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ABSTRACT

An online near real-time system identification system is developed for generating locally linear

models of Small Unmanned Air Systems. Automated control surface excitation inputs consisting

of doublets, triplets, and frequency sweeps are implemented and used to assure consistency in the

excitation and to eliminate errors introduced by user applied inputs. To provide reliable data for

processing, a high frequency data acquisition unit is developed and implemented. In addition, a

real-time vehicle monitoring system is used to provide a human-in-the-loop model update capabil-

ity, with a goal of ensuring safety of the vehicle. Flight tests and modeling are demonstrated on a

fixed-wing Small Unmanned Air System, with locally linear models generated during flight.

Observer Kalman filter identification is used as the primary identification algorithm with ad-

justments made for real-time identification purposes. Identified models are both stored and sent to

the ground control station for ground control operator for update verification. Results presented in

the thesis show that the system provides a capability for generating accurate locally linear mod-

els that are suitable for real-time flight control design using model based control techniques and

post-flight modal analysis.
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NOMENCLATURE

G(s) Frequency response function

ϕ Phase of frequency response function

ν Shifted time index

l Length of data set

H Hankel matrix

Y System Markov parameters

Ȳ Observer Markov parameters

Â, B̂, Ĉ, D̂ Identified system matrices

Y o Observer gain Markov parameters

Ḡ Observer Gain

fN Nyquist frequency

Am Modal system matrix

Bm Modal participation factor

Cm Mode shape

Ψ Eigenvector matrix

λ Eigenvalue matrix

Pm Identified modal observability matrix

Qm Identified modal controllability matrix

qn n-th identified quality index

T Theil Inequality Coefficient
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SUAS Small Unmanned Aircraft System

GCS Ground Control Station

VSCL Vehicle Systems and Control Laboratory

MEMS Micro Electro Mechanical Systems

IMU Inertial Measurement Unit

INS Inertial Navigation System

OKID Observer Kalman filter IDentification

ASCII American Standard Code for Information Interchange

MRAC Model Reference Adaptive Control

MPC Model Predictive Control

CFD Computational Fluid Dynamics

CIFER Comprehensive Identification from Frequency Responses

ANN Artificial Neural Network

SIDPAC System IDentification Programs for AirCraft

TCP/IP Transmission Control Protocol/Internet Protocol

UDP/IP User Datagram Protocol/Internet Protocol

DFTI Developmental Flight Test Instrumentation

EKF Extended Kalman Filtering

COTS Commercial Off The Shelf

API Application Programming Interface

GLOMAP GLobal Orthogonal MAPping

PWM Pulse Width Modulation

APM ArduPilot Mega
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Research Background and Motivation

1.1.1 Motivation

Real-time system identification is crucial part of modern flight control on both manned and

unmanned vehicles. Vehicle dynamics change during flight due to variations in disturbance char-

acteristics, vehicle angle-of-attack, fuel consumption, and vehicle damage. These factors results

in a change of the vehicle characteristics, and often a redesign of the flight controller. Therefore,

the capability of updating linear or nonlinear vehicle models enables a more robust, capable and

modular control systems. By recursively updating the nominal model at each specified time t, the

plant uncertainty can be reduced, which leads to a better flight model. This can be beneficial for

most control techniques, and especially important for the ones that require a reference model, such

as indirect Model Reference Adaptive Control (MRAC) and Model Predictive Control (MPC).

Also, while performing system identification through flight testing is an expensive endeavor for

manned aircraft, SUAS have the advantage of inexpensive flight costs. As a result, in many cases

it is both cheaper and faster to obtain models of SUAS through system identification. Doing so

requires the ability to record state and control time histories at sufficiently fast rates. For autopilots

and control systems, commercial actuators present in SUAS provides a maximum sample rate of

around 50 Hz. This sampling rate is sufficient for most standard vehicle designs, however, for agile

aircrafts with fast dynamics, a data acquisition system that is capable of collecting sensor data at

higher frequencies is needed [2].

Moreover, morphing vehicles with in-flight characteristic changes is also a research area with

growing interest. In-flight wing span, camber morphing, or tilt rotor rotations changes the aerody-

namic moments and forces applied on the vehicle. The challenge is that the transitional dynamics

of morphing structures yield a time varying system. Transitional dynamics are hard to characterize

using traditional off-line system identification process due to its inability to capture the transitional
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modal variations and inertia changes. Inaccurate models of the dynamic system may pose an issue

for controller design as well as system stability robustness. Therefore, there is a need for preci-

sion aerodynamic modeling and controller design for vehicles with time changing characteristics.

Real-time system identification is a promising candidate for yielding updated models for morphing

structural control.

1.1.2 Research Background

High fidelity aircraft flight models are essential for modern controller design, aircraft dynam-

ics, and autopilot development. Aircraft simulation models are mostly based on aerodynamic data

tables from wind tunnel testing, vortex-lattic methods, or computational fluid dynamics (CFD).

Ground based wind tunnel testing and CFD provides a good approximation of the actual flight

condition, however, the high cost on time and expenses of wind tunnel testing restricts the number

of experimental tests that can be conducted. Other issues with ground based testings are com-

monly related to the scalability of the test model, wind tunnel wall interference, and different

characteristics on the flow [3]. In order to overcome issues related to wind tunnel testings, system

identification using flight test data has been widely used for air and space vehicle modeling.

Flight control synthesis for aircraft with large flight envelopes and wide ranges of angle-of-

attack and sideslip angle require much ground based and flight based testing in order to generate

accurate locally linear models. An agile high speed aircraft modeling process can be seen in

Figure 1.1. The conventional aircraft modeling process begins from using 1st order methods such

as DATCOM and vortex-lattice to acquire low accuracy linear models. Higher order methods are

then applied to construct low speed medium accuracy models via low order CFD and high order

CFD or small scale wind tunnel testing to large scale wind tunnel testing. Large scale wind tunnel

testing can be then used to acquire aircraft models with higher mach and angle of attach. Flight

test is conducted in the final phase of the model development process where models are tested

with real-world conditions. The process usually takes years if not decades and requires more

iterations when a control law design is needed. The accumulated cost for human resources, test

facilities, test materials over the years requires a large group of experts with a abundant funding.
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For fast developing SUAS, resources for development are relatively limited, and thus, there is a

need for rapid prototyping and rapid modeling. Figure 1.2 illustrates how online, near real-time

system identification process is different from the conventional aircraft modeling process. The

main drawbacks with the conventional process shown in Figure 1.2a are that the flight controller is

designed offline and the flight data is analyzed post flight. This introduces an inability to modify

the flight controller and adapt to structural or environmental changes during flight and increases

the amount of time and money required for more iterations of re-modeling, re-designing, and flight

testing.

Figure 1.1: Model development process for aircrafts

Online near real-time system identification on the other hand updates the system model on-

the-fly and calculations are performed onboard the vehicle as shown in Figure 1.2b. Instead of

analyzing the stored data through post flight analysis, more data can be calculated or transferred to

the Ground Control Station (GCS) through modern day Commercial Off The Shelf (COTS) prod-

ucts. This is made possible due to the vast development of semiconductors and micro-controllers,

and is especially beneficial for applications such as SUAS. Single board computers such as Jetson
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(a) Conventional post flight analysis proce-
dure.

(b) Real-time modeling with online calcu-
lations procedure.

Figure 1.2: Comparison of modeling and flight test procedure.

TK1 by Nvidia, NUC by Intel, Raspberry Pi, or Beaglebone board ...etc. drastically increased the

calculation speed while reducing the onboard computer in both size, weight, and price.

In addition, the advancement of vehicle simulation has made extensive ground testing much

more affordable. Simulated aircraft dynamic models can acquired through open-sourced software

such as JSBSim [4] or SimGen [5]. Hardware-In-The-Loop (HITL) and Software-In-The-Loop

(SITL) testings can also be conducted through software that works with flight computers, these

software include Airsim [6], ArduPilot [7], jMAVsim [8], and Gazebo [9]. Ground testing with

just a subset of avionics and sensors is made possible while different vehicle responses can also

be simulated to predict the actual aircraft behavior before flight testing. These improvements

shortens the developmental time for real-time systems and are crucial for both real-time modeling

and control design on SUAS.
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Figure 1.3: Software In The Loop development architecture

1.2 Literature Review: System Identification

Since the development of Kalman-Bucy filters [10] in the early 1960s, a lot of effort have been

put in to filtering and estimation [11, 12, 13] and have been widely used for parameter estimation

for dynamic models, vehicle navigation, and noise filtering. For system modeling purposes, several

classes of algorithms exist for determining models of systems from experimental data. These al-

gorithms can be partitioned into parameter identification algorithms, which determine parametric

models of a system, and system identification algorithms, which determine non-parametric models.

Parameter identification algorithms for aerospace systems include System Identification Programs

for Aircraft (SIDPAC) [14], least-squares approaches, maximum likelihood approaches, and sev-

eral neural network based approaches [15, 16]. Common system identification algorithms include

the Eigensystem Realization Algorithm (ERA), Observer/Kalman Identification (OKID), the Com-

prehensive Identification from Frequency Responses (CIFER R©) algorithm, Frequency Response

Functions (FRF), and Observer/Controller Identification (OCID).[17, 18, 19, 20, 21]. OKID and

Observer/Controller IDentification (OCID) were developed at NASA Langley Research Center

during the 1990’s providing a locally linear system model by directly utilizing input and output

time histories. Reference [22] provides a historical overview of system identification approaches

for flight vehicles. Also known as parameter identification, the method requires input and output

histories of the dynamic system to calculate a model for further estimation.

The goal for system identification is to identify a set of system matrices that provide enough

fidelity for on-board controller design on systems. Depending on the modeling technique, the
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Figure 1.4: General system identification process.

process of determining the system behaviors can be classified as a priori modeling and a poste-

riori modeling [23]. A priori modeling, or morphological modeling, utilizes simple experiments

to inquire the dynamic model that is partially known, while a posteriori modeling constructs a

model by characterizing the system dynamics through analyzing the input u and output y without

previous knowledge of the system. One of the goal of this thesis is to identify vehicle models

with limited prior knowledge, therefore, the later method is what is chosen for performing system

modeling and will be the referred method when system identification is mentioned in the following

chapters. However, a priori modeling techniques will also be discussed and used for analysis and

comparison.

The process of system identification is shown in Figure 1.4. Precise excitation u is required to

excite the dynamic modes of the system without exceeding the identification limitations [24]. Input

signal should be tailored according to the method of excitation, identification goal, and flight test

environment. It has been shown that by formulating the optimal input design problem for linear

system identification as a linear-quadratic optimal control problem, nontrivial solutions related

to the maximum eigenvalue exist [25]. Recent studies have also shown promising experimental

results by applying inputs that are mutually orthogonal in both time and frequency domain [26, 27].

Aircraft systems are time variant in nature due to the different configuration of controls during

flight and the constant decrease in weight as a result of fuel consumption. The process of formulat-

ing a consistent algorithm for linear time variant systems is complicated, although novel algorithms
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have been developed to extend classical algorithms for time varying systems[28], in most practi-

cal cases, aircrafts are commonly modeled as a Linear Time Invariant (LTI) system. For system

identification, linear and nonlinear system identification are two branches in research. Nonlinear

models can be acquired through artificial neural network (ANN) [29, 30], Global Local Orthogonal

MAPping (GLO-MAP) [31], or reinforcement learning [32]. It has the advantage of being able to

produce a single model that is applicable for a large flight envelope. However, global modeling

algorithms tend to seek out regions where the model is erroneously optimistic. For instance, if

the model has modeling error in the prediction process, which results in a lower predicted cost

compared to the actual cost, model based learning algorithms are keen to go explore states where

the cost can be improve the model the most. This may raise an issue in a three dimensional space

where there is multiple options for the model to explore, and will lead to inefficiency in finding an

optimal solution. Therefore, when the number of nodes and system output dimension increase, the

performance of decreases drastically due to the system complexity.

Moreover, for vehicles with high maneuverability, one general model often cannot cover the

whole flight envelope. For these types of vehicles, local models are often preferred. Consequently,

global nonlinear models may be computationally expensive for systems with time-changing dy-

namics and changing trim conditions and not suitable for real-time applications. Therefore linear

system identification methods have been widely used on real-time systems for system modeling

and controller design.

1.3 Literature Review: Online Real-time Online System Identification

Real-time online system identification started to gain interest since the late 1990s on both rotor

and fixed wing manned aircrafts. Several studies addressed the feasibility of real-time identification

[33, 34]. Although these studies were either limited to reduce order systems or encountered periods

of data dropouts due to instrumentation restrictions, they laid the foundation for recent UAS system

identification related studies.

The data dropout issue has been resolved benefiting from the evolution of flight test instruments

and improvement in computational speed. In 2003, Valasek and Chen [35] showed that OKID is
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feasible for on demand, online system identification for aircraft longitudinal and lateral/direction

modes for fixed wing manned aircrafts in simulation. Around the similar time, Morelli approached

the same problem with another technique, it was shown that real-time and recursive parameter

estimation of a low order equivalent system identification can be applied on flight data to identify

moment coefficients [36]. Additionally, Grauer[37] applied an alternative of the SIDPAC using

output-error parameter estimation to point out modifications needed to improve the efficiency of

real-time system identification.

Although there has been some success on real-time system identification for manned aircraft,

it is only until recently have more real-time system identification related work been published.

Puttige performed HITL testing using an autoregressive based multi-network approach [38]. In

2009, Debusk applied a Fourier transform regression method to estimate aerodynamic deriva-

tives in the frequency domain [39]. The identification methods that are used are either under

the broad recursive least squares parameter estimation category or frequency domain analysis. The

current state of the art research in real-time UAS modeling is lead by NASA Langley Research

Center. The NASA Learn-to-Fly project pointed out that the ability to model behaviors due to

structural/propulsive/ aerodynamic/flight control interactions, etc., is crucial to the successful and

efficient development of future airplanes with increased performance as a goal. The goal of the

project is to autonomously develop vehicle characterization and control strategies, up through the

ability to fly a vehicle, with minimum human interaction and time [40]. As one of the key compo-

nents, real-time system identification has become a more popular topic. In 2016, Morelli showed

that using multivariate orthogonal functions along with real-time recursive modeling orthonormal-

ization based on QR decomposition real-time nonlinear modeling can be acheived [41, 42]. This

method is based on SIDPAC along with reinforcement learning to perform effective estimation of

the nondimensional aerodynamic force and moment coefficients.

Rather than applying the well established frequency domain method to perform real-time sys-

tem identification, this thesis focuses on approaching problem with a different method. By apply-

ing the time domain OKID method, the goal is to extend the previous offline system identification
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work at Texas A & M University Vehicle Systems and Control Laboratory (VSCL) and develop

near real-time online identification capabilities especially for SUAS. At VSCL, there have been

success in modeling SUAS [43, 44]. In order to generate the good quality models offline via post

processing, a flight test instrumentation system is developed to address these data dropout issues.

This thesis introduces an updated flight test instrumentation system for SUAS parameter and sys-

tem identification flight, superseding an early system used in previous work by the authors [45, 46].

The proposed instrumentation system requires no external or proprietary software for data logging.

It offers modularity and extra digital and analog input/output ports for additional sensors. Its high-

frequency sampling capability, at a maximum of 100 Hz, is also ideal for the system identification

and modeling applications. Using updated avionics and flight control system along with an recur-

sive OKID algorithm, it is intended to avoid the need of extensive model training for ANN methods

or vehicle knowledge such as inertia measurements. Due to the a posteriori nature of OKID, the

algorithm does not require vehicle specific knowledge system modeling but simply rely on corre-

lations of the input-output data, and therefore, is a good candidate for online near real-time system

identification for vehicles with unknown or changing characteristics.

9



1.4 Approach Summary

The proposed research scopes both the software and hardware development of a highly portable

real-time system identification system that is capable of providing in-flight model updates in real-

time while maintaining reasonable fidelity. The proposed online real-time identification system

should be capable of modeling systems with real-time changes such as changing flight conditions

without extensive ground testing and can be used for future novel UAS developments.

The main objectives of this thesis is to:

1. Develop data acquisition unit with the ability to provide high frequency data for system

identification on small UAS with direct α, β measurements and direct control surface mea-

surements in degrees or radians of deflection.

2. Develop software functions capable of performing precise servo actuation with the goal to

eliminate pilot imprecise excitations for system identification.

3. Use the OKID structure to develop a system capable of performing on-board recursive sys-

tem identification with real flight test data.

4. Perform online near real-time system identification with high rate of successfully generating

linear vehicle models during flight comparing to offline methods.

5. Develop and implement a human-in-the-loop real-time identification procedure with online

calculations, real-time data transfer, and near real-time system identification with the goal to

update vehicle models in the during flight test.

The paper is organized as follows. Chapter 1 introduces the development of system identifi-

cation and indicates the need for online near real-time system identification. The system design

and the system characteristics are addressed in Chapter 2, while the hardware selection and inte-

gration is detailed in Chapter 3. Chapter 4 and Chapter 5 explains the fundamentals of aircraft

dynamics along with system identification used for online and offline data analysis. Ground test
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and flight testing results are presented in Chapter 6, comparing onboard and offline calculation

results. Finally, conclusions and future recommendations are discussed in Chapter 7.
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2. SYSTEM DESIGN

2.1 Challenges and Current Developments

The challenges for the system can be sorted into three categories: efficient online mode exci-

tation, maintaining the consistency of the identified model, and the implementation of real time

system identification on a SUAS system.

Excitation of aircraft modes is crucial for system identification, the challenge lies in the suc-

cess rate of exciting the targeted dynamic modes. Human piloted maneuvers have shown to be

inconsistent and the well established input methods requires minimal environmental disturbances.

The developed system will resolve the issue by introducing an automated excitation mechanism

and explore alternative excitation methods to precisely excite the system modes.

Due to the inherent concept of online near real time system identification, the model is updated

in a near real time fashion. The real question is that after the modes are excited, is the identification

method capable of capturing the dynamic modes using the input-output pair consistently, and will

this system be reliable enough to ensure flight critical functionalities are not altered. Therefore, in

order to reduce the risk of losing a vehicle during flight, certain criteria and procedures are to be

designed to ensure that a poorly identified model does not effect the vehicle system model.

Moreover, the development of a sensor independent, modular, and fast responsive system is

another challenge. The main issue is that the existing COTS products either lack modularity or

does not provide a reliable data stream for online system identification purpose. Existing real-time

systems do not provide a high enough sampling rate and does not meet the payload requirements

of small scale SUAS. Accordingly, it is challenging to develop a fully integrated system that is

expandable, modular and light weight, while providing enough sample frequency as well as real

time ground air communication for online identification using a SUAS.
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2.2 Software Development

Three subsystems coordinate with each other simultaneously on the UAS in order to perform

online system identification. The subsystems include a communication subsystem, the data col-

lection subsystem, and the system identification subsystem. Figure 2.1 displays the flow of data

between each subsystem, as well as how data is logged for each individual program. The high-

lighted blue blocks are the data logs that are not utilized online but availble to access after the

vehicle has landed. The orange blocks are logged data types that are accessed or referenced in

the online calculation process. Finally, the line styles differentiate the operational commands(in

dashed lines) from data (solid lines) that is transfered, and the arrows indicate the data flow being

one or dual-directional flow.

Figure 2.1: Data transfer between different subsystems
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2.2.1 Data Logging

There are several different types of log file with various purposes. Data log types for the on-

line system identification structure include execution logs, standard data collection logs, and result

logs. Execution logs records the runtime processing info and system errors, both Clark and the

system identification software have its individual execution logs. On the other hand data collection

logs are recorded on different parts of the subsystem but only the system identification subsys-

tem use portions of the recorded data to perform online calculations. The individual excitation

input/output log, nominal model log, and identified result logs are conditional logs. That is, only

when the specified execution conditions are met will these logs be activated to initiate recording.

The individual I/O log records the input and out signals for each excitation. The process starts

logging when the pilot flips the excitation switch from LOW to HIGH and ends when the excita-

tion status is returned to LOW. After the excitation status returns to low, the system identification

subsystem will generate the identified results to the result file. Failure in identification will return a

matrix of the expected size with values of 1 in all entities. This matrix is stored in the result log file

and at the same time sent back to Clark buffer to wait to be transferred to the GCS. The result sent

back to the GCS operator is shown on the GUI to indicate the result of the previous identification.

Each log has its unique file name, this file name is a combination of file number, identification

type, batch identification decision, and date for ease of offline data comparison and debugging. The

nominal model is logged and read in a slight different way. The log not only records the current

nominal model that have been identified through the identification process, but also perform a

simple comparison of the data

2.2.2 Communication Subsystem: Clark

Clark [47] is a multi-agent control framework that provides a user with the ability to au-

tonomously command various inputs from a mission control station. It is executed as a separate

command line application on the BeagleBone Black and is written/operated in Python 2.7. This

specific Python version was selected due to the dependencies on Dronekit and Google Protocol
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Buffers that the current software structure heavily rely on for communication between the autopi-

lot and different agents. The framework consists of a three-tiered software architecture connecting

the autopilot, radio transceiver, and connected payloads — an abstraction layer provides a specific

location for implementing control. Figure 2.2 depicts this three-tier architecture. The top tier is the

Figure 2.2: Three tier architecture of the Clark framework

mission tier where the mission action is assigned. Vehicle control actions are calculated and ap-

pointed in this layer, and therefore, system identification related functions such as the input signal

generator function are executed and servo inputs are assigned in this layer.

The Clark module handles the communications between the autopilot, radio, and payload in-

terface using individual TCP/IP or UDP/IP connections. The lower layer interface classes then

call their related functions to perform the the action. For example, after the radio interface class

received a command to perform a sinusoid sweep excitation, the Clark layer will then update the
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identification type in Clark Mission layer to calculate the designated input signal. After the cal-

culation, this signal will then be passed to the autopilot interface via Clark to perform the servo

actions through Dronekit. From the example it can be seen that to perform a simple action all three

layers of Clark needs to be highly integrated and maintain efficient communication.

2.2.3 Communication Interface

There are three goals for the communication interface. The first one is to be capable of moni-

toring basic vehicle status and receive updates in near real-time fashion. For system identification

in general, the flight altitude, flight speed, and angle of attack of the aircraft changes the vehicle

dynamical behavior. The implementation of the vehicle status can be seen in part (a) of Figure 2.3.

Another goal is to perform real-time modifications on the excitation inputs while the vehicle is in

the air, it is crucial for online applications to enable the GCS operator to make in-flight tweaks on

the excitation signal. This can be seen in the part (b) of the same image. Finally, in order to close

the loop for the process of online system identification it is also important to get near real-time

feedback from the air vehicle on the identification quality. Part (c) of the GUI is designed for this

purpose. The identified natural frequency, damping ratio, and mode quality indexes are shown in

order to provide GCS operator feedback on the previous execution. Note that the mode quality

selection methods will be explained in Section 5.2.

2.2.4 Data Acquisition Subsystem: DFTI

The modular software is designed to support multiple sensors and airframes while interfacing

with other systems through UDP/IP or TCP/IP communications. DFTI was implemented as a

Linux command line application in C++11 using the Qt5 framework to allow for easy concurrency

and threading with the signal/slot paradigm. While this introduces some overhead due to the Qt5

event loop, testing has demonstrated that the system is able to log sensor data at the desired 100 Hz

although the actual rate at which data is written to the output files is slightly lower. The supported

sensors and the sensor configurations are detailed in the Chapter 3.

The software package is configured to work with a Debian based single-board computer but can
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Figure 2.3: Clark communication interface breakdown

be modified to work on other Linux based operating system via UART ports. A configuration file is

required to assign sensors to the designated port. It is important to assign the correct configuration

to the correct port to guarantee quality data. Initially DFTI was developed to accurately log vehicle

flight data for offline system identification. Therefore, data was logged on to a CSV file and

can only be accessed after flight. Due to the need of real-time data streaming for online system

identification, an additional server function was added to support this requirement. The UDP

server can be turned on or off via the configuration file, and the native byte order and 1-byte

padding is used for the structure with no conversions made to the network byte order. UDP is a

connectionless oriented protocol without handshakes between the server and the client. Although

no flow control or guarantee of receipt, for a confined system it reduces the overhead and has the

benefit of providing time-sensitive data without package delays due to retransmission.
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2.2.5 System Identification Subsystem

The system identification subsystem takes the data acquired by DFTI and performs the identi-

fication, calculates the identification quality indexes, and generates the log files for the identified

results. The script is codded in Python3 due to the intensive math and matrix calculations involved

in applying OKID.

The OKID algorithm used is based on the System/Observer/Controller Identification Toolbox

(SOCIT) [48] that is codded in Matlab, and is modified as well as recoded into Python3 to meet

the needs for a SUAS weight and computation limitations.

Communication between DFTI and Clark are established through UDP/IP and serves as a client

for both communication ports. To eliminate overhead on the communication part of the subsystem

and reduce the lag time for data packing and unpacking, the data does not use Protobuf to pack

and unpack messages, but analyzes the received string directly. All the user-defined identification

related parameters are passed from Clark to the subsystem, this includes the identification type,

batch decision, and nominal model update decision. The identification type provides the identi-

fication subsystem whether to identify a lateral/directional, longitudinal, or a full lat/lon model.

The decision will alter the size of the truncated system matrix and the number of expected modes.

While the batch decision determines whether to stack the input and output data from different ex-

periments to perform OKID or simply use the input-output set from a single excitation, the nominal

model update decision updates the saved nominal model of the system.

After the system identification is finished, the program returns a string with the identified fre-

quency, damping ration, identification quality indexes, and eigenvalues to Clark. The information

is then packed into several Clarklink messages to be transmitted down to the GCS.
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3. FLIGHT TEST INSTRUMENTATION∗

The flight test instrumentation consists of an embedded computer and a selection of sensors

to record system states and control effector positions. The instrumentation was selected and in-

tegrated on a commercial-off-the-shelf (COTS) SUAS. The electronic components were chosen

to meet the requirements set in Appendix B for the purpose of providing high frequency control

and state measurements for near real-time system identification. It is desired to keep the flight test

instrumentation system separate from the flight control system so that faults in the instrumentation

do not affect anything in a flight-critical path for safety-of-flight reasons. A related benefit of this

separation is the ability to upgrade the flight control system separately from the instrumentation.

The previous system integrates additional sensors into the flight software on a Pixhawk autopilot,

which requires a custom firmware to be flashed prior to system identification flights and precludes

easy firmware updates. In this Chapter, detailed hardware information as well as vehicle spec-

ifications will be presented. Note that the system presented in this chapter has been previously

published.

3.1 Vehicle Description

The 1/4 scale Hangar-9 PA-18 Super Cub SUAS is the base platform for testing the flight test

instrumentation system. The $700 COTS Super Cub has a wingspan of 8.8 feet, empty weight of

16.6 pounds, and endurance of 30-45 minutes with extended batteries. The aircraft has a 295 kV E-

Flite Power 110 electric brushless motor, 85 A HV brushless Electronic Speed Controller (ESC),

and an APC 19×10E propeller. Due to its rugged construction and excellent low speed flying

qualities it is suitable for rough field operation and short takeoff and landing. The Super Cub also

excels at carrying multiple sensor payloads. Figure 3.2 shows the Super Cub airframe used in this

paper.

∗Reprinted with permission from "Online Near Real-Time System Identification on a Fixed-Wing Small Un-
manned Air Vehicle" by Han Hsun Lu, Joshua Harris, Vinicius G Goecks, Ezekiel Bowden, and John Valasek, in
Unmanned Aircraft Systems (ICUAS), 2017 International Conference on. IEEE, pp. 1696-1705, copyright 2017,
IEEE
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Figure 3.1: Diagram of the integrated ssensors and microcomputers.

3.2 Developmental Flight Test Instrumentation

The Developmental Flight Test Instrumentation (DFTI) [49] is a modular data acquisition sys-

tem developed for the purpose of sensing and logging the system states and control effector posi-

tions at 100 Hz while remaining compact for easy transplant between different SUAS. DFTI, as

seen in Figure 3.3, currently support sensor communications including

• Air Data: Aeroprobe Micro Air Data Computer (RS-232)

• INS: VectorNav VN-200 INS (UART/RS-232/SPI)
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Figure 3.2: Hangar-9 1/4-Scale PA-18 Super Cub

• Control Surface Deflections: linear potentiometers via Arduino

• Engine RPM: EagleTree Brushless RPM Sensor V2 via Arduino

• Autopilots: Mavlink-based autopilots

Figure 3.3: DFTI sideview

The empty weight of the system is 0.44 lbs and requires a 3-cell 11.1 V Lithium Polymer (LiPo)

battery to power the sensors. To accommodate different needs of sensors for different missions,
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the system is mounted on a three tier 3D printed structure with each tier designed for easy add and

removal. The powering system is on the bottom layer of the structure using three LED lights to

indicate the on/off state of the switches. Additionally, a voltage regulator is integrated to provide

both 5 V and 12 V needs for different applications.

3.2.1 Flight Mission Computer

The flight mission computer serve as the hub of all the sensors, communication hardware, and

perform online calculation. The mission computer is designed to perform multiple tasks including

data logging, ground-to-vehicle and vehicle-to-ground communication setup, and online system

identification. Although any single board computer that can meet the specified requirements can

be interchanged for different applications. The Beaglebone Black Rev C is selected as the micro

processor for this research weight, size, and number of UART ports.

The flight mission computer along with the additional developer capes are displayed in Fig-

ure 3.4. A TITAN Expansion I/O cape is stacked for extra storage and USB connections, and a

Sparkfun developer cape (red board on top layer) is added with soldered connectors, data logging

switch, and a Real-Time Clock (RTC) chip.

Figure 3.4: Beaglebone Black as the mission computer
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3.2.2 Sensors

A VectorNav VN-200 is chosen as the IMU providing attitude angles (ψ, θ, φ), angular rates

(p, q, r), accelerations (Ax, Ay, Az) and GPS time. The MEMS-based 10-axis 6-DOF IMU incor-

porates a 3-axis gyroscope, 3-axis magnetometer, and a barometric pressure sensor, the sensor has

a navigation processor that runs proprietary Extended Kalman Filtering (EKF) to optimally com-

bine high bandwidth inertial measurements with high accuracy low bandwidth GPS measurements.

The VN-200 supports both ASCII and binary protocols for encoding the sensor data. The protocol

choice and sensor outputs to communicate can be configured in the VectorNav Sensor Explorer

software. Binary encoding of the data was used to maximize the data rates and the signals selected

for logging include:

• GPS time (ns)

• attitude quaternion

• body-axis angular rates (rad s−1)

• latitude/longitude/altitude (deg/deg/m)

• North-East-Down velocity (m s−1)

• body-axis accelerations (m s−2)

The GPS time signal from the INS is used to match times with other systems and can also be used

to set the system clock on the BeagleBone Black to the correct date and time when network time

is unavailable.

The VN-200 IMU unit is mounted as close to the vehicle center of gravity as possible while the

GPS antenna is placed near the top of the fuselage to minimize interference. The inertial navigation

sensor is shown in Figure 3.5.

Aeroprobe five-hole probe (5hp) along with the µADC air data computer in Figure 3.6a and

Figure 3.6b are used for measuring the total velocity Vt, angle of attack α, and sideslip angle β.
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Figure 3.5: VectorNav VN200.

The µADC outputs data over an RS-232 serial connection in an ASCII data format. An RS-232 to

3.3 V TTL converter is used to shift the voltage levels of the serial connection for interfacing with

the instrumentation computer. Initially an RS-232 to USB converter was used, but testing demon-

strated that the fast sampling of the µADC along with other sensors was sufficient to saturate the

USB bus on the computer. This caused the watchdog timer to count down and trigger an inter-

rupt. The µADC is mounted inside the fuselage of the Super Cub while the 5HP is mounted under

the right wing and is connected by pressure tubing though the half-span to the µADC. This is a

compromise between accuracy and convenience as long tubing lengths reduce the sensor accuracy.

Previous iterations of VSCL instrumentation recorded commanded surface positions as pulse

width modulated signals. This has several drawbacks, including identifying the effect of the actu-

ator dynamics as part of the aircraft dynamics and the inability to detect failures in the actuator.

Direct measurement of control surface deflections is desired to address these issues. In combi-

nation with the actuator commands logged on the flight control system, direct surface position

measurements can also be used to identify models of the actuator dynamics. Additionally, control

surface deflection measurements can provide additional feedback signals for techniques such as
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(a) 5hp mounted on the wing (b) µADC air data computer

Figure 3.6: Aeroprobe air data system.

Control Rate Weighting [50] to prevent phenomena such as pilot- induced oscillation, as well as

reducing wear on actuators. The Super Cub model has the following aerodynamic control sur-

faces: left aileron δAL
, right aileron δAR

, left trailing edge flap (TEF) δTEFL
, right TEF δTEFR

, left

elevator δEL
, right elevator δER

, and rudder δR. The aileron, elevator, and TEF surfaces are ganged

so there are the three standard aerodynamic controls (aileron, elevator, and rudder) and the TEFs

are deflected symmetrically. Using the convention found in Klein and Morelli [14], Eq. (3.1) is

one such combination for aileron and elevator. Positive surface deflections generate negative aero-

dynamic moments under this convention. Individual control effectors follow a right-hand rule for

determining positive deflections.

δA =
1

2
(δAR

− δAL
) δE =

1

2
(δEL

+ δER
) (3.1)

Ganging is accomplished through RC servomechanism Y-splitters and servo orientation. However,

since each surface is controlled by its own servomechanism the airframe could be modified to allow

independent actuation of each control surface by a control law and control allocation algorithm.

Independent actuation would also allow differential deflection of roll control effectors to reduce

adverse yaw effects. As a result each surface has a potentiometer mounted for position feedback

in order to allow for identifying models with each surface as an input.

Although the Beaglebone Black provides several analog input ports, the analog ports rang-

ing from 0 V (GND-ADC) - 1.8 V (VDD-ADC) does not provide enough resolution. Therefore
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(a) Arduino attached to potentiometers (b) Integrated potentiometer

Figure 3.7: Real-time input measurement system

the real-time input measurement system utilizes an Arduino UNO to provide 5 V ADC encod-

ing. The system encodes measured data from seven BI Technologies 6127V1A360L.5FS linear

potentiometers and an brushless motor engine rpm sensor made by EagleTree before sending it to

DFTI through UART. The measured potentiometer angles are then mapped to acquire the aircraft

control surface deflections. The potentiometers are rigidly mounted to the airframe and are con-

nected to the control surfaces by standard RC control horns and rods. Figures of the connection

and installation of the potentiometers is shown in Figure 3.7.

Specifications of the individual sensors and processors can be found in Table 3.1. The ca-

pability to measure all flight critical states minimizes the probability of estimation error due to

approximations. For control surface deflections, an Arduino UNO is used for acquiring analog

measurements of the control surfaces directly. Previous flight test instrumentation at Texas A&M

University record commanded surface positions, usually as pulse width modulated signals, for

providing control time histories for system identification. This has several drawbacks, including

identifying the effect of the actuator dynamics as part of the aircraft dynamics and being unable to

detect failures in the actuator. Direct measurement of the control surface deflections is desired to

address these issues.

26



Table 3.1: DFTI Specifications

Data Collection System
Instrumentation Computer BeagleBone Black Rev. C

Processor TI AM335x Sitara 1 GHz ARM R© Cortex A-8
RAM 512 MB DDR3

I/O USB, Fast Ethernet, HDMI, 2× 46 GPIO, 4 usable
3.3 V TTL UART

Air Data System
Air Data Computer Aeroprobe Corporation Micro Air Data Computer µADC
Flow Angle Range ±20◦

Airspeed Resolution 0.36 m s−1

Max Flow Angle Error ±1.0◦

Max Calibrated Airspeed 64 m s−1

Current Draw <390 mA @ 12 V DC
Inertial Navigation System

INS VectorNav VN-200
Accuracy (Pitch/Roll) 0.5 ◦RMS

Accuracy (Heading) 0.5 ◦RMS
Angular Resolution <0.05◦

Gyro Noise Density 0.0035 ◦ s−1
√

Hz
Gyro Alignment Error ±0.05◦

Gyro Resolution <0.02◦

Remote Measurement System
Instrumentation Computer Arduino Uno Rev. 3

Potentiometers TT Electronics/BI 6127V1A360L.5FS
Linearity (Potentiometers) ±0.5 %

Control Surface Rotation Angle 0◦ − 360◦, Continuous
Engine RPM sensor Eagle Tree Brushless Motor RPM Sensor V2

Accuracy (Engine RPM) ±100 rpm

3.2.3 Avionics

The flight control system of the Super Cub SUAS consists of the open-source ArduPlane

firmware running on the open-hardware Pixhawk flight controller. The hardware specifications

of the Pixhawk are listed in Table 3.2. The ArduPlane flight control software is operated in the

MANUAL flight mode during identification flights, which is a direct stick-to-surface mode with

no augmentation [51]. Since the Super Cub aircraft is dynamically stable, augmentation is unde-
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sirable for identification flights as the objective is to identify the open-loop model.

Figure 3.8: Pixhawk2 autopilot.

Table 3.2: Pixhawk Autopilot Specifications [1]

Processor 32-bit STM32f427 Cortex M4
Process Speed 186Hz

Memory 256 kB RAM
Failsafe Processor 32-bit STM32F103

Gyroscope 16-bit ST Micro L3GD20H
Accelerometer/Magnetometer 14-bit ST Micro LSM303D

Accelerometer/Gyroscope Invensense MPU 6000 (3-axis)
Barometer MEAS MS5611

3.2.4 Radio Communication

For data transceivers used for system identification, the XBEE transceivers are connected to

the flight mission computer via USB connection. The Digi XBEE Pro 900 HP is used to operate

with the DigiMesh protocal under API mode.
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Figure 3.9: Failsafe multiplexer connection

3.2.5 Failsafe Multiplexer

To ensure safety of the vehicle during automated input excitations, a 3DR failsafe multiplexer

is integrated between the autopilot and the servos to provide hardware failsafe. The multiplexer

can be installed to either between the rc receiver signal and rc channels or between rc channels

and auxiliary channels. The later is applied due to the number channels needed and the limited rc

receiver channels. The multiplexer is a 8× 4 PWM pass through with an additional port for signal

switching. During a system identification flight the pilot can switch between "Automated Excite

Mode" and "Manual Mode" by flipping a switch on the radio transmitter. The connection of the

failsafe multiplexer is shown in Figure 3.9
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4. SYSTEM IDENTIFICATION METHODS

4.1 Aircraft State-Space Modeling

Aircraft can be modeled as rigid bodies using classical mechanics as a set of first-order nonlin-

ear ordinary differential equations Eq. (4.1):

ẋ = f(t,x,u) (4.1)

In Eq. (4.1), x ∈ Rn is the state vector, u ∈ Rm is the control vector, and f : R+×Rn×Rm 7→ Rn

is a nonlinear function of the state and control. Interested readers can consult Refs. [52, 53, 54] for

an in-depth discussion of flight mechanics and aircraft stability and control.

4.1.1 Aircraft Nonlinear Equations of Motion

The aircraft body-fixed frame B : {x̂b, ŷb, ẑb} is defined such that x̂b points out the nose, ŷb

points out the right wing, and ẑb points down completing a right-handed coordinate system, as

seen in Figure 4.1 through the definition of the total velocity vector VT and its components.

Following from these definitions, the stability axis system is constructed from the body-axis

system by rotating along the angle-of-attack α such that the new x̂s axis is aligned with the pro-

jection of the total velocity vector VT along the xz plane. In this section, the aircraft equations of

motion will be developed in the body axis system, with later linear models expressed in stability

axes [14]. The dynamics of an aircraft can be written compactly in vector matrix form as Eq. (4.2),

m(V̇T + ω × VT) = mg + FA + FT

Iω̇ + ω × Iω = `A + `T

(4.2)

Here, VT = U x̂b + V ŷb +W ẑb is the translational velocity vector, ω = P x̂b +Qŷb +Rẑb is the

angular velocity vector, g is the gravity vector, FA and FT are the applied forces due to aerody-

namic and thrust effects, I ∈ R3×3 is the inertia tensor, and `A and `T are the applied moments due
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Figure 4.1: Definition of body-axis velocity components and flow angles.

to aerodynamic and thrust effects. The components of the moment vectors are denoted {L,M,N}

for rolling, pitching, and yawing moments respectively [55].

To fully specify the aircraft response a set of six kinematic equations (three translational and

three rotational) are required. These equations are dependent on the choice of position-level coor-

dinates. An inertial position vector in a North-East-Down (NED) frame and the 3-2-1 Euler angle

set {ψ, θ, φ} are common choices. The kinematic differential equations for the 3-2-1 Euler angles

can be found in any textbook on flight mechanics such as Ref. [54], and are reproduced below:

Φ̇ = P +Q sin Φ tan Θ +R cos Φ tan Θ

Θ̇ = Q cos Φ−R sin Φ

Ψ̇ = (Q sin Φ +R cos Φ) sec Θ

(4.3)

From Eqs. (4.2–4.3), dropping position-level coordinates for the translational motion, the aircraft

state vector is Eq. (4.4),

X = [U, V,W, P,Q,R,Ψ,Θ,Φ]T (4.4)
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4.1.2 Decoupling the Equations of Motion

For a conventional aircraft at a steady, level flight condition at near-zero bank angle, the equa-

tions of motion can be decoupled into two sets: longitudinal (i.e. pitch axis) and lateral/directional

(lat/d, i.e. roll and yaw axes). The longitudinal state vector consists of the variables U , W , Q, and

Θ in body-axes, and the lateral/directional state vector consists of the variables V , P , R, Φ, and

Ψ in body-axes. For conventional aircraft the longitudinal controls are throttle δT and elevator δE,

and the lat/d controls are aileron δA and rudder δR [53]. For non-conventional aircraft the available

control surfaces can be used directly or ganged together to form pseudo-control effectors [56]. For

the latter approach a control allocation algorithm is usually required to obtain the actual surface

deflections needed to obtain a pseudo-control command [57].

4.1.3 Linear Aircraft Models

The aircraft dynamics can be trimmed at a flight condition with states X1 and controls U1 such

that the dynamics reduce to 0 = f(X1,U1). An appropriate linearization technique can be applied

to Eq. (4.1) to generate an LTI model

ẋ(t) = A(t)x(t) +B(t)u(t) (4.5a)

y(t) = C(t)x(t) +D(t)u(t) (4.5b)

where x and u are perturbations on the state and control respectively. The full nonlinear state

is then X = X1 + x, and the nonlinear control is U = U1 + u; from these relations it is

straightforward to convert between full states and perturbed states for control law implementation,

plotting, and other uses [53]. In the stability axis system the parametric longitudinal linear state-
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space equations are:



u̇

α̇

q̇

θ̇


=



X ′u X ′α X ′q −g cos Θ1

Z ′u Z ′α Z ′q −g sin Θ1

M ′
u M ′

α M ′
q 0

0 0 1 0





u

α

q

θ



+



X ′δE X ′δT

Z ′δE Z ′δT

M ′
δE

M ′
δT

0 0


δE

δT

 (4.6)

The primed quantities result from decoupling the α̇ and q̇ equations. The angle-of-attack α is

synthesized from the velocity component w and the steady-state velocity U1 as α ≈ w/U1. This

relation uses the small-angle approximation and is valid for flight conditions that are steady and

level. It is therefore valid for linear models generated for these flight conditions.

The longitudinal dynamics are a fourth-order system that nominally exhibit two standard second-

order modes: a high frequency, highly-damped mode exhibited mainly in body-axis pitch rate q

and angle-of-attack α (short period) and a low frequency, lightly-damped mode exhibited in air-

speed u and pitch attitude angle θ (phugoid). For aircraft with relaxed static stability it is common

for the system to exhibit two first-order modes and a non-standard third-order mode referred to as

the third-oscillatory mode [53].
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In the stability axis system the lat/d linear state-space model is:



β̇

ṗ

ṙ

φ̇


=



Yβ

U1

Yp

U1

1 +
Yr

U1

g cos Θ1

U1

L′β L′p L′r 0

N ′β N ′p N ′r 0

0 1 tan Θ1 0





β

p

r

φ



+



YδA

U1

YδR

U1

L′δA L′δR

N ′δA N ′δR

0 0



δA

δR

 (4.7)

The primed terms result from decoupling the ṗ and ṙ equations, and the sideslip angle β is obtained

from the approximation β ≈ v/U1. It is valid for linear models generated for these flight condi-

tions for the same reason stated previously. The linearized heading angle kinematics ψ̇ = r from

Eq. (4.3) are not shown in Eq. (4.7) because from an identification perspective, the relationship of

ψ̇ is known exactly and therefore should not be identified. The equations for θ̇ and φ̇ are included

in Eqs. (4.6–4.7), respectively, as the other states are not independent of θ and φ.

The lat/d state-space model Eq. (4.7) forms a fourth-order system with two standard first-order

modes and a standard second-order mode for most conventional aircraft configurations. The roll

mode is a first-order mode, which, as the name implies, is primarily composed of the aircraft body-

axis roll rate p. The other first-order mode is referred to as spiral and is typically a very slow mode

primarily composed of roll (φ) and heading angle (ψ). The second-order mode is known as the

Dutch roll and is an oscillatory motion exhibited mostly in body-axis yaw rate (r), sideslip angle

(β), and body-axis roll rate. It is a mode that often needs improved damping for acceptable flying

qualities [54].
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Equations (4.6–4.7) are the basic models that are desired to be identified from the techniques

presented in this work, and subsequently used to determine modal characteristics. The output

equation Eq. (4.5b) is not identified, as 1) full state measurements are available and 2) models

are assumed to be strictly proper (i.e. D = 0) so the system input-output relationship is fully

encoded in the state equation. The user can choose appropriate C and D matrices after identifica-

tion to represent the measurements obtained from the system after the flight test instrumentation is

removed.

4.2 Observer/Kalman Filter Identification

This research utilizes OKID as the system identification method due to its ability to identify

systems simply from input/output data without additional ground measurements. A modified ver-

sion of OKID is developed in Python and a batch identification method is implemented in order to

improve the reliability of the identified model.

During the 1980’s many system identification methods have been developed to identify linear

state-space model for spacecraft and aircraft with flexible structural characteristics. The majority

of these methods are based on Fast Fourier Transform(FFT), Maximum Likelihood Estimation,

and least squares [58]. A drawback of the FFT and MLE methods is that a somewhat rich input

is required to prevent ill-conditioned computation. Developed in the 1990’s by Juang [20], the

Observer/Kalman Filter Identification algorithm (OKID) method is a direct Kalman filter gain

approach. OKID is formulated in time-domain and is capable of handling general response data.

This is especially valuable for aircraft modeling since pure impulse excitations are difficult to

apply and noise/ signal ratio of sensing data are usually high. It also has the benefit of allowing

for nonzero initial conditions and does not require the data to be collected until steady state. The

present work is an extension of the concept that OKID can be successfully used to identify state-

space models of flight vehicles.

The basic formulation of the OKID algorithm begins with the linearized, discrete-time, state-
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space equations augmented with an observer gain:

x(k + 1) = Āx(k) + B̄v(k)

y(k) = Cx(k) +Du(k)

(4.8)

where x(k) ∈ Rn, y(k) ∈ Rm, u(k) ∈ Rr, are state, output and control inputs with dimension of

n, m, and r respectively with

Ā = A+GC

B̄ = [B +GD,−G]

v(k) =

u(k)

y(k)


(4.9)

and G ∈ Rn×m is an arbitrary matrix chosen to make the matrix Ā stable. Assuming zero initial

conditions, x = 0 and integer p satisfying CAkB ≈ 0 for k ≥ p. By substituting and iterating

through each time step using Equation (4.8), the Observer Markov Parameters (OMP) comprised

of a input-output relationship becomes

ȳ = CĀpx + Ȳ V̄ (4.10)
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where

ȳ =

[
y(p) y(p+ 1) · · · y(l − 1)

]
Ȳ =

[
D CB̄ CĀB̄ · · · CĀ(p−1)B̄

]

V̄ =



u(p) u(p+ 1) · · · u(l − 1)

v(p− 1) v(p) · · · v(l − 2)

v(p− 2) v(p− 1) · · · v(l − 3)

... . . . · · · ...

v(0) v(1) · · · v(l − p− 1)



(4.11)

Since the system Markov parameters are what are really important, the matrix Ȳ is partitioned such

that

Ȳ =

[
D CB̄ CĀB̄ · · · CĀ(p−1)B̄

]
=

[
Y0 Y1 Y2 · · ·Yp

] (4.12)

from which the OMP are obtained.

Ȳ0 = D

Ȳk = CĀ(k−1)B̄

=

[
C(A+GC)(k−1)(B +GD) −C(A+GC)(k−1)G

]
=

[
Ȳ

(1)
k −Ȳ (2)

k

]
k = 1, 2, 3, . . . .

(4.13)

The general relationship between the actual System Markov Parameters and the OMP can be shown
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to be:

D = Y0 = Ȳ0

Yk = Ȳ
(1)
k −

k∑
i=1

Ȳ
(2)
i Y(k−i) for k = 1, . . . , p

Yk = −
p∑
i=1

Ȳ
(2)
i Y(k−i) for k = p+ 1, . . . ,∞

(4.14)

The next step is to use singular value decomposition (SVD) on the Hankel matrix.

H(k − 1) =



Yk Yk+1 · · · Yk+β−1

Yk+1 Yk+2 · · · Yk+β

...
... . . . ...

Yk+α−1 Yk+α · · · Yk+α+β−2


H(0) = PnΣQT

n

(4.15)

The Eigensystem Realization Algorithm is then used to solve the Hankel matrix for the desired

state-space realization (A,B,C,D):

Â = Σ−1/2
n PT

nH(1)QnΣ−1/2
n

B̂ = Σ1/2
n QT

n

Ĉ = PnΣ1/2
n

D̂ = Y0

(4.16)

Note that Â, B̂, and Ĉ are the estimated system matrices arrived at by the system identification

using OKID. The (Â, B̂, Ĉ, D̂) represent the identified discrete linear state-space system when

used in Eq. (4.17).

x(k + 1) = Âx(k) + B̂u(k)

y(k) = Ĉx(k) + D̂u(k)

(4.17)
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Additionally, the observer gain Markov sequence can be computed through the following sequence



Y o
1 = CḠ = Ȳ

(2)
1

Y o
k = CAk−1Ḡ = Ȳ

(2)
k −

k−1∑
i=1

Ȳ
(2)
i Y o

k−i k = 2, 3, · · · , p

Y o
k = CAk−1Ḡ = −

p∑
i=1

Ȳ
(2)
i Y o

k−i k > p

(4.18)

which yields

Ḡk =
[
CAk−1

]†
Y o
k (4.19)

4.3 Frequency Domain Analysis

System identification can be performed in both time and frequency domain on dynamic sys-

tems. For parameter estimation, methods such as CIFER or SIDPAC both include frequency

domain analysis due to the direct applicability to control design, the physical insight of system

behavior, and the computational efficiency comparing with most time domain methods. Time his-

tory data can be transformed into frequency domain through Direct Fourier Transformation (DFT),

which has the form of

Fn =
l−1∑
k=0

fk e
−2πink/N k = 0, 1, · · · , l − 1 (4.20)

where fk = f(dt · k). Despite being capable of transforming the time domain data to frequency

domain to calculate the Frequency Response Function (FRF), using Equation (4.20) directly is

computationally inefficient. Fast Fourier Transformation (FFT) instead is an much faster method

of producing the same results as the direct DFT calculation. The number of calculations required

reduces from O(N2) to O(N logN ) and therefore is widely used in digital signal processing.
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To calculate the FRF of a specific input-output pair, correlation functions are required

Ruu =
1

l

l−1∑
τ=0

u(τ)uT (τ − ν)

Ryu =
1

l

l−1∑
τ=0

y(τ)uT (τ − ν)

Ryy =
1

l

l−1∑
τ=0

y(τ)yT (τ − ν)

(4.21)

in which τ is the time index and ν is the time shift index. The averaged auto and cross spectral

densities are formed through

S̄uu =
1

ns

ns∑
i=0

RuuiR
∗
uui

S̄yu =
1

ns

ns∑
i=0

RyuiR
∗
yui

S̄yy =
1

ns

ns∑
i=0

RyyiR
∗
yyi

(4.22)

where ns is the number of segments for averaging, and ∗ symbols the conjugate of the function. By

averaging all the segments, the uniformly distributed spectral density function over all frequency

points is acquired. Finally the averaged FRF

G =
S̄yu
S̄uu

(4.23)

Note that the inputs are required to be periodic in order to avoid issues related to data leakage.

More about data leakage is discussed in the Appendix A.1.

4.3.1 Frequency Domain Observer Kalman Filter Identification

Similar to time domain OKID derived in Section 4.2, the first step to perform OKID is to

calculate the SMPs from the input-output signals for the Hankel matrices. The output response

of the discrete time model can be written as a combination of the transient and forced response
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comprised of SMPs

y(k) = CAkx(0) +
∞∑
i=1

CAk−iBu(i− 1) +Du(k) (4.24)

by performing the DFT calculation on Equation (4.20), the FRF can also be expressed in the form

of

G =
∞∑
k=0

Yke
−jωkdt (4.25)

Therefore, taking the inverse transform of FRF acquired from Equation (4.23) yields the SMP of

the system

Yτ =
1

l

l−1∑
k=0

G(k)ej
2πk
l
τ (4.26)

where Y0 = D and Yτ = CAτ−1B are the system markov parameters. Following the same steps

from Equation (4.15) and Equation (4.16) yields the identified system matrices.

4.4 Data Collection and Input Maneuver Design

System identification is the process of capturing the dynamic behavior of the vehicle embodied

in measured data. The results are dominated by the measured data quality and the input maneuver

design. Poorly designed or executed maneuvers lack the amplitude or frequency range and results

in inputs that are incapable of exciting the specified dynamic modes. Data sampling rate is also

important and needs to be addressed in order to reduce data aliasing. Aliasing occurs when the

sampling rate is lower than the system Nyquest frequency, and the issue is caused by analog and

digital data conversion. The result of aliasing is a false translation of power outside of the original

frequency range due to distortion, which leads to poor identification models. Therefore, with

advanced digital computers being used due to the high computational power, sampling rate must

be above the minimal threshold to avoid signal aliasing.
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4.4.1 Sampling Rate

The decision of the sampling rate of a system is driven by the Nyquist-Shannon sampling

theorem. With a time interval between sample as Ts, the sampling rate

f = 1/Ts (4.27)

is expressed in samples/second or Hz. The theorem establishes a sufficient condition for a sample

rate that allows discrete samples of a continuous system at a frequency f to capture frequency

content up to the Nyquist frequency fN ,

fN = f/2 (4.28)

However, the theoretical minimum sampling rate merely provides the lowest rate to avoid alias-

ing. In practice, a much higher sampling rate is necessary for good identification results. The

known rule of thumb for an ideal sampling rate f is

f = 25fmax (4.29)

where fmax is the maximum frequency of interest. From previous flight tests results we have seen

that most UAS vehicle rigid body modes does not exceed 1.5 HZ. Accordingly, the maximum

sampling rate for DFTI is set to 100 Hz and is normally operated at 50 Hz.

For data acquisition systems acquiring data from multiple sensors, it is common that different

sample speed is used for individual sensors. To unify the data sample rate two methods can be

used. The first method is to interpolate the data acquired from the sensor with a lower sampling

rate to a higher rate. A linear or polynomial interpolation works well for most signals. The second

method is to sample the high sample rate down to the lowest sample rate. The later method was

used for the DFTI system. For DFTI, the µADC has a maximum sensing sampling rate of 100

Hz while other sensor have higher sampling rates. Therefore, the whole DFTI system was set to
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a sampling frequency of the lowest sensor sample rate. Note that for both methods the lowest

sampling rate still needs to comply with the Nyquist-Shannon theorem to avoid aliasing.

4.4.2 Data Smoothing

Data smoothing is a common procedure for system identification. By using a certain number of

data points before and after the desired data, a smoothed data can be acquired. Data smoothing can

be done in both time and frequency domain, and can also be used to interpolate data from different

sensor with dissimilar sampling rate. Frequency domain smoothing applies Fourier analysis with a

goal to separate signal and measurement noise. Detailed development of smoothing using optimal

Fourier smoothing can be found in [59]. The smoothing method primary used in this thesis is a

local time domain method. The idea is to fit a polynomial to the measured signal while maintaining

data integrity. Common time domain methods include moving average method, local regression

methods, and the Savitzky-Golay smoothing, and differentiation filter. Moving average method has

the advantage of a low computational cost but suffers from lagging issues, and thus, to avoid signal

distortion the moving window should also be assigned carefully. Regression methods and Savitzky-

Golay smoothing on the other hand has the advantage of preserving the area and position of the

peaks, such traits are important to be preserved during data smoothing for system identification.

Therefore, to enhance consistency on signal smoothing, regression methods are more popular for

data smoothing.

4.4.3 Input Maneuvers

Several flight test maneuvers have been discussed in [58, 60, 61] for the purpose of performing

efficient excitation for system identification. The excitation methods in this thesis are commanded

by the input signal generator function, sent through Clark to the Pixhawk2 auxiliary ports for

execution.

Two general approaches are applied in designing inputs for system identification. The first

approach requires no a priori knowledge of the behavior of the dynamical system. Inputs such

as impulses and frequency sweeps fall in this category, where the goal is to excite all of the dy-
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Figure 4.2: Time series comparison of smoothed and original measured data

namic modes in a large range of frequency. The second approach requires a priori understanding

of the system and designs the input with respect to the dynamic modes. Square waves are used to

construct this particular kind of excitation. To excite the dynamic modes without flexible struc-

tural modes the maneuver time length, control surface magnitude, maneuver sequence, and input

correlations are specified [14]. The latter approach is used for SUAS flight testing due to the a

priori knowledge of the natural frequencies of the structure, and doublets are used for excitation

to reduce the excitation error induced by the pilot. Multiple control inputs must be coordinated to

maximize data content and to ensure the responses fall between the limitations for model structure

validity. In addition, it is known that in order to model the effect of a particular control surface,

the surface has to have moving action. Take lateral/directional roll mode for example, the input

maneuver sequence must include a aileron deflection

Input amplitudes must also be correctly addressed in order to provide quality dynamic mode

excitation. Small input maneuvers may result in a low signal-to-noise ratio, but on the other hand

an input too large will drive the dynamic model out of the linear range, which is a common model

structure assumption for most system identification methods.
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4.4.4 Piloted Maneuvers

To successfully excite the dynamic modes of the aircraft, input maneuvers are carefully de-

signed to achieve maximum success rate. Traditionally, excitation maneuvers has been executed

by trained pilot. Figure 4.3 gives an input excitation sequence example from flight test used for lat/d

system identification. The excitation frequency is chosen with regard to the expected frequency of

the dynamic modes; the input magnitude is selected in order to ensure the vehicle responds in the

linear range.

Figure 4.3: Coordinated input excitation to perturb lateral/directional modes.

From empirical experience, input excitations are performed using two separate test sequences:

one for longitudinal modes and the other for lateral/directional modes. Using this method to get

the most precise data, all maneuvers are performed on a 1-2-3 type count. For example, an aileron

doublet is performed as a two count (or 2 second) maneuver: one count of left aileron followed

by one count of right aileron. The most general doublet excitation sequences for both longitudinal

and lateral/directional modes are explained in the following paragraph.
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4.4.4.1 General Longitudinal Input Sequences And Modes

Longitudinal modes on aircrafts are hard to excite due to the nature of a mixing of fast and slow

dynamics. The short period mode is the fast mode that is highly correlated to the elevator deflection

while the phugoid mode is part of the slow dynamics induced by the throttle input. Both modes are

second order modes but with different damping ratio. For the best response from the aircraft the

following sequence is applied: down elevator, up elevator, full throttle, and finally cut throttle. This

is performed as a five count maneuver: one count down elevator, one count up elevator, two counts

of full throttle, and one count cut throttle. Using this excitation sequence consistently results in

three periods of the phugoid mode under stick free conditions. Figure 4.4 is an actual flight test

longitudinal input example that produced good identification result using OKID.

Figure 4.4: Coordinated input excitation to perturb longitudinal modes.

4.4.4.2 General Lateral/Directional Input Sequences And Modes

Two first order modes and one second order mode is expected for a complete lateral/directional

excitation. The first order spiral mode is perturbed using a four count maneuver: right rudder,

left rudder, right aileron, and left aileron. This sequence allows for at least one complete spiral

revolution. The Dutch Roll mode is perturbed using a four count maneuver: right aileron, left
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aileron, right rudder, and left rudder. The modification of applying the rudder doublet at the end

of the input sequence allows for a visible Dutch roll mode and then a complete spiral revolution.

Figure shows an asynchronous aileron doublet followed by a rudder doublet.

4.4.5 Automated excitation

Modeling cost can be reduced by improving the success rate of generating dynamic models. As

mentioned previously in Chapter 1, modeling efficiency can be affected by both atmospheric dis-

turbances and human-induced command errors. While environmental disturbance can be reduced

by flight testing at a calm day with minimal wind gust, excitation consistency is still a major issue

that needs to be addressed. That is why an automated mode excitation method was developed. The

method aims to target two issues with current human piloted inputs. One is to eliminate imprecise

pilot inputs that causes unsuccessful mode excitation, and the other is to increase the repeatability

of the input to enable recursive model building.

System identification input design methods can be categorized into two general approaches.

The first approach requires no a priori knowledge of the behavior of the dynamical system. Inputs

such as impulses and frequency sweeps fall in this category, where the goal is to excite all the dy-

namic modes in a large range of frequency. The second approach requires a priori understanding

of the system and design the input with respect to the dynamic modes. Square waves are used to

construct this particular kind of excitation. Previous flight test results have shown that the con-

sistency and quality of piloted excitation relies heavily on training and experience [62]. Human

piloted maneuvers are limited to the transmitter sensitivity and human operating rate, square waves

are mostly applied due to the ease of execution. However, even with experienced pilots, the process

of executing the exact assigned excitation frequency required is difficult and poor input executions

may excite flexible structural modes that can cause vehicle fluttering. Therefore, an automated ex-

citation with user assigned maneuver time length, control surface magnitude, maneuver sequence,

and input correlations is needed.

The human-in-the-loop automated excitation is developed using the Clark communication sys-

tem described in Section 2.2.2. All decisions are transferred through XBEEs utilizing the zigbee
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Figure 4.5: Graphical interface for input modifications

protocol. Figure 4.5 shows the operational GUI for interfacing between the GCS and the air vehi-

cle. Several input excitation methods are implemented in the input signal generator function that

are executed through the automated excitation software. Each input can be tailored for the selected

servos, and additional in-flight modification choices are provided. Besides the standard doublet in-

puts, inputs such as the 3-2-1-1 input, sinusoid inputs, and multi-sine inputs can be applied though

the automated excitation system.

4.4.5.1 3-2-1-1

One of the common input excitation applied on both manned and unmanned fixed wing aircraft

is the 3-2-1-1 input. Natural frequency and damping ratio can be accurately determined when

the input contains frequency in the range of where the expected natural frequencies are located.

The 3-2-1-1 is a combination of three consecutive pulses. The input pulses are designed so that

the second pulse signal corresponds to the dominant dynamic mode of interest, and the first and

third excitation broadens the excited frequency range. Note that although this method can yield
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great identification results, it should also be used with caution and not applied on certain control

surfaces. For example, an input not properly designed in amplitude and duration on the aileron

will drive the aircraft away from the trimmed flight condition resulting in a hard left/right bank,

and similarly, same situation on the elevator may perturb the vehicle to be close to stall condition.

Figure 4.6 is an example of a comparison between the assigned and measured 3-2-1-1 input.

Figure 4.6: Measured and assigned 3-2-1-1 input time histories

It can be seen that although the 3-2-1-1 excitation provides a wider range of excitation fre-

quency comparing to normal doublets, the excitations are limited by the servo response time delay

and often cannot achieve the desired full excitation magnitude. Although for the group of SUAS

of interest, the dynamics of the aircraft does not exceed this frequency, the unbalanced input issue

does lead to the vehicle deviating from trim condition.

4.4.5.2 Sinusoid Frequency Sweeps

Sinusoid sweeps have been tested in flight tests manually and have provided promising results

for offline system identification with piloted excitations. The limitation with piloted sinusoid fre-

quency sweeps are that the transmitter as well as the human pilot can only provide excitations up to
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a certain frequency, as a result leaving certain parts of the power spectrum not excited. As shown

in Figure 4.7, both the top and the bottom figures are displaying the measured elevator deflection

angle recorded by DFTI though potentiometers. The signal in the top figure was assigned a dura-

tion of 1.5 seconds with a assigned amplitude of 180 PWM, resulting an oscillation of ±4 degree

deflection around the elevator trim point δEtrim , a starting frequency of fstart = 1 Hz, and ending

frequency of fend = 10 Hz. The automated sweep signal successfully performed the designated

excitation and returned to the trim point after the excitation ended. On the other hand, the bottom

figure shows the manual sweep signal performed by a pilot. It can be seen that the sweep signal

are a lot less precise and uneven around the trim point, and additionally, the exact input excite

frequency is unknown.

Figure 4.7: Comparison of measured manual and automated sinusoid frequency sweep

Similar to the 3-2-1-1 excitation, it can be seen from the top figure of Figure 4.7 that after 7

sec the excitation amplitude reduces due to the servo excitation limits. Therefore, besides being

capable of providing a reliable and balanced input that excites the vehicle around the trimmed

point, the servo limits should be taken into account to maintain the excitation amplitude.
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4.4.5.3 Multi-sine

Multi-sine input is an excitation signal that consists of multiple sinusoid signals with a phase

or frequency shift. Schroeder [63] have previously shown that by adjusting the phase angles of a

periodic signal with a given power spectrum the peak-to-peak amplitude can be minimized. It has

the advantage of tailoring the input signal to the desired excitation frequencies. Multi-sine inputs

eliminates unnecessary high frequency inputs while maintaining the vehicle very close to the trim

point. For a periodic input signal u(t) with period T and finite bandwidth, its Fourier series is

u(t) =
M∑
k=1

Ak cos(
2πkτ(t)

T
+ φk), t = 0, 1, · · · , N − 1 (4.30)

where M is the number of harmonically related frequencies and φk are the phase angles to be

harmonic components to produce low Peak Factor (PF). Morelli [26] introduced the idea of using

PF and Relative Peak Factor (RPF) to measure the efficiency of an input for parameter excitation

purposes. Peak factor is defined by

PF (u) =
max(u)−min(u)

2√
uTu
N

(4.31)

or

PF (u) =
max(u)−min(u)

2

rms(u)
=
‖u∞‖
‖u2‖

(4.32)

where u = [u0, u1, · · · , uN−1] and ‖u∞‖ / ‖u2‖ is a crest factor. Crest factor is the ratio of the

peak value to the rms value of the signal. Similarly, the RPF is defined by

RPF (u) =
max(u)−min(u)

2

2
√

2 rms(u)
=
PF (u)√

2
(4.33)

The RPF quantifies the peak factor of u relative to the peak factor of a single sinusoid wave,

which has a peak factor of
√

2. Low RPFs indicates that the signal is capable of exciting the

system with a variety of frequencies without driving the aircraft too far away from the trim point.
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To perform an uniform power spectrum applying Schroeder sweep, Equation (4.30) will have the

following characteristics,

Ak =
√
P/M

φ1 = 0

φk = φk−1 −
πk2

N
k = 2, 3, · · · ,M

(4.34)

in which P is the total desired input power.

By applying the Schroeder sweep, it enables an experimental input design to synchronously

excite multiple control surfaces in a short period with the benefit of having mutually orthogonal

inputs that are not correlated to each other.

Table 4.1: Comparison of different inputs

Method Assigned
Frequency

Balanced
Excitation

Pros Cons

Doublets Yes Yes Easy for piloted
maneuver

Low success rate

3-2-1-1 Yes No Wider range of fre-
quency excited

Deviate trimmed
point

Sinusoid
sweep

No Yes Widest range of
excitation frequen-
cies

May run into struc-
tural modes
Possible coupling
between inputs

Multi-
sine
sweep

Yes Yes Avoids structural
modes;
No coupling be-
tween different
control surfaces

Optional basics
knowledge on
vehicle dynamic
frequencies
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5. ONLINE SYSTEM IDENTIFICATION ANALYSIS

5.1 Online System Identification Procedure

Figure 5.1: Online system identification procedure

The structure of the procedure consist of an identification loop in the onboard computer and

an update loop involving interactions with the GCS operator. A UAS pilot is required for air-

craft trimming, excitation initiating, as well as making sure the aircraft is in a safe condition.

The human-in-the-loop model update procedure is initiated when the test pilot flips the excitation

switch on the transmitter and ends when the ground control operator makes the decision for model

update. Data is being transfered from the air vehicle to the GCS through XBees and communica-

tion between each sub-processors follows the UDP/IP protocol. The update procedure is shown in

Fig. 5.1 for better understanding.

Once initiated, DFTI starts recording a log that records the full duration of the flight for of-

fline data comparison. After the pilot manually trimmed the aircraft, the ground control operator

updates the excitation parameters through the GUI to update the stored excitation parameters on
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the vehicle. Once the updated values are received, the system reads and saves the trimmed servo

values before excitation. The excitation is initiated only after the pilot flips the excitation switch on

the transmitter to start the automated-excitation loop. Servo commands are then sent to Pixhawk

via Mavlink and the system identification interface records a separate data log for each excitation,

which we consider as the current data log. The current data log records the current input excitation

signal, excitation states, and the result of the identification. Results are transferred down to the

GCS though Clark showing identification quality indicators introduced in Section ?? along with

additional information of the difference of the current identified model and the known nominal

model. Finally, the ground control operator makes the decision of model update. If the ground

control operator decides to update the model, the information in the current data log will replace

the log for the nominal model. Note that a nominal model can be preloaded but is not required for

the update procedure. Moreover, instead of identifying each input signal, the identification process

can also support batch identification with a higher computational time.

A more detailed software pseudo code for the identification process is shown in Algorithm 1.

Where fg is a set of initializing parameters for the identification process, xt is the confidence level

for the identified model, DoExcite is a boolean parameter that is set to TRUE when the Ground

Control Operator (GCO) assigns a excitation command, qindex is a quality indexes calculated for

each iteration, and {Â, B̂, Ĉ, D̂} is a set of identified system matrices. Note that the detailed

method used for quantifying the integrity of newly identified model will be presented in Section

5.3.

5.2 Model Reduction

Noise and structural nonlinearity both introduces uncertainty on the rank of the Hankel Matrix

in Equation (4.15) and alters the dimension of the realization matrix. In order to identify the real

dynamic modes, quality indicators are used to provide information on individual mode participa-

tion. Spurious or computational modes have a low temporal and spacial consistency, and therefore,

by truncating the modes below the assigned threshold yields the identified model with the proper

rank. Several quality indicators have shown to be reliable for mode selection [64, 65], in this
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Algorithm 1 Online System Identification
1: procedure MODEL UPDATING ALGORITHM

2: Initialize parameters fg for identification . Stable/Unstable modes
3: Set desired system size
4: Initialize excitation characteristics
5: Set update decision Ud to FALSE, Confidence level xt == 0
6: if DoExcite == TRUE then
7: Perform excitation of GCO’s choice
8: Pass acquired data from DAQ through UDP
9: loop:

10: while xt 6 0.5 do . Confidence level is 1 when 100 % confident
11: for i = 0; i+ + do
12: Run OKID with ith input and state measurements
13: Append ith data set to previous total data set
14: Calculate quality indexes qindex(i)
15: return qindex(i), {Âi, B̂i, Ĉi, D̂i}
16: update:
17: Send qindex to GCS through CLARK, update Ud
18: if Ud ==TRUE and qindex(i) > nominal quality index qn then
19: Update nominal model {ÂN , B̂N , ĈN , D̂N} ← {Âi, B̂i, Ĉi, D̂i}.
20: goto loop.
21: else
22: Remove {Âi, B̂i, Ĉi, D̂i}
23: goto loop.
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section, the methods used for both online and offline modal selection is introduced and discussed.

In order to analyze the individual identified dynamic mode, the system matrices from Equation

(4.16) is transformed to modal coordinates via coordinate transformation. With the eigenvalue

matrix Λ and eigenvector matrix Ψ, the system matrices in modal coordinates are

Λ = Ψ−1AΨ

Bm = Ψ−1B

Cm = CΨ

(5.1)

where Λ ∈ Rnm×nm is a matrix with eigenvalues λ1, λ2, · · · , λn as the diagonal terms, Bm ∈

Rnm×r is the modal participation factor, nm is the number of modes, and Cm ∈ Rm×nm is the

mode shape. With system matrices in modal coordinates, Mode Singular Values (MSV), Modal

Controllability Index (MCI), and Modal Observability Index (MOI) can be calculated via

MCI = 100 · |Bm|max |Bm|

MOI = 100 · |Cm|max |Cm|

MSV = 100 ·

√
|Bm| · |Cm|
|1− |λ||

max

√
|Bm| · |Cm|
|1− |λ||

(5.2)

With Ymi =

[
cmi cmiλibmi · · · cmiλi

l−1bmi

]
and

Bm =



bm1

bm2

...

bmi


Cm =

[
cm1 cm2 · · · cmi

]
(5.3)
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for i = 1, · · · , n. Also, for MSV the following relationship must be established

‖Ymi‖ ≤
√
‖cmi‖ (1 + |λi|+

∣∣λi2∣∣+ · · ·+
∣∣λil−1

∣∣) ‖bmi‖ (5.4)

These indicators have the advantage of requiring simple computational steps while providing valu-

able modal information. MSV is an indication of the contribution of each mode to the identified

model pulse response history, and therefore, is the primary identification quality indicator that is

calculated on-board and transmitted to the GCS to be used to determine the identification success

for online system identification.

Although by analyzing the frequency, damping ratio, and quality indicators provide sufficient

modal information for online modal selection, quality indicator such as MSV is known to be not

applicable for unstable modes. This is because the denominator of MSV in Equation (5.2) becomes

negative, resulting in a imaginary value. For aircraft system identification with certain modes such

as the lateral spiral mode known to be prone to be unstable, it is also important to calculate other

quality indicators to ensure the integrity of the identified modes. Therefore, for offline data analysis

additional quality indicators that involve more calculation cost are performed.

The Hankel matrix in Equation (4.14) can also be transformed into modal coordinates, recall

that previously the more general form was presented. Taking k as 1 to form the H(0) matrix,

Equation (4.14) can be expressed in the form of

H(0) =



Y1 Y2 · · · Yβ

Y2 Y3 · · · Yβ+1

...
... . . . ...

Yα Yα+1 · · · Yα+β−1


=

[
PΣ1/2Ψ

] [
Ψ−1Σ1/2QT

]
= P̃mQ̃m

(5.5)
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With no noise, this equation can be also expressed in the form of

H(0) =



CmBm CmΛBm · · · CmΛβ−1Bm

CmΛBm CmΛ2Bm · · · CmΛβBm

...
... . . . ...

CmΛα−1Bm CmΛαBm · · · CmΛα+β−2Bm



=



Cm

CmΛ

...

CmΛα−1


[
Bm ΛBm · · · Λβ−1Bm

]

= PmQm

(5.6)

Where Pm is the identified modal observability matrix and Qm is the identified modal controlla-

bility matrix.

With the results calculated, a more comprehensive analysis of the modal behavior of the iden-

tified model can be accomplished. The Consistent Mode Indicator is well known for its ability to

capture accurate both spatial and temporal consistency of the identified results, for each mode i,

CMI is a multiplication of the Extended Modal Amplitude Coherence (EMAC) and the wighted

Modal Phase Collinearity (wMPC)

CMIi = EMAC · wMPCi (5.7)

in which the temporal consistency is quantified by EMAC and the spatial consistency is captured

through wMPC. It has been shown that both the temporal and spatial conditions needs to be satis-

fied to ensure the accuracy of the identified result [66].
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5.2.1 Extended Modal Amplitude Coherence

The EMAC indicator is computed for each r inputs and m outputs for every mode, it quan-

tifies the temporal consistency of the results of the identification. EMAC is an extension of the

calculation of MAC indicators by adding in a weighting function. There are two kinds of modal

amplitude coherence indicators, Input Modal Amplitude Coherence (IMAC), which calculates the

cosine of the angle between q̃mi and q̄mi, and Output Amplitude Coherence (OMAC), which is

calculated similarly but using p̃mi and p̄mi instead. IMAC is calculated based on the comparing the

experimental data with the identified model

IMACi =
|q̃miq̄∗mi|√

q̃miq̃∗mi
√
q̄miq̄∗mi

(5.8)

and similarly for OMAC,

OMACi =
|p̃mip̄∗mi|√

p̃mip̃∗mi
√
p̄mip̄∗mi

(5.9)

where the superscript ∗ represents a vector transpose and conjugate. From IMAC and OMAC a

total MAC can be formed by

TMAC = IMAC ·OMAC (5.10)

The EMAC extends the total MAC calculation by adding in a weighting term Wij, for each mode

i, output response j, and initial condition k

EMACI
ij = IMAC ·Wij

EMACO
ik = OMAC ·Wik

(5.11)

note that the superscript I and O stands for input and output respectfully. The weighting term is

calculated using the following equation,

Wij = 1− (|Pij| /(π/4)) (5.12)
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where

Pij =


=
φij
φ̄ij

∀ |Pij| ≤ π/4

= 0 otherwise

 (5.13)

The φij term is substituted with bmi or cmi depending on the calculation of input or output EMAC.

Finally, the total EMAC is acquired similarly to Equation (5.10) by multiplying the EMACI
ij

EMACO
ik at each j − kth input-output pair for the ith mode

EMACijk = EMACI
ij · EMACO

ik (5.14)

5.2.2 Weighted Modal Phase Collinearity

The MPC quantifies the spatial consistency of the identified results.

Sxx = (crmi)
T · (crmi)

Syy = (cimi)
T · (cimi)

Sxy = (crmi)
T · (cimi)

(5.15)

with

η =
Syy − Sxx

2Sxy
(5.16)

the eigenvlaues are

λ1,2 =
Syy − Sxx

2
± Sxy

√
η2 + 1 (5.17)

and finally the MPC for mode i is defined as

MPCi =

(
λ1 − λ2

λ1 + λ2

)2

(5.18)

5.3 Nominal Model Selection

The question of when to update an identified model is a difficult. Updating a model clearly is

necessary when the system performance is degrading to a level which is not acceptable. So, the
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key is to define a performance index. There is no need to update the identified model when the

performance is reasonable based on the performance index. To transmit from a model to another

model is not an easy task for updating controller designs because the identified model and the

updated model are not necessary in the same coordinate systems. The control force generated

by the updated model may be considerably different from the original identified model at the

transition moment. It results in a rough transition yielding a sharp system response that may not

be acceptable.

A simple but yet efficient method of comparing two different identified models is by analyzing

the tracking between two signals. The Theil Inequality Coefficient (TIC) is a normalized metric

that quantifies the identified response in terms of residuals. Calculating the TIC for each output

variables using Equation (5.19) yields a total TIC of the identified model.

Ti =

√
1
N

∑N
k=1 [ŷi(k)− yi(k)]2√

1
N

∑N
k=1 [ŷi(k)]2 +

√
1
N

∑N
k=1 [yi(k)]2

i = 1, 2, · · · , N (5.19)

Where ŷ is the estimated output from the identified model, and y is the measured output for each

input i. The TIC has a value between 0 to 1, and a decent fit on a specific output should have a Ti <

0.3 [67]. Therefore, in order to determine if an identified model is better than the current nominal

model the process shown in Figure 5.2. Where m is the number of output measurements made

and the dual subscripts for TIC values have two separate meanings, the first character indicates

the model used to calculate the TIC value, and the second character points out the input set that is

applied on the model of interest. For example, TICjN represents the TIC value calculated from

the jth identified model by applying the input data set that was used to excite the nominal model.

The n step nominal update procedure is as follows, any answer of NO will result in a suggestion

of not updating the nominal model:

1. Check model stability of the newly identified model from the jth experiment

2. Check the quality indexes
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3. Check if the total TIC value of the jth identified model using the jth input data set TICjj has

an average TICavg below 0.3

4. Calculate the total TIC value of the jth identified model using the N th input data set TICjN

for model verification

5. Compare TICjN with previously saved TICNN

6. Calculate the total TIC value of the N th identified model using the jth input data set TICNj

7. Compare the final TIC values by adding the TIC

The online system suggests the GCS whether to update the model based on TIC values.
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Figure 5.2: Procedure of model update suggestion by comparing TIC values.
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6. TESTING AND RESULTS∗

Flight tests were performed at Texas A&M University RELLIS Campus in College Station,

TX. All tests were conducted during early morning to minimize the effect of wind aloft. To iden-

tify the vehicle model at a trimmed point, test inputs were applied after the aircraft is manually

trimmed. Offline system identification was monitored using Mission Planner via a 915 Hz radio,

and for online system identification, data was transmitted using XBees. Both piloted and auto-

mated excitations are injected during flight. Due to the inherent nature of OKID, identifying a

local linear time invariant model, the inputs are preferred not to excite too much nonlinearity of

the desired plant. Note that all the flight results presented are trimmed by the same UAS pilot.

Additionally, offline identifications were analyzed using Matlab, and online identifications were

performed in the Python environment. Note that part of the data collected were previously used in

previous publication.

6.1 Offline System Identification Results With Human Inputs

The flight test results for offline system identification in this subsection were conducted with

wind speed around 2 mph gusting to 5 mph prevailing from North Northeast (NNE) of the flight

path. The input maneuvers were generated by the human pilot on the ground via the transmitter.

Flight data was downloaded to a hard drive and analysis were conducted using the SOCIT package

in MATLAB R©post flight.

6.1.1 Longitudinal

Figure 6.2 shows the identified longitudinal model in the dashed red line and flight test data

in the solid blue. For SUAS with fairly rigid structures the sine sweep excitation can also be

successfully used for system identification using data acquired by the instrumentation system.

∗Part of the data sets used for online identification results were reused with permission from "Online Near Real-
Time System Identification on a Fixed-Wing Small Unmanned Air Vehicle" by Han Hsun Lu, Cameron Rogers,
Vinicius G Goecks, John Valasek, in 2018 AIAA Atmospheric Flight Mechanics Conference, AIAA SciTech Forum,
copyright 2018 by Han Hsun Lu.
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Table 6.1 shows the identified modes and characteristics using OKID.

Figure 6.1: Longitudinal identification with frequency sweep excitation.

Table 6.1: Super Cub longitudinal dynamic modes.

Mode Phugoid Short Period
Eigenvalue −0.03± j0.09 −6.09± j2.63

Damping Ratio 0.33 0.92
Natural Freq. (rad/s) 0.09 6.6

MSV (%) 100.0 15.1
MCI (%) 79.3 100.0
MOI (%) 64.8 100.0
CMI (%) 92.5 8.0

EMAC (%) 94.0 27.1
MPC (%) 98.4 29.4
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Figure 6.2: Longitudinal model verification with alternate excitation sets
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6.1.2 Lateral/Directional

The same method is implemented on the lateral axis using doublet and sine sweep excitations.

Figure 6.3 shows the results from a lat/d maneuver set. The identified states are shown as dashed

red while the actual flight data is solid blue. The identified model tracks all four states and system

frequencies very well. Note that the discrepancy in sideslip angle after two seconds is caused by

the ±20◦ measuring limit imposed by the µADC.

A filter is added using local regression weighted linear least squares and a second degree poly-

nomial to filter out the measurement noise for the state measurements. Filtered state measurements

are then used for system identification calculations.

The identified modes and characteristics using OKID are shown in Table 6.2.

Table 6.2: Super Cub lateral/directional dynamic modes.

Mode Spiral Roll Dutch Roll
Eigenvalue -0.038 -0.54 −2.73± j2.64

Damping Ratio — — 0.71
Natural Frequency (rad/s) — — 3.76

MSV (%) 79.2 100.0 81.3
MCI (%) 9.4 79.4 100
MOI (%) 83.6 100.0 89.6
CMI (%) 0.0 0.0 18.1

EMAC (%) 0.0 0.0.0 50.7
MPC (%) 0.0 0.0 35.7

To verify the integrity of the identified model, the identified model is simulated with another set

of inputs. These simulation results are displayed in Figure 6.4. The identified model shows good

consistency with the measured state measurements, and it can be concluded that the identified

model is reasonably close to the true vehicle model. The results show that despite experiencing

signal clipping, the identified method can still successfully identify the system dynamics without

errors.
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Figure 6.3: Comparison between flight data and identified lateral/directional model.

Figure 6.4: Lat/D model verification with alternate excitation sets

68



6.1.3 Summary on Piloted Results

Despite showing good tracking on both lateral/directional and longitudinal system identifica-

tion, piloted maneuvers lacks consistency even with experienced pilots. Analyzing data from 11

different flight days with 59 excitation maneuvers combining both lateral/directional and longitudi-

nal maneuvers, piloted maneuvers averaged a 24 percent success rate in identifying a linear model

with the right rank and modes. Within these models, merely 6 flight maneuvers yielded an identi-

fied model that tracks the output response extremely well with a TICavg < 0.3. Figure 6.5 shows

an example of the identified results by plotting the identified eigenvalues of the lateral/directional

model from single flight day. The red and green markers represent the preferred identified models

with a low TIC value and the blue markers indicate other data sets with similar flight conditions

that had a poor TIC value. The red marker is the data set that is identified as the nominal identified

model with the lowest average TIC value.

Figure 6.5: Accumulated identified eigenvalues of the multiple piloted and automated excitation
results
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The results show that even with the correct rank and number of modes, the identified eigen-

values range across a large region. Analyzing the acquired data, several issues may result in the

changes. The first obvious reason is the variations between different flight maneuvers, that is the

duration and magnitude of the input change between each piloted maneuver. It is known that in-

puts with large magnitudes drive the system to deviate the linear range. For most of the identified

models with poor tracking consistency, variations between piloted inputs are the main reason a

poor identification.

The other reason regarding model variations is the difference between each trimmed straight

and level flight. Before each flight maneuver, the pilot manually trims the vehicle to a wings level

flight. Due to both human operational differences and sudden wind gusts, the angle-of-attack α

and the body axis roll angle φ was seen to variate slightly between each flight path.

6.2 Data Analysis With Automated Input

Automated inputs detailed in Section 4.4.5 were applied during each flight maneuver using the

online identification procedure from Section 5.1. The input functions were preloaded onboard the

vehicle and called when the GCS operator presses the "Update Input" button on the GUI. Figure

6.6 presents an example of the flight path from a lateral/directional input maneuver overlaid in

Google Earth. Note that the flight path log file used is recorded onboard the Pixhawk log file.

The red section indicates the location where the pilot enabled the excitation on the transmitter

and both blue and orange sections displays the flight path while the vehicle is in excitation mode

for two separate flight paths.

The automated input function not only allows the user to specify a desired input excitation but

also improves the repeatability of the excitations. Figure 6.7 compares the measured input of two

excitations with identical settings. The results show that the two signals have a averaged TIC value

of 0.007 and can be viewed as identical.
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Figure 6.6: Flight path of a lateral/directional path using the developed automated excitation
method.

Figure 6.7: Comparison of two excitation signals with identical settings
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6.2.1 Offline Frequency Domain OKID Results

In this section frequency domain OKID is applied to the data collected from automated apply-

ing multi-sine sweeps to multiple control surfaces. Automated input enables periodic excitations

that are required for frequency domain methods. Data is analyzed offline in Matlab using SOCIT.

The main goal is to apply frequency domain OKID to get similar results as analyzing the time

domain data. The FRF is acquired using Equation (4.21) to Equation (4.23).

For lateral/directional system identification, the same multi-sine input used for time domain

OKID was applied. Figure 6.8 shows the Input signal. A multi-sine input with the same configu-

ration as listed in Table 6.4 was applied on the aileron and the rudder.

Figure 6.8: Input used for lateral/directional frequency domain system identification

The FRF of the input-output signal from this excitation was calculated and is plotted in Figure

6.9.

The identified results using frequency domain OKID is shown in the following table:

The measured and identified output response is shown in Figure 6.10.

72



Figure 6.9: Frequency response function of a lateral/directional input-output data set

Table 6.3: Super Cub lateral/directional dynamic modes using frequency domain OKID.

Mode Spiral Roll Dutch Roll
Eigenvalue -0.04 -1.83 −2.16± j4.46

Damping Ratio — — 0.44
Natural Frequency (rad/s) — — 4.96

MSV (%) 100.0 2.7 20.4
MCI (%) 56.7 28.4 100.0
MOI (%) 80.6 43.5 100.0
CMI (%) 0.0 0.0 0.0

EMAC (%) 0.0 0.0 0.0
MPC (%) 0.0 0.0 45.8
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Figure 6.10: Identified lateral/directional output response

6.2.2 Online Full Lat/Lon Identification Results

One of the objectives of this thesis is to analyze the different excitation methods for effective

online near real-time system identification. Full lateral/longitudinal identification has been in par-

ticular of interest due to the possibility of exciting all the vehicle dynamic modes though a short

period of excitation. In general, short excitation time is preferred over a long excitation because

the plane tends to deviate further from the trim condition as the excitation duration prolongs. In

addition, although lateral/directional and longitudinal input excitations have shown to be effective

on identifying the appropriate dynamic modes separately, the main assumption is that the lateral

directional modes and longitudinal modes are fully uncoupled, which means that no cross-axis

terms exist. However, it is also known that as AOA of the aircraft increases, the dynamic coupling

between lateral/directional and longitudinal modes can become more significant [68]. Moreover,

for fully nonlinear aircraft models lateral/directional inputs affect longitudinal states. Figure 6.11

is an example of how the uncoupled assumption differs from the coupled response from a single

large rudder input.

For SUAS system identification related research it is especially important that the coupling

effects are not totally ignored. Trimming from a large distance away is not a trivial task, and even
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Figure 6.11: Comparison of linear and nonlinear coupling response of a large rudder input.

with an experienced remote pilot it is difficult to trim the UAS perfectly at 0 degrees AOA without

a first person view.

In this subsection, a full lateral/directional and longitudinal excitation combination is applied

to acquire a full dynamic model. With the goal to excite the dynamic modes in a short time period

effectively, several input excitation combinations were tested. In Section 4.4.5, it has been pointed

out that multi-sine inputs has the advantage of having a low RPF, keeping the vehicle close to the

trimmed flight condition, and is preferred for multi-surface excitation. Table 6.4 displays the input

details for each multi-sine input and its RPF. Note that the Ak is the amplitude commanded in

terms of PWM. All the excitation inputs and analysis results shown in this subsection is directly

collected via flight test with no post additional processing. The input and output sets used are from

the log files and the identification code is the exact same code onboard the vehicle.

It is preferred to also apply a low frequency multi-sine input on the throttle due to the bene-

fits mentioned in previous sections. However, experiments have shown that the time delay caused

by the ESC response time restricts the excitation efficiency. Moreover, the asymmetric nonlinear

change on ramping throttle up and down creates results in a large RPF. Therefore, applying expe-
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Table 6.4: Input parameters for multi-sine excitation.

Input Ak (PWM) k RPF
δa 40 3, 6, 9, 12 1.51
δr 40 5, 10, 15, 20 1.21
δe 40 7, 14, 21, 28 1.52

rience from the piloted maneuvers for longitudinal system identification, a step-like input similar

to the longitudinal input in Figure 4.4 was applied to the throttle. Figure 6.12 is the measured

combined input from DFTI.

Figure 6.12: Combined multi-sine excitation applied on aileron, rudder, and elevator followed by
a step-like throttle input sequence.

The identified and measured output results are shown in Figure 6.5. Similar to previous results,
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the dashed red signal represents the identified signal while the blue signal is the original measured

data. The results yielded an averaged TIC value Tavg = 0.21 indicating very good tracking on

between the estimated and measured responses and the identified details can be seen in Table 6.5.

Additionally, the identified system matrix can be found in Appendix A.2.

Figure 6.13: Full lateral/directional and longitudinal identification with the combined input exci-
tation set.

Other inputs sequences that were tested includes moving the throttle input sequence forward

before the multi-sine input started as shown in Figure 6.14.

The results from this input showed reasonable identification quality but the success rate of

identifying a model with an average TIC value below 0.3 was low. In some of the identified

data sets, the slow phugoid mode fails to develop before the lateral/directional inputs initiate.
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Table 6.5: Super Cub full Lat/Lon dynamic modes.

Mode Phugoid Short Period Roll Spiral Dutch Roll
Eigenvalue -0.19 -4.88 -1.72 -6.31 -1.5

±j0.48 ±j3.23 ±3.7
Damping Ratio 0.36 0.83 — — 0.29

Natural Freq. (rad/s) 0.5 5.84 — — 3.96
Time Const. (sec) — — 1.19 0.03 —

MSV (%) 100.0 31.7 36.5 42.1 28.8
MCI (%) 35.7 46.7 100.0 28.7 13.3
MOI (%) 49.6 92.9 73.4 100.0 85.4

Accordingly, throttle input is preferred to be introduced after lateral/directional inputs are excited.

Another aspect of interest is the amount of response time needed for a successful identification.

The amount of time allowing the vehicle response to develop was changed for this experiment. To

illustrate, the identified results were closely monitored while the pilot gradually reduces the free

response time of each path. Quality indexes, TIC value, as well as identification success was

analyzed and compared.

Figure 6.15 and Figure 6.17 shows the input and output signals of a short response excitation

maneuver. It can be seen that the pilot took back control of the vehicle right after the excitation

was completed. Figure shows the identified results. Information includes including identified

frequency, damping ratio, MSV, MCI, MOI, TIC value, and plotted figure of the eigenvalues are

shown.

6.2.3 Post Flight Data Analysis

There are several differences between post flight data analysis and onboard data analysis. Al-

though post flight analysis is conducted using the exact same program used for onboard analysis

along with data log files stored during flight. The main differences are the capability to manually

change the starting time of identification, the option to apply a different signal filtering, and the

ability to modify extensive parameters. In this subsection, the differences mentioned above are

discussed.

In order to address the effect of the starting point of the identification process, it is important
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Figure 6.14: A step-like throttle input followed by a combined multi-sine excitation applied on
aileron, rudder, and elevator sequence.

to understand the underlying delay time in the system. The starting time variates within a 0.8 sec

due to both the time delay caused by the multiplexer along with the general system delay. The

delay caused by the multiplexer is the difference between software communication and hardware

channel change. Once the pilot initiates the excitation on the transmitter, Clark reads the channel

change signal and passes a "Logging start" signal to the system identification subsystem. At the

same time the output channels on the Pixhawk are switched by the hardware multiplexer. The

difference between the two process may result in a time delay and sometimes poses a problem for

real-time identification system if the pilot was still applying inputs. Figure 6.18 shows how this can

possibly effect the identified results. The red solid line indicates the starting point of the automated

excitation, which is the ideal identification starting time. It can be seen that some aileron input was

still being applied before the excitation was initiated. Therefore, instead of a fixed pre-specified
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Figure 6.15: Combined input excitation sequence with short response time.

starting point, the starting point of identification can be manually chosen to eliminate this effect.

The second difference is the ability to apply different signal filtering via signal post-processing.

This discrepancy is minor as the measurement noise have shown to not have a significant effect on

the identification results, and therefore, the same filtering method is applied on the online identifi-

cation process.

Although most identification parameters can be modified through the communication GUI,

the ideal number of certain parameters may vary with each flight path. Such parameters include

the identified the number of observer Markov parameters p and the system order n. For online

identification, p is set to a fixed value 10, and n is set to the desired system order. In general, p

is chosen from experience and is required to follow certain criteria. That is, a system with system

order n and m outputs, the minimum number of OMP required to be identified is

pmin = int(
n

m
) (6.1)
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Figure 6.16: Screen capture of the identification GUI with identified results plotted in near real
time.

Figure 6.17: Identified results from combined input excitation sequence.

81



Figure 6.18: Identification start time during flight test compared to the ideal starting time. The red
line indicates the decision made by analyzing the data post flight.

and the maximum order of the system that can be recovered is mp. Take a system with a system

order of 5 with 8 measured outputs as an example. The pmin would be 1, and the maximum order

of the system that can be realized will be 8. In theory, a large enough p should be chosen to be able

to realize a system with an unknown order. However, a larger number does not guarantee yielding

a better identified result. Using the same flight data, Figure 6.19 illustrates an example of an

offline flight analysis by iterating different p values to find the ideal value. In this case, the online

identification program had a pre-assigned value of p = 10, and the TICavg values with different

p is shown in Table 6.6. From the table it is shown that the larger p value does not correlate to a

small TICavg. For this specific case, p = 1 would have been the preferred value assigned. This

iterative process is currently not implemented on the flight software, but may be easily add into

the system with simple modifications. However, it is worthy to note that the processing time will

increase significantly on the current ARM micro-controller chip.
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Table 6.6: TICavg values with different p values.

p TICavg

1 0.2715
2 0.3241
3 0.3395
5 0.3655
7 0.3375

10 0.3555

Figure 6.19: Output responses with different p compared to flight data.
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6.2.4 Summary for Online Identification with Automated Inputs

Automated input excitation have shown to be the superior over piloted excitation maneuvers

both in accuracy and repeatability. It is important for online near real-time system identification

and can also be utilized to perform different excitation sequences for more efficient excitations. In

terms of the quality of identified results, excluding flights in the developmental stage, the proposed

combined lateral/directional and longitudinal excitation sequence recorded a 7 out of 21 success

rate of identifying a system model with the correct dynamic modes and a TICavg < 0.3. Increasing

the success rate by 23 percent.
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7. CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the research presented in previous chapters and further on make recom-

mendations for future advancements.

7.1 Conclusions

1. From the identified results, the design of a flight test instrumentation capable of accurately

measuring aircraft state and control time histories at 100 Hz demonstrated the capability to

support online near real-time system identification.

2. An automated method of applying excitation inputs was shown to be capable of applying var-

ious excitations of the users choice. The method yielded a repeatable and precise excitation

with 99 % of similarity and identical power spectrum.

3. An input combination was introduced for a combined lateral/directional and longitudinal

system identification on a Small Unmanned Air Systems. The full surface excitation was

shown to be capable of exciting all the vehicle dynamic modes effectively in a single excita-

tion.

4. The human-in-the-loop system identification procedure along with the developed system

have shown to be capable of performing near real-time system identification using Commercial-

Off-The-Shelf products. The developed system was shown to improve the identification

results with a averaged TIC value smaller than 0.3 by 23 %.

5. Observer Kalman Filter Identification yielded accurate identified results during flight tests

and is a feasible candidate for online near real-time system identification on a Small Un-

manned Air Systems. Additionally, the results of the identified model that transferred to the

Ground Control Station and shown to provide sufficient information for the ground control

operator to make the model update decision.
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7.2 Recommendations

• The current system is configured to apply sensed AOA α and sideslip β for system identifi-

cation on medium to large sized UAV that are in the SUAS category. These measurements

require a 5 hole probe with a data process system to provide accurate measurements. For

SUAS with payloads less than 1 lbs or fixed wing Miniature Aerial Vehicles (MAV) that are

not capable of carrying this system, an alternative is to estimate a derived angle-of-attack

and sideslip angle directly from the lift coefficient CL and sideforce coefficient CY as in

Eq. (7.1):

α̂ =
−
(
CL1 + CLq

qc̄
2VT

+ CLδEδE

)
q̄S
W
− nz

CLα
q̄S
W
− nx

β̂ =
ny

W
q̄S
− CY p γb

2VT
− CY δAδA − CY δRδR
CY β

(7.1)

Valasek et al. showed that using Monte Carlo experiments that the derived AOA and sideslip

method provided accurate approximation even with high sensor noise [69]. A comparison

between the results from the current system using measured AOA and a derived AOA method

in flight test would be an interesting topic for future research.

• The latest version of the system still requires a human pilot to manually trim the aircraft

before initiating the automated excitation. This requires an experienced pilot and allows

very little tolerance on days with strong wind gusts. A reliable stabilize auto-trim feature

could reduce the probability of identifying a model at a different orientation resulting in

discrepancies between models.

• The process of providing a high quality LTI model has been thoroughly investigated in this

thesis, however, the nominal model update procedure is still very preliminary, and also re-

quires a lot of user experience. A more complex method of making the model update deci-

sion is to analyze the performance index. First, a performance index needs to be appointed

according to the system control objective. Second, the identification system should be tightly
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integrated with the control subsystem. By analyzing the performance index constantly dur-

ing flight, the model should only be updated when the system performance is degrading to

an unacceptable level.

• Several wind gust identification models and research have been conducted in both the manned

and unmanned research area, incorporating in knowledge of the wind gusts would increase

the knowledge of the disturbances and could be a factor to increase the identification success

rate.

• The near real-time identification framework enables the vehicle to continuously update a

linear time invariant model that can be utilized in control design. The hardware settings are

capable of adding in control design functions that enable implementation of control tech-

niques such as dynamic inversion, model reference predictive control, and adaptive control

to the system.

• The discrepancy between the assigned control input and the actual measured control input

was noted but the effect on the identified results can be further analyzed. Items that can

be analyzed include the reliability of the control implementation on the Pixhawk autopi-

lots, the execution time lag on between each command signal, and the execution amplitude

difference.
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APPENDIX A

DATA LEAKAGE AND IDENTIFIED SYSTEM MATRICES

A.1 Data Leakage

Data leakage occurs when the input signal for forming the frequency response function is not

periodic. Leakage of data results in loss of data information at the specific frequency where leakage

is observed. The leakage problem can be shown in the following equation

e(k) =
1

l

l−1∑
i=0

u(i)e−j(
2πk
l

)i − 1

l

l−1−µ∑
i=−µ

u(i)e−j(
2πk
l

)i

=
1

l

l−1∑
i=l−µ

u(i)e−j(
2πk
l

)i − 1

l

−1∑
i=−µ

u(i)e−j(
2πk
l

)i

=
1

l

−1∑
τ=−µ

[u(τ + l)− u(τ)] e−j(
2πk
l

)i

(A.1)

where u(τ + l)− u(τ) = 0 when the input is perfectly periodic.

A.2 Identified System Matrices

The identified individual lateral/directional and longitudinal model for the Hangar-9 1/4 Scale

PA-18 Super Cub is Equation (A.2) and Equation (A.3). The combined full lateral/directional and

longitudinal model is Equation (A.4).

Angular states are in radians, angular rates in radians per second, velocity is in meters per

second, and controls in degrees. The lateral/directional model is trimmed at β1 = −6.75◦, p1 =

2.2 ◦/s, r1 = −0.62 ◦/s, and φ1 = −0.59◦, where a ‘1’ subscript indicates a trim value.
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

β̇

ṗ

ṙ

φ̇


=



0.07918 −0.1425 −0.8387 −0.414

4.81 −7.098 −3.568 −2.693

3.444 4.548 −1.98 −0.8893

−0.04679 0.9998 −0.03553 −0.02902





β

p

r

φ



+



−0.002815 0.01296

−0.666 −0.2216

0.2464 −0.5871

−0.01386 −0.005222


δA

δR



(A.2)

Equation (A.3) is trimmed at VT1 = 17.96 m/s, α1 = 0.09◦, q1 = −0.74 ◦/s, and θ1 = 1.31◦.

Note that in Equation (A.3) the true airspeed VT is substituted for body-axis x velocity u in

Equation (4.6).



V̇T

α̇

q̇

θ̇


=



−0.4541 −2.628 1.806 −7.129

−0.0851 −2.468 1.788 0.1256

0.2701 −5.163 −7.527 1.255

0 −0.2657 0.9126 0.3046





VT

α

q

θ



+



0 0.02639

0 0.05085

−0.0001826 −1.417

0 −0.01782


δT

δE



(A.3)
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

V̇T

α̇

q̇

θ̇

β̇

ṗ

ṙ

φ̇



=



0.35 21.42 1.213 −10.43 −13.85 3.731 3.668 5.348

−0.078 −1.892 1.769 0.092 0.783 −0.672 0.016 0.549

0.242 −16.74 −8.09 −0.506 −5.946 1.921 0.507 −2.755

0.017 0.601 0.609 −0.282 −0.129 0.413 −0.29 0.401

−0.013 0.506 −0.068 −0.239 0.376 0.083 −1.16 −0.308

−0.395 0.157 4.778 2.027 3.84 −7.848 −2.151 −5.991

−0.197 −3.526 −4.581 −1.451 14.5 1.071 −3.975 0.625

0.0006 0.051 0.079 −0.214 −0.034 1.131 0.317 0.182





VT

α

q

θ

β

p

r

φ



+



0.0002 19.83 −10.92 2.486

−1.068e− 05 −1.827 0.919 −0.4767

2.956e− 05 −6.455 3.168 −1.71

9.704e− 06 −2.666 1.631 −0.07735

1.468e− 05 1.559 −0.4864 1.037

0.0001101 23.23 −15 −0.1386

5.53e− 05 −11.29 0.7215 −14.03

8.609e− 06 0.5379 −0.5072 −0.4112





δT

δE

δA

δR



(A.4)

Equation (A.4) is trimmed at VT1 = 16.8m/s, α1 = 0.74◦, q1 = −2.77 ◦/s, θ1 = −12.2◦, β1 = −9.9◦,

p1 = 6.16 ◦/s, r1 = −2.28 ◦/s, and φ1 = −1.07◦. The aircraft mass is 20.5lbs, and the C.G. location is

approximately 1.6 ft measured from the tip of the propeller shaft.
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APPENDIX B

SYSTEM DESIGN CONCEPTS

B.1 Concept of Operations

The system identification system shall be able to perform near real-time system identification using

onboard calculations only. The system should be able to perform both lateral and longitudinal identification

and provide real-time feedback to the ground control user on the ground control station. For comparison,

the system shall be able to log sensed data, identified results, and identified nominal models for off-line

analysis.

B.2 Design Requirements

To achieve the research objectives and overcome the research challenges, certain requirements should

be met for the data acquisition subsystem and system identification subsystem:

1. The system shall be capable of logging aircraft states at a high rate.

1.1. The system should be capable of logging aircraft states and control effector positions at rates no less

than 100 Hz.

2. The system shall be capable of directly measure control surface deflections.

3. The system should have a reliable excitation method capable of exciting all the dynamic modes.

3.1. The auto excitation should be commanded by the ground control operator.

3.2. The ground control operator should be able to terminate an excitation

3.3. The pilot should still have control authority when excitation is executed

3.4. The system shall be able to perform doublet, 3-2-1-1, and sine sweep excitations on multiple control

surfaces

4. The system shall be able to identify local linear models during flight.

4.1. The system should be capable of updating the identified local models every specified time period.

4.1.1. The ground control operator should be able to assign and modify the specified update time.
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4.2. The identification algorithm should check the stability of the identified system

4.3. The identification algorithm shall calculate identification quality indexes

4.3.1. Quality indexes should provide clear coherence percentage of the identified model

5. The on-board system should be able to pass the identified parameters through telemetry radios to the

ground control station.

6. The update procedure shall be a human-in-the-loop system with the ground control operator as the final

decision maker.

6.1. The ground control operator should be provided with updated quality indexes compared with previ-

ous model

6.2. The ground control operator should be able to decide whether to update the identified model on the

aircraft through a GUI interface.

6.3. The system should be able to switch back to a nominal model through the telemetry radio when the

ground control operator observe an issue with the new identified model

6.3.1. If a faulty identified model was chosen and updated, the system should be able to self check

and restore the previous nominal model

7. The system should be modular for extensive capabilities

7.1. The system shall be coded in Python

7.2. The system should use COTS components as much as possible

7.3. The system should have a modular software architecture and be highly extensible

7.4. The system should work with any sensor as long as the data is provided in the a similar format
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