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ABSTRACT 

 

Pedestrian safety from the motor vehicle traffic crash is one of the major 

concerns of the transportation planning and public health fields. Especially, school-aged 

children are more vulnerable to being struck by a motor vehicle than other age groups. 

Many American cities have devoted time and effort to improve the pedestrian safety, 

providing a desirable pedestrian environment to their neighborhoods. However, there are 

some controversies about the unequal distribution of the benefits from a quality 

pedestrian environment. Thus, we investigated: 1) whether school neighborhoods 

provide safer pedestrian environments than other neighborhoods in terms of school-aged 

child pedestrian crashes, and 2) whether there are social disparity issues in the safe 

pedestrian environments around schools in Austin, TX. Using both bivariate and 

multivariate analyses, this study also examined differences in contributing factors of 

child pedestrian crashes across neighborhoods with contrasting socio-demographic 

characteristics. Results show that child pedestrian crashes occur less frequently near 

school neighborhoods. However, those school neighborhoods with higher proportions of 

Hispanic populations and lower-income households showed higher likelihood of crashes 

than their counterparts. Also, this paper identified that significant contributing factors of 

child pedestrian injuries varied by neighborhood characteristics. These findings suggest 

that planners and policy makers should pay more attention to the provision of safe 

pedestrian environments and the equitable distribution of their benefits to ensure the 

social justice.  
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CHAPTER I  

INTRODUCTION 

 

Providing a desirable pedestrian environment to promote healthy and safe 

communities has been one of the predominant agendas for urban and transportation 

planners, policy makers, and public health professionals in recent years. A quality 

pedestrian environment encourages people to choose active modes of transportation such 

as walking and biking. Particularly, walking is a highly affordable and an easily 

undertaken form of physical activity in our daily life (Ainsworth & Macera, 2012). For 

school-aged children, especially, walking can provide several benefits such as normal 

bone development, biological maturation, and behavioral development (Strong et al., 

2005; Texas Department of State Health Services, 2014). Walking to school provides 

school-aged children with an opportunity to participate in regular physical activities, 

improving their health through daily routines (Cooper, Andersen, Wedderkopp, Page, & 

Froberg, 2005). Children who walk to school have higher daily physical activity levels 

than others who commute by automobile (Loucaides & Jago, 2008; Sirard & Slater, 

2008). 

However, children are one of the most vulnerable age groups when they are on 

the street. Due to the vulnerability of children, such as their immature bodies and 

undeveloped cognitive skills, they are exposed to the greater risks of traffic accidents 

than other age groups (World Health Organization, 2004). In addition, children’s smaller 

physical stature raises a problem that limits their ability to recognize the risk of traffic 
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crashes or to be recognized (World Health Organization; Unicef, 2008). In 2008 and 

2009, motor vehicle traffic crashes represented the top ranked cause of death in the U.S. 

for children and youth aged between 8 and 20 and the second ranked cause for young 

children aged between 4 and 7 (Subramanian, 2012). Besides fatality, traffic injuries 

caused by pedestrian-vehicle collisions in children are also a leading cause of disabilities 

sustained in crashes (World Health Organization; Unicef, 2008). This threat has 

remarkable effects especially on child pedestrians. A report released by the National 

Highway Traffic Safety Administration (NHTSA) identified that among children from 

birth to 14 years old killed in traffic crashes, 21% of them were pedestrians in 2013 

(NHTSA, 2015). Traffic injuries cause approximately 70% of deaths of children aged 5 

to 19 years in the United States and the United Kingdom (Keppel‐Benson, Ollendick, & 

Benson, 2002). Beyond these kinds of physical injury threats, children pedestrian 

crashes contribute to a significant proportion of public healthcare costs as well. 

According to the recent research on the national economic estimates of pedestrian 

crashes for children aged under 19, pediatric pedestrian injuries cost about $300 million 

in inpatient hospital care in 2003 (Conner et al., 2010).  

The unequal burden of traffic injury among children with different socio-

demographic characteristics is another issue to be addressed. Prior research has reported 

that the risks of pedestrian crashes were higher in neighborhoods with particular socio-

demographic characteristics, such as low-income and high proportion of ethnic minority. 

For both developed and developing countries, children from ethnic minority groups and 

low-income families have a higher possibility of being victims of traffic crashes (World 
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Health Organization, 2004). In the U.S. nationwide, although African-Americans and 

Latinos comprise only about 13% and 13.5% of the population, respectively, they 

account for nearly 20% and 16% of pedestrian deaths, respectively (Surface 

Transportation Policy Project, 2004). Loukaitou-Sideris, Liggett, and Sung (2007) 

reported that pedestrian collisions were concentrated in those neighborhoods consisting 

of high proportion of low-income Latino populations in Los Angeles. In a comparison 

between the Atlanta metropolitan statistical area and the rest of the U.S., the pedestrian 

fatality rates were higher for males, Hispanic, and age groups of 15-34 and 35-54 (Beck, 

Paulozzi, & Davidson, 2007). Zhu and Lee (2008) found that schools with a high 

proportion of Hispanic students were located in neighborhoods with higher risks of 

traffic crashes and violent crimes in Austin, TX. 

To address the traffic safety issues, various interventions supporting safe 

pedestrian environments have been undertaken. Walsh (2012) found that many U.S. 

cities and communities have formulated policies and practices for implementation, 

including guidelines, planning and land development regulations, financing sources, and 

the measurements of operations. There were several noticeable interventions providing 

safe pedestrian environments for children. For example, the city of Burlington, Vermont 

created the Traffic Calming and Neighborhood Enhancement program in 1996 that 

includes activities for improving to roadway safety for children by controlling possible 

threats, such as traffic conflict points, vehicle speeds, and vehicle volumes. In Santa 

Barbara, California, the city government developed the Santa Barbara’s Pedestrian 

Master Plan which has a goal to increase the number of children who commute to school 
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by walking and biking. New York City also published the document, Active Design 

Guidelines: Promoting Physical Activity and Health in Design, to establish design 

guidance. Specifically, the guidance encourages public spaces to improve their 

pedestrian environment and safety by providing access to transit and parking, children’s 

play areas, parks, open space, and recreational facilities, and so on. In Austin, TX, there 

are several programs, which enhance the physical environment in the neighborhood to 

provide safe pedestrian environments around schools. For instance, the city of Austin 

has developed the Access Austin program in cooperation with Austin’s regional public 

transit provider (Capital Metro), Austin Independent School District (AISD), and the 

City of Austin Urban Trails Program. Access Austin aims to reinforce street connectivity 

and accessibility by completing high priority pedestrian infrastructure needs within a 

quarter-mile of all identified schools and bus stops in the city’s jurisdiction (City of 

Austin, 2015). 

At the U.S. national level, there was a noteworthy intervention for children 

walking to school. Since the Safe, Accountable, Flexible, Efficient Transportation 

Equity Act: A Legacy for Users (SAFETEA-LU) was enacted in 2005, the legislation 

established the Federal Safe Routes to School (SRTS) program with a total funding of 

over $1 billion (National Center for Safe Routes to School, 2015). This program contains 

several policies and actions that focus on increasing children’s physical activity and 

enhancing their safety on the way to school by improving the physical environment 

(Boarnet, Day, Anderson, McMillan, & Alfonzo, 2005). From 2005 through 2010, under 

the guidance of the federal government, $800 million was allocated to the state 
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departments of transportation to accomplish the goals of the SRTS program, providing 

safer pedestrian environments, such as sidewalks, bike lanes, pathways, and safer 

crosswalks (Safe Routes to School National Partnership, 2010). State and local 

communities play key roles in the success of the SRTS program. In 2012, the U.S. 

Congress passed a new transportation bill MAP-21, the Moving Ahead for Progress in 

the 21st Century Act (MAP-21). This new bill consolidated various funding of pre-MAP-

21 programs, including SRTS, into a united funding source (i.e., the Transportation 

Alternative Program) and granted the control over local transportation projects to state 

and regions (U.S. Department of Transportation Federal Highway Administration; Safe 

Routes to School National Partnership, 2014). As a result, the local governments were 

given the authority to judge how much funding should be allocated for the SRTS 

program, as well as which communities should be supported for improvement of the 

pedestrian environment safety along the routes for children’s school travel. 

Traffic injuries in children are a significant burden for communities. To address 

traffic injury issues and support safe pedestrian environments for children, more urban 

planning and public health professionals emphasized the importance of the quality 

pedestrian environments that may encourage more children to have safe pedestrian 

activities. While many studies have already examined pedestrian crashes, there is limited 

understanding of child pedestrian’s safety from motor vehicle crashes specifically 

around schools. Furthermore, little is known about the social inequality issues in the 

distribution of benefits from safe pedestrian environments within the vicinity of schools. 

While related research have noted the high risk of traffic crashes in children and its 
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racial/ethnic disparity issues, this paper attempts to specifically examine the child 

pedestrian crashes in the vicinity of schools in the Austin, Texas jurisdiction areas to 

identify whether pedestrian safety is equally guaranteed for school-aged children. Thus, 

this paper is intended to address differences in the probability of child pedestrian crashes 

across different neighborhoods to determine whether and how the risk varied by socio-

demographic characteristics, such as median household incomes and proportion of ethnic 

minority populations (i.e., Hispanics in Austin, TX). The effects of explanatory variables 

on child pedestrian crashes are analyzed through both bivariate and multivariate 

analyses. Based on the findings from this paper, appropriate policy interventions for 

each of the neighborhoods will be proposed in the planning perspective for local 

governments to achieve the social justice in child pedestrian safety.  

This paper is organized as follows: Firstly, Chapter II includes a literature review 

on various determinants of and methodologies for studying pedestrian crashes. The study 

area, descriptive statistics of crash patterns and contributing factors, and research 

methods will be presented in Chapter III, followed by a summary statistics and the 

results of analyses in Chapter IV. Lastly, in Chapter V, discussions of empirical results 

and the consequential policy implications will be suggested. 
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CHAPTER II  

LITERATURE REVIEW 

 

II.1. Factors Influencing Pedestrian Crashes 

 

Previous research revealed and examined the effects of diverse factors related to 

pedestrian crashes, including traffic exposures, driver’s characteristics, weather, road 

conditions, pedestrian’s behavior, built environment, and socio-demographic factors. 

However, this study focused on the effects of built environment and socio-demographic 

factors, considering traffic exposure because the objectives of this study are to identify 

the differences of a pedestrian environment across different neighborhoods. While it 

would be better to control other factors, such as personal behavior or characteristics, they 

are exempted in this study due to the lack of availability. 

Most of the contributory factors in traffic accidents for the general population 

have similar effects on children as well (World Health Organization; Unicef, 2008). Out 

of the various contributing factors to pedestrian crashes, previous literature have 

revealed that the physical environmental and socio-demographic factors are mostly 

related to higher risks of traffic crashes involving pedestrians (Cottrill & Thakuriah, 

2010). Many policies and programs that aim to provide safe pedestrian environments 

have also focused on improving and enhancing the physical, or built, environment in 

communities. The built environment consists of urban infrastructures and neighborhood 

characteristics in our community that affect people’s lifestyle (Sallis & Glanz, 2006). 
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Previous studies have stated that the built environment plays an important role in 

accounting for the determinant effects not only on people’s travel mode choice but also 

on the traffic safety issues in terms of pedestrian crashes. The following paragraphs 

describe typical factors that are considered to have significant effects on pedestrian 

safety. 

 

II.1.1. Traffic Exposure 

 

Several authors have noted that traffic exposure factors are related to pedestrian 

safety as well as people’s mode choice. Intuitively, pedestrian crashes are more likely to 

occur where more people walked. Also, the number of pedestrian crashes across 

different units of analysis vary by size of unit of analysis: larger units possibly show a 

greater number of crashes. Thus, to account for the different effects of exposure, the 

number of pedestrians and/or the areal size of units should be included as a control 

variable. However, in the pedestrian safety research, it has been difficult to obtain the 

exact number of pedestrians at the site-specific level due to the lack of resources 

(Miranda-Moreno, Morency, & El-Geneidy, 2011). To address the issue of data 

availability, previous literature commonly used a proxy variable, such as population 

density for the measure of pedestrian exposure (Loukaitou-Sideris et al., 2007). Prior 

studies have stated that higher population density may be related to higher number of 

pedestrians regardless of trip purpose, heightening the risk of pedestrian traffic injuries 

(Cottrill & Thakuriah, 2010; Ewing & Dumbaugh, 2009). Several previous studies have 
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provided evidence of the positive relationship between population density and pedestrian 

accidents (Dumbaugh, Li, & Joh, 2013; Huang, Abdel-Aty, & Darwiche, 2010; 

Wedagama, Bird, & Metcalfe, 2006). For child pedestrians, LaScala, Gruenewald, and 

Johnson (2004) found that greater density of youth population is related to more child 

pedestrian collisions. Clifton and Kreamer-Fults (2007) also found that population 

density around schools in Baltimore City, Maryland has a positive association with 

pedestrian crash count per school enrollment. 

Besides population density, there are other variables considered to increase 

exposure of pedestrians to the risk of traffic crashes by generating a high level of 

pedestrian activity. Recent literature suggest transit accessibility as one of the key 

pedestrian exposure factors (Dumbaugh et al., 2013). Accessibility to the transit system 

has been commonly measured using the number of transit stations, such as bus or rail 

transit stops (Miranda-Moreno et al., 2011; Pulugurtha & Repaka, 2008; R. Schneider, 

Arnold, & Ragland, 2009). Usually, transit stops may generate more pedestrian 

activities. Pulugurtha and Repaka (2008) found that a higher number of transit (bus) 

stops is associated with more pedestrian activities in general. R. Schneider et al. (2009) 

also reported a positive association between the presence of regional transit stations and 

the pedestrian volume. This kind of pedestrian generators may increase the risk of 

exposure to traffic crashes. Miranda-Moreno et al. (2011) argued that more bus stops are 

correlated to both more pedestrian activity and the frequency of pedestrian-vehicle 

crashes. However, sometimes the results seem to be mixed. Around the school area, 

greater transit accessibility (percentage of households within a quarter mile of transit 
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stops) was related to less pedestrian crashes for all age groups (Clifton & Kreamer-Fults, 

2007). These confounding results imply mixed effects between transit stops and 

pedestrian safety. Without adequate provision of pedestrian facilities, such as signals, 

sidewalks, and crosswalks, pedestrians would likely be exposed to the risk of traffic 

crashes around the transit stops (Pulugurtha & Repaka, 2008). 

 

II.1.2. Built and Road Environments 

 

The absence or inadequate installation of pedestrian facilities, such as sidewalks 

and crosswalks, are generally found to be associated with more pedestrian crashes. The 

presence of complete sidewalk networks may lead pedestrians to walk on the sidewalks 

instead of the street or the shoulder, making pedestrians safer from traffic injuries 

(Boarnet et al., 2005). Previous literature has reported the relationship between the 

presence or absence of sidewalks and pedestrian crashes. Ossenbruggen, Pendharkar, 

and Ivan (2001) found that the probability of traffic crashes or injuries is twice as high in 

the site without sidewalks than the site with sidewalks. Wang and Kockelman (2013) 

reported sidewalk provision may reduce severe-crash rates in Austin, Texas. Findings 

from the study of pedestrian crashes on the campus of the University of North Carolina 

at Chapel Hill also indicate that incomplete sidewalk network is associated with greater 

risk of observed and perceived pedestrian crashes (R. J. Schneider, Ryznar, & Khattak, 

2004). Sidewalk completeness or coverage, furthermore, may influence children’s mode 

choice to travel to school. The missing sidewalks had a negative effect on the rate of 
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children’s active mode choice to or from school (Banerjee, Bahl, & Uhm, 2012; Dalton 

et al., 2011; Ewing, Schroeer, & Greene, 2004; Larsen, Buliung, & Faulkner, 2013). 

Ewing and Dumbaugh (2009) have argued that sidewalks are absolutely necessary for all 

through-streets in developed areas for pedestrian safety from vehicle collisions. 

The presence of crosswalks may also have effects on the risk of pedestrian-

vehicle crashes, but previous research has produced confounding results. While the 

presence of crosswalk signs is considered as a protective factor, Dai, Taquechel, 

Steward, and Strasser (2010) reported more than 50% of the locations with crosswalk 

signs involved pedestrian crashes around an urban university campus in downtown 

Atlanta, Georgia. Rothman, Buliung, Macarthur, To, and Howard (2013) stated that 

crosswalks may indicate more children walking and be related to increased exposure 

and/or increased child pedestrian crashes depending on the adequacy of its design or use. 

Zegeer, Stewart, Huang, and Lagerwey (2001) revealed that the effects of crosswalks 

varied by other built environmental factors, such as the type of crosswalks (i.e., marked 

versus unmarked one), the number of lanes on street segment, the presence of median, 

and traffic volume. Specifically, the presence of a marked crosswalk at a location 

without traffic signals or stop sign on the two-lane streets was associated with no 

difference in pedestrian crash rate, compared with unmarked crosswalks. On the other 

hand, after controlling for other site factors, the pedestrian crash rate was higher at a 

marked crosswalk on multilane roads with traffic volumes above about 12,000 vehicles 

per day, compared with at an unmarked crosswalk. 
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While considerable research also included intersections as one of the contributing 

factors for predicting crashes, its effect was mixed. Usually, higher intersection density 

is associated with higher street connectivity (Dill, 2004). Carver, Timperio, Hesketh, and 

Crawford (2010) found that intersection density is positively associated with the 

increased use of active transport among adolescent boys. Ladrón de Guevara, 

Washington, and Oh (2004) examined the effects of road network and socio-

demographic variables on pedestrian crashes, and identified negative associations 

between intersection density and the fatal crash in Tucson, Arizona. The authors stated 

that urban intersections are generally associated with crash restraint elements (i.e., 

slower speeds, higher levels of congestion, and more adjacent land use densities). 

However, in other studies, the effect of intersections was contrasting. Hadayeghi, 

Shalaby, and Persaud (2003) and Hadayeghi, Shalaby, Persaud, and Cheung (2006) 

developed similar prediction models, but found a positive association between 

intersection density and pedestrian crashes in the city of Toronto, Canada. The model 

indicated that the traffic analysis zones with higher intersection densities have more 

traffic accidents. Huang et al. (2010) also argued that intersections may commonly 

generate more traffic conflicts, and they found the positive association between 

intersection density and the risk of pedestrian crashes at the county level. Furthermore, 

for child traffic safety, Blazquez and Celis (2013) found that child pedestrian crashes 

were concentrated in the areas situated in urban areas with a high intersection density. 

Because of the mixed effects of intersections from previous literature, researcher should 
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pay more attention to inferences on the relationship between intersections and traffic 

crashes. 

WHO reported that high speeds is one of the principal risk of traffic injury 

(World Health Organization; Unicef, 2008). The presence of high speed roads may 

increase the probability of pedestrian crashes. Rothman et al. (2013) found that higher 

traffic speed or posted high-speed has a positive correlation with less walking and more 

child traffic incidences. The report released by Transportation for America revealed that 

over 50% of fatal pedestrian crashes occur on the high capacity and high-speed roads 

(Ernst, Lang, & Davis, 2011). The speed of traffic is also perceived by parents as one of 

the most hazardous factors for active transportation to school (Vaughn et al., 2009). 

Dumbaugh et al. (2013) found that there are two possible reasons why the high-speed 

facility, such as arterial roads, is the problem. Firstly, driver’s range of vision is 

decreased by high-speeds and thereby drivers will be less likely to recognize the 

potential traffic conflicts on the part of pedestrians. Secondly, driver’s braking distance 

is increased by high speeds, making them difficult to stop when they face dart-out 

pedestrians. 

Block length that can be measured from the centerline of the street intersection 

has been also used to represent the street connectivity (Dill, 2004). Low connectivity, 

characterized by long block length and large block size, are barriers to direct travel. The 

few route choices also discourage people to choose active transportation (Saelens, Sallis, 

& Frank, 2003). For child pedestrian activity as well as that of adults, a large block size 

within the residence area of a child reduces the number of children walking to schools 
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(Lin & Chang, 2010). Block size also influences the risk of pedestrian crashes. 

Loukaitou-Sideris et al. (2007) found that high-collision intersections had some 

hazardous characteristics, such as long block length, narrow sidewalks, the presence of 

bus stops, and so forth. Ewing and Dumbaugh (2009) also stated that traditional or 

“Smart Growth” patterns, mostly small or short blocks, dense streets and intersections, 

and more transit services, sometimes showed lower traffic crash rates than their 

counterparts. Motorists may be driving at relatively slow speeds in the area with higher 

connectivity, thus having the lower crash rate and less likelihood of severe traffic 

crashes (Clifton, Burnier, & Akar, 2009). 

Particular land uses, such as commercial or retail that generates a high pedestrian 

demand, have shown positive associations with more pedestrian collisions, whereas 

industrial and office land uses have shown a lower collision with counter-effects 

(Loukaitou-Sideris et al., 2007). Wier, Weintraub, Humphreys, Seto, and Bhatia (2009) 

examined the relationship between pedestrian crashes and predictor variables, and found 

that potential pedestrian attractors, such as neighborhood commercial districts, 

contribute to increased vehicle-pedestrian collisions. Miranda-Moreno et al. (2011) have 

reported that commercial land uses have statistically significant effects on the increase of 

pedestrian activity as well as a higher frequency of pedestrian collisions. In Austin, 

Texas, the Census tracts with greater mixed uses of residential and commercial land uses 

showed the higher pedestrian crash risk (Wang & Kockelman, 2013). Kerr, Frank, Sallis, 

and Chapman (2007) have also found that youths aged between 5 and 18 in Atlanta who 

lived in neighborhoods with more than one commercial land use showed higher 
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likelihood of walking as twice as those without commercial land use. When examined 

around schools, commercial land uses still showed the same result: it was positively 

associated with pedestrian traffic crash rates (Clifton & Kreamer-Fults, 2007). From the 

results of a study on child pedestrian crashes in Santiago, Chile, Blazquez and Celis 

(2013) found that areas with concentrated commercial land use have more crashes. 

 

II.1.3. Neighborhood Characteristics and Spatial Disparity Issues in Pedestrian Crashes 

 

In addition to the built environment and road characteristics, socio-demographic 

factors also account for a portion of the risk of traffic crashes. In the previous literature, 

socio-demographic characteristics of neighborhood residents have been reported to be 

related not only to pedestrian behavior, but also to traffic crashes. Generally, both 

walking rates and pedestrian crash rates are higher in the disadvantaged population 

groups, such as low-income families or ethnic/racial minority (Beck et al., 2007; 

Loukaitou-Sideris et al., 2007; Surface Transportation Policy Project, 2004; World 

Health Organization, 2004; Zhu & Lee, 2008). Above all, the rate of walking to school is 

also almost two times higher for children from low-income families than their 

counterparts, thereby these children have greater potential risks to be involved in 

pedestrian crash injuries (Gavin & Pedroso, 2010; McDonald, 2008). It is speculated that 

certain population groups are less likely to own motor vehicles, so that they have no 

choice but walking or biking, being exposed to the risk of traffic crashes (Surface 

Transportation Policy Project, 2004). However, higher exposure is not only the reason 
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for the variation in probability of traffic crashes among different socio-demographic 

groups. Besides the exposure, lower socio-demographic groups tend to have poorer and 

less pedestrian facilities, such as poor maintained sidewalks (Franzini et al., 2010). The 

same results apply to children. The pedestrian crash rates are higher for children who 

lived in the low-income neighborhood (Blazquez & Celis, 2013; Dougherty, Pless, & 

Wilkins, 1989; McArthur, Savolainen, & Gates, 2014). Ethnic minority children, such as 

Hispanic students, traveled to and from school in the neighborhood with a poorer 

pedestrian environment (Zhu & Lee, 2008). Likewise, although socio-demographic 

characteristics of neighborhood is not directly related to the risk of pedestrian crashes, it 

accounts for the variation of the risk among different population groups. 

While several authors have reported the differentials in the risk of pedestrian 

crashes between neighborhoods, there is limited understanding of the differences within 

the particular neighborhoods around schools. Because schools and surrounding 

environments are significant places contributing to children’s education as well as 

residents’ social and recreational activities, these places deserve more attention (Haug, 

Torsheim, Sallis, & Samdal, 2010; Wechsler, Devereaux, Davis, & Collins, 2000). 

Therefore, one of the objectives of this paper is to examine which factors account for 

differentials in child pedestrian crashes in those contrasting neighborhoods (e.g., low-

income versus high-income neighborhoods or high-percentage of Hispanic versus low-

percentage of Hispanic population neighborhoods around schools). 
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II.2. Methodologies of Previous Studies 

 

With diverse built environment and socio-demographic factors we discussed 

above, several previous studies have examined the effects of those variables on the 

pedestrian crashes to understand typical attributes of accident locations using various 

empirical methods. Because the crash frequency data are non-negative integers, 

researchers have typically applied count-data regression models or other methods that 

can properly resolve the integer nature of the data (Lord & Mannering, 2010). Although 

most statistical analyses prefer the standard ordinary least squares (OLS) because of its 

benefits, such as transparency for understanding the relationship between variables, the 

count-data cannot be applied as a dependent variable in the OLS model. Because of the 

non-negative integer attribute, the OLS regression model, which assumes a continuous 

dependent variable, is not appropriate for the count-data. Thus, to take advantages of the 

OLS model, some studies transformed the crash data. LaScala, Gerber, and Gruenewald 

(2000) examined the number of pedestrian crash injuries per street lengths in the census 

tracts within the city of San Francisco, using a regression model that has been corrected 

for the spatial autocorrelation with contributing variables including alcohol availability, 

road system environment, and socio-demographic characteristics. They used a natural 

logarithm transformation for the rate of pedestrian crashes. Similarly, Wier et al. (2009) 

also developed an area-level regression model of pedestrian collisions using 

environmental and population data in 176 census tracts of San Francisco. They included 

street, land use, and population characteristics as predictor variables of OLS regression 
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model to predict the variation in the natural log of the number of vehicle-pedestrian 

injury collisions per census tract. Clifton and Kreamer-Fults (2007) transformed the 

count of pedestrian crashes around schools into crash rates per school enrollment, and 

used OLS regression model to examine general and child pedestrian crashes around 

schools in Baltimore, Maryland. LaScala et al. (2000), Wier et al. (2009), and Clifton 

and Kreamer-Fults (2007) transformed the dependent variable from count-data to 

continuous data in order to apply OLS regression model, assuming the approximate 

normal distribution for the dependent variable. However, when the crash event is 

relatively rare and the mean is low, the transformation of a count variable to a 

continuous one may draw incorrect inferences (Quddus, 2008). To address this issue, 

recent studies have employed the count-data regression models, including the Poisson, 

negative binomial, random-effects, etc., preserving the integer attribute of count data 

(Cottrill & Thakuriah, 2010; Dumbaugh et al., 2013; Ukkusuri, Hasan, & Aziz, 2011). 

More detailed information of methodology will be discussed in the following Chapter, 

and only brief review is described in this chapter. 

The Poisson model is the basic approach for most of the count-data regression 

models. In the Poisson models, the probability of traffic accidents is estimated by 

specifying the Poisson parameters to be explanatory variables (Poch & Mannering, 

1996). Although the Poisson models have been used for traffic crash analyses as a 

starting point, it cannot handle the data which has over- or under-dispersion because the 
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Poisson model restricts the mean and variance to be equal (Lord & Mannering, 2010).1 

To overcome the dispersion issues, various methods have been derived from the Poisson 

model, including the negative binomial approach. 

In addition to the integer nature, the count data has another attribute which 

needed more careful attention, called spatial correlation. This is because if roadways 

where crashes occur are spatially close, they may share unobserved effects, setting up a 

correlation of disturbances (Lord & Mannering, 2010). Thus, to account for the 

relationship between close spatial units, random-effects methodologies have been 

employed in conventional count-data regression models. Lord and Mannering (2010) 

explained the random-effects models as follows: “To account for such correlation, 

random-effects models (where the common unobserved effects are assumed to be 

distributed over the spatial/temporal units according to some distribution and shared 

unobserved effects are assumed to be uncorrelated with explanatory variables) … can be 

considered.” In the same vein, Ukkusuri et al. (2011) used the negative binomial 

regression model with random-effects to predict pedestrian crash frequencies at the 

census tract level, controlling the demographic data, land use patterns, and traffic system 

characteristics. These count-data regression models can be applied to examine the 

frequency of crashes at both an area-wide and a specific entity (street segment or 

intersection) level. 

                                                 

1 Over-dispersion happens when the variance of cash counts exceeds the mean value. On the contrary to 

this, under-dispersion is that the mean of crash counts is greater than the variance (Lord & Mannering, 

2010). 



 

20 

As well as the count-data regression models for the crash frequency analyses, 

researchers also used logistic regression models to predict the probability of crash 

events, and identify the effects of contributing factors to traffic crash risk. In this 

method, crash events were treated as a binary data (i.e., 1=Yes; 0=No). Several studies 

used logistic regression models to examine the probability of traffic crashes and the 

influence of the risk factors (Al-Ghamdi, 2002; Yan, Radwan, & Abdel-Aty, 2005; Yu, 

2015). For the logistic regression model, the parameter is usually estimated by the 

maximum likelihood method. However, for the binary dependent variables with rare 

events, it is difficult to explain and predict because of the biased probability resulted 

from the conventional logistic regression (King & Zeng, 2001). Also, in this rare event 

analysis, a failure of the likelihood maximization to convergence issue in logistic 

regression, known as complete separation, commonly occurs (Allison, 2008). To account 

for this issue, recent literature have used Firth’s penalized likelihood method, instead of 

the maximum likelihood method for the standard logistic regression, not only to reduce 

bias in the parameter estimates, but also to address the complete or quasi-separation (De 

Ceunynck et al., 2013; Firth, 1993; Gim & Ko, 2016; Martin, Holden, Chen, & Quinlan, 

2006; Mattos, Grzebieta, Bambach, & McIntosh, 2014; Polders, Daniels, Hermans, 

Brijs, & Wets, 2015).2 

The previous literature has examined the frequency and probability of crashes at 

diverse geographic units, both at the macro and the micro scale levels. Some studies 

                                                 

2 A complete or quasi-separation happens when the outcome variable separates a predictor variable or a 

combination of predictor variable completely or to certain degree (Bruin, 2006).  
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used a relatively large scale as a unit of analysis, such as census tracts (LaScala et al., 

2000; Ukkusuri et al., 2011; Wier et al., 2009) and independent school districts 

(Rothman, Macarthur, To, Buliung, & Howard, 2014); but some others explored smaller 

levels, such as roadway segments (Ma, Kockelman, & Damien, 2008; Qin, Ivan, & 

Ravishanker, 2004), intersections (Bao & Boyle, 2009; Lee & Abdel-Aty, 2005; Poch & 

Mannering, 1996), and a certain vicinity (e.g., 0.25-mile, 0.5-mile, 1-mile, etc.) of 

crashes or facilities (Abdel-Aty, Chundi, & Lee, 2007; Clifton & Kreamer-Fults, 2007; 

McArthur et al., 2014; Yu & Zhu, 2015). When using macro-level units to examine the 

area-wide traffic crashes with aggregate information at the macro level, we had to lose 

the disaggregated finer information of specific units of area (Galster, Tatian, & Smith, 

1999; Woo, Joh, & Van Zandt, 2015). On the other hand, the micro level allows 

researchers to use disaggregated information, but one challenge is that comparison of the 

risk between selected area and beyond the specific area is difficult. For example, when 

researcher examines the risk of pedestrian crashes at the specific area, such as 0.25-mile 

around schools, it would be hard to compare the risk between the specific area of schools 

and beyond those specific areas. 

To overcome these limitations, some literature used various geographic scales at 

the same time. Zhu and Lee (2008) evaluated social disparity issues in overall 

walkability and pedestrian safety to support children walking to school at the macro 

(school’s attendance area) level as well as street segment level. Nevertheless, the 

school’s attendance area is too large to predict more specific risks of pedestrian crashes, 

and also to represent the socio-demographic characteristics of the neighborhood around 
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schools. Also, their empirical methodologies primarily focused on the bivariate analysis 

(simple regression model) which cannot control the effects of other contributing factors. 

Zahabi, Strauss, Manaugh, and Miranda-Moreno (2011) used five different sizes 

of buffer zones around the accident locations to identify the relationship between the 

built environmental factors and pedestrian/cyclist crashes. Mitra and Buliung (2012) also 

explored correlation between built environment and active school transportation, using 

different geographic scales (four buffer zones, Census dissemination area, and traffic 

analysis zone). However, this literature focused only on general pedestrian or cyclist 

crashes and/or active transportation, thereby questions concerning child pedestrian 

crashes and school-aged children’s traffic safety around school areas still remain. 

Although several literatures has found the effects of various contributing factors 

to traffic injuries, only few of them specifically studied the child pedestrian safety 

around school areas to understand the social equity issues. This paper builds upon the 

previous literature, examining the risk of child pedestrian crashes at both macro (census 

tract) and micro (street segment) levels. Figure 1 shows a conceptual framework that 

organizes the relationship between influencing factors and pedestrian-vehicle crashes 

involving school-aged children. Based on the previous literature, three major factors –

built environments, traffic exposure, and neighborhood characteristics– are assumed to 

be related to pedestrian crashes. To identify whether child pedestrian crashes occurred 

less around schools, this paper compares the frequency of the crash between the vicinity 

of schools and beyond that areas, using random-effects Poisson regression model which 

may address the unobserved spatial heterogeneity at the area level. Also, examining the 
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specific differences of contributing factors at street segment level, this paper identifies 

whether and how the risk of child pedestrian crashes varies by socio-demographic 

characteristics of neighborhood around schools. 

 

 

Figure 1 Conceptual framework 
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CHAPTER III 

METHODS 

 

III.1. Study Area 

 

In 2011, Texas was the top-ranked state for traffic crash fatality in children aged 

14 and younger; a total of 119 children died in Texas due to traffic crashes, while the 

national average by state was 22.4 (NHTSA, 2013). In Austin, Texas, there were 71 

traffic fatalities in all age groups in 2013, and pedestrians comprised 29.6% of those 

fatalities. The fatality rate per 100,000 population was 2.37 in Austin, and this number is 

greater than that of the state of Texas, 1.81 (NHTSA, 2015). Furthermore, the data for 

pedestrian crashes between 2010 and 2014, provided by the Texas Department of 

Transportation (TxDOT), shows that among 33 urbanized areas in Texas, Austin was 

ranked in the fifth place for total number of pedestrian crashes in children aged between 

5 and 19 (see Appendix Table A - 1).3 However, there is limited understanding about 

whether school-aged child pedestrian crashes occurred near the school area because the 

report only showed the entire city of Austin region. The goal of this paper is to analyze 

child pedestrian crashes within Austin, Texas, focusing on the neighborhoods around 

schools to identify whether the vicinity of schools are safer than beyond the vicinity, as 

                                                 

3 Urbanized areas were selected based on the 2010 U.S. Census data. The pedestrian crash data used in this 

paper were collected by TxDOT, and provided by the Texas A&M Transportation Institute (TTI). 
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well as to determine whether and how the distribution of child pedestrian crashes varies 

by socio-demographic characteristics of the neighborhood around schools. 

 

III.1.1. Unit of Analysis 

 

To examine child pedestrian crashes around schools in the study area, public 

schools at all levels were selected within the Austin Independent School District (AISD). 

In 2013, AISD operated 119 regular campuses (84 elementary schools, 18 middle 

schools, and 17 high schools) and 10 special campuses/alternative education centers. 

Among these 129 schools, 124 schools were selected and five schools/campuses were 

excluded due to the lack of information or very small enrollment.4 One of the objectives 

of this paper is to identify whether the vicinity of schools are safer from child pedestrian-

vehicle collisions than areas outside of the vicinity. Hereafter, the vicinity of schools is 

defined as “school-neighborhood”, and the outside area of the vicinity is defined as 

“beyond school-neighborhood.” 

The previous literature that examined traffic crashes at the vicinity of certain 

point, such as school location or point of accident, used a particular distance of circular 

(radial) buffer zone (Clifton & Kreamer-Fults, 2007; Mitra & Buliung, 2012; Zahabi et 

al., 2011). While the distance used in previous literature varies, a quarter-mile or 400m 

                                                 

4 National Center for Education Statistics (NCES) has no information on the 2013 enrollment for Allan 

Elementary (Pre-K Program), IDEA Allan In-District Charter School, IDEA Allan 6-12 (In-District 

Charter School), and the redesigned Learning Support Center. The Elementary Disciplinary Alternative 

Education Program was also excluded because it had only 4 students in 2013. 
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was commonly used and represents the general walking distance of people to get to their 

destinations (Clifton & Kreamer-Fults, 2007; Ewing, 1996; Ewing & Dumbaugh, 2009; 

McCormack, Giles-Corti, & Bulsara, 2008; McMillan, 2007; O'Sullivan & Morrall, 

1996; Yang & Diez-Roux, 2012). Although most of the previous studies used 

conventional circular buffers, this paper created 0.25-mile street network buffers around 

schools to establish the approximate and more accurate area that students can actually 

walk to and from schools. This constitutes a more accurate approach to examining built 

environment and socio-demographic characteristics (Frank, Schmid, Sallis, Chapman, & 

Saelens, 2005). In this paper, the 0.25-mile network buffers around schools were defined 

as the “school-neighborhoods.” This network buffer was created using the network 

analysis network analysis function in ArcGIS. To measure more accurate distances to 

access the school area, 0.25-mile was calculated from the land use parcel that contains a 

school instead of calculating from the point of schools (see Figure 1). 
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Figure 2 The concept of the school-neighborhood and the beyond school-neighborhood 

 

For comparison of child pedestrian safety between school-neighborhoods and 

beyond school-neighborhoods, this paper also utilized U.S. census tracts as the 

counterpart of the school-neighborhoods. When they are overlapped, this paper excluded 

the network buffer area from the census tracts to ensure the accuracy of comparison. 

Hence, for the “beyond school-neighborhoods,” this paper used census tracts which have 

no school-neighborhoods and parts thereof (i.e., the remaining parts of census tracts) 

within the study area. Among the 218 census tracts that comprise Travis County, only 

178 census tracts that overlapped with the AISD area were selected (see Figure 2). As a 
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result, to identify child pedestrian safety around schools, two different area-wide scales 

were used in this paper: 124 school-neighborhoods; and 178 beyond school-

neighborhoods. 

 

 

Figure 3 The concept of selecting census tracts overlapped with AISD 

 

Additionally, this paper also attempted to examine whether and how the 

differences in factors influencing child pedestrian crashes vary by neighborhood 

characteristics. For more specific information of accident related variables, 

disaggregated information was obtained by utilizing the street-segment units (see Figure 

3). Unlike the area-wide scales, street segments allow the use of more detailed 
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information, such as segment length, the presence of sidewalks, crosswalks, or bus stops, 

and dominant land uses at the segment level. With this finer information, this paper 

compared the crash related factors among different neighborhoods after dividing 

segments into each neighborhood category. At the street segment level, road 

environment was measured by using 100-feet buffers along each street segment. This 

buffer distance was determined considering the minimum width of lanes, shoulders, and 

medians for different road classes (i.e., freeways/interstate highways, arterial roads, city 

collectors, and local roads). Also, the 100-feet is wide enough to measure detailed 

roadway information listed above as well as being reasonably narrow to avoid excessive 

overlaps among the street buffers with each other (Yu, 2015).5 

 

                                                 

5 The highway has at least 2 lanes in each direction with minimum 12 feet lane width. The widths of 

shoulders for highways are, on average, 4 to 12 feet. For this case, the minimum total width would be 96 

feet (Yu, 2015). Thus, a hundred feet is reasonable distance to cover the roadway environment for all road 

classes. 



 

30 

 

Figure 4 The concept of units of analysis (school-neighborhood, beyond school-

neighborhood, and street segment) 

 

III.2. Data Description 

 

The pedestrian crash data used in this paper was collected from 2010 through 

2014. In the entire state of Texas, the dataset included a total of 25,376 records of 

pedestrian crashes with general information such as X-Y coordinates of accident point, 

crash date, and pedestrian age. Among the records, this paper extracted the crashes that 

occurred within the city of Austin for geocoding crash locations on the map to estimate 

the spatial distribution of pedestrian crashes. To identify child pedestrian crashes, this 

paper used a specific age group, ages 5 through 19, which has been defined as school-
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aged children in the previous literature (DiMaggio & Li, 2013; Linakis, Amanullah, & 

Mello, 2006; Miller & Spicer, 1998). The distribution of pedestrian crashes in school-

aged children within the study area is shown in Figure 4. Overall, child pedestrian 

crashes were concentrated in downtown Austin which potentially implies spatial 

autocorrelation. At the area-wide (i.e., school-neighborhood and beyond school-

neighborhood) level, the frequency of pedestrian crashes in school-aged children was 

aggregated for each neighborhood. However, at the street segment level, the crashes 

were not aggregated, but transformed into binary-data which present the occurrence of 

the crashes on the segment (1: Yes; 2: No) to examine the probability of pedestrian crash 

risk. Among the total 5,703 street segments within the school-neighborhoods, only 23 

segments (0.4%) had two or more child pedestrian crashes thereby this small variance 

did not influence the result. 

Among the total number of street segments within the school-neighborhoods, 103 

segments have at least one pedestrian crash involving school-aged children. Meanwhile, 

there are 687 segments that overlap two or more times with different school network 

buffers, when the schools are close enough to create overlapped network buffers. In this 

case, the overlapped segments were counted twice or more and included in the 

regression models, because the corresponding school-neighborhood and roadway 

environments may influence on the crashes that occur on these segments (Yu, 2015). 

Also, the consistent tests that used both the unique-segment dataset (which excluded 

overlapped segments) and the double or more counted segment dataset showed 
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acceptably similar results, implying that the regression models including double or more 

counted segments are not biased.  

 

 

Figure 5 2010-2014 child pedestrian crashes in the study area 

 

Along with child pedestrian crash data, built environment and socio-demographic 

characteristics were examined to analyze the relationship between the crashes and 

contributing factors. Table 1 shows the measurements, descriptive statistics, and data 

sources for dependent and independent variables at the area-wide (neighborhood) scale. 

All data for built environmental variables, except the bus stop data, were obtained from 
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the Open Data Portal of the city of Austin.6 The transit accessibility is derived from the 

density of Capital Metro bus stops, using the data obtained from Capital Metro-Austin 

Public Transit. At the area-wide scale analysis, block length was measured from the 

mean length of street segments within each neighborhood (Cervero & Kockelman, 1997; 

Dill, 2004). All other built environments were also aggregated into percentage or density 

at the neighborhood level. 

Additionally, to determine whether and how school-aged child pedestrian crashes 

vary by neighborhood characteristics within the school-neighborhoods, this paper 

defined “high-Hispanic school-neighborhood” as those neighborhoods with a higher 

proportion of Hispanic population than the study area average (34.36%). “Low-income 

school-neighborhood” was also defined as school-neighborhoods with median household 

income below than 50% of area median household income in 2014 ($37,700).7 

 

 

 

 

 

                                                 

6 ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.html  
7 The U.S. Department of Housing and Urban Development (HUD) defined “Low and Moderate Income” 

under the Community Development Block Grant program. “For CDBG, a person is considered to be of 

low income only if he or she is a member of a household whose income would qualify as "very low 

income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are 

based on 50% of area median.” In 2014, HUD limited $37,700 as a very low income in Austin-Round 

Rock-San Marcos, TX MSA area (https://www.huduser.gov/portal/datasets/il/il2014/2014summary.odn). 

ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.html


 

34 

The 2014 American Community Survey (ACS) 5-year estimates were used for 

socio-demographic information, such as population and income level. For the beyond 

school-neighborhood that does not overlap with any school-neighborhoods, the ACS 

census tract data were utilized without conflicts. However, it was difficult for both the 

school-neighborhood and the beyond school-neighborhood overlapping with at least one 

school-neighborhood to keep the original census tract information, due to the mismatch 

of areal shape. To address this problem and estimate more accurate demographic 

information, this study employed the network length binary dasymetric areal 

interpolation, which produced precise results in previous research (Qiu, Zhang, & Zhou, 

2012). The binary dasymetric method uses ancillary data (such as land use and street 

length) that provide a binary divide between populated and unpopulated units. In this 

paper, street network was used as a binary dasymetric interpolation to distribute 

population only to populated units (Qiu et al., 2012). 
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Table 1 Definition and descriptive statistics for study variables at area-wide level 

Variable Measurement 

Descriptive 

Statistics Data Source 

Dependent Variable 

School-aged (5-19) child 

pedestrian crashes 

Total number of school-aged 

child pedestrian crashes within 

the neighborhood (2010-2014) 

Obs.: 302a 

Mean: 0.96 

S.D.: 1.96b 

TxDOT 

Traffic Exposure 

Area of units 

An area of school-

neighborhoods and beyond 

school-neighborhoods 

Obs.: 302 

Mean: 1.53 

S.D.: 5.47 

Census tract: 

2014 US Census 

Bureau 

Population density 
A thousand population / 

neighborhood area (sq. mi.) 

Obs.: 302 

Mean: 4.90 

S.D.: 3.53 

2014 ACS 5-year 

estimates 

School-aged child population 

density 

Population aged 5-19 / 

neighborhood area 

Obs.: 302 

Mean: 866.11 

S.D.: 1,144.59 

Bus stop density 

Total number of bus stops 

within the neighborhood / 

neighborhood area 

Obs.: 302 

Mean: 21.02 

S.D.: 22.25 

Capital Metro-

Austin Public 

Transit 

Neighborhood Characteristics 

School-neighborhood 

Network buffer area with 

public school 

(Yes: 1; No: 0) 

Obs.: 302 

1: 124 (41.1%) 

0: 178 (58.9%) 

2013 NCES 

High-Hispanic School-

neighborhood 

School-neighborhood with 

Hispanic population more than 

34.36% 

(Yes: 1; No: 0) 

Obs.: 302 

1: 29 (23.4%) 

0: 95 (76.6%) 

2014 ACS 5-year 

Estimates 
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Table 1 Continued 

Variable Measurement 

Descriptive 

Statistics Data Source 

Neighborhood Characteristics - Continued 

Low-income School-

neighborhood 

School-neighborhood with 

median household income 

below than 50% of area 

median household income 

(Yes: 1; No: 0) 

Obs.: 302 

1: 62 (50.0%) 

0: 62 (50.0%) 

HUD FY2014 

Income Limits 

Summary 

Median household income 
A thousand dollars median 

household incomec 

Obs.: 302 

Mean: 55.79 

S.D.: 31.90 

2014 ACS 5-year 

Estimates 

Independent Variables (contributing factors – built environment in the neighborhood)  

Mean block length 

Total street lengths (mi.) / 

number of street segments 

within the neighborhood 

Obs.: 302 

Mean: 0.07 

S.D.: 0.03 

The city of 

Austin 

% of high-speed roads 

[Total lengths of high-speed 

roads (≥ 35 mph) / total street 

lengths in the neighborhood] × 

100 

Obs.: 302 

Mean: 52.27 

S.D.: 18.23 

% of missing sidewalks 

[Total lengths of street 

segments missing sidewalks / 

(2 × total street segment 

lengths in the neighborhood)] 

× 100 

Obs.: 302 

Mean: 43.90 

S.D.: 22.67 

Crosswalk density 

Total number of crosswalks 

within the neighborhood / 

neighborhood area 

Obs.: 302 

Mean: 104.21 

S.D.: 112.21 

Intersection density 

Total number of intersections 

within the neighborhood / 

neighborhood area 

Obs.: 302 

Mean: 95.24 

S.D.: 53.27 
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Table 1 Continued 

Variable Measurement 

Descriptive 

Statistics Data Source 

Independent Variables (contributing factors – built environment in the neighborhood) - Continued 

Land use diversity Entropy indexd 

Obs.: 302 

Mean: 0.66 

S.D.: 0.14 

The city of 

Austin 

% of residential use 

(Land use k area in the 

neighborhood/ neighborhood 

area) × 100 

Obs.: 302 

Mean: 49.58 

S.D.: 21.83 

% of commercial use 

Obs.: 302 

Mean: 6.51 

S.D.: 8.55 

% of office use 

Obs.: 302 

Mean: 4.09 

S.D.: 7.12 

% of industrial use 

Obs.: 302 

Mean: 3.67 

S.D.: 7.83 

% of park use 

Obs.: 302 

Mean: 6.86 

S.D.: 10.55 

a. The number of observations 
b. Standard Deviation 

c. Median household income of each neighborhood was measured at census tract level. For school-

neighborhood, median household income refers to that of census tract where the school is located. 

d. Entropy index of land use diversity = −
∑ (𝑝𝑘 ln 𝑝𝑘)𝑘

ln 𝑁
, where 𝑝𝑘 =

Land Use (𝑘)Area (sq.mi.)

Target Area (sq.mi.)
 (Kockelman, 

1997; Leslie et al., 2007; Zhang, 2004) 
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Table 2 Definition and descriptive statistics for included variables at road segment level 

Variable Measurement 

Descriptive 

Statistics Data Source 

Dependent Variable 

School-aged (5-19) child 

pedestrian crashes 

The occurrence of school-aged 

child pedestrian crashes on the 

segment 

(Yes: 1; No: 0) 

Obs.: 5,703a 

1: 103 (1.8%) 

0: 5,600 (98.2%) 

TxDOT 

Traffic Exposure 

Population density 

A thousand population in the 

school-neighborhood / 

neighborhood area 

Obs.: 5,703 

Mean: 5.69 

S.D.b: 2.47 

2014 ACS 5-year 

estimates 

School-aged child population 

density 

Population aged 5-19 in the 

school-neighborhood / 

neighborhood area 

Obs.: 5,703 

Mean: 995.86 

S.D.: 685.60 

Bus stop density – street 

segment level 

Total number of bus stops on 

the segment / segment length 

Obs.: 5,703 

Mean: 0.19 

S.D.: 0.71 

Capital Metro-

Austin Public 

Transit 

Neighborhood Characteristics 

High-Hispanic School-

neighborhood 

Segment on the school-

neighborhood with Hispanic 

populations more than 34.36% 

(Yes: 1; No: 0) 

Obs.: 5,703 

1: 1,323 (23.2%) 

0: 4,380 (76.8%) 

2014 ACS 5-year 

Estimates 

Low-income School-

neighborhood 

Segment on the school-

neighborhood with median 

household income below than 

50% of area median household 

income 

(Yes: 1; No: 0) 

Obs.: 5,703 

1: 1,800 (31.6%) 

0: 3,903 (68.4%) 

HUD FY2014 

Income Limits 

Summary 

Median household income 
A thousand dollars median 

household incomec 

Obs.: 5,703 

Mean: 53.36 

S.D.: 27.16 

2014 ACS 5-year 

Estimates 
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Table 2 Continued 

Variable Measurement 

Descriptive 

Statistics Data Source 

Independent Variables (contributing factors – road environments at segment level) 

Block length 
Street centerline lengths in 

100m 

Obs.: 5,703 

Mean: 1.01 

S.D.: 0.78 

The city of 

Austin 

High-speed roads 

High-speed (≥ 35 mph) 

segment 

(Yes: 1; No: 0) 

Obs.: 5,703 

1: 2,900 (49.2%) 

0: 2,803 (50.8%) 

% of missing sidewalks 

[Total lengths of street 

segments missing sidewalks / 

(2 × total street segment 

lengths)] × 100 

Obs.: 5,703 

Mean: 1.01 

S.D.: 0.78 

Crosswalk density 
Total number of crosswalks on 

the segment / segment length 

Obs.: 5,703 

Mean: 0.66 

S.D.: 1.07 

Land use diversity Entropy indexd 

Obs.: 5,703 

Mean: 0.39 

S.D.: 0.36 

The city of 

Austin 
% of residential use 

(Total number of land use k on 

the segment / segment length) 

× 100 

Obs.: 5,703 

Mean: 80.25 

S.D.: 34.15 

% of commercial use 

Obs.: 5,703 

Mean: 7.76 

S.D.: 20.58 
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Table 2 Continued 

Variable Measurement 

Descriptive 

Statistics Data Source 

Independent Variables (contributing factors – road environments at segment level) - Continued 

% of office use 

(Total number of land use k on 

the segment / segment length) 

× 100 

Obs.: 5,703 

Mean: 4.59 

S.D.: 15.09 

The city of 

Austin 
% of industrial use 

Obs.: 5,703 

Mean: 1.26 

S.D.: 7.75 

% of park use 

Obs.: 5,703 

Mean: 2.29 

S.D.: 11.09 

Independent Variables (contributing factors – built environment at neighborhood level) 

Crosswalk density 

Total number of crosswalks 

within the neighborhood 

where the segment is located / 

neighborhood area 

Obs.: 5,703 

Mean: 184.20 

S.D.: 141.11 

The city of 

Austin 

Intersection density 

Total number of intersections 

within the neighborhood 

where the segment is located / 

neighborhood area 

Obs.: 5,703 

Mean: 135.17 

S.D.: 51.06 

Bus stop density 

Total number of bus stops 

within the neighborhood 

where the segment is located / 

neighborhood area 

Obs.: 5,703 

Mean: 66.94 

S.D.: 58.51 

Capital Metro-

Austin Public 

Transit 
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Table 2 Continued 

Variable Measurement 

Descriptive 

Statistics Data Source 

Independent Variables (contributing factors – built environment at neighborhood level) - Continued 

% of residential use 

(Land use k area in the 

neighborhood where the 

segment is located/ 

neighborhood area) × 100 

Obs.: 5,703 

Mean: 43.23 

S.D.: 14.84 

The city of 

Austin 

% of commercial use 

Obs.: 5,703 

Mean: 4.30 

S.D.: 5.59 

% of office use 

Obs.: 5,703 

Mean: 2.69 

S.D.: 5.79 

% of industrial use 

Obs.: 5,703 

Mean: 1.38 

S.D.: 3.82 

% of park use 

Obs.: 5,703 

Mean: 5.56 

S.D.: 9.07 

a. The number of observations; b. Standard Deviation; c. Median household income refers to that of 

census tract where the school is located; d. Entropy index of land use diversity = −
∑ (𝑝𝑘 ln 𝑝𝑘)𝑘

ln 𝑁
, where 

𝑝𝑘 =
Land Use (𝑘)Area (sq.mi.)

Target Area (sq.mi.)
 (Kockelman, 1997; Leslie et al., 2007; Zhang, 2004) 
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III.3. Methods of Statistical Analysis 

 

With these variables, this paper firstly conducted the difference-in-means tests (t-

test) to identify the possible disparity issues in the frequency of pedestrian crashes 

involving school-aged children between the high-Hispanic school-neighborhoods and 

the low-Hispanic school neighborhoods, as well as between the low-income school-

neighborhoods and the high-income school-neighborhoods. While these comparisons are 

reasonable among the school-neighborhoods that have relatively similar areal size, it is 

not acceptable to simply compare the frequency of crashes between school-

neighborhood and beyond school-neighborhood due to the inconsistency of areal size 

(see Table 3). Thus, this paper used multivariate analyses, random-effects Poisson 

regression models, to determine whether the school-neighborhoods are safer than beyond 

school-neighborhoods, controlling for other factors to be constant. 

 

Table 3 An area by neighborhood characteristic 

 
SNa BSNb 

Obs. Mean S.D. Obs. Mean S.D. 

An area (sq. mi.) 124 0.18 0.05 178 2.47 6.98 

a. School-neighborhoods; b. Beyond school-neighborhoods 
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The conventional Poisson regression model predicts the probability 𝑃(𝑦𝑖) of 

having 𝑦𝑖 number of school-aged child pedestrian crashes per 5-year (2010-2014) at 

neighborhood i as follows: 

𝑃(𝑦𝑖) =
exp (−𝜆𝑖)𝜆

𝑖

𝑦𝑖

𝑦𝑖!
               (1) 

where 𝜆𝑖 is the Poisson parameter for neighborhood i, which is equal to expected 

number of school-aged child pedestrian crashes per 5-year (𝐸[𝑦𝑖]) in neighborhood i. 

The Equation 1 can be estimated by specifying the Poisson parameter 𝜆𝑖 as a function of 

explanatory variables. Following is the most common functional form: 

𝜆𝑖 = exp (βX𝑖)                (2) 

where X𝑖 is a vector of explanatory variables and β is a vector of estimable 

parameters. However, Poisson regression model restricts the mean and variance of the 

number of accidents to be equal (𝐸[𝑦𝑖] = 𝑉𝑎𝑟[𝑦𝑖]), consequently drawing incorrect 

inferences (Lord & Mannering, 2010). To address this issue and correct spatial 

correlations, the random-effects models rework the Poisson parameter as follows:  

𝜆𝑖𝑗 = exp(βX𝑖𝑗)exp(𝜂𝑗)               (3) 

where 𝜆𝑖𝑗 is the expected number of child pedestrian crashes for neighborhood i 

belonging to group j (i.e., spatial group expected to share unobserved effects), 𝑋𝑖𝑗 is a 

vector of explanatory variables, β is a vector of estimable parameters, and 𝜂𝑗 is a 

random-effects for observation group j.8 The most common random-effects Poisson 

                                                 

8 In this paper, spatial group j for school-neighborhoods is defined as the census tract where the school is 

located. 
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model assumes that 𝜂𝑗 is randomly distributed across spatial groups, such that exp(𝜂𝑗) is 

gamma-distributed with mean one and variance α (Hausman, Hall, & Griliches, 1984; 

Lord & Mannering, 2010). Thus, the unobserved heterogeneity across different spatial 

groups is accounted by random-effects. With random-effects, Poisson regression has a 

different variance to mean ratio, 1 +
𝜆𝑖𝑗

(1 𝛼⁄ )
, with the conventional one. Using the random-

effects Poisson models, this paper attempted to identify the statistical significance of 

differences in traffic safety between school- and beyond school-neighborhoods, 

controlling for other factors. For this comparison of traffic safety, this paper included a 

set of dummy variable (School-neighborhood variable in Table 1). By comparing the 

direction of these vector variables, the child pedestrian safety around school can be 

interpreted. In the same manner, the frequency of child pedestrian crashes can be 

compared among high- and low-Hispanic school-neighborhoods; and low- and high-

income school-neighborhoods, by using another set of dummy variables (see 

neighborhood characteristics variables in Table 1). Also, this paper examine the 

percentage changes in the frequency of child pedestrian crashes by each statistically 

significant contributing factors through the interpretation of the incidence rates ratio, 

exp(𝛽𝑘𝛿), which can be derived as follows (Long & Freese, 2006): 

Ε(𝑦|Χ, 𝑥𝑘 + 𝛿)

Ε(𝑦|Χ, 𝑥𝑘)
= 𝑒𝛽𝑘𝛿               (4) 

where Ε(𝑦|Χ, 𝑥𝑘) is the expected count of child pedestrian crashes for a given Χ, 

which is explicitly noted as the value of 𝑥𝑘 variable, and Ε(𝑦|Χ, 𝑥𝑘 + 𝛿) is the expected 
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count after changes in 𝑥𝑘 of any amount 𝛿. This can be computed the percentage change 

in the expected count for a 𝛿-unit change in 𝑥𝑘, holding other variables constant: 

100 × (𝑒𝛽𝑘𝛿 − 1)                (5) 

Long and Freese (2006) suggested the interpretation as follows: “Percentage 

change for 𝛿: For a change of 𝛿-unit in 𝑥𝑘, the expected count of the crash changes by 

100 × (𝑒𝛽𝑘𝛿 − 1)%, holding other variables constant.” 

On the other hand, Table 2 shows the variables used for the analyses at the 

specific geographic scales. To use disaggregated finer information, such as road 

environments, this paper also included the analyses of street segment scale for school-

neighborhood. By using this detailed information, the differentials in crash contributing 

factors were examined across the school-neighborhoods with the information of their 

Hispanic proportion and median household income level. Thus in the street segment 

level analyses, only the street segments within the network buffers were used to 

specifically compare the differentials among the school-neighborhoods: all the beyond 

school-neighborhoods were excluded from the segment scale analyses. 

The crash data used in this paper showed rare frequency of school-aged 

pedestrian crashes in the Austin area. Thus, among the school-neighborhoods, there are 

many street segments that have a similar set of predictor variables, so that the outcome 

variable will separate the explanatory variables into different groups (King & Zeng, 

2001). When the outcome variable separates a predictor variable or a combination of 

predictor variables completely or to certain degree, the complete or quasi-separation 

issue happened, resulting in a failure of the likelihood maximization to convergence 
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problem in logistic regression. To overcome this separation issue and predict an accurate 

probability of school-aged child pedestrian crashes at the street segment level, this paper 

applied the logistic regression with Firth’s penalized likelihood, avoiding a separation 

(Firth, 1993; Martin et al., 2006; Mattos et al., 2014). The following is the formulation 

for the fitted logistic regression models for this paper (Polders et al., 2015): 

logit(𝑃) = ln (
𝑝

1−𝑝
) = β0 + β1X1 + β2X2 + ⋯ + β𝑘X𝑘               (6) 

where P is probability of child pedestrian crashes on the segment, X𝑘 is 

contributing factors to the crashes, and β𝑘 is partial logistic regression coefficient. Odds 

ratios, exp(β𝑘), were also calculated for each factor to make the interpretation more 

meaningful. As in the random-effects Poisson model, the odds ratios can be transformed 

into the percentage change (Long & Freese, 2006): 

percentage change in odds = 100 × (exp (𝛽𝑘) − 1)                (7) 

Long and Freese (2006) suggested the interpretation of this percentage change as 

for a unit change in X𝑘, the odds are expected to change by 100 × (exp (𝛽𝑘) − 1)%, 

holding all other variables constant. The results of empirical analyses will be presented 

in the following chapter. 
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CHAPTER IV 

RESULTS 

 

Table 4 shows the result of the difference-in-mean test (t-test) of mean number of 

pedestrian crashes involving school-aged children between the high-Hispanic and low-

Hispanic school-neighborhoods. The school-neighborhoods were divided into two 

groups by proportion of Hispanic population in the neighborhood (i.e., high-Hispanic 

and low-Hispanic school-neighborhoods). The t-test for these groups shows that there is 

potential disparity in the frequency of school-aged child pedestrian crashes. While the 

mean of child pedestrian crashes for high-Hispanic school-neighborhood was 2.91, that 

for low-Hispanic school-neighborhood was 0.62 (p < 0.01). 

 

Table 4 The result of t-test between high-Hispanic and low-Hispanic school-

neighborhoods 

 
HHSNa LHSNb 

Mean 

difference Obs. Mean S.D. Obs. Mean S.D. 

School-aged child 

pedestrian crashes 
23 2.91 4.45 101 0.62 1.57 2.29** 

* p < 0.05; ** p < 0.01 (two-tailed test); a. High-Hispanic school-neighborhoods; b. 

Low-Hispanic school-neighborhoods 

 

Similar result of t-test for mean frequency of child pedestrian crashes between 

low-income and high-income school-neighborhoods is presented in Table 5. 
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Table 5 The result of t-test between low-income and high-income school-neighborhoods 

 
LISNa HISNb 

Mean 

difference Obs. Mean S.D. Obs. Mean S.D. 

School-aged child 

pedestrian crashes 
38 1.84 3.24 86 0.70 2.05 1.14* 

* p < 0.05; ** p < 0.01 (two-tailed test); a. Low-income school-neighborhoods; b. 

High-income school-neighborhoods 

 

In like manner with the t-test for Hispanic school-neighborhoods, the mean of 

child pedestrian crashes was higher in the low-income school-neighborhood than its 

counterpart, possibly implying the disparity in the crashes between the two 

neighborhoods (p < 0.05). These findings presumably indicate the unequal distribution 

of school-aged child pedestrian crashes across the school-neighborhoods. To determine 

more statistically accurate results as well as to identify the child pedestrian safety in the 

school-neighborhoods, random-effects Poisson regression models were applied.9  

 

 

 

 

 

 

                                                 

9 Multicollinearity test was conducted with VIF tests. 
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Model 1 included two sets of dummy variables, such as school-neighborhood and 

high-Hispanic school-neighborhood, while Model 2 included school-neighborhood and 

low-income school-neighborhood. The difference in frequency of child pedestrian 

crashes between school-neighborhood and beyond school-neighborhood can be 

identified consistently in Model 1 and Model 2, by interpreting the school-neighborhood 

variable (see Table 6). The results of likelihood-ratio test of α and Akaike’s and 

Schwarz’s Bayesian information criteria (AIC and BIC) tests for both models indicate 

that the panel estimators with random-effects are better than the pooled (Poisson) 

estimators: the outputs of AIC and BIC for random-effect Poisson regression models are 

smaller than simple Poisson models. 

In both Model 1 and Model 2, school-neighborhood variable showed a negative 

coefficient, meaning that school-aged child pedestrian crashes occur less in the school-

neighborhoods. In the school-neighborhood, the expected number of child pedestrian 

crashes decreased by around 50%, holding other variables constant (IRR = 0.483, p < 

0.01 in Model 1; IRR = 0.488, p < 0.05 in Model 2).
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Table 6 The results of random-effects Poisson regression for identifying the difference in the frequency of school-aged child 

pedestrian crashes between high-Hispanic and low-Hispanic school-neighborhoods 

 The expected number of school-aged (5-19) child pedestrian crashes 

 Model 1 Model 2 

Variables βa IRR (C.I.)b zc βa IRR (C.I.)b zc 

Neighborhood Characteristics 

School-neighborhood -0.727** 
0.483 

(0.303, 0.770) 
-3.06 -0.718* 

0.488 

(0.280, 0.850) 
-2.53 

High-Hispanic School-

neighborhood 
1.029** 

2.798 

(1.642, 4.768) 
3.78    

Low-income School-

neighborhood 
   

0.610* 1.840 

(1.035, 3.269) 

2.08 

Median household income -0.004 
0.996 

(0.987, 1.005) 
-0.89 -0.002 

0.998 

(0.988, 1.009) 
-0.32 

Traffic Exposure 

Population density 0.093 
1.098 

(0.994, 1.211) 
1.85 0.122* 

1.130 

(1.018, 1.254) 
2.30 

School-aged child 

population density 
0.000 

1.000 

(1.000, 1.000) 
-1.04 0.000 

1.000 

(1.000, 1.000) 
-1.36 
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Table 6 Continued 

 The expected number of school-aged (5-19) child pedestrian crashes 

 Model 1 Model 2 

Variables βa IRR (C.I.)b zc βa IRR (C.I.)b zc 

Traffic Exposure - Continued 

Area of units -0.019 
0.981 

(0.903, 1.065) 
-0.45 -0.022 

0.978 

(0.896, 1.068) 
-0.50 

Bus stop density 0.004 
1.004 

(0.996, 1.013) 
1.00 0.004 

1.004 

(0.995, 1.012) 
0.83 

Built environments (neighborhood level) 

Mean block length -4.117 
0.016 

(0.000, 2035.108) 
-0.69 -6.345 

0.002 

(0.000, 254.872) 
-1.05 

% of high-speed roads -0.006 
0.994 

(0.979, 1.009) 
-0.82 -0.009 

0.991 

(0.977, 1.006) 
-1.16 

% of missing sidewalks 0.006 
1.006 

(0.997, 1.015) 
1.33 0.003 

1.003 

(0.994, 1.012) 
0.63 

Crosswalk density 0.002 
1.002 

(0.999, 1.005) 
1.46 0.002 

1.002 

(0.999, 1.005) 
1.16 
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Table 6 Continued 

 The expected number of school-aged (5-19) child pedestrian crashes 

 Model 1 Model 2 

Variables βa IRR (C.I.)b zc βa IRR (C.I.)b zc 

Built environments (neighborhood level) – Continued 

Intersection density 0.002 
1.002 

(0.995, 1.010) 
0.60 0.004 

1.004 

(0.996, 1.011) 
0.92 

Land use diversity 0.258 
1.294 

(0.259, 6.461) 
0.31 -0.087 

0.916 

(0.178, 4.727) 
-0.10 

% of residential use -0.024** 
0.976 

(0.962, 0.992) 
-3.03 -0.028** 

0.972 

(0.957, 0.988) 
-3.45 

% of commercial use 0.040** 
1.041 

(1.018, 1.063) 
3.61 0.035** 

1.036 

(1.013, 1.059) 
3.15 

% of office use -0.033* 
0.967 

(0.936, 0.999) 
-2.00 -0.041* 

0.960 

(0.930, 0.991) 
-2.51 

% of industrial use 0.023 
1.023 

(0.996, 1.051) 
1.67 0.021 

1.022 

(0.994, 1.050) 
1.54 

% of park use -0.002 
0.998 

(0.979, 1.018) 
-0.17 0.002 

1.002 

(0.983, 1.021) 
0.21 
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Table 6 Continued 

 The expected number of school-aged (5-19) child pedestrian crashes 

 Model 1 Model 2 

Variables βa IRR (C.I.)b zc βa IRR (C.I.)b zc 

Intercept 0.342 
1.408 

(0.132, 15.023) 
0.28 0.963 

2.621 

(0.239, 28.769) 
0.79 

Observations 302   302   

LR test of α = 0d 106.02 (0.000) 

 

 124.79 (0.000) 

 

 

* p < 0.05; ** p < 0.01 (two-tailed test) 
a. Coefficient; b. Incidence Rate Ratio (95% Confidence Interval); c. z-statistics; d. Likelihood-ratio chi-square test. Prob ≥  χ̅2 

is shown in parentheses 
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Furthermore, Model 1 indicates a statistically significant disparity in the 

frequency of child pedestrian crashes between high-Hispanic and low-Hispanic school-

neighborhoods at the 1% level. In the high-Hispanic school-neighborhood, the expected 

number of child pedestrian crashes increased by almost 180%, controlling for other 

variables (IRR = 2.798, p < 0.01). Also, Model 2 implies the child pedestrian safety 

varies by income level of school-neighborhoods: the expected number of child 

pedestrian crashes was greater in the low-income school-neighborhoods by 84%, holding 

other factors constant (IRR = 1.840, p < 0.05). Additionally, in Model 1, certain land 

uses had a statistically significant contribution to child pedestrian crashes in both 

regression models: for an increase of 1% in residential and office uses area in the 

neighborhood, the expected count of the child pedestrian crashes deceased by 2.4% (IRR 

= 0.976, p < 0.01) and 3.3% (IRR = 0.967, p < 0.05), respectively, holding other factors 

constant. In contrast, a one-percentage increase in commercial land use area in the 

neighborhood increased the expected frequency of the crashes by 4.1%, controlling for 

other factors (IRR = 1.041, p < 0.01). Model 2 also represented similar results as the 

Model 1 for land uses (residential use: IRR = 0.972, p < 0.01; office use: IRR = 0.960, p 

< 0.05; and commercial uses: IRR = 1.036, p < 0.01). 
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Table 7 The result of logistic regression for identifying factors influencing the 

probability of school-aged child pedestrian crashes in the school-neighborhoods 

The probability of school-aged (5-19) child pedestrian crashes 

 Model 3 (School-neighborhoods) 

Variables βa OR (C.I.)b zc 

Road environments (segment level) 

Block length (100m) 0.373** 
1.452 

(1.152, 1.830) 
3.16 

High-speed roads 1.379** 
3.971 

(2.041, 7.729) 
4.06 

% of missing sidewalks 0.003 
1.003 

(0.998, 1.009) 
1.22 

Crosswalk density 0.289** 
1.336 

(1.127, 1.583) 
3.33 

Bus stop density -0.118 
0.888 

(0.672, 1.174) 
-0.83 

Land use diversity 0.150 
1.161 

(0.596, 2.262) 
0.44 

% of residential use -0.004 
0.996 

(0.983, 1.008) 
-0.67 

% of commercial use 0.017* 
1.017 

(1.004, 1.030) 
2.53 

% of office use 0.011 
1.011 

(0.994, 1.029) 
1.23 

% of industrial use -0.002 
0.998 

(0.966, 1.030) 
-0.14 

% of park use -0.022 
0.979 

(0.936, 1.023) 
-0.96 
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Table 7 Continued 

The probability of school-aged (5-19) child pedestrian crashes 

 Model 3 (School-neighborhoods) 

Variables βa OR (C.I.)b zc 

Built environments (neighborhood level) 

Crosswalk density -0.002 
0.998 

(0.995, 1.002) 
-0.81 

Intersection density -0.006 
0.994 

(0.985, 1.002) 
-1.48 

% of residential use -0.005 
0.995 

(0.973, 1.017) 
-0.47 

% of commercial use 0.103** 
1.109 

(1.069, 1.150) 
5.56 

% of office use -0.161** 
0.851 

(0.761, 0.952) 
-2.83 

% of industrial use 0.034 
1.035 

(0.961, 1.114) 
0.90 

% of park use -0.001 
0.999 

(0.963, 1.036) 
-0.05 

Traffic exposure 

Population density (1,000 people) 0.285** 
1.329 

(1.115, 1.586) 
3.17 

School-aged child population density 

(1,000 people) 
0.000 

1.000 

(1.000, 1.001) 
0.71 

Bus stop density (neighborhood level) -0.118 
0.888 

(0.672, 1.174) 
-0.83 
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Table 7 Continued 

The probability of school-aged (5-19) child pedestrian crashes 

 Model 3 (School-neighborhoods) 

Variables βa OR (C.I.)b zc 

Neighborhood characteristics 

Median household income ($1,000) -0.012 
0.988 

(0.976, 1.001) 
-1.85 

    

Intercept -6.382** 
0.002 

(0.000, 0.011) 
-6.65 

Observations 5,703   

 
Wald  χ2 (22) = 188.94 (p = 0.000); 

penalized log likelihood = -293.976 

* p < 0.05; ** p < 0.01 (two-tailed test) 
a. Coefficient; b. Odds Ratio (95% Confidence Interval); c. z-statistics 

Model 3. Initial log likelihood: -417.4280; Final log likelihood: -293. 9758; Pseudo 

R2: 0.296 
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Table 8 The result of logistic regression for identifying the differentials in influencing factors the probability of school-aged 

child pedestrian crashes between high-Hispanic (HHSN) and low-Hispanic school-neighborhoods (LHSN) 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 4 (HHSN) Model 5 (LHSN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Road environments (segment level) 

Block length (100m) 0.644** 
1.905 

(1.264, 2.871) 
3.08 0.345* 

1.413 

(1.041, 1.918) 
2.22 

High-speed roads 1.874** 
6.516 

(2.499, 16.989) 
3.83 0.894 

2.446 

(0.830, 7.210) 
1.62 

% of missing sidewalks 0.010** 
1.010 

(1.003, 1.016) 
2.88 -0.010 

0.990 

(0.979, 1.001) 
-1.80 

Crosswalk density 0.463** 
1.589 

(1.239, 2.038) 
3.65 -0.015 

0.985 

(0.712, 1.362) 
-0.09 

Bus stop density -0.544 
0.581 

(0.22, 1.529) 
-1.10 0.164 

1.178 

(0.834, 1.662) 
0.93 

Land use diversity 0.745 
2.106 

(0.635, 6.978) 
1.22 0.397 

1.488 

(0.601, 3.685) 
0.86 

% of residential use -0.015 
0.985 

(0.967, 1.004) 
-1.54 -0.001 

0.999 

(0.980, 1.019) 
-0.10 

% of commercial use -0.014 
0.986 

(0.964, 1.009) 
-1.21 0.023* 

1.024 

(1.004, 1.043) 
2.43 
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Table 8 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 4 (HHSN) Model 5 (LHSN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Road environments (segment level) - Continued 

% of office use -0.003 
0.997 

(0.962, 1.032) 
-0.19 0.017 

1.017 

(0.994, 1.041) 
1.48 

% of industrial use 0.010 
1.010 

(0.976, 1.046) 
0.58 -0.004 

0.996 

(0.954, 1.040) 
-0.17 

% of park use -0.218 
0.804 

(0.581, 1.112) 
-1.32 0.001 

1.001 

(0.969, 1.035) 
0.08 

Built environments (neighborhood level) 

Crosswalk density -0.002 
0.998 

(0.988, 1.008) 
-0.39 -0.010** 

0.990 

(0.983, 0.997) 
-2.78 

Intersection density 0.002 
1.002 

(0.969, 1.037) 
0.13 0.003 

1.003 

(0.991, 1.016) 
0.54 

% of residential use 0.050 
1.052 

(0.964, 1.147) 
1.14 -0.023 

0.977 

(0.945, 1.010) 
-1.37 

% of commercial use 0.136* 
1.145 

(1.001, 1.31) 
1.97 0.121** 

1.128 

(1.073, 1.186) 
4.74 

% of office use 0.222 
1.248 

(0.474, 3.291) 
0.45 -0.151* 

0.860 

(0.761, 0.971) 
-2.43 
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Table 8 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 4 (HHSN) Model 5 (LHSN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Built environments (neighborhood level) - Continued 

% of industrial use 0.001 
1.001 

(0.814, 1.23) 
0.01 0.103 

1.108 

(0.988, 1.243) 
1.76 

% of park use 0.048 
1.049 

(0.941, 1.169) 
0.86 0.021 

1.022 

(0.974, 1.072) 
0.87 

Traffic exposure 

Population density (1,000 people) 0.698* 
2.009 

(1.006, 4.013) 
1.98 0.222 

1.249 

(0.977, 1.595) 
1.78 

School-aged child population density 

(1,000 people) 
-0.002 

0.998 

(0.995, 1) 
-1.85 0.000 

1.000 

(0.999, 1.001) 
-0.80 

Bus stop density (neighborhood level) -0.010 
0.990 

(0.974, 1.007) 
-1.16 0.017* 

1.017 

(1.004, 1.030) 
2.52 

Neighborhood Characteristics 

Median household income ($1,000) 0.053 
1.054 

(0.93, 1.194) 
0.83 -0.021* 

0.979 

(0.962, 0.997) 
-2.32 
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Table 8 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 4 (HHSN) Model 5 (LHSN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Intercept -10.904** 
0.000 

(0, 0.003) 
-4.23 -5.388** 

0.005 

(0.000, 0.077) 
-3.74 

Observations 1,323   4,380   

 
Wald  χ2 (22) = 63.95 (p = 0.000); 

penalized log likelihood = -68.493 

Wald  χ2 (22) = 142.73 (p = 0.000); 

penalized log likelihood = -100.559 

* p < 0.05; ** p < 0.01 (two-tailed test) 
a. Coefficient; b. Odds Ratio (95% Confidence Interval); c. z-statistics 

Model 4. Initial log likelihood: -122.7726; Final log likelihood: -68.4925; Pseudo R2: 0.442 

Model 5. Initial log likelihood: -205.0715; Final log likelihood: -100.5587; Pseudo R2: 0.510 
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Table 9 The result of logistic regression for identifying the differentials in influencing factors the probability of school-aged 

child pedestrian crashes between low-income (LISN) and high-income school-neighborhoods (HISN) 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 6 (LISN) Model 7 (HISN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Road environments (segment level) 

Block length (100m) 0.141 
1.151 

(0.836, 1.585) 
0.86 0.765** 

2.148 

(1.506, 3.066) 
4.22 

High-speed roads 1.861** 
6.431 

(2.296, 18.014) 
3.54 1.181* 

3.258 

(1.183, 8.976) 
2.28 

% of missing sidewalks 0.007* 
1.007 

(1.001, 1.014) 
2.15 -0.007 

0.993 

(0.983, 1.004) 
-1.23 

Crosswalk density 0.260* 
1.296 

(1.051, 1.600) 
2.42 0.299 

1.348 

(0.918, 1.980) 
1.52 

Bus stop density -0.216 
0.806 

(0.486, 1.337) 
-0.84 0.262 

1.299 

(0.868, 1.945) 
1.27 

Land use diversity 1.899** 
6.678 

(2.244, 19.877) 
3.41 -0.721 

0.486 

(0.182, 1.304) 
-1.43 

% of residential use -0.015 
0.985 

(0.968, 1.003) 
-1.68 0.002 

1.002 

(0.983, 1.022) 
0.24 

% of commercial use 0.017 
1.017 

(0.999, 1.036) 
1.82 0.015 

1.015 

(0.995, 1.035) 
1.50 

 



 

63 

Table 9 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 6 (LISN) Model 7 (HISN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Road environments (segment level) - Continued 

% of office use 0.000 
1.000 

(0.976, 1.025) 
0.03 0.018 

1.018 

(0.991, 1.045) 
1.32 

% of industrial use 0.006 
1.006 

(0.976, 1.037) 
0.37 -0.063 

0.939 

(0.778, 1.133) 
-0.66 

% of park use -0.158 
0.854 

(0.683, 1.069) 
-1.38 -0.003 

0.997 

(0.960, 1.035) 
-0.15 

Built environments (neighborhood level) 

Crosswalk density 0.002 
1.002 

(0.995, 1.010) 
0.56 -0.019** 

0.981 

(0.971, 0.992) 
-3.56 

Intersection density -0.018 
0.982 

(0.960, 1.005) 
-1.56 -0.001 

0.999 

(0.983, 1.015) 
-0.12 

% of residential use 0.006 
1.006 

(0.972, 1.041) 
0.33 0.016 

1.016 

(0.968, 1.066) 
0.64 

% of commercial use -0.025 
0.975 

(0.893, 1.065) 
-0.56 0.264** 

1.302 

(1.183, 1.432) 
5.41 

% of office use -0.200 
0.819 

(0.605, 1.108) 
-1.30 0.018 

1.018 

(0.899, 1.153) 
0.28 
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Table 9 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 6 (LISN) Model 7 (HISN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Built environments (neighborhood level) - Continued 

% of industrial use -0.011 
0.989 

(0.879, 1.112) 
-0.19 0.061 

1.063 

(0.914, 1.237) 
0.80 

% of park use -0.152** 
0.859 

(0.769, 0.960) 
-2.68 0.104** 

1.110 

(1.052, 1.171) 
3.80 

Traffic exposure 

Population density (1,000 people) 0.162 
1.175 

(0.841, 1.642) 
0.95 0.218 

1.243 

(0.902, 1.713) 
1.33 

School-aged child population density 

(1,000 people) 
0.001 

1.001 

(1.000, 1.002) 
1.17 0.000 

1.000 

(0.999, 1.001) 
-0.10 

Bus stop density (neighborhood level) 0.001 
1.001 

(0.983, 1.019) 
0.08 0.025** 

1.025 

(1.009, 1.041) 
3.18 

Neighborhood characteristics 

Median household income ($1,000) 0.158** 
1.172 

(1.062, 1.293) 
3.15 -0.042** 

0.959 

(0.932, 0.987) 
-2.88 
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Table 9 Continued 

 The probability of school-aged (5-19) child pedestrian crashes 

 Model 6 (LISN) Model 7 (HISN) 

Variables βa OR (C.I.)b zc βa OR (C.I.)b zc 

Intercept -9.962** 
0.000 

(0.000, 0.003) 
-4.91 -7.894** 

0.000 

(0.000, 0.010) 
-4.71 

Observations 1,800  
 

3,903  
 

 
Wald  χ2 (22) = 83.76 (p = 0.000); 

penalized log likelihood = -83.666 

Wald  χ2 (22) = 91.04 (p = 0.000); 

penalized log likelihood = -69.971 

* p < 0.05; ** p < 0.01 (two-tailed test) 
a. Coefficient; b. Odds Ratio (95% Confidence Interval); c. z-statistics 

Model 6. Initial log likelihood: -164.6144; Final log likelihood: -83.6664; Pseudo R2: 0.492 

Model 7. Initial log likelihood: -161.6844; Final log likelihood: -69.9710; Pseudo R2: 0.567 
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The results from the logistic regression model for all street segments within each 

school-neighborhood are presented in Table 7 (Model 3). Most significant factors are 

consistent with previous literature. For a hundred meter increase in block length, the 

odds of the occurrence of child pedestrian crash on the segment are expected to increase 

by 45%, holding all other variables constant (OR = 1.45, p < 0.01). If segments are a 

high-speed street that has higher than a 35-mph speed limit, its odds of child pedestrian 

crashes are almost 4 times larger than its counterparts, holding other variable constant 

(OR = 3.97, p < 0.01). Holding other factors constant, 34% increase in the odds of child 

pedestrian crashes is expected for a one-unit increase in crosswalk density (OR = 1.34, p 

< 0.01). Moreover, a one-percent increase of the number of commercial land use parcel 

on the street segment increases the odds of the occurrence of child pedestrian crashes by 

about 2%, controlling for the other factors (OR = 1.02, p < 0.01). 

In addition, Table 8 and Table 9 show the results from separate regression 

models to determine the differences in factors influencing pedestrian crashes involving 

school-aged children between high-Hispanic and low-Hispanic school-neighborhoods 

(Model 4 and Model 5); as well as between low-income and high-income school-

neighborhoods (Model 6 and Model 7). Block length was statistically significant for both 

high-Hispanic and low-Hispanic school-neighborhoods. For an increase of a hundred-

meter in block length, the odds of child pedestrian crashes are expected to increase by 

90.5% and 41.3% in the high- and low-Hispanic school-neighborhoods, respectively, 

controlling for other factors to be constant (OR = 1.90, p < 0.01; and OR = 1.41, p < 

0.05, respectively). However, road characteristics, such as speed, sidewalks, and 
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crosswalks are only statistically significant within the high-Hispanic school-

neighborhoods, holding other factors constant: the odds of child pedestrian crashes are 

expected to increase by about 6 times for being a high-speed street (OR = 6.52, p < 

0.01); when the percentage of missing sidewalk rises by one-percent, the odds of child 

pedestrian crashes are increased by 1% (OR = 1.01, p < 0.01); and for an increase of 

one-unit in crosswalk density, the odds of child pedestrian collisions would go up by 

about 60% in the high-Hispanic neighborhoods (OR = 1.59, p < 0.01). Contrastively, 

commercial land uses on the segment was statistically significant only in the low-

Hispanic neighborhoods: a one-percent increase of the number of commercially used 

parcel increases the odds of child pedestrian crash occurrence by 2.4% in the low-

Hispanic school-neighborhoods, holding other factors constant (OR = 1.02, p < 0.05). 

This paper also found some differentials in the factors correlated with child 

pedestrian crashes between the low-income and the high-income school-neighborhoods. 

Only in the low-income school-neighborhoods, road and built environments such as 

percentage of missing sidewalks, crosswalk density, and land use diversity on the 

segment are significant, holding all other variables constant: for a one-percentage 

increase of missing sidewalks, the odds of child pedestrian-vehicle collision occurrence 

are expected to increase by about 1.0% (OR = 1.01, p < 0.05); an increase of one-unit in 

the crosswalk density increases the odds of child pedestrian crashes by almost 30% (OR 

= 1.30, p < 0.05); and for an one-unit increase of land use diversity index on the 

segment, the odds of child pedestrian crashes increase by six times (OR = 6.68, p < 

0.01). While the speed limit is statistically significant in both neighborhoods, block 
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length was significant only in the high-income neighborhood: being a high-speed street 

segment increases the odds of child pedestrian collisions occurrence by about 6 and 3 

times in low-income and high-income school-neighborhoods, respectively (OR = 6.43, p 

< 0.01; and OR = 3.26, p < 0.05, respectively); but an increase of 100-meter in block 

length increases the odds of child pedestrian crashes by about 1.2 times (OR = 2.15, p < 

0.01) only in the high-income school-neighborhoods. These findings are also consistent 

with the prior research. 
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CHAPTER V 

CONCLUSION 

 

Pedestrian injury or death from motor vehicle related crashes are obviously 

critical public health concerns. More attention should be paid to providing safe 

pedestrian environments, especially for school-neighborhoods, because school-aged 

children are one of the most vulnerable groups to pedestrian crashes. Based on the 

results of this paper, the school-neighborhoods had a lower frequency of pedestrian 

crashes than the beyond school-neighborhoods in Austin, Texas. The results of 

multivariate (random-effects Poisson regression models) analyses show that the 

pedestrian environment around schools was safer than other neighborhoods. From the 

results of regression models (Model 1 and Model 2), this paper found that the expected 

number of pedestrian crashes involving school-aged children was lower in the school-

neighborhoods. However, using the t-test, this paper also identified possible evidence of 

spatial disparity issues in child pedestrian crashes among the school-neighborhoods by 

their socio-demographic characteristics. In the high-Hispanic and low-income school-

neighborhoods, the mean value of the number of child pedestrian crashes was higher 

than their counterparts. This evidence was determined by the regression models. 

Although both high-Hispanic and low-income school-neighborhoods showed a lower 

expected number of child pedestrian crashes than the beyond school-neighborhoods, the 

crash count was higher than their counterparts; the expected number of child pedestrian 



 

70 

crashes was higher in the high-Hispanic and low-income school-neighborhoods when 

compared to low-Hispanic and high-income school-neighborhoods, respectively. 

This research also found the differentials in the factors correlated to school-aged 

child pedestrian crashes by neighborhood characteristics (see Table 9). Certain factors, 

such as block length, speed limit, missing sidewalks, and percentage of commercial land 

use parcels on the segment, showed positive associations with pedestrian crashes 

involving children in the school-neighborhoods, regardless of neighborhood 

characteristics. However, in the high-Hispanic school-neighborhoods, several road 

environmental attributes (i.e., traffic speed, percentage of missing sidewalks, and 

crosswalk density on the street segment) were statistically significant: but not in the low-

Hispanic school-neighborhoods. In contrast, percentage of commercially used parcels on 

the street segment had significant effects only in the low-Hispanic neighborhoods. Also, 

for both neighborhoods, block length showed a positive association with child pedestrian 

crashes. In the low-income school-neighborhoods, meanwhile, missing sidewalks, 

crosswalk density, and land use diversity factors were correlated to child pedestrian 

crashes: but not in the high-income school-neighborhoods. Block length was associated 

with the child pedestrian crashes in the high-income school-neighborhoods, and a speed 

limit of street segment was statistically significant in both neighborhoods. 
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Table 10 Road environmental factors influencing pedestrian-vehicle crashes involving 

school-aged children for each type of school-neighborhoodsa 

 SNb HHSNc LHSNd LISNe HISNf 

Block length ** ** *  ** 

High-speed roads ** **  ** * 

% of missing sidewalks  **  *  

Crosswalk density ** **  *  

Bus stop density      

Land use diversity    *  

% of commercial use *  *   

a. Statistically significant factors are marked with asterisks (**: p < 0.01; *: p < 0.05) 
b. School-neighborhoods regardless of neighborhood characteristics; c. High-Hispanic 

school-neighborhoods; d. Low-Hispanic school-neighborhoods; e. Low-income 

school-neighborhoods; and f. High-income school-neighborhoods 

 

For school-neighborhoods, interventions related to road environments may have 

an effect of reducing the probability of child pedestrian crashes. Specifically, for both 

high-Hispanic and low-income school-neighborhoods, this paper found that traffic speed 

on the roadways, the number of crosswalks on the street segment, and sidewalk 

completeness may need to be examined. As we discussed in the previous chapters, dense 

development patterns provide shorter block length in the neighborhoods. However, high 

density is also related to the high street connectivity, resulting in a greater number of 

intersections and possibly a greater number of crosswalks. In this case, appropriate 

policy interventions, such as requiring crossing guards around schools, should be applied 



 

72 

to reduce the likelihood of pedestrian crashes (Ahlport, Linnan, Vaughn, Evenson, & 

Ward, 2008; Chriqui et al., 2012; Dumbaugh & Frank, 2007).  

Additionally, in terms of built environments and vehicle speed, traffic calming 

approach can be one of the alternatives for school-neighborhoods. Many European 

countries have reported the positive effectiveness of traffic calming features (e.g., speed 

humps, road narrowing, changes in pavement color and texture, and speed tables) on 

reducing traffic crashes and  controlling for motor vehicle volumes and driver’s behavior 

(Jones, Lyons, John, & Palmer, 2005). Especially for small areas, traffic calming devices 

decreased child pedestrian injuries by 70% and contributed to a 9 mph decrease in traffic 

speeds (Towner, Dowswell, & Mackereth, 2001; Webster & Mackie, 1996). Therefore, 

provision of these kinds of traffic calming devices may help to reduce the risk of child 

pedestrian crashes in the school-neighborhoods. 

Moreover, commercial land uses around schools should be controlled by 

planning interventions for general school-neighborhoods. When surveyed, children 

responded that commercial spaces are most often destinations for their favorite places 

(Banerjee et al., 2012). Also, the types and size of commercial uses affect pedestrian and 

cyclist crash rates in the neighborhood (Dumbaugh et al., 2013). Thus, appropriate land 

use planning and zoning regulations for excluding commercial land use or restricting 

types of commercial uses should be applied to these neighborhoods to reduce the risk of 

child pedestrian crashes (Yu & Zhu, 2015). 

Although this paper identifies spatial disparity issues in pedestrian-vehicle 

collisions involving school-aged children and suggested different factors influencing the 
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pedestrian crashes by school-neighborhood characteristics, there are a few limitations. 

Firstly, this paper focused on a quantitative measurement for road and built 

environments, excluding the qualitative assessment due to the limitation of data and 

resources. Nevertheless, the quality of the pedestrian environment can be an important 

predictor of perceived safety for pedestrians (Landis, Vattikuti, Ottenberg, McLeod, & 

Guttenplan, 2001). Furthermore, the maintenance of a built environment, such as 

sidewalks and street surfaces, may be different between neighborhoods (Zhu & Lee, 

2008). Design factors may also affect the frequency of pedestrian-vehicle accidents. For 

example, the impact of the crosswalk on the pedestrian crashes would be different by its 

design or use (Rothman et al., 2013). Therefore, for future research, it is recommended 

to including street audit approaches to understand the quality of street segments. 

Secondly, more crash data may be needed to produce more accurate results. The data 

used in this paper showed a relatively small portion of school-aged child pedestrian 

crashes. While this paper attempted to control for possible issues of separation in logistic 

regression with Firth’s penalized likelihood method, larger sample size or more crash 

data would be better to generate more accurate statistics. Thirdly, the time frames of GIS 

spatial data were not exactly matched with that of other information, such as crash and 

socio-demographic data, due to the availability. Although most of spatial data are related 

to the physical environments of neighborhood which are relatively insensitive to the 

time, matching information would be better to produce more precise results. Lastly, child 

pedestrian’s exact information, such as address and commuting time, would be better to 

examine the roadway environment for their routes to schools. While network buffers 



 

74 

used in this paper reasonably represent areas that have available paths for walking, more 

accurate routes for children who walk to and from school would be more helpful to 

understand the pedestrian environment for children and the school-neighborhoods. Also, 

this detailed information of time period would allow us to exactly measure the walking 

exposure. 

Despite the limitations, this paper contributes to understanding traffic safety 

within the school-neighborhoods in Austin, Texas and identifies whether and how the 

factors correlated with child pedestrian crashes vary by socio-demographic 

characteristics of school-neighborhoods. To achieve the social justice in the child 

pedestrian safety, this paper proposes a few alternatives beyond the current efforts. One 

of the important contributions of this paper is to suggest local governments put the 

appropriate interventions and actions in the right places. The findings from this paper 

may allow local governments to apply more targeted strategies to different 

neighborhoods to provide our children with safe pedestrian environments around 

schools. While this paper clearly shows differences in child pedestrian crashes based on 

the neighborhood characteristics around schools, examining the contributions of 

quantitative factors will be an important merit for further research. Also, survey data for 

actual routes to school and commuting time period for children will improve the results 

of empirical analyses. 
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APPENDIX A 

TABLE 

 

A - 1 Child pedestrian crash in urbanized areas in Texas (2010-2014) 

Urbanized Area Pedestrian Crashes in Children (age 5-19) 

Dallas--Fort Worth--Arlington 911 

Houston 707 

San Antonio 600 

El Paso 262 

Austin 236 

Laredo 146 

Corpus Christi 125 

Lubbock 109 

Brownsville 71 

Amarillo 66 

McAllen 60 

Odessa 52 

Killeen 49 

Denton--Lewisville 49 

College Station--Bryan 42 

Midland 38 

Waco 38 

Harlingen 35 

Beaumont 30 

Wichita Falls 26 

Tyler 24 

Abilene 21 

Longview 20 
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A - 1 Continued 

Urbanized Area Pedestrian Crashes in Children (age 5-19) 

San Angelo 18 

San Marcos 17 

McKinney 16 

Texas City 13 

Port Arthur 13 

Conroe--The Woodlands 10 

Sherman 9 

Temple 9 

Lake Jackson--Angleton 5 

Victoria 3 

 

 

 


