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ABSTRACT 

 

The intricate physics of unconventional reservoir fluid transportation has posed great 

challenges to traditional simulation approaches. Resources such as shale are usually associated 

with complex fracture networks generated either naturally as a result of the geo-stress evolution, 

or artificially during hydraulic fracturing to improve well productivity. In either case, fractures 

greatly influence the underground fluid transportation, which highlights the importance to 

accurately simulate the flux with fractures. In this work, a novel discrete fracture model, 

compartmental EDFM (cEDFM) is developed based on the original EDFM framework. By 

assuming a linearly distributed pressure near fractures, EDFM can provide a sub-grid resolution 

that lifts the requirement to perform local refinement. Although efficient, considerable error is 

reported when applying this method to simulate flow barriers, especially when dominant flux 

direction is across instead of along the fractures. Therefore, different from the original method, the 

fracture would split matrix grid blocks when intersecting them in the proposed approach, resulting 

in a model more similar to an explicit fracture model. The proposed method maintained the high 

efficiency of the original EDFM, while overcame some of the limitations. The new model is 

benchmarked for single-phase and multi-phase problems, and the accuracy is evaluated by 

comparing to multiple reference cases. Results indicate the new model yields much better accuracy 

even for multi-phase flow simulation with flow barriers. 

A major part of the uncertainty for shale reservoirs comes from the distribution and 

properties of the fracture network. However, explicit fracture models are rarely used in uncertainty 

quantification due to the high computational cost. The later part of this work explored several 
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workflows to match the history of reservoirs with fractures. By taking advantage of the efficiency 

of cEDFM, fractures can be explicitly characterized, and the corresponding uncertainty about the 

distribution and properties of fractures can be evaluated. No upscaling of the fracture properties is 

necessary, which is usually a required step in a traditional workflow. A modified two-stage MCMC 

algorithm as well as the Ensemble Kalman Filter (EnKF) are implemented as the data assimilation 

algorithms, with the latter preferred for more complex cases with larger parameter space.  
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NOMENCLATURE 

𝑑𝑓𝑖𝑙
 : distance to the shared edge from the centroid of the fracture polygon, 𝑓𝑡 

𝑑𝑓𝑖𝑙
̅̅ ̅̅  : average distance to the fracture intersection line, 𝑓𝑡 

𝑑𝑁𝑁𝐶 : characteristic distance of non-neighbor connection, 𝑓𝑡 

𝑑𝑜𝑏𝑠 : observed well data 

𝑑𝑠𝑙 : distance to the fracture intersection line, 𝑓𝑡 

𝑑𝑣𝑓 : distance to the fracture plane, 𝑓𝑡 

𝑔𝑛 : well data vector 

𝑔(𝑥) : simulated reservoir response  

𝑔∗(𝑥) : interpolated reservoir response with proxy model 

𝑘𝑓 : fracture permeability, 𝑚𝑑 

𝑘𝑚 : matrix permeability, 𝑚𝑑 

𝑘𝑟 : relative permeability 

𝑘̅𝑚𝑛 : inter-porosity effective permeability, 𝑚𝑑 

𝑘𝑁𝑁𝐶 : effective permeability of non-neighbor connection, 𝑚𝑑 

𝑙𝑓𝑖𝑓𝑗
 : length of intersection line between two fracture grids, 𝑓𝑡 

𝑚 : model parameters vector 

𝑚𝑖 : adsorbed mole of component 𝑖 per matrix bulk volume,  𝑚𝑜𝑙𝑒/𝑓𝑡3 

𝑛 : number of normal sets of fractures 

𝑛ℎ : number of components in the oil and gas phase 

𝑛𝐶𝑒𝑙𝑙𝑠 : number of cells of the reservoir model 

𝑛𝑊𝑒𝑙𝑙𝑠 : number of wells of the reservoir model 

𝑞(∙) : proposal distribution at the 1st stage 

𝑞𝑚−𝑛 : inter porosity flux rate between porosity 𝑚 and 𝑛, 𝑚𝑜𝑙𝑒/𝑠 

𝑞𝑜/𝑔/𝑤
𝑊  : volumetric production/injection rate of well 𝑊 per bulk volume, 𝑠−1 

𝑟𝑖 : residue of component 𝑖 

𝑠𝑜/𝑔/𝑤 : phase saturation 

𝑡 : time, 𝑠 

𝑢𝑛 : state variable vector 

𝑤𝑓 : fracture aperture, 𝑓𝑡 

𝑥𝑖 : oil phase mole fraction of component 𝑖 
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𝑦𝑖 : gas phase mole fraction of component 𝑖 

𝑦𝑛 : model state vector 

𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 : area of the fracture segment, 𝑓𝑡2 

𝐴𝑁𝑁𝐶 : area of non-neighbor connection, 𝑓𝑡2 

𝐶𝐷 : covariance matrix of observed well data 

𝐶𝑥 : covariance matrix of model parameters 

𝐹 : flow simulation 

𝐺 : sensitivity matrix of reservoir response to model parameters 

𝐾𝑛 : Kalman gain matrix at time step 𝑛 

L : characteristic length of matrix for the dual porosity model, 𝑓𝑡 

𝑀𝑖,𝑗 : adsorbed mole of component 𝑖 in grid 𝑗,  𝑚𝑜𝑙𝑒 

𝑁𝑖,𝑗 : mole of component 𝑖 in grid 𝑗, 𝑚𝑜𝑙𝑒 

𝑁𝑒 : ensemble size 

𝑁𝑤,𝑗 : mole of water in grid 𝑗, 𝑚𝑜𝑙𝑒 

𝑃 : posterior probability calculated with 𝑔(𝑥) 

𝑃∗ : posterior probability calculated with 𝑔∗(𝑥) 

𝑃𝐿 : Langmuir pressure of a component, 𝑝𝑠𝑖𝑎 

𝑃𝑜/𝑔/𝑤 : phase pressure, 𝑝𝑠𝑖𝑎 

𝑃𝑤𝑓 : well bottom-hole pressure, 𝑝𝑠𝑖𝑎 

𝑃𝑉𝑗 : pore volume of grid 𝑗, 𝑓𝑡3 

𝑄(∙) : proposal distribution at the 2nd stage 

𝑄𝑜/𝑔/𝑤
𝑊  : volumetric production/injection rate of well 𝑊 at the perforation grid,  𝑓𝑡3/𝑠 

𝑅 : covariance matrix of the observation errors 

𝑅𝑖,𝑗 : CVFD format residue of component 𝑖 in grid 𝑗 

𝑇𝑗−𝑐 : transmissibility between control volume  𝑗 and 𝑐, 𝑚𝑑 · 𝑓𝑡 

𝑇𝑚−𝑛 : inter-porosity transmissibility between porosity types 𝑚 and 𝑛,  𝑚𝑑 · 𝑓𝑡 

𝑉𝑗 : bulk volume of grid 𝑗,  𝑓𝑡3 

𝑉𝐿 : Langmuir volume of a component, 𝑓𝑡3/𝑙𝑏 

𝑉𝑜/𝑔/𝑤,𝑗 : volume of oil/gas/water phase in grid 𝑗,  𝑓𝑡3 

𝛼 : unit conversion coefficient 

𝜙 : porosity 

𝜎𝑚𝑛 : shape factor between porosity type 𝑚 and 𝑛 
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𝜌 : phase density, 𝑙𝑏/𝑓𝑡3 

𝜌𝑠 : rock bulk mass density, 𝑙𝑏/𝑓𝑡3 

𝜌̃ : phase mole density, 𝑚𝑜𝑙𝑒/𝑓𝑡3 

𝜆𝑜/𝑔/𝑤 : phase mobility, 𝑚𝑑/𝑐𝑝 

𝜆𝑟𝑜/𝑟𝑔/𝑟𝑤 : relative phase mobility, 𝑐𝑝−1 

𝜏𝑚𝑓 : inter-porosity flux rate per unit bulk volume,  𝑙𝑏/𝑓𝑡3/𝑠 

𝜇 : viscosity, 𝑐𝑝 

Φ : phase potential, 𝑝𝑠𝑖𝑎 

Φ𝑛𝑜/𝑛𝑔 : oil/gas phase potential for porosity type 𝑛, 𝑝𝑠𝑖𝑎 



 

x 

Subscripts: 

 

Superscripts: 

𝑐 : neighbor index from the connection list 

f : fracture 

g : gas phase 

𝑖 : component index 

𝑗 : control volume index 

m : matrix 

𝑛 : time step index 

o : oil phase 

p : phase index 

w : water phase 

x : x direction 

y : y direction 

z : z direction 

W : Index of a well 

sc : standard condition 



 

xi 

ABBREVIATIONS 

 

BHP : bottom-hole pressure 

cEDFM : compartmental embedded discrete fracture model 

CVFD : control volume finite difference 

CPG : corner-point grid 

DFM : discrete fracture model 

DFN : discrete fracture network 

EDFM : embedded discrete fracture model 

EnKF : ensemble Kalman filter 

EnRML : ensemble randomized maximum likelihood 

ES : ensemble smoother 

GA : genetic algorithm 

GOR : gas-oil ratio 

GURU : general unstructured reservoir utility 

LGC : local grid coarsening 

LGR : local grid refinement 

MCMC : Markov chain Monte Carlo 

MFD : mimetic finite difference 

MINC : multiple interacting continua method 

PEBI : perpendicular bisector 

PVI : pore volume injection 

SRV : stimulated reservoir volume 

TPFA : two-point flux approximation 

VLE : vapor-liquid equilibrium 
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CHAPTER I  

INTRODUCTION 

1.1 Fractured Reservoir Characterization 

For unconventional resources such as shale reservoirs, the fracture network critically 

affects the performance of the wells. Hydraulic fractures greatly increase the contact between the 

well and the reservoir, and create the stimulated reservoir volume (SRV) near the wellbore. Large-

scale natural fractures can further increase the volume of SRV when effectively intersected with 

hydraulic fractures. These macro fractures largely determine the well production and the final 

recovery of shale reservoirs. The problem becomes even more imperative for multi-phase flow 

cases, where fractures may form high conductive flow corridors, which leads to unexpected high 

water cut and high gas-oil ratio (GOR) for some reservoirs. Therefore, it is essential to accurately 

simulate the fluid transportation in fractures and between fracture and the shale matrix in order to 

correctly capture the production dynamics. 

Many different approaches have been proposed for the simulation of fractured reservoirs, 

and one of the earliest and most widely applied models is the dual continuum model. This approach 

treats fractures as a continuous porosity type. Therefore, instead of representing the fractures 

explicitly in the reservoir model, fracture properties are upscaled. This approach is very attractive 

for cases with small-scale fractures that are well connected, since the upscaling procedure 

simplifies the model greatly and make this approach very efficient. However, obvious errors could 

be observed for cases with large-scale fractures dominating the flow.  

Due to the limited accuracy of the dual continuum models for many field applications, 

alternative approaches need to be considered. Different discrete fracture models (DFM) have been 

proposed by many researchers to improve the accuracy. With this type of model, fractures are 
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represented explicitly, and unstructured grids are usually needed to conform to the geometry of the 

fractures. Local grid refinement is also necessary for this kind of model to ensure accuracy, as a 

result, the number of grid blocks is usually very large, especially for 3D cases. The most widely 

used DFM is usually based on the perpendicular bisector (PEBI) model. This approach ensures the 

flux direction between neighbor grid blocks is perpendicular to the grid boundary, therefore two-

point flux approximation (TPFA) can suffice to ensure the simulation accuracy. DFM has a much-

improved accuracy compared to dual continuum approaches, however due to the complexity to 

generate this type of model, as well as the associated higher computational cost, it hasn’t been 

widely used in the industry. 

Another model that has drawn a lot of attention lately is the embedded discrete fracture 

model (EDFM). This approach represents fractures explicitly, but different from DFMs, no local 

grid refinement (LGR) is required for this approach. This is because the transmissibility between 

the fracture grid and the matrix is derived similarly as the well index in conventional reservoir 

simulation. A sub-grid resolution can be obtained by assuming a linear flow near the fractures 

perpendicular to the fracture plane, therefore the requirement for LGR is lifted. The matrix can be 

discretized first without the need to conform to fracture geometry, then the fracture is naturally 

discretized by the boundary of the matrix grid blocks. The EDFM approach has shown great 

accuracy and efficiency based on the results from many previous works. However, due to the way 

fractures are incorporated into the reservoir model, significant errors might occur for cases with 

across fracture flux, especially for low permeable filled fractures that form flow barriers. 

Therefore, in this study, we developed a new model named compartmental EDFM (cEDFM) based 

on the original EDFM framework to improve the accuracy under these circumstances. Meanwhile, 



 

3 

since the original EDFM only work for orthogonal grids, the cEDFM approach is further extended 

to be applicable to corner-point grid block models.  

Due to the large uncertainty of the fracture distribution, especially for natural fractures, the 

production behavior might differ drastically. Therefore, it is important to understand the 

uncertainty associated with the fracture networks. A possible way to characterize the fractures is 

with core data, well logging data, or seismic data. However, these data are either sparse in nature 

and cannot be used to determine the exact location of fractures, or low in accuracy due to its limited 

quality. An alternative approach is to use production data and characterize the fractures through 

history matching. To our best knowledge, almost all previous studies on fractured reservoir history 

matching require to perform upscaling to generate the reservoir model. However, different 

upscaling algorithms may lead to a very different upscaled model, and the dual continuum 

approach has a limited accuracy for cases with large fractures. Therefore, in this study, we try to 

use explicit model directly in history matching. There are a couple of benefits for doing this. First 

is that we have a more accurate forward model, and the history matching result is more intuitive 

to be interpreted. Another is that we can maintain the Gaussian distribution for the parameters that 

specify the property and geometry of the fractures, which is a prerequisite for many data 

assimilation algorithms.  There are a couple of challenges in terms of fractured reservoir history 

matching. The first is the efficiency and accuracy of the forward model. The cEDFM approach has 

demonstrated a good performance and efficiency that thousands or more simulation runs are 

feasible, which is a common case in history matching. Another problem is that due to the high 

non-linearity compared to conventional cases without fractures, the performance of many data 

assimilation algorithm may deteriorate. Multiple approaches have been tested in this work, 

including an improved Markov chain Monte Carlo (MCMC) approach, as well as the Ensemble 
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Kalman Filter (EnKF) approach. The MCMC approach works well for cases with a limited number 

of parameters. For more complex cases, we showed that the EnKF algorithm is more practical and 

gives good results, even for cases with large uncertainties and poor initial guess. In all cases, the 

cEDFM approach demonstrated satisfactory robustness to be used directly in history matching. 

1.2 Research Objectives 

 The objectives of this work, based on the problems discussed above, are as follows: 

1) Develop a new model based on the original EDFM formulation that has an improved 

accuracy for across fracture flux. 

2) Extend the model to work with corner-point grids so that it is applicable to real field cases. 

Since the discretization of fractures is only performed after the matrix discretization is 

performed, the developed cEDFM approach should be applicable to any existing reservoir 

models that are based on corner-point gridding or simply orthogonal gridding. 

3) Further reduce the computational cost for fractured reservoir simulation by incorporating 

automatic local grid coarsening to the proposed model. 

4) Study appropriate algorithms for fractured reservoir automatic history matching, 

incorporate the proposed explicit model into the workflow. 

1.3 Chapter Overview 

The organization of the dissertation is as follows: The 1st chapter provides the general 

background and area of study of this work; The 2nd chapter gives a detailed review of the previous 

work on fractured reservoir simulation and related history matching techniques; The 3rd chapter 

introduces the in-house simulator, the equation solved, as well as some adaptation in order to work 

with the fracture modeling approach discussed in the following chapters; The 4th chapter discusses 

the limitation of the original EDFM approach, methodology for the cEDFM approach, and the 



 

5 

other improvements made to the model; The 5th chapter shows the result of model benchmarking; 

The 6th chapter includes several case studies with the new cEDFM approach; The 7th and 8th chapter 

discuss the application of the model in automatic history matching with different algorithms; 

Finally, the last chapter summarizes the work and discusses some conclusions drawn from this 

study. 
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CHAPTER II  

LITERATURE REVIEW 

2.1 Fractured Reservoir Simulation 

The forward models for fractured reservoir simulation can be generally classified into two 

categories: the continuum medium approach and the explicit fracture model approach. The 

continuum medium approach was firstly introduced by Warren, J. E. and Root, P. J. (1963) to 

reservoir simulation applications. In their work they proposed the classic dual-porosity model for 

fractured reservoir simulation, and it was later extended to multiple-porosity model by Hinkley, 

R. et al. (2013) and Yan, B. et al. (2013) to account for more complex physics in shale reservoirs. 

This type of approach does not represent the geometry of fractures explicitly. Instead, fractures are 

represented as a continuous medium, and the flux between fracture and the matrix is determined 

by a “shape factor”. As shown in Figure 2.1, the actual reservoir is idealized to a sugar cube model, 

in which matrix acts as the source of the fractures. The mathematical model for the dual continuum 

approach can be written as: 

∇ (𝜌𝑝
𝛼𝑘𝑓𝑘𝑟𝑝

𝜇𝑝
∇Φ𝑝)

𝑓

+ 𝜏𝑚𝑓−𝑝 =
𝜕

𝜕𝑡
(𝜌𝑝𝜙𝑠𝑝)𝑓

 ......................................................................... (2.01) 

∇ (𝜌𝑝
𝛼𝑘𝑚𝑘𝑟𝑝

𝜇𝑝
∇Φ𝑝)

𝑚

− 𝜏𝑚𝑓−𝑝 =
𝜕

𝜕𝑡
(𝜌𝑝𝜙𝑠𝑝)𝑚

 ....................................................................... (2.02) 

where: the first term is the flux term, in which 𝛼 is the unit conversion coefficient, and the second 

term is the inter-porosity flux term from the matrix to fracture for phase 𝑝. Note that for the original 

dual-porosity model, the flux is assumed to be zero between different matrix blocks, therefore the 

first term in the matrix equation is zero.  However, in cases where the computational grid is smaller 

than the matrix grid, this assumption would not be appropriate. Therefore, Blaskovich, F. T. et al. 

(1983), Hill, A. C., & Thomas, G. W. (1985), and Dean, R. H., & Lo, L. L. (1988) proposed the 
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dual-permeability model that considered matrix to matrix flow, the flow equations are as shown 

above with a non-zero first term in the matrix equation. 

Multiple approaches have been proposed on how to calculate the shape factor, such as in 

Warren, J. E. & Root, P. J. (1963), Kazemi, H. et al. (1976, 1992), Coats, K. H. (1989), and Lim, 

K. T., & Aziz, K. (1994). The Warren and Root shape factor is defined as: 

𝜎 =
4𝑛(𝑛+2)

𝐿2
 .............................................................................................................................. (2.03) 

where: n is the number of normal sets of fractures, n=1, 2, 3. L is the characteristic length of matrix 

blocks, defined as: 

𝐿 = 𝐿𝑥 ,                                           𝑓𝑜𝑟 𝑛 = 1 .............................................................................. (2.04) 

𝐿 =
2𝐿𝑥𝐿𝑦

𝐿𝑥+𝐿𝑦
,                                     𝑓𝑜𝑟 𝑛 = 2 ............................................................................... (2.05) 

𝐿 =
3𝐿𝑥𝐿𝑦𝐿𝑧

𝐿𝑥𝐿𝑦+𝐿𝑥𝐿𝑧+𝐿𝑦𝐿𝑧
,                     𝑓𝑜𝑟 𝑛 = 3 .............................................................................. (2.06) 

where: 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are the size of the matrix blocks in x, y, z directions. Kazemi derived the shape 

factor for a 3D case with finite difference approach, the formulation is given by: 

𝜎 = 4(
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2) ............................................................................................................. (2.07) 

Coats considered pseudo-steady state diffusion between matrix and fractures, and the result is 

exactly twice as Kazemi’s, given by: 

𝜎 = 8(
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2) ............................................................................................................. (2.08) 

By avoiding the pseudo-steady state assumption, Lim & Aziz derived a new shape factor as: 

𝜎 = 𝜋2(
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2) ........................................................................................................... (2.09) 

They showed in their work that the pseudo-steady state assumption isn’t appropriate, and by 

eliminating it, their formulation obtained an improved accuracy. 
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Figure 2.1—Idealization of the heterogeneous porous medium, Warren, J. E., & Root, P. J. 

(1963).  

One problem with the dual-porosity / dual permeability model is that an averaged pressure 

and saturation are used for all matrix grids within a whole computational grid block, leading to an 

inaccurate pressure difference between the matrix and the fracture medium. To address this 

problem, another model named multiple interacting continua method (MINC) was proposed by 

Pruess, K. & Narasimhan, T.N. (1985). By assuming that the matrix with the same distance to the 

fracture has the same potential, the reservoir can be discretized into a series of nested volumes. 

The method permits a full transient flux between the matrix and fracture. Wu, Y.-S., & Pruess, K. 

(1988) applied MINC to field waterflooding cases in naturally fractured reservoirs, and their result 

indicates an improved accuracy compared to the dual-porosity approach. A comparison of the 

discretization schemes of different dual continuum models is shown in Figure 2.2.  

 Since models based on the dual continuum approaches were derived based on very specific 

assumptions, it is only suitable for cases with more uniform fracture distribution. However, real 

field data has suggested that these assumptions is far from being accurate in many cases, based on 

studies such as Gillespie, P. A. et al. (1993), Ouillon, G. et al. (1996), Aarseth, E. S. et al. (1997), 
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Odling, N. E. et al. (1999) and Gale, J. F. et al. (2014). A significant error might be observed for 

cases with large-scale fractures dominating the flow.  

 

Figure 2.2—Discretization of matrix blocks (schematic): (a) MINC (b) dual-porosity (c) 

explicit discretization. Wu, Y.-S., & Pruess, K. (1988).  

Due to the limited accuracy of the dual continuum approaches, different discrete fracture 

models (DFM) have been proposed for fractured reservoir simulation. This approach generally 

requires unstructured grid to conform to the fracture geometry, and grid refinement is usually 

needed near the fractures. The advantage for DFMs is that the influence of fractures can be directly 

incorporated in the model, without the need to assume any abstract property of the fracture 

network. The perpendicular bisector grid (PEBI) model is one common type of DFM. It was 

introduced to reservoir simulation by Heinemann, Z. E. et al. (1989) and has been a popular 

approach for fractured reservoir simulation studied by many researchers. The flux direction is 

ensured to be perpendicular to the grid boundary, therefore the accuracy can be maintained when 

using two-point flux approximation (TPFA). Sarda, S. et al. (2002) proposed a 2-D discretization 

scheme for fractured reservoirs. A similar approach was taken for matrix-fracture flux as in the 

dual-porosity model, and a pseudo-steady state flow assumption is needed for the derivation of the 

model. Karimi-Fard, M. et al. (2004) proposed a discrete fracture model with unstructured gridding 

to explicitly represent the fractures, and employed two-point flux approximation to account for the 
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mass transfer between grid blocks. Sandve, T. H. et al. (2012) extended the method from two-point 

flux approximation to multiple point approximation and obtained improved accuracy. However, it 

can be computationally challenging to generate the unstructured grids that conform to the fracture 

geometry, and Mustapha, H. (2014) has shown that the quality of the mesh is often not good with 

a large number of tiny grid blocks. 

Another explicit model named embedded discrete fracture model (EDFM), which was 

originally proposed by Lee, S. H. et al. (2000) and Li, L. et al. (2008), recently got more attention 

due to its high computational efficiency and flexibility. This approach does not require the model 

grid to conform to fracture geometry. Instead, fractures can just be embedded within a matrix grid 

block. Therefore, traditional grids can still be used, while the fractures are naturally discretized by 

the confining matrix grid blocks. By assuming a linearly distributed pressure around the fractures, 

the pressure drop between the matrix grid and the fracture grid can be estimated. This approach 

provided a subgrid resolution that lifted the necessity to refine the grids near the fractures. Moinfar, 

A. et al. (2013) implemented the EDFM model for 3D cases. Jiang, J. et al. (2016) combined 

traditional MINC and EDFM to simulate reservoirs with fractures at different scales. In their work, 

the MINC subdivision is not related to the fractures geometry. Ding, D. Y. et al. (2018) recently 

proposed a model combining the MINC approach with the concept of EDFM. In their model, 

MINC subdivision is performed with fractures at the center, and the matrix is discretized using a 

proximity function from the fractures. Yang, D. et al. (2018) added Matrix LGR to the original 

EDFM when fractures are intersecting for 2D cases. EDFM provides an efficient solution to 

simulation problems with a complex fracture network. However, there are also some limitations. 

Tene, M. et al. (2017) reported that when fractures are sealed and form flow barriers, a large error 

might occur for EDFM. In their work, they proposed a projection based EDFM model by adding 
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extra connections between fracture grid and neighbor matrix grid, and modified matrix connections 

that are separated by the fractures. 

In this work, we developed the cEDFM reservoir model based on EDFM framework. 

However, the splitting of matrix grids allows for a more physical representation of the reservoir. 

The cEDFM approach obtained a much-improved accuracy compared to EDFM for flux across the 

direction of fractures, which is a common case for inter-well flow. 

2.2 Fractured Reservoir History Matching 

Hydraulic and natural fractures play a major role in controlling the fluid transportation, 

especially for low permeable formations such as shale. Therefore, it is essential to understand the 

distribution and properties of these fractures in order to accurately model the production dynamics. 

Production data provides invaluable information, based on which the quality of the reservoir model 

can be improved. However in many cases, due to the limitation of the model assumptions, the well 

data couldn’t be utilized adequately to quantify the property of the fracture networks. 

Various approaches have been proposed for automatic history matching and uncertainty 

quantification. The algorithms can generally be categorized into gradient-based and non-gradient-

based methods. Gradient-based algorithms require the calculation or approximation of the gradient 

matrix. One of the common approaches is to use the adjoint method to calculate the gradient. Some 

of the early work include Wu, Z. et al. (1998) and Li, R. et al. (2001). Another approach is to use 

streamline simulation to obtain the sensitivity matrix analytically. Since access and modification 

to the simulator source code is needed with this type of approach, it’s usually not realistic when 

using a commercial simulator.  



 

12 

For non-gradient-based methods, the ensemble approach is the most well-studied among 

all the different algorithms. Ensemble Kalman Filter (EnKF) is the most widely used ensemble-

based technique in history matching, first proposed by Evensen, G. (2003). With this method, a 

set of realizations is sampled from the prior distribution of the parameter space, initially 

unconditioned to the observed data. Updates are then made sequentially to minimize the error 

between the observed and simulated data. EnKF requires to restart the simulation after each 

assimilation step, and both model parameters and state variables are updated during the 

assimilation step. Ensemble Smoother (ES) is a similar approach, but all observed data are 

assimilated in a single step, therefore it does not require constant restarting of the simulation. Chen, 

Y. et al. (2013) proposed an iterative ensemble smoother with ensemble randomized maximum 

likelihood (EnRML) algorithm and added the Levenberg-Marquart term to reduce the number of 

iterations required.  

Another non-gradient-based algorithm to perform history matching and uncertainty 

quantification is with the Markov chain Monte Carlo (MCMC) algorithm. However, the 

acceptance rate of MCMC is usually too low to be practical for real applications in reservoir history 

matching, as discussed in the work of Oliver, D. S. et al. (1997). Therefore, different approaches 

were proposed to improve the acceptance rate and obtained promising results, such as in Bonet-

Cunha, L. et al. (1998) and Ma, X. et al. (2008). 

Several more unconventional approaches that are non-gradient-based have also been used 

in assisted history matching. Ouenes, A. et al. (1993) applied simulated annealing to a gas reservoir 

history matching problem. Schulze-Riegert, R. W. et al. (2002) implemented a workflow based on 

genetic algorithm for reservoir history matching, and took advantage of parallel computing that is 
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compatible with this approach. The benefit of such type of methods is that the solution would not 

be trapped in a local minimum. However, the application to more complex cases with a larger 

parameter space can be challenging for these algorithms. For a more complete review of the history 

matching algorithms, please refer to Oliver, D. S., & Chen, Y. (2010). 

Most of the existing works are on history matching techniques in general, however, a few 

works focus on the application to fractured reservoirs. Gang, T. et al. (2006) proposed an upscaling 

scheme of fracture properties and generated dual-porosity models for history matching. Nejadi, S. 

et al. (2014) used a similar workflow to upscale discrete fracture network (DFN) models and used 

EnKF for history matching. However, Ahmed Elfeel, M. et al. (2013) compared different upscaling 

schemes, and their results indicate that different upscaling models may lead to very different 

results, underlining the importance to quantify the upscaling errors and the influence on the results 

of history matching. Ping, J. et al. (2013) proposed a parameterization method for fractured 

reservoir history matching with EnKF by using a vector representation. A level-set function, angle, 

and length of fractures are assigned to the candidate node set, describing the distribution of the 

fractures. Lu, L. et al. (2015) applied a technique in image compression named Hough 

transformation, and convert the Non-Gaussian parameters of fractured reservoirs to a Gaussian 

field in the new domain. Most of the work mentioned above are evaluated with conventional 

reservoir models through upscaling. That is partially due to the cost of generating explicit fracture 

models as well as the cost of simulation with them. For fractured reservoirs, especially when using 

explicit fracture models, the non-linearity is even more significant, therefore challenging the 

applicability of the existing history matching methods. Ping, J. (2017) recently used an explicit 

model to perform history matching. A polyhedral mesh with a mimetic finite difference (MFD) is 

used with EnKF in their workflow.  
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In this work, we investigated a couple of different history matching algorithms for fractured 

reservoir history matching. First, we combined two-stage MCMC with a proxy model and cEDFM 

for history matching, and optimized naturally fractured reservoir production. For more complex 

cases with larger parameter space, we incorporated cEDFM into the EnKF workflow for history 

matching. A level-set function is defined to help parameterize the model and represent the 

uncertainty.  
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CHAPTER III  

GENERAL UNSTRUCTURED RESERVOIR UTILITY (GURU) 

3.1 Overview 

The complex geology in fractured reservoirs requires a more flexible modeling approach 

than the conventional cube grids. Therefore, a control volume finite difference (CVFD) 

formulation is more appropriate in our case than the finite difference approach. This is because 

with CVFD, the connectivity between cells can be freely defined, without any constraint that 

certain pattern needs to be followed. In this work, the fractured reservoir modeling code is 

developed for the in-house reservoir simulator named General Unstructured Reservoir Utility 

(GURU) developed at Texas A&M University. GURU is a CVFD-based full compositional 

reservoir simulator, with multiple flow mechanisms incorporated for the modeling of conventional 

and unconventional reservoirs. Some of the features include: 

1) Fully implicit time discretization; 

2) Control-volume finite difference (CVFD) space discretization; 

3) Two-point flux approximation (TPFA); 

4) Consider multi-component adsorption; 

5) Flux term consists of Darcy flow and Knudsen diffusion / gas slippage (if defined); 

6) Compositional space preconditioning for vapor-liquid equilibrium (VLE) speedup; 

Some of the assumptions include: 

1) Water remains a separate phase; 

2) The solution of other components in water is negligible; 

3) VLE is performed for all components (except water) for oil / gas phase properties 

calculation. 
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The CVFD approach allows for a more flexible way to model the reservoirs. Different grid 

blocks can have flux between them as long as corresponding transmissibility term is defined. Note 

that even though our fracture modeling code is developed for GURU, it can be used for any 

reservoir simulator that accepts connection list and grid list as inputs. 

3.2 Governing Equations 

 For a compositional model, the mass balance equation for any component in the oil / gas 

phase can be written as: 

𝑟𝑖 =
𝜕𝜙(𝑠𝑜𝜌̃𝑜𝑥𝑖+𝑠𝑔𝜌̃𝑔𝑦𝑖)

𝜕𝑡
+

𝜕(1−𝜙)𝑚𝑖

𝜕𝑡
− ∇(𝜆𝑜𝜌̃𝑜𝑥𝑖∇Φ𝑜 + 𝜆𝑔𝜌̃𝑔𝑦𝑖∇Φ𝑔) − ∑ (𝜌̃𝑜𝑥𝑖𝑞𝑜

𝑊 + 𝜌̃𝑔𝑦𝑖𝑞𝑔
𝑊) =𝑊

0 ............................................................................................................................................... (3.01) 

In which:  

 𝑚𝑖 = 𝜌𝑠𝜌̃𝑔
𝑠𝑐

𝑉𝐿,𝑖𝑦𝑖
𝑃𝑔

𝑃𝐿,𝑖

1+∑ 𝑦𝑘
𝑃𝑔

𝑃𝐿,𝑘

𝑛ℎ
𝑘=1

 ......................................................................................................... (3.02) 

 In Equation (3.01), the first term is the accumulation term, the second term is the adsorption 

term, the third term is the Darcy flux term, and the right-hand side is the source / sink term. The 

formulation for the multi-component adsorption is from the work by Cao, Y. et al. (2015). The 

above equation can be rewritten in the form of control volume finite difference (CVFD) as: 

𝑅𝑖,𝑗 =
1

𝛥𝑡
(𝑁𝑖,𝑗

𝑛+1 − 𝑁𝑖,𝑗
𝑛  ) +

1

𝛥𝑡
(𝑀𝑖,𝑗

𝑛+1 − 𝑀𝑖,𝑗
𝑛  ) − ∑ 𝑇𝑗−𝑐(𝜆𝑟𝑜𝜌̃𝑜𝑥𝑖𝛥Φ𝑜,𝑗−𝑐 + 𝜆𝑟𝑔𝜌̃𝑔𝑦𝑖𝛥Φ𝑔,𝑗−𝑐)𝑐 −

∑ (𝜌̃𝑜𝑥𝑖𝑄𝑜
𝑊 + 𝜌̃𝑔𝑦𝑖𝑄𝑔

𝑊)
𝑗𝑊 = 0 ................................................................................................ (3.03) 

In which:  

𝑁𝑖,𝑗 = 𝑉𝑗[𝜙(𝑠𝑜𝜌̃𝑜𝑥𝑖 + 𝑠𝑔𝜌̃𝑔𝑦𝑖)]𝑗
 .............................................................................................. (3.04) 

𝑀𝑖,𝑗 = 𝑉𝑗[(1 − 𝜙)𝑚𝑖]𝑗............................................................................................................. (3.05) 
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[𝑄𝑜/𝑔
𝑊 ]𝑗 = 𝑉𝑗[𝑞𝑜/𝑔

𝑊 ]𝑗 ................................................................................................................. (3.06) 

For the water phase, the formulation is similar and can be simplified to: 

𝑟𝑤 =
𝜕(𝜙𝑠𝑤𝜌̃𝑤)

𝜕𝑡
− ∇(𝜆𝑤𝜌̃𝑤∇Φ𝑤) − ∑ (𝜌̃𝑤𝑞𝑤

𝑊)𝑊 = 0 ................................................................ (3.07) 

And the CVFD format can be rewritten as: 

𝑅𝑤,𝑗 =
1

𝛥𝑡
(𝑁𝑤,𝑗

𝑛+1 − 𝑁𝑤,𝑗
𝑛  ) − ∑ 𝑇𝑗−𝑐𝜆𝑟𝑤𝜌̃𝑤𝛥Φ𝑤,𝑗−𝑐𝑐 − ∑ (𝜌̃𝑤𝑄𝑤

𝑊)𝑗𝑊 = 0 ............................. (3.08) 

In which:  

𝑁𝑤,𝑗 = 𝑉𝑗[𝜙𝑠𝑤𝜌̃𝑤]𝑗 .................................................................................................................. (3.09) 

[𝑄𝑤
𝑊]𝑗 = 𝑉𝑗[𝑞𝑤

𝑊]𝑗 ..................................................................................................................... (3.10) 

The relative phase mobility is given by: 

𝜆𝑟𝑜/𝑟𝑔/𝑟𝑤 =
𝑘𝑟𝑜/𝑟𝑔/𝑟𝑤 

𝜇𝑜/𝑔/𝑤
 .............................................................................................................. (3.11) 

In addition to the two residue functions for oil / gas phase and the water phase in Equation (3.03) 

and Equation (3.08), the primary equations also include the volume balance equation and the well 

residual equation. The volume balance equation is given by: 

𝑅𝑣𝑜𝑙,𝑗 = 𝑃𝑉𝑗 − 𝑉𝑜,𝑗 − 𝑉𝑔,𝑗 − 𝑉𝑤,𝑗 = 0 ..................................................................................... (3.12) 

 For the detail of the well equations and other auxiliary equations, please refer to Yan, B. 

(2017). The primary variables include 𝑁𝑖,𝑗, 𝑁𝑤,𝑗, oil phase pressure 𝑃𝑜,𝑗, as well as well bottom-

hole pressure 𝑃𝑤𝑓. Therefore, the equation set 𝑅⃗  to be solved has the size of (𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 +

𝑛𝑊𝑒𝑙𝑙𝑠 and can be written as: 

𝑅⃗ =  [
𝑅⃗ 𝑟𝑒𝑠

𝑅⃗ 𝑤𝑒𝑙𝑙

] ............................................................................................................................. (3.13) 
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𝑅⃗ 𝑟𝑒𝑠 = [

𝑅⃗ 𝑖,𝑗
𝑅𝑤,𝑗

𝑅𝑣𝑜𝑙,𝑗

]

𝑖=1,⋯,𝑛ℎ; 𝑗=1,⋯,𝑛𝐶𝑒𝑙𝑙𝑠 

 ......................................................................................... (3.14) 

𝑅⃗ 𝑤𝑒𝑙𝑙 = [𝑅𝑊 ]𝑊=1,⋯,𝑛𝑊𝑒𝑙𝑙𝑠
𝑇  ...................................................................................................... (3.15) 

The primary variables 𝑋  has the same size as 𝑅⃗ , comprising of the grid variables and well variables: 

𝑋 =  [
𝑋 𝑟𝑒𝑠

𝑋 𝑤𝑒𝑙𝑙

] ............................................................................................................................. (3.16) 

𝑋 𝑟𝑒𝑠 = [

𝑁⃗⃗ 𝑖,𝑗
𝑁𝑤,𝑗

𝑃𝑜,𝑗

]

 𝑖=1,⋯,𝑛ℎ;𝑗=1,⋯,𝑛𝐶𝑒𝑙𝑙𝑠

 ........................................................................................... (3.17) 

𝑋 𝑤𝑒𝑙𝑙 = [𝑃𝑤𝑓,𝑊 ]
𝑊=1,⋯,𝑛𝑊𝑒𝑙𝑙𝑠

𝑇
 .................................................................................................. (3.18) 

The linear function set can be finally written as: 

𝐽𝛿 =  𝑅⃗  ..................................................................................................................................... (3.19) 

In which: 

𝐽 =  [

𝜕𝑅⃗ 𝑟𝑒𝑠

𝜕𝑋⃗ 𝑟𝑒𝑠

𝜕𝑅⃗ 𝑟𝑒𝑠

𝜕𝑋⃗ 𝑤𝑒𝑙𝑙

𝜕𝑅⃗ 𝑤𝑒𝑙𝑙

𝜕𝑋⃗ 𝑟𝑒𝑠

𝜕𝑅⃗ 𝑤𝑒𝑙𝑙 

𝜕𝑋⃗ 𝑤𝑒𝑙𝑙

] ................................................................................................................ (3.20) 

𝛿 = [
Δ𝑋⃗⃗⃗⃗  ⃗

𝑟𝑒𝑠

Δ𝑋⃗⃗⃗⃗  ⃗
𝑤𝑒𝑙𝑙

] ............................................................................................................................ (3.21) 

3.3 Multiple-Porosity Model 

Shale reservoirs have a much more complex lithology and pore structures compared to 

conventional resources. Studies such as Wang, F. P., & Reed, R. M. (2009), Sondergeld, C. H. et 

al. (2010), Ambrose, R. J. et al. (2010) have shown that different porosity types coexist in shale 

reservoirs and each demonstrates a very distinct property. In this work, we implemented the 
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multiple-porosity model similar as in Yan, B. et al. (2013) and Hinkley, R. et al. (2013). There can 

be three or more porosity types in total, and mass transfer can take place between any two different 

porosity types and within any individual porosity type. Here we are only giving a general 

formulation without assuming any structure of the micro model as in the two publication 

mentioned above. However, for any given micro model, the transfer function can be calculated 

accordingly between different porosity types. 

For the shale matrix, three porosity types are defined in total, including organic matrix 

(kerogen), inorganic matrix, and micro fracture. All fractures smaller than the grid dimension are 

considered micro fractures, and the properties of the micro-fracture continuum are calculated 

through upscaling same as in Lee, S. H. et al. (2000) or Nejadi, S. et al. (2014) when data is 

available.  While all fractures larger than the dimension of a grid can be modeled with cEDFM 

discussed in the next chapter. 

The model for shale matrix is a multiple-porosity multiple-permeability model, in which 

the Darcy flux term for inter-porosity mass transfer can be expressed as:  

𝑞𝑚−𝑛,𝑖𝑗 = 𝑇𝑚−𝑛,𝑗[𝜆𝑟𝑜𝜌̃𝑜𝑥𝑖(Φ𝑛𝑜 − Φ𝑚𝑜) + 𝜆𝑟𝑔𝜌̃𝑔𝑦𝑖(Φ𝑛𝑔 − Φ𝑚𝑔)]𝑗 ..................................... (3.22) 

𝑇𝑚−𝑛,𝑗 = 𝑘̅𝑚𝑛𝜎𝑚𝑛V𝑗 ................................................................................................................. (3.23) 

𝑘̅𝑚𝑛 =
1

3
(

𝑘𝑚𝑥𝑘𝑛𝑥

𝑘𝑚𝑥+𝑘𝑛𝑥
+

𝑘𝑚𝑦𝑘𝑛𝑦

𝑘𝑚𝑦+𝑘𝑛𝑦
+

𝑘𝑚𝑧𝑘𝑛𝑧

𝑘𝑚𝑧+𝑘𝑛𝑧
) ................................................................................ (3.24) 

When 𝑘𝑛 is much larger than 𝑘𝑚, the equation above can be simplified to: 

𝑘̅𝑚𝑛 =
1

3
(𝑘𝑚𝑥 + 𝑘𝑚𝑦 + 𝑘𝑚𝑧) .................................................................................................. (3.25) 
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From the equations above, the inter-porosity flux per unit rock bulk volume can be expressed as: 

𝑞𝑚−𝑛,𝑖𝑗 = 𝑘̅𝑚𝑛𝜎𝑚𝑛[𝜆𝑟𝑜𝜌̃𝑜𝑥𝑖(Φ𝑛𝑜 − Φ𝑚𝑜) + 𝜆𝑟𝑔𝜌̃𝑔𝑦𝑖(Φ𝑛𝑔 − Φ𝑚𝑔)]𝑗 .................................. (3.26) 

 

Figure 3.1—Mass transfer pyramid among different porosity types of shale reservoirs. 

Modified from Yan, B. et al. (2016).  

 It can be noticed that the value is independent of the size of the grid blocks.  The flux 

between inorganic matrix, kerogen and micro fracture can be represented with the formulation 

above, while the flux between macro fractures and other porosity types are calculated explicitly, 

which we will discuss in detail in the next chapter. Therefore in shale reservoirs, flux can be 

expressed with the mass transfer pyramid as shown in Figure 3.1, adapted from Yan, B. et al. 

(2016). 

3.4 Model Definition 

 Due to the flexibility of the CVFD approach, model definition in GURU is performed by 

a preprocessing module independent of the main calculation package. In addition to all the other 

conventional reservoir parameters, GURU reads in a cell list as well as a connection list to define 

the model. The data structures of the two classes are shown in Figure 3.2.  
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Figure 3.2—Cell and Connection class of GURU in pseudo code, from Yan, B. (2017).  

The original preprocessing code only generates multiple-porosity model with orthogonal 

grid blocks described in Yan, B. et al. (2013). Here we first extended the capability of the package 

in the following aspects: 

1) Different LGR may be defined for different porosity types; 

2) Generalized formulation for multiple-porosity model; 

3) Corner-point model generation (without fractures); 

4) Model refining and upscaling. 
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CHAPTER IV 1 

COMPARTMENTAL EMBEDDED DISCRETE FRACTURE MODEL (cEDFM) 

4.1 Overview 

 The concept of EDFM was first proposed by Lee, S. H. et al. (2000) and Li, L. et al. (2008). 

In their work, the matrix is first discretized without the need to consider the fractures. Fractures 

are then naturally discretized by the boundary of the matrix grid blocks. The transmissibility 

between fracture and the matrix is calculated in a manner similar to the well index. For the case of 

the well index, the relationship between well cell pressure and bottom-hole pressure can be derived 

based on the radial flow assumption. Similarly, by assuming a linearly distributed pressure near 

the fractures, an analytical expression of the transmissibility can be obtained between the fracture 

cell and the matrix cell. Therefore, no LGR is required near the fractures, which greatly reduced 

the computational cost of this approach. 

Since the matrix grids do not need to conform to the geometry of the fractures, the approach 

can be easily used in any randomly generated fracture distribution. Compared to PEBI model, the 

expensive procedure such as the Delaunay triangulation can be avoided, and the obtained model 

is a lot smaller. Compared to dual-continuum models, this approach has a much-improved 

accuracy. 

In original EDFM implementation, three types of non-neighbor connections (NNCs) are 

considered to connect the fracture grids with the rest of the reservoir, including the connections: 

1) between fracture and the matrix grid it’s intersecting; 2) between two intersecting fracture grids; 

3) between two neighbor fracture grids from the same fracture. The formulations to calculate the 

                                                 

1 Part of this chapter is reprinted with permission from “Chai, Z., Tang, H., He, Y., Killough, J., & Wang, Y. 

Uncertainty Quantification of the Fracture Network with a Novel Fractured Reservoir Forward Model.” Copyright 

[2018] by Society of Petroleum Engineers. 
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transmissibility for each of the types are summarized in Table 4.1. Notice that not all parameters 

are applicable to each of the NNC types. 

Table 4.1—EDFM formulation.  

𝑁𝑁𝐶 𝑇𝑦𝑝𝑒 𝑇𝑁𝑁𝐶 𝐴𝑁𝑁𝐶 𝑘𝑁𝑁𝐶  𝑑𝑁𝑁𝐶  𝑇𝑖 𝑑𝑓𝑖𝑙
̅̅ ̅̅  

𝐼 
𝐴𝑁𝑁𝐶𝑘𝑁𝑁𝐶

𝑑𝑁𝑁𝐶
 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 

2

𝑘𝑓
−1 + 𝑘𝑚

−1 
1

𝑉
∫ 𝑑𝑣𝑓𝑑𝑣
𝛺𝑉

 -- -- 

𝐼𝐼 
1

𝑇1
−1 + 𝑇2

−1 𝑙𝑓1𝑓2 min(𝑤𝑓1 , 𝑤𝑓2) -- -- 
𝑘𝑓𝑖

𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙
̅̅ ̅̅

 
1

𝑆
∫ 𝑑𝑠𝑙𝑑𝑠
𝛺𝑆

 

𝐼𝐼𝐼 
1

𝑇1
−1 + 𝑇2

−1 𝑙𝑓1𝑓2 min(𝑤𝑓1 , 𝑤𝑓2) -- -- 
𝑘𝑓𝑖

𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙
 -- 

 

Note that: for 𝑁𝑁𝐶 − 𝐼, 𝐴𝑁𝑁𝐶 is calculated as the area of the fracture segment, 𝑑𝑁𝑁𝐶 is the average 

distance to the fracture plane from the grid; for 𝑁𝑁𝐶 − 𝐼𝐼 and 𝑁𝑁𝐶 − 𝐼𝐼𝐼, 𝑇𝑁𝑁𝐶 is calculated by 

two half-transmissibility terms, and an surface integration over the fracture segment is needed for 

𝑁𝑁𝐶 − 𝐼𝐼 to calculate the characteristic distance 𝑑𝑓𝑖𝑙
̅̅ ̅̅ . 

4.2 Limitation of EDFM 

Although there are many desirable properties for the EDFM approach, a few limitations do 

exist that hinder its broader application.  

Few previous publications have validated the accuracy of EDFM in simulating highly 

conductive fractures, such as in Moinfar, A. et al. (2013), Jiang, J. et al. (2016), Chai, Z. et al. 

(2016). However, for low permeable fractures, large errors are observed for both single and multi-

phase flow problem, mostly due to the inability of this method to constrain the flow within the 

matrix when flow barrier is present. Tene M. et al. (2017) proposed the projection-based EDFM 

(pEDFM) to modify matrix-matrix transmissibility. The method is easy to apply based on existing 
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EDFM framework, and the result indicates an improved accuracy.  However, errors can be 

introduced to the pore volume at two sides of the fractures with the approach.  

In addition, the current implementation is based on the assumption that the models have 

orthogonal grids. This assumption greatly simplifies the calculation of intersection points between 

fracture and matrix, as well as between different fractures. However, in order to apply this model 

to real field cases, in which models are usually built using corner-point grids, we have to remove 

the assumption and develop a model that is more general. In theory, EDFM can work with not only 

orthogonal and corner-point grids, but also any type of unstructured grids, as long as the necessary 

model parameters can be calculated. 

Furthermore, since a consistent mesh needs to be used throughout the reservoir for the 

original EDFM implementation, the number of grids can be unnecessarily large, especially for 

cases with only sparse fractures. In the following sections, we will discuss the improvement made 

for the new model that lift these limitations mentioned above.  

4.3 Compartmental EDFM 

4.3.1 Model Schematics 

Figure 4.1 illustrates the difference between EDFM and cEDFM. For a simple case of a 

single matrix grid intersected by a fracture, two grids are defined for the EDFM approach: one 

matrix grid and one fracture grid. It can be noticed that since there are only two grids, the flux is 

either from the matrix grid to the fracture grid, or the other way around. For cases such as fractured 

well production (or injection), the fracture network overall has a lower (or higher) pressure than 

the matrix, and the representation works fine. 

However, for cases with flux across the fractures, which can be common for inter-well flux, 

the EDFM representation is no longer physical. Therefore, with the cEDFM approach, instead of 
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having a fracture grid embedded within a matrix grid block, the fracture grid would split the matrix 

grid that it’s intersecting, and multiple matrix sub-grids would be generated. By performing matrix 

splitting, all fracture grids are at the boundary of matrix grid blocks. The model can be thought of 

as a variation of the discrete fracture model (DFM), except the fracture discretization approach 

and the transmissibility formulation between fracture grid and matrix grid are inherited from the 

original EDFM. 

  
(a) EDFM                          (b) cEDFM 

Figure 4.1—Schematic of the difference between EDFM and cEDFM for a simple case: single 

matrix cell intersected by a fracture. The fracture cell is denoted in red, and the background 

color corresponds to the pressure profile in the matrix.  

As multiple fractures are defined, cases might occur where the contact area of the 

connection cannot be defined by any face of the sub-grids, such as between grid 𝑀12 and 𝑀21 as 

illustrated in Figure 4.2 (a). It happens when two neighbor grids are split by two different fractures 

but not by both. This makes it especially complex to determine the connectivity among the sub-

grids. 

 However, it can be noticed that this scenario only takes place near the tip of the fractures, 

therefore the problem can be solved by extending the fracture with “pseudo-fractures” one more 

grid beyond the original fracture tip, as shown in Figure 4.2 (b). The matrix would be further split, 

which enables the contact area to be one of the surfaces of the new sub-grids. This also helps to 
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improve the orthogonality of the grid system, which is vital for two-point flux approximation to 

maintain its accuracy. Note that for pseudo-fractures, no additional fracture grid is generated, the 

sub-grids created have direct connections with each other, for example, between 𝑀23 and 𝑀24 in 

Figure 4.2 (b). 

   
                                         (a)                                                                  (b) 

Figure 4.2—Pseudo-fracture extension at the fracture tips. (a) 𝟏 × 𝟐 grids intersected by 2 

fractures. The contact area between 𝑴𝟏𝟐 and 𝑴𝟐𝟏  cannot be defined by any grid faces. (b) 

Pseudo-fracture added to further split matrix grids into conforming forms.  

Figure 4.3 (a) demonstrated an example case with a 2×2 grid model intersected by 2 

fractures. Note that one of the fractures only penetrates one of the matrix grid in the model. Pseudo-

fracture is generated for this fracture, which extends it by one more grid block. Note that for ease 

of implementation and faster calculation, all fractures are automatically extended by pseudo-

fractures one more grid block beyond its original bounds, without checking if conditions such as 

in Figure 4.2 exists. Firstly, it would be tricky and time-consuming to perform the check; 

Meanwhile, by extending every single fracture, the problem can be automatically solved without 

adding much computational cost if any. In the example of Figure 4.3, the model is discretized into 

3 fracture grids, 1 un-split matrix grid, as well as 8 sub-grids by splitting 3 matrix grids.  
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               (a) Model discretization                                             (b) Connection map 

Figure 4.3—Illustration of the cEDFM scheme: (a): discretization of 𝟐 × 𝟐 grids intersected 

by 2 fractures; (b): connection map of the model, 5 types of non-neighbor connections 

(NNCs) defined. 𝑵𝑵𝑪 − 𝑰: connection between matrix sub-grid and fracture grid; 𝑵𝑵𝑪 −
𝑰𝑰: connection between two intersecting fracture grids; 𝑵𝑵𝑪 − 𝑰𝑰𝑰: connection between two 

neighbor fracture grids of the same fracture; 𝑵𝑵𝑪 − 𝑰𝑽: connection between two sub-grids 

or one sub-grid and one un-split grid; 𝑵𝑵𝑪 − 𝑽: connection between two matrix sub-grids 

separated by a pseudo-fracture.  

4.3.2 None-neighbor Connections 

For cEDFM, five types of non-neighbor connections (NNCs) needs to be defined, as shown 

in the connection map of Figure 4.3 (b): 

𝑁𝑁𝐶 − 𝐼: Connection between the matrix sub-grid and the fracture grid. As fracture grid 

𝑓 splits matrix grid 𝑚 into multiple sub-grids, the 𝑁𝑁𝐶 − 𝐼 needs to be modified as: 

𝑑𝑁𝑁𝐶 =
1

𝑉
∫ 𝑑𝑣𝑓𝑑𝑣
𝛺𝑉

 (𝛺𝑉 = 𝛺𝑚𝑖
)  .......................................................................................... (4.01) 

𝑇𝑁𝑁𝐶−𝐼 =
𝐴𝑁𝑁𝐶𝑘𝑁𝑁𝐶

𝑑𝑁𝑁𝐶
 .................................................................................................................. (4.02) 
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                                     (a) Original 𝑇𝑁𝑁𝐶−𝐼                   (b) Modified 𝑇𝑁𝑁𝐶−𝐼 

Figure 4.4—The computation of NNC Type-I is modified by only integrating over the sub-

grids to calculate 𝒅𝑵𝑵𝑪.  

This expression can be derived by assuming a linearly distributed pressure profile within 

the matrix near the fractures. The difference in pressure between the matrix grid and the fracture 

grid is therefore given by the pressure drop within the matrix. As shown in Figure 4.4, 𝑑𝑁𝑁𝐶 is 

calculated with a volumetric average over the sub-grid instead of the whole grid as in EDFM, while 

𝑘𝑁𝑁𝐶 and 𝐴𝑁𝑁𝐶 are the same as in Table 4.1.  

 

Figure 4.5—Tetrahedralization of a partial grid. The polygon at the bottom indicates one of 

the faces of the grid, with 𝑪𝒇 denoting the centroid of the face. 𝑪𝒈 denotes the centroid of the 

entire grid. 5 tetrahedrons are generated, with the four vertices being 𝑪𝒇, 𝑪𝒈, and two 

vertices of an edge.  
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 Note that in Equation (4.01), the value of 𝑑𝑁𝑁𝐶 is obtained by a volumetric integration. It 

would be both difficult and inefficient to integrate over an unstructured sub-grid in cEDFM. 

Therefore, an analytical solution is obtained instead by first performing tetrahedralization to the 

sub-grid, as shown in Figure 4.5. Since all fracture grids are at the boundary of the sub-grids, 

Equation (4.01) can be rewritten in a weighted volumetric average form as: 

𝑑𝑁𝑁𝐶 =
1

𝑉𝑔𝑟𝑖𝑑
∑ ∑ 𝑑𝑐𝑖𝑗𝑓

𝑛𝐸𝑑𝑔𝑒𝑠
𝑗=1

𝑛𝐹𝑎𝑐𝑒𝑠
𝑖=1 𝑉𝑖𝑗  (𝛺𝑇𝑖𝑗

∈ 𝛺𝑚𝑖
)  ........................................................... (4.03) 

where: 𝑇𝑖𝑗 is the tetrahedron corresponds to the 𝑗𝑡ℎedge on the 𝑖𝑡ℎ surface, with a bulk volume of 

𝑉𝑖𝑗. 𝑑𝑐𝑖𝑗𝑓
 is the distance of its centroid to the fracture plane, and 𝑉𝑔𝑟𝑖𝑑 is the bulk volume of the 

entire grid. 

𝑁𝑁𝐶 − 𝐼𝐼: Connection between two intersected fracture grids. Here two intersected 

fracture grids do not split each other, therefore the original formulation in Table 4.1 is still valid.  

𝑇𝑁𝑁𝐶−𝐼𝐼 =
1

𝑇1
−1+𝑇2

−1 ................................................................................................................. (4.04) 

𝑇𝑖 =
𝑘𝑓𝑖

𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙
̅̅ ̅̅ ̅̅

 ............................................................................................................................. (4.05) 

𝑁𝑁𝐶 − 𝐼𝐼𝐼: Connection between two neighbor fracture grids that are from the same 

fracture. Similar as 𝑁𝑁𝐶 − 𝐼𝐼, formulation is the same as in Table 4.1. 

𝑇𝑁𝑁𝐶−𝐼𝐼𝐼 =
1

𝑇1
−1+𝑇2

−1 ................................................................................................................ (4.06) 

𝑇𝑖 =
𝑘𝑓𝑖

𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙
 ............................................................................................................................. (4.07) 

𝑁𝑁𝐶 − 𝐼𝑉: Connection between two sub-grids or one sub-grid and one un-split matrix 

grid. This type of NNC is only between two grids that are from different parent grids. As illustrated 

in Figure 4.6, a binary identifier string is used to help identify the connections. The length of the 

string equals to the number of fractures intersecting any of the two grids, and each of the binary 



 

30 

identifiers corresponds to on which side of the fracture the sub-grid centroid is located at. Sub-

grids with the same identifier string are then connected, otherwise sub-grids are separated by 

fractures and no direct connection exists between them. 

 

Figure 4.6—Scheme to establish 𝑵𝑵𝑪 − 𝑰𝑽 between neighboring sub-grids from different 

parent grid blocks. A binary identifier string is generated based on the spatial relationship 

of the sub-grid centroid and the fractures. Sub-grids with same identifier string are 

connected, as marked in double arrows.  

𝑁𝑁𝐶 − 𝑉: Connection between two sub-grids that are separated by a pseudo-fracture. Sub-

grids from the same parent grid do not have direct connections, unless they are separated by a 

pseudo-fracture. Therefore, only when one of the faces of the sub-grid is in contact with a pseudo-

fracture, 𝑁𝑁𝐶 − 𝑉 is defined. For both 𝑁𝑁𝐶 − 𝐼𝑉 and 𝑁𝑁𝐶 − 𝑉, since the sub-grids are 

unstructured, a generalized formulation needs to be used to calculate the transmissibility, which 

will be discussed in the next section. 

4.3.3 Generalized Transmissibility for Unstructured Sub-grids 

To calculate the transmissibility between the sub-grids (𝑁𝑁𝐶 − 𝐼𝑉 and 𝑁𝑁𝐶 − 𝑉), we 

used the same inter-cell formulation as implemented in several commercial simulators, as shown 

below. 
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𝑇 =
1

𝑇1
−1+𝑇2

−1 ............................................................................................................................ (4.08) 

𝑇1 =
𝐴𝑥(𝑥𝐶−𝑥1)+𝐴𝑦(𝑦𝐶−𝑦1)+𝐴𝑧(𝑧𝐶−𝑧1)

(𝑥𝐶−𝑥1)2+(𝑦𝐶−𝑦1)2+(𝑧𝐶−𝑧1)2
 .......................................................................................... (4.09) 

𝑇2 =
𝐴𝑥(𝑥𝐶−𝑥2)+𝐴𝑦(𝑦𝐶−𝑦2)+𝐴𝑧(𝑧𝐶−𝑧2)

(𝑥𝐶−𝑥2)2+(𝑦𝐶−𝑦2)2+(𝑧𝐶−𝑧2)2
 .......................................................................................... (4.10) 

Here 𝐴𝑥/𝑦/𝑧 is the projected area of the shared face on x/y/z direction, (𝑥1, 𝑦1, 𝑧1) and 

(𝑥2, 𝑦2, 𝑧2) are the centroid of the two grid blocks, while (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) is the centroid of the shared 

face. Note that strictly speaking, multiple point flux approximation (MPFA) is needed if the grid 

system do not have perfect orthogonality, and the above equation is primarily for hexahedron grids 

that has a shape roughly resembles a cuboid. For simplicity, we used this formulation for the sub-

grids as well which is unstructured and can have any geometry. However, measures have been 

taken to avoid grids that are too irregular by using pseudo-fractures, and the benchmarking results 

from the next chapter have shown that the formulation maintains a good accuracy compared to the 

reference cases. Table 4.2 summarizes the formulation used to calculate the 5 types of NNCs in 

cEDFM. 

Table 4.2—cEDFM formulation.  

𝑁𝑁𝐶 𝑇𝑛𝑛𝑐 𝑇𝑖 𝐴𝑛𝑛𝑐 𝑘𝑛𝑛𝑐 𝑑𝑛𝑛𝑐 𝑑𝑓𝑖𝑙
̅̅ ̅̅  

𝐼 
𝐴𝑁𝑁𝐶𝑘𝑁𝑁𝐶

𝑑𝑁𝑁𝐶

 -- 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
2

𝑘𝑓
−1 + 𝑘𝑚

−1 
1

𝑉
∫ 𝑑𝑣𝑓𝑑𝑣
𝛺𝑉

 -- 

𝐼𝐼 

1

𝑇1
−1 + 𝑇2

−1 

𝑘𝑓𝑖
𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙
̅̅ ̅̅

 𝑙𝑓1𝑓2 min(𝑤𝑓1 , 𝑤𝑓2) -- -- 
1

𝑆
∫ 𝑑𝑠𝑙𝑑𝑠
𝛺𝑆

 

𝐼𝐼𝐼 
𝑘𝑓𝑖

𝐴𝑁𝑁𝐶

𝑑𝑓𝑖𝑙

 𝑙𝑓1𝑓2 min(𝑤𝑓1 , 𝑤𝑓2) -- -- -- 

𝐼𝑉/𝑉 
𝐴𝑥(𝑥𝐶 − 𝑥𝑖) + 𝐴𝑦(𝑦𝐶 − 𝑦𝑖) + 𝐴𝑧(𝑧𝐶 − 𝑧𝑖)

(𝑥𝐶 − 𝑥𝑖)
2 + (𝑦𝐶 − 𝑦𝑖)

2 + (𝑧𝐶 − 𝑧𝑖)
2

 -- -- -- -- 
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4.3.4 Grid Data Structure 

For the EDFM approach, the discretized fracture grid can have either 3, 4, 5 or 6 edges, as 

shown in Figure 4.7. However, as matrix grids are split into multiple sub-grids in cEDFM, it is no 

longer feasible to enumerate all possible intersections, which can have any number of edges above 

3. Therefore, a generalized data structure is needed to perform grid splitting automatically. 

 

Figure 4.7—Possible intersections of a slant fracture plane and an orthogonal matrix grid. 

The fracture grid can be a triangle, quadrilateral, pentagon, or hexagon (Modified from 

Moinfar, A. et al., 2014).  

The data structure as shown in Figure 4.8 is defined for the Grid class. For each Grid 

object, it would have 3 properties (among others): a node set, an edge set, as well as a surface set. 

The node set keeps track of all the vertices of the grid, which is a 𝑛 × 4 matrix (n is the number of 

vertices). Each row represents a different vertex, including the unique ID of the node, as well as 

the x, y, z coordinates. The edge set specifies all edges of this grid, which is a 𝑚 × 2 matrix (m is 

the number of edges). Each row includes the two node IDs of this edge. Finally, the surface set 

keeps a record of all the surfaces of the grid, with each row representing a different surface. Since 

surfaces can have any number of nodes above 2, each row is defined as a list including an identifier 

as well as all vertices IDs of the surface. As a fracture intersects a grid, these properties would be 

updated accordingly. The initial Grid object before splitting is initialized with its 8 nodes, 12 edges 

and 6 surfaces. 



 

33 

 

Figure 4.8—Data structure of the Grid object in pseudo code.  

Note that when there are multiple fractures intersecting within the same parent grid block, 

more than two sub-grids can be generated. Since a full 3D model is implemented for the cEDFM 

approach, tiny grid with small volume might be generated especially when the fracture network is 

complex. This would result in convergence issue and increase the computation time. Therefore, as 

shown in Figure 4.9, when calculating the intersection between a fracture and a matrix grid, close-

by vertices around the intersection would be automatically detected. If the intersection is too close 

to an existing node within a certain tolerance, no new node would be generated. This prevents tiny 

grids from being created and ensures the numerical stability of the generated model. 

 

 

Figure 4.9—Eliminating small cells by merging close-by nodes.  

4.4 Local Grid Coarsening 

As discussed above, one advantage of the EDFM approach is that LGR is not necessary 

near the fractures. However, a consistent mesh needs to be used throughout the reservoir to 
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facilitate the generation of the model, which can be suboptimal in many cases. Ideally, a coarser 

mesh can be used in areas without any fractures to further reduce the number of cells. Therefore, 

in the implementation of cEDFM, a varied mesh is allowed, and an automatic local grid coarsening 

(LGC) algorithm is incorporated to detect areas with no fractures. The workflow is as follows: 

1) A coarse mesh is first generated, based on the location of the fractures, the grids intersected 

by fractures are identified. 

2) An indicator matrix with the same shape as the coarse grid is generated based on the result 

from the first step. For instance, the intersected grids have an indicator value of 1, their 

immediate neighbors not intersected by fractures can have a value of 2, the surrounding 

grids even further can have a value of 3, etc. 

3) Larger indicator corresponds to a coarser mesh, with the mesh size a multiple of the next 

finer one. 

4) Note that in order to generate a model with LGC, the code needs to be run twice. The first 

run solely generates the indicator map based on the coarse grid; the second run uses the 

indicator map as an input for matrix discretization, and generates the final model. 

 Without LGC, cEDFM would need more grids than EDFM due to matrix partitioning. 

However, with LGC, it can have a smaller grid number than EDFM. Figure 4.10 shows a 

comparison case of cEDFM with and without automatic LGC. In the model is a horizontal well 

with 24 stages of hydraulic fractures, as well as 248 natural fractures scattered around the SRV, 

other model parameters are listed in Table 4.3. For this particular case, 22670 grids are needed 

without LGC, while only 15570 girds are needed with LGC for cEDFM, which is a reduction of 

31.32%. 
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Table 4.3—Model parameters for LGC case comparison.  

𝑀𝑜𝑑𝑒𝑙 𝑐𝐸𝐷𝐹𝑀 (𝑤/𝑜 𝐿𝐺𝐶) 𝑐𝐸𝐷𝐹𝑀 (𝑤/ 𝐿𝐺𝐶) 

𝑃𝑎𝑟𝑒𝑛𝑡 𝐺𝑟𝑖𝑑 𝑀𝑒𝑠ℎ 200 𝑓𝑡 200/400/800 𝑓𝑡 

𝑛𝐶𝑒𝑙𝑙𝑠 22670 15570 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 12000 𝑓𝑡 × 3200 𝑓𝑡 × 32 𝑓𝑡 

𝜙 0.06 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥 1.4 × 10−3𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 5 × 101𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑓𝑙𝑢𝑖𝑑 𝑏𝑙𝑎𝑐𝑘 𝑜𝑖𝑙 

𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 0.38 𝑓𝑡 

𝐵𝐻𝑃 4000 𝑝𝑠𝑖 

𝑃𝑖 8000 𝑝𝑠𝑖 

𝑇 180 𝐹𝑜 

 

 
(a) w/o Local Grid Coarsening 

 
(b) w/ Local Grid Coarsening 

Figure 4.10—Automatic local grid coarsening of cEDFM in unfractured areas.  
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Figure 4.11 shows the well production curve of the two models with and without LGC. 

The two models have a perfect match, hence no observable error is introduced by introducing 

LGC. Note that LGC is the most helpful when fractures are sparse and intersect only part of the 

reservoir. This case would also be used later for model benchmarking. 

 

Figure 4.11—Well production curves of cEDFM with and without LGC.  

4.5 Corner Point Extension 

Another limitation of the original EDFM is that the application is restricted to orthogonal 

mesh. In order to improve the applicability of the model to real field cases, here we extended the 

implementation of cEDFM to be able to work with a full 3D corner-point grid system. When 

generalizing the implementation from orthogonal grids to corner-point grids, the assumptions that 

can be used to simplify the calculation of fracture-matrix and fracture-fracture intersections are no 

longer valid, therefore the whole program needs to be rewrite accordingly. With the generalized 

model, fractures can be easily incorporated into existing reservoir models, which makes cEDFM 

more practical for field applications. 
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Different approaches have been proposed to calculate the transmissibility between corner 

point grids. Here the same formulation as specified in Equation (4.07) – (4.09) is used. It is widely 

implemented in most commercial simulators, therefore has a good compatibility for case 

benchmarking. 

  
                              (a) T=1 month                                                 (b) T=3 months 

 
                             (c) T=24 months                                                 (d) T=60 months 

 

Figure 4.12—Pressure profile of the synthetic Brugge reservoir with 5 horizontal wells. 6 

stages of hydraulic fractures for each well simulated with 1050 discrete fractures in total.  

Figure 4.12 shows a synthetic case with 5 multi-stage hydraulic fractured horizontal wells 

completed in the Brugge reservoir. Each well has 6 stages of hydraulic fractures, with a total of 

1050 discrete fractures in this model. Given the fracture locations and properties, the cEDFM 

approach can easily work with any existing reservoir models without the need to regenerate the 

mesh for the matrix. 
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CHAPTER V2  

MODEL VERIFICATION OF cEDFM 

5.1 Case Benchmarking for Single-Phase Flow Problem 

 In the first case, the cEDFM approach is compared to other models for a single-phase flow 

problem.  𝐶𝑂2 is injected from the left boundary of the square reservoir at a constant pressure of 

12000 psi, and gas is produced from the right boundary at a constant pressure of 8000 psi.  

Table 5.1—Model parameters for the single-phase flow problem.  

𝑀𝑒𝑠ℎ 

cEDFM pEDFM EDFM Explicit 

11 × 11 11 × 11 11 × 11 251 × 251 

𝑀𝑜𝑑𝑒𝑙 𝑠𝑖𝑧𝑒 50 𝑓𝑡 × 50 𝑓𝑡  

𝜙 0.10 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥  1.0 × 10−1𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 1 × 103𝑚𝑑 

𝑘𝑏𝑎𝑟𝑟𝑖𝑒𝑟  0 𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  / 𝑤𝑏𝑎𝑟𝑟𝑖𝑒𝑟    0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 100% 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 

𝐵𝐻𝑃𝑖𝑛𝑗  12000 psi 

𝐵𝐻𝑃𝑝𝑟𝑑 8000 psi 

𝑃𝑖 8000 psi 

𝑇 100 𝐹𝑜 

 

                                                 

2 Part of this chapter is reprinted with permission from “Chai, Z., Tang, H., He, Y., Killough, J., & Wang, Y. 

Uncertainty Quantification of the Fracture Network with a Novel Fractured Reservoir Forward Model.” Copyright 

[2018] by Society of Petroleum Engineers. 



 

39 

 Two intersecting fractures are placed at the center of the model, and two scenarios are 

considered: 1) the fractures are highly permeable; 2) the fractures are non-permeable and form 

flow barriers. The results are compared to pEDFM, EDFM as well as the fine explicit model. The 

model parameters are as listed in Table 5.1. A couple of previous studies such as Tene, M. et al. 

(2017) used a relatively fine EDFM mesh for case comparison. However, models based on EDFM 

are rarely used with fine mesh in practice so as to take advantage of their efficiency. Here we used 

a much coarser mesh for cEDFM, pEDFM and EDFM compared to the fine explicit model. 

 
          (a) EDFM                  (b) pEDFM                 (c) cEDFM         (d) Fine Explicit Model 

Figure 5.1—Case with highly conductive fractures: normalized pressure profile with 𝑪𝑶𝟐 

flooding, 𝑷𝑽𝑰 = 𝟎. 𝟓.  

 
                              (a) EDFM                  (b) pEDFM                 (c) cEDFM 

Figure 5.2—Case with highly conductive fractures: error map of normalized pressure with 

𝑪𝑶𝟐 flooding, 𝑷𝑽𝑰 = 𝟎. 𝟓.  

 For the case with highly conductive fractures, all three models can have a good match with 

the reference solution, as can be seen from Figure 5.1 and Figure 5.2. cEDFM has the smallest 

error, but the results of the other two models are comparable. For the case when the fractures are 

non-permeable, EDFM yields an incorrect profile, as shown in Figure 5.3. pEDFM can improve 
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the result to some extent, but with a coarse mesh like used in this case, errors are still obvious in 

some of the regions. cEDFM is able to greatly reduce the error and reproduce the reference 

solution, as shown in Figure 5.4. 

  
          (a) EDFM                  (b) pEDFM                 (c) cEDFM         (d) Fine Explicit Model 

Figure 5.3—Case with flow barriers: normalized pressure profile with 𝑪𝑶𝟐 flooding, 𝑷𝑽𝑰 =
𝟎. 𝟓.  

   
                              (a) EDFM                  (b) pEDFM                 (c) cEDFM           

Figure 5.4—Case with flow barriers: error map of normalized pressure with 𝑪𝑶𝟐 flooding, 

𝑷𝑽𝑰 = 𝟎. 𝟓.  

5.2 Case Benchmarking for Two-Phase Flow Problem 

The model is then benchmarked for a two-phase flow problem. Both orthogonal fracture 

case and skewed fracture case are compared with the explicit model. Figure 5.5 shows the map of 

the logarithmic permeability field (𝑙𝑜𝑔10𝑘) of the benchmark models. Flow barriers exist as well 

as highly conductive fractures for both cases. The model parameters are listed in Table 5.2. Water 

is injected from the left boundary at a constant pressure of 12000 psi, and gas is produced from 

the right boundary at a constant pressure of 8000 psi, which is the same as the initial reservoir 

pressure.  
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Table 5.2—Model parameters for the two-phase flow problem.  

𝑀𝑒𝑠ℎ 
𝑐𝐸𝐷𝐹𝑀 𝐸𝐷𝐹𝑀 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑀𝑜𝑑𝑒𝑙 

100 × 100 100 × 100 1600×1600 

𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 2 ft 2 ft 0.125 ft 

𝜙 0.1 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥  5 × 10−3𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 1 × 103𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  0.05 𝑓𝑡 

𝑘𝑏𝑎𝑟𝑟𝑖𝑒𝑟   1 × 10−8𝑚𝑑 

𝑤𝑏𝑎𝑟𝑟𝑖𝑒𝑟  0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 100% 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 

𝑃𝑖 8000 psi 

𝑇 100 𝐹𝑜 

 

  
                 (a) Case I: Orthogonal Fractures            (b) Case II: Skewed Fractures 

Figure 5.5—Logarithmic permeability map of the benchmarking cases. Highly conductive 

fractures and low conductive flow barriers coexist in both cases.  
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                              (a) Orthogonal Grids                            (b) Corner-Point Grids 

Figure 5.6—Parent Grid of cEDFM for Case I. Locations of the fractures are marked in 

black.  

  
                              (a) Orthogonal Grids                            (b) Corner-Point Grids 

Figure 5.7—Parent Grid of cEDFM for Case II. Locations of the fractures are marked in 

black.  

 Here we compared the results of cEDFM for both the orthogonal mesh as well as the 

corner-point mesh. The models are as shown in Figure 5.6 and Figure 5.7 for the two cases. The 

corner-point model has a rectangular outer boundary, therefore can still be compared with the same 

reference solution.  
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5.2.1 Case with Orthogonal Fractures 

Below the pressure and water saturation profiles are compared against the fine reference 

solution (𝑃𝑉𝐼 = 0.5) for 3 models: EDFM, cEDFM and cEDFM (CPG), as shown in Figure 5.8 

and Figure 5.9. The corresponding errors are plotted in Figure 5.10 and Figure 5.11. We can see 

for the EDFM case, a large discrepancy is observed in areas where flow barriers are present for 

both the pressure solution and the saturation solution.  The pressure and water saturation front can 

freely pass the barriers. While the cEDFM solution gives an almost identical pressure solution as 

the reference case even when flow barriers are present. The saturation profile also has a much 

better match with the reference case, with a marginal error near the saturation front. For the 

cEDFM case with CPG mesh, the result is very comparable with the orthogonal grid case, with a 

slightly larger error as expected.  

    
          (a) EDFM                  (b) cEDFM              (c) cEDFM(CPG)    (d) Fine Explicit Model 

Figure 5.8—Case comparison: normalized pressure profile of orthogonal fracture water 

flooding, 𝑷𝑽𝑰 = 𝟎. 𝟓.  

        
          (a) EDFM                  (b) cEDFM              (c) cEDFM(CPG)    (d) Fine Explicit Model 

Figure 5.9—Case comparison: water saturation profile of orthogonal fracture water 

flooding, 𝑷𝑽𝑰 = 𝟎. 𝟓.  
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                                (a) EDFM                     (b) cEDFM             (c) cEDFM (CPG) 

Figure 5.10—Error map of normalized pressure, orthogonal fracture water flooding, 𝑷𝑽𝑰 =
𝟎. 𝟓.  

 
                                (a) EDFM                     (b) cEDFM             (c) cEDFM (CPG) 

Figure 5.11—Error map of water saturation, orthogonal fracture water flooding, 𝑷𝑽𝑰 =
𝟎. 𝟓.  

 

5.2.2 Case with Skewed Fractures  

     
          (a) EDFM                  (b) cEDFM              (c) cEDFM(CPG)    (d) Fine Explicit Model 

Figure 5.12—Case comparison: normalized pressure profile of skewed fracture water 

flooding, 𝑷𝑽𝑰 = 𝟎. 𝟒.  
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 For the case with skewed fractures, the pressure and water saturation profiles of the 3 

models are again compared against the reference solution (𝑃𝑉𝐼 = 0.4), as shown in Figure 5.12 

and Figure 5.13. The errors are mapped as shown in Figure 5.14 and Figure 5.15. 

     
          (a) EDFM                  (b) cEDFM              (c) cEDFM(CPG)    (d) Fine Explicit Model 

Figure 5.13—Case comparison: water saturation profile of skewed fracture water flooding, 

𝑷𝑽𝑰 = 𝟎. 𝟒.  

 It can be noticed that for the EDFM case, the added barriers do not change the pressure or 

the saturation profile at all. The simulation result would be exactly the same for the EDFM case if 

we only define the two highly conductive fractures at the top. This is due to the fact that in EDFM, 

the matrix is always continuous even when flow barriers are defined. While cEDFM is able to 

rectify the errors in these areas, and the errors are greatly reduced for both pressure and saturation 

solutions. Again, the cEDFM case with CPG mesh gives a comparable solution as with orthogonal 

grids, which validates the accuracy of the implementation.   

 
                                (a) EDFM                     (b) cEDFM             (c) cEDFM (CPG) 

Figure 5.14—Error map of normalized pressure, skewed fracture water flooding, 𝑷𝑽𝑰 =
𝟎. 𝟒.  
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                                (a) EDFM                     (b) cEDFM             (c) cEDFM (CPG) 

Figure 5.15—Error map of water saturation, skewed fracture water flooding, 𝑷𝑽𝑰 = 𝟎. 𝟒.  

5.3 Complex Horizontal Well Case Benchmarking with PEBI 

Table 5.3—Model parameters for the complex fracture network problem.  

𝑀𝑜𝑑𝑒𝑙 𝑃𝐸𝐵𝐼 𝐸𝐷𝐹𝑀 𝑐𝐸𝐷𝐹𝑀 

𝑛𝐶𝑒𝑙𝑙𝑠 26393 17367 15570 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 12000 𝑓𝑡 × 3200 𝑓𝑡 × 32 𝑓𝑡 

𝜙 0.06 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥 1.4 × 10−3𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 5 × 101𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑓𝑙𝑢𝑖𝑑 𝑏𝑙𝑎𝑐𝑘 𝑜𝑖𝑙 

𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 0.38 𝑓𝑡 

𝐵𝐻𝑃 4000 𝑝𝑠𝑖 

𝑃𝑖 8000 𝑝𝑠𝑖 

𝑇 180 𝐹𝑜 

 

 The cEDFM results are also compared against the PEBI model for more complex cases. 

Here a horizontal well with 24 stages of hydraulic fractures is producing at a constant bottom-hole 

pressure. There are 248 natural fractures randomly scattered near the SRV. The model parameters 

are listed in Table 5.3. The results of three models, PEBI, EDFM and cEDFM are compared. 

Figure 5.16 shows the pressure profile after 5 years of production, and Figure 5.17 shows the 
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production curve of the well for the 3 models. Note that the production curves are plotted on semi-

log axes. 

 
(a) PEBI 

 
(b) EDFM 

 
(c) cEDFM with LGC 

Figure 5.16—Pressure Profile for a horizontal well case with 24 stages of hydraulic fractures 

and 248 natural fractures. Pressure profile after 5 years of production. PEBI model from 

Sun, J. et al. (2014).  

 We can see that both the pressure profile and the production reached a good match with 

the PEBI model. The discrepancy of the production curve is only at the very early stage within 1 

day of production. Therefore, the model has a good accuracy for most applications. However, 

cautions need to be taken when a higher accuracy for the early transient stage is desired, such as 

in well-testing cases. LGR can be used under these circumstances to further improve the accuracy. 
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With the PEBI model as the reference solution, we can see cEDFM get a slightly better accuracy 

in the early stage compared to EDFM. 

 

Figure 5.17—Well production rate of the 3 different models.  

5.4 Sensitivity Analysis 

Sensitivity analysis is also conducted for the cEDFM approach when using different mesh 

for the matrix. In the following demonstration case, 𝐶𝑂2 is injected into a gas reservoir from one 

corner and a producer located diagonally from the injector is producing at a constant bottom-hole 

pressure. Results from different mesh sizes are compared, as listed in Table 5.4. A total of 12 

fractures are defined in the reservoir, and for all cases, the two wells are perforated within the 

matrix grids.  

Figure 5.18 shows the 𝐶1 concentration after 12 months of 𝐶𝑂2 flooding (𝑃𝑉𝐼 ≈ 0.2). The 

coarse mesh could not capture the 𝐶1 concentration profile for a relatively complex model like this, 

and a 6.20 % of relative error in cumulative 𝐶1 production is observed. A much better result can 
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be obtained by using the medium mesh, with a 2.21 % of relative error in cumulative 𝐶1 production. 

The three cases are also simulated without the fractures. The relative error in cumulative 𝐶1 

production is 3.53% for the coarse mesh, and 1.10% for the medium mesh. From the results, we 

can see that it is definitely more challenging to simulate a fractured reservoir. However, when the 

mesh is too coarse, the error persists even without any fracture as expected. A moderate refinement 

is usually adequate for the cEDFM approach without the need to perform additional LGR near the 

fractures. 

Table 5.4—Model parameters for sensitivity analysis.  

𝑀𝑒𝑠ℎ 
𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝑒𝑑𝑖𝑢𝑚 𝐹𝑖𝑛𝑒 

10 × 10 30×30 90×90 

𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 50 ft 50/3 ft 50/9 ft 

𝜙 0.12 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥  1.5 × 10−2𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 5 × 103𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 100% 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 

𝐵𝐻𝑃𝑖𝑛𝑗  12000 psi 

𝐵𝐻𝑃𝑝𝑟𝑑 8000 psi 

𝑃𝑖 8000 psi 

𝑇 100 𝐹𝑜 

Relative Error 6.20 % 2.21 % -- 

Relative Error (w/o fractures) 3.53 % 1.10 % -- 
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            (a) 10 × 10                            (b) 30 × 30                             (c) 90 × 90 

Figure 5.18—Sensitivity to parent matrix mesh: 𝑪𝟏 concentration after 12 months of 𝑪𝑶𝟐 

flooding.  
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CHAPTER VI  

CASE STUDIES 

6.1 Naturally Fractured Shale Reservoir 

 The first case demonstrates the simulation of a stimulated horizontal well with complex 

natural fracture network in a shale reservoir. A triple porosity model is defined to characterize the 

shale matrix, including organic matrix (kerogen), inorganic matrix, and micro fractures. The micro 

fracture porosity type only represents part of the natural fractures that are too small (below the 

mesh size of the matrix) to be represented explicitly. The large-scale natural fractures as well as 

the hydraulic fractures are modeled with cEDFM. In Table 6.1 the model parameters are listed. It 

is a compositional model with an initial pressure of 8000 psi. 

   

Figure 6.1—Large-scale natural fracture distribution. More active natural fractures within 

the SRV of the well.  

 Figure 6.1 shows the distribution of the natural fractures in the model. We are assuming a 

larger fracture density within the SRV, which is marked in the dashed box area. There are 512 

macro fractures in this model: 500 large-scale natural fractures, and 12 hydraulic fractures. 
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 The well produces at a constant BHP for 5 years. Figure 6.2 to Figure 6.4 shows the 

pressure profile of the 3 porosity types of matrix at different time steps. We can see a clear pressure 

difference between the different porosity types. Here a constant shape factor is used without any 

assumption of the micro model structure. It is obvious that the drainage area is limited by the part 

of the fracture network that is connected to the well, which highlights the importance of the 

fractures network in controlling the performance of the well.  

Table 6.1—Model parameters for the multiple-porosity shale problem.  

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑇𝑦𝑝𝑒 𝐾𝑒𝑟𝑜𝑔𝑒𝑛 𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 𝑀𝑖𝑐𝑟𝑜 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 

𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 2.5 × 10−5𝑚𝑑 5.0 × 10−5𝑚𝑑 7.5 × 10−5𝑚𝑑 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 0.03 0.02 0.005 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 12000 𝑓𝑡 × 3200 𝑓𝑡 × 32 𝑓𝑡 

𝑀𝑎𝑡𝑟𝑖𝑥 𝑚𝑒𝑠ℎ 101 ×  51 × 1 

𝑘ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 5 × 103𝑚𝑑 

𝑘𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 1 × 102𝑚𝑑 

𝑤ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  2 × 10−2𝑓𝑡 

𝑤𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 5 × 10−3𝑓𝑡 

𝜙𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 0.35 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑓𝑙𝑢𝑖𝑑 8 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 0.38 𝑓𝑡 

𝐵𝐻𝑃 4000 𝑝𝑠𝑖 

𝑃𝑖 8000 𝑝𝑠𝑖 

𝑇 180 𝐹𝑜 
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(a) t=1 months 

 
(b) t=12 month 

 
(c) t=60 months 

Figure 6.2—Pressure profile of micro fractures for a hydraulic fractured horizontal well 

completed in shale formation.  
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(a) t=1 months 

 
(b) t=12 month 

 
(c) t=60 months 

Figure 6.3—Pressure profile of inorganic matrix for a hydraulic fractured horizontal well 

completed in shale formation.  
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(a) t=1 months 

 
(b) t=12 month 

 
(c) t=60 months 

Figure 6.4—Pressure profile of kerogen for a hydraulic fractured horizontal well completed 

in shale formation.  
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6.2 Horizontal Well Optimization with cEDFM 

 The well placement and completion design are vital factors that directly impact the 

profitability of the well. Here we take advantage of the flexibility of the cEDFM approach, and 

perform optimization to well completion design and well spacing. Figure 6.5 shows the horizontal 

well model for the optimization problem. The dimension along the x axis of the reservoir is fixed 

at 5000 ft, which stands for the assumed maximum obtainable wellbore length for the horizontal 

section. The dimension along the y axis is adjustable, which stands for the well spacing 

perpendicular to the direction of the wellbore. We assume the hydraulic fractures are evenly spaced 

with the first and the last stage passing the heel and toe of the horizontal interval respectively. The 

wellbore length as well as the number of hydraulic fracturing stages are both parameters to be 

optimized. The half-length of the hydraulic fractures is fixed at 500 ft. It is a gas filed and the 

objective function for the optimization is the NPV of the well after 20 years of production. The 

parameters to calculate the objection function are listed in Table 6.2.  

 

Figure 6.5—Model illustration of the optimization case.  

The objective function is defined as: 
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𝑂𝑏𝑗 = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑙𝑒𝑎𝑠𝑒 − 𝐶𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 − 𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 ................................................................ (6.01) 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ (1 − 𝑟𝑡𝑎𝑥) ×
(𝐶𝑃𝐺𝑡−𝐶𝑃𝐺𝑡−1)×𝐼𝑔𝑎𝑠×(1−𝑟𝑟𝑜𝑦𝑎𝑙𝑡𝑦)−𝑆𝑚

(1+𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)
𝑡

𝑛𝑡
𝑡=1  ........................................... (6.02) 

where: 𝐼𝑔𝑎𝑠 is the unit gas price, 𝑆𝑚 is the monthly maintenance fee of the well, and 𝐶𝑃𝐺𝑡 is the 

cumulative gas production at the end of time step 𝑡. 

Table 6.2—Parameters for NPV calculation.  

𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑑𝑒𝑝𝑡ℎ  8000 𝑓𝑡  

𝑙𝑒𝑎𝑠𝑒 𝑐𝑜𝑠𝑡  1000 $/𝑎𝑐𝑟𝑒  

𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛  200 $/𝑓𝑡  

𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛  280 $/𝑓𝑡  

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 −  ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔  1.0 × 105 $/𝑠𝑡𝑎𝑔𝑒  

𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒  3.0 × 103 $/𝑚𝑚𝑠𝑐𝑓  

𝑤𝑒𝑙𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡  150 $/𝑑𝑎𝑦  

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒,𝑚𝑜𝑛𝑡ℎ𝑙𝑦  0.01 

𝑟𝑜𝑦𝑎𝑙𝑡𝑦  15%  

𝑡𝑎𝑥 𝑟𝑎𝑡𝑒  30%  

𝑤𝑒𝑙𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡  150 $/𝑑𝑎𝑦  
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Figure 6.6—Horizontal well design optimization workflow with GA.  

 The workflow of the GA optimization is illustrated in Figure 6.6. An initial generation of 

samples is first generated from Latin Hypercube design to fully cover the parameter space. The 

reservoir models are then generated and the simulation is performed for each of the cases. The 

population would then be ranked by “fitness”, which is the NPV after 20 years of production. 

Finally, the next generation of samples is generated. The process is repeated until a convergence 

criterion is met, which is when the increase of NPV for the best case is below 2% for two 

consecutive generations. 

A population of 50 is used for this problem, among which, 20% of the “elite” samples with 

the highest NPVs are preserved to the next generation, 20% are generated by directly mutating 

from the previous generation, and the rest 60% are generated by performing “crossover” among 

the previous generation samples. The numerical value for each of the parameters is converted to a 
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binary string, a length of 7 is chosen in this case to control the granularity of the values. The 

“chromosome” of each case is then generated by concatenating all the binary strings. 

Table 6.3—Well design optimization results.  

 Base Case Optimal Case 

Well spacing 2500 ft 3315 ft 

HF stages 12 16 

Wellbore length 3500 ft 4440 ft 

NPV 3.61 Million $ 4.62 Million $ 

 

Figure 6.7—Net present value of the optimal case vs. generation.  

After the next generation is generated, the parameter values are obtained by a reverse 

conversion from the binary strings. It took 16 generations before the solution reaches convergence, 

and the NPV of the best case in each of the generations is plotted in Figure 6.7. The results of the 

optimization are listed in Table 6.3. Compared to the base case design, an optimal development 

can be obtained by increasing the well spacing from 2500 ft to 3315 ft, increase the wellbore length 

from 3500 ft to 4440 ft, and increase the hydraulic fractures from 12 stages to 16 stages. 
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6.3 Dynamic Fracture Network 

 Studies such as Suarez-Rivera, R. et al. (2013) and El Sgher, M. et al. (2018) have shown 

that the conductivity of the fractures changes greatly as the effective stress changes. For low 

permeable resources such as shale, the reservoir is usually developed by depletion without 

maintaining the reservoir pore pressure. As a result, the effective pressure gradually increases and 

impairs the conductivity of the fracture network.   

 From the work of Zhang, J. et al. (2014), the relationship between the pore pressure drop 

and the conductivity can be generalized to: 

𝐶𝑑 = 𝛿 × 𝑒−𝛽𝛼Δ𝑃 ..................................................................................................................... (6.03) 

where: 𝛿, 𝛽 and 𝛼 are all constant coefficients. The normalized fracture conductivity is therefore: 

𝐶𝑑,𝑝
̅̅ ̅̅ ̅ =

𝛿×𝑒−𝛽𝛼Δ𝑃

𝛿×𝑒0 = 𝑒−𝛽𝛼Δ𝑃 ...................................................................................................... (6.04) 

where: 𝛼 is the fracture compaction coefficient that is formation specific, and 𝛽 account for the 

properties of the proppant, or when the fractures are unpropped. 

By assigning different values for 𝛼, the normalized conductivity for propped and 

unpropped fracture are plotted in Figure 6.8 and Figure 6.9. Here we assume  𝛽𝑢𝑝 = 1 and 𝛽𝑝 =

0.5 for unpropped and propped fractures respectively, and an initial pore pressure of 8000 psi. 
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Figure 6.8—Compaction curve of propped fracture conductivity.  

 

Figure 6.9—Compaction curve of unpropped fracture conductivity.  
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Table 6.4—Model parameters for the dynamic fracture conductivity case.  

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 8640 𝑓𝑡 × 2430 𝑓𝑡 × 30 𝑓𝑡 

𝑃𝑎𝑟𝑒𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑒𝑠ℎ 288 × 81 × 1 

𝜙 0.10 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥 5.0 × 10−3𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 1.0 × 103𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  0.05 𝑓𝑡 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑓𝑙𝑢𝑖𝑑 100% 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 

𝑊𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 0.25 𝑓𝑡 

𝐵𝐻𝑃 2500 𝑝𝑠𝑖 

𝑃𝑖 8000 𝑝𝑠𝑖 

𝑇 180 𝐹𝑜 

 

 Below we studied the influence of fracture compaction on well production. The model 

parameters for this case study are listed in Table 6.4. A horizontal well is producing at a constant 

BHP from a gas reservoir, with 12 stages of hydraulic fractures. Here we randomly select 50% of 

the fractures to be effectively propped, and the rest to be unpropped. The transmissibility between 

the fracture grids and other grids would be updated dynamically based on the value of 𝐶𝑑,𝑝
̅̅ ̅̅ ̅ and 

𝐶𝑑,𝑢𝑝
̅̅ ̅̅ ̅̅ ̅, which is determined by the current pore pressure and the value of the compaction 

coefficient.  

 Figure 6.10 shows the pressure profile after 10 years of production with different values 

of the compaction coefficient. It is obvious that the drainage is much less effective for the case 

with a larger 𝛼 value. The production is greatly affected, as can be seen in Figure 6.11. Therefore, 

fracture compaction is an important factor to be considered for fractured reservoir simulation to 

have an accurate estimation of the well performance. 
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(a) 𝛼 = 1.0𝐸 − 4 

 
(b) 𝛼 = 6.0𝐸 − 4 

 
(c) 𝛼 = 1.2𝐸 − 3 

Figure 6.10—Pressure profile after 10 years of production.  
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Figure 6.11—Cumulative gas production with different compaction coefficient 𝜶.  

 

Figure 6.12—Cumulative gas production with different percentage of effectively propped 

fractures.  

 Figure 6.12 shows the influence to cumulative production of gas when the percentage of 

effectively propped fracture changes. For formations with a small fracture compaction coefficient, 
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the influence is minor. However, for formations with a larger fracture compaction coefficient, the 

production is more significantly influenced by fracture compaction. Therefore, it is more important 

for these reservoirs to effectively prop the fractures in order to maintain a high recovery rate. 
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CHAPTER VII3  

FRACTURED RESERVOIR HISTORY MATCHING WITH MCMC 

Quantifying the uncertainty of the fracture network is a vital part to really understand the 

reservoir dynamics for fractured reservoirs. In this chapter, a workflow based on Markov chain 

Monte Carlo (MCMC) is proposed to perform history matching for this type of reservoirs. All 

cases evaluated here use cEDFM as the forward model. The method allows for fast model 

generation and efficient reservoir simulation without losing accuracy, which ensured the 

performance of the history matching algorithms.  Since no upscaling is needed, the result can be 

interpreted much more intuitively.  

The MCMC algorithm is solely based on sampling. One advantage is that no gradient 

matrix needs to be calculated, which can be expensive to obtain. However, in order to avoid the 

low accept ratio of MCMC, we implemented and modified the approach of two-stage MCMC, 

which was first proposed by Ma, X. et al. (2008). The algorithm would greatly increase the accept 

rate of the proposed samples for simulation, and therefore reduce the cost for history matching.  

The flowchart for the history matching process with the two-stage MCMC is shown in 

Figure 7.1. A stochastic sample is generated from the prior PDF as the starting point of the MCMC 

chain. In the first stage of the MCMC sampling, a proxy model is used to estimate the posterior 

probability of the proposal, and the proposal is either accepted or rejected based on the Metropolis-

Hastings criterion. Only the proposals that are accepted in the first stage would generate the 

reservoir model and run the full simulation. In the second stage, the proposal is either accepted or 

                                                 

3 Part of this chapter is reprinted with permission from “Chai, Z., Yan, B., Killough, J., & Wang, Y. An efficient 

method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach.” 

Copyright [2017] by Elsevier. 
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rejected based on the same Metropolis-Hastings criterion, the only difference is that the posterior 

probability is calculated with the actual simulation result. 

 

Figure 7.1—Flowchart of history matching and uncertainty quantification of fractured shale 

reservoirs with cEDFM.  

7.1 Markov Chain Monte Carlo (MCMC) 

MCMC is a class of method for sampling that aims to generate samples from a target 

probability distribution for which direct sampling is difficult. Here, history matching and 

uncertainty quantification are performed through the sampling of model parameters. Samples are 

generated along the Markov chain, where the next state on the chain (𝑥𝑡+1) depends only on the 

current one (𝑥𝑡): 

P(xt+1 = sj|x0 = s0, … , xt = st) = P(xt+1 = sj|xt = st) .................................................... (7.01) 
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MCMC has been applied in reservoir engineering to solve the inverse problem by sampling 

a posterior distribution that contains information from both a prior distribution of the parameters 

and observed well production data. The posterior distribution is defined as: 

𝑃(𝑥|𝑑𝑜𝑏𝑠) ∝ exp {−
1

2
[(𝑥 − 𝜇𝑥)

𝑇𝐶𝑥
−1(𝑥 − 𝜇𝑥) + (𝑔(𝑥) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔(𝑥) − 𝑑𝑜𝑏𝑠)]} =

𝜋(𝑥) ......................................................................................................................................... (7.02) 

 In such problems, a sequence of samples is generated in the Markov chain whose stationary 

density represents the updated reservoir description. Metropolis Hasting (M-H) is one of the 

sampling algorithms that could generate an MCMC chain. The advantage of M-H is that it does 

not require knowing the normalizing constant of the target distribution. The steps to generate an 

MCMC chain using M-H algorithm can be summarized as follows: 

1) The chain starts by drawing a random state 𝑥𝑛. 

2) A candidate state 𝑥 is then drawn from a proposal distribution 𝑞(∙). 

3) With the current value 𝑥𝑛 and the candidate value 𝑥, the probability of the move 𝛼 from 𝑥𝑛 

to 𝑥 is calculated by: 

𝛼(𝑥𝑛, 𝑥) = min (1,
𝜋(𝑥) 𝑞(𝑥𝑛|𝑥)

𝜋(𝑥𝑛) 𝑞(𝑥|𝑥𝑛)
) ................................................................................ (7.03) 

4) The candidate is accepted with a probability of 𝛼 and rejected with a probability of 1 − 𝛼.  

 When the candidate is accepted, it is retained in the chain and its value is used to determine 

the next member in the chain. Otherwise, the candidate is discarded and the previous steps are 

repeated. After a sufficient burn-in period, the Markov chain reaches a stationary distribution, and 

it could represent the target distribution when enough samples are generated. If a symmetric 
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proposal distribution is used, which is usually the case, the ratio of the proposal distributions in 

the equation above is equal to 1, and the acceptance probability is simply: 

α(xn, x) = min (1,
π(x) 

π(xn) 
) ........................................................................................................ (7.04) 

 A drawback of the application of original MCMC in reservoir history matching is that it is 

computationally expensive. The burn-in stage could be long before the Markov chain could 

converge to a stationary distribution. Additionally, since each iteration requires running a full 

reservoir simulation, and the rejection ratio related to such problems are usually high, the process 

becomes highly inefficient as a large part of the simulations are discarded.  

7.2 Two-Stage MCMC  

 To deal with the high cost of computation associated with the original MCMC, a two-stage 

MCMC algorithm is implemented. The idea is to add an additional selection process to filter away 

poor proposals that are not likely to be accepted before passing it to the reservoir simulator. The 

algorithm is first proposed by Ma, X. et al. (2008) and the steps can be summarized as: 

1) The simulation result is first estimated by a linear approximation based on the parameter 

values of the proposal in the first stage. The sample is accepted by the M-H acceptance 

criteria using the approximated model response. 

𝛼(𝑥𝑛, 𝑥) = min (1,
𝜋∗(𝑥)

𝜋∗(𝑥𝑛)
)  .......................................................................................... (7.05) 

2) If the sample is accepted in the 1st stage, a full reservoir simulation is then performed and 

the sample is accepted by the following probability in the 2nd stage: 

𝜌(𝑥𝑛, 𝑥) = min (1,
𝑄(𝑥𝑛|𝑥)𝜋(𝑥)

𝑄(𝑥|𝑥𝑛)𝜋(𝑥𝑛)
) ................................................................................ (7.06) 
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where: 𝑄(𝑥|𝑥𝑛) is the proposal distribution at the 2nd stage, and we have: 

𝑄(𝑥𝑛|𝑥) = 𝛼(𝑥, 𝑥𝑛)𝑞(𝑥𝑛|𝑥)........................................................................................ (7.07) 

Using the equation above, with a symmetric proposal distribution, it can be shown that the 

acceptance probability at the second stage is simply: 

𝜌(𝑥𝑛, 𝑥) = 𝑚𝑖𝑛 (1,
𝜋(𝑥)𝜋∗(𝑥𝑛)

𝜋(𝑥𝑛)𝜋∗(𝑥)
)................................................................................................. (7.08) 

For 𝑥 = 𝑥𝑛 this is obviously true. For 𝑥 ≠ 𝑥𝑛, it can be proven as follows: 

𝑄(𝑥𝑛|𝑥) = min (1,
𝑞(𝑥|𝑥𝑛)𝜋∗(𝑥𝑛)

𝑞(𝑥𝑛|𝑥)𝜋∗(𝑥)
) 𝑞(𝑥𝑛|𝑥) = min (𝑞(𝑥𝑛|𝑥),

𝑞(𝑥|𝑥𝑛)𝜋∗(𝑥𝑛)

𝜋∗(𝑥)
) ......................... (7.09) 

𝑄(𝑥𝑛|𝑥) =
1

𝜋∗(𝑥)
min(𝑞(𝑥𝑛|𝑥)𝜋∗(𝑥), 𝑞(𝑥|𝑥𝑛)𝜋

∗(𝑥𝑛)) ........................................................... (7.10) 

𝑄(𝑥𝑛|𝑥) =
𝑞(𝑥|𝑥𝑛)𝜋∗(𝑥𝑛)

𝜋∗(𝑥)
min (

𝑞(𝑥𝑛|𝑥)𝜋∗(𝑥)

𝑞(𝑥|𝑥𝑛)𝜋∗(𝑥𝑛)
,  1) =

𝜋∗(𝑥𝑛)

𝜋∗(𝑥)
𝑄(𝑥|𝑥𝑛) ....................................... (7.11) 

𝑄(𝑥𝑛|𝑥)

𝑄(𝑥|𝑥𝑛)
=

𝜋∗(𝑥𝑛)

𝜋∗(𝑥)
 ....................................................................................................................... (7.12) 

7.3 Generate the Proxy Model 

 The original approach for the two-stage MCMC is to assume local linearity of the model 

and estimate model response at the perturbed parameter value using: 

𝑔∗(𝑥) = 𝑔(𝑥𝑛) + 𝐺𝛿𝑥 ............................................................................................................. (7.13) 

where: G is the sensitivity matrix, with 𝐺𝑖𝑗 being the partial derivative of the observed data 𝑖 to 

model parameter 𝑗.  

The result above would be used to calculate the estimated posterior: 
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𝑃∗(𝑥|𝑑𝑜𝑏𝑠) ∝ exp {−
1

2
[(𝑥 − 𝜇𝑥)

𝑇𝐶𝑥
−1(𝑥 − 𝜇𝑥) + (𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠)]} ... (7.14) 

 The extra layer of filter of the two-stage MCMC is supposed to filter away the majority of 

the poor proposals and increase the percentage of promising proposals in the second stage where 

full simulation is performed. However, in our case the poor accuracy of the sensitivity matrix 𝐺 

calculated with perturbation may lead to a poor performance of the two-stage MCMC for the 

following reasons: 

1) Since the whole purpose of the two-stage MCMC is to reduce the simulation cost, the 𝐺 

matrix is not updated for each of the proposals. 

2) The value at which the parameters are perturbed would greatly affect the value of 𝐺, 

especially when the parameters are fracture properties. At different base parameter values, 

the calculated 𝐺 varies greatly, therefore it is inaccurate for most cases, leading to a poor 

estimation of the model response. 

 The original two-stage MCMC did not effectively improve the acceptance ratio in our 

application, and sometimes may even be counterproductive. Therefore to improve the performance 

of the algorithm, we used a proxy model instead to estimate the model response, with the response 

defined as the mismatch of the data (corresponding to the likelihood): 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = (𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠)
𝑇𝐶𝐷

−1(𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠) .................................................................. (7.15) 

 Therefore, the proxy model would estimate the likelihood without running an actual 

simulation. To build the proxy model, a training dataset needs to be created first for regression 

analysis, as would be discussed in the following case study. 
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7.4 Case Study 

 

Figure 7.2—Example case reservoir model. Single horizontal well with 10 stages of hydraulic 

fractures (in red) and the interacting natural fractures (in blue). Uncertainty is introduced 

from the distribution and conductivity of the natural fractures, as well as the properties of 

the shale matrix.  

 The workflow can be illustrated with the following example case. A horizontal well with 

10 stages of hydraulic fractures is producing at a constant BHP, as shown in Figure 7.2. Natural 

fractures are uniformly distributed throughout the reservoir. Here we assume natural fractures are 

distributed with certain pattern, and statistical averages of the fracture properties are assigned to 

all natural fractures, such as length, width and conductivity. Previous outcrop and core studies of 

naturally fractured reservoirs such as Nelson, R. (2001)  have indicated that natural fractures follow 

a dominant strike angle as well as a secondary strike angle in general, which correspond to the 

directions of maximum and minimum geo-stress. Therefore here we define the strike angle of the 

natural fractures in one of two dominant directions, and the uncertainty of the fracture network can 

be described by the percentage of the fractures in the secondary strike angle. Its value as well as 

the fracture length and conductivity would control the fracture network connectivity, therefore 
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determine the performance of the well. For this case with a single well drainage problem, matrix 

grid splitting is skipped since the simulation result would not be affected. 

 Since in this model, all parameters can be directly set as history matching parameters, and 

no upscaling is needed, we can assume all parameters conform to a truncated Gaussian distribution, 

with the prior distribution specified in Table 7.1. The prior PDF and the true value of all 

parameters in the reference case are plotted in Figure 7.3.  

Table 7.1—Prior distribution and reference value of the example case.  

Parameter Mean Standard Deviation True Value 

Fracture length / ft 75 30 55 

Matrix permeability / md 5 × 10−5 2.0 × 10−5 7.0 × 10−5 

Secondary strike angle percentage 0.25 0.1 0.15 

Natural fracture conductivity / md-ft 4 1.5 3.2 
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Figure 7.3—Prior PDF and true value for the reference case.  

 A sensitivity analysis is performed on the model parameters to optimize parameters for 

history matching. Below in Figure 7.4 is the tornado plot of the cumulative oil production with 

each parameter perturbed by its corresponding single standard deviation according to the prior 

PDF. The results indicate that the production is sensitive to fracture length and secondary strike 

angle percentage, which both have direct impact to the fracture network connectivity. Increasing 

the two parameters would enhance the connectivity of the fracture network, which increases the 

drainage volume. And a higher matrix permeability is also conducive to a higher well production 

rate as expected. However, the conductivity of natural fractures does not have a noticeable impact 

on well production, since the bottleneck for mass transfer from the matrix to the fracture system is 

the permeability of the matrix. Even though a large uncertainty exists for the conductivity of the 

natural fractures, it cannot be resolved with a case such as this one, which has an ultra-low 

permeability for the shale matrix. Therefore, length and secondary strike angle percentage of 
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natural fractures and matrix permeability are chosen as history matching parameters, and fracture 

conductivity is set to be a constant value due to its negligible impact. Note that natural fracture 

strike angles are randomly assigned to each fracture to better describe the uncertainty of the 

fracture distribution. 

 

Figure 7.4—Tornado plot of cumulative oil production with respect to model parameters.  

 A training dataset is first created by sampling from the parameter space based on full 

factorial design. 150 data points are generated, with the corresponding reservoir models generated 

and the simulations performed. Here neural network is used as the regression model to get the 

approximated relationship between the reservoir parameters (i.e. the input) and the well data 

mismatch measured by the likelihood (i.e., the output). Figure 7.5 shows the structure of the neural 

network, with a single hidden layer besides the input and the output layers. One third of the data 

is kept for testing and two thirds for training. The result of the testing cases is shown in Figure 

7.6, with an accuracy of around 0.93 obtained on the testing data. The number of hidden layers 

and the number of neurons in each layer are optimized based on the testing result through grid 

search. It shows that a more complexed structure tends to over-fit the data, while the simple 
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configuration in Figure 7.5 proved to be adequate to provide an estimation with an acceptable 

accuracy, therefore able to select promising proposals for simulation. 

 

Figure 7.5—Neural Network set-up for training the proxy model.  

 To start the Markov chain, a stochastic sample is generated from the prior PDF, then a new 

proposal is generated with random walk, which can be calculated as: 

𝑥 = 𝑥𝑛 + 𝜎𝜀 ............................................................................................................................. (7.16) 

where: 𝜀 is a random perturbation, and 𝜎 is a positive number to control the step size. 𝜎 should be 

large enough to fully explore the whole range of the parameters, while small enough so as to obtain 

a reasonable acceptance rate. Here, 𝜀 is sampled from a normal distribution with a mean of 0 and 

a standard deviation same as in the prior probability density function of the parameters. To control 

the step size, a value of 𝜎2 = 0.05 is used here. The proposal is accepted with the possibility of: 

𝛼(𝑥𝑛, 𝑥) = min (1,
𝜋∗(𝑥)

𝜋∗(𝑥𝑛)
)  ...................................................................................................... (7.17) 

 If the proposed sample is accepted in the first stage, the parameter values would be used to 

generate a new reservoir model, and a full simulation is carried out to obtain the exact reservoir 

response. After completion of the simulation, the proposal is accepted in the second stage with the 

probability of: 
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𝜌(𝑥𝑛, 𝑥) = 𝑚𝑖𝑛 (1,
𝜋(𝑥)𝜋∗(𝑥𝑛)

𝜋(𝑥𝑛)𝜋∗(𝑥)
)................................................................................................. (7.18) 

In which: 

𝜋(𝑥) = exp {−
1

2
[(𝑥 − 𝜇𝑥)

𝑇𝐶𝑥
−1(𝑥 − 𝜇𝑥) + (𝑔(𝑥) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔(𝑥) − 𝑑𝑜𝑏𝑠)]} ................ (7.19) 

𝜋∗(𝑥) = exp {−
1

2
[(𝑥 − 𝜇𝑥)

𝑇𝐶𝑥
−1(𝑥 − 𝜇𝑥) + (𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔∗(𝑥) − 𝑑𝑜𝑏𝑠)]} ........... (7.20) 

Note that 𝑔∗(𝑥) is the estimated reservoir response calculated with the proxy model, and 𝑔(𝑥) is 

the simulated reservoir response.  

 

Figure 7.6—Well data mismatch (likelihood) from the proxy model vs. full simulation.  

 If the proposal is rejected in the first or the second stage, new parameter values are 

proposed until the proposal is accepted. The objective function of the accepted samples along the 

MCMC chain are plotted in Figure 7.7, with the objective function defined as: 

 𝑂𝑏𝑗 =
1

2
[(𝑥 − 𝜇𝑥)

𝑇𝐶𝑥
−1(𝑥 − 𝜇𝑥) + (𝑔(𝑥) − 𝑑𝑜𝑏𝑠)

𝑇𝐶𝐷
−1(𝑔(𝑥) − 𝑑𝑜𝑏𝑠)] .............................. (7.21) 
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Figure 7.7—Objective function along the MCMC chain.  

 The burn-in stage is observed to be relatively short, after which the objective function 

reaches a relatively stationary state. There are 13,000 samples proposed in the run, and 15.50% of 

them are accepted in the first stage, among which 33.79% are accepted in the second stage. A 

relatively moderate step size is used in this case to avoid being trapped in a local minimum, while 

obtaining a reasonable acceptance rate at the same time in the first stage. The first 100 accepted 

samples are discarded, since the burn-in stage roughly ends there before the objective function 

reaches a stationary state. The boxplots of the parameters for the accepted proposals are shown in 

Figure 7.8. There is no noticeable fluctuation of the median along the chain, and the MCMC chain 

maintains in stationary.  

The distribution of the accepted proposals is used to represent the posterior PDF and the 

updated reservoir description, as shown in Figure 7.9 and Figure 7.10. Compared to the prior 

PDF, a much more concentrated distribution is obtained for the posterior PDF. The uncertainty for 

all parameters is significantly reduced, with the median of the posterior PDF moving towards the 

true value compared to the prior PDF. 
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(a) Matrix Permeability 

 
(b) Natural Fracture Length 

 
(c) Strike Angle Heterogeneity 

Figure 7.8—Boxplot of the parameters along the MCMC chain, with each box representing 

100 accepted samples.  
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Figure 7.9—Box plot of the parameters from the prior distribution vs. posterior distribution. 

True values of the parameters are marked with red asterisks as a reference.  

 

Figure 7.10—Histogram of the model parameters from the accepted samples.  

 Figure 7.11 illustrates the reduction of mismatch from the initial model to the updated 

models. The 50 best proposals are plotted against the observed data. An obvious improvement of 

the matching result is obtained for all the well data that are included in the objective function. In 

this case, the incorporated data includes the production rate and cumulative production of oil and 

gas.  
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Figure 7.11—History matching result of the well data.  

7.5 Summary 

 In this chapter, the proposed model is applied to work with the modified two-stage MCMC 

algorithm for history matching. Some results of this part include: 

1) The implementation of two-stage MCMC and the use of proxy model prove to be effective 

in greatly improving the acceptance ratio and reducing the simulation cost. In the example 

case, a much higher accept ratio is obtained compared to the original MCMC algorithm.  

2) It should be noted that the performance of the two-stage MCMC is largely influenced by 

the quality of the proxy model. Therefore, a larger training dataset, a more advanced 

experiment design and other parameterization methods are necessary for more complicated 

cases to build the proxy model. 
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3) As the problem becomes larger, the cost to generate the proxy model may not be 

compensated by the benefit, therefore other history matching algorithms may be more 

appropriate to be used. 
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CHAPTER VIII 4 

FRACTURED RESERVOIR HISTORY MATCHING WITH ENKF 

The two-stage MCMC approach works well with a smaller parameter space. However, as 

the number of parameters increase, it becomes more and more expensive to generate the proxy 

model. Also, the accuracy of the proxy suffers when the training dataset is not large enough. 

Therefore, for larger problems, we implemented the more traditional ensemble approach. By using 

an explicit model such as cEDFM, the Gaussian distribution of the fracture parameters can be 

maintained, which is a prerequisite for many data assimilation algorithms. One advantage of the 

ensemble approach is that the computational cost is almost independent of the number of 

parameters, which makes it suitable for our case.  

8.1 The Ensemble Approach for History Matching 

 The ensemble approach is the most widely used method in history matching. Among 

different implementations, the Ensemble Kalman Filter (EnKF) is the most well-studied. EnKF is 

a Monte Carlo based sequential data assimilation approach. It was first proposed by Evensen, G 

(2003), and the method consists of two steps: the forecasting step and the assimilation step. 

Initially, an ensemble is generated by sampling from the prior PDF of the parameter space, and the 

model-state realizations are created. The model-state realization is defined as: 

𝑦𝑛 = {

𝑚
𝑢𝑛

𝑔𝑛

} ∈ 𝑅𝑁𝑚+𝑁𝑢+𝑁𝑔  ........................................................................................................ (8.01) 

                                                 

4 Part of this chapter is reprinted with permission from “Chai, Z., Tang, H., He, Y., Killough, J., & Wang, Y. 

Uncertainty Quantification of the Fracture Network with a Novel Fractured Reservoir Forward Model.” Copyright 

[2018] by Society of Petroleum Engineers. 
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where: 𝑦𝑛 is the model-state at time step 𝑛, 𝑚 is the model parameters at this time step, 𝑢𝑛 is the 

state variable for the grid blocks, such as pressure, saturation, etc., and 𝑔𝑛 is the well data at time 

step 𝑛. In the forecasting stage, reservoir simulation is performed from time step 𝑛 − 1 to time 

step 𝑛: 

𝑦𝑛
𝑓,𝑖 = 𝐹(𝑦𝑛−1

𝑎,𝑖)  .................................................................................................................. (8.02) 

In the assimilation step, the model-state is computed as: 

𝑌𝑛
𝑎 = 𝑌𝑛

𝑓 + 𝐾𝑛(𝑑𝑛 − 𝐻𝑌𝑛
𝑓)  ................................................................................................. (8.03) 

where: 𝐾𝑛 is the Kalman gain matrix at time step 𝑛, and 𝑌𝑛 is the matrix form of 𝑦𝑛 for all cases 

in the ensemble. The Kalman gain can be estimated from the ensemble by: 

𝐾𝑛 = 𝑃𝑛
𝑓𝐻𝑇(𝐻𝑃𝑛

𝑓𝐻𝑇 + 𝑅)
−1

  ............................................................................................... (8.04) 

〈𝑦𝑛
𝑓〉 =

1

𝑁𝑒
∑ 𝑦𝑛

𝑓,𝑖𝑁𝑒
𝑖=1   .............................................................................................................. (8.05) 

𝑃𝑛
𝑓 =

1

𝑁𝑒−1
∑ [(𝑦𝑛

𝑓,𝑖 − 〈𝑦𝑛
𝑓〉)(𝑦𝑛

𝑓,𝑖 − 〈𝑦𝑛
𝑓〉)

𝑇
]

𝑁𝑒
𝑖=1   ............................................................... (8.06) 

 𝐻 is a conversion matrix to retrieve 𝑔𝑛 from 𝑦𝑛, with elements of only 0 and 1, and 𝑅 is 

the covariance matrix of the observation errors. With the cEDFM approach, when applying EnKF, 

reservoir model needs to be recreated when parameters are updated, because the grid of the model 

is different at each step. The state variables in the matrix grids can be mapped from the previous 

time step easily if there is no fracture at this location. However, when fracture exists, and the grid 

is split, a volumetric average can be first calculated for all state variables. The obtained value is 

then assigned to the new grid (if there is no fracture in the next time step) or sub-grids (if fracture 

still presents in the next time step but with different parameter values). For the fracture grid blocks, 

the state variables need to be estimated, either by averaging the property from the current fracture 
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grid cells, or by interpolating from the parent matrix grid blocks. However, due to the complexity 

of the model and the associated computational time for mapping the state variables, it is more 

practical to rerun the simulation from time 0 at each of the forecasting time steps instead. 

Therefore, the model-state variables for all the following cases are calculated as: 

𝑦𝑛
𝑓,𝑖 = 𝐹(𝑦0

𝑎,𝑖)  ...................................................................................................................... (8.07) 

where: 𝐹 is the reservoir simulation from time step 0 to time step n. 

8.2 Case Study 

 

                                          (a) Well location                                   (b) Point-set 

Figure 8.1—History matching case: 9-spot well pattern with 1 injector at the center.  

8.2.1 Model Parameterization 

 Here a water flooding case with a 9-spot well pattern is used to illustrate the history 

matching process with the cEDFM approach. One injection well injects water at a constant BHP 

of 7000 psi. The rest of the 8 production wells produces oil at a constant BHP of 2500 psi. The 

wells are as shown in Figure 8.1 (a). For this problem, a vectorized level-set approach is used to 

describe the distribution of the fractures (both high conductivity flow path and low conductivity 
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flow barriers). First, a set of quasi-random points is generated with the Halton sequence, as can be 

seen in Figure 8.1 (b). The use of quasi-random points generally ensures a better coverage of the 

reservoir domain compared to randomly generated points, as discussed in the work of Ping, J., & 

Zhang, D. (2013). The well locations are also included in the point-set, as shown in red.  

Table 8.1—Reservoir parameters for the history matching case.  

𝜙 0.10 

𝑘𝑚𝑎𝑡𝑟𝑖𝑥  5 𝑚𝑑 

𝑘𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 1 × 103𝑚𝑑 

𝑤𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 0.05 𝑓𝑡 

𝑘𝑏𝑎𝑟𝑟𝑖𝑒𝑟   1 × 10−8𝑚𝑑 

𝑤𝑏𝑎𝑟𝑟𝑖𝑒𝑟  0.05 𝑓𝑡 

𝐵𝐻𝑃𝑖𝑛𝑗 7000 psi 

𝐵𝐻𝑃𝑝𝑟𝑑 2500 psi 

𝑃𝑖 5000 psi 

𝑇 100 𝐹𝑜 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 100% ℎ𝑒𝑥𝑎𝑛𝑒 

Mesh 51 × 51 

Grid Size 30 ft 

Reservoir Thickness 50 ft 

 Each of the nodes is considered as a candidate location that a fracture might pass through. 

At each of the nodes, the following parameters are defined: 

1) The level-set function 𝜓. 

 If ≤ 0 : A fracture exists that pass through this node. 

 If > 0 : No fracture pass through this node. 

2) The angle of the fracture 𝜃, 𝜃 ∈ [0,180). 
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3) The length of the fracture 𝑙. 

4) The percentage of the fracture length at two sides of the node. 

A node-set size of 80 and an ensemble size of 80 is chosen here for the illustration case. 8 

months of production data are used as the observed data, resampled with total time steps of 24. 

Two cases are tested: Case I has two intersecting high conductivity fracture as the flow path, 

connecting the injector to two producers at the top corners; Case II has a low conductivity flow 

barrier in the reservoir that alters the water cut behavior for some of the nearby wells at the bottom 

right corner. The parameters of the reservoir model are listed in Table 8.1. 

8.2.2 Case I: Locating Highly Conductive Fractures 

            
      Reference Case                        Time step 4                  Time step 8                 Time step 12 

            
         Time step 0                          Time step 16                Time step 20                 Time step 24 

Figure 8.2—Case I: Fracture locations at different assimilation time steps of EnKF.  

The top left of Figure 8.2 shows the location of the fractures of the reference case. On the 

bottom left the locations of the fractures are shown at the initial time step before any updates to 

the parameters are made. Well locations are marked in red, while node set location are marked in 

blue. On the right of Figure 8.2, the locations of fractures are shown after different assimilation 
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steps of EnKF. It can be observed that the solution starts to emerge at around 16 time steps. Figure 

8.3 shows the water saturation profile at different assimilation steps for 3 random realizations 

chosen from the ensemble. All 3 cases eventually converges to the solution, and the saturation 

profile generally matches that of the reference case. The history matching result is able to capture 

the locations of the fracture, and an improved match is obtained for the production rate curves, 

especially for water production. However, the uncertainty is still obvious among different cases 

within the ensemble, as shown in Figure 8.4. 

   (Case 1) 

   (Case 2)     

   (Case 3) 

     Time step 0         Time step 8         Time step 16       Time step 24 

Figure 8.3—Case I: Water saturation at T=12 months for 3 random realizations in the 

ensemble during different assimilation steps. The reference case is shown on the right.  
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Oil Production Rate (Initial)          Oil Production Rate (Updated)        Water Production Rate (Initial)        Water Production Rate (Updated) 

(a) P-1(BBL/Day) 

 
Oil Production Rate (Initial)          Oil Production Rate (Updated)        Water Production Rate (Initial)        Water Production Rate (Updated) 

(b) P-2(BBL/Day) 

 
Oil Production Rate (Initial)          Oil Production Rate (Updated)        Water Production Rate (Initial)        Water Production Rate (Updated) 

(c) P-7(BBL/Day) 

Figure 8.4—Case I: Oil and water production rate before and after history matching. Initial 

results are shown on the left, and the results afterward are shown on the right. The first 8 

months of data are used for history matching, shown in red; model prediction results are 

shown in blue.  
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8.2.3 Case II: Locating Impermeable Flow Barriers 

In the second case, we try to take advantage of the cEDFM approach and locate the flow 

barriers within the reservoir due to its improved accuracy for such cases. The reference case can 

be seen on the upper left of Figure 8.5, one flow barrier is separating the injector from 3 of the 

producers at the bottom right corner. The result after different assimilation time steps for the 

ensemble is plotted on the right.  

             
      Reference Case                        Time step 4                 Time step 8                 Time step 12 

             
         Time step 0                          Time step 16                Time step 20                 Time step 24 

Figure 8.5—Case II: Fracture locations at different assimilation time steps of EnKF.  

We can see that a solution can be found with around 12 assimilation steps. Due to the 

significant sensitivity of the water cut to the location of the flow barriers, this case converges faster 

than that of case I with highly conductive fractures. From the result at time step 24, we can see the 

result is much more uniform than case I. As for case I, multiple solutions exist that reaches a similar 

accuracy.  
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Figure 8.5 shows the results at different assimilation steps for 3 randomly chosen 

realizations from the ensemble. The uncertainty is greatly reduced compared to the initial step, as 

can be seen from Figure 8.7. Note that the match of P2 and P5 are better than that of P7, because 

the production data of the first 8 months are not quite adequate to fully resolve the uncertainty near 

P7. In general, by using the aforementioned parameterization approach and cEDFM as the forward 

model, the workflow is able to obtain a good match with the observed data. 

   (Case 1) 

   (Case 2)     

   (Case 3) 

     Time step 0         Time step 8         Time step 16       Time step 24 

Figure 8.6—Case II: Water saturation at T=12 months for 3 random cases in the ensemble 

during different assimilation steps. The reference case is shown on the right.  
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Oil Production Rate (Initial)           Oil Production Rate (Updated)           Water Production Rate (Initial)         Water Production Rate (Updated) 

(a) P-2(BBL/Day) 

 
Oil Production Rate (Initial)           Oil Production Rate (Updated)           Water Production Rate (Initial)         Water Production Rate (Updated) 

(b) P-5(BBL/Day) 

 
Oil Production Rate (Initial)           Oil Production Rate (Updated)           Water Production Rate (Initial)         Water Production Rate (Updated) 

(c) P-7(BBL/Day) 

Figure 8.7—Case II: Oil production rate before and after history matching. Initial results 

are shown on the left, and the results afterward are shown on the right. The first 8 months 

of data are used for history matching, shown in red; model prediction results are shown in 

blue.  
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8.3 Summary 

 In this chapter, the cEDFM model is incorporated into the EnKF workflow to history match 

the fracture distribution of the reservoir. A vectorized level-set method is used for the 

parameterization of the problem. The explicit model can be used directly in history matching 

without the need of upscaling. Therefore, the validity of Gaussian distribution for the parameters 

can be maintained, which is a prerequisite for algorithms such as EnKF. Some results are obtained 

from the numerical examples, including: 

1) The cEDFM approach is robust and accurate to be used in reservoir history matching. The 

two cases indicate that this method is capable to locate the fractures (or flow barriers) 

efficiently, and the result of history matching obtains good accuracy compared to the 

reference case. 

2) The proposed history matching workflow works for complex cases with a large number of 

model parameters. For the two illustration cases, 80 candidate nodes are selected with 4 

parameters defined for each of the nodes. Therefore, the model has 320 parameters in total. 

The two reference cases are relatively simple, however as long as the well data can resolve 

more complex reservoir attributes, the approach would still work. The limitation lies in the 

inherent characteristics of most history matching problems that under many cases, the 

observed data cannot fully resolve some of the uncertainties of the reservoir. 

3) The history matching case to characterize flow barriers shows a faster convergence and 

higher confidence compared to the case to characterize highly conductive fractures. This 

is because flow barriers has a much more definitive influence to the well production 

behavior, while for highly conductive fractures, multiple solutions might exist that lead to 

the same result. 
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CHAPTER IX  

DISCUSSIONS & CONCLUSIONS 

 Modeling and history matching of fractured shale reservoirs have been proved to be 

challenging due to the complexity of the reservoir and the high computational cost. Special 

discretization approaches are needed to accurately simulate the effect of different porosity types, 

especially large-scale fractures, on the production of shale reservoirs. In this work, we developed 

the cEDFM approach based on the original EDFM concept. It is incorporated with multiple-

porosity model to provide a comprehensive approach to simulate fractured shale reservoirs. The 

two approaches complement each other so that the mass transfer in hydraulic fractures and large-

scale natural fractures can be addressed with comparable accuracy as traditional discrete fracture 

models, while the effect of micro fracture and the different flow mechanisms in shale matrix can 

be incorporated at the same time. The cEDFM formulation is partially inherited from the original 

EDFM concept, and LGR near the fractures can be avoided. By performing grid splitting, the 

cEDFM model obtained improved accuracy compared to the original EDFM approach. The 

proposed model is validated with fine explicit models and the PEBI model for single-phase and 

multi-phase flow problems. Compared to the original EDFM, the new model has several 

advantages, including: 

1) Improved accuracy for flow across fractures, especially for low permeable flow barriers; 

the model shows a more consistent accuracy, even for multi-phase flow problems. 

2) The new model is capable to be incorporated into methods such as streamline simulation, 

while the original EDFM is not compatible with such approaches; 

3) The cEDFM model is extended to work with corner point grid blocks to improve the 

applicability of this method in the field; 
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4) The original EDFM is restricted by a constant refinement level of the mesh. Here in the 

proposed model, local grid coarsening is implemented for areas without fractures to further 

reduce the computational cost. 

 This model enables the parameters of macro fractures such as strike angle and conductivity 

to be directly set as history matching parameters, so that the history matching process can be fully 

automatic. Most existing work on fractured reservoir history matching relies on an upscaling 

process to transfer the properties of fractures to a dual-porosity type of model, which makes the 

probability density distribution of parameters non-Gaussian. In this work, no upscaling is 

necessary to build the reservoir model for simulation, therefore the adequacy to use Gaussian 

distribution for the fracture parameters is ensured. Two history matching algorithms are 

implemented with cEDFM as the forward model: the modified two-stage MCMC with a flow 

proxy, as well as the EnKF algorithm. Through this part of the study, we learned that: 

5) The modified two-stage MCMC algorithm can effectively obtain a better match, and the 

uncertainty of the parameter can be greatly reduced. However, the application is somewhat 

constraint by the number of parameters. Since a proxy model is used, it is more suited for 

cases with a smaller number of parameters. 

6) The EnKF workflow works well with cEDFM to obtain a much-improved history matching 

result for more complex problems. The illustration cases have shown that the algorithm 

can locate the fractures, especially when it forms flow barriers. A relatively large parameter 

space around a couple of hundred can be solved without much problem.  



 

96 

REFERENCES 

Aarseth, E. S., Bourgine, B., Castaing, C., Chiles, J. P., Christensen, N. P., Eeles, M., ... & 

Jørgensen, K. Z. (1997). Interim guide to fracture interpretation and flow modelling in 

fractured reservoirs. European Commision Eur 17116 En, 1-203. 

Ahmed Elfeel, M., Jamal, S., Enemanna, C., Arnold, D., & Geiger, S. (2013, June). Effect of DFN 

upscaling on history matching and prediction of naturally fractured reservoirs. In EAGE 

Annual Conference & Exhibition incorporating SPE Europec. Society of Petroleum 

Engineers. 

Ambrose, R. J., Hartman, R. C., Diaz Campos, M., Akkutlu, I. Y., & Sondergeld, C. (2010, 

January). New pore-scale considerations for shale gas in place calculations. In SPE 

Unconventional Gas Conference. Society of Petroleum Engineers. 

Blaskovich, F. T., Cain, G. M., Sonier, F., Waldren, D., & Webb, S. J. (1983, January). A 

multicomponent isothermal system for efficient reservoir simulation. In Middle East Oil 

Technical Conference and Exhibition. Society of Petroleum Engineers. 

Bonet-Cunha, L., Oliver, D. S., Redner, R. A., & Reynolds, A. C. (1998, September). A hybrid 

Markov chain Monte Carlo method for generating permeability fields conditioned to 

multiwell pressure data and prior information. SPE Journal, 3(03), 261-271. Society of 

Petroleum Engineers. 

Cao, Y., Yan, B., Alfi, M., & Killough, J. E. (2015, September). A novel compositional model of 

simulating fluid flow in shale reservoirs-some preliminary tests and results. In SPE Reservoir 

Characterization and Simulation Conference and Exhibition. Society of Petroleum Engineers. 



 

97 

Chai, Z., Yan, B., Killough, J. E., & Wang, Y. (2018, October). An efficient method for fractured 

shale reservoir history matching: The embedded discrete fracture multi-continuum approach. 

Journal of Petroleum Science and Engineering, 160, 170-181. 

Chai, Z., Yan, B., Killough, J. E., & Wang, Y. (2016, November). Dynamic embedded discrete 

fracture multi-continuum model for the simulation of fractured shale reservoirs. In 

International Petroleum Technology Conference.  

Chai, Z., Tang, H., He, Y., Killough, J., & Wang, Y. (2018, September). Uncertainty quantification 

of the fracture network with a novel fractured reservoir forward model. In SPE Annual 

Technical Conference and Exhibition. Society of Petroleum Engineers.  

Chen, Y., & Oliver, D. S. (2013, May). Levenberg–Marquardt forms of the iterative ensemble 

smoother for efficient history matching and uncertainty quantification. Computational 

Geosciences, 17(4), 689-703. 

Coats, K. H. (1989, January). Implicit compositional simulation of single-porosity and dual-

porosity reservoirs. In SPE Symposium on Reservoir Simulation. Society of Petroleum 

Engineers. 

Dean, R. H., & Lo, L. L. (1988, May). Simulations of naturally fractured reservoirs. SPE Reservoir 

Engineering, 3(02), 638-648. Society of Petroleum Engineers. 

Ding, D. Y., Farah, N., Bourbiaux, B., Wu, Y. S., & Mestiri, I. (2018, August). Simulation of 

matrix/fracture interaction in low-permeability fractured unconventional reservoirs. SPE 

Journal. Society of Petroleum Engineers. 

 



 

98 

El Sgher, M., Aminian, K., & Ameri, S. (2018, January). The impact of stress on propped fracture 

conductivity and gas recovery in Marcellus shale. In SPE Hydraulic Fracturing Technology 

Conference and Exhibition. Society of Petroleum Engineers. 

Evensen, G. (2003, May). The ensemble Kalman filter: Theoretical formulation and practical 

implementation. Ocean dynamics, 53(4), 343-367. 

Gale, J. F., Laubach, S. E., Olson, J. E., Eichhubl, P., & Fall, A. (2014, August). Natural fractures 

in shale: A review and new observations. AAPG Bulletin, 98(11), 2165-2216.  

Gang, T., & Kelkar, M. G. (2006, January). Efficient history matching in naturally fractured 

reservoirs. In SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum 

Engineers. 

Gillespie, P. A., Howard, C. B., Walsh, J. J., & Watterson, J. (1993, January). Measurement and 

characterisation of spatial distributions of fractures. Tectonophysics, 226(1-4), 113-141.  

Heinemann, Z. E., Brand, C., Munka, M., & Chen, Y. M. (1989, January). Modeling reservoir 

geometry with irregular grids. In SPE Symposium on Reservoir Simulation. Society of 

Petroleum Engineers. 

Hill, A. C., & Thomas, G. W. (1985, January). A new approach for simulating complex fractured 

reservoirs. In Middle East Oil Technical Conference and Exhibition. Society of Petroleum 

Engineers. 

Hinkley, R., Gu, Z., Wong, T., & Camilleri, D. (2013, November). Multi-porosity simulation of 

unconventional reservoirs. In SPE Unconventional Resources Conference Canada. Society of 

Petroleum Engineers. 



 

99 

Jiang, J., & Younis, R. M. (2016, June). Hybrid coupled discrete-fracture/matrix and 

multicontinuum models for unconventional-reservoir simulation. SPE Journal, 21(03), 1-009. 

Society of Petroleum Engineers. 

Karimi-Fard, M., Durlofsky, L. J., & Aziz, K. (2004, June). An efficient discrete fracture model 

applicable for general purpose reservoir simulators. Society of Petroleum Engineers. 

Kazemi, H., Gilman, J. R., & Elsharkawy, A. M. (1992, May). Analytical and numerical solution 

of oil recovery from fractured reservoirs with empirical transfer functions (includes 

associated papers 25528 and 25818). SPE Reservoir Engineering, 7(02), 219-227. Society of 

Petroleum Engineers. 

Kazemi, H., Merrill, L. S., Porterfield, K. L., & Zeman, P. R. (1976, December). Numerical 

simulation of water-oil flow in naturally fractured reservoirs. Society of Petroleum Engineers.  

Lee, S. H., Jensen, C. L., & Lough, M. F. (2000, September). Efficient finite-difference model for 

flow in a reservoir with multiple length-scale fractures. Society of Petroleum Engineers. 

Li, L., & Lee, S. H. (2008, August). Efficient field-scale simulation of black oil in a naturally 

fractured reservoir through discrete fracture networks and homogenized media. Society of 

Petroleum Engineers. 

Li, R., Reynolds, A. C., & Oliver, D. S. (2001, January). History matching of three-phase flow 

production data. In SPE reservoir simulation symposium. Society of Petroleum Engineers. 

Lim, K. T., & Aziz, K. (1994, November). Matrix-fracture transfer shape factors for dual-porosity 

simulators. Journal of Petroleum Science and Engineering, 13(3-4), 169-178. 



 

100 

Lu, L., & Zhang, D. (2015, October). Assisted history matching for fractured reservoirs by use of 

Hough-transform-based parameterization. SPE Journal, 20(05), 942-961. Society of 

Petroleum Engineers. 

Ma, X., Al-Harbi, M., Datta-Gupta, A., & Efendiev, Y. (2008, March). An efficient two-stage 

sampling method for uncertainty quantification in history matching geological models. SPE 

Journal, 13(01), 77-87. Society of Petroleum Engineers. 

Moinfar, A., Varavei, A., Sepehrnoori, K., & Johns, R. T. (2014, April). Development of an 

efficient embedded discrete fracture model for 3d compositional reservoir simulation in 

fractured reservoirs. Society of Petroleum Engineers. 

Mustapha, H. (2014, September). A Gabriel-Delaunay triangulation of 2D complex fractured 

media for multiphase flow simulations. Computational Geosciences, 18(6), 989-1008.  

Nejadi, S., Leung, J. Y. W., Trivedi, J. J., & Virues, C. J. J. (2014, September). Integrated 

characterization of hydraulically fractured shale gas reservoirs production history matching. 

Society of Petroleum Engineers. 

Nelson, R. (2001). Geologic analysis of naturally fractured reservoirs. Elsevier. 

Odling, N. E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J. P., Christensen, N. P., ... & Trice, 

R. (1999, November). Variations in fracture system geometry and their implications for fluid 

flow in fractures hydrocarbon reservoirs. Petroleum Geoscience, 5(4), 373-384. 

Oliver, D. S., & Chen, Y. (2010, July). Recent progress on reservoir history matching: a review. 

Computational Geosciences, 15(1), 185-221. 

Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997, March). Markov chain Monte Carlo methods 

for conditioning a permeability field to pressure data. Mathematical Geology, 29(1), 61-91. 



 

101 

Ouenes, A., Brefort, B., Meunier, G., & Dupere, S. (1993, January). A new algorithm for automatic 

history matching: application of simulated annealing method (SAM) to reservoir inverse 

modeling. Society of Petroleum Engineers. 

Ouillon, G., Castaing, C., & Sornette, D. (1996, March). Hierarchical geometry of faulting. Journal 

of Geophysical Research: Solid Earth, 101(B3), 5477-5487. 

Ping, J., Al-Hinai, O., & Wheeler, M. F. (2017, August). Data assimilation method for fractured 

reservoirs using mimetic finite differences and ensemble Kalman filter. Computational 

Geosciences, 21(4), 781-794.  

Ping, J., & Zhang, D. (2013, August). History matching of fracture distributions by ensemble 

Kalman filter combined with vector based level set parameterization. Journal of Petroleum 

Science and Engineering, 108, 288-303. 

Pruess, K. & Narasimhan, T.N. (1985, February). A practical method for modeling fluid and heat 

flow in fractured porous media. Society of Petroleum Engineers. 

Sarda, S., Jeannin, L., Basquet, R., & Bourbiaux, B. (2002, April). Hydraulic characterization of 

fractured reservoirs: simulation on discrete fracture models. Society of Petroleum Engineers. 

Sandve, T. H., Berre, I., & Nordbotten, J. M. (2012, May). An efficient multi-point flux 

approximation method for discrete fracture-matrix simulations. Journal of Computational 

Physics, 231, 3784–3800. 

Schulze-Riegert, R. W., Axmann, J. K., Haase, O., Rian, D. T., & You, Y.-L. (2002, April). 

Evolutionary algorithms applied to history matching of complex reservoirs. Society of 

Petroleum Engineers. 



 

102 

Sondergeld, C. H., Ambrose, R. J., Rai, C. S., & Moncrieff, J. (2010, January). Micro-structural 

studies of gas shales. In SPE Unconventional Gas Conference. Society of Petroleum 

Engineers. 

Suarez-Rivera, R., Burghardt, J., Edelman, E., Stanchits, S., & Surdi, A. (2013, January). 

Geomechanics considerations for hydraulic fracture productivity. In 47th US Rock 

Mechanics/Geomechanics Symposium. American Rock Mechanics Association. 

Sun, J., & Schechter, D. S. (2014, October). Optimization-based unstructured meshing algorithms 

for simulation of hydraulically and naturally fractured reservoirs with variable distribution of 

fracture aperture, spacing, length and strike. In SPE Annual Technical Conference and 

Exhibition. Society of Petroleum Engineers. 

Ţene, M., Bosma, S. B., Al Kobaisi, M. S., & Hajibeygi, H. (2017, May). Projection-based 

embedded discrete fracture model (pEDFM). Advances in Water Resources, 105, 205-216. 

Wang, F. P., & Reed, R. M. (2009, January). Pore networks and fluid flow in gas shales. In SPE 

Annual Technical Conference and Exhibition. Society of Petroleum Engineers. 

Warren, J. E., & Root, P. J. (1963, September). The behavior of naturally fractured reservoirs. 

Society of Petroleum Engineers. 

Wu, Y.-S., & Pruess, K. (1988, February). A multiple-porosity method for simulation of naturally 

fractured petroleum reservoirs. Society of Petroleum Engineers. 

Wu, Z., Reynolds, A. C., & Oliver, D. S. (1998, January). Conditioning geostatistical models to 

two-phase production data. In SPE Annual Technical Conference and Exhibition. Society of 

Petroleum Engineers. 



 

103 

Yan, B., Alfi, M., An, C., Cao, Y., Wang, Y., & Killough, J. E. (2016, June). General multi-

porosity simulation for fractured reservoir modeling. Journal of Natural Gas Science and 

Engineering, 33, 777-791. 

Yan, B., Wang, Y., & Killough, J. E. (2013, February). Beyond dual-porosity modeling for the 

simulation of complex flow mechanisms in shale reservoirs. In SPE Reservoir Simulation 

Symposium. Society of Petroleum Engineers.  

Yan, B. (2017). Development of general unstructured reservoir utility and fractured reservoir 

modeling. Doctoral dissertation, Texas A & M University. 

Yang, D., Xue, X., & Chen, J. (2018, April). High resolution hydraulic fracture network modeling 

using flexible dual porosity dual permeability framework. Society of Petroleum Engineers. 

Zhang, J., Kamenov, A., Hill, A. D., & Zhu, D. (2014, August). Laboratory measurement of 

hydraulic-fracture conductivities in the Barnett shale. SPE Production & Operations, 29(03), 

216-227. Society of Petroleum Engineers.  


