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ABSTRACT 

 

Bacterial growth and division requires the careful coordination of peptidoglycan 

(PG) synthesis and PG hydrolysis, allowing the insertion of new cell wall material at 

sites of active growth. In many rod-shaped bacteria, the bacterial actin homolog MreB is 

thought to coordinate this balance of synthesis and hydrolysis, particularly during cell 

elongation, and the current model is that MreB-like proteins act as a scaffold, directing 

the PG synthesis machinery to sites of active growth. Despite their importance, very 

little is known about how MreB-like proteins in prokaryotes are regulated. Using a 

Bacillus subtilis misexpression screen, we identified yisK and yodL, which cause a loss 

of cell shape and viability when misexpressed. Suppressors resistant to YisK’s killing 

activity primarily occur in mbl (the structural gene for an MreB paralog in B. subtilis), 

while suppressors resistant to YodL’s activity primarily occur in MreB. Consistent with 

the idea that YisK targets Mbl activity and YodL targets MreB activity, deletion of mbl 

confers resistance to YisK, while deletion of MreB confers resistance to YodL. In an mbl 

deletion background, YisK expressing cells also become 20% shorter, suggesting that 

YisK activity affects at least one other target integral to cell shape. Using a bacterial 2-

hybrid assay, we detected an interaction between YisK and FtsE (the ATPase of the 

ABC Transporter FtsEX).  Interestingly, published data indicates that FtsEX, which is 

important for regulating the activity of the D,L-endopeptidase CwlO, appears to act in 

the same pathway as Mbl, and both ftsE and cwlO mutants exhibit short-cell phenotypes.  

Our data suggest that ftsE is required for YisK-dependent cell shortening, but not cell 
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widening. YisK shows ~40% amino acid identity to an FAH from Mycobacterium 

abcsessus, and we have obtained a preliminary crystal structure for YisK, with a 

dicarboxylic acid, most likely L-tartrate, bound in the active site. Surprisingly, 

introducing mutations in YisK’s active site has no effect on its ability to perturb cell 

shape. Our current model is that YisK is an enzyme, possibly involved in the 

dicarboxylate pathway, that utilizes interactions with Mbl and possibly FtsE to localize 

its enzymatic activity to specific regions within the cell. 
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CHAPTER I 

 INTRODUCTION* 

 

This introduction covers two disparate projects: one project covers the 

characterization of a previously uncharacterized protein in Bacillus subtilis, and the 

other project centers on the defective prophage-like element PBSX. As such, the 

introduction covers a broad range of topics ranging from subcellular organization of 

Bacillus to the the phage lysis paradigm, and is organized accordingly. 

Bacillus subtilis is a rod-shaped, Gram-positive, soil-dwelling facultative 

anaerobe (1) of the phylum Firmicutes. The phylum Firmicutes includes a diverse 

assortment of organisms ranging from Lactobacillus (which is utilized in cheese and 

yogurt production) to pathogenic bacteria such as Clostridia, Staphylococcus, Listeria, 

and Streptococcus. B. subtilis has been used for industrial production of enzymes as well 

as polyglutamic acid, which is used as an additive in food. B. subtilis is capable of cell 

differentiation, allowing for diverse cell processes including swarming motility, sliding 

motility, surfactin production, cannibalism, biofilm formation, natural competence, and 

sporulation (2). In addition, B. subtilis as the best characterized Gram-positive model 

system, is genetically tractable, with powerful tools to allow precise manipulation of the 

genome. B. subtilis strain 168, the strain utilized in this study, is an auxotroph that was 

created by Paul Burkholder and Norman Giles at Yale University in the 1947 by 

exposing B. subtilis Marburg to sublethal doses of X-Rays and then isolating



 

2 

 

 

auxotrophic mutants (3, 4); B. subtilis strain 168 trpC2 is a tryptophan auxotroph, which 

cannot become a prototroph through reversion (5). B. subtilis strain 168 shows natural 

competence in a growth phase and media dependent manner; competence is primarily 

turned on by the master regulator of competence ComK during stationary phase in 

glucose minimal media (maximally about 2-10% of the cells in the culture) (6, 7). B. 

subtilis 3610 is not naturally competent unless the plasmid containing ComI, the 

competence repressor, is cured (8). B. subtilis can uptake a maximum of fifty pieces of 

DNA per cell (50 binding sites) (3, 9) and the transformation machinery colocalizes 

together at the cell poles (10). The transformation efficiency varies based on the size of 

DNA used, with the best transformation efficiency centering around 12kb-14kb. Of the 

DNA that B. subtilis binds, over 50% will eventually integrate into the chromosome 

through homologous recombination (3, 11). Furthermore, under saturating conditons of 

DNA uptake, congression can occur, whereas two unlinked genetic markers can be 

integrated into the chromosome, even when one of the genetic markers is not selected 

against; this happens at a frequency of about 1-5% (3). In Streptococcus pneumoniae, 

DNA is taken up as a single strand in the 3’-5’ direction, with the non-transforming 

strand being subsequently degraded; this process is thought to be similar in B. subtilis 

(12-14). DNA uptake was shown to occur at around 80bp/s, and the process is 

processive (15). Genetic approaches to answer questions are relatively simple in this 

organism, as point mutations, insertions, and deletions can be made in the chromosome 

with little trouble. Furthermore, integrations into the chromosome through double 

crossover homologous recombination do not require selective pressure for maintainence 
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in the chromosome. The cre lox system functions in B. subtilis, allowing for easy 

excision of chromosomal segments, leaving only a 34 basepair scar (16). 

 

B. subtilis sporulation 

Chromosome organization during sporulation 

B. subtilis undergoes the process of sporulation under nutrient starvation 

conditions. During this process, the bacteria stops further DNA replication (via halting 

additional rounds of initiation through SirA) (17, 18), and has only two full copies of the 

chromosome present. The B. subtilis chromosome then extends into an elongated 

structure called the axial filament, followed by asymmetric division/polar septation. 

During axial filament formation, the protein RacA binds the B. subtilis DNA at several 

sites around the chromosome that are more concentrated around the oriC (origin of 

replication), facilitating chromosome collapsing/compacting, especially around oriC 

(19). RacA also binds the protein DivIVA, which is anchored at the cell poles through an 

amphipathic helix (20-22). This process anchors the two chromosomal oriC regions to 

opposite poles of the cell (23, 24).  

 

Cell division during sporulation 

FtsZ initially forms a Z ring at the midcell, followed by a spiral FtsZ intermediate 

and subsequent reassembly of the Z ring at the cell poles (25); Spo0A-P and σH 

transcriptionally drive this Z ring reassembly at the poles (25, 26). One or two FtsZ rings 

are formed at the poles of the cell (quarter cell position), followed by maturation of one 
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ring into a division septum at the quarter cell (27, 28). It was shown that increasing 

levels of FtsZ at the beginning of sporulation (driven by a σH promoter) alongside spoIIE 

expression (driven by Spo0A-P) is responsible for the shift of FtsZ from midcell to the 

quarter cell (25).  The protein RefZ (Regulator of FtsZ) binds regions of the 

chromosome at this quarter cell region, promoting trapping of precise regions of the 

chromosome within the forespore compartment (29) (unpublished, E. Brown and J. 

Herman). The establishment of the septum at the quarter cell traps different portions of 

the bacterial chromosome in the two compartments (known as the forespore and mother 

cell), and allows for differential gene expression within the two compartments via 

forespore and mother cell specific sigma factors. Afterwards, the rest of the chromosome 

which was partially trapped in the forespore is pumped completely into the forespore via 

a DNA translocase called SpoIIIE, which is located within the polar septum and whose 

pumping is driven by ATP hydrolysis (30); this ensures that the spore will have a 

complete copy of the chromosome at the end of sporulation.  

 

Maturation of the forespore 

Following the polar septation, the single layer of peptidoglycan (PG) is 

synthesized towards the pole of the forespore during a process known as engulfment 

(31); eventually, the mother cell envelope surrounds the forespore, and PG hydrolysis 

and membrane fission leads to the release of a separate mother cell and endospore, each 

with a full chromosome (30). The forespore chromosome is then remodeled into a 

toroidal structure that is resistant to radiation damage (30). The spore outer layer called 
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the cortex is then formed as a thick layer of peptidoglycan (PG), followed by a 

crystalline array of spore coat proteins. Heat and desiccation resistance in the mature 

spore is the result of the replacement of water with dipicolinic acid (DPA) (32). Lastly, 

the mother cell, driven by activation of σK, lyses and frees the spore into the 

environment (33).  

Entry into sporulation is driven by the sporulation master regulator Spo0A. 

Transcription of Spo0A is σH and Spo0A-P dependent. When Spo0A is phosphorylated 

(Spo0A-P), it binds a conserved motif known as the the 0A box, and is known to 

regulate more than 200 genes (34). Different genes respond to different levels of Spo0A-

P, and thus Spo0A-P regulation is classified as low threshold activated, low threshold 

repressed, high threshold activated, or high threshold repressed (35). The entire process 

of sporulation is carefully regulated by specific sigma factors that are activated at 

sequential stages in the developmental program. After Spo0A-P initiates the process of 

sporulation, and a polar septum is formed, σF is activated in the forespore, followed by 

σE being activated in the mother cell (30, 33). After the engulfment stage of sporulation, 

σG is turned on in the forespore, and replaces σF as the forespore specific sigma factor 

(33). Lastly, σK is activated in the mother cell and allows programmed mother cell lysis 

(33). 

The cellular programming behind the differentiation of B. subtilis into spores is 

complex. For instance, the σF is actually present in the cytoplasm of B. subtilis cell prior 

to the step of polar septation; however, it is held in an inactive form by the anti-sigma 

factor AB (33). The anti-sigma factor AB is inhibited by the active (dephosphorylated) 
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anti anti sigma factor AA in the forespore after polar septation, which allows σF to be 

active (33). The phosphatase that activates AA is called E, and it is localized at the polar 

septum only in the forespore (33). The differential gene expression in mother cell and 

forespore are linked to each other. The order of activation is σF, σE, σG, σK. Furthermore, 

it was recently shown that activation of σE is the critical decision point or point of no 

return during the sporulation process (36). 

 

Cell elongation and division machinery 

Peptidoglycan synthesis 

Bacteria are surrounded by a complex polymer meshwork called peptidoglycan 

(PG). PG is a polymer consisting of GlcNAc-MurNAc-pentapeptide in which the sugars 

are incorporated via transglycosylation and the peptides are crosslinked to each other via 

transpeptidation. The proteins that carry out transglycosylation and transpeptidation 

reactions are called Penicillin Binding Proteins (PBPs). PBPs can be bifunctional 

(transglycosylase and transpeptidase activity) or monofunctional (transpeptidase 

activity). Recently, it was shown that certain Shape, Elongation, Division proteins 

(SEDs) have transglycosylase activity and work alongside monofunctional PBPs during 

the process of cell elongation (37). The composition of the pentapeptide side chain is 

organism dependent, but in B. subtilis is comprised of L-Ala-D-Glu-mDAP-D-Ala-D-

Ala. Furthermore, the crosslinking in PG varies based on the organism, but typically 4-3 

crosslinking (where mDAP is crosslinked to D-Ala) is observed. 3-3 crosslinking in 

older PG has been observed in other organisms and may be important for structural 
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integrity under specific conditions (38). PG allows the cell to maintain structural 

integrity, even under several atmospheres of turgor pressure, and thus protects against 

osmotic lysis. Due to turgor pressure, actively growing cells must be capable of 

coordinating the activity of autolysins, which are required to open the PG meshwork for 

growth, with the insertion of new PG into the cell wall (39).  

Bacterial elongation and division in rod-shaped bacteria is facilitated by the actin 

homolog MreB and the tubulin homolog FtsZ, respectively, although their roles can 

overlap (40-43), or even be completely reversed (44-46). FtsZ polymerizes into a ring-

like structure at the midcell in a GTP dependent manner and acts as a scaffold for other 

cell division proteins. It has also been proposed that constriction of the FtsZ ring 

generates the force necessary for cytokinesis during cell division (47). Recent data 

suggests that the FtsZ ring is actually composed of smaller FtsZ protofilaments that 

exhibit treadmilling activity (48). Proper placement of FtsZ at the midcell is facilitated 

by the Min system, which in Escherichia coli, consists of MinCDE. In E. coli, MinC’s 

concentration oscillates across the entire cell length, with the greatest concentration of 

MinC being at the poles; MinC prevents polymerization of FtsZ at the poles. In B. 

subtilis, the Min system consists of MinCD, and MinC is localized to the poles by the 

actions of MinD, thus preventing FtsZ localization at the poles. Deletion of the Min 

system results in improper Z-ring formation at the poles and the formation of mini-cells. 

Furthermore, the Min system is also responsible for proper oriC capture during 

sporulation; failure to capture the oriC during sporulation results in cell death. Another 

system that contributes to Z-ring positioning is Nucleoid Occlusion, in which a DNA-
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binding protein (SlmA in E. coli and Noc in B. subtilis), binds to motifs enriched all 

around the chromosome, but relatively absent from the ter region. SlmA and Noc are 

also inhibitors of FtsZ, thus preventing FtsZ assembly around the chromosome except 

for near the ter region, which is at the midcell at the time of division (49-54). 

 

MreB and the bacterial actin cytoskeleton 

MreB is a member of the actin superfamily, which contains such diverse 

members as hexokinase, Hsp70, and actin (55, 56). MreB is widely conserved among 

rod shaped bacteria, and is involved in the peptidoglycan elongation machinery (PGEM). 

The current favored model is that MreB acts as a scaffold, directing sites of new PG 

synthesis and old PG degradation/recycling during active growth along the lateral cell 

wall. Rod shaped bacteria lacking an MreB protein such as Corynebacter undergo polar 

growth, inserting new PG at the poles (56, 57); this is a DivIVA based mechanism of 

growth. There are spherical bacteria that contain an MreB protein, but it is thought that 

MreB is used in processes of cell differentiation (i.e. sporulation) (56, 58).Gram-positive 

bacteria contain several MreB proteins. B. subtilis contains three MreB paralogs, MreB, 

Mbl, and MreBH; MreB is discerned from the other two paralogs by its presence in the 

MreBCD operon. MreC is a bitopic membrane protein with N in C out topology, 

whereas MreD is a polytopic membrane protein; both of these proteins are known to 

play a role in cell shape, as a deletion results in a loss of rod-shape (59); however, their 

exact role in cell-shape has not been elucidated.  
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MreB, Mbl, and MreBH share more than fifty percent sequence identity and 

more than eighty percent sequence similarity with each other, and are known to have 

significant functional redundancy with regard to their cell shape functions; 

overexpression of any one of the paralogs in trans can compensate for the deletion of any 

of the other two (60). MreB and Mbl are conditionally essential, and can be deleted in a 

ponA (encoding PBP1a) deletion background as long as cells are supplemented with 

excess Mg2+ (61). MreBH is only essential under extremely low Mg2+ concentration, 

experimentally determined to be under 100µM (62). Depleting each of the paralogs 

under non-permissive conditions results in a loss of rod shape and eventually cell lysis 

(56, 60-64).  

The three paralogs also have distinct, non-overlapping functions. MreBH directly 

interacts with the cell wall autolysin LytE, and is responsible for proper localization of 

LytE along the lateral cell wall (65). There is genetic evidence that MreB controls LytE 

activity, but it was never shown to be responsible for its localization (66). Furthermore, 

the paralogs show differential regulation, hinting at non-identical functions. MreBH, like 

LytE, is regulated by a SigI promoter (heat shock sigma factor) (67). Mbl is under a 

sporulation promoter (SigE) in addition to its vegetative promoter, although its role in 

sporulation has not been determined (68). MreB, which is constitutively expressed 

during vegetative growth, is also subject to regulation by the competence transcriptional 

regulator ComK. More specifically, mreB expression is upregulated during competence, 

whereas mbl and mreBH were not (68). Furthermore, MreB was shown to be responsible 

for proper localization of the ComGA machinery at the poles (68).  
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Besides differential regulation of the MreB-like proteins in B. subtilis, the MreB 

like proteins are known to be responsible for activating the cell wall hydrolases. Mbl 

interacts with the ABC Transporter FtsEX, which is responsible for the activity of the D-

L endopeptidase CwlO. CwlO cleaves the peptide bond between D-Glu and mDAP in 

the peptide bridge of PG, and thus is thought to be important for opening the PG 

meshwork for insertion of new PG (66, 69). MreB and MreBH are responsible for the 

activity of the D-L endopeptidase LytE (66, 69), which is proposed to carry out a similar 

role to CwlO, but is most active under heat shock conditions (70, 71). 

MreB, Mbl, and MreBH colocalize together at the membrane in patches and 

move circumferentially around the cell perpendicular to the longitudinal axis of growth 

(72-74). Their dynamic movement requires PG synthesis, as inhibition of PG synthesis, 

depletion of PG synthesis machinery or depletion of PG precursers stops the rotation of 

the MreB patches around the cell (72-74). Although previously thought to organize as 

helices around the bacterial cell membrane, TIRF Microscopy experiments as well as 

Cryo Electron Microscopy supports the evidence that MreB proteins localize as patches.  

In E. coli, an amiphipathic helix at the N-terminal of MreB (as well as a 

hydrophobic insertion loop) is responsible for direct interaction with the membrane (75). 

In Gram-positive organisms like B. subtilis, interaction with the membrane is facilitated 

by the membrane insertion loop (F97 and A98 in B. subtilis) (75). MreB has been shown 

to prefer and interact with regions of negative curvature of the membrane, and that this 

behavior allows the maintenance of uniform cell width and rod-shape in actively 

growing cells (76). Furthermore, work with L-form B. subtilis revealed that PG synthesis 
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does not require a preexisting template (64). Together, this suggests that MreB like 

proteins can direct sites of PG synthesis and create rod shape de novo.  

 

MreB and RodZ 

MreB colocalizes with the bitopic membrane protein RodZ at all stages of 

growth, and MreB is responsible for the proper localization of RodZ. RodZ is a bitopic 

membrane protein with an N-in C-out topology, and while previously thought to be 

essential for rod-shape, its inactivation can be compensated for by mutations in MreB 

(77-79). RodZ  may also facilitate the interaction between MreB on the cytoplasmic side 

of the membrane and PG synthesis on the periplasmic side of the membrane (in E. coli) 

(80); RodZ couples MreB to PBP2 and RodA, and in the absence of RodZ (in an MreB 

suppressor mutant) MreB no longer moves circumferentially around the cell, even 

though PG synthesis is ongoing (80). Furthermore, cells lacking RodZ produce a less 

robust PG sacculus that is more sensitive to osmotic stress (80). 

RodZ typically interacts with MreB through its N-terminal helix-turn-helix motif 

that extends into a conserved pocket in Domain IIA of MreB; this has been shown via a 

Thermotoga maritima crystal structure of the cytoplasmic portion of RodZ with MreB 

(78). Furthermore, it was suggested that RodZ is making use of a pocket in MreB that 

was conserved for proper protein folding, as this fold is still found in MreB proteins in 

organisms that lack RodZ (78). MreB was shown previously to polymerize in the 

presence of nucleotide triphosphate (ATP or GTP), regardless of the presence of Mg2+ 

(81, 82). In Caulobacter crescentus, in vitro experiments showed that MreB lacks 
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polarity and formed antiparallel filaments that facilitated direct membrane binding; this 

is unlike actin or actin homologs like ParM, which do exhibit polarity (83, 84). MreB 

forms stable filaments in vitro, and the mechanism of depolymerization is unknown at 

this time (83). 

 

Uncharacterized gene function 

Gene discovery and its implication on the microbiome 

In  the last serveral decades, the discovery of cytoskeletal-like elements in 

bacteria and improvements in live cell imaging techniques have led to a reinvigoration of 

bacterial cell biology. In more recent years, researchers armed with comprehensive gene 

knockout libraries of all non-essential genes (16, 85), and CRISPRi knock-downs of 

essential genes (86) have used forward genetic approaches to visually screen for mutants 

with morphological defects to identify new factors contributing to cellular organization. 

These approaches have identified only a handful of significant new players (87). 

Extensions of the brute-force screening approach have also been used to screen for 

defects in growth under specific conditions including heat, alkaline, and osmotic, 

following antibiotic treatments that target different cellular processes, as well as under 

different nutrient conditions (88), revealing networks that allow uncharacterized genes to 

be tentatively associated with specific pathways (i.e PG synthesis). 

Although revealing, there are several significant limitations to using gene 

knockout approaches to identify gene products involved in cellular organization. 

Functional redundancy, homeostatic regulation, and context specific expression often 
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mask easily observable phenotypes. This problem is exacerbated when working with 

domesticated strains, as genes that confer a fitness advantage in the wild are easily 

dispensable under laboratory growth conditions (89, 90). Relatedly, the expression 

context that would be needed to reveal phenotypes is often unknown. 

Some of these obstacles have been addressed by the development of lethal 

screening methodologies (91, 92), including Tn-seq (93). However, given that as many 

as 50% of genes remain to be experimentally characterized even in model organisms 

(94), considerable barriers remain. 

 

The human microbiome 

Although the focus of this thesis is on gene products that affect morphological 

processes, uncharacterized genes pose a significant problem for all fields of biology. For 

example, in recent years there has been an intensified focus on the role of microbiota in 

human health and disease. The human microbiota in the gut plays a role in processing 

nutrients that are later absorbable by intestinal tissue (95-97), immune system crosstalk 

via signaling pathways (96, 98), production of metabolites that are beneficial to human 

health (such as short chain fatty acids, bile acids, and choline) (99), and production of 

metabolites that are linked to disease such as trimethylamine N-oxide (TMAO) (100, 

101). Short chain fatty acids (SCFR) are among compounds produced and excreted by 

bacteria in the human gut microbiota, and SCFRs have been associated with reducing 

inflammation (98, 102), as well as having anti-tumorigenic properties (99). 
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The human gut microbiome has also been shown to metabolize certain 

xenobiotics (particularly, pharmaceuticals) into non-functional forms. For example, the 

drug digoxin (a drug used to treat cardiac arrhythmias) is reduced (and becomes less 

effective) through the activity of a pair of glycoside reductase enzymes produced in 

certain strains of the gut bacteria Eggerthella lenta (103). 

 

Uncharacterized enzymes and orphan reactions 

The major role of the microbiota in human health, particularly its metabolic role, 

demands a better understanding of metabolism itself, yet we have experimental data for 

only a fraction of the open reading frames that have been sequenced. As of August 2017, 

there were 88,032,926 protein coding sequences deposited in UniProt or SwissProt, and 

of this only 555,110 were associated with annotation based on experimental evidence 

(0.63%). In the Human Microbiome Project, about 50% of genes cannot be given any 

annotation, and 78-86% of genes cannot be given a metabolic function (95, 104, 105). 

Misannotation is also a significant problem in protein sequence databanks 

(UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG). In one study 

using a model set of 37 enzyme families that were experimentally characterized,  as 

many as 80% were misannotated in at least one database for 10 of the 37 enzyme 

families (106). Even the ability to class a protein into a superfamily (usually based on 

sequence identity) does not always give sufficient information to make testable 

hypothesis regarding function, as the diversity of both substrates and catalysis 

mechanisms can vary greatly between two enzymes within the same superfamily (95, 



 

15 

 

 

107, 108). Structural genomics approaches coupled with small molecule docking has 

been a subsequent approach to address enzyme function, as this provides an optimized 

set of ligands to test as well as a catalytic activity to be looking for (107).  

The large number of putative enzymes without characterized activities is just one 

facet of a two-sided problem. On the flip side, it is estimated that 22% of enzymatic 

reactions are orphans (109). That is, the reactions are known to occur in nature, yet lack 

even a single associated enzyme or protein superfamily (107-109). Furthermore, it is 

clear that we are missing key pieces of metabolic pathways. For instance, metabolites 

within a biochemical pathway are typically linked to at least two enzymes, once as a 

product, and once as a substrate. Metabolites that are only linked to one enzyme are 

termed dead-end metabolites and represent the gap in our knowledge base. As of 2013, 

there were 127 dead-end metabolites in the extensively studied model organism E. coli 

K12 (110).  

 

Metabolism shapes the cell 

To accurately partition chromosomes and other cell contents during reproduction, 

cells must possess mechanisms to organize repeated cycles of cell growth, chromosome 

replication, and division.  Eukaryotes orchestrate this coordination using the cell cycle 

and separate growth, DNA synthesis, and cytokinesis into distinct, temporally 

sequestered phases.  Bacteria, by contrast, simultaneously increase in cell size and 

replicate DNA before (or concurrent with) cell division.  Elucidating the molecular 

mechanisms prokaryotes employ to achieve spatiotemporal organization of these 
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intertwined yet functionally disparate processes is of considerable interest to scientists 

seeking to understand bacterial reproduction, and many outstanding questions remain to 

be answered. For example, how is DNA replication kept in sync with changing growth 

and division rates?   How are cell dimensions maintained or actively rearranged in 

response to environmental or developmental cues? What signals do cells sense to switch 

between increasing in cell size and dividing during the cell cycle? Relatedly, how are 

these signals transduced to activate/deactivate the distinct machineries required for each 

process? 

Perhaps one of the biggest mysteries remaining in bacterial cell biology relates to 

understanding the regulatory crosstalk that must occur to integrate central metabolism 

with macromolecular biosynthesis.  Nutrients are converted into the stored energy and 

precursors used to synthesize macromolecules like DNA and peptidoglycan (PG), so it is 

no surprise that nutrient availability has a profound impact on growth capacity.  

However, a growing body of evidence also suggests that metabolites and metabolic 

enzymes may play a more direct role in regulating critical aspects of cell growth and 

division than previously appreciated.  These findings raise the intriguing possibility that 

metabolism itself may be the major determinant in shaping the underlying organization 

of the bacterial cell. 

Actively growing bacteria respond rapidly to changing conditions by adjusting 

their overall shape and size.  When nutrients are unrestricted, bacteria often capitalize on 

the available resources by increasing in cell size and reproducing more often. For rod-

shaped bacteria including Escherichia coli and Bacillus subtilis, cell size is determined 
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by both the length and width of the cell envelope. During steady-state growth, rapidly 

growing cells are generally longer and sometimes wider than their slower growing 

counterparts (111-114), at least when nutrients are unrestricted (113). The positive 

correlation between cell size and growth rate is likely due to nutrient availability rather 

than the growth rate itself, because the relationship can be broken under conditions 

where growth rate is controlled by restricting nutrients.  For example, in minimal media 

with different tryptophan concentrations, E. coli cells growing at steady-state are largest 

(by volume) at concentrations of tryptophan that result in  ~1/2 the maximal growth rate 

achieved with non-limiting tryptophan (115).   

During balanced growth, cell size is remarkably homogenous across a 

population, suggesting that the signals cuing growth and division cycles are regulated 

and not random.  Single cell experiments performed on E. coli and Caulobacter 

crescentus show that cells achieve cell size homeostasis not by triggering cell division 

when a specific cell volume is achieved, rather by elongating a constant amount (and 

thus adding a constant volume) before dividing (116-119).  Precise division at mid-cell 

allows for a homogenous population size to be maintained over time (117). A more 

recent study demonstrates that when bacteria grow, surface area and cell volume scale 

together across a variety of bacteria (120).  The authors of this study also provide data 

implicating levels of a limiting PG precursor as the likely signal for cuing cell division, 

thus providing a possible mechanistic basis to describe how bacteria may integrate 

central metabolism with growth and division (120).  
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Gluconeogenic growth facter YvcK 

The enzyme of unknown function YvcK is essential under gluconeogenic growth 

regimes (growth using Krebs Cycle intermediates or Pentose Phosphate Pathway sugars) 

(121). YvcK is a member of the CofD family of proteins, which are enzymes involved in 

coenzyme F420 synthesis in archaea and high G+C content Gram-positive bacteria 

(121). YvcK, as well as many of its homologs, are found in bacteria that do not synthesis 

coenzyme F420, suggesting another role for YvcK; out of all its homologs, YvcK has 

been best studied in B. subtilis (121-124). YvcK essentiality under gluconeogenic 

growth regimes can be overcome by deletion of zwf, cggR, and mfd. Zwf is Glucose-6-

Phosphate 1-Dehydrogenase, and is involved in shuttling glucose-6-phosphate into the 

Pentose Phosphate Pathway (121). CggR represses genes in central carbon metabolism, 

specifically those in the bottom half of gluconeogenesis, and so a deletion could result in 

increased flux of metabolites through gluconeogenesis and thus increased precursors for 

cell wall synthesis (121, 125). Mfd is involved in the synthesis of poly-γ-glutamic acid 

(PGA), and so inactivation of mfd via the transposon insertion could result in increasing 

the metabolic flux through other pathways which utilize glutamate (121, 125). YvcK 

essentiality under gluconeogenic growth regimes can be overcome via overexpression of 

MreB, and MreB conditional essentiality (needed additional Mg2+ and typically a ponA 

deletion) can be overcome with YvcK overexpression (122). YvcK localizes in a patchy 

“helical” pattern reminiscent of the localization of MreB like proteins in B. subtilis; 

however, YvcK does not co-localize with MreB and does not require MreB for its 

localization (122). MreB does not require YvcK for its localization either (122). YvcK 
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does not require the other MreB isologs (Mbl and MreBH) for its localization (122), and 

overexpression of Mbl or MreBH does not rescue a yvcK deletion strain under 

gluconeogencic growth regimes (122).  

In B. subtilis, ponA encodes the class A (high molecular weight) penicillin 

binding protein 1, which is bifunctions (having both transglycosylase and transpeptidase 

activity) (61). PBP1 has dynamic localization, and shuttles between the axial wall and 

the septum; this shuttling is dependent on MreB. mreB deletion results in mislocalization 

of PBP1 at the cell pole and subsequent loss in cell shape and death. ponA is not 

essential, and its deletion makes knockouts of the MreB-like proteins stable (along with 

added Mg2+) (61). Similarly, loss of YvcK under gluconeogenic growth regimes results 

in a loss of PBP1 localization, and subsequent loss of cell shape and lysis; the loss of 

PBP1 localization and the subsequent effects on cell-shape can be prevented by addition 

of glucose to the media (no longer gluconeogenic regime), added Mg2+, or 

overexpression of MreB (122). It is important to note that YvcK is found in both rod-

shaped and spherical bacteria (and are essential in those as well) (122, 126), suggesting 

an important role in the cell-envelope synthesis machinery. 

Posttranslational modifications of proteins has been shown to affect activity 

and/or localization of many proteins (123, 127-129). YvcK has been shown to be 

phosphorylated at Thr304 by the Ser/Thr kinase PrkC, but this phosphorylation does not 

affect its ability to allow growth under gluconeogenic growth regimes or its localization 

(123). However, YcvK phosphorylation does play a role in its cell shape activity (123). 

The phosphorylated state of YvcK (when overexpressed) is the only state that can 
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compensate for a loss of MreB and a return of the proper localization of PBP1, at least 

under the gluconeogenic growth regime tested (LB media) (123). It is a possibility that 

phosphorylation affects the interaction partners for YvcK, thereby regulating the 

pathway that its product is partitioned into. This makes sense, given that PrkC has been 

shown to respond to PG fragments (130), possibly through its extracellular PASTA 

domains (131); PrkC activation by a need for PG synthesis would trigger 

phosphorylation of YvcK, changing its interaction partners and thereby partitioning the 

product of its enzymatic reaction towards cell envelope synthesis. PknB, the homolog of 

PrkC in Staphylococcus aureus, requires its PASTA domains for proper localization 

(132). PknB also interacts with and has its kinase activity stimulated by Lipid II (132). 

PknB phosphorylates WalR (of the WalRK stress response regulator) and FtsZ, resulting 

in expression of autolysins, amidases, and hydrolases due to WalR and decreased 

GTPase activity in FtsZ (about 60% of normal activity was detected in the 

phosphomimic) (132). Essentially, PknB is coordinated the PG machinery with all of the 

division machinery (132). 

 

Phosphomannose isomerase (ManA) (B. subtilis)   

ManA, a phosphomannose isomerase in B. sutbtilis, is another example of a 

protein involved in carbon metabolism which affects cell shape when it is nonfunctional 

(catalytic mutant) or deleted (133). ManA is an enzyme that is responsible for converting 

mannose-6-phosphate to fructose-6-phosphate; this isomerization is reversible (133, 

134). The manA mutant, when grown under gluconeogenic growth regimes (such as LB), 
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causes a loss of cell shape and subsequent death, even though there is no mannose 

present and it is not needed as a carbon source (133). Despite a growth condition where 

mannose is not present, there is high expression of ManA in LB (133, 135). 

Furthermore, B. subtilis contains a manA homolog (pmi), which shares over 56% 

sequence identity, yet has no cell morphological effect when knocked out under 

gluconeogenic growth regimes and is not expressed during cell growth in LB (133). 

ManA homologs in other organisms (archaea and bacteria) have been shown to have 

phosphoglucose isomerase activity, facilitating the isomerization between glucose-6-

phosphate and fructose-6-phosphate (136). In B. subtilis and most other bacteria, pgi is 

the characterized phosphoglucose isomerase. Research into utilizing B. subtilis ManA in 

the industrial production of L-Ribose has revealed that in vitro, ManA shows 

promiscuity in its isomerization activity (137). It is therefore speculated that ManA can 

act as a phosphoglucose isomerase in vivo as well. 

When the cell walls of a manA deletion and wild type were isolated and 

hydrolyzed and HPAEC neutral monosaccharide analysis was performed, the manA  

mutant showed  ~five fold decrease in N-acetylgalactosamine (GalNAc) and ~four fold 

decrease in Glucose (Glc) compared to wild type, while GlcNAc levels remained the 

same (133). These sugars are used in/found in Teichoic Acids; this evidence links the 

cell shape defect in the manA mutant to its possible enzymatic activity. UDP-GalNAc is 

typically generated through epimerization of UDP-GlcNAc (138), which could suggest 

that the manA mutant is compromised in its ability to produce UDP-GlcNAc, and that 

the PG pathway takes priority in using this metabolite over the Teichoic Acid pathway.  
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The manA mutant showed polyploidy, with multiple rounds of replication 

completed, and an altered chromosome structure in addition to loss of cell shape/cell 

wall defects (133). E. coli actually shows a similar phenotype when the pools of 

pyrimidine precursors are limited (139); being that PG synthesis and DNA synthesis 

share UTP as precursor (for the synthesis of UDP-GlcNAc and dCTP/dTTP 

respectively), it makes sense that during steady state growth, DNA replication and cell 

growth are linked (125). Unlike YvcK, ManA localization is diffuse in the cell, making 

it difficult to speculate if there could be a moonlighting function to cell envelope 

morphogenesis (133). It was possible that ManA’s true role in the cell is as a 

phosphoglucose isomerase, favoring fructose-6-phopshate to glucose-6-phosphate 

conversion under gluconeogenic growth regimes; this hypothesis is in agreement with 

the defect in cell shape, nucleoid morphology, and teichoic acid composition, as these 

phenotypes can result from lack of fructose-6-phosphate and glucose-6-phosphate (125). 

It has been established that other enzymes involved in carbon metabolism are 

essential under conditions where the products of their enzymatic activity are not needed, 

such as glycolytic enzymes in LB + Glucose media (140). It has also been shown that 

trigger enzymes have a moonlighting role of regulating gene expression in various 

bacteria including B. subtilis (141-143). In E. coli, the glycolytic protein Enolase (eno) 

has been shown to interact with the RNA degradosome (RNase E, RhlB, PnpA), and that 

it plays a role in the regulation of glucose transporter ptsG mRNA stability (144). In B. 

subtilis, enzymes involved in glycolysis also interact with the RNA degradosome; 

Phosphofructokinase (PFK), Enolase (ENO), PnpA, Rny, RNase J1, RNase J2 form a 
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complex in vivo (140). The physiological reason for this interaction is still unclear. This 

same study also shows a complex of several glycolytic enzymes together (PFK, 

Phosphoglycerate mutase PGM, ENO, and possibly Glyceraldehyde phosphate 

dehydrogenase GAPDH) (140), and supports the theory of substrate channeling among 

enzymes in a given pathway (140). There have been numerous other studies suggesting 

substrate channeling in various pathways in both prokaryotes (140, 145-151) and 

eukaryotes, and research on eukaryotes (human cells) had shown compartmentalization 

of the enzymes involved in branched chain amino acid catabolism (152) and purine 

biosynthesis (153). 

 

UDP-Glucose and UgtP (B. subtilis) 

Evidence for genetic interactions between carbon and nitrogen metabolism and 

cell division are also abundant, and many are summarized in recent reviews (154, 155).  

UgtP, an enzyme in the non-essential glucolipid biosynthesis pathway in Bacillus 

subtilis, was shown to localize to FtsZ as well as inhibit polymerization of FtsZ in a 

UDP-Glucose (UDP-Glc) dependent manner (156, 157). Glucose-6-Phosphate may go 

through the glycolysis pathway, or can be converted to UDP-Glucose (through Glucose-

1-Phosphate), where it can be used for glucolipid biosynthesis or major and minor wall 

teichoic acid synthesis (156, 158). According to the model, nutrient rich conditions 

should result in excess Glc-6-P, which results in an increased flux towards and amount 

of UDP-Glc. This results in the transient inhibition of FtsZ by UgtP, an enzyme in the 

glucolipid biosynthesis pathway, and continued cell growth, and allows the time 
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necessary to successfully segregate the bacterial chromosomes (156). UgtP expression is 

nutrient/media dependent; there are about 400 copies of UgtP per cell in minimal media 

with sorbitol, vs. ~2400 copies of UgtP per cell when grown in LB (156). Under nutrient 

rich conditions, UgtP colocalizes with FtsZ, while under nutrient poor conditions, UgtP 

localizes in punctate foci randomly around the cell (156, 157); this localization is 

dynamic, as UgtP foci relocalize under conditions where nutrient availability is altered 

but protein synthesis is inhibited (157).  Based on in vivo as well as in vitro assays, UgtP 

appears to be in an oligomeric state; UgtP’s affinity for itself is fourfold higher in the 

absence of UDP-Glc than in the presence (157).  UgtP was shown to inhibit FtsZ single-

filament formation in vitro (157). Regulation of FtsZ assembly by metabolic enzymes 

(linking cell division with growth) was shown in E. coli by OpgH (159) and in C. 

crescentus by KidO and GdhZ (160).  

 

UDP-Glucose and OpgH (E. coli)  

OpgH is a glucosyltransferase involved in the synthesis of osmoregulated 

periplasmic glucans (OPG): OpgH does not show structural homology to UgtP in B. 

subtilis, but it is a functional homologue of UgtP in the sense that it inhibits FtsZ 

polymerization in a UDP-Glucose dependent manner (156, 157, 159). OpgH inhibitition 

of FtsZ polymerization is independent of its role in synthesis of OPGs, or secondary 

upregulation of FtsZ in response to OPG pathway knockouts i.e. activation of the Rcs 

phosphorelay (159). Unlike UgtP in B. subtilis, OpgH appears to localize to FtsZ in a 

UDP-Glc independent manner; however, OpgH still localizes to FtsZ in a growth rate 
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dependent manner, as OpgH localizes at midcell only in the presence of FtsZ and only 

when grown in rich media (growth rate dependent) (159). Based on an opgH deletion 

analysis, it was concluded that the N terminal 138 amino acids were necessary and 

sufficient for FtsZ inhibition in vivo (159). Furthermore, it was also determined that the 

N-terminal portion of OpgH is sufficient to allow for medial localization, but that it was 

not necessary, as N terminal deletions of OpgH still colocalized with FtsZ (159). In vitro 

assays showed that OpgH inhibits FtsZ polymerization by binding FtsZ monomers, 

thereby increasing FtsZ’s apparent critical concentration (CcApp) for GTP hydrolysis 

(159). 

 

Nitrogen metabolism, GdhZ and KidO (Caulobacter crescentus) 

In C. crescentus, GdhZ is responsible for conversion of glutamate to α-

ketoglutarate, and its inhibition of FtsZ is substrate dependent (Glutamate or NAD+) 

(160). GdhZ colocalizes with FtsZ and acts to stimulate FtsZ GTPase activity, thereby 

promoting disassembly of the FtsZ filament, while KidO acts to disrupt FtsZ lateral 

interactions/bundling (160). GdhZ and KidO act to prevent premature Z ring formation 

early in the cell cycle while also promoting disassembly of the Z ring during cytokinesis 

(160, 161). Both of these mechanisms of regulating FtsZ are distinct from the 

glucosyltransferases UgtP in B. subtilis and OpgH in E. coli (157, 159, 160). GdhZ 

localizes to the midcell in an FtsZ dependent and nutrient dependent manner; when 

growth media is supplemented with sugars that allow avoidance of the glutamate 

metabolism pathway (and complement a gdhZ knockout), GdhZ does not localize at the 
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midcell (160). Furthermore, GdhZ catalytic activity is necessary for stimulation of FtsZ 

GTPase activity, but not essential for GdhZ interaction with FtsZ (160). KidO shows 

NADH dependent inhibition of FtsZ through inhibiting lateral interactions/bundling 

(160), and shows FtsZ dependent localization to the division site (161). GdhZ and KidO 

copy number both oscillate together over the course of the cell cycle, and both appear to 

be ClpXP degraded; GdhZ and KidO also appear to be in a complex, according to in 

vitro pulldown data (160, 161). The current model for GdhZ and KidO is that they work 

synergistically together to regulate FtsZ by affecting both polymerization and lateral 

bundling (155, 160). E. coli and B. subtilis using UDP-Glc while C. crescentus using 

Glutamate as a proxy for cellular energy or nutrient level to regulate division has raised 

the conjecture that perhaps different organisms regulate division based on their preferred 

carbon source (155).  

While nutrient availability has been shown to regulate Z ring formation 

temporally, it has also been shown to regulate Z ring formation spatially. In B. subtilis, a 

deletion of pyk (pyruvate kinase) resulted in rescuing a temperature sensitive allele of 

FtsZ at non-permissive temperatures, and it was determined that this rescuing was not 

stress response dependent (162); furthermore, a pyk deletion in a Wild type background 

resulted in the formation of polar Z rings as well as multiple Z rings in ~32% and ~6% 

of the population, respectively (162).  These results strongly suggested that the deletion 

of pyk affects FtsZ assembly, as it is a similar phenotype to knockouts of the nucleoid 

occlusion system in B. subtilis (163-165). It was shown that pyruvate itself was enough 

to complement the aberrant Z ring assembly in a pyk deletion (162), and further 



 

27 

 

 

investigation linked this pyruvate dependent defect in FtsZ assembly to PDH E1α 

(pyruvate dehydrogenase E1α subunit) (162). PDH E1α localizes over the nucleoid in a 

pyruvate dependent fashion, and appears to stimulate Z ring formation over the midcell 

under nutrient rich conditions (155, 162). Taken together, it appears metabolic enzymes 

in B. subtilis assist in correctly positioning the Z ring as well as allowing division only 

when the critical cell-size is attained. 

 

UndP availability as a regulator of growth and division 

While the rapid fine-tuning of metabolic activity and cell division allows the cell 

to quickly adapt to its environment, it does not compensate for a growing problem, 

limited resources. A growing body of evidence suggests that critical substrates are 

bottlenecks on metabolic flux (166, 167). For instance, current research suggests that the 

lipid carrier undecaprenyl phosphate (Und-P) exists in a common pool, shared between 

peptidoglycan (PG) synthesis, enterobacterial common antigen (ECA) synthesis, O 

antigen synthesis, and colonic acid synthesis in Escherichia coli (166, 167). Genetic 

knockouts that block the non-essential pathways of ECA or O antigen synthesis cause 

deleterious effects on PG synthesis, which can be overcome through increasing Und-P 

levels, increasing Und-P recycling, or preventing Und-P from being sequestered for the 

pathway initially (166, 167). Although it was previously shown that ECA plays a role in 

outer membrane integrity and sensitivity to bile salts (168), knocking out the entire 

pathway at the first step (wecA) does not cause a loss of rod-shape (167); only when the 

gene that is further downstream of the pathway, wecE, was knocked out does a loss of 



 

28 

 

 

rod-shape and an accumulation of ECA-Lipid II occur (167). Since increased expression 

of Und-P rescued the cell-shape defect of a wecE mutant, it suggested that depletion of 

Und-P pools and not accumulation of ECA-Lipid II were the cause of the cell-shape 

defect (167); furthermore, overexpression of genes that redirected Und-P to competing 

pathways such as PG synthesis (murA) or O-antigen synthesis (wbbL) rescued cell shape 

defects of the wecE mutant, supporting the hypothesis that the depletion of Und-P was 

resulting in the cell-shape defect (167). Additional deletions of genes in the ECA 

pathway that would result in Und-PP-linked intermediates also had similar cell-shape 

defects, again suggesting depletion of the Und-P pool as the cause of the cell-shape 

defect (167). Similarly, it has been shown in the Gram-positive organisms Bacillus 

subtilis and Staphylococcus aureus that the teichoic acid pathway is dispensible, as long 

as tagO or tarO is knocked out, respectively (169, 170). tagO and tarO encode a UDP-

N-acetylglucosamine-undecaprenyl-phosphate N-acetylglucosaminephosphotransferase 

(UDP-GlcNAc-Und-P Glc-NAc phosphotransferase), which links UDP-GlcNAc to Und-

P, drawing from the common pool of Und-P; this is the first synthetic step of teichoic 

acid synthesis (171). As it appears that this Und-P pool is limiting, and that the cell does 

not produce more Und-P under conditions where Und-P is committed to a biosynthetic 

pathway that cannot be completed (due to gene deletion), the cell experiences cell-shape 

defects and dies (166, 167, 169, 170). 

This illustrates another important and overarching concept in bacterial cell 

growth, sharing of metabolites. Certain key substrates in the cell are positioned at 

metabolic hubs, and substrate availability can dynamically shift the flow of metabolites 
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(i.e carbon or nitrogen) down different pathways. This phenomenon is utilized frequently 

in biotechnology to increase yield of desired products and/or decrease unwanted 

biproducts (172, 173). Pathway perturbation has also been investigated as a mechanism 

to sensitize pathogens to specific antibiotics (86).  

 

Metabolic tuning based on nutrient conditions 

It has been known for decades that bacteria can grow up to twice as large in rich 

media as minimal media (112, 113, 174), and that they can adapt their size and 

metabolism dynamically in response to nutrient availability (175). Along those lines, a 

cell’s metabolic flux is fine-tuned based on nutrient conditions, and the tuning can occur 

at the transcriptional and post-transcriptional level. For example, enzymes involved in 

the utilization of alternative sugars are generally repressed in the presence of glucose 

(176-179). Examples of post-translational regulation are also numerous. For example, 

many key metabolic enzymes are regulated allosterically by metabolites as well as 

through acetylation, phosphorylation, pupylation, and addition of 3-phosphoglyceryl-

lysine (pgK) modifications (175). 

A summary of the previous discussion is depicted in Fig 1.1. 
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Figure 1.1  Metabolic pathways implicated in the regulation of cell shape and size. 

Enzymes are indicated by green, red, or blue text. Enzymes discussed in the text are 

indicated in red or blue. Enzymes shown in blue denote steps dedicating Und-P (also in 

blue) to one or more pathways. Enzymes predicted to coincide with or precede Und-P 

dedication to one or more pathways are followed by blue question marks. In most cases, 

the relevant enzyme(s) for both E. coli and B. subtilis is given; however, not all 

organisms possess every enzyme shown. Enzymes that are less studied or have not been 

tested experimentally are generally excluded. Enzymes shown to interact directly 

with FtsZ are denoted with an asterisk. Only regulators of glycolysis and 

gluconeogenesis discussed in the text are shown in the left-hand block. 
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Bacteriophages 

Historical perspective on phage 

Phages (or Bacteriophage) are viruses that specifically target bacteria; the 

translation of bacteriophage literally means “bacteria eater”. Phage were discovered in 

the early 20th century by the British pathologist Frederick Twort and by the French-

Canadian microbiologist Felix d’Herelle (in 1915 and 1917 respectively) (180-182). 

Felix d’herelle worked at the Pasteur Institute during World War I, and noticed that the 

fecal material of patients who had recovered from Shigella dysenteriae contained a 

component that killed S. dysenteriae and conferred protection when given to patients 

who were suffering from S. dysenteriae (181-184). Felix d’Herelle did the early 

characterization of phage, noting that the phage was far smaller than bacteria, as it 

passed through a filter that trapped bacteria (185); he also developed the plaque 

formation assay for determining the amount of phage particles in a given lysate/solution 

(185). 

The use of phages for treatment of bacterial infections (Phage Therapy) 

continued throughout the 1920’s and 1930’s, with mixed success, attributable to a lack 

of understanding of phage, bacterial evolution, and quality control/standardization of 

phage production (some of the preservatives used actually inactivated the phages) (184). 

In the 1930s, the first antibiotics were introduced and phage therapy in the US rapidly 

declined. Antibiotics were broad spectrum, easily produced, better understood, and more 

stable than the phage products of the time (184). Phage therapy continued throughout 
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Eastern Europe, particularly the Soviet Bloc country of Georgia where Felix D’Herelle 

and Geoge Eliava established a phage institute at Tbilisi (184).  

There are double stranded DNA phages, single stranded DNA phages, and RNA 

phages; however, only the dsDNA phages are discussed here, as they are germane to the 

dissertation. dsDNA phages are members of the Caudovirales Order, which is comprised 

of three families: Myoviridae, Siphoviridae, and Podoviridae; classification into these 

families is based on morphology on the phage, and not on genetic homology. It is not 

uncommon to have a Myophage that shares greater homology to a Podophage than to 

another Myophage (185). Myophages have long, rigid contractile tales, Siphophages 

have long, flexible non-contractile tales, and Podophages have short non-contractile 

tails.  

 

Phage infection cycles 

During phage infection, the tail fibers of the phage recognize a cognate receptor 

on the surface of the target bacterium. The phage then ejects its DNA into the bacterial 

host, at which point the infection cycle begins. There are two types of phage infection 

cycles, lytic and lysogenic, and phage may be obligately lytic (virulent) or both lytic and 

lysogenic (temperate). The phage infection cycle is divided into early, middle, and late 

designations for genes; early designates genes that are transcribed prior to viral DNA 

replication, middle designates genes transcribed during viral DNA replication, and late 

genes are genes transcribed after viral DNA replication. During lytic cycles, the phage 

DNA is replicated and all of the phage structural machinery is synthesized, and the 



 

33 

 

 

components assemble with the genome to form a complete phage. This is followed by 

lysis of the host cell, releasing newly formed phage particles into the environment. 

During lysogenic cycles, the phage DNA either circularizes and is maintained as an 

autonomously replicating plasmid, as occurs with Phage P1, or integrates into the host 

chromosome. Chromosomal insertion may occur through site-specific recombination, 

such as integration of Lambda DNA at the att locus on the E. coli chromosome, or 

randomly as occurs with phage Mu. The decision of temperate phages to go lytic or 

lysogenic following DNA ejection has been the focus of much research (186-189). 

Environmental factors such as multiplicity of infection (MOI- the number of phages 

infecting each cell) (190), nutrient status (191, 192), and temperature (193, 194), have 

been shown to influence the lysis/lysogeny decision. For example, higher MOI shifts 

phage toward a lysogenic decision (188). More recently, single cell assays using the 

model phage Lambda have given us insight into the decision making process in real time 

(186-189). These studies have revealed that when multiple phage infect the same cell, 

the decision to lysogenize must be unanimous (186); furthermore, during a mixed 

decision where one phage votes to lysogenize and another votes for the lytic cycle, lyso-

lysogeny occur, whereas integration of a phage genome into the E. coli chromosome 

occurs, followed by phage lysis (188). 

Phages that go through the lysogenic cycle can later excise from the host 

chromosome and initiate the lytic cycle when conditions in the host become unfavorable. 

Excision requires a stimulus, such as a signal that DNA damage is occurring (195). 

Temperate phages have been the focus of clinical research because they can often 
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encode virulence factors, as is the situation for E. coli O157:H7, where the prophage 

encodes Shiga toxin (196).  

 

Phage lysis 

If a phage is obligately lytic, chooses the lytic cycle, or undergoes excision from 

the chromosome, new infectious particles are generated and phage lysis occurs. Phage 

lysis in Gram-negative bacteria occurs through the expression of the lysis genes, which 

are under the control of a late promoter. Typically the lysis genes are found in clusters 

together called “cassettes”. The lysis genes include a holin (and cognate antiholin), an 

endolysin, and spanin(s) (197). The holin acts as an allelic specific molecular timer for 

phage lysis. In phage Lambda, for example, the holin is S105 and the antiholin is S107 

(197). The holin and antiholin have three transmembrane domains, but S107 contains an 

N-terminal positively charged residue which keeps the S107 inactive by preventing the 

TMD1 from entering the membrane. Heterodimers of S105:S107 are inactive, and only 

when enough S105 homodimers have accumulated does holin raft formation and the 

subsequent dissipation of the proton motive force (which turns S105:S107 heterodimers 

into an active holin conformation as the TMD1 of S107 can now enter the membrane) as 

well as release of the endolysin (the PG degrading enzyme) into the periplasm. The holin 

rafts are on the micron scale in size (average is 340nm but can be over 1µm), but few in 

number (average is 1-3 per cell) (198, 199). Following endolysin release, cells lyse with 

the aid of membrane fusing spanins.  
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Another variation of the typical holin endolysin paradigm is pinholins and SAR 

endolysins (197, 200). Phage 21 has the best characterized pinholin Signal Anchor 

Release (SAR) endolysin system, and so will be used as the model. Phage 21 contains a 

pinholin, S68. When the critical concentration of S68 is reached, S68 assembles into 

heptameric channels with a very small lumen size, estimated to be ~2nm (201); 

furthermore, instead of making only a few holes like phage Lambda S105 holin makes, 

S68 forms about 103 channels that dissipate the proton motive force (200). The loss of 

proton motive force activates the SAR endolysin, which degrades the PG (200). Before 

activation by the pinholin, the SAR endolysin is produced and exported using the host 

sec system (200, 202, 203) and remains tethered  to the membrane, catalytically inactive 

(200) activation by the pinholin S68 dissipating the proton motive force releases SAR 

endolysin from the membrane and it adopts its catalytically active form (203, 204). It is 

important to note that in SAR endolysin systems, there is a spontaneous rate for release 

of SAR endolysins from the membrane, and so pinholins are not absolutely necessary for 

host lysis, rather they function to concertedly instigate lysis (197, 200).  Spanin(s) 

function by facilitating membrane fusion of the inner and outer membranes of Gram-

negative bacteria (205). Spanins can be in a pair (i-spanin and o-spanin) or be a single, 

unimolecular spanin (u-spanin) (197, 200, 205, 206). Obviously, phages with Gram-

positive hosts do not encode a spanin. 

Endolysins encoded in phage that have a Gram-positive host typically have a cell 

wall binding domain. Since Gram-positive bacteria lack an outer membrane and true 

periplasm, it is thought this prevents release of the endolysin into the environment, 
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which might lead to the destruction of nearby phage host (207). Endolysins are not 

necessarily true lysozymes, which function by breaking the glycosidic bond between 

GlcNAc-MurNAc (200). 

 

PBSX in B. subtilis strain 168 

PBSX is a prophage present in B. subtilis 168 that is capable of selectively 

killing a closely related subspecies, B. subtilis W23, when excision is activated and 

phage particles are formed (195).  In the domesticatd lab strain, B. subtilis 168, PBSX is 

defective. More specifically, it fails to package its own DNA and form a functional 

(replicating) phage particle. PBSX has a genome size of around 33kb (208), and it 

packages about 13kb of random DNA from the host B. subtilis chromosome (195, 209-

213), although because it is defective, that DNA is not thought to eject into the sensitive 

W23 strain upon phagocin adsorption (195, 213).  

PBSX like phagocins are found in  B. subtilis strains as well some strains of B. 

pumilis and B. licheniformis (214, 215). Each phagocin is capable of selectively killing 

another subspecies or species of Bacillus, but not their host.The ability to kill other 

strains of Bacillus subtilis would confer an evolutionary advantage to having PBSX like 

phagocins, and it has been hypothesized that this is why they have been conserved in the 

genome’s of their hosts (214, 215); furthermore,  since some cannot be deleted from the 

host genome without loss of viability, it is speculated that some phagocins may confer an 

advantage to the host beyond their bacteriocidal activity (213). However, PBSX can be 

cured from B. subtilis strain 168, so if this is accurate, there are exceptions (216). PBSX 
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can be induced from the B. subtilis chromosome similarly to temperate phages, by 

inducing the SOS response with UV irradiation, mitomycin C treatment, or Carbidox 

treatment (195, 210-212) As with other temperate phage induction, PBSX induction 

results in chromosomal replication around the prophage DNA region (209, 217), the 

production of phage proteins, and the assembly of PBSX particles. It is estimated that 

the burst size (number of particles of a phage produced per host per infection cycle) is 

550 (218). However, this estimate may not be particularly accurate, as it is technically 

difficult to ascertain burst size with non-replicating particles such as phagocins, because 

particle number cannot be determined using serial dilutions and plaque assays. Instead, 

burst size is estimated by mixing phagocin lysates with known concentrations of cells, 

plating, and determining survival from a Poisson distribution (218).  

The physical dimensions of PBSX were well characterized in 1968 by Marmurs 

group (195). The head, tail, and sedimentation coefficient are as follows: 410A head, 

1920A long tail with 52 or 53 striations, 185A wide tail, 160s sedimentation coefficient, 

a density of 1.375g*cm-3 in CsCl (195). The physical dimensions and characteristics of 

PBSX assist in identification of it when comparing to other defective prophages, as they 

are highly similar in structure. 

 

Maintenance of PBSX lysogeny 

Maintenance of PBSX  as a prophage element is regulated by the CI-like 

repressor Xre, a 113 amino acid protein with an N-terminal helix-turn helix DNA-

binding domain (219). Xre has homology (in the N-terminal region) to both the Φ105 
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repressor and C2 repressor from phage P22 (219, 220). Xre possesses a SigA promoter 

(vegetative sigma factor), and overlapping this promoter are four highly similar 

palindromic 15bp repeats (denoted O1-O4) (beginning with the site farthest upstream of 

the promoter is O1 and the site closest to the promoter is O4), with the concensus 

sequence of 5’-GATACAAAATGTATC-3’; these consensus sequences are directly 

bound by Xre (219, 220). Xre has a higher affinity for O1 and O2, and when bound at 

these sites represses a divergent SigA promoter controlling the PBSX late gene (lytic) 

operon (220). At higher concentrations Xre also binds to O3 and O4, leading to 

repression of xre itself (220). This paradigm of gene expression, where a repressor is 

autoregulated and expressed divergently from a repressor controlled operon, is well 

characterized in lambdoid phages (Lambda and Φ105) (220-222). This autoregulation 

ensures that enough of the repressor is made to maintain lysogeny during normal growth, 

but also does not allow repressor levels to get so high that the prophage cannot excise 

when a signal such as DNA damage induces the SOS response (219, 220). It was later 

determined that pcf, which resembled a transcription factor but was only 20.1kDa 

(hypothetically), was required for late gene expression of PBSX (PL) (223). 

 

Isolation of a thermoinducible allele of Xre  

A thermoinducible Xre was first isolated and designated as the xhi-1479 

mutation by Buxton in 1976 (224); temperature shift from 37°C to 48°C would result in 

phagocin induction, production of PBSX particles, and subsequent host lysis. It was later 

found that this xhi-1479 mutant of Xre was thermolabile, and therefore recessive to a 
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wild-type copy of the allele (219). This allowed Wood et. al to isolate the fragment that 

complemented the xhi-1479 mutant (abolished thermosensitivity), and to subsequently 

identify the associated point mutations (219). Three Xre substitutions were identified: 

G4S, A19V, and L78V (219). Since A19V resided within the predicted helix-turn-helix 

domain of the protein (predicted DNA-binding region), it was hypothesized that the 

A19V substitution alone conferred temperature sensitivity to Xre (219). Codon usage 

analysis was performed on xre to estimate its expression level, and the estimation was 

that it is poorly expressed or expressed at low levels (219, 225, 226). 

 

Phage receptors 

Bacteriophages require receptors for the ability to infect their subsequent host; 

phage tail fibers recognize molecules present on the surface of the host. In Gram-

negative bacteria, host-cell recognition is much better understood, and receptors include 

lipopolysaccharide (LPS), exopolysaccharides/capsule, and channel-forming β-barrel 

proteins present in the outer membrane (227-229). Once contact is made with the host 

receptor(s), they are stably adsorbed and the phage DNA is ejected into the host. 

The primary receptor for E. coli phage Lambda is the outer membrane protein 

LamB (the maltose porin). The proteins ManY and ManZ, which are part of the PTS, are 

believed to play a role in Lambda DNA transport across the inner membrane (230-232). 

LamB is essential for Lambda infection, while manYZ deletion results in several orders 

of magnitude decreased efficiency of plating, suggesting an important but not essential 

role for ManYZ during the infection process (230-232). Other examples of phage 
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receptors in Gram-negative bacteria include the ferrichrome transporter FhuA (TonA) of 

phage T1, and LPS for phage P1 and numerous other phages (233-236). 

The process of phage infection, particularly the binding of phage to its receptor, 

is less studied in Gram-positive hosts. The well-characterized siphophage SPP1 binds to 

glucosylated teichoic acids and the inner membrane protein YueB (237-239). Teichoic 

acids (TA) are important for phage recognition/adsorption for a variety of phages, with 

specificity conferred by TA composition (239-243). B. subtilis strain 168 and B subtilis 

W23 differ in their teichoic acid compositions, the former having polygycerol phosphate 

teichoic acids while the latter have polyribotol phosphate teichoic acid (171, 242, 244). 

It was suggested that PBSX, the B. subtilis 168 phagocin that targets B. subtilis W23, 

and PBSZ, the B. subtilis W23 phagocin that targets B. subtilis168, possess changes in 

their tail fibers that confer specificity of the phagocin, while allowing the host strain to 

avoid sensitivity (death) (241) 



 

 

*Reprinted with permission from “YodL and YisK possess shape-modifying activities that are suppressed 

by mutations in Bacillus subtilis MreB and Mbl” by Duan, Y., Sperber, A.M. and Herman, J.K., 2016. 

Journal of Bacteriology, 198(15):2074-2088. Copyright 2016 by American Society for Microbiology. 
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CHAPTER II 

YodL AND YisK POSSESS SHAPE-MODIFYING ACTIVITIES THAT ARE 

SUPPRESSED BY MUTATIONS IN Bacillus subtilis MreB AND Mbl* 

 

Introduction 

Bacterial cell growth requires that the machineries directing enlargement and 

division of the bacterial cell envelope be coordinated in both time and space (245).  The 

cell envelope is comprised of membranes and a macromolecular mesh of peptidoglycan 

(PG) that possesses both rigid and elastic properties (246, 247).  PG is highly cross-

linked, allowing bacteria to maintain shapes and avoid lysis, even in the presence of 

several atmospheres of internal turgor pressure.  PG rearrangements are required during 

the inward redirection of growth that occurs at the time of cell division, but are also 

necessary when cells insert new PG and dynamically modify their morphologies in 

response to developmental or environmental signals (248, 249).  To avoid lysis during 

PG rearrangements, bacteria must carefully regulate the making and breaking of glycan 

strands and peptide crosslinks (247).  In rod-shaped bacteria, PG enlargement during 

steady-state growth is constrained in one dimension along the cell’s long-axis and can 

either occur through polar growth, as is the case in Agrobacterium tumefaciens and 

Streptomyces coelicolor, or through incorporation of new cell wall material along the 

length of the cell cylinder, as observed in Escherichia coli, Bacillus subtilis, and 

Caulobacter crescentus (250).  
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To control cell diameter and create osmotically stable PG, bacteria that exhibit 

non-polar growth require the activity of the highly conserved actin-like protein MreB.  

Biochemical, genetic, and cell biological data suggest that MreB likely directs PG 

synthesis during cell elongation and in some bacteria, MreB may also function during 

cell division (41, 45, 251).  MreB possesses ATPase activity, and polymerizes at sites 

along the cytoplasmic side of the inner membrane (75).  ATP binding and hydrolysis is 

required for MreB polymerization and activity (252) and two S-benzylisothiourea 

derivatives, A22 and MP265, target the ATPase domain of MreB in Gram negative 

organisms, possibly preventing nucleotide hydrolysis and/or release (253-256).  

Depletion or inactivation of MreB is lethal except in some conditional backgrounds 

(257, 258), so organisms sensitive to A22 and/or MP265 lose shape and eventually lyse 

(253-256). 

MreB has been found to interact with several other proteins involved in PG 

synthesis, including the bitopic membrane protein RodZ (61, 78, 251, 257, 259).  RodZ 

interacts directly with MreB through a cytoplasmic helix-turn-helix motif located at its 

N-terminus (78). A co-crystal structure of RodZ and MreB shows the N-terminus of 

RodZ extending into a conserved hydrophobic pocket located in subdomain IIA of MreB 

(78).  Depletion of RodZ also leads to loss of cell shape and cell death (79, 260, 261).  

However, in various mutant backgrounds, rodZ can be deleted without loss of rod shape 

or viability, indicating that RodZ is not absolutely required for MreB’s function in 

maintaining shape (77, 80, 262).  Based on these observations and others, it has been 
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proposed that MreB-RodZ interactions may regulate some aspect of MreB activity (75, 

80).  

Gram-positives often encode multiple paralogs (263).  B. subtilis possesses three 

mreB family genes: mreB, mbl, and mreBH.  mreB is distinguished from mbl and mreBH 

by its location within the highly conserved mreBCD operon.  Although mreB, mbl, and 

mreBH are essential, it has been reported that each can be deleted under conditions in 

which cells are provided sufficient magnesium (62, 65, 264), or in strain backgrounds 

lacking ponA, the gene encoding penicillin binding protein 1 (PBP1) (61).  In addition, 

all three genes can be deleted in a single background with only minor effects on cell 

shape if any one of the paralogs is artificially overexpressed in trans from an inducible 

promoter (60).  The ability of any one of the paralogs to compensate for the loss of the 

others, at least under some growth conditions, strongly suggests that MreB, Mbl, and 

MreBH share significant functional redundancy (60, 265).   

At the same time, several lines of evidence suggest that the paralogs possess non-

overlapping functions.  The genes themselves exhibit different patterns of transcriptional 

regulation, suggesting that each likely possesses specialized activities that are important 

in different growth contexts.  For example, mreB and mbl are maximally expressed at the 

end of exponential growth, but expression falls off sharply during stationary phase (68), 

whereas mreBH is part of the SigI heat-shock regulon (266).  There is also evidence 

suggesting that each protein may possess specialized activities.  For example, MreBH 

interacts with the lytic transglycosylase LytE, and is required for LytE localization (69), 

whereas the lytic transglycosylase CwlO, depends on Mbl for wildtype function (69).  
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More recently MreB (but not Mbl or MreBH) was shown to aid in escape from the 

competent cell state (68).    

Aside from RodZ (75, 80), only a handful of proteins targeting MreB activity in 

vivo have been identified.  In E. coli, the YeeU-YeeV prophage toxin-antitoxin system is 

comprised of a negative regulator of MreB polymerization, CbtA (267), and a positive 

regulator of MreB bundling, CbeA (268).  Another E. coli prophage toxin, CptA, is also 

reported to inhibit MreB polymerization (269).  The MbiA protein of C. crescentus 

appears to regulate MreB in vivo, however, its physiological role is unknown (270).  

Given the importance of PG synthesis to cell viability and in cell shape control, it is 

likely that many undiscovered factors exist that modulate the activity of MreB and its 

paralogs. 

In the present work we describe the identification of YodL and YisK, modulators 

of MreB and Mbl activity that are expressed during early stages of B. subtilis 

sporulation.  Misexpression of either yodL or yisK during vegetative growth results in 

loss of cell width control and cell death.  Genetic evidence indicates that YodL targets 

and inhibits MreB activity, whereas YisK targets and inhibits Mbl.  Our data also show 

that YisK activity affects cell length control through an Mbl and MreBH-independent 

pathway. 
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Materials and methods 

General methods 

All B. subtilis strains were derived from B. subtilis 168. E. coli and B. subtilis 

strains utilized in this study are listed in Table 2.1. Plasmids are listed in Table 2.2. 

Oligonucleotide primers are listed in Table 2.3.  Details on plasmid and strain 

construction can be found in the Supplementary text.  Escherichia coli DH5α was used 

for cloning.  All E. coli strains were grown in LB-Lennox medium supplemented with 

100 µg/ml ampicillin. The following concentrations of antibiotics were used for 

generating B. subtilis strains: 100 µg/ml spectinomycin, 7.5 µg/ml chloramphenicol, 0.8 

mg/ml phleomycin, 10 µg/ml tetracycline, 10 µg/ml kanamycin.  To select for 

erythromycin resistance, plates were supplemented with 1 µg/ml erythromycin (erm) and 

25 µg/ml lincomycin. B. subtilis transformations were carried out as described 

previously (271). When indicated, the LB in the B. subtilis microscopy experiments was 

LB-Lennox broth. Sporulation by resuspension was carried out at 37°C according to the 

Sterlini-Mandelstam method (272).  Penassay broth (PAB) is composed of 5 g peptone, 

1.5 g beef extract, 1.5 g yeast extract, 1.0 g D-glucose (dextrose), 3.5 g NaCl, 3.68 g 

dipotassium phosphate, and 1.32 g monopotassium phosphate per liter of distilled water.   

To make solid media, the relevant media was supplemented with 1.5% (w/v) bacto-agar. 
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Table 2.1.  Strains used in Chapter II. 

 

Strain Description Reference 

Parental   

B. subtilis 

168 

Bacillus subtilis laboratory strain 168 trpC2  BGSC (1A866) 

B. subtilis 

3610 

spo0H::cat (sigH::cat) (273) 

B. subtilis 

PY79 

Bacillus subtilis laboratory strain (274) 

E. coli DH5α F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 

deoR nupG Φ80dlacZΔM15 Δ(lacZYA-

argF)U169, hsdR17(rK
- mK

+), λ–  

 

B. subtilis 

168 

  

BAS040 amyE::Phy-yodL (spec)   This study 

BAS041 amyE::Phy-yisK (spec)   This study 

BAS146 ponA::erm, kanΩΔmreB This study 

BAS147 ponA::erm, kanΩΔmbl This study 

BAS170 amyE::PyodL-lacZ (spec)   This study 

BAS171 amyE::PyodL-gfp (spec)   This study 

BAS191 amyE::Phy-yodL (spec), yhdG::Phy-yodL (phleo)   This study 

BAS192 amyE::PyisK-lacZ (spec)   This study 

BAS193 amyE::PyisK-gfp (spec)   This study 

BAS205 amyE::Pempty-gfp (spec)   This study 

BAS248 ponA::erm, kanΩΔmbl, catΩΔmreBH, 

amyE::Phy-yisK (spec), yhdG::Phy-yisK (phleo)   

This study 

BAS249 ponA::erm, kanΩΔmbl, catΩΔmreBH, 

amyE::Phy-yodL (spec), yhdG::Phy-yodL (phleo)   

This study 

BAS265 spo0A::erm This study 

BAS266 amyE::PyodL-gfp (spec), spo0A::erm   This study 

BAS267 amyE::PyisK-gfp (spec), spo0A::erm This study 

BAS282 sigH::cat This study 

BAS301 amyE::PyodL-lacZ (spec), spo0A::erm   This study 

BAS302 amyE::PyisK-lacZ (spec), spo0A::erm     This study 

BAS303 amyE::PyodL-lacZ (spec), sigH::cat This study 

BAS304 amyE::PyisK-lacZ (spec), sigH::cat     This study 

BAS305 amyE::PyodL-lacZ (spec), spo0A::erm,  

sigH::cat   

This study 

BAS306 amyE::PyisK-lacZ (spec), spo0A::erm,  

sigH::cat     

This study 

BDR992 amyE::Phy-lacZ (spec) David Z. Rudner 

BKE10750 yisK::erm BGSC 
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Table 2.1.  Continued. 

 

Strain Description Reference 

BKE19640 yodL::erm BGSC 

BKE22320 ponA::erm BGSC 

BYD048 amyE::Phy-yodL (spec), ycgO::Phy-yodL (tet), 

yhdG::Phy-yodL (phleo), sacA::Phy-lacZ (erm) 

This study 

BYD074 amyE::Phy-yisK (spec), yhdG::Phy-yisK (phleo)   This study 

BYD076 amyE::Phy-yisK (spec), yhdG::Phy-yisK (phleo), 

yycR::Phy-yisK (cat), sacA::Phy-lacZ (erm) 

This study 

BYD175 ponA::erm, amyE:: Phy-yisK (spec), yhdG::Phy-

yisK (phleo)   

This study 

BYD176 ponA::erm, amyE:: Phy-yodL (spec), yhdG::Phy-

yodL (phleo)   

This study 

BYD177 kanΩmreBG323E, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD178 kanΩmreBP147R, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD179 kanΩmreBR282S, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD180 kanΩmreBG143A, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD184 kanΩmreBR117G, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD258 ponA::erm, kanΩΔmbl, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo)   

This study 

BYD259 ponA::erm, kanΩΔmbl, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo)   

This study 

BYD262 ponA::erm, kanΩΔmreB, amyE::Phy-yisK 

(spec), yhdG::Phy-yisK (phleo)   

This study 

BYD263 ponA::erm, kanΩΔmreB, amyE::Phy-yodL 

(spec), yhdG::Phy-yodL (phleo)   

This study 

BYD276 ΔyodL This study 

BYD278 ΔyisK This study 

BYD279 ΔyodL, ΔyisK This study 

BYD281 amyE::Phy-yisK (spec), ycgO::Phy-yisK (tet), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat)   

This study 

BYD327 kanΩmreBG323E, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD328 kanΩmreBR117G, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD329 kanΩmreBN145D, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 
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Table 2.1.  Continued. 

 

Strain Description Reference 

BYD330 kanΩmreBP147R, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD332 kanΩmreBS154R,R230C, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD333 kanΩmreBG143A, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD334 kanΩmblE250K, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD335 kanΩmblT317I, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD336 kanΩmblT158M, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD337 kanΩmblΔS251, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD338 kanΩmblP309L, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD339 kanΩmblG156D, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD340 kanΩmblT158A, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD341 kanΩmblD153N, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD342 kanΩmblR63C, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD343 kanΩmblM51I, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD344 kanΩmblA314T, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD345 kanΩmblE204G, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD346 kanΩmblE250K, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD348 kanΩmblT158A, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD349 kanΩmblG156D, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD351 kanΩmblD153N, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD352 kanΩmblM51I, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 
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Table 2.1.  Continued. 

 

Strain Description Reference 

BYD353 kanΩmblA314T, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD354 kanΩmblE204G, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD361 amyE::Phy-yisK (spec), yhdG::Phy-yodL (phleo)   This study 

BYD363 kanΩmreBS154R,R230C, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD365 kanΩmreBR282S, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD404 kanΩmreBN145D, amyE::Phy-yisK (spec), 

yhdG::Phy-yisK (phleo), yycR::Phy-yisK (cat) 

This study 

BYD405 kanΩmblR63C, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD406 kanΩmblΔS251, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD407 kanΩmblP309L, amyE::Phy-yodL (spec), 

yhdG::Phy-yodL (phleo), yycR::Phy-yodL (cat) 

This study 

BYD510 ΔyodL, ΔyisK, amyE::PyisK-yisK (spec)   This study 
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Table 2.2.  Plasmids used in Chapter II. 

 

Plasmid Description Reference 

pAS015 yhdG::Phy-yisK (amp) This study 

pAS040 amyE::PyodL-lacZ (amp) This study 

pAS041 amyE::PyodL-gfp (amp) This study 

pAS044 amyE::PyisK-lacZ (amp) This study 

pAS045 amyE::PyisK-gfp (amp) This study 

pAS047 amyE::gfp (amp) This study 

pAS067 amyE::PyisK-yisK (amp) This study 

pDR111 amyE::Phy (amp)   David Z. Rudner 

pDR244 
Temperature sensitive Cre recombinase 

plasmid (amp)(spec) 

David Z. Rudner 

pJH036 sacA::Phy-lacZ (amp) This study 

pJW004 yhdG::Phy (amp)   This study 

pJW006 amyE::Phy-sirA-gfp (amp)  (275) 

pJW033 ycgO::Phy (amp)   This study 

pJW034 yycR::Phy (amp)(cat)   This study 

pKM062 sacA::erm (amp) David Z. Rudner 

pWX114 yrvN::Phy (amp)(kan)  David Z. Rudner 

pYD073 yhdG::Phy-yodL (amp)   This study 

pYD155 yycR::Phy-yodL (amp)   This study 

pYD156 ycgO::Phy-yisK (amp)   This study 
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Table 2.3.  Oligonucleotides used in Chapter II. 

 

Oligo Sequence 5’ to 3’ 

OAM001 AGAAGCGTTAGCGGCAGCAAGTGAT 

OAM002 CCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACT

ATTTCGATCAGACCAG 

OAM009 GAAAACAATAAACCCTTGCATAGGGGGATCGGGCAAGGCTAG

ACGGGACTTACC 

OAM010 ATGGACACAACAACAGCAAAACAGGC 

OAM011 TAATGGATTTCCTTACGCGAAATA 

OAM013 AGTAGTTCCTCCTTATGTAAGC 

OAS064 TCCTCCTTTTCAAAAGAAAAAAAC 

OAS067 TGTTACATATTGCTGCTTTTTGGT 

OAS078 GGATCCCAGCGAACCATTTGA 

OAS079 GTCGACAAATTCCTCGTAGGC 

OAS080 CCTATCACCTCAAATGGTTCGCTGGGATCCAAAGCAAAAATA

CCCTAAAGGGAA 

OAS081 GTCCCGAGCGCCTACGAGGAATTTGTCGACACACTTTTTTTTT

CGTCGAATTAAG 

OAS086 CGAATACATACGATCCTACAGC 

OAS087 CCTATCACCTCAAATGGTTCGCTGGGATCCAAAAAGTTGGAA

GCACAATAAGTT 

OAS088 GTCCCGAGCGCCTACGAGGAATTTGTCGACATCACCTGGCATT

GCCTTCTT 

OAS089 ATTAATGGTGATATTCTTCATTGA 

OAS091 AGATGGATGTGCTCCAGTGCTCCAAGATCTATACCAAGGTCT 

OAS092 AGACCTTGGTATAGATCTTGGAGCACTGGAGCACATCCATCT 

OAS095 GGAAGCTTGTCCATATTATCAAGATTTGCAGTACCGAGGTCAA

TA 

OAS096 TATTGACCTCGGTACTGCAAATCTTGATAATATGGACAAGCTT

CC 

OAS114 TCTAAGGAATTCCTGTTTTAGTCGGCATAAGCAG 

OAS116 GTAATCTTACGTCAGTAACTTCCACCAAGATCCCCTCCCTTTT

ATTT 

OAS117 AAGAAATAAAAGGGAGGGGATCTTGGTGGAAGTTACTGACGT

AAGAT 

OAS118 ACTTAGGGATCCTTATTTTTGACACCAGACCAACT 

OAS119 TGAAAAGTTCTTCTCCTTTACTCATCAAGATCCCCTCCCTTTTA

TTT 

OAS120 AAGAAATAAAAGGGAGGGGATCTTGATGAGTAAAGGAGAAG

AACTTTTC 

OAS121 ACTTAGGGATCCTTATTTGTATAGTTCATCCATGCCAT 

OAS134 TCTAAGGAATTCTCCTTTTCAGCTGCTCCCGAT 
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Table 2.3.  Continued. 

 

Oligo Sequence 5’ to 3’ 

OAS135 GTAATCTTACGTCAGTAACTTCCACGTTATTCCTCCATCATCTT

TTAAA 

OAS136 ATTTAAAAGATGATGGAGGAATAACGTGGAAGTTACTGACGT

AAGAT 

OAS137 TGAAAAGTTCTTCTCCTTTACTCATGTTATTCCTCCATCATCTT

TTAAA 

OAS138 ATTTAAAAGATGATGGAGGAATAACATGAGTAAAGGAGAAG

AACTTTTC 

OAS148 TCTAAGGAATTCATGAGTAAAGGAGAAGAACTTTTC 

OAS149 ACTTAGGGATCCTTATTTGTATAGTTCATCCATGCC 

OAS274 TCTAAGGAATTCTCCTTTTCAGCTGCTCCCGA 

OAS275 ACTTAGGGATCCTCAGCCAATTTGGTTTGACAG 

OEA035 GGATAACAATTAAGCTTACATAAGGAGGAACTACTATGAAAT

TTGCGACAGGGGAACTT 

OEA036 TTCCACCGAATTAGCTTGCATGCGGCTAGCCCAGTTTTATTCA

GCCAATTTGGT 

OEA275 GGATAACAATTAAGCTTACATAAGGAGGAACTACTATGATGT

TATCCGTGTTTAAAAAG 

OEA276 TTCCACCGAATTAGCTTGCATGCGGCTAGCTTTCTTTTCATTAT

GTCGTTTGTA 

OJH159 CTGCAGGAATTCGACTCTCTA 

OJH160 TAGCTTGCATGCGGCTAGC 

OJH185 CAGGAATTCGACTCTCTAGC 

OJH186 CTCAGCTAGCTAACTCACATTAATTGCGTTGC 
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Microscopy   

For microscopy experiments, all strains were grown in the indicated medium in 

volumes of 25 ml in 250 ml baffled flasks, and placed in a shaking waterbath set at 37°C 

and 280 rpm. Unless stated otherwise, misexpression was performed by inducing 

samples with 1.0 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) and imaging 

samples 90 min post-induction. Fluorescence microscopy was performed with a Nikon 

Ti-E microscope equipped with a CFI Plan Apo lambda DM 100X objective, Prior 

Scientific Lumen 200 Illumination system, C-FL UV-2E/C DAPI and C-FL GFP HC 

HISN Zero Shift filter cubes, and a CoolSNAP HQ2 monochrome camera. Membranes 

were stained with TMA-DPH [1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-

hexatriene p -toluenesulfonate] (0.02 mM) and imaged with exposure times of 1 sec with 

a neutral density filter in place to reduce cytoplasmic background. All GFP images were 

captured with a 1 sec exposure time. All images were captured with NIS Elements 

Advanced Research (version 4.10), and processed with NIS Elements Advanced 

Research (version 4.10) and ImageJ64 (276). Cells were mounted on glass slides with 

1% agarose pads or polylysine-treated coverslips prior to imaging. To quantitate cell 

lengths for Fig 2.11, the cell lengths for 500 cells were determined for each population. 

The statistical significance of cell length differences between populations was 

determined using an unpaired student’s t-test. 

 

Plate growth assay   

B. subtilis strains were streaked on LB-Lennox plates containing 100 µg/ml 

spectinomycin and 1 mM IPTG. The plates were supplemented with the indicated 

concentrations of MgCl2 when indicated. Plates were incubated at 37°C overnight and 

images were captured on a ScanJet G4050 flatbed scanner (Hewlett Packard). 
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Heat kill   

Spore formation was quantified by growing cells in Difco sporulation medium 

(DSM)(277). A freshly grown single colony of each strain was inoculated into 2 mL of 

DSM media and placed in a roller drum at 37°C, 60 rpm for 36 hrs. To determine colony 

forming units/ml, an aliquot of each culture was serially diluted and plated on DSM agar 

plates. To enumerate heat resistant spores/ml, the serial diluted cultures were subjected 

to a 20 min heat treatment at 80°C and plated on DSM agar plates. The plates were 

incubated at 37°C overnight and the next day colony counts were determined. The 

relative sporulation frequency compared to wildtype was determined by calculating the 

spores/CFU of each experimental and dividing it by the spores/CFU of wildtype. The 

reported statistical significance was determined using an unpaired student’s t-test. 

 

Transcription fusions   

Transcriptional fusions were constructed by fusing a ~200 bp region up to the 

start codon of either yodL or yisK to gfp or lacZ and integrating the fusions into the B. 

subtilis chromosome at the amyE locus (for more details, see strain construction in the 

supplemental text). Microscopy was conducted on each strain over a timecourse in 

sporulation by resuspension media (see general methods) or in a nutrient exhaustion 

timecourse in CH (272). Beta-galactosidase assays were performed as described (278), 

except all samples were frozen at -80°C before processing. All experiments were 

performed on at least three independent biological replicates. 

 

Suppressor selections   

Single colonies of BYD048 (3X Phy-yodL, Phy-lacZ) or BYD076 (3X Phy-yisK, 

Phy-lacZ) were used to inoculate independent 5 ml LB-Lennox cultures. Six independent 
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cultures were grown for each strain. The cultures were grown for 6 hrs at 37°C and 0.3 

µl of each culture was diluted in 100 µl LB and plated on an LB-Lennox agar plate 

containing 100 µg/ml spectinomycin and 1 mM IPTG. After overnight growth, 

suppressors that arose were patched on both LB-Lennox agar plates supplemented with 

100 µg/ml spectinomycin and LB-Lennox agar plates supplemented with 100 µg/ml 

spectinomycin, 1.0 mM IPTG, and 40 µg/ml X-Gal and grown at 37°C overnight. Only 

blue colonies were selected for further analysis; this screen eliminated mutants unable to 

derepress Phy in the presence of IPTG. In addition, each Phy-yodL or Phy-yisK construct 

was transformed into a wildtype background to ensure that the construct remained fully 

functional with respect to preventing cell growth on LB-Lennox agar plates 

supplemented with the relevant antibiotic and 1 mM IPTG. 

 

Whole-genome sequencing and analysis   

Genomic DNA was isolated from six YodL-resistant suppressors obtained from 

independent cultures as well as the parent strain (BYD048) by inoculating a single 

colony in 6 ml LB-Lennox media and growing at 37°C for 4 hr in a roller drum. Cells 

were collected by spinning at 21,130 x g for 2 min at room temperature, resuspending 

the pellets in lysis buffer [20 mM Tris-HCl pH 7.5, 50 mM EDTA pH 8, 100 mM NaCl, 

and 2 mg/ml lysozyme] and incubating at 37°C for 30 min. Sarkosyl was added to a final 

concentration of 1% (w/v). Protein was removed by extracting with 600 μl phenol, 

centrifuging at 21,130 x g for 5 min at room temperature, and transferring the top 

(aqueous layer) to a new microcentrifuge tube. This was followed by an extraction with 

600 μl phenol-saturated chloroform and centrifugation at 21,130 x g for 5 min at room 

temperature. After transferring the aqueous layer to a new microcentrifuge tube, a final 

extraction was performed with 100% chloroform, followed by centrifugation at 21,130 x 
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g for 5 min at room temperature. The aqueous layer was transferred to a new 

microcentrifuge tube, being careful to avoid the interphase material. To precipitate the 

genomic DNA, a 1/10th volume of 3.0 M Na-acetate and 1 ml of 100% ethanol was 

added, and the tube was inverted multiple times. The sample was centrifuged at 21,130 x 

g for 1 min at room temperature in a microcentrifuge. The pellet was washed with 150 μl 

70% ethanol and resuspended in 500 μl TE [10 mM Tris pH 7.5, 1 mM EDTA, pH 8.0]. 

To eliminate potential RNA contamination, RNase was added to a final concentration of 

200 μg/ml and the sample was incubated at 55°C for 1 hr. To remove the RNase, the 

genomic DNA was re-purified by phenol-chloroform extraction and ethanol precipitation 

as described above. The final pellet was resuspended in 100 μl TE. Bar-coded libraries 

were prepared from each genomic DNA sample using a TruSeq DNA kit according to 

manufacture specifications (Illumina), and the samples were subjected to Illumina-based 

whole-genome sequencing using a MiSeq 250 paired-end run (Illumina). CLC Genomics 

Workbench (Qiagen) was used to map the sequence reads against the Bs168 reference 

genome and to identify single nucleotide polymorphisms, insertions, and deletions. 

Mutations associated with the Phy integration contructs and those in which less than 40% 

of the reads differed from the reference genome were excluded as candidate changes 

responsible for suppression in our initial analysis (Table 2.6). The remaining suppressors 

mutations were identified by PCR amplifying mreB (using primer set OAS044 and 

OAS045) and mbl (using primer set OAS046 and OAS047), and sequencing with the 

same primers. To determine if the candidate suppressors alleles identified were sufficient 

to confer resistance to the original selective pressure, each was linked to a kanamycin 

resistance cassette and moved by transformation into a clean genetic background. 
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Results 

YodL and YisK affect cell width 

To identify novel factors involved in cellular morphogenesis, we created an 

ordered gene misexpression library comprising over 800 previously uncharacterized 

genes from B. subtilis. Each gene was placed under the control of an IPTG-inducible 

promoter (Phy) and integrated in single copy (1X) at amyE, a non-essential locus in the B. 

subtilis chromosome. The library (called the BEIGEL for Bacillus Ectopic Inducible 

Gene Expression Library), was screened for misexpression phenotypes that perturbed 

growth on solid media, and also resulted in obvious defects in nucleoid morphology, 

changes in cell division frequency, and/or perturbations in overall cell shape in liquid 

cultures. Two strains, one harboring Phy-yodL and one harboring Phy-yisK, were unable to 

form colonies on plates containing inducer (Fig 2.1A) and also produced wide, irregular 

cells with slightly tapered poles following misexpression in LB liquid media (Fig 2.1B). 

Cell lysis and aberrant cell divisions were also observed. Introducing a second copy (2X) 

of each Phy misexpression construct into the chromosome did not appreciably enhance 

cell widening at the 90 min post-induction timepoint, although cell lysis was more 

readily observed (Fig 2.1B). Phy-yisK (2X) misexpression also led to a drop in optical 

density over time (Fig 2.2A), consistent with the cell lysis observed microscopically. We 

conclude that the activities of yodL and yisK target one or more processes integral to 

width control during cell elongation. 
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Fig. 2.1.  Misexpression of YodL and YisK prevents cell growth on solid media and 

causes loss of cell shape in liquid media. (A) Cells harboring one (1X) or two (2X) 

copies of Phy-yodL (BAS040 and BAS191) or Phy-yisK (BAS041 and BYD074) were 

streaked on an LB plate supplemented with 100 µg/ml spectinomycin and, when 

indicated, 1 mM IPTG or 1 mM IPTG and the denoted concentration of MgCl2. Plates 

were incubated for ~16 hrs at 37°C before image capture (top). (B) The strains 

described above were grown in LB-Lennox media at 37°C to mid-exponential and back-

diluted to an OD600 of ~0.02. When indicated, 1 mM IPTG or 1 mM IPTG and the 

denoted concentration of MgCl2 was added. Cells were grown for 1.5 hrs at 37°C before 

image capture. Membranes were stained with TMA-DPH. All images were scaled 

identically. 
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Fig. 2.2.  Growth curves in LB following misexpression of YodL and/or YisK. 2X Phy-

yodL (BAS191), 2X Phy-yisK (BYD074) and 2X Phy-yodL, 2X Phy-yisK (BYD281) were 

grown in LB media at 37°C to mid-exponential diluted to an OD600 of <0.02. At time 0, 

1 mM IPTG or 1 mM IPTG and the indicated concentration of MgCl2 was added. 
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The yodL and yisK misexpression phenotypes are similar to those observed when 

proteins involved in cell elongation are perturbed in B. subtilis (60, 61, 279). Since the 

addition of magnesium was previously reported to suppress the lethality and/or 

morphological phenotypes associated with depletion or deletion of some proteins 

important for cell elongation in B. subtilis (60-62, 257, 280), we assessed if the Phy-yodL 

and Phy-yisK misexpression phenotypes could be rescued by growing cells with media 

supplemented with two different concentrations of MgCl2. The YodL-producing cells 

failed to grow on any LB media containing inducer, regardless of MgCl2 concentration 

(Fig 2.1A). In contrast, LB supplemented with 25 mM MgCl2 restored viability to the 

strain producing YisK (Fig 2.1A). Interestingly, even 25 mM MgCl2 was not sufficient 

to suppress the cell-widening effect associated with YodL and YisK misexpression (Fig 

2.1B), although these cells did not lyse (Fig 2.2C). Since PAB medium was often used in 

the prior studies showing MgCl2 supplementation rescued cell shape (60-62, 257, 280), 

we also assayed for growth on PAB following YodL and YisK expression. PAB 

supplemented with 25 mM MgCl2 rescued growth on plates (Fig 2.3A), but still did not 

rescue morphology in liquid culture (Fig 2.3B). 
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Fig. 2.3.  Misexpression of YodL and YisK on PAB media. (A) Cells were streaked on 

PAB solid media supplemented with 100 µg/ml spectinomycin and, when indicated, 1 

mM IPTG and the denoted concentration of MgCl2. Plates were incubated for ~16 hr at 

37°C before image capture. (B) Cells were grown in PAB liquid media at 37°C to mid-

exponential and back-diluted to an OD600 of <0.02. When indicated, 1 mM IPTG and the 

denoted concentration of MgCl2 was added. Cells were then grown for 1.5 hrs at 37°C 

before image capture. Membranes are stained with TMA-DPH (white). All images are 

shown at the same magnification. 
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yodL and yisK expression 

To better understand the possible physiological functions of the yodL and yisK 

gene products, we analyzed the genes and their genetic contexts bioinformatically. yodL 

is predicted to encode a 12.5 kDa hypothetical protein which, based on amino acid 

similarity, is conserved in the Bacillus genus. In data from a global microarray study 

analyzing conditional gene expression in B. subtilis, yodL is expressed as a 

monocistronic mRNA, exhibiting peak expression ~2 hrs after entry into sporulation 

(281). yodL expression is most strongly correlated with expression of racA and refZ 

(yttP)(281), genes directly regulated by Spo0A (282). yodL was not previously identified 

as a member of the Spo0A regulon controlling early sporulation gene expression (282, 

283), however a more recent study found that yodL expression during sporulation is 

reduced in a Δspo0A mutant (284). Consistent with this observation, we identified a 

putative Spo0A box approximately ~75 bp upstream of the annotated yodL start codon 

(Fig 2.4A). yisK is predicted to encode a 33 kDa protein and is annotated as a putative 

catabolic enzyme based on its similarity to proteins involved in the degradation of 

aromatic amino acids (285). yisK was previously identified as a member of the SigH 

regulon, and possesses a SigH -35/-10 motif (Fig 2.4B)(283). Expression of yisK peaks 

~2 hrs after entry into sporulation (270) and is most strongly correlated with expression 

of kinA (281), a gene regulated by both SigH (the stationary phase sigma factor)(283, 

286-288) and Spo0A (282, 288). As with yodL, we identified a putative Spo0A box in 

the regulatory region upstream of the yisK start codon (Fig 2.4B).   
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Fig. 2.4.  DNA sequence upstream of yodL and yisK. (A) Putative Spo0A box 

(underlined) upstream of the yodL start codon. (B) SigH binding motifs (double 

underline) and putative Spo0A box (underlined) upstream of yisK start codon. 
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To independently test if yodL and yisK expression are consistent with Spo0A-

dependent regulation, we fused the putative regulatory regions upstream of each gene to 

a gfp reporter gene, and integrated the fusions into the amyE locus. We then followed 

expression from the promoter fusions over a timecourse in CH liquid broth, a rich 

medium in which the cells first grow exponentially, transition to stationary phase, and 

finally gradually enter sporulation (Fig 2.5A-C). In this timecourse, GFP signal from 

PyisK-gfp increased dramatically from time 0 (OD600 ~0.6) to time 1 hr (OD600 ~1.6) (Fig 

2.5C), consistent with yisK’s prior characterization as a SigH-regulated gene (283). In 

contrast, GFP fluorescence from PyodL-gfp became evident at a later timepoint (120 min) 

and was more heterogeneous (Fig 2.5C), consistent with expression patterns previously 

observed for other Spo0A-P regulated genes (289, 290).   

To quantitate expression from the promoters, we generated PyodL-lacZ and PyisK-

lacZ reporter strains and collected samples over a CH timecourse beginning with early 

exponential (OD600 = 0.2). Expression from PyodL-lacZ rose steadily beginning about 2 

hrs after exit from exponential growth, and continued to rise at least until the final 

timepoint taken (Fig 2.5D). In contrast, expression from PyisK-lacZ rose as cells 

transitioned from early to late exponential growth, reached peak levels shortly after exit 

from exponential growth, and remained steady for the remainder of the timepoints (Fig 

2.5E). Wild-type expression from both PyodL-lacZ and PyisK-lacZ required both SigH and 

Spo0A, and was largely eliminated in the absence of both regulators (Fig 2.5D and 

2.5E). We did not attempt to draw further conclusions from this data, since Spo0A and 

SigH each require the other for wildtype levels of expression (see discussion).   
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Fig. 2.5.  Expression from yodL and yisK promoters during a CH timecourse. 

Expression from the putative yodL and yisK promoter regions was monitored in CH 

medium at 37°C over a timecourse. The OD600 (A and B) and production of either GFP 

(C) or beta-galactosidase (D and E) was monitored at 30 min intervals. Membranes 

were stained with TMA-DPH. All GFP channel images were captured with 1 sec 

exposures and scaled identically to allow for direct comparison. In this media, time 0 

represents the last exponential timepoint, not the initiation of sporulation. 
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Fig. 2.6.  Expression from yodL and yisK promoters following sporulation by 

resuspension. Expression from the putative yodL and yisK promoter regions was 

monitored in resuspension medium. The production of either GFP (A) or beta-

galactosidase (B and C) was monitored at 20 min intervals. Membranes were stained 

with TMA-DPH. All GFP channel images were captured with 1 sec exposures and 

scaled identically to allow for direct comparison. 
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Fig. 2.7.  A strain harboring a GFP reporter without a promoter during a sporulation 

timecourse. BAS205 (Pempty-gfp) was induced to sporulate via resuspension, and 

membranes are stained with TMA (white). Signal from GFP was scaled identically for 

all images and pseudocolored green. All images are shown at the same magnification. 
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We then followed expression from the promoter fusions over a time-course 

following the sporulation by resuspension method, which generates a more synchronous 

entry into sporulation (291). At time 0, neither the strain harboring PyodL-gfp, nor the 

strain harboring PyisK-gfp showed appreciable levels of fluorescence (Fig 2.6A), 

appearing similar to a negative control harboring gfp without a promoter (Fig 2.7). 

Between 0 and 40 min, both strains showed detectable increases in fluorescence. At 60 

min, when the first polar division characteristic of sporulation begins to manifest, both 

strains were more strongly fluorescent (Fig 2.6A). GFP fluorescence from PyodL was 

qualitatively more intense than fluorescence produced from PyisK (all images were 

captured and scaled with identical parameters to allow for direct comparison). Moreover, 

the GFP signal continued to accumulate in the strain harboring PyodL-gfp for at least two 

hrs (Fig 2.6A) and was heterogenous, consistent with activation by Spo0A. In contrast, 

the fluorescence signal produced from PyisK-gfp was similar across the population and 

appeared similar at the 60 and 120 min timepoints (Fig 2.6A), consistent with SigH 

regulation. 

To quantitate expression from the promoters during a sporulation by 

resuspension timecourse, we collected timepoints from strains harboring either the PyodL-

lacZ or PyisK-lacZ reporter constructs and performed beta-galactosidase assays. 

Expression from PyodL-lacZ rose rapidly between the 40 min and 100 min timepoints, and 

steadily declined thereafter (Fig 2.6B). The decline in signal was not observed for the 

GFP reporter, likely because the GFP is stable once synthesized (292). In contrast, 

expression from PyisK-lacZ was highest at the time of resuspension (T0) and declined up 

until the final timepoint (Fig 2.6C).  

Collectively, the patterns expression we observe for yodL are consistent with 

those observed for genes activated by high-threshold levels of Spo0A during sporulation, 
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including racA, spoIIG, and spoIIA (293). In contrast, yisK’s expression pattern is 

similar to that observed for kinA (281, 287, 294), with expression increasing in late 

exponential and stationary phase and early sporulation in a SigH-dependent manner (Fig 

2.5), but decreasing during a sporulation by resuspension timecourse (Fig 2.6). We do 

not exclude the possibility that YodL and YisK might also function in other growth 

contexts. 

 

A ΔyodL ΔyisK mutant is defective in sporulation 

Since yodL and yisK expression correlates with other early sporulation genes, we 

next investigated if the gene products influenced the production of heat-resistant spores. 

To determine the number of heat-resistant spores in a sporulation culture, we quantified 

the number of colony forming units (CFU) present in cultures before (total CFU) and 

after (heat-resistant CFU) a heat treatment that kills vegetative cells. These values were 

normalized to display the sporulation efficiency of the mutants relative to wildtype. 

Single mutants in which either yodL or yisK were deleted displayed only mild (97% and 

94%, respectively) reductions in relative sporulation efficiency (Table 2.4). Although the 

single mutants always sporulated less efficiently than wildtype in each experimental 

replicate, the differences were not statistically significant with only six experimental 

replicates. In contrast, the ΔyodL ΔyisK double mutant produced ~20% less heat-

resistant spores than wildtype (P<0.0006)(Table 2.4). No decrease in total CFU was 

observed for any of the mutants compared to wildtype, indicating that the reduction in 

heat-resistant spores in the ΔyodL ΔyisK mutant was not due to reduced cell viability 

before heat treatment (Table 2.4). The gene downstream of yisK, yisL, is transcribed in 

the same direction as yisK. To determine if the reduction in sporulation we observed 

might be partially attributable to polar effects of the yisK deletion on yisL expression, we 
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introduced PyisK-yisK at an ectopic locus (amyE) in the ΔyodL ΔyisK mutant and repeated 

the heat-kill assay. The ectopic copy of PyisK-yisK restored sporulation in the ΔyodL 

ΔyisK to levels statistically indistinguishable from the ΔyodL single mutant (Table 2.4). 

These results lend support to the idea that YodL and YisK function during early 

sporulation and possess activities that, directly or indirectly, affect the production of 

viable spores. We do not exclude the possibility that YodL and YisK might also function 

outside the context of sporulation. 

Given that yisK and yodL expression during vegetative growth leads to cell 

widening, we hypothesized that yisK and yodL mutants might produce thinner cells or 

spores during sporulation. However, no qualitative differences in cell or spore width 

were observed for the ΔyodL, ΔyisK, or ΔyodL ΔyisK mutant populations compared to 

wildtype during a sporulation timecourse (Fig 2.8). We also observed no qualitative 

differences in the shapes of germinating cells (data not shown). Thus, although YodL 

and YisK contribute to the production of heat-resistant spores, they do not appear to be 

required to generate any of the major morphological changes required for spore 

production.  
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Table 2.4.  Sporulation efficiency of yodL and yisK mutants. Sporulation efficiency is 

the number of spores/ml divided by the total cfu/ml × 100%.  Relative sporulation 

efficiency is sporulation efficiency normalized to wildtype × 100%. The data shown is 

the average of three independent biological replicates. The difference in sporulation 

efficiency between wildtype and the ΔyodL ΔyisK double mutant is statistically significant 

(P<0.0006). 
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Fig. 2.8.  Strains lacking yodL and/or yisK appear morphologically similar to wildtype 

during a sporulation timecourse. B. subtilis 168 (wt), BYD276 (ΔyodL), BYD278 

(ΔyisK) and BYD279 (ΔyodL ΔyisK) were grown induced to sporulate via resuspension, 

and cells were grown for the indicated amount of time at 37°C before image capture. 

Membranes are stained with TMA-DPH (white). All images are shown at the same 

magnification. 
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MreB and Mbl are genetic targets of YodL and YisK activity 

To identify genetic targets associated with YodL and YisK activity, we took 

advantage of the fact that misexpression of the proteins during vegetative growth 

prevents colony formation on plates and performed suppressor selection analysis. Strains 

harboring three copies of each misexpression cassette were utilized to reduce the 

chances of obtaining trivial suppressors in the misexpression cassette itself. In addition, 

Phy-lacZ was used as a reporter to eliminate suppressors unable to release LacI 

repression following addition of inducer. In total, we obtained 14 suppressors resistant to 

YodL expression and 13 suppressors resistant to YisK expression. Six of the suppressors 

resistant to YodL were subjected to whole-genome sequencing. The results of the 

sequencing are shown in Table A1.5. All of the suppressors possessed mutations in 

either mreB or mbl, genes previously shown to be important in regulating cell width 

(Table 2.5). Using targeted sequencing, we determined that the remaining suppressor 

strains resistant to YodL also harbored mutations in mreB or mbl. Since the phenotypes 

of YodL and YisK expression were similar, we also performed targeted sequencing of 

the mreB and mbl chromosomal regions in the YisK-resistant suppressors. All but one of 

the YisK-resistant suppressors possessed mutations in mbl; the remaining suppressor 

harbored a mutation in mreB.   
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Table 2.5.  Whole-genome sequencing analysis of genomic DNA from six YodL-

resistant suppressors. BYD048 (three copies of Phy-yodL) was used for suppressor 

selection. Candidates were analyzed by whole-genome sequencing as described in the 

materials and methods. 
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To determine if the point mutations we identified were sufficient to confer 

resistance to YodL or YisK misexpression, we generated the mutant alleles in clean 

genetic backgrounds and assayed for resistance to three copies (3X) of each 

misexpression construct (Table 2.6). In all cases but one, the engineered strains were 

resistant to the same selective pressure applied in the original selections (either 3X yodL 

or 3X yisK)(Table 2.6), indicating that the mreB or mbl mutations identified through 

sequencing were sufficient to confer resistance. When we attempted to engineer a strain 

harboring only MreBS154R, all but one of the strains also possessed a second substitution, 

MreBR230C. Although the remaining strain possessed only the MreBS154R substitution in 

MreB, unlike the original suppressor identified by whole genome sequencing (Table 

2.5), the MreBS154R harboring strain was also sensitive to YodL expression. Based on 

these data, we suspect that the strain harboring MreBS154R might be unstable, and 

possibly predisposed to the accumulation of second-site mutations. 

The YodL-resistant strains generally possessed mutations resulting in amino acid 

substitutions with charge changes (Table 2.6). When mapped to the T. maritima MreB 

structure, 5/7 of the unique suppressor strains possessed amino acid substitutions in a 

region important for mediating the interaction between MreB and the bitopic membrane 

protein RodZ (MreBG143A, MreBN145D, MreBP147R, MreBS154R, and MreBR282S)(Table 2.6 

and Fig 2.9) (78, 295); three of these substitutions occur in residues that make up the 

RodZ-MreB binding surface (MreBN140, MreBP142, and MreBR279 in T. maritima) (78).   
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Table 2.6.  Analysis of suppressor strains resistant to YodL and/or YisK. The suppressor 

selections are described in detail in materials and methods. Candidate mutations were 

introduced into clean genetic backgrounds harboring three copies of Phy-yodL or three 

copies of Phy-yisK, and the resultant strains were assessed for resistance (R) or sensitivity 

(S) to either yodL or yisK expression as judged by ability to grow on LB plates 

supplemented with 1 mM IPTG and 100 μg/ml spectinomycin. 1Originally identified 

using whole-genome sequencing (Table S1). 2Residues previously implicated in the 

RodZ-MreB interaction (78). 3Residues previously implicated in resistance to A22 (296-

298). The (*) indicates that two suppressors possessing the same nucleotide change were 

obtained in original selection. The underlined residues displayed specificity in resistance 

to YodL over YisK (top) or YisK over YodL (bottom). 
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Fig. 2.9.  Location of MreB residues conferring resistance to YodL. The co-crystal 

structure of RodZ-MreB (2WUS)(78) was extracted from the Protein Data Bank. MreB 

is labeled in brown and RodZ is labeled in grey. The identity and locations of the amino 

acid substitutions obtained from the YodL spontaneous suppressor selections are 

indicated on the structure, marked by a black asterisk above the relevant amino acid on 

the sequence alignment. Substitutions that confer resistance to YodL over YisK are 

shown in bold. Residues previously implicated in the MreB-RodZ interaction interface 

(78) are indicated by red asterisks. The filled circles indicate the location of the 

substitutions in Mbl conferring resistance to YodL misexpression. MreBR117G 

(underlined) was identified in a suppressor selections conferring resistance to YodL as 

well as in suppressor selections conferring resistance to YisK. 
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A majority of the YisK-resistant Mbl variants clustered in regions of Mbl that are 

predicted to make up the ATP-binding pocket (Table 2.6 and Fig 2.10). Moreover, seven 

of the substitutions occurred in amino acids previously associated with resistance to the 

MreB inhibitor A22 in C. crescentus and Vibrio cholerae (Fig 2.10) (253, 296, 298).  

MreBR117G and MblE250K were independently isolated in both the YodL and YisK 

suppressor selections, raising the possibility that at least some of the other MreB and 

Mbl variants might exhibit cross-resistance to YodL and YisK misexpression. To test for 

cross-resistance, we generated the mutant alleles in clean genetic backgrounds, and then 

introduced 3X copies of Phy-yisK into the YodL-resistant suppressors, and 3X copies Phy-

yodL into the YisK-resistant suppressors. We then assayed for the ability of the 

misexpression strains to grow on media in the presence of inducer. The results, 

summarized in Table 2.6, show that several of the variants exhibited resistance to both 

YodL and YisK. Three MreB variants, MreBN145D, MreBP147R and MreBR282S, exhibited 

specificity in their resistance to YodL compared to YisK. Three Mbl variants, MblR63C, 

MblΔS251, and MblP309L, showed specificity in their resistance to YisK over YodL. These 

results suggest that the alleles exhibiting cross-resistance to both YisK and YodL are 

likely to be general, possibly conferring gain-of-function to either MreB or Mbl activity. 
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Fig. 2.10.  Location of Mbl residues conferring resistance to YisK. The structure of B. 

subtilis Mbl, as predicted by I-TASSER (299), threaded to T. maritima MreB 

(1JCG)(78). The structure on the right is a surface prediction model. The identity and 

locations of the amino acid substitutions obtained from the YisK spontaneous suppressor 

selections are indicated on the structure, with substitutions conferring resistance to YisK 

over YodL in bold. The sequence alignment is of MreB from T. maritima, B. subtilis 

168, C. crescentus NA1000, E. coli MG1655, and V. cholera N16961. The location of 

amino acid substitutions conferring YisK resistance are indicated by black asterisks. 

Residues also previously shown to confer resistance to A22 in C. crescentus NA1000 

(253, 296) and V. cholera N16961 (298) are indicated by red and blue asterisks, 

respectively. The filled triangle corresponds to a residue shown by in vivo crosslinking 

to be important for the formation of antiparallel MreB protofilaments (300). The filled 

circle denotes the location of MreBR117G, which was identified in spontaneous suppressor 

selections conferring resistance to both YodL and YisK. MblT317I (underlined) was only 

identified in a spontaneous suppressor selection conferring resistance to YodL, although 

it exhibits cross-resistance to YisK (see Fig 2.5). 
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Fig. 2.11.  YodL and YisK co-misexpression causes cell lysis. (A) BYD361 (Phy-yodL, 

Phy-yisK) and BYD281 (2X Phy-yodL, 2X Phy-yisK) were streaked on an LB plate with 

100 µg/ml spectinomycin and, when indicated 1 mM IPTG or 1 mM IPTG and the 

denoted concentration of MgCl2. (B) Cells were grown in LB-Lennox media at 37°C to 

mid-exponential and back-diluted to an OD600 of ~0.02. When indicated 1 mM IPTG or 

1 mM IPTG and the denoted concentration of MgCl2 were added. Cells were then 

grown for 1.5 hrs at 37°C before image capture. Membranes are stained with TMA-

DPH. All images are shown at the same magnification. 
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YodL and YisK’s cell-widening activities require MreB and Mbl, respectively 

The phenotypic consequences of YodL and YisK misexpression are similar but 

not identical (Fig 2.1B), suggesting that YodL and YisK might have distinct targets. 

Consistent with this idea, YodL and YisK coexpression resulted in phenotypes distinct 

from misexpression of either YodL or YisK alone. More specifically, cells co-expressing 

YodL and YisK did not grow on plates, regardless of media or MgCl2 concentration (Fig 

2.3A and Fig 2.11A) and growth without lysis in liquid media required the presence of 

MgCl2 (Fig 2.2, Fig 2.3B, and Fig 2.11B). Importantly, the co-expressing cells displayed 

a round morphology that strongly contrasted with strains expressing either YodL or 

YisK alone (Fig 2.3B and Fig 2.11B). The round morphology was unlikely due to higher 

expression of gene products (1X Phy-yodL plus 1X Phy-yisK), since cells harboring two 

copies (2X) of either Phy-yodL or Phy-yisK did not become round (Fig 2.1B and Fig 

2.3B).  

Based on the observation that YodL and YisK coexpression yields distinct 

phenotypes, and the fact that all of the YodL-specific suppressor mutations occurred in 

mreB (MreBN145D, MreBP147R and MreBR282S), while all of the YisK-specific suppressor 

mutations occurred in mbl (MblR63C, MblΔS251, and MblP309L), we hypothesized that 

YodL targets MreB, whereas YisK targets Mbl. To test these hypotheses, we assessed if 

MreB and Mbl are specifically required for YodL and YisK function by taking 

advantage of the fact that mreB and mbl can be deleted in a ΔponA background with only 

minor changes in cell shape (60, 61). The ΔponA strain, which does not make PBP1, 

produces slightly longer and thinner cells than the parent strain, and requires MgCl2 

supplementation for normal growth (301, 302). We generated ΔponA ΔmreB and ΔponA 

Δmbl strains and then introduced either two copies of Phy-yodL or two copies of Phy-yisK 

into each background. We reasoned that 2X expression would provide a more stringent 
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test for specificity than 1X expression, as off-target effects (if any), would be easier to 

detect. To assess the requirement of either mreB or mbl for YodL and YisK activity, 

cells were grown to exponential phase in LB media supplemented with 10 mM MgCl2, 

back-diluted to a low optical density, and induced for 90 min before images were 

captured for microscopy. Uninduced controls all appeared as regular rods, although 

ΔponA deletion strains were noticeably thinner than wildtype parents (Fig 2.12). The 

ΔponA cells became wider following YodL expression, indicating that PBP1 is not 

required for YodL activity. We also observed that the poles of the ΔponA mutant were 

less elongated and tapered than the wild-type control following YodL expression, 

suggesting that this particular effect of YodL expression is PBP1-dependent (Fig 2.12A). 

A ΔponA Δmbl mutant phenocopied the ΔponA parent following YodL expression (Fig 

2.12A), indicating that Mbl is not required for YodL’s activity. In contrast, the ΔponA 

ΔmreB strain did not show morphological changes following YodL expression, and 

instead appeared similar to the uninduced control. We conclude that YodL requires 

MreB for its cell-widening activity.   
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Fig. 2.12.  YodL and YisK’s cell-widening activities require MreB and Mbl, 

respectively. (A) Cells harboring 2X copies of Phy-yodL in a wildtype (BAS191), ΔponA 

(BYD176), ΔponA ΔmreB (BYD263), ΔponA Δmbl (BYD259) or ΔponA Δmbl ΔmreBH 

(BAS249) background were grown at 37°C in LB supplemented with 10 mM MgCl2 to 

mid-exponential. To induce yodL expression, cells were back-diluted to an OD600 of 

~0.02 in LB with 10 mM MgCl2, and IPTG (1 mM) was added. Cells were grown for 1.5 

hrs at 37°C before image capture. Membranes are stained with TMA-DPH. All images 

are shown at the same magnification. (B) Cells harboring 2X copies of Phy-yisK in a 

wildtype (BYD074), ΔponA (BYD175), ΔponA ΔmreB (BYD262), ΔponA Δmbl 

(BYD258) or ΔponA Δmbl ΔmreBH (BAS248) background were grown at 37°C in LB 

supplemented with 10 mM MgCl2 to mid-exponential. To induce yisK expression, cells 

were back-diluted to an OD600 of ~0.02 in LB with 10 mM MgCl2, and IPTG (1 mM) 

was added. Cells were grown for 1.5 hrs at 37°C before image capture. Membranes are 

stained with TMA-DPH. All images are shown at the same magnification. 
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We performed a similar series of experiments for YisK misexpression. The 

ΔponA mutant was sensitive to YisK expression, indicating that PBP1 is not required for 

YisK-dependent cell-widening. Similarly, expression of YisK in a ΔponA ΔmreB mutant 

also resulted in loss of cell width control (Fig 2.12B), indicating that MreB is not 

required for YisK activity; however, unlike YisK expression in a wildtype or ΔponA 

background, the cells became round (Fig 2.12B), more similar to the YodL and YisK co-

expressing cells (Fig 2.3B and Fig 2.11). In contrast, a ΔponA Δmbl mutant did not lose 

control over cell width following YisK expression (Fig 2.12B), indicating that YisK 

activity requires Mbl for its cell-widening activity. We conclude that YodL requires 

MreB, but not Mbl for its cell-widening activity, whereas YisK requires Mbl, but not 

MreB. 

 

YisK possesses at least one additional target 

Although YisK expression in a ΔponA Δmbl mutant did not result in cell-

widening, we observed that the induced cells appeared qualitatively shorter than the 

uninduced control, suggesting that YisK might possess a second activity (Fig 2.12B). 

Quantitation of cell lengths in a ΔponA Δmbl mutant following YisK expression 

revealed that the YisK-induced cells were ~20% shorter than the uninduced cells (Fig 

2.13A). In contrast, YodL expression did not result in a change in cell length in a ΔponA 

ΔmreB mutant (Fig 2.13B), suggesting the the cell shortening effect is specific to YisK. 

We hypothesized that MreBH, the third and final B. subtilis MreB family member, might 

be YisK’s additional target. We hypothesized that if MreBH is the additional target, then 

the cell shortening observed upon YisK expression in a ΔponA Δmbl mutant strain 

should be lost in a ΔponA Δmbl ΔmreBH mutant background. However, we found that 

even when mreBH was additionally deleted, YisK expression still resulted in cell 
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shortening (Fig 2.13C). We conclude that YisK likely has at least one additional target 

that is not MreB or Mbl dependent, and that this additional target regulates some aspect 

of cell length.  

 

Discussion 

YodL and YisK’s functional targets 

Misexpression of YodL during vegetative growth results in cell-widening and 

lysis, and spontaneous suppressor mutations conferring resistance to YodL occur 

primarily in mreB. MreB is also required for YodL’s cell-widening activity, whereas 

Mbl is not. By comparison, expression of YisK during vegetative growth also results in 

cell-widening and lysis, however, spontaneous suppressor mutations conferring 

resistance to YisK occur primarily in mbl. YisK’s cell-widening activity requires Mbl, 

but not MreB. The simplest interpretation of these results is that YodL targets MreB 

function, while YisK targets Mbl function. Alternatively, YodL and YisK could target 

other factors that affect cell shape and simply require MreB and Mbl for their respective 

functions. 
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Fig. 2.13.  YisK expression results in cell shortening. (A) Cells harboring 2X copies of 

Phy-yisK in a ΔponA Δmbl background (BYD262) were grown at 37°C in LB 

supplemented with 10 mM MgCl2 to mid-exponential. To induce yisK expression, cells 

were back-diluted to an OD600 of ~0.02 in LB with 10 mM MgCl2 and IPTG (1 mM) was 

added. Cells were grown for 1.5 hrs at 37°C before image capture. Membranes are 

stained with TMA-DPH. Cell lengths (n=500/condition) were measured before and after 

yisK expression and rank-ordered from smallest to largest along the x-axis so the entire 

population could be visualized without binning. The uninduced population (black) is 

juxtaposed behind the induced population (semi-transparent, gray). The difference in 

average cell length before and after Phy-yisK induction were statistically significant 

(P<0.0001). (B) Cells harboring 2X copies of Phy-yodL in a ΔponA ΔmreB background 

(BYD263) were grown, quantitated, and plotted as described above. The difference in 

average cell length before and after Phy-yodL induction were not statistically significant.  

(C) Cells harboring 2X copies of Phy-yisK in a ΔponA Δmbl ΔmreBH background 

(BAS248) were grown, quantitated, and plotted as described above. The difference in 

average cell length before and after Phy-yisK induction were statistically significant 

(P<0.0001). 
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MreB variants specifically resistant to YodL activity, MreBN145D, MreBP147R and 

MreBR282S, all result in charge change substitutions in residues previously shown to 

constitute the RodZ-MreB interaction surface (equivalent T. maritima residues are: 

MreBN140, MreBN142 and MreBR279)(78).  MreBG143A, which exhibits cross-resistance to 

YisK, also maps near the RodZ-MreB interaction interface.  The two remaining YodL-

resistant MreB variants occur in (MreBR117G) or near (MreBG323E) residues previously 

associated with bypass of RodZ essentiality in E. coli (Fig 2.12)(77).  A simple model 

explaining both the nature of the MreB variants we obtained in the suppressor selections, 

and YodL’s MreB-dependent effect on cell shape, is that YodL acts by disrupting the 

interaction between RodZ and MreB.  In this model, MreB’s RodZ-independent 

activities would remain functional, and several observations are consistent with this idea.  

If YodL were to completely inactivate MreB function, then we would expect that 

expressing YodL in a ΔponA Δmbl ΔmreBH background would generate round cells, 

similar to the phenotype observed when MreB is depleted in a Δmbl ΔmreBH mutant 

background (60), or when mreB, mbl, and mreBH are deleted in backgrounds with 

upregulated sigI expression (the triple mutant is otherwise lethal)(264).  However, we 

observe that cells expressing YodL in a ΔponA Δmbl ΔmreBH mutant instead form wide 

rods (Fig 2.6A).  If YodL does specifically target MreB activity, then these results 

suggest that MreB likely retains at least some of its width-maintenance function.  

Morgenstein et al. recently found that the interaction between RodZ and MreB in E. coli 

is required for MreB rotation, but that MreB rotation was not required for rod shape or 

cell viability under standard laboratory conditions (80).  This study is consistent with 
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prior findings indicating that RodZ is not absolutely required for maintenance of rod 

shape (77). 

We hypothesize that the substitutions obtained in residues near the RodZ-MreB 

interface either enhance RodZ-MreB interaction, or decrease the ability of YodL to 

disrupt the RodZ-MreB interface. Although we did not identify YodL-resistant 

suppressor mutations in rodZ, it is possible that the requisite rodZ mutations are rare or 

lethal for the cell, thus we cannot rule out the possibility that YodL could target RodZ 

function.  Similarly, although we found that MreB is required for YodL activity, we can 

envision a scenario in which a YodL-MreB interaction may be necessary to localize 

YodL to a cellular location where it can be effective against RodZ or some other cellular 

component.  We think this possibility is less likely, as cells expressing YodL have a 

distinct phenotype from RodZ depletion in B. subtilis.  More specifically, YodL 

expression results in cell widening and tapered poles (Fig 2.1B), whereas RodZ-depleted 

cells generate wide rods (260), similar to the phenotype we observed following YodL 

expression in a ΔponA Δmbl ΔmreBH mutant (Fig 2.6A).  These results argue against 

the idea that YodL could work by inactivating RodZ function completely.  Future work 

aimed at characterizing the nature of the YodL resistant suppressors and the effect of 

YodL on MreB function will shed light on the mechanism underlying YodL’s observed 

activity. 

Only three Mbl variants, MblR63C, MblΔS251, and MblP309L, showed specificity in 

resistance to YisK over YodL.  MblR63C, MblD153N, MblG156D, MblT158A, MblE204G, 

MreBP309L and MblA314T occur in residues that form Mbl’s predicted ATP-binding pocket 
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(Fig 2.13), and substitutions in all seven of these residues have been previously 

implicated in A22 resistance (Fig 2.13)(253, 296, 298). We speculate that most, if not all 

of the substitutions in Mbl’s ATP-binding pocket are gain-of-function with respect to 

Mbl polymerization, a hypothesis that can ultimately be tested in vitro. Similarly, we 

hypothesize that the MblM51I substitution, located at the MreB head-tail polymerization 

interface (295), may overcome YisK activity by promoting Mbl polymerization.  

MreBE262 of C. crescentus, equivalent to B. subtilis MblE250 (Fig 2.13), is located at the 

interaction interface of antiparallel MreB protofilament bundles (300). If B. subtilis 

MblE250 is also present at this interface (this has not been tested to our knowledge), then 

MblE250K could promote resistance to YodL and YisK by enhancing Mbl bundling.  How 

might YisK exert its activity?  One idea is that YisK disrupts Mbl bundling, possibly by 

competing for sites required for protofilament formation.  An alternative possibility is 

that YisK somehow prevents Mbl from effectively binding or hydrolyzing ATP.  It is 

also possible that Mbl is simply required for YisK to target one or more other factors 

involved in cell-width control.   

In addition to Mbl-dependent cell widening, YisK expression resulted in cell 

shortening, an effect that only became apparent in a ΔponA Δmbl mutant background 

(Fig 2.6B and 2.7A).  Given the similarities of MreB, Mbl, and MreBH to each other, we 

initially hypothesized that YisK-dependent effects on MreB and/or MreBH might be 

responsible for the decrease in cell length we observed; however, we found that mreBH 

was not required for cell shortening (Fig 2.6B and Fig 2.7C).  Since YisK expression 

results in a dramatic loss of cell shape in ΔmreB mutant backgrounds (Fig 2.6A), we 
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were unable to confidently assess cell length changes to determine if there is a 

requirement for MreB in the cell-shortening phenotype.  It is unlikely that YisK’s 

additional activity affects MreB’s role in maintaining cell width (at least not without 

Mbl), as YisK-expressing cells retain rod shape when mbl and mreBH are both deleted 

(Fig 2.6B).  An exciting alternative possibility is that YisK activity affects another factor 

involved in cell length control.  One attractive candidate is the cell wall hydrolase CwlO, 

a known modulator of cell length in B. subtilis (66) which recent genetic data also 

suggests depends at least in part on Mbl (69). Future experiments aimed at determining 

the identity and function of YisK’s additional target should shed light on how cells 

regulate both cell length and cell width. 

 

Identification of genes involved in cellular organization through a novel gene discovery 

pipeline 

 

 To systematically identify and characterize novel genes involved in cellular 

organization, we developed a gene discovery pipeline that combines known regulatory 

information (135), phenotypes obtained from misexpression screening, and suppressor 

selection analysis.  The ability to identify genetic targets associated with the unknown 

genes provides a key parameter beyond phenotype from which to formulate testable 

hypotheses regarding each gene’s possible function.  The misexpression constructs we 

generated are inducible and present in single copy on the chromosome.  We have found 

that to obtain phenotypes, our strategy works best when the unknown genes are 

expressed outside of their native regulatory context.  Thus far, we have restricted our 
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gene function discovery pipeline to B. subtilis; however, the general approach should be 

broadly applicable to other organisms and diverse screening strategies. 

 In this work, we describe the use of the pipeline to identify and characterize two 

B. subtilis genes, yodL and yisK, that produce proteins capable of targeting activities 

intrinsic to cell width control.  Although yodL and yisK were not previously recognized 

as members of the Spo0A regulon, both genes have putative Spo0A boxes and possess 

promoters that exhibit expression patterns consistent with other Spo0A-regulated genes 

(Fig 2.2-2.4).  YisK is also a member of the SigH regulon (303), and our expression 

analysis is also consistent with expression of yisK during stationary phase (Fig 2.3).  If 

the putative Spo0A box we identified is utilized in vivo, then we would predict based on 

our expression profiling that yisK is transcribed during exponential and early stationary 

phase via SigH, and then repressed as Spo0A-P accumulates during early sporulation.  

Such a pattern is similar to the regulation that has been proposed for kinA (35, 304).  We 

also observe expression from PyodL and PyisK is reduced in the absence of Spo0A and 

SigH (Fig 2.3D-E).  The specific contributions of these global regulators to yodL and 

yisK regulation cannot be determined by analyzing the expression profiles of the sigH 

and spo0A deletion strains alone, since spo0A depends on SigH for upregulation during 

the early stages of sporulation (286, 304).  Moreover, since Spo0A inhibits expression of 

the sigH repressor AbrB (305-308), a spo0A mutant is also down for sigH expression.  

 A ΔyodL ΔyisK double mutant reproducibly produces ~20% less heat-stable 

spores than wildtype, suggesting that the YodL and YisK have functions that affect 

spore development (either directly or indirectly).  Most studies on sporulation genes are 
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biased toward factors that reduce sporulation efficiency by an order of magnitude or 

more in a standard heat-kill assay. However, even small differences in fitness (if 

reproducible) can contribute significantly to the ability of an organism to persist, 

especially in competitive environments (309).  The 20% reduction in heat-resistant 

spores we observe in cells lacking YisK and YodL would likely result in a substantial 

fitness disadvantage to cells in the environment.  We do not currently understand how 

YodL and YisK might function in spore development, but the identification of MreB and 

Mbl as genetic targets suggests the proteins likely regulate some aspect of PG synthesis.  

Future studies will be aimed at understanding the molecular and biochemical basis of 

YodL and YisK activity.   

 In this study, the morphological phenotypes associated with YodL and YisK 

occurred when the genes were expressed during vegetative growth. Consequently, it is 

formally possible (although we think unlikely), that the targeting of MreB and Mbl is 

simply a coincidence that is unrelated to the potential functions of the proteins during 

stationary phase or sporulation.  Regardless of what YodL and YisK’s physiological 

roles turn out to be, we have already been able to utilize misexpression of the proteins to 

obtain interesting variants of both MreB and Mbl that can now be used to generate 

testable predictions regarding how MreB and Mbl function in B. subtilis.  Moreover, the 

apparent specificity with which YodL and YisK appear to target MreB and Mbl, 

respectively, make them potentially powerful tools to differentially target the activities 

of these two highly similar paralogs in vivo.  Of course, more studies will be required to 

determine if YodL and YisK interact directly or indirectly to modulate MreB and Mbl 
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activity.  In the meantime, it is exciting to speculate that many undiscovered modulators 

of MreB and MreB-like proteins exist, and that we have only just begun to scratch the 

surface regarding regulation of this important class of proteins.  The identification and 

characterization of such modulators could go a long way toward addressing the 

significant gaps in our knowledge that exist regarding the regulation of PG synthesis in 

bacteria. 
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CHAPTER III 

 CHARACTERIZATION OF YisK, AN ENZYME IN THE 

FUMARYLACETOACETATE HYDROLASE SUPERFAMILY 

 

Introduction 

The bacterial cell envelope is comprised in part by a meshwork of peptidoglycan 

(PG) that protects bacteria from osmotic lysis and helps maintain cell shape.  PG is also 

the target of our most-utilized and highly tolerated antibiotics, so understanding the 

synthesis of this uniquely bacterial exopolymer is crucial to combating antibiotic 

resistance mechanisms.  

PG synthesis is regulated by bacterial cytoskeletal proteins, namely FtsZ and 

MreB, which are hypothesized to guide the localization of enzymes involved in PG 

polymerization and crosslinking. Despite its conserved nature and critical function 

within the cell, regulation of MreB activity is poorly characterized. We have identified a 

putative enzyme, YisK, capable of perturbing the activity of an MreB family protein 

(Mbl) in the important Gram-positive model organism Bacillus subtilis. 

YisK is a member of the Fumarylacetoacetate hydrolase (FAH) superfamily 

involved in aromatic amino acid catabolism. YisK-like proteins are found across all 

domains of life. In closely related Bacillus species, yisK is conserved by synteny with 

asparagine synthetase genes, which encode an enzyme that converts L-aspartate and L-

glutamine to L-asparagine and L-glutamate.  In more distantly related species, yisK has 

synteny with rocD, encoding an enzyme that mediates L-glutamate biosynthesis through 
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the glyoxylate pathway.  The synteny is suggestive of a possible role for YisK in amino 

acid or dicarboxylate metabolism. 

The goal of the present study was to characterize the function of YisK in B. 

subtilis, including to understand how its misexpression leads to loss of cell width control 

(310). We find that YisK perturbs Mbl localization, suggesting the cell widening is 

caused by disruption of the normal punctate-helical arrangement of Mbl within the cell.  

Moreover, YisK can interact directly with FtsE (this study, Chapter III), a component of 

an ABC transporter implicated in the Mbl-dependent regulation of cell length (66, 69).  

To gain further insight into YisK function, we obtained a ~2 Å crystal structure which 

revealed that YisK, like other members of the FAH superfamily, possesses a putative 

active site with residues critical for coordinating a required Mg2+ or Mn2+.  However, to 

our surprise, YisK’s effect on Mbl is unlikely due to its enzymatic activity. We propose 

a model in which YisK utilizes interactions with Mbl to localize its to-be-determined 

activity to specific sites within the cell, possibly where its substrate is enriched or its 

product is utilized.  

 

Materials and methods 

General methods 

All B. subtilis strains were derived from B. subtilis 168 unless specifically noted. 

B. subtilis strains utilized in this study are listed in Table 3.1. Plasmids are listed in 

Table 3.2. Oligonucleotide primers are listed in Table 3.3. The following concentrations 

of antibiotics were used for generating B. subtilis strains: 100 µg/ml spectinomycin, 7.5 

µg/ml chloramphenicol, 0.8 mg/ml phleomycin, 10 µg/ml tetracycline, and 10 µg/ml 
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kanamycin. To select for erythromycin resistance, plates were supplemented with 1 

µg/ml erythromycin (erm) and 25 µg/ml lincomycin. B. subtilis transformations were 

carried out as described previously (271).  

 

Cell growth 

Cell growth and culturing was performed as described in Chapter II. 

 

Microscopy 

Microscopy (both phase contrast and fluorescence) was performed as described 

in Chapter II. GFP exposure time was 1 sec and all images were processed the same 

unless otherwise noted. 

 

YisK rabbit polyclonal antibody production 

Antibody production was carried out at the Texas A&M Comparative Medicine 

Program using YisK-His dialyzed in 50.0 mM Tris-HCl pH 7.5, 100 mM KCl, 2.0 mM 

DTT, 15% glycerol at a final concentration of 12.0 mg/mL. Briefly, an initial injection 

of 0.2 mLYisK-His (brought to 0.5 mL with Saline) with 0.5 mL Titermax Gold 

adjuvant was given to two white rabbits, followed in 6 weeks by three boosters, each 

seperated by two weeks. At the end of the protocol, the animals were sacrificed and 

serum was collected from whole blood. The serum was frozen at -80°C in 10mL 

aliquots. 
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Table 3.1.  Strains used in Chapter III. 

 

Strain Description Reference 

Parental   

B. subtilis 168 Bacillus subtilis laboratory strain 168 trpC2  BGSC (1A866) 

E. coli DH5α 

 

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 

nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, 

hsdR17(rK
- mK

+), λ–   

E. coli BL21 

(DE3) 

F– ompT gal dcm lon hsdSB(rB
–mB

–) [malB+]K-

12(λ
S) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 

nin5])   

E. coli DHP1 

F-, cya-99, araD139, galE15, galK16, rpsL1 

(Strr), hsdR2, mcrA1,mcrB1; Tom Bernhardt 

B. subtilis 168   

BAS175 

 

amyE::Pxyl-opt rbs-lytE-GFP (spec) 

yhdG::Phy-opt rbs-yodL (phleo) 

yycR::Phy-opt rbs-yodL (cat) 

This study 

 

BAS177 

 

amyE::Pxyl-opt rbs-lytE-GFP (spec) 

yhdG:: Phy-opt rbs-yisK (phleo) 

yycR:: Phy-opt rbs-yisK (cat) 

This study 

 

BAS220 

 

amyE::Pxyl-gfp-mreB (spec) 

yhdG::Phy-opt rbs-yisK (phleo) 

yycR::Phy-opt rbs-yisK  (cat) 

This study 

 

BAS316 tetΩΔrodZ  This study 

BAS321 

 

tetΩΔrodZ  

amyE::Phy-yodL (spec) 

yhdG::Phy-yodL (phleo) 

This study 

 

BAS334 PyisK-RBSyisK-Spo0Abox mutant This study 

BYD181 

amyE::Pxyl-mbl-gfp (spec) 

yhdG:: Phy-opt rbs-yisK (phleo) This study 

BYD182 

 

amyE::Pxyl-mbl-gfp (spec) 

yhdG:: Phy-opt rbs-yisK (phleo) 

yycR:: Phy-opt rbs-yisK (cat) 

This study 

 

BYD278 ∆yisK Chapter II 

BYD468 

 

cwlO::cat 

amyE-Phy-opt rbs-yisK (spec) 

yhdG-Phy-opt rbs-yisK (phleo) 

This study 

 

BYD476 

 

ftsEX:tet 

amyE-Phy-opt rbs-yisK (spec) 

yhdG-Phy-opt rbs-yisK (phleo) 

This study 

 

BYD480 

 

kanΩmbl     ΔponA        ftsEX::tet 

amyE:: Phy-opt rbs-yisK (spec)  

yhdG:: Phy-opt rbs-yisK (phleo)  

This study 
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Table 3.1.  Continued. 

 

Strain Description Reference 

BYD601 yhdG:: Phy-yisK E148A E150A D179A (phleo)  This study 

E. coli 

DH5α   

CAS54 amyE::Pxyl-lytE-gfp (amp) This study 

CAS72 amyE::Pxyl-gfp-mreB (amp) This study 

CYD784 yisK-pET24b (kan) This study 

CYD1191 yhdG:: Phy-yisK E148A E150A D179A (amp) This study 

E. coli 

DHP1 

  

CYD394 T25-rodZ (kan), mreB-T18 (amp) This study 

CYD421 T25-empty (kan), mreB-T18 (amp) This study 

CYD422 T25-rodZ (kan), empty-T18 (amp) This study 

CYD439 T25-rodZ (kan), mreBG143A-T18 (amp) This study 

CYD440 T25-rodZ (kan), mreBR282S-T18 (amp) This study 

CYD441 T25-rodZ (kan), mreBS154R-T18 (amp) This study 

CYD442 T25-rodZ (kan), mreBP147R-T18 (amp) This study 

CYD443 T25-rodZ (kan), mreBN145D-T18 (amp) This study 

CYD444 T25-empty (kan), mreBG143A-T18 (amp) This study 

CYD445 T25-empty (kan), mreBR282S-T18 (amp) This study 

CYD446 T25-empty (kan), mreBS154R-T18 (amp) This study 

CYD447 T25-empty (kan), mreBP147R-T18 (amp) This study 

CYD448 T25-empty (kan), mreBN145D-T18 (amp) This study 

CYD599 empty-T25 (kan), yisK-T18 (amp)  This study 

CYD600 T25-empty (kan), yisK-T18 (amp)  This study 

CYD962 ftsE-T25 (kan), yisK-T18 (amp) This study 

CYD966 yisK-T25 (kan), ftsX-T18 (amp) This study 

CYD967 yisK-T25 (kan), T18-ftsX (amp) This study 

CYD968 T25-yisK (kan), ftsX-T18 (amp) This study 

CYD969 T25-yisK (kan), T18-ftsX (amp) This study 

CYD970 ftsX-T25 (kan), yisK-T18 (amp) This study 

CYD971 ftsX-T25 (kan), T18-yisK (amp) This study 

CYD972 T25-ftsX (kan), yisK-T18 (amp) This study 

CYD973 T25-ftsX (kan), T18-yisK (amp) This study 

CYD974 yisK-T25 (kan), ftsEX-T18 (amp) This study 

CYD982 yisK-T25 (kan), empty-T18 (amp) This study 

CYD984 empty-T25 (kan), yisK-T18 (amp) This study 

CYD985 ftsE-T25 (kan), empty-T18 (amp) This study 

CYD986 empty-T25 (kan), ftsEX-T18 (amp) This study 

CYD 1080 yisK-T25 (kan), yisK-T18 (amp) This study 
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Table 3.1.  Continued. 

 

Strain Description Reference 

CYD 1081 yisK-T25 (kan), T18-yisK (amp) This study 

CYD 1082 T25-yisK (kan), yisK-T18(amp) This study 

CYD 1083 T25-yisK (kan), T18-yisK (amp) This study 

CYD 1084 yisK-T25 (kan), T18-empty (amp) This study 

CYD 1085 empty-T25 (kan), T18-yisK (amp) This study 

CYD 1086 T25-yisK (kan), T18-empty (amp) This study 

CYD 1087 T25-empty (kan), T18-yisK (amp) This study 
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Table 3.2.  Plasmids used in Chapter III. 

 

Plasmid Description Reference 

pAS048 amyE::Pxyl-gfp-mreB (amp) This study 

pAS038 amyE::Pxyl-lytE-gfp (amp) This study 

pCH363 empty-T18 (amp) Tom Bernhardt 

pCH364 T18-empty (amp) Tom Bernhardt 

pKNT25 empty-T25 (kan) Tom Bernhardt 

pKT25 T25-empty (kan) Tom Bernhardt 

pMarA TnYLB-1 (kan), mariner-Himar1 (erm) (amp)  

pYD104 yisK-pET24b (kan) This study 

pYD203 T25-mreB (kan) This study 

pYD204 mreB-T25 (kan) This study 

pYD205 T18-mreB (amp) This study 

pYD206 mreB-T18 (amp) This study 

pYD207 rodZ-T18 (amp) This study 

pYD208 T18-rodZ (amp) This study 

pYD209 rodZ-T25 (kan) This study 

pYD210 T25-rodZ (kan) This study 

pYD211 mreBG143A-T18 (amp) This study 

pYD212 mreBR282S-T18 (amp) This study 

pYD213 mreBS154R-T18 (amp) This study 

pYD214 mreBP147R-T18 (amp) This study 

pYD215 mreBN145D-T18 (amp) This study 

pYD216 yisK-T18 (amp) This study 

pYD217 T18-yisK (amp) This study 

pYD218 yisK-T25 (kan) This study 

pYD219 T25-yisK (kan) This study 

pYD220 ftsE-T25 (kan) This study 

pYD221 ftsX-T25 (kan) This study 

pYD222 T25-ftsX (kan) This study 

pYD223 ftsX-T18 (amp) This study 

pYD224 T18-ftsX (amp) This study 

pYD225 ftsEX-T18 (amp) This study 

pYD1191 yhdG:: Phy-yisK E148A E150A D179A (amp) This study 
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Table 3.3.  Oligonucleotides used in Chapter III. 

 

Oligo Sequence 5’ to 3’ 

OAS247 

CTTCGTATAGCATACATTATACGAACGGTATAATAAATATGAC

AAGGGCCTTCT 

OAS248 TCATCCGTCTGAAGCACAC 

OAS251 

TACCGTTCGTATAGCATACATTATACGAAGTTATCATACGGCA

ATAGTTACCCTTAT 

OAS252 

TACCGTTCGTATAATGTATGCTATACGAAGTTATGGAGCTGTA

ATATAAAAACCTTC 

OAS253 

TACCGTTCGTATAGCATACATTATACGAAGTTATGATTTTATG

ACCGATGATGAAGA 

OAS254 

TACCGTTCGTATAATGTATGCTATACGAAGTTATAACTCTCTC

CCAAAGTTGATC 

OAS255 ATCGGAGAGCATTGGAAGAAA 

OAS256 

ATAACTTCGTATAATGTATGCTATACGAACGGTAATCATGAAA

TCACCTAATCTTTTA 

OAS257 

ATAACTTCGTATAGCATACATTATACGAACGGTATAAAGTGA

AAAAGCCGTTCCGT 

OAS258 TTTAATGTCTCTGCAGTGCGA 

OYD206 

CATTGCATGCGTAACACACAGGAAACAGCTATGATGTTATCC

GTGTTTAAAAAG 

OYD207 GCATGGATCCGAACCGCTACCTGTCGTTTGTACAATCAGACG 

OYD208 

GCATGGATCCGGGCAGCGGTATGATGTTATCCGTGTTTAAAA

AG 

OYD209 GCATGAATTCTTATGTCGTTTGTACAATCAGACG 

OYD210 

CATTGCATGCGTAACACACAGGAAACAGCTATGTTTGGAATT

GGTGCTAGAG 

OYD211 

GCATGGATCCGAACCGCTACCTCTAGTTTTCCCTTTGAAAAGA

TG 

OYD212 GCATGGATCCGGGCAGCGGTATGTTTGGAATTGGTGCTAGAG 

OYD213 GCATGAATTCTTATCTAGTTTTCCCTTTGAAAAG 

OYD245 AGAAGCGGCCGCTTATTCTG 

OYD246 

CTTCGTATAATGTATGCTATACGAACGGTACTCACTTTTTATA

TCCTCCCTTTTAC 

OYD266 

GCATGGATCCGTAACACACAGGAAACAGCTATGTCATTGGAT

GATCTCCAAG 

OYD267 

GCATGAATTCGAACCGCTACCAGATGACTTTTCTTCCTTTTTAT

TT 

OYD268 GCATGGATCCGGGCAGCGGTATGTCATTGGATGATCTCCAAG 

OYD269 GCATGAATTCTTAAGATGACTTTTCTTCCTTTTTATTT 

OYD298 

GCATGGATCCGTAACACACAGGAAACAGCTATGAAATTTGCG

ACAGGGGAAC 
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Table 3.3.  Continued. 

 

Oligo Sequence 5’ to 3’ 

OYD299 GCATGAATTCGAACCGCTACCGCCAATTTGGTTTGACAGCGTT 

OYD300 GCATGGATCCGGGCAGCGGTATGAAATTTGCGACAGGGGAAC 

OYD301 GCATGAATTCTTAGCCAATTTGGTTTGACAGCGTT 

OYD475 

GCATGGATCCGTAACACACAGGAAACAGCTATGATAGAGATG

AAGGAAGTATAT 

OYD476 GCATGAATTCGAACCGCTACCATCATATGAACCATACTCCCC 

OYD479 

GCATGGATCCGTAACACACAGGAAACAGCTATGATTAAAATT

CTCGGGCGC 

OYD480 GCATGAATTCGAACCGCTACCTACTCGCAGAAACTTGCGGA 

OYD481 GCATGGATCCGGGCAGCGGTATGATTAAAATTCTCGGGCGC 

OYD482 GCATGAATTCTTATACTCGCAGAAACTTGCGGA 
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Western blot analysis 

One mL or 200µL B. subtilis cells were pelleted at 8,000 rpm for 1 min on an 

Eppendorf Tabletop Centrifuge and resuspended to an OD600 of 12.0 in Bacillus lysis 

buffer (20 mM Tris pH 7.5, 1 mM EDTA). For cultures grown in resuspension medium, 

the lysis buffer contained 10 mM EDTA. To the lysis buffer base, 10 mM MgCl2 (not 

added to resuspension media lysis buffer), 1.0 mg/mL lysozyme, 1.0 µL/mL  protease 

inhibitor cocktail (Sigma), 10 µg/mL DNAseI, 100 µg/mL RNAseA  was added. 

Samples were incubated for 10 min at 37°C. Twenty µL of sample was then transferred 

to 20 µL 2X SDS-PAGE loading buffer with β-mercaptoethanol (BME) and 

immediately boiled for 8 min, then placed on ice. Ten µL of this was loaded on a (9 cm 

X 10 cm 16 lane) 4-20% Lonza Gold Precast Tris-Glycine SDS-PAGE gel and run for 

10min at 80 V followed by 200 V until dye front at bottom edge of gel. Proteins were 

transferred to a PVDF membrane (Pall) at 100 V for one hr at room temperature in 

Towbin transfer buffer.  The membranes were blocked for 1 hr with 1X PBS-0.05% 

(v/v) Tween20 containing 5% non-fat powdered milk. The membranes were then 

washed three times for 5 min each at room temperature with 1X PBS-0.05% (v/v) 

Tween20, then incubated overnight on an agitator at 4°C with rabbit α-YisK polyclonal 

primary antibody (serum) at a 1:10,000 dilution in 1X PBS-0.05% (v/v) Tween20 

containing 5% non-fat powdered milk on an agitator. The following day (~16 hrs) the 

membranes were washed three times for 5 min with 1X PBS-0.05% (v/v) Tween20. The 

membranes were then incubated on an agitator with goat aα-rabbit Horse Radish 

Peroxidase secondary antibody (Rockland) at a 1:10,000 dilution in 1X PBS-0.05% (v/v) 
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Tween20 containing 5% non-fat powdered milk for 1 hr at room temperature. The 

membrane was washed three times as described above and incubated with Pierce 

Supersignal West Femto Maximum Sensitivity Substrate according to manufacturers 

directions and captured image with an Amersham Imager 600 (GE). 

 

Beta-galactosidase assay of transcriptional fusion 

Beta-galactosidase assays were performed as described in Chapter II. 

 

Protein expression and purification 

pYD 104 yisK-pET24b (kan) was transformed into competent BL21 λDE3 cells, 

plated on LB Lennox solid media supplemented with kanamycin (25µg/mL final), and 

incubated overnight at 37°C. Colonies were scraped off of the plate and resuspended in 

3mL of Cinnibar media. This media was used to inoculate a 25mL Cinnibar culture at 

OD600 = 0.1 in 250mL baffled flask with 0.1% glucose (w/v) shaken at 37°C until 

culture reached OD600  of ~5. The culture was shifted to 16°C and then induced with 

1.0mM IPTG overnight (~16 hrs). The cells were pelleted at 12,000 X g for 10 min at 

4°C. The pellet was resuspended in 30 mL lysis buffer (50.0 mM Tris-HCl pH 8.0, 300 

mM NaCl, 10.0 mM imidazole, 200 µg/mL lysozyme, 10 µg/mL DNase, 1µL per 35 

OD*mL protease inhibitor cocktail) and lysed using a LM20 Microfluidizer 

(Microfluidics) at 20,000 psi. Cell debris was removed by centrifugation at 14,000 X g 

for 20 min at 4°C. The supernatant was collected and passed over a 1 mL bed volume 

NiNTA Sepharose resin (Qiagen), washed with 10 mL of wash buffer (50.0 mM Tris-
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HCl pH 8.0, 300 mM NaCl, 25.0 mM imidazole). The protein was eluted with 2 x 0.5 

mL of elution buffer (50.0 mM Tris-HCl pH 8.0, 300 mM NaCl) containing 100mM 

imidazole, followed by 3 x 0.5 mL of elution buffer containing 200 mM imidazole, 

followed by 3 x 0.5 mL of elution buffer containing 250 mM imidazole, followed by 4 x 

0.5 mL of elution buffer containing 500 mM imidazole. Fractions 3-10 were pooled and 

then dialized against either 50.0 mM Tris-HCl pH 7.5, 100 mM KCl, 15% glycerol, 2.0 

mM Dithiothreitol (DTT) for use in ATPase assays or 20.0 mM Hepes pH 7.5, 150 mM 

NaCl, 15% glycerol, 2.0 mM DTT for use in Thermal Shift Assays. Protein specifically 

purified for crystallization was dialyzed against 50.0 mM Tris-HCl pH 7.5, 1.0 mM 

DTT. 

 

YisK crystallization 

586 separate crystallization conditions were screened by 96 well plate method 

using a TPP LabTech Mosquito LCP machine. The highest quality initial conditions 

were obtained in 60% Tascimate (Hampton Research) pH 7.5, and 10% Tascimate 

(Hampton Research) pH 5.0, 20% poly(ethylene glycol) 2000 with divalent cations. 

Optimized conditions were 60% Tascimate, pH 7.0, 100mM MnCl2 with crystallization 

by hanging drop method. YisK-His was 12 mg/mL concentration (by Bradford method) 

in 50.0 mM Tris pH 7.5, 1 mM DTT and set in a 1:1 ratio and 2:1 ratio with mother 

liquor (60% Tascimate pH 7.0, 100 mM MnCl2). Total volume of drops was 2 µL and 3 

µL respectively spotted on glass circular disk and suspended (sealed) on crystallization 

plate. Crystals that formed were sent to syncotron for data collection. 
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Differential scanning fluorimetry 

Differential Scanning Fluorimetry was performed as previously (311-313), with 

minor modifications. A master mix of 10.0 µM YisK-His in 20.0 mM Hepes pH 7.5, 150 

mM NaCl, 5.0 mM MnCl2 was made with 5X Sypro Orange (Note: the 5000X Sypro 

Orange is added to the buffer of the master mix before YisK-His to avoid possible 

effects of the concentrated solvent that the Sypro Orange dissolved in). Thirty-nine 

microliters of this master mix was aliquoted into each well on a BioRad Hard-Shell PCR 

Plates, 96-well format, thin wall (HSP9601). To each well either 1 µL of reaction buffer 

alone (20.0 mM Hepes pH 7.5, 150 mM NaCl) or 1 µL of each compound being tested 

(stock concentrations of either 4.0 mM or 40.0 mM in reaction buffer) were added to 

give a final substrate/compound concentration either 100 µM or 1000 µM. Reactions 

were mixed by pipetting up and down after adding compound. The PCR plate was then 

sealed with BioRad Microseal ‘B’ seal (MSB1001), and centrifuged at 1000 x g for 3 

min in a centrifuge equipped with a plate adaptor at RT (to remove bubbles). The plate 

was placed in a CFX96 Touch Real Time PCR machine running a custom thermal shift 

program. The specifications of the program were as follows: initial temperature, 25°C 

ramped to 95°C with a ramp time of 0.5°C/min. The FRET channel (X nm) was scanned 

at each temperature increase. The final data was analyzed using BioRad CFX Manager, 

and the derivative of the melting curve was used to determine the melting temperature of 

YisK in all assayed conditions.  
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Redundant factor screen 

Transposon mutagenesis of a ΔyodL ΔyisK strain and subsequent redundant 

factor screening was performed as previously described (Duan and Herman, Appendix 

III, Dissertation). 

 

B. subtilis metabolomics on ΔyisK and wild type 

Strains 168WT and BYD 278 ΔyisK were streaked on LB Lennox solid medium 

and place at 37°C overnight (~16 hr). Cells from single colonies were used to inoculate 5 

mL CH medium and cultures were placed in roller drum overnight at room temperature 

(~16 hr). When cells reached an OD600 of between 0.4 and 0.7, the pre-culture was used 

to inoculate a 250 mL baffled flask containing 25 mL CH to a final OD600 of 0.00625. 

Flasks were placed in a 37°C shaking waterbath rotating at 280 rpm until an OD600 of ~4 

(maximal expression of YisK by Western blot analysis). The volume of each culture was 

recorded and cells were immediately transferred to a 50 mL Falcon tube and quickly 

cooled by swirling tube in liquid N2 for about 10 sec, being careful not to freeze the 

sample. The final temperature of the culture should be ~9°C. A reusable plastic filter 

system with 45 mm neck fitted with a 47 mm membrane (Pall Life Sciences 0.45 µm 

Metricel Membrane Filter), was attached to a 500 mL glass bottle with 45 mm neck, and 

entire setup was chilled for 10 min at -20°C. Two and a half mL of the OD600 = 4 cells 

were applied to the filter and washed two times with 2.5 mL of 0.9% NaCl solution 

(filter sterilized) that was previously chilled at 4°C for 30min. The filter (and cells) was 

removed from the filtration device using sterile tweezers, and added to 5mL of ice-cold 
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1:3:1 chloroform : methanol : ddH2O in a 50 mL conical tube. The entire tube, including 

the filter, was flash-frozen in liquid N2 and stored at -80°C until further processing. 

 

Sample processing 

Samples were removed from the -80°C and place on an ice water bath. Ten 

microliters of 1.0 mM 1,4 13C2 Succinate (Cambridge Isotope Labs) standard was 

pipetted into the solvent in which each filter was submerged. The conicals were shaken 

(2 sec) then vortexed manually (5 sec max setting), cooled for 5 sec on ice, and the 

process was repeated ten times. Each sample was then split into 5 separate brown-

capped Precellys tubes (Precellys Lysing Kit Soil Grinding SK 38 Product number: 

KT03961-1-006.2) and shaken for 2 cycles at 30 sec each cycle at 6,800 rpm in the 

Precellys 24 bead mill homogenizer, chilling samples on ice for 2 min in between cycles. 

The contents of the tubes (lysed cells) were transferred to a new pre-chilled 1.5 mL 

microfuge tube and cell deris was removed by centrifuging the samples for 5 min at 

21,130 x g in a 4°C tabletop microcentrifuge. The aqueous phases (top) were transferred 

to new pre-chilled 1.5 mL microfuge tubes using a 23 gauge needle attached to a 10 mL 

syringe, taking care to avoid the interface. The samples were then centrifuged for 2 min 

at 21,130 x g in a 4°C tabletop microcentrifuge to remove any residual cell debris. The 

supernatants for each sample (5 tubes total) were then transferred to a single pre-chilled 

50 mL conical tube using a 23 gauge syringe. 0.5 mL of the sample was transferred to a 

3 kDa molecular weight cutoff Amicaon Ultra concentrator and the sample was 

centrifuged at 14,000 x g at 4°C for 30 min. This step removes protein and other 
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macromolecular contaminants which interfere with the sample’s signal. The remaining 

(unfiltered) sample was frozen under Argon gas at -80°C. After 30 min centrifugation, 

approximately 300µL passes through the concentrator. This flowthrough is transferred to 

9 mL of ice cold ddH2O, flash frozen in liquid N2, and then lyophilized overnight (~20 

hr). The lyophilized sample is then resuspended in 120 µL of 1:1 methanol : water 

(HPLC grade Ultrapure) by pipetting up and down, including along the side of the tube. 

The introduction of bubbles should be avoided. The resuspended material is centrifuged 

at 4°C at 3,220 x g for 2 min to bring all liquid to the bottom of the tube, and then 

filtered through a nylon filter (MicroScience Microspin filter, Nylon, CINY02) by 

centrifuging at 10,000 x g for 2 min at 4°C. The remaining sample (~100 µL) is 

transferred to an HPLC container fitted with a small volume insert and frozen at -80°C 

until the sample is run. 

 

Sample run 

Untargeted liquid chromatography high resolution accurate mass spectrometry 

(LC-HRAM) analysis was performed on a Q Exactive Plus orbitrap mass spectrometer 

(Thermo Scientific, Waltham, MA) coupled to a binary pump HPLC (UltiMate 3000, 

Thermo Scientific). For acquisition the Sheath, Aux and Sweep gasses were set at 50, 15 

and 1 respectively. The spray voltage was set to 3.8 kV (Pos) or 2.8 kV (Neg) and the S-

lens RF was set to 50. The source and capillary temperatures were maintained at 350 °C 

and 350 °C respectively. Full MS spectra were obtained at 70,000 resolution (200 m/z) 

with a scan range of 50-750 m/z. Full MS followed by ddMS2 scans were obtained at 
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35,000 resolution (MS1) and 17,500 resolution (MS2) with a 1.5 m/z isolation window 

and a stepped NCE (20, 40, 60). Samples were maintained at 4 °C before injection. The 

injection volume was 10 µL. Chromatographic separation was achieved on a Synergi 

Fusion 4 µm, 150 mm x 2 mm reverse phase column (Phenomenex, Torrance, CA) 

maintained at 25 °C using a solvent gradient method. Solvent A was water (0.1% formic 

acid). Solvent B was methanol (0.1% formic acid). The gradient method used was 0-5 

min (10% B to 40% B), 5-7 min (40% B to 95% B), 7-9 min (95% B), 9-9.1 min (95% B 

to 10% B), 9.1-13 min (10% B). The flow rate was 0.4 mL min-1. Sample acquisition 

was performed Xcalibur (Thermo Scientific). Data analysis was performed with 

Compound Discoverer 2.1 (Thermo Scientific). 

 

YisK pull-down assay 

Cell growth, protoplasting, and osmotic lysis. 

Two 25 mL cultures of BYD 74 Phy-YisK (2X) (see methods in Chapter II) and 

one 25 mL culture of BYD 278 ΔyisK were started at OD600 = 0.00625 in LB-Lennox 

liquid media from exponentially growing 5 mL cultures. BYD 74 was induced at OD600 

~0.2 for 20 min with 1.0 mM IPTG before pelleting at 3,000 x g for 10 min. Cell pellet 

was washed twice with 12.5 mL of 1X SMM (1.0 M sucrose, 40.0 mM maleic acid, 40.0 

mM MgCl2, pH 6.5) followed by resuspension in 2.5 mL of 1X SMM. Lysozyme was 

then added to the cells to 2 mg/mL final concentration, followed gentle agitation for ~10 

min, after which time additional lysozyme was added to 4 mg/mL final concentration 

and the culture was gently agitated another 10 min to complete protoplasting. Protoplasts 



 

112 

 

 

were then pelleted at 3,000 x g in an Eppendorf tabletop centrifuge followed by 

discarding supernatant and flash freezing the cell pellet in liquid N2. Protoplast pellet 

was osmotically lysed on ice by resuspending pellet in 0.75 mL cold buffer H (20.0 mM 

Hepes pH 8.0, 200 mM NaCl, 1 mM DTT, 1 mM MgCl2, 1 mM CaCl2) with DNaseI and 

RNaseA added to 10 µg/mL and 100 µg/mL final concentrations, respectively. 

Protoplasts were incubated on ice for 1 hr, vortexing every 15 min. Following 

incubation, pull-down was performed. The second BYD 74 culture was not induced, and 

was grown to OD600 ~0.5 before protoplasting and osmotic lysis was performed as 

described above. BYD 278 was also grown to OD600 ~0.5 and protoplasting and osmotic 

lysis was performed as described above. 

 

Pull-down 

Fifty µL aliquots of Dynabeads-Protein A resin slurry were added to Eppendorf 

tubes and washed with 1X PBS, as stated in manufacturers instructions (Invitrogen). Ten 

µL of α-YisK serum was added to Dynabeads-Protein A resin that was resuspended in 

200µL of 1X PBS, and samples were incubated with rotation for 10 min at room 

temperature, after which samples were placed on magnet rack for 1 min and supernatant 

was removed. α-YisK bound Dynabeads-Protein A were washed three times by 

resuspending the resin in 200 µL of 1X PBS followed by mixing gently and placing 

samples back on the magnet rack, followed by removal of the supernatant. α-YisK 

bound resin was resuspended in 1 mL of lysed protoplasts, followed by incubation for 20 

min with rotation at room temperature. Samples were placed on a magnet rack for 1 
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minute, followed by removal of the supernatant. Samples were then washed three times 

with 200 µL of 1X PBS as previously stated.  Sample bound resin were resuspended in 

100 µL 1X PBS and transferred to fresh Eppendorf tubes and placed on magnet rack for 

1 min. The supernatant was removed, and proteins were eluted by adding 20 µL of 

elution buffer (200 mM glycine pH 2.2), incubation for 2 min at room temperature 

followed by placing samples on magnet rack for 1 min and removing the supernatant, 

which contained eluted proteins. This supernatant was added to equal volume 2x SDS-

PAGE buffer (see methods, Chapter III), followed by boiling the samples for 8 min and 

loading 10 µL on a 4-20% Lonza Gold Tris-Glycine gel and running the gel as 

previously stated (see methods, Chapter III). Gel was stained with Sypro Ruby 

(Invitrogen) and imaged according to manufacturers instructions. 

 

Results 

Effect of YisK and YodL on Mbl and MreB localization 

Mbl is required for YisK to perturb cell shape during misexpression, which raises 

the question: Does YisK affect Mbl localization? To address this question, I expressed 

YisK in a strain background harboring a chromosomal, xylose-inducible copy of Mbl-

GFP. Before induction, Mbl-GFP expressed at non-saturating levels of xylose is 

observed as forming punctate foci distributed in a helical pattern along the lateral cell 

wall. In contrast, when YisK was expressed the punctate-helical pattern of Mbl-GFP was 

lost, and instead cytoplasmic and midcell Mbl-GFP localization was observed. In 

addition, cells became wider and lost their overall rod shape (Fig 3.1A). If Mbl-GFP was 
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induced with saturating levels of xylose, the Mbl-GFP signal was more distinct, and 

YisK expression no longer caused an obvious shape defect. However, the punctate-

helical localization was not completely rescued (Fig 3.1B). These results suggest that 

YisK perturbs Mbl-GFP localization either directly or indirectly and that providing cells 

with extra copies of Mbl-GFP can partially suppress YisK activity. Consistent with this 

interpretation, addition of an additional YisK misexpression cassette in the chromosome 

abolished this partial rescue. 

Although most of the YisK-resistant suppressor mutations we identified were 

found in mbl, we also identified mreB mutations that conferred resistance to YisK 

expression (Table 2.5). To determine if YisK specifically perturbed Mbl localization or 

if it might also affect MreB, I expressed YisK in a strain background harboring a 

chromosomal, xylose-inducible copy of MreB-GFP. Before induction, MreB-GFP 

expressed at non-saturating levels of xylose is observed as forming punctate foci 

distributed in a helical pattern along the lateral cell wall. In contrast, when YisK was 

expressed the punctate-helical pattern of MreB-GFP was lost, and instead cytoplasmic 

MreB-GFP localization was observed. Cells also became wider and lost their overall rod 

shape (Fig 3.1C). This result demonstrates that YisK changes MreB localization, even 

though MreB is not required for YisK activity (Fig 2.6). Since YisK non-specifically 

perturbed MreB function, this raised the question is YisK perturbing MreBH 

localization? Localization of the PG hydrolase LytE is dependent on MreBH (65), so we 

used LytE-GFP as a proxy to investigate perturbations in MreBH activity or localization. 

The expectation was that if MreBH activity or localization was perturbed, LytE-GFP 
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would no longer be properly localized. YisK misexpression results in a delocalization of 

LytE (Fig 3.2), which is evidence that the colocalized patches of MreB-like proteins are 

being disturbed upon YisK expression. LytE-GFP is also delocalized following 

expression of YodL (see Chapter II) (Fig 3.2). In order to determine if the delocalization 

of MreB and MreBH also required Mbl, we attempted to visualize MreB-GFP in the mbl 

knockout. However, even the strain lacking YisK was not healthy and showed aberrant 

shape, suggesting that MreB-GFP is not fully functional (data not shown). 

Since localization of a protein can give insight into its function, I attempted to 

label YodL and YisK with fluorescent tags at either the N or C-terminus of the proteins. 

We tested the functionality of the fluorescently tagged proteins by determining if the 

fusions could still prevent growth on solid media following induction and/or induce cell 

widening when induced in liquid culture. Unfortunately, none of the tags were functional 

(data not shown).  



 

116 

 

 

 
 

 

Figure 3.1.  YisK perturbs Mbl-GFP localization and MreB-GFP localization during 

misexpression. A) Mbl-GFP was induced with 10 mM xylose for 60 min before 2X yisK 

was induced with 1 mM IPTG (during exponential growth) for 60 min. Images were 

taken on a 1% agarose pad. B) mbl-gfp induced with 33.3 mM xylose for 60 min before 

yisK induced with 1 mM IPTG (during exponential growth) for 60 min and images were 

taken on 1% Agarose pad. C) mreB-gfp was induced for 60 min with 5 mM xylose 

before 2X yisK induced with 1 mM IPTG (during exponential growth) for 60 min and 

images taken on 1% CH Agarose pad with open back.  
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Figure 3.2.  YisK and YodL perturb LytE-GFP localization. A) LytE-GFP expression 

was induced for with 10 mM xylose. B) LytE-GFP expression was induced for with 10 

mM xylose, followed by 90 min YodL induction with 1 mM IPTG. C) LytE-GFP 

expression was induced for with 10 mM xylose, followed by 90 min induction of YisK 

with 1 mM IPTG. Membranes (white) were stained with TMA-DPH. 

 

 

 

 



 

118 

 

 

YisK expression profiling 

Based on transcriptional profiling, yisK is a stationary phase protein (283) that 

also appears to be repressed by Spo0A early in sporulation (similar to the regulation of 

kinA)(Fig. 2.4, Chapter II). This expression pattern is consistent with our observation 

that YisK possesses a putative Spo0A box that overlaps with the -10 region of the SigH 

promoter (Fig 3.3A) (35). However, since transcription does not always correlate with 

protein abundance we investigated the levels of YisK protein present across different 

stages of growth (exponential, transition, stationary phase, and sporulation) using 

western blot analysis (Fig. 3.3).  Samples were collected over a timecourse in CH 

medium, where cells can naturally transition through the growth phases mentioned 

above. Analysis of YisK during the CH timecourse showed peak expression during 

stationary phase (~ 180 min to 270 min), and protein levels tapering off as the cells 

underwent sporulation (~OD600 6.88) (Fig 3.3C). To estimate if YisK is present in high 

or low copy number in the cell, 10 ng of pure YisK-His was loaded alongside the 

samples.  These results suggest that even at maximal levels, the copy number of YisK is 

less than 300 copies/cell (data not shown). This result is consistent with other data 

suggesting YisK is an enzyme (more below). 

A strain harboring a mutant Spo0A box (0A box mutant) appeared to show a 

slight delay in YisK accumulation during the timecourse, as well as a slight delay in the 

steady state protein levels as cells sporulated (Fig 3.3C). These results were repeatable 

with independent biological replicates. However, the observation should be interpreted 

with caution, as the samples are not on the same membrane. It is possible that the levels 
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of YisK are higher in general throughout the experiment in the OA mutant, and that if 

the samples were on the same blot, the levels would be just as high (or higher) at the 

earlier timepoints. This possibility will be tested in the future. 

Since the transitions between the growth stages are not sharply defined in CH, 

the samples were also collected under sporulation by resuspension conditions, where 

cells rapidly transition from exponential phase to stationary phase then sporulation more 

synchronously. Similar to the CH timecourse, YisK levels increased through the stages 

of the timecourse corresponding to stationary phase/early sporulation, with levels 

dropping as sporulation proceeded. In the 0A box mutant, YisK appeared to accumulate 

over a similar timecourse, but reached higher levels that stayed higher longer (these 

samples were on the same membrane and thus can be directly compared).  These results 

are consistent with the hypothesis that yisK expression is repressed by Spo0A-P as 

sporulation progresses.   
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Figure 3.3.  YisK expression profile during sporulation. A) DNA region upstream of 

YisK, with 0A box underlined and SigH promoters highlighted in red. B) Western blot 

analysis of indicated timepoints during a sporulation by resuspension time course. 

Wildtype B. subtilis strain 168 (top), 0A box mutant (bottom). C) Western blot analysis 

of CH medium timecourse with B. subtilis strain 168 (top) and the 0A box mutant 

(bottom). D) Transcriptional fusion of the promoter region of YisK fused to lacZ and 

subsequent beta-gal assay of sporulation by resuspension samples. 
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Figure 3.3.  Continued. 
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YisK, in addition to causing Mbl-dependent cell widening, results in an Mbl-

independent cell shortening phenotype, suggesting that YisK is capable of targeting one 

or more other factors involved in in cell length control (Fig. 2.7, Chapter II). An obvious 

candidate is the ATP Binding Cassette (ABC) Transporter FtsEX. In this complex, FtsX 

is a membrane component, and FtsE is an associated cytoplasmic ATPase. In B. subtilis, 

FtsEX is required for function of the D,L-endopeptidase CwlO. CwlO is proposed to 

play a role in cleaving the PG crosslinking, allowing for the insertion of new PG during 

active growth (66, 69). FtsEX acts in the same genetic pathway as Mbl, and deletion 

mutants of ftsE, ftsX, or cwlO are shorter than wildtype (66). These observations led us 

to hypothesize that YisK might cause cell shortening be targeting the FtsEX complex. 

To test this hypothesis, we first tested if YisK interacted with FtsE (the cytoplasmic 

component of the transporter). A positive pairwise interaction between YisK and FtsE 

was observed that was absent in the negative controls (Fig 3.4) 
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Figure 3.4.  Bacterial 2-hybrid of YisK and FtsE. Physical interaction results in 

production of beta-galactosidase and the subsequent blue color of the spot due to 

reaction of beta-galactosidase and X-Gal.  
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We next probed whether FtsEX was required for YisK-mediated effects on cell-

shape.  First, we tested if a ΔftsEX mutant was still sensitive to YisK mediated cell 

widening and found that it was even more sensitive than wildtype to YisK activity (Fig 

3.5A); similar results were obtained with a cwlO knockout (Fig 3.5B). These results 

suggest that YisK does not require FtsEX/CwlO to perturb Mbl function. The enhanced 

sensitivity of the ftsEX or cwlO knockout strains to YisK could suggest these 

backgrounds are more sensitive to perturbations in cell wall synthesis in general.  

Although we did not pursue this possibility further, it is consistent with current models 

suggesting FtsEX/CwlO function in PG synthesis (66, 69, 314). Alternatively, if YisK 

does disrupt any of the MreB-like proteins directly, it may be more free to do so in the 

absence of FtsEX. 

To probe if YisK requires FtsEX for its cell shortening activity, we introduced 

the ΔftsEX mutation into the Δmbl ΔponA backround.  This background is resistant to 

YisK-dependent cell-widening, making cell length easier to quantitate.  Before YisK 

induction, cells are already 20% shorter than wildtype due the ΔftsEX deletion, 

consistent with prior observations that FtsEX function in cell length control (66). 

However, unlike the Δmbl ΔponA only background (Fig 2.6, Chapter II), cells also 

lacking FtsEX did not become shortened following YisK misexpression (Table 3.4).  In 

summary, our results suggest that YisK requires FtsEX, but not Mbl to cause cell 

shortening, and Mbl, but not FtsEX to cause cell widening (Fig 3.6).  
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Figure 3.5.  YisK does not require FtsEX or CwlO for cell shape modifying activity. A) 

YisK was expressed for 90 min with 1.0 mM IPTG in the ftsEX knockout. B) YisK was 

expressed for 90 min with 1 mM IPTG in the cwlO knockout. Membranes were stained 

with TMA-DPH. 
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Table 3.4.  ftsEX mutant resistant to YisK mediated cell shortening. YisK was 

misexpressed using 1.0 mM IPTG during exponential growth in liquid LB. Images were 

taken after 90 min and cell lengths (septum to septum) were quantitated for over 1000 

cells from independent fields for each strain. The average cell length and standard 

deviation are shown. 

 

Genotype (Δmbl ΔponA ΔftsEX background) Cell length (µm) 

-YisK 2.4 (+/- 0.8) 

+YisK 2.4 (+/- 0.8) 
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Figure 3.6.  Model of interaction with components of the PG synthesis machinery. YisK 

mediates cell widening through an Mbl dependent process, and cell shortening through 

an FtsEX dependent process. 
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YodL- mediated cell widening does not require RodZ  

MreB is required for YodL cell shape modifying activity during misexpression 

(Fig 2.6).  Interestingly, most of the suppressors of YodL activity mapped to a region of 

MreB known to be important for RodZ binding (Fig 2.12, Table 2.6) (78, 79). This 

provoked the question, is YodL disturbing the MreB-RodZ interaction, and if so, is it 

interacting with MreB or RodZ? Although RodZ was previously thought to be essential 

in E. coli and B. subtilis, the essentiality in the former can be bypassed by mutations in 

mreB (77, 80) and our data suggest the apparent essentiality of the latter (260) can be 

attributed to polar effects on a downstream, essential gene, pgsA.  We were able to 

successfully knock out rodZ by linking the deletion to an upstream resistance cassette as 

opposed to creating the deletion by introducing the cassette following the rodZ promoter. 

With the ΔrodZ strain in hand, it was possible to test if RodZ was necessary for 

YodL’s cell shape modifying activity. As shown in Figure 3.7, the ΔrodZ strain grows as 

a rod (albeit with some minicells – Duan and Herman, Appendix IV, Dissertation). 

Induction of yodL in the ΔrodZ mutant leads to rapid loss of cell shape and lysis, 

suggesting that RodZ is not required for YodL’s affect on MreB. In fact, the cells were 

more highly sensitive to YodL misexpression, consistent with the idea that the rodZ 

knockout is more sensitive to perturbations in cell envelope synthesis. Since the YodL 

misexpression phenotype in wildtype (wide rods) (Fig. 2.1) does not phenocopy the 

ΔrodZ mutant, these results suggest that YodL is unlikely to act simply by disrupting the 

interaction between RodZ and MreB.  Moreover, and consistent with the fact that we did 
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not identify and YodL-resistant suppressor mutations in rodZ, these results suggest 

YodL is unlikely to target RodZ directly. 

We next sought to characterize the YodL-resistant MreB variants. Our genetic 

data suggest that YodL may perturb MreB function by interacting with the RodZ 

interaction interface (Fig. 2.12 and Fig. 2.6A, Chapter II). This interface appears to be 

important for the formation of stable MreB filaments, as RodZ targets this surface to 

increase the motion of MreB along the membrane (80). We can envision at least three 

ways the MreB variants might confer YodL resistance: 1) If RodZ and YodL compete 

for the same interaction surface of MreB, the variants could increase MreB’s affinity for 

RodZ, allowing RodZ to outcompete YodL, 2) the variant may no longer effectively 

interact with YodL (and possibly RodZ) or 3) the variant could have increased capacity 

for MreB polymerization (general suppressor), making it more resistant to YodL’s 

effects.   
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Figure 3.7.  YodL misexpression in cells lacking RodZ. A ΔrodZ strain before and after 

30 min YodL misexpression in liquid LB-Lennox medium supplemented with 10 mM 

MgCl2 during exponential growth. YodL was induced with 1 mM IPTG. Membranes 

were stained with TMA-DPH. 
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To test the first possibility, we examined the variants with substitutions in 

residues previously implicated in interaction with RodZ to assess if they showed changes 

in RodZ-MreB interaction. We were able to detect a weak, but detectable interaction 

between MreB and RodZ using B2H (Fig. 3.8).  Interestingly, this interaction was 

undetectable for several of the variants, consistent with model 2 (MreBG143A and 

MreBP147R), increased in one variant, consistent with model 1 (MreBR282S), and similar 

to wild-type for another (MreBN145D). These results suggest the resistance is unlikely to 

be simply explained by a single mechanism.  Although we did not examine them by 

B2H, our prior analysis suggests that at least one variant, MreBR117G, is likely to exhibit 

enhanced polymerization, consistent with model 3.  Unfortunately, a direct interaction 

between YodL and MreB could not be detected by B2H (data not shown), so it was not 

possible to test if the MreB variants had reduced interaction with YodL.  Moreover, it 

remains a possibility that YodL does not interact directly with MreB. 

 

 

  



 

132 

 

 

 
 

 

Figure 3.8.  Bacterial 2-hybrid of MreB variants and RodZ. B2H between RodZ and 

MreB variants that conferred resistance to YisK activity. MreB or RodZ and each of the 

following MreB variants: MreBG143A, MreBR282S, MreBS154R, MreBP147R and MreBN145D 

were assayed for interaction. Negative controls are either empty partner vector with 

MreB (center) or RodZ with the empty partner vector (right). 
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Biochemical characterization of YisK 

To further characterize YisK function, the protein was overexpressed and 

purified with a C-terminal 6His tag (see Materials and Methods for more details).  

Briefly, strain harboring a T7-inducible YisK-6His construct was grown at 37°C in a 

medium that allowed high cell densities to be achieved.  When the culture reached an 

OD600 of ~10, the culture was placed at 16°C and 1.0 mM IPTG was added.  After 

overnight growth, cell pellets were collected and frozen until further processessing.  The 

protein was purified using Ni-NTA chromatography and peak elution fractions were 

pooled and dialyzed in buffer containing glycerol for long-term storage.  Analysis of the 

elution profile revealed a protein of the appropriate molecular weight (34 kDa) at >95% 

purity (Fig. 3.9), with a typical yield of 10 mg/25 ml of Cinnabar culture. The most 

abundant impurity, which ran at a slightly higher molecular weight than YisK-6His, was 

determined by LC-MS/MS to be OmpA from the E. coli overexpression host. 
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Figure 3.9.  Purification of YisK-His using nickel affinity chromatography. 

Representative 15% Tris-Glycine SDS-PAGE Gel of YisK-His purification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

135 

 

 

YisK crystallization 

To optimize conditions for YisK crystallization, the glycerol was removed from 

the protein preparation and used to set 576 separate crystallization conditions by hanging 

drop method (see Methods).  Further optimization of hits revealed one condition that 

produced robust, multi-faceted crystals (Fig. 3.10).  This condition was pH 7.0, 100 mM 

MnCl2 with 60% Tascimate.  Tascimate is a complex mixture of dicarboxylic acids. The 

crystal structure was solved in collaboration with Dr. Inna Krieger and Dr. Jim 

Sacchettini. YisK crystallized as a dimer (Fig. 3.10), and consistent with this 

observation, we detected YisK self-interaction by B2H (Fig. 3.11).  Although the 

resolution of the preliminary structure is around ~2 Å, the N and C terminal regions 

were disordered, and could not be resolved.  

YisK is a member of the Fumarylacetoacetate Hydrolase (FAH) superfamily. 

Fumarylacetoacetate hydrolases are conserved across all domains of life, and they are 

involved in breaking Carbon-Carbon bonds (315-323). Typically, FAHs are involved in 

aromatic amino acid catabolism (315-319), although they have also been shown to 

participate in purine degradation (324, 325). The YisK crystal structure revealed a 

conserved triad of amino acids coordinating a Mn2+ or Mg2+ (Fig 3.12), a feature 

conserved in other members of the FAH superfamily. In addition, a small molecule that 

could not be resolved was present in the putative active site.  This small molecule could 

have co-purified with YisK or been introduced during crystallization. 
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Figure 3.10.  Preliminary crystal structure of YisK. The crystal structure of YisK was 

solved in collaboration with Dr. Inna Krieger and Dr. Jim Sacchettini using molecular 

replacement. Crystallization condition was 60% Tascimate, pH 7.0, 100 mM MnCl2.  

The structure shown has a 2.2 Å resolution. Cartoon depiction shown above using Pymol 

(326). Divalent cations are shown as blue spheres in putative active site. Image of 

protein crystal embedded at center of structure. 
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Figure 3.11.  Bacterial 2-hybrid of YisK self-interaction. Negative controls are the 

center and right spots. 
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Figure 3.12.  Illustration of YisK catalytic divalent cation within putative active site. A 

small molecule was bound in the putative active site of YisK, near the divalent cation. 
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Differential Scanning Fluorimetry (DSF) was used to screen the dicarboxylic 

acids present in the Tascimate for binding to YisK.  This screen revealed one compound, 

L-tartrate, that stabilized YisK’s melting temperature by 8°C (Fig 3.13), suggesting it 

was likely the compound bound in the crystal structure. Additional small molecules 

similar in structure to L-tartrate were screened to assess the importance of size and 

functional groups to binding. This included compounds such as D-ala-D-ala, which play 

a role in PG synthesis; in the literature L-tartrate was shown to be able to mimic D-ala-

D-ala and bind bifunctional PBPs in the transpeptidase (TP) active site (327). A 

comprehensive list of the compounds screened by DSF is shown in Table 3.5. A 

summary of compounds that significantly enhanced YisK stability, as well those most 

structurally related that did not, is shown in Fig. 3.13.   

This analysis revealed that dihydroxyfumarate (DHF) and L-tartrate had the most 

stabilizing affect on YisK (Tm shift of 8.5°C and 8.0°C, respectively, Fig 3.13). Closer 

examination of the DHF and L-tartrate structures suggest that YisK binds these 

compounds with a high degree of specificity. Fig 3.14 shows the structures of highly 

similar dicarboxylic acids that bound substantially less well to YisK, despite small 

changes in functional groups.  For example, the only difference between L-tartrate and 

D-malate is that D-malate lacks a C3 hydroxyl group.  The stereochemistry of the 

hydroxyl groups on the central carbons is also important, as meso-tartrate bound 

considerably less well than L-tartrate.  DHF has a double bond between the C2 and C3 

carbons, which would limit rotation around the double bond, maintaining the hydroxyl 

groups on C2 and C3 in a specific plane. Finally, the length of the molecule appears to 
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be important, as similar compounds of shorter or longer carbon chain lengths did not 

bind YisK well (Fig 3.13).  These results suggest that YisK’s substrate is likely to 

consist of four carbons, and be either close structural analogs or synonymous with L-

tartrate or DHF.  These results also suggest that YisK is unlikely to act as a 

fumarylacetoacetate hydrolase, as YisK does not bind fumarate at all.    

 

YisK’s enzymatic activity is not required for its effect on cell shape 

YisK misexpression results in a profound impact on cell shape that is mediated, 

in part through disruption of Mbl and possibly MreB (Chapter II).  Since YisK is likely 

an enzyme, the obvious question that emerged during this course of this study was 

whether or not YisK’s enzymatic activity was responsible for the observed cell shape 

changes. To address this question, alanine substitutions were introduced in place of the 

acidic residues coordinating the divalent metal present in YisK’s active site, creating 

YisKmu (Fig. 3.15A).  Surprisingly, when YisKmu was expressed, cells appeared identical 

to the cells expressing wildtype YisK (Fig. 2.1 and Fig 3.15B), demonstrating that the 

catalytic activity of YisK is not essential for its shape modifying activity. 
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Figure 3.13.  YisK Compound Screening using Differential Scanning Fluorimetry. 10.0 

µM YisK-His (see Methods) was mixed with 1000 µM Substrate in 20.0 mM Hepes pH 

7.5, 150 mM NaCl, 5.0 mM MnCl2 with 5X Sypro Orange in a 96 well qPCR plate. 

Samples were heated from 25°C to 95°C, with a ramp time of 0.5°C per minute, 

scanning fluorescence intensity in the FRET channel. Melting temperature was 

determined using the derivative of the melting curve. The greater the melting 

temperature change upon substrate addition (compared to YisK alone), the more 

significant the binding. 
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Figure 3.14.  Specificity of YisK binding. Dicarboxylic acids with similar structures 

were screened for binding to YisK using DSF.  The melting temperature of YisK in the 

presence of these compounds is indicated.  
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Table 3.5.  Summary of compounds screened by differential scanning fluorimetry for 

binding to YisK. 10 µM YisK-His, 20.0 mM Hepes pH 7.5, 150 mM NaCl, 5.0 mM 

MnCl2, and 5X Sypro Orange were used for all samples. All compounds were screened 

at 1000 µM final concentration. 

 

Compound Tm (°C) 

Protein Only 56 

Ammonium Tartrate 65 

L-(+)-Tartaric Acid 64.5 

Glyoxylate 58 

Pyruvate 57.5 

Ammonium Citrate 57 

Phosphoenolpyruvate 57 

DL-Malic Acid 57 

Fumurate 56.5 

Oxaloacetate 56.5 

Sodium Acetate 56 

Glutamate 56 

mDAP 56 

Ammonium Chloride 56 

Succinic Acid 55.5 

Sodium Formate 55.5 

ATP 57 

ADP 56.5 

AMPPNP 56.5 

NAD+ 56 

NADH 56 

NADP+ 56 

D-Glyceric Acid 56 

D-Malic Acid 57.5 

L-Malic Acid 57.5 

D-Alanine 57 

Cyclic D-alanine L-alanine 56.5 

Ampicillin 57 

Carbenicillin 55.5 

D-Alanine-D-Alanine 56.5 

L- Asparagine 56.5 

L-Aspartate 56.5 

α-ketoglutarate disodium salt 57.5 

D-3-phosphoglycerate disodium salt 57 

Mesotartrate 59 

Dihydroxyfumarate 64.5 
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Table 3.5.  Continued 

 

Compound Tm (°C) 

D-Aspartate 56.5 

D-Glutamate 56.5 
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Figure 3.15.  Images of cells expressing a YisK catalytic mutant. A) Residues in the 

putative active site of YisK that coordinates the divalent cation that is critical for 

catalysis. B) Before and after 90 min of misexpression of YisKmu (single copy integrated 

in the chromosome) with 1.0 mM IPTG during exponential growth in liquid LB-Lennox.  
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Prompted by the separability of the catalytic function of YisK and its cell shape 

modifying activity, we designed substitutions in regions of YisK (based on the crystal 

structure) predicted to be important for YisK dimerization, as well as in one acidic 

residue outside the catalytic domain that was conserved in other YisK homologs across 

the genera. These variants were then classified based on their ability to self-interact or 

interact with FtsE by B2H, as well as their ability to prevent growth of B. subtilis 

following induction on plates (Fig 3.16). From these results we inferred that YisK self-

interaction, YisK-FtsE interaction, and catalytic activity are not required for YisK to kill 

cells.  Second, the E30 residue appears to be critical for YisK perturb cell growth (Fig 

3.16) and shape (data not shown).  While it is possible MreBE30A is misfolded, this seems 

highly unlikely since the variant is fully able to support the YisK-YisK and YisK-FtsE 

B2H interactions.  

 

 

 

 

 

 



 

147 

 

 

  
 

 

Figure 3.16.  Characterization of YisK variants. Substitutions in regions of YisK that 

hypothesized to be important for YisK catalysis (red), self-interaction (blue) or 

perturbation of cell shape (green). (+) positive interaction, (-) no interaction. The number 

of (+) symbols signifies the magnitude of the interaction or phenotype. YisK-YisK 

interaction and YisK-FtsE interaction were tested using B2H.  Growth +YisK 

corresponds to growth observed after overnight growth at 37°C on an LB plate 

supplemented with spectinomycin and 1.0 mM IPTG plate. 
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Investigation of YisK’s role in sporulation 

Initially thought that YisK may play a role in sporulation (see Chapter II), but did 

not see any obvious indication of YisK’s role aside from a minor sporulation defect.  We 

also observed no obvious differences in timing or morphology of spore germination in a 

ΔyisK mutant (Fig. 3.17).  We hypothesized that YisK’s role in sporulation might be 

masked by the presence of a redundant factor. To screen for possible redundant factors, a 

genomic library of sporulation proficient mutants was isolated and introduced into 

ΔyisKΔyodL strain harboring a reporter for a late sporulation gene, PcotD-lacZ. When 

cells sporulate, the promoter is activated, driving lacZ transcription and synthesis of 

beta-galactosidase.  The beta-galactosidase activity can be monitored on solid 

sporulation medium plates (DSM) that have been supplemented with X-Gal (see Duan 

and Herman, Dissertation). White colonies, indicating delayed or inhibited sporulation, 

were identified through visual screening, and the associated transposon was moved into 

a clean PcotD-lacZ background that was either wildtype or ΔyisKΔyodL. Only strains that 

exhibited a sporulation defect when combined with ΔyisKΔyodL, but no delay in wild-

type were selected for further analysis. The locations of the transposon insertions, which 

were determined using inverse PCR and sequencing, are summarized in Table 3.6. 

 

 

 

 

 



 

149 

 

 

 
 

 

Figure 3.17.  Phase-contrast microscopy of spore germination. B. subtilis 168 spores (A) 

or ΔyisK spores (B) were resuspended in LB and phase contrast images were taken at the 

indicated timepoints.  
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Table 3.6.  Redundant factor screen for YisK during sporulation conditions. All 

transposons were mapped to B. subtilis genome and locations are noted. 
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Figure 3.18.  Phenotype of the Tn insertion between gapA and pgk. Cells were grown to 

exponential phase in CH medium at 37°C.  Membranes were stained with TMA-DPH. 
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Figure 3.19.  Overview of relevant metabolic pathways. Metabolites within the 

glyoxylate pathway can feed into central carbon metabolism via D-glycerate or L-tartrate 
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One of the mutants of particular interest because of its relationship to carbon 

metabolism possessed a transposon insertion in the intergenic region between gapA 

(glyceraldehyde-3-phosphate dehydrogenase) and pgk (phosphoglycerate kinase) within 

the gapA operon (Fig 3.18). The gapA operon encodes enzymes for the bottom half of 

glycolysis as well as CggR, a transcription factor that represses the operon in the absence 

of glucose (140). Previously, the five glycolysis genes downstream of cggR were 

described to be essential (140), although a recent paper shows that only gapA, pgm, and 

eno are essential (16).  

We have not tested the expression levels of the genes downstream of the 

transposon. However, cells harboring this transposon exhibit cell shape defects when 

even in an otherwise wildtype background (Fig 3.18). This observation would be 

consistent with the insertion disrupting the pools of PG precursors and cell wall 

homeostasis (Fig 3.19). Our compound screening data suggests YisK is capable of 

binding compounds present in the glyoxylate pathway (Fig 3.19, red text), yet YisK 

bears neither amino acid homology, nor structural similarity to characterized 

tartrate/malate dehydrogenases, enzymes that catalyze the conversion of L-tartrate to 

oxaloglycolate and meso-tartrate to D-glycerate (328). Therefore, we think L-tartrate is 

unlikely to be YisK’s physiological substrate. Instead, we hypothesize YisK catalyzes 

the conversion of DHF to tartronate semialdehyde via decarboxylation. No gene product 

has ever been associated with DHF decarboxylation (158), so if the hypothesis is correct, 

YisK will be the first enzyme of its kind ever characterized.  Our initial attempts to assay 
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for this activity failed, as the substrate for the reaction (DHF) was found to 

spontaneously decarboxylate at room temperature in aqueous solution. 

Interestingly, the L-tartrate catabolism pathway redundantly produces the 

gluconeogenic metabolites 2-phosphoglycerate and 3-phosphoglycerate important 

metabolites in cell wall precursor synthesis (Fig. 3.19).  Thus, one hypothesis to explain 

the sporulation defect we observed is that during sporulation, the demand for these 

metabolites from alternative pathways is increased.  Future experiments will be aimed at 

assessing if the redundancy can be attributed to either a ΔyodL or a ΔyisK deficiency, as 

well investigating the molecular basis for the other redundant factors identified. 

 

Untargeted metabolic profiling of the ΔyisK compared to wild-type 

There are many challenges to associating uncharacterized gene products with 

cellular functions, particularly when they lack obvious knockout phenotypes. The 

tractability problem is just one of many. While we were able to associate a phenotype 

with YisK misexpression, these data only suggest that YisK has the capacity to interact 

with components of the cell elongation machinery. While we think this observation is 

significant (see discussion) it does not illuminate what type of enzymatic activity YisK 

might possess. Similarly, while the DSF screening revealed potential substrates for 

YisK, there is no guarantee that that they are actually the physiologically relevant 

substrates.  Therefore, in addition to our genetic and biochemical approaches, we sought 

to explore the effects of a yisK deletion on the B. subtilis metabolome using an 

untargeted approach. For this study, samples were prepared from both wild-type and 
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ΔyisK mutant (see material and methods).  The sample preparation required extensive 

optimization to identify conditions to quickly and efficienty harvest total cellular 

metabolites relatively free of protein contaminants. Two different metabolite extraction 

methods were attempted; bead breaking coupled with solvent extraction and solvent only 

extraction; according to the literature, the extraction efficiencies with these methods are 

were equivalent (329, 330).  However, it was clear from microscopy that the solvent-

only method left cells intact, raising the concern that the metabolites might not be fully 

released (Fig. 3.20).  

Moreover, in our hands, the bead breaking method consistently yielded a lower 

signal to noise ratio than the solvent extracted sample, suggesting this method resulted in 

contaminants that suppressed metabolite ionization. Since it was suspected that this 

suppressing contaminant was protein, the extraction solvent was switched from 60% 

ethanol to using 1:3:1 chloroform:methanol:water, a condition which should denature 

protein. While this adjustment improved the signal, ultimately the best signal was 

obtained by additionally passing the solvent extracted samples through a 3 kDa MWCO 

protein concentrator before lyophilization and resuspension for Mass Spectrometry. This 

modification increased the signal intensity by at least an order of magnitude (Fig 3.21), 

Dr. Klemashevich optimized the LC/MS/MS parameters for signal strength as well as for 

compound resolution (Fig 3.22). 
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Figure 3.20.  Phase-contrast microscopy of samples. A) following solvent only 

extraction and B) following bead-beating and by solvent extraction. 
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Figure 3.21.  Total ion concentration of LC/MS/MS of metabolite extractions using optimized LC method and bead breaking 

lysis. A) Extract passed through a 3 kDa MWCO protein concentrator prior to lyophilization and resuspension B) Extract 

lyophilized and resuspended without protein removal. Elution time is on the x-axis and relative ion abundance is on the y-axis. 
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Figure 3.21.  Continued. 
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Figure 3.22.  Optimized LC/MS/MS parameters. A) Overall summary of cost and 

effectiveness of LC/MS/MS. B) Summary plots of LC method used; short method refers 

to the New LC and long method refers to the Old LC in panel A, respectively. CD ID’s 

are Compound Discoverer ID’s, and so absolute confirmed compounds compared to an 

accepted standard in MZ Cloud Database. 

 



 

160 

 

 

Whole organism untargeted metabolomic profiling was performed on three 

biological and experimental replicates of wildtype and the ΔyisK mutant grown to 

stationary phase in CH media (OD600 = 4, peak YisK expression in CH medium 

according to western blot analysis). Samples were run using LC/MS/MS parameters in 

both positive and negative ionization modes. Differential analysis was performed using 

Compound Discoverer (version 2.0), and metabolites that were depleted or enriched by 

at least two-fold in the yisK knockout compared to the wild-type control were identified. 

All compounds positively identified using MZ Cloud are shown in Table 3.7. All 

putative compounds identified through ChemSpider are shown in Table A1.1 (included 

as a separate file, see Appendix I). Since ChemSpider results are identified only by MS 

spectrum, not MS and MS2 spectrum against a positive standard (like MZ Cloud), the 

hits in Table A1.1 are considered more tentative. ChemSpider and MZ Cloud results 

were subsequently mapped against KEGG pathways using the KEGG Mapper Search 

and Color Pathways Tool (158) with Bacillus subtilis strain 168 reference pathways.  

Pathways with multiple metabolites that are perturbed in the yisK knockout are 

shown in Fig 3.23-3.25, with metabolites that were decreased in yisK knockout indicated 

in red and compounds increased in the yisK knockout indicated in green. None of the 

metabolites identified resided in the dicarboxylate/glyoxylate pathways.  This was not 

entirely surprising because the liquid chromatography methods available in the IMAC 

cannot be performed with ion-pairing.  As a result, many hydrophilic or charged 

molecules cannot be resolved. 
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Table 3.7.  MZ cloud summary of identified compounds. Compounds that changed more 

than two-fold in relative abundance in the ΔyisK mutant compared to wild-type are 

shown along with their ChemSpider and KEGG ID. 

 

KEGG 
ID Name 

Bg 
Color 

Foreground 
Color 

Scan 
Mode 

ChemSpi
der ID 

MZ 
Cloud 

ID 

C01877 4-Oxoproline red black negative 366185 1268 

C06593 Caprolactam red black positive 7480 2867 

Not 
Found 

N,N-
Diethylethanola

mine red black positive 10617374 2816 

Not 
Found Tetraglyme red black positive 13835433 3460 

C11118 
N-Methyl-2-
pyrrolidone red black positive 12814 2810 

Not 
Found δ-Valerolactam red black positive 12144 2988 

Not 
Found 

2-Ethyl-2-
oxazoline red black positive 59786 3282 

Not 
Found 

2,2,6,6-
Tetramethyl-4-

piperidinol red black positive 68000 2886 

C02206 

2,2,6,6-
Tetramethyl-1-

piperidinol 
(TEMPO) red black positive 478474 1418 

Not 
Found Atenolol acid red black positive 56653 991 

C05011 

4-
Hydroxytamoxif

en red black positive 4447687 3126 

C07101 
2,4,5-

Trichlorophenol green black negative 7001 2763 

C00153 Nicotinamide green black positive 911 517 
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Figure 3.23  Metabolites decreased more than two-fold in the ΔyisK mutant compared to 

wild-type in the Arginine and Proline metabolism pathway. Red circles denote a 

decrease of at least two-fold, while green circles denote an increase of at least two fold. 

Both MZ cloud and ChemSpider results were plotted. 
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Figure 3.24.  Metabolites decreased more than two-fold in the ΔyisK mutant compared to 

wild-type in Valine, Leucine, and Isoleucine biosynthesis pathway. Red circles denote a 

decrease of at least two-fold, while green circles denote an increase of at least two-fold. 

Both MZ cloud and ChemSpider results were plotted. 
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Figure 3.25.  Metabolites decreased more than two-fold in the ΔyisK mutant compared to 

wild-type in the Nicotinate and Nicotinamide metabolism pathway. Red circles denote a 

decrease of at least two-fold, while green circles denote an increase of at least two-fold. 

Both MZ cloud and ChemSpider results were plotted. 
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Regardless, we did identify several compounds that were differentially affected 

in the ΔyisK mutant compared to wild-type. 4-Oxoproline, 1-Pyrroline-3-hydroxy-5-

carboxylate, 1-Pyrroline-4-hydroxy-2-carboxylate are all reduced by at least 2 fold in the 

yisK knockout compared to wildtype.  These metabolites reside within the Arginine and 

Proline Metabolism pathway (Fig 3.23) and can feed into the glyoxylate pathway. In 

fact, 4-Oxoproline and 1-Pyrroline-3-hydroxy-5-carboxylate are only five reactions and 

3 reactions away from glyoxylate, respectively. In addition, Arginine itself is reduced in 

the yisK knockout (Fig 3.23), whereas Nicotinamide is significantly increased (Fig 3.25).  

2-Oxoisovalerate and 2-Isopropylmaleate, metabolites in the Valine biosynthesis 

pathway (where pyruvate from central carbon metabolism feeds into Valine), were both 

reduced by at least two fold in the yisK knockout compared to wildtype (Fig 3.24). These 

preliminary data suggest that YisK alters the flow of carbon through several amino acid 

synthesis nodes. They also highlight the need for alternative methodologies to detect, in 

particular, polar metabolites. In the future, samples will be run on a column that is more 

ameanable to the profiling of more polar compounds.   

  

Native immunoprecipitation of YisK-associated proteins 

To identify in vivo YisK interaction partners, co-immunoprecipitations (pull-

down assays) were performed. Although the pull-down assays successfully in pulled 

down YisK, they did not pull down any other proteins (Fig 3.26). I am currently 

pursuing in vivo crosslinking followed by pull-down in order to capture transient 

interactions of YisK with other proteins in the cell. 
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Figure 3.26.  YisK pull-down assay using α-YisK and dynabeads protein A. Pull-down 

was performed as described (see methods). BYD 278 ΔyisK and BYD 74 Phy-yisK (2X) 

(see methods in Chapter II). BYD 74 was induced for 20 min with 1.0 mM IPTG before 

subjected to protoplasting followed by osmotic lysis and pulldown. BYD 74 UI 

(uninduced) and BYD 278 were grown to same OD600 (~0.5) before protoplasting 

followed by osmotic lysis and pulldown. Gel stained with Sypro Ruby, with relevant 

bands indicated by arrows. Contrast of image enhanced to make bands clearer. 
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Discussion 

YisK perturbs the proper localization of Mbl-GFP during misexpression, which 

is consistent with the loss of rod shape observed (Fig 3.1). The loss of Mbl’s punctate-

helical localization is accompanied by a strong relocalization of Mbl-GFP to midcell. In 

B. subtilis, MreB was recently shown to require the presence of Lipid I for localization 

to the membrane (331).  If Mbl also requires Lipid I for localization, this result might 

suggest that YisK misexpression leads to an enrichment of Lipid I at midcell. Our Mbl 

suppressor data suggests YisK misexpression disrupts Mbl protofilament bundles 

(Chapter II), and recent evidence shows that a functional sandwhich fusion to natively 

expressed YisK localizes to punctate regions around the membrane (Tingfeng Guo and 

Jennifer Herman, unpublished data).  Based on these additional data, we hypothesize that 

YisK localization is restricted in the cell, and that disruption of Mbl along the cell length 

frees Mbl to relocalize to Lipid I present at midcell.  

Although YisK specifically requires Mbl (but not MreB) for its cell shape 

modifying activity, we were surprised to observe that misexpression of YisK also results 

in loss of of the punctate-helical localization of MreB-GFP (Fig. 3.1) and of LytE-GFP 

(a proxy for MreBH) (Fig 3.2). Since cells are not round, this result suggests that either 

there is still some Mbl/MreB present at the membrane, or that the midcell-localized Mbl 

is capable of supporting an overall rod shape.  If this hypothesis is correct, then it would 

suggest that cells growing following YisK expression are incorporating new cell 

envelope material through polarized growth, a possibility that can be tested using PG 

labeleling techniques (57).  



 

170 

 

 

YisK is a stationary phase protein, and our data suggests yisK is repressed during 

sporulation by a Spo0A box that overlaps the -10 region of its SigH promoter (Fig 3.3). 

Our data also suggest that YisK is an enzyme, so this result suggests that whatever the 

enzymatic activity of YisK is during stationary phase, it may be detrimental if it is not 

downregulated during sporulation.   

We also observe that YisK interacts by B2H with FtsE, the cytoplasmic 

component of the ABC transporter FtsEX via Bacterial 2-hybrid (Fig 3.4). While YisK-

mediated cell widening does not require FtsEX (actually cells become round and lyse) 

(Fig 3.5), YisK mediated cell shortening does (Fig 3.6). It is not clear whether this is a 

general sensitivity of the the ftsEX or cwlO knockouts to perturbations in cell envelope 

synthesis or if it is specific to YisK activity, but this can be investigated by examining if 

the ftsEX is also more sensitive to misexpression of YodL.  

MreB was shown to be required for YodL cell shape modifying activity, and 

some of the specific suppressors of YodL activity resided on an interface of MreB 

known to be important for interaction with the cell shape protein RodZ (78). We found 

that rodZ from B. subtilis could be deleted without a loss of rod shape, and further 

showed that rodZ was not essential for the cell shape modifying activity of YodL (Fig 

3.7). This allowed us to probe the mechanism of the suppressors in MreB conferring 

resistance to YodL activity. Suppressors in MreB could confer resistance by increasing 

the affinity of MreB for RodZ, thereby outcompeting YodL for the same interface. 

Additionally, suppressors in MreB could also function by abrogating interaction with 

YodL. Finally, non-specific suppressors of MreB which could also suppress YodL 
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activity could do so by a general mechanism, such as enhancing MreB’s ability to 

polymerize or form protofilament bundles.  

These data raise the question as to what is YodL’s role in the cell. We identified 

yodL as a previously uncharacterized sporulation gene (Chapter II). Since RodZ couples 

MreB to the cell synthesis machinery and YodL shares the same/overlapping interaction 

interface on MreB with RodZ, it seems plausible that MreB interaction with YodL 

would exclude MreB interaction with RodZ. Therefore, native expression of YodL 

during sporulation should uncouple MreB from cell envelope synthesis. This is logical 

from an evolutionary standpoint, as under limited resources the cell would need to 

transition from lateral cell wall synthesis to polar septal synthesis and eventually spore 

formation. This begs the question: what is the role of MreB during sporulation (Duan 

and Herman, Dissertation)?  

The role of MreB-like proteins during sporulation in B. subtilis has not been 

elucidated, although distint roles for MreB-like proteins during sporulation has been 

shown for other organisms (58). In B. subtilis, Mbl has a SigE promoter (sporulation 

promoter), suggesting a distinct role for Mbl during sporulation. This data supports YisK 

being repressed during sporulation, as perhaps this ensures that YisK does not perturb 

Mbl function during this stage of developmental growth. 

The YisK crystal structure was solved at ~2Å resolution, although the N and C 

terminal regions which reside towards the bottom of the structure (Fig 3.10) are poorly 

resolved. Initial attempts at making N or C terminal fluorescent fusions as well as His 

tagging YisK resulted in a loss of its ability to cause a loss of cell shape upon 
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misexpression, suggesting this region of the protein is important for YisK’s ability to 

interact with and/or perturb Mbl. Consistent with this possibility, the YisKE30A variant’s 

substitution occurs in a conserved acidic amino acid in this region of the protein.   

YisK is a member of the fumarylacetoacetate hydrolase (FAH) superfamily; 

however, our data suggest that YisK is not involved in aromatic amino acid metabolism, 

and is instead most likely involved in metabolism of dicarboxylic acids. Perhaps the 

most critical finding of this study was that YisKmu (E148A, E150A, and E179) no longer 

supports coordination of the divalent cation critical for catalysis in FAHs, but 

misexpression of YisKmu still resulted in loss of cell shape (Fig. 3.15). This suggested 

that the enzymatic activity of YisK was not related to its cell shape modifying activity. 

Given that YisK copy number is probably pretty low (<300 at maximal expression), the 

cell-shape modifying activity during misexpression is probably an artifact of 

overexpression of a protein that interacts with Mbl. Based on the crystal structure and 

genetic data (Fig. 3.16) the current model is that YisK interacts with Mbl with its N and 

C terminal region as well as uses interactions with FtsEX to localize to a region of the 

cell where its substrate is present and/or its product is needed, during a stage in the cell 

cycle (stationary) where the metabolic pathway that YisK plays a role in will be needed 

(Fig. 3.27).  
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Figure 3.27.  Current model of YisK in vivo function. YisK uses Mbl and FtsEX to 

localize to a region of the cell where its substrates may be present and/or the product of 

its reaction may be required. 
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Based on the data, it appeared that YisK played a role in dicarboxylic acid 

metabolism (Fig. 3.21). However, we were unable to obtain interaction partners with 

YisK using pull-downs of cytosolic proteins from cell lysates. This negative result could 

be due to either transient interactions of YisK with the cell envelope synthesis 

machinery, or interactions with membrane bound proteins (or even small molecules such 

as Lipid II). To address the former possibility, in vivo crosslinking followed by pull-

down will be performed; the latter possibility will be tested by a membrane 

solubilization followed by pulldown. The metabolomics data was able to link the proline 

metabolic pathway that was closely related to (only a few enzymatic steps away from) 

the glyoxylate pathway, but did not result in direct evidence of YisK playing a role in 

dicarboxylic acid metabolism. It is possibly that L-tartrate or dihydroxyfumarate (DHF) 

are actually mimicking the true substrate, and that they should be treated as a 

pharmacophore or backbone structure that would be the core of the true substrate. It has 

previously been shown that L-tartrate acts as a mimic of D-ala-D-ala, and so it is not 

farfetched to hypothesize that it may not be the true substrate (327). Proline has never 

been tested for binding to YisK, but will be tested in the future. Subsequent 

metabolomics experiments using a yisK knockout will be performed, focusing on 

hydrophilic compounds including those involved in central carbon metabolism, in an 

effort to identify YisK’s native metabolic pathway. In addition to whatever information 

is obtained concerning YisK function, the overall approach used for characterization of 

YisK can be applied for elucidation of other enzymes of unknown function(s). 
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CHAPTER IV 

 CHARACTERIZATION AND MANIPULATION OF PBSX, A DEFECTIVE 

PROPHAGE IN B. subtilis 

 

Introduction 

PBSX is a defective prophage-like element in B. subtilis 168 that specifically 

targets and kills B. subtilis W23. PBSX-like prophages are conserved in B. subtilis 

strains as well as some strains of B. pumilis and B. licheniformis (214, 215); these 

phagocin kill related species of B. subtilis while leaving their respective strain 

unaffected. PBSX induction results in amplification of phage DNA (209, 217, 332), the 

packaging of ~13 kb (209) of random chromosomal DNA from the host (195, 211), and 

subsequent lysis of the host; however, there has been evidence to suggest that the 

packaging of chromosomal DNA is not completely random, and that some feature of the 

DNA (whether sequence specific or structure specific) is guiding the packaging (209). 

PBSX is thought to kill in the same manner as pyocins, by dissipating the membrane 

potential (333). Since PBSX packages chromosomal DNA and also kills its target upon 

adsorption, it is not useful as a transducing phage. 

A thermosensitive mutant (xhi-1479) that induces PBSX when the temperature is 

shifted from 37°C to 48°C was originally isolated in 1976 (224), although it was not 

until the early 1990’s that the phage repressor, xre, was identified, along with the 

mutations that confer temperature sensitivity (xre G4S A19V L78V); however, it was 
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never identified which of the point mutations within xre were required for temperature 

sensitivity (219, 220). 

Although PBSX was the focus of significant research, most of the work is 

between thirty and fifty years old, and while the data strongly supports the authors’ 

conclusion(s), the tools available at the time do not rule out other possible 

interpretations, and some of the data is conflicting (195, 211, 217). In the following 

chapter, we use modern molecular biology techniques such as single-cell assays, Gibson 

Assembly (334), and next generation sequencing, alongside the robustness of B. subtilis 

genetics, to characterize PBSX. Furthermore, we approach PBSX as a modular system 

for phagocin production, and have successfully switched its specificity to target its 

resident strain, B. subtilis 168.  

 

Materials and methods 

General methods 

All B. subtilis strains were derived from B. subtilis 168 unless specifically noted. 

B. subtilis strains utilized in this study are listed in Table 4.1. Plasmids are listed in 

Table 4.2. Oligonucleotide primers are listed in Table 4.3. The following concentrations 

of antibiotics were used for generating B. subtilis strains: 100 µg/ml spectinomycin, 7.5 

µg/ml chloramphenicol, 0.8 mg/ml phleomycin, 10 µg/ml tetracycline, and 10 µg/ml 

kanamycin. To select for erythromycin resistance, plates were supplemented with 1 

µg/ml erythromycin (erm) and 25 µg/ml lincomycin. B. subtilis transformations were 

carried out as described previously (271).  
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Table 4.1.  Strains used in Chapter IV. 

 

Strain Description Reference 

Parental   

B. subtilis 168 Bacillus subtilis strain 168 trpC2  BGSC (1A866) 

B. subtilis W23 Bacillus subtilis subsp. spizizenii BGSC (2A9) 

E. coli DH5α 

 

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 

deoR nupG Φ80dlacZΔM15 Δ(lacZYA-

argF)U169, hsdR17(rK
- mK

+), λ–   

E. coli TG1 

glnV44 thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5, 

(rK
–mK

–) F′ [traD36 proAB+ lacIq lacZΔM15]  

B. subtilis 168   

BAS259 xre G4S A19V  L78V  This study 

BAS260 xre G4S A19V This study 

BAS342 xre G4S A19V     xhlB::kan This study 

BAS350 xre G4S A19V    PBSX--Z hybridΩkan This study 

BAS362 xre G4S A19V    xhlA::kan This study 

BAS363 xre G4S A19V    xhlAB::kan This study 

E. coli DH5α   

CAS85 pminiMAD xre A19V (amp) This study 

CAS89 pminiMAD xre G4S A19V  L78V (amp) This study 

CAS91 pminiMAD xre G4S A19V (amp) This study 

CAS104 pminiMAD xre G4S (amp) This study 

E. coli TG1   

CAS86 pminiMAD xre A19V (amp) This study 

CAS90 pminiMAD xre G4S A19V  L78V (amp) This study 

CAS92 pminiMAD xre G4S A19V (amp) This study 

CAS105 pminiMAD xre G4S (amp) This study 
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Table 4.2.  Plasmids used in Chapter IV. 

 

Plasmid Description Reference 

pminiMAD pminiMAD Dan Kearns 

pAS061 pminiMAD xre A19V (amp) This study 

pAS065 pminiMAD xre G4S A19V (amp) This study 

pAS064 pminiMAD xre G4S A19V  L78V (amp) This study 

pAS076  pminiMAD xre G4S (amp) This study 
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Table 4.3.  Oligonucleotides used in Chapter IV. 

 

Oligo Sequence 5’ to 3’ 

OAS196 TCTGAGACTCTTCAATCTGCTGCCTATCATACTATGACCTC 

OAS197 GAGGTCATAGTATGATAGGCAGCAGATTGAAGAGTCTCAGA 

OAS198 CTGCATATCGCGGTATGCAACCTGCAGGTCCGGATCTGAGA 

OAS199 TCTCAGATCCGGACCTGCAGGTTGCATACCGCGATATGCAG 

OAS249 

TACCGTTCGTATAGCATACATTATACGAAGTTATGGATCCCAG

CGAACCATTTG 

OAS250 

TACCGTTCGTATAATGTATGCTATACGAAGTTATGTCGACAAA

TTCCTCGTAGG 

OAS286 AAGAATTGTCACAGGAAAAGCT 

OAS287 

CTTCGTATAATGTATGCTATACGAACGGTAAAAAATCCCCCTT

TAATGCTGC 

OAS288 

CTTCGTATAGCATACATTATACGAACGGTAGGAGAGATGAAA

ATGGTTAACAT 

OAS289 CAATACGGAAAAGTGGTTCTCA 

OAS297 ATGGCATTAAAAGCACAAAACACG 

OAS298 TATTTGTTTACGCCTGAACTGTC 

OAS299 GACAGTTCAGGCGTAAACAAATA 

OAS300 

CTTCGTATAATGTATGCTATACGAACGGTAAACGGCTGATTGA

CGAGTATAAA 

OAS301 

CTTCGTATAGCATACATTATACGAACGGTAGATCGCAGCGCA

ATTAAGCTG 

OAS302 TTGCCACTTCATCTCCGTAGA 

OAS310 ATGCAGACACAACTAGTGGAAG 

OAS311 

ATAACTTCGTATAATGTATGCTATACGAACGGTACTCTCACTC

CTCCTTCACATG 

OAS312 

ATAACTTCGTATAGCATACATTATACGAACGGTAAGGGGGAT

TTTTATGAACACGT 

OAS313 CGAAGGTCAAAGAAAAAATGTCC 

OAS314 

ATAACTTCGTATAGCATACATTATACGAACGGTAGGAGAGAT

GAAAATGGTTAACAT 

OJH265 TTTGGATCCGCTCCAGCCATCTTCTGAC 

OJH266 TGATACGATTTCTTCCTGTGTCCTTTTC 

OJH267 AAAAGGACACAGGAAGAAATCGTATCA  

OJH268 AAAAAGCTTTTTAACACGTGGCACAGCTCA 
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Media 

TY Broth is (per Liter) 10g tryptone, 5g yeast extract, 5g NaCl. This is 

autoclaved liquid setting for 20 min, followed by addition of 0.2µM filter sterilized 

MgSO4 to 10mM and MnSO4 to 100µM. 

TY bottom agar is TY Broth + 1.5% (w/v) Bacto agar 

TY top agar is TY Broth + 0.5% (w/v) Bacto agar 

 

Loop in-loop out strain construction of unmarked temperature sensitive xre mutants 

A single point mutant was generated in xre to make A19V by using overlap PCR. 

oJH 265 and oJH 266 as well as oJH 267 and oJH 268 were used to amplify fragments 

of xre from B. subtilis 168 genomic DNA while generating the A19V mutation (in the 

primers). Overlap PCR was performed using 0.5 µL each of the previously constructed 

fragments as template with oJH 265 and oJH 268, generating the full xre A19V 

construct. The construct was cloned into pminiMAD vector using BamHI/HindIII cut 

sites, making pAS061 xre A19V (erm)(amp), followed by transformation of B. subtilis 

168 by single crossover homologous recombination and plating on LB-Lennox solid 

media supplemented with 1 µg/ml erythromycin with 25 µg/ml lincomycin (MLS) and 

incubated at room temperature for more than 24 hrs. Six colony isolates were then 

selected and Loop in-Loop out protocol (18) was used to generate the markerless point 

mutant in 168WT. xre A19V could not be made (see Results). The G4S mutation was 

generated in the xre A19V background by using pAS061 xre A19V as template for PCR 

with oJH 265 and oAS 196 as well as oAS 197 and oJH 268. Overlap PCR was 
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performed using 0.5 µL of each previously constructed fragment as template with oJH 

265 and oJH 268, generating the full xre G4S A19V construct. The construct was cloned 

into pminiMAD vector using BamHI/HindIII cut sites, making pAS065 xre G4S A19V 

(erm)(amp), followed by transformation of B. subtilis 168 by single crossover 

homologous recombination and plating on LB Lennox solid media supplemented with 1 

µg/ml erythromycin with 25 µg/ml lincomycin (MLS) and incubated at room 

temperature for more than 24 hrs. Six colony isolates were then selected and Loop in-

Loop out protocol (18) was used to generate markerless point mutant BAS 260 xre G4S 

A19V. The L78V mutation was generated in the xre G4S A19V background by using 

pAS065 xre G4S A19V as template for PCR with oJH 265 and oAS 198 as well as oAS 

199 and oJH 268. Overlap PCR was performed using 0.5 µL of each previously 

constructed fragment as template with oJH 265 and oJH268, generating the full xre G4S 

A19V L78V construct. The construct was cloned into pminiMAD vector using 

BamHI/HindIII cut sites, making pAS064 xre G4S A19V L78V (erm)(amp), followed by 

transformation of B. subtilis 168 by single crossover homologous recombination and 

plating on LB Lennox solid media supplemented with 1 µg/ml erythromycin with 25 

µg/ml lincomycin (MLS) and incubated at room temperature for more than 24 hrs. Six 

colony isolates were then selected and Loop in-Loop out protocol (18) was used to 

generate markerless point mutant BAS 259 xre G4S A19V L78V. The xre G4S only point 

mutant was constructed by amplifying fragments of xre from B. subtilis 168 genomic 

using oJH 265 and oAS 196 as well as oAS 197 and oJH268. Overlap PCR was 

performed using 0.5 µL of each previously constructed fragment as template with oJH 
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265 and oJH 268, generating the full xre G4S construct. The construct was cloned into 

pminiMAD vector using BamHI/HindIII cut sites, making pAS076 xre G4S (erm)(amp), 

followed by transformation of B. subtilis 168 by single crossover homologous 

recombination and plating on LB Lennox solid media supplemented with 1 µg/ml 

erythromycin with 25 µg/ml lincomycin (MLS) and incubated at room temperature for 

more than 24 hrs. Six colony isolates were then selected and Loop in-Loop out protocol 

(18) was used, although xre G4S is extremely temperature sensitive and not stable, and 

so strains could not be generated. 

 

Lysis curves 

An exponentially growing 5 mL culture of B. subtilis strains in TY broth was 

used to inoculate a 25 mL TY culture in a 250 mL baffled flask shaking at 280 rpm at 

37°C in a New Brunswick C76 Shaker Bath at OD600 = 0.00625. The culture was grown 

until between OD600 of 0.1-0.25 (stated in figure) before shifting flask to a 48°C water 

bath that was shaking at 280rpm. OD600 readings were taken at specified time intervals. 

 

Lysate preparation 

Cell debris was removed from lysates by centrifuging at 12,000 x g for 20 min at 

4°C and passing the supernatant through 0.2 µm cellulose acetate filter (VWR). The 

lysates were stored at 4°C. 
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Killing units assay (spotting plates). 

TY bottom agar plates were poured fresh and let dry. 200 µL of a 5 mL BAS 338 

B. subtilis W23 culture grown in TY broth to stationary phase (~5 hrs at 37°C) was 

added to 3 mL of TY top agar whose temperature was below 55°C, vortexed quickly, 

and poured (overlay) on the TY bottom agar plates and let dry. Prepared lysates were 

serial diluted in 10-fold increments in fresh TY broth and 10 µL of each dilution was 

spotted on W23 overlaid plates and let air dry before they were placed in the incubator at 

37°C overnight. 

 

Adsorption assay 

Five mL cultures of B. subtilis 168 or B. subtilis W23 were grown until OD600 

~0.4 and 1 mL of each was pelleted at 8,000 x g in a tabletop centrifuge for 1 min. 

Supernatant was removed for each pellet and discarded, and pellets were resuspended in 

250 µL of PBSX lysate. Resuspended pellets were incubated at room temperature for 30 

min, followed by centrifugation at 8,000 x g in tabletop centrifuge for 1 min. 100 µL of 

each supernatant was subsequently serial diluted in 10-fold increments in fresh TY broth 

and 10 µL of each dilution was spotted on W23 overlaid plates and let air dry before 

they were placed in the incubator at 37°C overnight (as previously stated). 

 

Microscopy 

Microscopy was performed as described in Chapter II. For fluorescent 

microscopy, exposure time for GFP channel was 1 sec, CFP channel was 1 sec, and 
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TxRed channel was 400 ms unless otherwise stated. All images were adjusted 

equivalently unless otherwise stated. All microscopy mounts for images presented in 

Chapter IV were done on 1% agarose pads. 

 

Alexa Fluor 488 Maleimide labeled PBSX 

 PBSX was poly(ethylene glycol) (PEG) precipitated from a BAS 260 lysate by 

adding 7.5 mL of 3X PEG 8000 (30% poly(ethylene glycol) 8000, 3.0 M NaCl ) to 15 

mL of lysate, mixing by pipetting up and down and inverting the tube, and incubating 

overnight at 4°C (~16 hrs). PBSX was pelleted by centrifuging at 12,000 x g for 20 min 

at 4°C. The PBSX pellet was washed once with 10 mL of 1X PBS followed by another 

round of centrifugation at 12,000 x g for 20 min at 4°C. Afterwards, the PBSX pellet 

was let resuspend in this 10 mL 1X PBS overnight at 4°C (~16 hrs). The resuspended 

phage sample (~10 mL) was mixed with 4 mL of 1X PBS and added to an Amicon 100 

kDa concentrator (concentrator was first rinsed with 3 mL PBS followed by 

centrifugation at 6,000 x g for 5 min) and centrifuged at 6,000 x g for 5 min at 4°C. An 

additional 9 mL of cold 1X PBS was added to the sample and centrifugation was 

repeated. This process was repeated three times, followed by concentrating the sample to 

1mL by centrifuging at 12,000 x g for 20 min at 4°C. The sample was then fluorescently 

labeled by incubating with Alexa Fluor 488 C5 Maleimide (Invitrogen) at a final dye 

concentration of 5 µg/mL for 5 min at room temperature. The labeled phage was 

immediately dialyzed at a 1/400 ratio for three buffer exchanges at 2 hr increments at 



 

185 

 

 

4°C. The labeled PBSX was stored in the dark at 4°C, and the viability was confirmed 

by spotting the Alexa Fluor 488-labeled PBSX on W23. 

 

Gibson assembly to generate the PBSX-PBSZ hybrid phage in B. subtilis strain 168 

oAS 297 and oAS 298 were used with B. subtilis W23 genomic DNA template to 

amplify PBSZ gene 27 with 7500 bp downstream (Piece 1). oAS 299 and oAS 300 were 

used with W23 genomic DNA template to amplify from 7500bp downstream of gene 27 

to 15,000bp downstream of gene 27 (Piece 2). A kanamycin resistance cassette was 

amplified from pWX114a using oAS 249 and oAS 250. oAS 301 and oAS 302 were 

used on B. subtilis 168 genomic to amplify the region immediately downstream of xlyA 

(Piece 4). Piece 1 had a 30bp overlap with Piece 2, which had a 30bp overlap with the 

kanamycin cassette. Piece 4 had a 30bp overlap with the kanamycin resistance cassette. 

All of the amplified fragments with respective 30bp overhangs (Piece 1, 2, 4, and 

kanamycin cassette) were ligated together in a 20 µL isothermal single step Gibson 

Assembly reaction (334), and the entire reaction was used to transform BAS 260 xre 

G4S A19V  by double crossover homologous recombination, and the cells were plated on 

TY solid media supplemented with 10 µg/mL kanamycin and incubated overnight at 

37°C (~16 hrs). 
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Gibson assembly to generate xhlA, xhlB, and xhlAB knockouts 

BAS 362 xre G4S A19V xhlA::kan 

oAS 310 and oAS 311 were used with B. subtilis 168 genomic DNA template to 

amplify the upstream region of xhlA (Piece 1). A kanamycin cassette was amplified as 

previously stated (Methods, Chapter IV). oAS 312 and oAS 313 were used with B. 

subtilis 168 genomic DNA template to amplify the downstream region of xhlA (Piece 3). 

All of the amplified fragments with respective 30bp overhangs (Piece 1, 3, and 

kanamycin cassette) were ligated together in a 20 µL isothermal single step Gibson 

Assembly reaction (334) and the entire reaction was used to transform BAS 260 xre G4S 

A19V by double crossover homologous recombination, and the cells were plated on TY 

solid media supplemented with 10 µg/mL kanamycin and incubated overnight at 37°C 

(~16 hrs).  

 

BAS 342 xre G4S A19V xhlB::kan 

oAS 286 and oAS 287 were used with B. subtilis 168 genomic DNA template to 

amplify the region upstream of xhlB (Piece 1). A kanamycin cassette was amplified as 

previously stated (Methods, Chapter IV). oAS 288 and oAS 289 were used with B. 

subtilis 168 genomic DNA template to amplify the region downstream of xhlB (Piece 3). 

All of the amplified fragments with respective 30bp overhangs (Piece 1, 3, and 

kanamycin cassette) were ligated together in a 20 µL isothermal single step Gibson 

Assembly reaction (334) and the entire reaction was used to transform BAS 260 xre G4S 

A19V by double crossover homologous recombination, and the cells were plated on TY 
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solid media supplemented with 10 µg/mL kanamycin and incubated overnight at 37°C 

(~16 hrs).  

 

BAS 363 xre G4S A19V xhlAB::kan  

Piece 1 and the kanamycin resistance cassette were amplified as previously stated 

(Methods, Chapter IV, BAS 362 strain construction). oAS 314 and oAS 313 were used 

with B. subtilis 168 genomic DNA template to amplify the region downstream of xhlB 

(Piece 3). All of the amplified fragments with respective 30bp overhangs (Piece 1, 3, and 

kanamycin cassette) were ligated together in a 20 µL isothermal single step Gibson 

Assembly reaction (334) and the entire reaction was used to transform BAS 260 xre G4S 

A19V by double crossover homologous recombination, and the cells were plated on TY 

solid media supplemented with 10 µg/mL kanamycin and incubated overnight at 37°C 

(~16 hrs).  

 

Results 

PBSX can be induced via temperature shift of an xre G4S A19V L78V mutant 

from 37°C to 48°C (219). Although it was speculated that the mutation conferring 

temperature sensitivity was A19V (as it resided within the predicted helix-turn-helix 

motif), it was never experimentally determined. B. subtilis 168 containing xre G4S, xre 

A19V, xre G4S A19V, and xre G4S A19V L78V at the native locus (unmarked) were 

constructed (or attempted to be constructed) and subjected to temperature shifts to assay 

for thermostability. xre G4S A19V and xre G4S A19V L78V both conferred 



 

188 

 

 

thermosensitivity to B. subtilis strain 168 and resulted in the production of functional 

PBSX (Fig 4.1A). There did not appear to be any difference in the lysis dynamics or 

killing efficiency comparing the xre G4S A19V and xre G4S A19V L78V (Fig 4.1B). 

Electron microscopy was used to confirm the presence of fully assembled phagocin 

particles (Fig 4.1C). Although an xre A19V was attempted to be made, it could not be 

constructed, suggesting that the xre A19V mutant encodes a nonfunctional Xre. In the 

context of phage induction, a nonfunctional phage repressor results in initiation of the 

lytic cycle of the prophage, and subsequent cell death; therefore, any nonfunctional Xre 

variant will be unable to be isolated. Furthermore, when making the xre G4S mutant, the 

only transformants obtained were those grown at room temperature on a TY plate (non-

permissive even at 37°C) and were difficult to propagate; xre G4S merodiploid 

transformants were constructed that would only grow at room temperature as well. These 

strains barely grew in liquid TY media, and when the strains were sent for sequencing, 

the sequencing results showed they were wild-type xre. This indicates that the xre G4S 

mutant encodes a highly temperature sensitive Xre that exhibits a dominant negative 

phenotype (shown in merodiploid strain), and that the strains that grew in liquid media 

were revertants.  

PBSX specifically targets B. subtilis W23 while PBSZ specifically targets B. 

subtilis strain 168 (168WT). This resistance is caused by the inability of PBSX to adsorb 

to 168WT as shown through an adsorption assay, as well as fluorescently labelled PBSX 

single cell adsorption assay (Fig 4.2). PBSX clearly adsorbs to W23 in both batch 

adsorption and single cell adsorption assays (Fig 4.2).  
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Figure 4.1.  PBSX is successfully induced and assembled from thermosensitive xre. A) 

Lysis curve of 168WT, BAS 259 xre G4S A19V L78V, and BAS 260 xre G4S A19V. 

Time zero denotes temperature shift from 37°C to 48°C at OD600 ~ 0.100. Time is 

denoted in minutes along the X-axis and OD600 is denoted along the Y-axis. B) Spotting 

10 µL of BAS 259 xre G4S A19V L78V lysate (serial diluted) on a lawn of W23 and 

incubation at 37°C overnight. C) BAS 259 xre G4S A19V L78V lysate concentrated via 

ultracentrifugation and stained with Uranyl Acetate and visualized at 25,000 x 

magnification using Jeol 1200 Transmission Electron Microscope. 
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Figure 4.2.  PBSX adsorbs to B. subtilis W23 but not B. subtilis strain 168WT. A) 

PBSX was adsorbed for 30 min on strain denoted, culture was pelleted, and supernatant 

was serial diluted and spotted on sensitive strain. TY plate was incubated overnight at 

37°C. B) Single cell adsorption assay using Alexa Fluor 488 labeled PBSX adsorbed for 

10 min with either 168WT or W23. GFP channel on top two panels and image contrast 

adjusted to allow punctate foci (phagocin) to appear clearer. PBSX+168WT control 

image contrast adjusted maximally to look for the presence of any phagocin. Bottom two 

panels are phase contrast images of the cells. C) Unlabeled and Alexa Fluor 488 labeled 

PBSX spotted on W23. 
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Figure 4.3.  Genetic construct of hybrid PBSX-PBSZ phagocin. The tape measure and 

tail fiber genes from PBSZ were linked to a kanamycin cassette using Gibson Assembly 

and the subsequent linear DNA piece was transformed into B. subtilis 168 through 

homologous recombination 
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Figure 4.4.  DNA gel confirmation of tape measure proteins. Lane 2 to lane 11 are for 

BAS 349 hybrid PBSZ and lane 12 to lane 22 are for BAS 350 xre G4S A19V hybrid 

PBSZ strain. 
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Figure 4.5.  DNA gel confirmation of tail fiber proteins. Lane 2 to lane 11 are for BAS 

349 hybrid PBSZ and lane 12 to lane 22 are for BAS 350 xre G4S A19V hybrid PBSZ 

strain. 
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When comparing PBSX and PBSZ, the two phagocin are almost identical, with 

the exception of the tape measure protein and the tail fiber protein. The tape measure 

protein and the tail fiber protein are both larger in PBSZ than those in PBSX, and the 

differing regions reside in the C-terminal region of the tape measure protein and the C-

terminal region of the tail fiber protein. This begged the question: what was the 

determinant of specificity, and furthermore, were these two phagocin modular? To 

determine the minimum requirement for specificity, a single enzymatic assembly 

construct fusing the tape measure and tail fiber proteins of PBSZ to PBSX within the B. 

subtilis 168 genome (Fig 4.3) was generated and subsequently transformed into B. 

subtilis 168. We were unable to generate a temperature sensitive PBSZ or work within 

B. subtilis W23, as it was not naturally competent, and all methods to transform B. 

subtilis W23 proved ineffective (unpublished, Sperber, Theodore and Young) (335-338). 

Transformants were plated on kanamycin, isolated, and then grown up in liquid culture 

for induction by Mitomycin C (BAS 349 hybrid PBSZ) or temperature shift (BAS 350 

xre G4S A19V hybrid PBSZ). Lysates were then spotted for host sensitivity on 168WT 

and W23. Concurrently, genomics of all strains were made (see Chapter II Methods) and 

subsequently the Tape Measure protein and the Tail Fiber protein were amplified by 

PCR and run on a 1% Agarose gel to look for a hybrid phagocin construct (21 strains 

were constructed and screened). (Fig 4.4-4.5). All transformants of BAS 349 and BAS 

350 failed to have crossover of the PBSZ Tape Measure protein (Fig 4.3 and Fig 4.4), 

although 8/21 had successful crossover of the PBSZ Tail Fiber protein (Fig 4.3 and Fig 

4.5). When the lysates of all 21 isolates were spotted on either 168WT or W23, only 
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lysates of strains which possessed the PBSZ Tail Fiber would kill 168WT and 

subsequently no longer kill W23 (Fig. 4.6). This data demonstrates that the Tail Fiber of 

PBSZ is sufficient to confer a switch of host for PBSX. 

The ability switch specificity of the phagocin PBSX within B. subtilis 168 in a 

system that allowed thermoinducibility of the phagocin brought about a need to produce 

more phagocin per induced bacterial cell. Increasing phage per cell during phage 

infection (burst size) can be achieved by knocking out the holin gene, which allows 

increased accumulation of phage as the cell continues to produce phage after a time 

when typically, the holin would trigger cell lysis (through the other lysis proteins). In B. 

subtilis, xlyA is the endolysin (N-acetylmuramoyl-L-alanine amidase), xhlB is the holin, 

and xhlA is a membrane associated protein; xhlA and xhlB are both required for host 

lysis, and PBSX encodes a second endolysin outside of the lysis cassette (xlyB) (339, 

340). It is not clear what the role of xhlA is during host lysis, as it does not appear to act 

as an antiholin, rather it seems to act in concert with xhlB to facilitate host lysis (340). 

The lysis genes xhlA, xhlB, and both xhlAB were systematically knocked out without 

leaving any antibiotic resistance marker (see Methods) in the temperature sensitive xre 

background and lysis curves were performed. Consistent with previous literature (340), 

ΔxhlB delays lysis by around 20min and lysis itself is less concerted (Fig 4.7), ΔxhlA 

prevents cell lysis but also causes growth to plateau around transition (OD600 ~0.8), and 

ΔxhlAB allows further cell growth into stationary phase and prevents cell lysis (Fig 4.7). 

Unlysed cells were subsequently lysed (see Methods) and all strains were serial diluted 

and spotted on B. subtilis W23 to assay for killing units. If the lysis gene knockouts 
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allow additional accumulation of phage (similar to holin knockouts in Gram-negative), 

then the killing units will increase. Unfortunately, we did not have an increase in killing 

units in BAS 362 or BAS 363 (Fig 4.8) over killing units in wild type (BAS 260); 

however, this could have been an issue with cell lysis of the xhlA or xhlAB knockouts, 

and so variations on the lysis method will be performed to ensure accurate assaying of 

killing activity. Currently, a Western blot based approach using an antibody that is 

specific for the major capsid protein is being utilized to quantify the number of phagocin 

in both the wild type and the xhlA and xhlAB knockouts (BAS 362 and BAS 363, 

respectively). 

During traditional phage infection, the membrane potential of the cell is 

transiently dissipated as the phage DNA is ejected into the cell; this process is followed 

by the subsequent plugging of the hole, repolarization of the host cell, and the 

progression of the phage infection cycle, either lytic or lysogenic. Failure of the host cell 

to reestablish the membrane potential results in cell death. It is thought that PBSX (and 

other phagocins) kill their host by mechanically puncturing and depolarizing the 

membrane, while not subsequently closing the hole, similar to pyocins (333). 
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Figure 4.6.  The tail fiber of PBSZ is sufficient to switch host specificity from B. subtilis 

W23 to B. subtilis 168. A) Spotting 10 µL of BAS 350 xre G4S A19V hybrid PBSZ 

(strains 1-11) on 168WT or W23 as a host. B) DNA gel confirmation of which tail fiber 

genes were integrated into the different BAS 350 strains. Note that all strains that 

contained a PBSZ tail fiber gene produced lysates that no longer killed W23 but instead 

killed 168WT. 
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Figure 4.7.  Lysis curve of PBSX lysis gene knockouts. Knockouts of the lysis genes 

xhlA and xhlB were assayed for defect in cell lysis dynamics. Wild-type is BAS 260 xre 

G4S A19V; all other knockouts were constructed in this temperature sensitive 

background. PBSX induced by shifting from 37°C to 48°C at around 120 min OD600 

~0.220.  
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Figure 4.8.  Lysate spotting of WT, xhlA, xhlB, and xhlAB knockouts. 10 µL of PBSX 

lysates were serial diluted in TY and spotted on B. subtilis W23. Killing zones are clear 

spots on the plate. BAS 260 xre G4S A19V, BAS 342 xre G4S A19V xhlB::kan, BAS 

362 xre G4S A19V xhlA::kan, BAS 363 xre G4S A19V xhlAB::kan.  
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To visualize membrane depolarization at the single cell level, we used Alexa 

Fluor 488 labeled PBSX and stained the host with the Nernstian voltage indicator dye 

Thioflavin T (ThT) (341, 342). Thioflavin T is a fluorescent cationic dye that is retained 

in the cell when a membrane potential is present (341). Due to crossover between the 

GFP and CFP channels, the individual fluorescent phages could not be visualized (Fig 

4.9); however, cells that were phase dark (dead) had lost their Thioflavin T signal (Fig 

4.9A).  However, it does not appear that ThT is only reporting on membrane potential. 

Dinitrophenol (DNP) permeabilizes the cell to H+ ions, causing a loss of ΔΨ and ΔpH, 

and the cells treated with DNP still retained ThT (Fig 4.9B). Furthermore, when cells 

were treated with the K+ ionophore valinomycin alongside a potassium clamp (causes a 

loss of ΔΨ), overall ThT became less retained, but it was not significantly different than 

the solvent only control. Controls in the Prindle et al. 2015 paper used valinomycin and 

CCCP. I could not reproduce his valinomycin result and my DNP did not behave 

similarly to his CCCP control. Although it appears that ThT can report on phage 

depolarization of the membrane, the lack of response of ThT to characterized membrane 

potential disrupting compounds prevents the further use of this dye until it is better 

characterized, despite its use in the literature (341, 342). Other voltage sensitive dyes 

that are better characterized are DiSC3(5) and DiBAC4(3) (343), and may prove useful in 

further experiments. 
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Figure 4.9.  Single cell membrane potential assay using Alexa Fluor 488 labeled PBSX 

and Thioflavin T (ThT) stained B. subtilis W23. A) Mid exponential culture of B. subtilis 

W23 was incubated with 10 µL of Alexa Fluor 488 Labeled PBSX for 5 min at room 

temperature before pelleting and resuspending in PBS (control incubated with 10 µL of 

1X PBS). Cells were labeled with 10 µM ThT for at least an hour (in TY culture) before 

time point to give time for dye to accumulate. B) Exponentially growing cells were 

treated with 10 mM DNP for 20 min and stained with 10 µM ThT as previously stated. 

Phase contrast and CFP channel images taken. Solvent only control image on the far left. 

C) Exponentially growing cells were treated with 30 µM Valinomycin with a 300 mM 

KCl clamp for 40 min and stained with 10 µM ThT as previously stated. Phase contrast 

and CFP channel images taken. Solvent only control with 300 mM KCl clamp on far 

left. 
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At the same time, a complementary approach was taken to visualize dissipation 

of membrane potential by PBSX at the single cell level (Fig 4.10). 5-Cyano-2,3-ditolyl 

tetrazolium chloride (CTC) is a live-dead stain that functions by being reduced into an 

insoluble red fluorescent formazan product by actively respiring cells (via electron 

transport chain). This dye allowed the use of respiration as a proxy for membrane 

potential, as cells cannot continue respiration in the absence of membrane potential. 

Cells treated with Alexa Fluor 488 lableled PBSX prior to staining with CTC had 

marked reduction in CTC staining; notably, cells showing a phage adsorbed had little to 

no CTC staining. PBSX untreated cells stained that were processed in the same manner 

as the PBSX treated cells showed strong CTC signal across the entire field of view. 

There are numerous cells in the PBSX treated sample that do not show phage adsorbed 

to the surface but lack CTC signal. An explanation for this observation is that phage had 

already adsorbed and disrupted the membrane potential but fell off during the pelleting 

and resuspension process. If this is the situation, it would suggest that after the initial 

phage adsorption to the cell and depolarization of the membrane, that the cell cannot 

subsequently regenerate its membrane potential even if the phage is somehow removed 

from the surface. 
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Figure 4.10.  PBSX single cell adsorption assay with redox dye CTC. Exponentially 

growing B. subtilis W23 was incubated with 2 µL of Alexa Fluor 488 labeled PBSX for 

10 min before spinning down and resuspending in 1X PBS with 4 mM CTC and 

incubating for 5 min before imaging on 1% agarose pad. GFP channel (1 sec exp) and 

TxRed channel (400 ms exp) used for imaging. 
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Table 4.4.  PBSX-Z requires glucosylated teichoic acids and minor teichoic acids for 

killing activity. R denotes resistance to killing and S denotes sensitivity to killing (or 

infection). 

 

Mutant (Bs168 parent) PBSZ PBSX-Z SPP1 

ugtP::erm ? S S 

ggaA::erm R R S 

ggaB::erm R R S 

gtaB::erm R R S 

yueB::erm S S R 
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Discussion: 

In this work, PBSX was characterized using single cell assays and modern 

genetics approaches that further elucidate the nature of the lysogenic repressor xre as 

well as the lysis genes xhlA and xhlB. Although previous literature suggested that A19V 

was the point mutation (within the helix-turn-helix motif) that would confer temperature 

sensitivity to Xre, at least two point mutations (G4S and A19V) are required to confer 

the temperature sensitivity. Furthermore, having all three point mutations (G4S, A19V, 

and L78V) does not result in any difference in lysis dynamics upon thermal induction of 

PBSX (Fig 4.1A). An xre A19V mutant was unobtainable; after screening over 148 

transformants, no transformant was temperature sensitive (unable to grow at 48°C due to 

PBSX induction), and all isolates sent for sequencing were wild type xre. xre G4S 

appeared to be an extremely temperature sensitive allele, with the merodiploid isolate 

(plasmid integrated by single crossover) growing only at room temperature while the 

mutant (presumably) barely grew at room temperature. Neither of these isolates were 

stable; they were difficult to culture in liquid media, and reverted to wild-type 

(sequenced xre). The thermoinducible xre strains (BAS 259 xre G4S A19V L78V and 

BAS 260 xre G4S A19V) produced fully assembled PBSX that targeted and killed B. 

subtilis W23. It has not yet been determined whether or not xre G4S A19V is 

thermolabile or if it undergoes a conformational change at the higher temperatures 

preventing interaction with its cognate binding sites.  

Generating the temperature sensitive xre mutant allows for a thermoinducible 

PBSX; this allows for specific induction of only PBSX in B. subtilis strain 168, rather 
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than using Mitomycin C or Carbadox to SOS induce the phagocin (this would also 

induce SPβ). From a phage therapeutics standpoint, the ability to thermoinduce PBSX 

avoids the added cost of expensive reagents such as Mitomycin C. From a clinical 

application standpoint, purifying a single phage from a lysate rather than a cocktail of 

phage (if SOS response was used to induce) makes the method of production easier to 

pass through stringent guidelines for treatment of patients. Since xre was shown to have 

sequence homology to other phage repressors (219), the current work could be used to 

generate temperature sensitive alleles of phage repressors in other systems, thereby 

eliminating the need to use SOS induction of lysogenic phages and the drawbacks that 

coincide with this technique. 

It was already known that PBSX kills B. subtilis W23 and PBSZ kills B. subtilis 

168 (219). Using a plate based adsorption assay (Fig 4.2A) as well as an Alexa Fluor 

488 labeled PBSX single cell adsorption assay (Fig 4.2B), it was shown that PBSX 

specifically adsorbs to B. subtilis W23 but not B. subtilis strain 168. While some phage 

are suggested to have a preference for the cell poles during infection (344), PBSX did 

not appear to show a preference for the cell poles or the lateral cell wall (Fig 4.2B). 

The ability to switch specificity of PBSX from targeting B. subtilis W23 to 

targeting B. subtilis 168 (Fig 4.6) suggests some level of modularity within the PBSX-

like phagocins in Bacillus (215). Whether this modularity in host range can be extended 

to organisms outside of the Bacillus genera is the focus of additional studies. Ideally, 

further experiments will identify which portion of the tail fiber is necessary and 

sufficient to confer specificity for the host. If specificity can be altered to more distant 
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organisms, one could target specific pathogens, even in the human gut, while leaving 

beneficial bacteria unaffected. Furthermore, the BAS 363 xre G4S A19V xhlAB::kan 

strain would be a powerful system for commercial or clinical production of large 

quantities of the PBSX (variant), as it is thermoinducible and lysis inhibited (Fig 4.7), 

thereby avoiding use of SOS response inducing chemicals like Mitomycin C, and should 

generate more phagocin per volume of cell culture than wild-type. 

The use of Thioflavin T (ThT) as a voltage sensitive membrane stain has only 

recently appeared in the literature (341, 342), and has not be extensively characterized. 

Phase dark cells in the PBSX treated culture lacked strong fluorescence, and some cells 

that appeared alive in phase contrast appeared to lack fluorescence (Fig 4.9A); 

presumably, these cells were killed by phagocin, although the experiment will have to be 

repeated with phagocin labeled with a compatible fluorophore to be used with ThT. An 

alternative explanation of the results is that the cells which had PBSX adsorbed to them 

were actually brighter, as the “hole” in the membrane generated by PBSX would allow 

increased flow of the dye into the cell. Using a compatibly labeled fluorescent PBSX 

will address this question. Use of characterized compounds that disrupt the membrane 

potential were inconclusive (Fig 4.9B and 4.9C), once again highlighting that ThT is not 

well characterized as a bacterial membrane potential dye.  B. subtilis W23 cells 

incubated with fluorescent PBSX had lost their metabolic activity after only five minutes 

of incubation with the phagocin, suggesting that not only is the adsorption of PBSX 

rapid but the killing is almost instant (Fig 4.10). Further experiments using fluorescently 
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labelled phages (like SPO1) will be performed to interrogate lack of perturbation of the 

metabolic state of the cell upon phage adsorption. 
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CHAPTER V 

 SUMMARY AND FUTURE DIRECTIONS 

 

Summary of Chapters II and III 

Screening a B. subtilis misexpression library allowed for the identification of two 

previously uncharacterized genes, yodL and yisK, that are involved in cell 

morphogenesis. yodL and yisK would not have been identified through screening 

knockout/knockdown libraries or through homology modeling; the knockout phenotypes 

are mild (see Chapter II), and while yisK shares homology with fumarylacetoacetate 

hydrolases (see Chapter III), these enzymes have not been linked to cell morphogenesis 

at this time. Furthermore, yodL is novel, and does not show homology to any genes of 

known function. Using a suppressor analysis followed by a genetic approach allowed for 

the discovery that YodL activity requires mreB and that YisK activity requires mbl for 

their shape modifying activity, specifically. This is interesting considering MreB and 

Mbl are highly similar, and their overlapping and distinct roles in cell envelope synthesis 

are still being investigated (60, 61, 65, 68).  

This is the first time that suppressor mutants were able to be obtained in the 

MreB-like proteins in a Gram-positive bacterium. Small molecule inhibitors such as A22 

do not affect Gram-positives (254, 255), and so it has been difficult for the scientific 

community to tease apart the unique functions of each MreB-like protein in B. subtilis. 

Much of the current information differentiating the unique roles of the different MreB-

like proteins in B. subtilis has been through interrogating their differential regulation (60, 
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61, 65, 68), although certain specific functions such as regulation of the autolysin CwlO 

by Mbl and LytE by MreBH (and genetically to MreB) have been determined (66, 69). 

Using the line of evidence that Mbl regulates FtsEX and CwlO activity and that 

YisK appeared to target Mbl, YisK was identified as interacting with FtsE, facilitating its 

cell shortening activity. This would suggest a localization of YisK at the membrane, 

alongside FtsEX and Mbl, although analysis of YisK’s primary amino acid sequence as 

well as the crystal structure of YisK suggests a cytoplasmic localized protein. 

Preliminary results with a functional YisK-GFP sandwich protein under the native 

promoter shows a punctate-helical localization along the lateral cell wall, reminiscent of 

Mbl localization (Guo and Herman, unpublished). This result is exciting, as the 

localization of YisK alludes to a possible mechanism of affecting cell shape during 

misexpression conditions. 

In the process of solving the crystal structure, a compound binding YisK in the 

putative active site was revealed. Through differential scanning fluorimetry analysis 

(311-313), it was shown that the compound in the structure was most likely L-tartrate, 

and that YisK binds dicarboxylic acids with a high degree of specificity, as even changes 

in chirality (i.e. mesotartrate or dihydroxyfumarate) can have significant effects on the 

ability of YisK to bind a compound (Fig 3.14). It is likely that the true substrate for YisK 

in vivo is a compound highly similar to L-tartrate or dihydroxyfumarate.  

In mutating residues which coordinate the divalent cation that is critical for 

catalysis in characterized FAHs, it was observed that the ability of YisK to perturb cell 

shape is distinct and separable from its activity as an enzyme. Along these lines, a 
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mutational analysis of YisK was performed, where YisK was assayed for self-

interaction, FtsE interaction, and loss of cell shape activity (when misexpressed). YisK 

E30A was capable of self-interaction and FtsE interaction, but could no longer kill on a 

plate or result in a loss of cell shape when misexpressed (Fig 3.16). This variant needs to 

be purified in order to assay for binding L-tartrate (to confirm its active site is still folded 

correctly), but this variant also shows a separability of the shape modifying activity of 

YisK with its role as an enzyme. These data inform our current model, that YisK uses 

Mbl and FtsE to localize to a region of the cell where its substrate is present and/or its 

product is needed (Fig 3.28). Enzymes involved in carbon metabolism interacting with 

the PG synthesis machinery is not uncommon (156, 157, 160), and could serve the 

important function of substrate channeling, especially in instances where the substrate or 

product of a reaction is unstable. Furthermore, localization of YisK at/near the PG 

synthesis machinery could play a role in regulating the metabolic flux through different 

pathways by competing for shared precursors. One may speculate that expression of yisK 

during stationary phase, when cell density is high and nutrients are limited, could be a 

mechanism of B. subtilis retooling its PG synthesis machinery to utilize other pathways 

for generation of the required precursors. 

 

Summary of Chapter IV 

Mutations within the PBSX repressor (Xre) that confer temperature sensitivity to 

Xre were determined to be G4S and A19V. xre G4S was extremely temperature sensitive 

and therefore was not stable, and xre A19V was probably nonfunctional, as mutants were 
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unobtainable. Xre G4S A19V was stable at 37°C and showed thermal sensitivity at 

48°C, while showing no difference in lysis dynamics or measurable killing units of 

PBSX when compared to Xre G4S A19V L78V (Fig 4.1). It was successfully shown 

using bulk culture and single-cell assays that PBSX specifically adsorbs to B. subtilis 

W23 and not B. subtilis 168. Furthermore, single-cell adsorption assays suggest that 

there is not a preference for phage adsorption at the cell pole over the lateral cell wall. 

It was determined that the tail fiber of PBSZ was sufficient to confer selectivity 

to a host, as a hybrid PBSX-Z where the tail fiber of PBSZ replaces that of PBSX can 

kill B. subtilis 168 and loses the ability to kill B. subtilis W23. There was no detectable 

difference in killing on a plate assay using B. subtilis 168 as a host between PBSX-Z and 

PBSZ; therefore, there is not enough evidence yet to speculate why the tape measure 

protein in PBSZ is different from the tape measure protein of PBSX, and what that 

means for its selectivity of host as well as its killing activity. 

In an effort to increase PBSX production, the lysis genes xhlA, xhlB, and both 

xhlAB were knocked out and the subsequent strains were assayed for lysis by performing 

a growth curve after inducing PBSX. In good agreement with the literature, xhlA is 

essential for lysis, although xhlB is the annotated holin for PBSX (340). It is not entirely 

clear what the role of xhlA and xhlB are in Gram-positive lysis in B. subtilis, and this is a 

topic for further investigation. Unfortunately, the xhlA, and xhlAB knockout strains did 

not appear to produce additional PBSX (Fig 4.8), although this could be a technical 

problem with lysing the (xhlA, xhlAB) cells, or representative of a lack of sensitivity for 

determining killing units with the plate assay. To overcome these two obstacles, an 
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immunoblot will be used to assay wild-type PBSX lysates, xhlA, and xhlAB lysates for 

the number of PBSX produced. 

PBSX is thought to kill by disrupting the membrane potential, similar to pyocins 

(333). The voltage sensitive dye ThT (341, 342) was used in an effort to develop a 

single-cell assay demonstrating that PBSX kills by depolarizing the cell, and that only a 

single PBSX is required to kill the cell. Unfortunately, ThT did not perform reliably as a 

membrane potential indicator dye, as the positive controls with DNP still showed ThT 

staining (Fig 4.9B), even in the absence of membrane potential. The absence of 

membrane potential was confirmed in this DNP treated sample, as the OD600 did not 

change after the addition of DNP to the cell culture. Furthermore, use of valinomycin 

alongside a potassium clamp (300 mM K+) did result in a loss of ThT signal, but no 

differently than the potassium clamp with solvent only control (Fig 4.9C). Therefore, 

better characterized membrane potential dyes should be used (343) and this experiment 

repeated, as ThT is not behaving as reported in the literature (341, 342). Use of the dye 

CTC, which acts as an indicator of cellular metabolism, showed that PBSX treatment of 

B. subtilis W23 halts metabolic function within 10 min of treatment with PBSX, and the 

fluorescently labeled PBSX can be seen as punctate loci on the bacterial cell surface. 

Dissipation of membrane potential can cause depletion of ATP levels (345), 

delocalization of cytoskeletal and cell division proteins (345), and abrogation of cellular 

metabolism, which supports the idea that PBSX kills B. subtilis W23 by mechanically 

puncturing the membrane and dissipating the membrane potential. 
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Overall, a novel modular system was developed for production of PBSX that 

shows potential to be adapted for commercial or clinical production of phagocin that 

targets a bacterial species of interest, provided functional tail fiber fusions or other 

factors essential for swapping specificity to the target of interest are successful. 

Production of PBSX within B. subtilis (a Gram-positive) eliminates the need for 

purifying away endotoxin from the lysate if it were used in a clinical setting (346), and 

since PBSX does not replicate, it is dosable.  

 

Future directions for YisK 

The major questions remaining to be answered regarding YisK are: 1) what 

protein(s) is YisK’s localization at the membrane dependent on? 2) What are YisK’s 

physical interaction partners? 3) What is the true substrate for YisK, and what overall 

role does YisK play in B. subtilis metabolism? 4) Is YisK activity or localization 

regulated by phosphorylation or other post-translational modifications?  

Current approaches include identifying factors that are responsible for YisK’s 

localization at the membrane. A genetic approach is being applied, systematically 

looking at YisK localization under native conditions in an ftsEX mutant, mbl mutant, and 

mbl variants that conferred resistance to YisK misexpression activity. YisK-GFP 

sandwich proteins of some of the YisK variants (YisK E30A) are being generated in 

order to continue characterization of the variants. 

Although initial pull-down assays were unsuccessful, in vivo crosslinking 

followed by pull-down of YisK will be performed in an effort to capture transient 
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interactions that may have been lost during the lysis and subsequent pull-down 

procedure. Successfully identified interaction partners will be confirmed via biochemical 

and genetic approaches, and co-crystal structure(s) will be obtained. 

Metabolomics and differential pathway analysis of 168WT and ΔyisK will be 

performed to ascertain the in vivo substrate of YisK, as well as the metabolic pathway 

that YisK plays a role in. Based on this data, thermal shifts will be performed to confirm 

which compounds bind YisK, as well as enzymatic assays for YisK activity. Further 

enzymatic characterization including Km, Kd,  kcat, and the catalytic mechanism of YisK 

will be performed by our collaborators (Raushel group).  Interrogation of YisK’s 

enzymatic activity holds the promise of elucidating subcellular localization of carbon 

metabolism at sites of active growth as a general feature of enzymes involved in carbon 

metabolism. 

Post-translational modification of a protein can alter its localization and/or its 

activity and/or its interaction partners (175). Other enzymes involved in in central carbon 

metabolism, particularly YvcK, have been shown to be phosphorylated, and that the 

modification plays a crucial role in its native function. Although YvcK’s localization and 

enzymatic activity appear unaffected by its phosphorylation state, its ability to 

compensate for a loss of MreB in directing proper localization of PBP1 relies on it being 

phosphorylated (123). This data suggests phosphorylation playing a role in YvcK’s 

interaction partners. Along those lines, a phosphorylated protein dye coupled with SDS-

PAGE or α-Phosphate probe coupled with Western blot will be used to assay for 

modification of YisK across its expression conditions. If YisK is modified post-
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translationally, further investigation will be conducted as to what role the modification 

has on YisK activity under native expression conditions. Mass spectrometry can also be 

used to look for post-translational modification of YisK across various expression 

conditions. 

Characterization of YodL is still a significant endeavor, as initial efforts were 

largely focused on YisK after the initial experiments and data was collected (see Chapter 

II). Biochemical characterization of YodL was not possible, because expression and 

purification of the protein proved problematic. Expression of YodL was toxic to the 

cells, affecting FtsZ function and preventing proper division in E. coli (Duan and 

Herman, Dissertation). When YodL was tagged with a removable His-Sumo tag, 

expression was successful, but subsequent cleaving of the tag caused YodL to become 

insoluble. Expression of YodL will be performed again in an E. coli suppressor strain 

that is resistant to YodL activity. Purification techniques will be based on previously 

purified proteins that are also small and highly basic, such as histones in eukaryotes 

(YodL is 12 kDa with a PI = 9.59). After successful purification, YodL interaction 

partners will be identified via pull-down assays, and YodL will be crystallized by itself 

and with any/all of its interaction partners. One may speculate based on the current data 

that YodL directly interacts with MreB. 

 

PBSX future directions 

A modular production system for PBSX was developed based on the literature 

(219, 220, 340), and factors involved in host specificity for PBSX were characterized. 



 

217 

 

 

Although the specificity of PBSX was altered from targeting B. subtilis W23 to targeting 

B. subtilis 168 by switching the tail fibers, targeting more evolutionarily distant bacteria 

may prove challenging. Instead swapping in the entire tail fiber from phages that target 

another host, one may have to splice the desired tail fiber with the PBSX tail fiber (at 

various locations) to allow for proper folding of the tail fiber as well as connection to the 

PBSX baseplate. Proper folding of the tail fiber may also require specific phage 

chaperones, which may complicate the process of switching host specificity. The end 

goal is the ability to use PBSX to target human pathogens, especially those in the gut, 

where a high degree of specificity would prevent damage to the human gut microbiome 

during clinical treatment. 

In characterizing the point mutations in xre that confer temperature sensitivity to 

the PBSX repressor, it was inadvertently determined that a point mutation (G4S) confers 

extreme temperature sensitivity to the repressor (i.e. unstable even at room temperature). 

This raises the possibility of finding temperature sensitive alleles of xre that are stable at 

room temperature but unstable at 37°C. By identifying one of these alleles and using it in 

a strain that produces a PBSX that targets a particular pathogen, one could have a robust 

treatment method in a clinical setting. For example, one would sporulate the B. subtilis 

168 containing PBSX (modified to target particular pathogen) at low temperatures. 

These spores would then be applied to the subject (topically or ingested), and would 

germinate at 37°C in favorable conditions or upon interaction with bacterial PG 

fragments triggering germination (130). At this temperature and point in the B. subtilis 

life cycle, PBSX is induced at the site where the treatment is required. 
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APPENDIX 

 

ChemSpider summary of compounds decreased more than two-fold in the ΔyisK 

mutant compared to wild-type (Table A1.1) discussed in Chapter III is included as a 

separate file. 

 

Table A1.1.  ChemSpider summary of compounds decreased more than two-fold in the 

ΔyisK mutant compared to wild-type. Compound discoverer differential analysis results 

comparing yisK knockout metabolome to wild-type metabolome during stationary 

growth. Compounds in this table are identified by only their MS spectrum, and not by 

their MS2 spectrum, and thus represent tentative hits. Bg Color is Background Color; red 

is decrease of at least two-fold of metabolite in the ΔyisK mutant compared to wild-type 

while green is an increase of at least two-fold compared to wild-type. 

 


