller, 

and hence have smaller structures, than females.

Analyses

Data in Kelehear et al. (2011) from Rhinella marina (cane toad) and 

Hemidactylus frenatus (Asian house gecko) host species were incorporated where 

possible in order to look for more global patterns and draw more robust and generalized 

conclusions. For simplicity, we abbreviate the host names in the presentations of the 

statistical analyses: HETU, H. turcicus; ANCA, A. carolinensis; RHMA, R. marina; and 

HEFR, H. frenatus. Also, in the tests below, we analyzed male and female 

morphometrics separately, as sexual dimorphism in these organisms has been pointed 

out by previous studies (Ali and Riley 1983; Kelehear et al. 2011).

Trait relationships: Prior studies have treated the different hook measures as 

independent traits, so our first objective was to test for possible relationships among the 

6 hook measurements used in our study (AB and BC of anterior and posterior hooks and 

the anterior and posterior hook bluntness areas). With both the female and male data 

sets, we conducted a Principle Components Analysis (PCA) to examine for the latent 

relationships among the hook measures. PCA was conducted with the psych package 

v1.7.2 in R v3.3.3 and (Revelle 2017; R Core Team 2017) using Varimax rotation. 
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Factor loadings of >|0.5| were considered significant considering our sample sizes (Hair 

et al. 1998). The female PCA data set consisted of n = 196 total pentastomes (n = 152 

from 34 HETU, n = 23 from 4 ANCA, n = 15 from 5 RHMA, and n = 6 from 4 HEFR). 

The male PCA data set consisted of n = 109 total pentastomes (n = 91 from 28 HETU, n 

= 3 from 2 ANCA, n = 7 from 5 RHMA, and n = 8 from 4 HEFR). A simple linear 

model was used to test for a correlation between spicule length and width in male 

worms. The data set for the latter was the same used in the PCA of hook measurements 

of male pentastomes.

Based on the results of the PCA, downstream analyses on hook measurements 

used a summated score of the AB and BC measures of the posterior hooks (justification 

given in Results). For simplicity, we refer to this summated score as ‘hook size’.

2D plot of posterior hook AB and BC: Historically, a 2D plot of female posterior 

BC by AB hook measurements were used to view clusters, which in turn were used to 

delimit species. However, Kelehear et al. (2011) showed that in these 2D plots, discrete 

clusters disappeared after accounting for body size. They concluded that the clusters 

were likely driven by pentastome development. The latter was an important finding 

because body size would need to be accounted for in downstream analyses of hook 

measurements. To examine the generality of Kelehear et al. (2011) results we repeated 

their analysis on our ANCA and HETU samples. A 2D plot was constructed with raw 

values and then repeated with residuals of body size regressions. 

At this point, we note that females of R. indica can be gravid in distinct instar 

developmental stages inside their final host (Ali and Riley 1983). Superimposing onto 
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our data and that of Kelehear et al. (2011) the instar specific hook measurements from 

Ali and Riley (1983) shows that the clusters in the 2D-plot of AB by BC posterior hook 

measurements correspond to the 7th, 8th, and 9th instar stages of R. indica (R. frenatus 

[sic]) (see Results). We mention this here because accounting for instar stage would 

provide a more explicit and discrete means of accounting for development (e.g., tests for 

stage-specific patterns) while also allowing us to account for body size as a separate 

variable. Thus, downstream analyses will categorize female individuals into instar stages

based on cluster cutoffs (see Results). Males are mature only in a single instar stage (Ali 

and Riley 1983) and thus, are not expected to form clusters based on the 2D plot when 

examining worms from a single host species. Indeed, this is what we observed (data not 

shown; see also Fig. 5 in Kelehear et al. 2011); hence, males were not subdivided into 

instar stages.

Testing factors that could influence morphology: We tested whether two host 

factors (SVL and host sex) and a context specific factor (i.e., parasite density-

dependence) were associated with morphological traits in order to ascertain the potential 

for environmental induced morphological variation. These tests were conducted 

separately for the 8th and 9th instar females, and males. Tests were conducted in the R 

packages lme4 v1.1.12 and lmerTest v2.0.36 (Bates et al. 2015; Kuznetsova et al. 2017) 

using linear mixed effect models. We first used pentastome body length as the dependent

variable. Host sex, total intensity, and SVL of the host were the main effects. The 

random effects were sampling location and individual host nested within location. All 2-

way interactions of main effects were tested; if non-significant, they were pooled.
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Next, we used hook size as the dependent variable and again conducted tests 

separately for 8th and 9th instar females and males. Main and random effects were as 

given above, but we also included pentastome body length as a covariable main effect. 

The inclusion of body length in these models was to simply control for any additional 

growth differences that may occur independently of instar stage; hence, we did not test 

for interactions with pentastome body length. In males, we also repeated the same 

analyses above, but used either spicule length or width as dependent variables.

The female 8th instar data set consisted of n = 59 total pentastomes from 24 

HETU, while the 9th instar dataset consisted of n = 110 total pentastomes from 22 

HETU. The male data set consisted of n = 105 total pentastomes from 30 HETU.

Testing host species as a factor: For the analyses testing for a host species effect 

on female traits, only 9th instar female worms were used (n = 110 from 22 HETU, n = 

21 from 4 ANCA, n = 4 from 3 HEFR, and n = 8 from 4 RHMA) as there were too few 

samples from some host species at the 8th instar category. We first tested for a host 

species effect on pentastome body size, where host species was the main effect and 

individual host ID was the random effect. To test for an effect on hook size, host species 

and pentastome body size were used as the main effects with host ID as the random 

effect. The same models as above were use in male worms, but with an additional test 

for an effect on spicule length (n = 105 from 30 HETU, n = 5 from 3 ANCA, n = 8 from 

4 HEFR, and n = 10 from 5 RHMA). We note that we could not incorporate the 

variables of host sex, SVL or total intensity in the above analyses because sample sizes 

were too small from some host species or the information itself was not available for 
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HEFR and RHMA from the study Kelehear et al. (2011). As we did not find any 

consistent effects for host sex, SVL or total intensity within HETU samples alone (see 

Results), we do not believe the analyses of host species effects are unduly affected by 

the exclusion of these variables.
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RESULTS

DNA and Sampling Data

Distributional data of pentastome infections at Ingleside and Port Aransas 

(combined) are given in Caballero et al. (2015). In short, in 2012 collections 36 out of 48

geckos were infected with a mean intensity of 10.14, and in 2013 collections 40 out of 

70 geckos were infected with mean intensity of 9.45. Of the 88 geckos sampled from 

Metairie, LA in 2012, 52 were infected with a mean intensity of 7.21, ranging from 1 to 

43 worms per host. Five of the 22 anoles sampled from Metairie, LA in 2012 were 

infected with a mean intensity of 6.6, ranging from 1 to 15 worms per host. We note that 

five of these anoles, one of which was infected, were actually collected from a house in 

River Ridge, LA, approximately 5.4 miles from the Metairie location.

The CO1 Genbank sequence (JF975594.1) of Kelehear et al. (2011) is 617 bases 

long. We note the last 13 bases on the 3’ end match the reverse primer and thus, should 

not be considered. All 24 samples, which included 8 from anoles from LA, 16 from 

geckos (8 from TX and 8 from LA) matched 100% across the 604 bases with 

JF975594.1. Along with the genetic data, the club-shaped base of the male spicules (an 

important taxonomic trait; Riley 1986) matched between worms from green anoles and 

Mediterranean gecko hosts (Fig. 1; n = 105 pentastomes from geckos, n = 5 pentastomes

from anoles examined) and importantly, to previous reports of R. indica (see Plate 2C in 

Ali and Riley 1983; Fig. 4 in Kelehear et al. 2011; Fig. 4, Barton and Riley 2004). Based

on the above evidence, we identified the pentastomes in our study as R. indica.
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Analyses

Trait relationships: The PCA results from both the female and male data sets 

show that 5 of the hook measurements load very highly and significantly onto a single 

factor and that area of the anterior hook tip loads by itself on a second factor (Table 1: A 

and B). Validation of the factors is evidenced by the congruence in the results of the two 

independent data sets (Hair et al. 1998). With the exception of anterior hook bluntness, 

these results indicate that the traditional hook measurements highly covary and as such, 

treating each as independent runs the risk of pseudoreplicating a single underlying trait. 

For this reason and the following reasons, we have chosen to focus our subsequent 

analyses on a summated score (i.e., average) of the AB and BC measures of the posterior

hooks (i.e., hook size). First, the AB and BC posterior hook measures have traditionally 

been used in 2D plots to delimit species (Ali and Riley 1983; Ali et al. 1981; Riley 1986)

and instar developmental stages (Ali and Riley 1983). Second, summated scales are an 

appropriate way to summarize correlated variables of the same trait, i.e., an aspect of 

hook size in these pentastomes, while also helping to reduce measurement error (Hair et 

al. 1998). Moreover, a summated score is comparable across studies whereas 

standardized factor scores are only comparable within data sets. Third, although the 

anterior hook bluntness could represent an independent trait, we also had the most 

difficulty in measuring this trait. Hence, its loading on a separate factor could also be an 

indicator of more measurement error in this variable. Indeed, as we noted in the 

methods, we had more missing data for anterior hooks in general. Fourth, the missing 

data is why we excluded the anterior hook AB and BC as we could include more 
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samples into our analyses. Lastly, although the posterior hook bluntness also loads 

highly onto the first factor (Table 1), we did not include it in the summated score as it is 

an area as opposed to linear measure. Simply put, a summated score of the posterior 

hook AB and BC measures should reflect overall hook size while reducing error.

Spicule length and width of males were correlated (F = 13.45, p = 0.00038, and 

r2 = 0.1034). However, because of the low r2, we analyzed spicule length and width 

separately.

2D plot of posterior hook AB and BC: Figure 2A shows the 2D plot of the female

posterior AB and BC measures wherein 3 clusters are readily observed when looking at 

the collective samples from HETU and ANCA. However, when allometrically correcting

for body length, as in Kelehear et al. (2011), distinction among the clusters disappears 

(Fig. 2B). This independent analysis is concordant with the result observed in Kelehear 

et al. (2011) and suggested that hook size is affected by development. Indeed, after 

superimposing data from the experimental infections of Ali and Riley (1983) onto our 

data and that of Kelehear et al. (2011), it was clearly evident that the clusters represented

three female instar stages: 7, 8, and 9 (Fig. 3). These clusters and the data of Ali and 

Riley (1983) enabled us to delimit female samples into distinct instar stages, which in 

turn provided a more explicit control variable for development in subsequent analyses. 

We demarcated instar stages using the posterior AB measurements as follows: 7th instar,

less than 138µm; 8th instar, inclusive measurements 138 µm through 233µm; 9th instar, 

measurements greater than 233µm (Fig. 1). We recognize these cutoffs are somewhat 

subjective when data from all host species are combined, but are relatively unambiguous
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when looking at worms from a single host species. When looking at samples from all 

host species, ambiguous cutoffs would be expected if indeed there were host species 

effects on these measures (we address host effects below).

Factors that could influence morphology: No interactions or main effects were 

found to be significant on body length of 8th instar (though host sex was marginally non-

significant, with pentastomes in females being larger than those in males; F1, 20.70 = 4.29, 

p = 0.051; Table 2A). No interactions were significant on body length of 9th instar 

female worms. Total pentastome intensity was found to be negatively related with body 

length of 9th instar worms (F1, 14.06 = 7.51, p = 0.02; Table 2B), a pattern consistent with 

density-dependence. For male body length, no interactions were significant, but there 

was a negative relationship (F1, 17.34 = 7.13, p = 0.02; Table 2C) with host SVL.

There were no interactions for hook size in the 8th or 9th instar stage of females. 

Also, hook size was not associated with the potential environmental variables of host 

sex, SVL, or parasite intensities in the 8th or 9th instar stage of females, though body 

size was positively associated with hook size at the 9th instar. (F1, 102.68 = 13.21, p < 

0.001; Table 3B). For male worms, there was a significant interaction between total 

intensity and host sex (F1, 13.58 = 5.18, p = 0.04; Table 3C); where total intensity was 

found to be positively correlated with hook size in female hosts, but negatively 

correlated in male hosts (Fig. 4). For spicule length, the final model showed that total 

intensity had a negative relationship even when controlling for body length, which itself 

was positively correlated to spicule length (F1, 4.79 = 11.10, p = 0.02; F1, 96.52 = 4.85, p = 

0.03, respectively; Table 4A). Spicule width’s negative correlation with intensity was 
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marginally non-significant (F1, 8.19 = 4.64, p = 0.06; Table 4B).

Testing host species as a factor: Female body length was significantly different 

among host species (F3, 30.29= 11.035, p < 0.001; Table 5A). A post hoc pairwise 

comparison analysis (difflsmeans function from the lmerTest v2.0.36 R package; 

Brockhoff and Christensen 2017) showed pentastome body size was significantly 

different and decreasing in size from ANCA, HETU, and RHMA (Table 5B, Fig. 5). 

Pentastomes in HEFR (n = 4) overlapped with worms in ANCA and HETU. In males, 

host species also had a significant effect on body length (F3, 51.11 = 12.209, p = < 0.001; 

Table 5C) where a post hoc pairwise comparison analysis showed male worms from 

ANCA and HETU were larger than those from HEFR and RHMA (Table 5D, Fig. 6). 

Controlling for body size (itself with a positive relationship F1, 135.91 = 16.528, p < 0.001; 

Table 6A), hook size in females was significantly different among host species (F3, 39.28 = 

18.562, p < 0.001; Table 6A; Fig. 7). Post hoc pairwise comparison analysis (Table 6B) 

showed hooks are the largest in HETU (Fig. 7). Similarly, hook size was significantly 

different among host species in male worms (F3, 54.72 = 21.4475, p < 0.001; Table 6C) 

where again HETU tended to have the larger hooks (post hoc analysis; Table 6D, Fig. 8).

Spicule length was not related to host species while controlling for body size (positive 

relationship; F 1, 122.81 = 7.4315, p = 0.007347; Table 7A). Spicule width’s association was

marginally non-significant (F3, 51.10 = 2.74, p = 0.053; Table 7 B).
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DISCUSSION AND CONCLUSIONS

The key findings of our study indicate that there are three critical considerations 

regarding Raillietiellid (possibly pentastomes in general) taxonomy and hence resolution

of cryptogenic status. First, our results indicate that the majority of hook traits are likely 

not independent and thus, should not be treated as separate variables in different 

analyses. Second, our results explicitly indicate that key traits vary according to instar 

(developmental) stage. Third, host species is associated with significant differences in 

morphological variation of important taxonomic traits in pentastomes, even when 

accounting for body length and instar stage. Below we discuss these issues in detail and 

argue that the pentastome, R. indica, is an invasive parasite which lacks host specificity 

and has spilled-over into a native host.

Variation in Taxonomic Traits

As noted by Riley (1986), taxonomic studies of pentastomids are hindered by 

environmental and developmental factors which affect morphological variation, and a 

lack of external structures suitable for fixation and thus identification. Metrics such as 

body shape, hook morphology, annulus number, and the position of the female gonopore

are suitable for broad generic identification but can exhibit too much intraspecific 

variation for reliable species identification (Riley 1986). Another problem is the 

generally few specimens upon which species are described, as such, the full range of 

morphological variation is poorly understood. For these reasons, taxonomic analyses 
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have primarily focused on the rigid structures, e.g. hooks and copulatory spicules, as 

they are less susceptible to artifacts due to processing and handling.

Traditionally, cluster patterns observed in plots of hook shank length (BC) by 

hook blade length (AB) of female worms were used for species identification, but, as 

noted by Ali et al. (1981) and Riley (1986), this assumes all measurements are from fully

adult females because hook size increases with each subsequent moult, i.e. instar stage, 

in the definitive host. Thus, as noted by Riley (1986) and Kelehear et al. (2011), it is 

necessary to establish developmental, i.e. instar, stage to meaningfully compare 

morphology of species, but there is no clear way of doing this outside of controlled 

infections. Ali and Riley (1983) reported the percentage of fully developed eggs in the 

uterus was correlated with instar stage, but, as noted by Kelehear et al. (2011), this is 

undoubtedly a tedious and time consuming metric to obtain. The issue of morphological 

taxonomy is further confounded by the variation in pentastome morphology induced by 

host species, as reported by Kelehear et al. (2011), and possibly other environmental 

factors, e.g. intensity of infection, which we discuss further.

Our findings are a significant contribution to help resolve some of the 

ambiguity in the taxonomic issues mentioned above. First, our PCA revealed strong 

evidence that the hook measurements highly covary in both male and female 

pentastomes, and as such, treating each as independent runs the risk of pseudoreplicating

a single underlying trait. Based on the PCA results, our downstream analyses used a 

summated score of the posterior hook AB and BC measurements, which is comparable 

across studies.
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Second, we were able to replicate the results of Kelehear et al. (2011) in that 

when we allometrically corrected for body length the distinction among the clusters 

disappeared from the 2D-plot of AB by BC posterior hook measures (Fig. 2). Based on 

the latter result, Kelehear et al. (2011) hypothesized that hook size was affected by 

development. Here, we explicitly make the connection between the 2D-plot clusters and 

discrete instar developmental stages by superimposing data from the experimental 

infections of Ali and Riley (1983) onto our data and that of Kelehear et al. (2011). By 

using hook morphology data from Ali and Riley’s (1983) experimental infections to 

delimit instar stage, we were more explicitly able to control for development in our 

analyses.

Third, we found that pentastome body length and hook size varied among 

different host species. Our results showed body length of 9th instar female worms and 

male worms differed significantly among host species where worms in ANCA, HETU, 

and RHMA tend to be largest to smallest, respectively. The body size of worms in HEFR

vary between the male and female worms, but this is also the host with the smallest 

sample sizes. Hook sizes of 9th instar female worms and male worms for a given body 

size tended to be generally larger in HETU and HEFR than those from ANCA and 

RHMA. Curiously, pentastomes from ANCA are largest in terms of body length, but 

smallest in terms of hook size. The above patterns suggest that for a given trait, host 

species effects male and female worms similarly, but that patterns may differ among the 

traits themselves. 

In contrast to the above, we did not observe any effect of host species on male 

20



spicules. There was a marginally non-significant affect of host species on spicule width, 

but in general, spicule measures were robust to host species of origin; a result that 

reinforces the use of spicules as a species diagnostic trait.

In general, the host-induced variation we and Kelehear et al (2011) observed 

may explain, in part, much of the taxonomic confusion as presented by Poore (2012). 

We suspect the difficulty in assessing the maturity of female worms is what lead to the 

initial description of R. frenatus [sic] as a different species from R. indica. As discussed 

in Kelehear et al. (2011), it is plausible that the species description of R. frenatus [sic] 

was based on a later instar stage of R. indica. As stated by Kelehear et al. (2011), 

traditional morphological analyses of hook measurements alone would have lead them to

identify the pentastome infections of the introduced cane toad as two species, R. indica 

and R. frenatus [sic]. They ultimately concluded these were the same pentastome species

based on molecular data and allometrically correcting hook size for body length, 

effectively correcting for development. They identified their pentastome species as R. 

frenatus [sic], but, according to a taxonomy review by Poore (2012), R. frenatus [sic] is 

a junior synonym of R. indica.

Lastly, taking advantage of the large sample collections from HETU, we tested 

for other factors that may induce environmental variation. In 9th instar female worms, 

body length was found to be negatively correlated with intensity. This pattern is 

consistent with what would be expected of a density dependent limitation on worm body

length; as intensity increases, body length of the terminal moult decreases. However, we 

did not find a density dependent effect on 8th instar female body length, suggesting 
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density-dependence is manifested in an instar specific manner. In males, there was a 

negative relationship found between worm body length and snout-vent-length of the 

host, indicating male worms are smaller in larger geckos. When looking at hook size we 

did not see any significant main effects in 8 or 9th instar females.

But in male worms there was a significant interaction between total intensity 

and host sex; where total intensity was found to be positively correlated with hook size 

in female hosts, but negatively correlated in male hosts. This host-sex specific 

relationship indicates there is some sex specific behavioral or physiological factor 

impacting the development of male hooks. However, we did not see consistent patterns 

across these tests of environmentally induced variation on pentastome morphology, so 

interpretation of results should be regarded with caution. Especially if one regards we 

are doing multiple tests. It may be that some of the patterns are real, but additional 

studies and under more controlled conditions would be needed for confirmation.

In contrast to the above we did find a consistent density-dependent effect with 

regards to male spicules. Spicule length was negatively associated with intensity while 

width was marginally so. So while robust to host species environments, this trait could 

be influenced by intraspecific crowding effects.

Sequence data

The CO1 sequence from our samples translates according to the invertebrate 

mtDNA code 5; however, the lack of variation from all our samples and that in Australia

is a strange result given the generally high mutation rate of mtDNA (Ballard and 
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Whitlock 2004). The lack of variation may suggest this amplified locus is a nuclear 

pseudogene, but more flanking sequence would be needed to test this hypothesis. 

Nevertheless, a pseudogene would not negate its use as a marker to determine if it is the 

same parasite species in each host; the main caveat is that the lack of variation precludes 

inferences on colonization history. As such, for future studies, it may be necessary to 

develop more markers to aid in taxonomy or within-species population history. 

Nevertheless, based on the 100% similarity in the CO1 sequences between our 

pentastomes and those from Australia, as well as the similarity between spicule shape 

(Fig. 1), we are confident that our pentastomes are the same species as those from 

Australia and are the same between Mediterranean gecko and green anole hosts within 

the southern U.S.A.

Range, Host Expansion, and Resolving the Cryptogenic Status

To our knowledge, the first report of a species of Raillietiella sampled from 

within continental U.S.A. came from Pence and Selcer (1988) wherein R. indica (R. 

frenatus [sic]) was reported from H. turcicus in the far south of Texas (Edinburg) in 

1981. Since then, Raillietiella teagueselfi was described from H. turcicus in Houston, 

Texas by Riley et al. (1988). Here, we report a range expansion of R. indica into Port 

Aransas, Texas and surrounding areas (in 2012; Caballero et al. 2015) as well as 

Metairie, Louisiana (part of the metropolitan area of New Orleans). It is noteworthy to 

highlight that survey collections from 1997-1999 at the Metairie location sampled herein

did not reveal any pentastome infections in H. turcicus (n = 42) or A. carolinenesis (n = 
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11) (Criscione 2000, Criscione and Font, 2001). Moreover, an additional 184 geckos 

sampled from 5 additional locations in southeastern Louisiana in 1998 also did not have 

pentastome infections (Criscione and Font, 2001). In 2008, a single Mediterranean gecko

from the Metairie site was found infected with R. indica (Criscione, unpublished). 

Indeed, this finding prompted the additional 2012 surveys in Metairie from both the 

exotic Mediterranean gecko and the native green anoles on which our current study is 

based. Importantly, we here document a host expansion into the native green anole.

We speculate on three possible routes of pentastome colonization in Louisiana. 

First, the Port of New Orleans is part of one of the largest port systems in the world, 

offering a path for infected geckos or possible intermediate hosts (e.g., roaches) to be 

transported into the city from around the globe. However, H. turcicus has been reported 

in the New Orleans area since 1949 (Etheridge 1952) and the 1997-1999 surveys did not 

show any pentasome infections. Second, although anecdotal, we note that Hurricane 

Katrina occurred in 2005. Recovery and cleanup soon thereafter involved transient 

workers from southern Texas. So, it is plausible that infected gecko or roach 

intermediate hosts were transported from southern Texas. Third, the Cuban brown anole 

(Anolis sagrei) has recently invaded and rapidly spread in New Orleans (Lever 2003). 

Interestingly, R. indica (R. frenatus [sic]) has been reported from brown anoles in 

Hawaii (Barton and Riley 2004). So, another plausible scenario is that invading 

populations of brown anoles also harbored pentastome infections. 

Given the collective data in our study and Kelehear et al. (2011), we are of the 

opinion that most reports of R. frenatus [sic] are likely all R. indica. Poore (2012) 
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provides an excellent discussion of taxonomy in the genus Raillietiella (including details

R. hebitihamata, R. frenata and R. indica) and concludes that the name R. indica has 

seniority. Although we are able to resolve the morphological issues and identify the 

species as R. indica, there is still another problem that remains in order to resolve the 

cryptogenic status.  

As noted in our introduction, anthropogenic transport of host species prior to 

taxonomic surveys complicates identification of exotic parasite origins (Carlton 1996). 

This would be especially problematic in geckos as they represent one of the most 

successful establishing families of alien reptiles or amphibians known (Detwiler and 

Criscione 2014). Indeed this issue has been raised before for other parasites found in the 

Mediterranean gecko in the southern USA. In particular, Criscione and Font (2001) 

discuss how tapeworm species of the genus Oochoristica may have colonized new areas 

before many of them were ever described. In the case of R. indica, which appears to 

have a lack of host specificity, the original description was from an anuran host at the 

Indian Museum in Calcutta, but no specific type locality is given (Gedoelst 1923). Most 

subsequent reports of R. indica or R. frenatus [sic] have occurred throughout southeast 

Asia (Poore 2012), including Taiwan (Ali et al. 1982) and Malaysia (Ali et al. 1981, Ali 

et al. 1985). More recent reports of R. indica include Australia (Kelehear et al. 2011), 

Hawaii (Barton and Riley 2004). With the exceptions of Pence and Selcer (1988) and 

Riley et al. (1988), we are not aware of reports of Raillietiella spp. in the continental 

USA. 

The preponderance and historical dates of reports suggests that R. indica is 
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indeed an invasive parasite that now has spilled-over into a native host (green anoles) in 

the southern USA. The spillover of R. indica into green anoles is important because of 

the potential for adverse fitness effects pentastomes may impose on their hosts. For 

example, Pence and Selcer (1988) found pentastome infections in geckos were 

associated with a reduction in the number of oviductal eggs. In addition, Caballero et al. 

(2015) found the recovery time of recently active geckos increased with the number of 

pentastomes, demonstrating a potential mechanism of fitness reduction in the gecko 

itself. These effects, along with the mounting pressure green anoles already face from 

the introduction of brown anoles Campbell (2000), gives cause for concern. Given the 

apparent lack of host specificity demonstrated by R. indica there could very well be 

other native reptile and amphibian species infected.
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APPENDIX

Figure 1. Copulatory spicules of R. indica from A. carolinensis (left) and H. turcicus 
(right). 
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Figure 2. (A) Plot of posterior hook BC measurements by posterior hook AB 
measurements of female R. indica from H. turcicus and A. carolinensis shows 3 distinct 
groups. (B) Plot of BC residuals against AB residuals (removing the effect of body 
length). The distinction of the three groups is no longer apparent.
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Figure 3. Posterior hook BC by posterior hook AB of R. indica from A. carolinensis and
H. turcicus, and H. frenatus and R. marina, adapted from Kelehear et al. (2011). The red 
crosses represent the min, max, and means (the crux) of female R. frenatus [sic] in the 
7th, 8th, and 9th instars adapted from Ali et al. (1981). A general trend appears of host 
associated variation in hook measurements where pentastomes from A. carolinensis and 
R. marina tend to have smaller hook sizes relative to pentastomes in the gecko hosts. 

32



Table 1. PCA results on hook measurments: variable factor loadings, factor eigenvalues,
and proportion of total variance explained by each factor from the Varimax rotated 
correlation matrix of all sampled worms (see main text for sample sizes).

A) Female Hook Measurements
Varimax rotated loading

matrix

Factor 1 Factor 2

Posterior Hook AB (µm) 0.97 0.08

Posterior Hook BC (µm) 0.97 0.01

Anterior Hook AB (µm) 0.89 0.24

Anterior Hook BC (µm) 0.93 0.16

Mean Area of the Posterior Hook (µm2) 0.94 0.04

Mean Area of the Anterior Hook (µm2) 0.09 0.99

Rotated eigenvalues 4.43 1.07

Percent total variance explained 0.74 0.18

B) Male Hook Measurements
Varimax rotated loading

matrix

Factor 1 Factor 2

Posterior Hook AB (µm) 0.78 -0.32

Posterior Hook BC (µm) 0.89 -0.20

Anterior Hook AB (µm) 0.67 0.16

Anterior Hook BC (µm) 0.81 0.22

Mean Area of the Posterior Hook (µm2) 0.79 -0.25

Mean Area of the Anterior Hook (µm2) -0.04 0.92

Rotated eigenvalues 3.13 1.12

Percent total variance explained 0.52 0.19

33



Table 2. Tests for factors associated with pentastome body length. p-values were 
calculated using the Satterthwaite approximation (fixed effects) using the lmerTest 
package.

A) Body Length of 8th instar Female Worms
lmer(Body Length~Host Sex+Intensity+Snout Vent Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 4.29 1 20.70 0.051 
Intensity 0.05 1 19.17 0.833
Snout Vent Length 0.02 1 18.22 0.90
Random Effects Variance
Host ID:Location 1.29
Location 0
Residual 0.69
Total 1.98

B) Body Length of 9th instar Female Worms
lmer(Body Length~Host Sex+Intensity+Snout Vent Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 2.29 1 14.06 0.15
Intensity 7.51 1 9.54 0.02
Snout Vent Length 1.66 1 14.61 0.22
Random Effects Variance
Host ID:Location 1.56
Location 0
Residual 4.04
Total 5.6

C) Body Length of Male Worms
lmer(Body Length~Host Sex+Intensity+Snout Vent Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 0.74 1 8.25 0.41
Intensity 0.29 1 18.24 0.59
Snout Vent Length 7.13 1 17.35 0.02
Random Effects Variance
Host ID:Location 0.07
Location 0
Residual 0.38
Total 0.45
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Table 3. Tests for factors associated with pentastome hook size. p-values were 
calculated using the Satterthwaite approximation (fixed effects) using the lmerTest 
package.

A) Hook Size of 8th instar Female Worms
lmer(Hook Size~Host Sex+Intensity+Snout Vent Length+Body Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 1.12 1 17.10 0.30
Intensity 1.47 1 14.58 0.24
Snout Vent Length 1.40 1 9.48 0.27
Body Length 0.82 1 51.46 0.37
Random Effects Variance
Host ID:Location 553.7
Location 116.1
Residual 506.3
Total 1176.1

B) Hook Size of 9th instar Female Worms
lmer(Hook Size~Host Sex+Intensity+Snout Vent Length+Body Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 0.24 1 16.12 0.21
Intensity 1.71 1 12.25 0.63
Snout Vent Length 1.85 1 17.15 0.19
Body Length 13.21 1 102.68 < 0.001
Random Effects Variance
Host ID:Location 667.4
Location 627.4
Residual 154.2
Total 1449

C) Hook Size of Male Worms
lmer(Hook Size~Host Sex+Intensity+Snout Vent Length+Body Length+Intensity:Host Sex+ 
(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 5.16 1 17.72 0.036
Intensity 0.008 1 13.22 0.93
Snout Vent Length 0.16 1 15.77 0.69
Body Length 0.43 1 97.53 0.51
Intensity:Host Sex 5.18 1 13.58 0.04
Random Effects Variance
Host ID:Location 88.63
Location 0
Residual 238.69
Total 327.32
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Figure 4. Plot of fitted male hook sizes from lmer model by intensity from male and 
female H. turcicus hosts. Red and blue lines (offset on the x-axis for clarity) indicate the 
lower and upper bound confidence intervals of female and male hosts, respectively.
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Table 4. Tests for factors associated with male pentastome spicule length. p-values were
calculated using the Satterthwaite approximation (fixed effects) using the lmerTest 
package.

A) Spicule Length of Male Worms
lmer(Spicule Length~Host Sex+Intensity+Snout Vent Length+Body Length+(1|Location/Host ID))
Fixed Effect F-value df num. df den. p-value
Host Sex 0.43 1 15.63 0.52
Intensity 11.10 1 4.79 0.02
Snout Vent Length 0.05 1 15.79 0.82
Body Length 4.85 1 96.52 0.03
Random Effects Variance
Host ID:Location 107.78
Location 62.22
Residual 1601.91
Total 1771.91

B) Spicule Width of Male Worms
lmer(Spicule Width~Host Sex+Intensity+Snout Vent Length+Body Length+(1|Location/Host ID)
Fixed Effect F-value df num. df den. p-value
Host Sex 0.67 1 16.55 0.42
Intensity 4.64 1 8.19 0.06 
Snout Vent Length 0.42 1 18.08 0.52
Body Length 0.04 1 99.84 0.83
Random Effects Variance
Host ID:Location 10.09
Location 0
Residual 45.02
Total 55.11
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Table 5. Tests for a host species association with pentastome body length. p-values were
calculated using the Satterthwaite approximation (fixed effects) using the lmerTest 
package.

A) Body Length of 9th Instar Females
lmer(Body Length~Host Species+(1|Host ID))
Fixed Effect F-value df num. df den. p-value
Host Species 11.04 3 30.29 < 0.001
Random Effects Variance
Host ID 1.62
Residual 4.07
Total 5.69

B) Pairwise Comparison of Female Body Lengths

(I) Host        (J) Host

Mean
Difference

(I-J) Std. Error p-value

95% Confidence Interval for
Difference

Lower Upper

 ANCA          HEFR
                      HETU
                      RHMA

1.4
2.7
7.2

1.49
0.88
1.28

0.365
0.006

< 0.001

-1.65
0.88
4.60

4.39
4.55
9.83

 HEFR           HETU
                      RHMA

1.3
5.8

1.32
1.61

0.31
< 0.001

-1.29
2.61

4.00
9.10

 HETU          RHMA 4.5 1.06 < 0.001 2.34 6.66

C) Body Length of Males
lmer(Body Length~Host Species+(1|Host ID))
Fixed Effect F-value df num. df den. p-value
Host Species 12.21 3 51.11 < 0.001
Random Effects Variance
Host ID 0.11
Residual 0.37
Total 0.48
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Table 5. (continued)

D) Pairwise Comparison of Male Body Lengths

(I) Host        (J) Host
Mean

Difference (I-J)
Std.

Error p-value

95% Confidence Interval for
Difference

Lower Upper

 ANCA          HEFR
                      HETU
                      RHMA

1.3
0.0
1.2

0.45
0.35
0.42

0.005
0.97

0.007

0.43
-0.72
0.34

2.23
0.70
2.04

 HEFR           HETU
                      RHMA

-1.3
-0.1

0.31
0.38

< 0.001
0.72

-1.96
-0.91

-0.73
0.63

 HETU          RHMA 1.2 0.27 < 0.001 0.67 1.74
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Figure 5. Post hoc pairwise comparisons of female pentastome body length between 
host species (n = number of worms). Red bars indicate 95% lower and upper bound 
confidence intervals. Letters denote similarities or significant differences in the pairwise 
tests. 
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Figure 6. Post hoc pairwise comparisons of male pentastome body length between host 
species (n = number of worms). Red bars indicate 95% lower and upper bound 
confidence intervals. Letters denote similarities or significant differences in the pairwise 
tests. 
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Table 6. Tests for a host species association with pentastome hook size. p-values for 
were calculated using the Satterthwaite approximation (fixed effects) using the lmerTest 
package.

A) Hook Size of 9th Instar Females
lmer(Hook Size~Host Species+Body Length+(1|Host ID))
Fixed Effect F-value df num. df den. p-value
Host Species 18.56 3 39.28 < 0.001
Body Length 16.53 1 135.91 < 0.001
Random Effects Variance
Host ID 1194
Residual 1452
Total 2646

B) Pairwise Comparison of Female Hook Size

(I) Host        (J) Host

Mean
Difference

(I-J) Std. Error p-value

95% Confidence
Interval for Difference

Lower Upper

 ANCA          HEFR
                      HETU
                      RHMA

-76.4
-138.7
-28.2

34.2
21.9
32.3

0.03
< 0.001

0.39

-145.5
-183.7
-93.5

-7.25
-93.82
37.02

 HEFR           HETU
                      RHMA

-62.4
48.1

29.4
37.4

0.04
0.20

-121.4
-26.80

-3.33
123.00

 HETU          RHMA 110.5 25.6 < 0.001 59.00 162.05

C) Hook Size of Male Worms
lmer(Hook Size~Host Species+Body Length+(1|Host ID))
Fixed Effect F-value df num. df den. p-value
Host Species 21.45 3 54.72 < 0.001
Body Length 0.85 1 121.60 0.36
Random Effects Variance
Host ID 113.60
Residual 240.70
Total 354.3
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Table 6. (continued)

D) Pairwise Comparison of Male Hook Size

(I) Host        (J) Host

Mean
Difference

(I-J)
Std.

Error p-value

95% Confidence Interval
for Difference

Lower Upper

 ANCA          HEFR
                      HETU
                      RHMA

-25.2
-27.8
33.6

13.04
9.98

12.27

0.06
0.007
0.008

-51.35
-47.84
9.05

0.86
-7.81
58.17

 HEFR           HETU
                      RHMA

-2.60
58.9

9.23
10.88

0.78
< 0.001

-21.06
36.99

15.90
80.72

 HETU          RHMA 61.40 8.10 < 0.001 45.20 77.66
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Figure 7. Post hoc pairwise comparison of female pentastome hook size between host 
species (n = number of worms). Red bars indicate 95% lower and upper bound 
confidence intervals. Letters denote similarities or significant differences in the pairwise 
tests.
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Figure 8. Post hoc pairwise comparison of male pentastome hook size between host 
species (n = number of worms). Red bars indicate 95% lower and upper bound 
confidence intervals. Letters denote similarities or significant differences in the pairwise 
tests.
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Table 7. Tests for a host species association with male pentastome spicule length. p-
values were calculated using the Satterthwaite approximation (fixed effects) using the 
lmerTest package.

A) Spicule Length of Male Worms
lmer(Spicule Length~Host Species+Body Length+(1|Host ID))
Fixed Effect F-value df num. df den. p-value
Host Species 0.28 3 61.19 0.84
Body Length 7.43 1 122.81 0.007
Random Effects Variance
Host ID 353.60
Residual 1480.90
Total 1834.5

B) Spicule Width of Male Worms
lmer(Spicule Width~Host Species+Body Length+(1|Host ID)
Fixed Effect F-value df num. df den. p-value
Host Species 2.74 3 51.10 0.053 
Body Length 0.03 1 120.97 0.86
Random Effects Variance
Host ID 22.17
Residual 43.77
Total 65.94
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