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ABSTRACT 

 

The curse of dimensionality is frequently encountered in applied time series 

econometrics when incorporating information in large datasets.  Here, three applications 

are presented that faced challenges in dimensionality and were resolved differently: by 

either the a priori placement of restrictions on the parameter space or using data-driven 

techniques.  One such data-driven method is the extraction of latent factors to reduce the 

information contained in many variables into a smaller number of series.  A second data-

driven method is statistical inference on conditional correlations to infer causality.   

A parsimonious model of adoption is applied to study a large dataset of adoptions 

of the ductless heat pump (DHP), an energy-efficient technology.  This research aims to 

increase the understanding of DHP adoption in the Pacific Northwest of the US by 

quantifying the effect of utility-provided rebates and Northwest Energy Efficiency 

Alliance (NEEA) expenditures on the number of installations and providing forecasts of 

DHP installations through 2018 given various rebate and NEEA expenditure levels.  

NEEA desires to increase installations of DHPs by providing funding for marketing and 

training; however, forecasted installations through 2018 do not meet their goals.  

Adoptions of DHPs are elastic with respect to the net cost of installation, and a reduction 

of federal tax rebates in 2011 decreases the probability of adoption.   

The second objective is to investigate the dynamic effects of shocks in oil supply, 

aggregate demand, and oil demand on oil prices, the upstream, midstream, and 

downstream sectors of the petroleum industry, and the broader US economy.  Because 
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neither the petroleum industry nor the economy can be described in a small number of 

series, the analysis is performed in a data-rich environment, applying a time-varying 

parameter extension to the factor-augmented vector autoregression.  Results suggest the 

effects of shocks in oil supply, aggregate demand, and oil demand have evolved, and oil 

supply shocks play a larger role in the dynamics of the petroleum industry during 

recessions. 

The final objective is to investigate the appropriateness of the PC Algorithm as a 

subset vector autoregression (VAR) methodology in determining both the 

contemporaneous and lag structure of the data-generating process.  Subset VARs might 

improve forecasts and/or allow for the inclusion of more time series through a reduction 

in parameterization.  Monte Carlo experiments show the PC Algorithm is effective at 

discovering the lag and contemporaneous structure of a VAR.  Additional observations 

increase the algorithm’s efficacy.  When researchers do not have a priori knowledge of 

the true number of lags in the data-generating process, overfitting provides a smaller 

penalty than underfitting. 
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CHAPTER I 

INTRODUCTION 

 

Bellman (1961) introduced the notion of the “curse of dimensionality.”  Referring 

originally to dynamic programming, he was describing a situation in which high-

dimensional problems require substantial computing resources (Taylor 1993).  Since 

then, computing capabilities have expanded tremendously, and the curse of 

dimensionality perhaps deals less with a lack of resources than it does with the 

shortcoming of methodologies.  The curse of dimensionality may now be a viewed as a 

“curse of big data.”  There are more data available than ever, and empiricists wish to 

make use of a wide variety of information to address problems.  Statistical analyses, 

however, become difficult as the number of variables increases.  The problem is no 

longer, “Can it be feasibly done?” but rather, “How can it be feasibly done?”  This is 

true, too, of modern time series and econometric analyses.  This dissertation consists of 

three essays featuring methodologies dealing with large datasets.  

One method of dealing with the curse of dimensionality is to impose a priori a 

specific functional form and restrict many potential parameters to be zero.  In the first 

study, a large dataset on consumers’ adoption of an energy-efficient technology, the 

ductless heat pump (DHP), is used to estimate a model of consumer adoption.  This 

research aims to increase the understanding of DHP adoption in the Pacific Northwest of 

the US by quantifying the effect of utility-provided rebates and Northwest Energy 

Efficiency Alliance (NEEA) expenditures on the number of installations and providing 
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forecasts of DHP installations through 2018 given various rebate and NEEA expenditure 

levels.  Specifically, to what extent are adoptions influenced by rebates offered by utility 

providers?  Does funding for installer training and advertising increase adoptions?  By 

understanding the adoption of DHPs and how adoption is affected by marketing and 

rebate programs, better policies can be implemented to increase installations of DHPs 

and reduce energy consumption (Cooney, Pater, and Meadows 2008).  The adoption of 

innovation theory (Rogers 1962) provides the theoretical backdrop to Bass’ (1969) 

model of durable adoption.  In the proposed study, extensions of Bass’ (1969) simple 

model by Jain and Rao (1990) and Fernandez (1999) are used to model DHP adoption in 

the Pacific Northwest of the US.  This model reduces the need for additional parameters 

by imposing the sigmoid shape on the adoption profile.  Results are directed to 

policymakers and the utility providers of the Pacific Northwest concerned with finding 

cost-effective methods to promote energy efficiency and reduce future load growth. 

Researchers continue to develop methods for incorporating high-dimensional 

datasets into time series models.  In Chapters III and IV, studies address two methods for 

dealing with issues of dimensionality in vector autoregressions (VARs).  

The objective of the study in Chapter III is to investigate the dynamic effects of 

shocks in oil supply, aggregate demand, and oil demand on oil prices, the upstream, 

midstream, and downstream sectors of the petroleum industry, and the broader US 

economy.  Field production of crude oil is an important measure of upstream activity.  

For the midstream, storage is explored.  Refinery capacity utilization and refiners’ sales 

of gasoline to retail outlets are studied from the downstream sector.  For the broader 
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economy, the Industrial Production Index and Producer Price Index are studied.  To 

incorporate a high-dimensional set of informational series, the Bernanke, Boivin, and 

Eliasz (2005) factor-augmented vector autoregression (FAVAR) is employed.  The 

FAVAR is an extension of the VAR model that incorporates the information from many 

time series in the traditional VAR framework.  This data-driven method of dimension 

reduction extracts a set of latent factors from the series.  This study applies Mumtaz, 

Zabczyk, and Ellis’ (2011) time-varying parameter FAVAR (TVP-FAVAR) extension to 

investigate how the dynamics have evolved over time.  The model is estimated using 

Bayesian methods.  Identification is performed by sign restrictions to analyze the effects 

of shocks in oil supply, aggregate demand, and oil demand.  The findings are beneficial 

for decision makers both inside the petroleum industry and concerned with the general 

economy to understand the magnitude and duration of shocks in oil supply and demand 

as well as aggregate demand. 

Another method of VAR modeling to address the curse of dimensionality is the 

subset VAR.  The subset VAR reduces the dimensionality of the VAR’s estimation by 

eliminating regressors.  The objective of the final study is to investigate the 

appropriateness of the PC Algorithm (Spirtes, Glymour, and Scheines 2000) as a subset 

VAR methodology in determining both the contemporaneous and lag structure of the 

data-generating process (DGP).  This, too, is a data-driven technique, but instead of 

extracting common features of the series, the data are used to test statistically conditional 

correlations to infer causality.  The final study evaluates, using Monte Carlo techniques, 

the Akleman, Bessler, and Burton (1999) directed acyclic graph-adaptation of Hsiao’s 
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(1979) search methodology for the placement of VAR coefficient restrictions.  The PC 

Algorithm is evaluated for its ability to detect VAR structures considering different 

residual volatility levels, different numbers of observations in the dataset, different 

numbers of lags included for the algorithm’s search, and different significance levels for 

the hypothesis tests of statistical independence.  The results are directly applicable to 

researchers using the VAR method 1) to reduce the parameterization; 2) to identify the 

“correct” model for the specific DGP; or 3) to improve forecast performance using 

subset VARs (Akleman, Bessler, and Burton 1999; Bruggeman 2004). 
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CHAPTER II 

FORECASTING THE ADOPTION OF RESIDENTIAL DUCTLESS HEAT PUMPS1 

 

Some of today’s energy-efficient appliances consume less than half the energy 

consumed by their predecessors (National Resources Defense Council 2010).  Ductless 

heat pumps (DHPs), developed in the 1970s in Japan, offer increased efficiency in 

heating and cooling homes (Swift and Meyer 2010).  A ductless system is comprised of 

an outdoor and an indoor unit to distribute air for both cooling and heating.  A line 

running between the two units requires only a three-inch hole and eliminates the need for 

expansive ductwork (Northwest Ductless Heat Pump Project 2014).  Unlike other types 

of heat pumps, including geothermal heat pumps, DHPs are relatively easy and 

inexpensive to install (Sutherland 2012).  Benefits of DHPs to homeowners include 

increased comfort, a reduction in electricity consumption, the ability to heat and cool 

with a single appliance, relatively low-cost installation, and potential financial incentives 

for installation, including federal and state income tax credits and utility-provided 

rebates (Northwest Ductless Heat Pump Project 2014).  Swift and Meyer (2010) and 

Bugbee and Swift (2013) note almost all residential heating, ventilation, and air 

conditioning (HVAC) systems in Asia and the majority of those in Europe are ductless, 

but DHPs represent less than one percent of HVAC systems in the US.  Awareness of 

                                                 

1 Reprinted with permission from “Forecasting the Adoption of Residential Ductless Heat Pumps” by 
Alexander N. Hlavinka, James W. Mjelde, Senarath Dharmasena, and Christine Holland. Energy 
Economics 54: 60-67, Copyright © 2015 by Elsevier Ltd. DOI: 
https://doi.org/10.1016/j.eneco.2015.11.020 
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DHP technology in the US has increased since 2006 when redesigned, more efficient, 

and advanced-controlled ductless technologies were made available (Storm et al. 2012).   

The Northwest Ductless Heat Pump Project (NWDHPP), a collaboration between 

the Northwest Energy Efficiency Alliance (NEEA) and its utility and energy partners, 

was established in 2008 to accelerate DHP installations in electricity-heated homes in 

the Pacific Northwest of the US (NEEA 2013; NWDHPP 2012).  NEEA (2013) 

estimates the 13,000 DHPs installed in the Northwest through 2011 saved 40.5 million 

kilowatt hours of electricity per year.  These savings represent nine percent of the 

potential regional savings estimated by Cooney, Pater, and Meadows (2008).  This 

research aims to increase the understanding of DHP adoption in the Pacific Northwest of 

the US by quantifying the effect of utility-provided rebates and NEEA expenditures on 

the number of installations and providing forecasts of DHP installations through 2018 

given various rebate and NEEA expenditure levels.  Because DHPs were introduced 

relatively recently into the regional market for residential HVAC systems, the adoption 

of innovation theory is applied. 

Literature Review 

Energy-Efficient Technologies and Consumers 

Vast amounts of public and private capital have been used to advocate energy efficiency.  

Despite the many energy-efficient appliances available to today’s consumers, studies 

show that consumers do not always adopt the economically feasible set of durables 

(Gates 1983; Howarth and Andersson 1993; Howarth and Sanstad 1995).  Energy-

efficient innovations’ up-front costs, including the costs of information and of the good 
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itself, are relatively high compared to those of conventional technologies (Howarth and 

Sanstad 1995).  Gates (1983) argues that even though the returns for conservation 

investments such as setting back the thermostat, weather stripping, caulking, and adding 

insulation may exceed the returns of financial instruments, consumers still do not invest 

in energy-efficiency.  Howarth and Sanstad (1995) and Gates (1983) both believe that 

energy-efficient technologies’ low rates of adoption are the result of consumers’ 

relatively high discount rates.  A high discount rate may be evidence of the high cost of 

information or perceived risk of investment in these technologies.   

Income and lack of knowledge of household energy consumption are barriers to 

compact fluorescent light adoption (Mills and Schleich 2010).  Panzone (2013) estimates 

the demand for refrigerators, washing machines, televisions and light bulbs using Deaton 

and Muellbaurer’s (1980) Almost Ideal Demand System and draws four major 

conclusions.  First, the influence of own-price on purchases of energy-efficient 

appliances depends of the possibility of behavioral adjustments associated with the good.   

In addition, current energy prices may not be driving adoption as much as theory 

suggests.  Next, energy-efficient appliances are perceived as necessities.  Finally, 

consumers may value the good’s efficiency less than they value other attributes.  His 

final conclusion is supported by Mills and Rosenfeld (1996), who find non-energy 

benefits often motivate consumers to adopt an energy-efficient technology.  Two non-

energy benefits of compact fluorescent lights and light-emitting diodes, for example, are 

their reduced heat generation and longer lives.  As another example, insulated 

windowpanes offer more comfort than non-insulated windows.  Further, consumers may 
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adopt energy-saving technologies for a “warm-glow” feeling of promoting energy and 

environmental conservation.  Examining the effect of residential HVAC systems 

characteristics on the homeowner’s adoption decision, Michelsen and Madlener (2012) 

find the system’s attributes are more relevant to owners of newly-built homes than to 

owners of existing homes.   

Lund (2006), employing a methodology related to our own, estimates the 

diffusion of new energy technologies.  Using international data on twenty technologies, 

he finds the time required for new energy technologies to reach at least 50 percent of 

their market potential ranges between 10 and 70 years.  End-use and energy-saving 

consumer goods, on average, take less than 25 years to reach this level.  Shorter times 

are indicative of a good’s relatively high impact on energy production or consumption.  

Traditional, non-ductless heat pumps, for example, are estimated to take between 35 and 

65 years to attain 50 percent of their market potential in three European countries.  Lund 

(2006) also finds countries with subsidized energy-efficiency programs, other things 

equal, had higher penetration rates for the technologies relative to other countries. 

The importance of financial incentives to potential adopters of energy-efficient 

goods has been the subject of several other studies.  Using a choice experiment, Aalbers 

et al. (2009) find that a subsidy may entice firm managers to adopt a technology even if 

the subsidy is too small to make the technology profitable.  It may be that “…the 

presence of a subsidy invokes a positive connotation…[that] may carry enough weight in 

an agent’s decision making to tip the balance in favor of the subsidized technology” 

(Aalbers et al. 2009, p. 439).  Wasi and Carson (2013) examine the role of rebates in 
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shifting the percentage of electric water heaters to climate-friendly units in New South 

Wales, Australia.  The rebate program increases the number of climate-friendly heaters 

in homes without access to natural gas.  Murray and Mills (2011) conclude that the 

effect of rebates offered for certain Energy Star technologies as part of the American 

Recovery and Reinvestment Act of 2009 is indeterminate and the widely-available 

rebates were quickly exhausted.  Instead, rebates that target the marginal consumer 

would have had more of an impact on purchases of energy-efficient goods.  Rebate 

policies, however, “… may also encourage large-scale purchasing of energy-efficient 

appliances, which may finally result in an increase in electricity consumption (rebound 

effect)” (Galarraga, Abadie, and Ansuategi 2013, p. S98).  

Many studies have examined consumers’ investments in energy-efficient 

technologies, but few have studied the market-level adoption of these goods.  Several 

studies have examined DHPs, but the majority of studies has been engineering-oriented; 

see, for example, Fransisco et al. (2004), Şahin, Kılıç, and Kılıç (2011), and Stecher and 

Allison (2012).  Cooney, Pater, and Meadows (2008) note that regional electricity 

providers are seeking to meet a greater portion of load growth through energy efficiency.  

They suggest DHPs have achievable savings of upwards of 438 million kilowatt hours 

per year for the Pacific Northwest of the US, but at the time of their publication, there 

were few installers with knowledge of the product.  Based on 144 installed DHPs in a 

pilot study in Connecticut and Massachusetts, annual household energy savings of 

approximately $400 are reported (Cooney, Pater, and Meadows 2008).  Storm et al. 

(2012) discuss a pilot program developed by NEEA as a precursor to the NWDHPP.  
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This pilot program successfully increased consumers’ awareness and interest in DHPs.  

Through supplier training and distribution networks, NEEA also improved the supply-

side of the market. Overall, Storm et al. (2012, p. 2-304) conclude DHPs are “…an 

important and transformational technology.”  

Literature on Adoption Models 

Because DHPs were introduced relatively recently into the Northwest regional market 

for residential heating, the adoption of innovation theory is applied.  Models of 

innovation adoption have a common root in the sociological work of Rogers (1962), who 

identifies four elements of the diffusion process: innovation, communication channels, 

time, and the social system.  Theory and empirical work show that that the adoption 

profile, a plot of cumulative adopters over time, is sigmoid-shaped.  Diffusion depends 

on social and economic factors that vary over time and among different groups of 

potential adopters.  Rogers’ (1962) original model imposes a Normal distribution upon 

the time of adoption across consumers described as either innovators, early adopters, 

early majority, late majority, or laggards.  

Models of innovation adoption have extended Rogers’ (1962) pioneering work.   

One of the first mathematical extensions of the adoption model is Bass (1969).  In this 

model, the instantaneous rate of adoption f at time t is given by the differential equation 

(2.1) [ ][ ]( ) ( ) 1 ( )f t F t F tα β= + −   

where α is the coefficient of innovation, β is the coefficient of imitation, and F is the 

proportion of all adopters who have adopted by time t.  The coefficient of innovation 

gives the probability of purchase when t is zero and captures the innovativeness of 
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potential adopters.  The coefficient of imitation “…reflects the pressure operating on 

imitators as the number of previous buyers increases” (Bass 1969, p. 216).   

Empirical work using the Bass (1969) model finds that adoption is explained 

well without any other variables.  The model has been used effectively in the retail, 

industrial, and agricultural sectors (Bass, Krishnan, and Jain 1994).  Extensions of Bass’ 

basic model allow for the inclusion of explanatory variables intended to improve 

managers’ marketing decisions related to influencing either the rate of adoption or 

market potential.  Jain and Rao (1990) and Fernandez (1999) allow the adoption curve to 

be shifted by a vector of exogenous variables and also estimate demand elasticities.   

Why Subsidize the Adoption of DHPs? 

In 2011, 92 utility companies in the Pacific Northwest of the US offered some form of a 

subsidy for the installation of DHPs.  Economic theory suggests that incentives can 

increase the adoption of energy-efficient innovations.  There are at least two commonly 

cited reasons to subsidize the use of electricity-conserving innovations (Howarth and 

Andersson 1993; Jaffe and Stavins 1994; Levine et al. 1995).  The first is the existence 

of market failures.  Failures in energy markets may include environmental externalities, 

average-cost electricity pricing, national security issues, liquidity constraints, and 

information problems (Gillingham, Newell, and Palmer 2009).  Even if the market is 

functioning correctly, there may still be reasons to incentivize.  For utility providers 

faced with increasing demand for electricity, a subsidy promoting electricity 

conservation may help defer costly expansion projects (Loughran and Kulick, 2004; 

Tietenberg and Lewis 2012).  Adding new generating facilities or bringing a facility with 
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a high marginal cost of operation online is a costly endeavor that may lead to higher 

generating costs.  Further, new plants are designed with larger generating capacities than 

necessary to satisfy the current demand.  As such, there is unused capacity, resulting in 

increased costs.  By subsidizing energy-efficiency, utilities delay the need for additional 

capacity.   

Theoretical Model 

Extensions of Bass (1969) by Jain and Rao (1990) and Fernandez (1999) are the basis 

for the adoption model.  The exposition of the theoretical model follows from Jain and 

Rao (1990, pp. 164-165).  Solving the differential equation in equation (2.1) gives 

(2.2) 
[ ]

[ ]
1 exp ( )

( ) .
1 ( ) exp ( )

t
F t

t
α β

β α α β
− − +

=
+ − +

  

The proportion of the market potential that adopts in the interval ( 1,  )t t−  is  

(2.3) ( ) ( 1).F t F t− −   

Assume an individual’s probability of adoption is 𝜋𝜋.  The expected proportion of the 

total market that adopts between 1t −  and t is  

(2.4) ( )( ) ( 1) .F t F tπ − −   

The conditional probability of adoption in the same interval given the consumer has not 

yet adopted is  

(2.5) ( )( ) ( 1)
.

1 ( 1)
F t F t

F t
π

π
− −

− −
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If At represents the total number of adoptions by time t and M is the market potential 

representing the upper limit on the potential number of adoptions, sales, St, in the 

interval ( 1,  )t t−  are  

(2.6) ( )
1

( ) ( 1)
( ) .

1 ( 1)t t

F t F t
S M A

F t
π

π−

− −
= −

− −
  

Let the probability of adoption vary over time according to a logistic function of a vector 

of covariates  

(2.7) 
[ ]
[ ]

exp ln
( ) (0,1),

1 exp ln
t

t
t

x
x

x
π

γ
γ
⋅

= ∈
+ ⋅

  

where xt is a k-element vector of variables and γ is a k-element vector of coefficients 

interpreted as the elasticity of adoption with respect to the variable.  While Jain and Rao 

(1990) use only the price of the good, Fernandez (1999) includes a vector of exogenous 

variables in addition to the good’s price.  Both studies interpret the coefficients on the 

natural logarithm of each variable as the elasticity of demand with respect to the given 

variable.   

Data 

Data on DHP sales, provided by NEEA, consist of 15,606 observations of single-family 

households’ purchases of DHPs in Oregon, Washington, Idaho, and Montana.  The data 

span 58 months from January 1, 2009 through August 30, 2013.  Available data include 

the number of units installed, the date of installation, costs of equipment and installation, 

NEEA program expenditures, and a rebate schedule.  All nominal dollar amounts have 
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been adjusted to February 2014 dollars using the consumer price index (Federal Reserve 

Bank of St. Louis 2018) for all items in the US.   

Each observation is one participant in the NWDHPP.  Participating households 

must meet certain eligibility requirements.  First, the house’s primary heating appliance 

must be powered by electricity.  New construction, homes with fossil fuel forced-air or 

hydronic heating systems, and houses with existing DHP installations are also ineligible 

to participate in the program.  For this analysis, only outdoor DHP units are considered 

because more than one air-handling unit can be installed per outdoor unit, but all outdoor 

units must have at least one air-handling unit.  The number of outdoor units “better” 

reflects the heating and cooling needs of the house.  In addition, only unique installations 

are considered.  If a household installed multiple units in a given installation, they are 

considered a single adoption.  From this point forward, an installation will refer to the 

adoption of a DHP system – regardless of the number of indoor or outdoor units – by a 

single-family household heated by electricity in Oregon, Washington, Idaho, or 

Montana. 

The installation data are aggregated to form a monthly dataset.  Summary 

statistics are presented by month in Table 2.1.  Installations generally increase as the 

year’s end approaches.  Annual installations increase until 2011 when the federal tax 

credit for DHP installations, originally set to expire in 2010, was extended but decreased 

from a maximum of $1,500 to $300 (Evergreen Economics 2012).  Consumers may have 

elected to install a DHP before the incentive was reduced.  Historical monthly DHP 

installations are shown in the unshaded portion of Figure 2.1.  Installations of DHPs 
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exhibit seasonality.  While the peak number of installations occurs in December 2010, 

there are smaller peaks in December of the other years, too.  The increase in sales in 

December may be a result of lower temperatures or homeowners taking advantage of tax 

incentives before the year’s end. 

The total cost for a given installation is the sum of the costs of equipment, labor, 

electrical, tax, and other costs.  Real installation costs for DHPs are fairly constant 

throughout a given year but are increasing over the entire period.  The average real per-

unit DHP installation cost increased approximately 3.7 percent annually or roughly 20 

percent from 2009 through August 2013.   

From its beginning through October 2013, the NWDHPP provided over $9 

million for advertising, education, and training for installers (NEEA 2013).  DHP 

advertising campaigns include the NWDHPP website, radio, TV, and print ads and 

public service announcements, flyers for distribution by HVAC installers, and door 

hangers.  Training for HVAC installers includes webinars and Master Installer 

certifications.  Data on NEEA’s monthly expenditures are available beginning in January 

2010; they are estimated for 2009 using the total expenditures for 2009 and each 

month’s average proportion of annual expenditures from the subsequent years.  NEEA’s 

monthly expenditures reflect the pattern of sales of DHPs; both have yearly peaks in 

December.  Annual expenditures have generally been increasing.  
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Empirical Models 

Installation Model 

The probability of installation by a household during month t, shown in equation (2.7), is 

modeled as a function of several variables. The first is the net per-unit cost of 

installation, that is, the per-unit total cost for a given household’s installation of a DHP 

less all federal and state tax credits and utility-provided rebates. The median net per-unit 

installation cost for all installing households in a given month is used.  

Contemporaneous NEEA expenditures on marketing also affect the probability of 

adoption.  Indicator variables for month control for seasonality. Finally, an indicator 

variable captures the change in the federal tax code. The installation model is  

(2.8) ( )
1

ˆ ( ) ( 1)
ˆ( ) ,

ˆ1 ( 1)
t

t t t
t

F t F t
S M A

F t
π

ε
π−

− −
= − +

− −
    

where  ˆtπ   is 

(2.9) 
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∑ ∑

∑ ∑
  

with variables:  

• St the number of installations, specified in single-family households heated by 

electricity, in month t; 

• M the total market potential of single-family households heated by electricity; 

• At the cumulative number of installations in month t; 

• F the differential equation as defined in equation (2.1); 
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• x1t the median net cost per unit (in dollars per unit) to install a DHP in month t; 

• x2t NEEA’s expenditures on the NWDHPP (in dollars) in time t; 

• gwt  indicator variable for month w in time t such that January is the base;  

• ( )taxI t an indicator function that equals one for all months prior to 2011, the time 

of the change in the tax code, and 0 otherwise; 

• t̂ε  the error term; and 

• ĉ , ˆiϕ , ˆ
wδ , and γ̂   are estimated parameters. 

Unfortunately, the dataset does not include household income.  Instead, the model 

was estimated using the median Zillow-estimated value of all houses that installed a 

DHP in a given month as a proxy for income and a regional, consumption-weighted 

average of state-level retail electricity prices.  The model presented here performed 

better than models with the income proxy and electricity price.  Given the previously-

discussed findings of Panzone (2013), current electricity price may not be a driver of 

DHP adoption.   

The choice of estimation techniques used in the adoption of innovation literature 

has evolved.  Bass (1969) employed ordinary least squares (OLS).  Both the maximum 

likelihood estimator and nonlinear least squares estimation techniques models provide 

considerably improved step-ahead forecasts compared to the OLS models (Schmittlein 

and Mahajan 1982; Srinvasan and Mason 1986).  Srinivasan and Mason (1986), 

however, show that the maximum likelihood parameters may be misestimated because 

of the misspecification of the distribution function of adoption time and that find 
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nonlinear least squares estimated models provide a better fit – measured by mean 

squared error and mean absolute deviation – in most cases compared to models 

estimated using maximum likelihood.  Equations (2.8) and (2.9), therefore, are estimated 

using nonlinear least squares. 

Starting values for the coefficients of innovation and imitation were selected 

from the OLS estimation of the simple Bass (1969) model.  The starting value for the 

market potential, 500,000 single-family households, is based on discussions with NEEA 

personnel; estimation of the market potential is restricted to lie between the number of 

total installations and the number of single-family households heated by electricity in the 

region.  The parameter on net DHP installation cost is restricted to be negative.  To 

guarantee an appropriate shape for the adoption profile, the coefficient of innovation 

must be non-negative to have a positive adoption profile.  Estimations were performed 

using SAS 9.3 (SAS Institute 2013).   

Simulation Model 

A stochastic simulation model based on distributions for both the error term and 

estimated parameters from the installation model is developed to generate probabilistic 

forecasts.  The estimated parameters are assumed to be distributed by a truncated 

multivariate Normal distribution centered at the vector of estimated parameters 

estimated from the empirical model in equations (2.8) and (2.9).  The covariance matrix 

of the estimated parameters gives the distribution’s covariance matrix.  Truncation of the 

distribution is necessary for three reasons.  First, the market potential cannot exceed the 

number of households in the target region, nor can it be less than the total number of 
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installations at the beginning of the forecast period.  Second, the parameter on net 

installation cost must be negative.  Lastly, the coefficient of innovation must be greater 

than or equal to zero.  These truncations correspond to the restrictions imposed at 

estimation. 

Monthly installations are forecasted using the installation model of equations 

(2.8) and (2.9).  In the stochastic simulation, total per-unit installation cost before any 

rebates or tax credits are drawn from a Normal distribution with mean and variance 

equal to their sample counterparts across all observations.  Any applicable rebates and 

tax credits are then subtracted from the total installation cost to find the net installation 

cost.  Each month’s installations are added to the previous month’s cumulative number 

of installations 1.t t tA S A −= +   Let zt be the rebate amount.  Rebates awarded in time t are 

equal to the product .t tS z  Total yearly rebates are the sum of the rebates awarded in each 

month for a particular year.  Annual rebates awarded can be no more than the 

predetermined annual rebate budget.  Once the rebate budget is reached, the rebate for 

any further installations in that year is zero.  All simulations are performed using R 

version 3.1.1 (R Core Team 2014). 

Results 

Estimation Results 

A Breusch-Godfrey test (Breusch and Pagan 1980) for serial correlation shows 

significant first-order autocorrelation, and visual inspection of the autocorrelation 

function of residuals reveals it slowly decays, indicating the presence of an 

autoregressive process for the error.  The model is refit assuming an AR(1) process for 
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the error term.  Parameter estimates and their associated p-values are displayed in Table 

2.2.  Throughout the discussion, the five percent level of significance is assumed. 

The estimated market potential is 329,442 single-family, electricity-heated 

households, however, its p-value is 0.395.  The coefficient of innovation is estimated to 

be 0.002, but it is not statistically significant; this estimate is reasonable given the slow 

increase in monthly sales early in the dataset.  The coefficient of imitation is 0.068 and is 

statistically significant.  Once DHPs are established in the market, consumers may be 

more compelled to install them, but cumulative installations will increase slowly at first.  

As previously discussed, this is not an uncommon phenomenon for energy-efficient 

technologies; see Howarth and Sanstad (1995) and Gates (1983).  A meta-analysis of 

213 studies using the Bass model finds the average coefficients of innovation and 

imitation are 0.03 and 0.38, but the coefficient of imitation varies substantially between 

studies (Sultan, Farley, and Lehmann 1990). In another meta-analysis, Van den Bulte 

and Stremersch (2004) use the natural logarithm of the coefficient of imitation divided 

by the coefficient of innovation to compare studies. The average in their sample is 3.42 

with a standard deviation of 2.13; the estimated ratio for this analysis is 3.526.  

The elasticity of installations with respect to net installation cost is approximately 

-1.495 and is statistically significant.  NEEA expenditures are estimated to have a 

positive, inelastic effect on demand.  The estimate is 0.316 but is not statistically 

significant.  The monthly indicator variables reproduce the visual pattern seen in 

seasonal sales; coefficients on months late in the year are significant and relatively 

larger.  A structural break appears to be associated with the tax code change as shown by 
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the marginally statistically significant indicator variable.  Evaluating equation (2.9) 

when ( )taxI t   is equal to zero and then equal to one and at the mean of all other variables 

gives a probability of installation before 2011 that is over two times the probability of 

installation beginning in 2011.   

Forecasted Installations through 2018 

All assumptions for the simulations are given in Table 2.3.  Annual proposed budgets for 

2014 through 2018 for the NWDHPP rebates and NEEA’s expenditures are provided by 

NEEA.  All dollar amounts are assumed to be in real dollars.  Each month’s NEEA 

funding is assumed to follow its historical proportion of annual expenditures.  Using 

these projections, the five-year expected number of DHP installations by month are 

shown along with historical installations in Figure 2.1.  The forecast mirrors the intra-

year seasonality shown in the historical data and shows a gradual decrease in the rate of 

DHP installations.  The cumulative distribution function (CDF) for five-year 

installations is shown in Figure 2.2.  The expected number of installations through 2018 

is 9,998, or two-thirds the number of installations in the first five years of the program.  

The CDF shows that the distribution is not completely symmetric; there is more area in 

the right tail of the density function.  This demonstrates some potential for low-

probability events with many additional installations.  It is also important to remember 

that because observations with missing data on the number of outdoor units or the 

models of those units were dropped, the forecasts presented are conservative. 

There are four potential reasons for the decrease in installations.  First, DHP 

installations appear to be slowing.  This can be seen by comparing each month’s peak 
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from year to year beginning in 2010 in Figure 2.1.  A second reason is the 

aforementioned increasing per-unit cost of installation.  The estimated probability of 

installation, as shown in equation (2.9), averages approximately five percent after the 

decrease in the tax credit; this is primarily the result of the elastic estimate on net 

installation cost.  Yet another reason is that the NWDHPP promotes DHPs not only as an 

energy-efficient form of space conditioning but also as a supplement to existing heating 

to enhance comfort.  Consumers may be less likely to adopt if they view DHPs as purely 

comfort-enhancing and not as an energy-efficient technology with the potential for cost 

savings.  Also, the NWDHPP began during the global recession of 2009.  The poor 

economic conditions may have been inhibitive for growth in the market for DHPs.   

A sensitivity analysis using rebates from $0 to $3,500 in increments of $250 is 

performed to quantify the rebate amount that will maximize the number of additional 

installations through 2018 subject to the annual budget.  The results are shown in Figure 

2.3; also included is a 95-percent confidence interval.  As the rebate amount increases, 

expected installations also increase until the rebate is $2,750.  The upper bound of the 

confidence interval, however, is already decreasing at this amount, but the lower bound 

is increasing.  A rebate of $2,750 would increase five-year installations approximately 

18 percent relative to the currently-offered rebate of $1,500.  Rebates above $2,750 

exhaust the rebate budget rapidly; there are a number of consumers who are unwilling or 

unable to pay the entire cost of the DHP less the tax credit.  The 95-percent confidence 

interval shows that at the current rebate level, there is less certainty in the number of 
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installations than at a rebate of $2,750, the rebate amount that maximizes the number of 

expected installations through 2018.   

A second sensitivity analysis is conducted by varying NEEA’s annual 

expenditures (Figure 2.4).  Annual expenditures range from $1 million to $3.5 million 

with every year in the five-year forecast receiving the same funding.  Unlike the 

sensitivity analysis on rebates, this analysis shows that as NEEA’s expenditures increase, 

expected installations also continue to increase.  Expected installations change less 

noticeably in response to changes in NEEA’s expenditures than to changes in the rebate 

amount.  The slow rate is the result of the inelastic effect of NEEA’s expenditures on 

installations, while the effect of the rebates is directly “felt” by consumers because of the 

immediate decrease the net cost of installing a DHP.  The upper bound of the 95 percent 

confidence interval demonstrates the potential for a substantial increase in the number of 

installations given additional funding.  

At first glance, the original five-year installation forecast and the sensitivity 

analysis performed on different levels of NEEA expenditures seem to be in 

contradiction.  The historical annual average of NEEA’s expenditures is just under $2 

million.  Given the analysis in Figure 2.4, this level of expenditure is expected to 

generate approximately 11,335 additional installations, but this represents 13 percent 

more installations than suggested by the “status-quo” forecast.  This discrepancy occurs 

because each year receives the same funding in the sensitivity analysis on NEEA’s 

expenditures.  In the five-year forecast, the projected budgets for NEEA, shown in Table 

2.3, vary from year to year and are usually less than the historical average.  This 
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difference is important because of the sigmoid-shaped adoption profile; more funding 

earlier in the adoption process will increase the probability of adoption and the total 

number of installations.  

A final sensitivity analysis is performed by varying both NEEA’s expenditures 

and the rebate amount (Figure 2.5).  This simulation a shows the tradeoffs between 

NEEA expenditures and rebates.  As an example of reading the figure, if the offered 

rebate and NEEA’s expenditures are $2,500 and $3 million, then the expected number of 

additional installations is 12,448. The lower bound of the confidence band is 1,987 

additional installations, but the upper bound is 24,011.  The effect of the limited rebate 

budget is seen where both the average and upper limit of the confidence interval 

decrease after a rebate amount of approximately $2,500.   

The surfaces support the results of the single-variable sensitivity analyses.  First, 

rebates are more effective at increasing additional installations than are NEEA’s 

expenditures.  The upper bound of the confidence interval shows the potential, for a 

substantial number of new installations relative to the number installed through August 

2013.  As an example, policymakers can achieve approximately 11,000 additional 

installations from 2014 through 2018 by offering rebates of $2,500 per installation along 

with $1.1 million in marketing per year, rebates of $2,000 with $1.6 million for 

marketing, or even the current rebate of $1,500 with annual marketing expenditures of 

$2.8 million.  These changes demonstrate how sensitive the forecasted installations are 

to the offered rebate.  
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Discussion and Conclusions 

Installations of DHPs are net-cost elastic; changes in the rebate have a significant effect 

on the expected number of installations over the next five years.  In addition, NEEA’s 

expenditures have a small, positive effect on DHP installations.  Historical data, the 

estimated model, and subsequent forecasts show that installations of DHPs have grown 

slowly and the overall rate of installations will decrease without some change in the 

exogenous variables.  A rebate of $2,750 would maximize installations through 2018 

subject to the proposed rebate budgets.  This amount would almost double the rebate 

currently offered by most utilities.  It is important to remember that installations refer to 

those adoptions of DHPs in single-family households heated by electricity that were 

eligible to participate in the NWDHPP.  There have also been installations of DHPs in 

multi-family units and households that do not use electricity for heating.  Neither of 

these situations is considered here.   

Notably, the small and statistically insignificant coefficient of innovation shows 

that the adoption profile for DHPs grows slowly.  There are several explanations for the 

slow rate of growth in installations of DHPs.  The most likely barrier to an increased rate 

of installation is up-front costs.  The literature on adoption of innovation and consumers’ 

purchases of energy-efficient technologies shows that cost is a significant obstacle to 

overcome, especially given the 80 percent reduction in the federal tax credit in 2011.  A 

second reason, as discussed by Golder and Tellis (2004), is that the growth rates of 

leisure-enhancing products, such as TVs and stereos, are higher compared to those of 

other innovations.  Because DHPs do not fit the “leisure-enhancing” category, a slow 
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growth rate may be expected.  NEEA has also noted that a substantial proportion of 

installations are occurring in households with older occupants, although Rogers (1962) 

argues there is inconclusive evidence on differences in age between early and late 

adopters. The relatively high age may be a result of the NWDHPP’s promotion of DHPs 

as comfort-enhancing.  Finally, poor economic conditions may retard adoption.  The 

installations studied here began at the same time as the economic recession of 2009. 

While the market potential is large, forecasted sales are relatively small and show no 

growth compared to the first five years of the program.  Because of their direct effect, 

rebates are more effective than NEEA expenditures at increasing DHP installations.  If 

utility providers wish to make their DHP programs more successful, they must focus on 

the costs – direct and indirect – faced by potential adopters of DHPs.  Future research 

should investigate how incented installations affect the installations of non-incented 

DHPs and investigate the adoption of other energy-efficient technologies.  Is the average 

adoption profile for energy-efficient innovations slow-growing? Are consumers 

responsive to changes in prices of these goods? 

Limitations exist when using the adoption of innovation theory and attempting to 

model early in the adoption process.  Data limitations are the primary concern.  It has 

been demonstrated that the structural validity of the model does not guarantee accurate 

forecasts with limited data, especially when only a small proportion of the potential 

market has adopted the innovation (Heeler and Hustad 1980).  If indeed only a small 

proportion of the DHP market potential has installed, then the forecasts may not be 

accurate.  Bass (1969) also notes that forecasts are sensitive to the coefficients of 
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innovation and imitation; small changes in either of these coefficients may lead to 

substantially different forecasts.  He also notes the importance of having already 

observed the peak of instantaneous adoptions, that is, the point in time that maximizes 

equation (2.1), to forecast accurately many periods out-of-sample.  There are, of course, 

always data limitations in the form of limited observations when forecasting the sales of 

a new product. 

A second set of limitations pertains to the stochastic simulation and sensitivity 

analyses.  There is uncertainty in the marketing and rebate budgets provided by NEEA.  

If these budgets, especially the rebate budget, are altered, the forecasts will change.  In 

fact, some of the simulation iterations showed the possibility of exhausting the annual 

rebate budgets in 2015 and 2016 under the current rebate schedule.  If steps are taken to 

prevent this, then it is possible that there may be more installations over the next five 

years.  In addition, because NEEA’s expenditures and the rebate amount do not fluctuate 

as dramatically in reality as they are adjusted in the sensitivity analyses, it is possible 

that the problems of out-of-sample forecasting may obscure the results.  The 

relationships estimated by the installation model may hold outside of a reasonable 

sampling region.  
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CHAPTER III 

AN INVESTIGATION OF OIL PRICES, THE PETROLEUM INDUSTRY, AND THE 

US ECONOMY  

 

The effects of changes in oil prices are not limited to the energy industry.  In modern, 

energy-dependent economies like that of the US, the petroleum industry’s impacts are 

far-reaching.  The oil and natural gas industry accounted for six percent of total 

employment, six percent of labor income, and eight percent of value added to the 

American economy in 2011 (American Petroleum Institute 2013).  

The objective of this study is to investigate the dynamic effects of shocks in oil 

supply, aggregate demand, and oil demand on oil prices, the upstream, midstream, and 

downstream sectors of the petroleum industry, and the broader US economy.  The 

relationships are examined over the period following the Great Moderation, a decline in 

business cycle volatility beginning in the early 1980s (Stock and Watson 2002b).  No  

single measure completely describes the activity of each sector of the petroleum industry 

or of the entire economy, but using the information contained in many time series is not 

straightforward.  The vector autoregression (VAR), a model commonly applied in 

multivariate time series analysis and forecasting, is difficult – if not impossible – to 

apply in situations when there are many time series.  Additional series necessitate the 

estimation of many additional parameters.  A method of dimension reduction in VAR 

analysis is the factor-augmented vector autoregression (FAVAR) proposed by Bernanke, 

Boivin, and Eliasz (2005).  Extensions to the FAVAR (Mumtaz, Zabczyk, and Ellis 
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2011) which allow for time-varying parameters (TVP) and volatility are applied here to 

estimate changes among relationships over time.  

The TVP-FAVAR model is applied to a large dataset comprised of series related 

to the petroleum industry and macroeconomic variables which capture general economic 

conditions.  Following the literature, three proposed structural shocks, oil supply shock, 

aggregate demand shock, and oil demand shock, are analyzed.  This study advances the 

literature following Baumeister and Peersman (2013), who similarly study the evolution 

of oil prices using Primiceri’s (2005) TVP-VAR, by performing similar analyses in a 

data-rich setting. 

The Effects of Oil Prices on the Economy 

Ederington et al. (2011) provide a comprehensive review on oil prices and the factors 

affecting them.  Oil prices and their effects on the economy are frequently studied.  

Hamilton (2009, p. 1) provides a succinct description of the history of oil prices: 

“…changes in the real price of oil have historically tended to be (1) permanent, (2) 

difficult to predict, and (3) governed by very different regimes at different points in 

time.”  Almost every recession between World War II and the early 1980s was preceded 

approximately nine months by an increase in oil prices (Hamilton 1983), and the 

reduction in oil prices between 2007 and 2008, at the beginning of the Great Recession, 

is attributed to increased global demand amid slowing supply (Hamilton 2009).  While 

the reduction in oil prices from 2014 to 2016 is sometimes attributed to US production in 

shale plays, Prest (2018) finds no evidence of increased shale production causing the 

decline in oil prices.  Instead, Baumeister and Kilian (2016) attribute over 20 percent of 
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the 2014 decline in oil prices to negative demand shocks, which Baumeister and Kilian 

(2017) later show provided a stimulus to real GDP growth.  This stimulus, however, was 

offset by a reduction in investment in the oil industry.  Lippi and Nobili (2012) find a 

decrease in global oil production decreases US industrial production, while Kilian 

(2009) shows innovations to oil supply, aggregate demand, and oil demand, have 

different effects on the US economy.  On the other hand, oil prices are affected most by 

economic activity (Wang and Sun 2017).  Crude oil prices are affected by changes in 

economic activity as measured by the Kilian Index (He, Wang, and Lai 2010).      

While shocks in the price of oil may contribute to recessions, some believe 

fluctuations in oil prices affect the US economy less than commonly believed (Barsky 

and Kilian 2004).  Herrera and Pesavento (2009), whose findings are supported by 

Baumeister and Peersman (2013) and Aastveit (2014), argue the effect on the US 

economy of shocks in oil prices has been substantially dampened since the Great 

Moderation.  Kilian and Vigfusson (2017) find a one standard deviation shock in oil 

prices at the trough in 2008 would have had no effect on real GDP growth, while the 

same shock at the peak of oil prices in 1993 would have caused a persistent reduction in 

economic growth of three percentage points.   

Employment is affected by changes in oil prices.  Herrera, Karaki, and Rangaraju 

(2017), using the FAVAR, find decreases in net employment for oil and gas extraction 

and mining support within the first year following a negative shock in oil prices as jobs 

move to the construction, manufacturing, and services sectors.  Additional rig activity 
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creates positive employment benefits of at least 37 jobs immediately and 224 in the long 

run (Agerton et al. 2014). 

Oil prices are influenced by exchange rates and interest rates (Krichene 2006).  A 

shock in oil prices leads to an increase in interest rate over several years.  Similarly, 

Cuaresma and Breitenfellner (2008) show forecasts for oil prices are improved 

substantially if information on exchange rates are included.  Granger causality tests for 

oil price and exchange rate movements, however, are inconclusive.  Oil price is a good 

predictor of dollar-related exchange rates (Lizardo and Mollick 2010).  An increase in 

oil prices causes the dollar to depreciate against currencies of countries with positive net 

oil exports.  Bernanke, Gertler, and Watson (1997) believe monetary policy could be 

effective at countering the consequences of oil price shocks.  Anzuini, Lombardi, and 

Pagano (2010) show expansionary shocks in US monetary policy tend to increase 

commodity prices.  Oil prices respond sharply to shocks in the federal funds rate, money 

supply, the consumer price index, and an industrial production index.  Expansionary 

monetary policy increases general commodity price levels, but only slightly.  When 

either real interest rates decrease or the dollar appreciates, oil prices increase and exhibit 

“overshooting” behavior (Akram 2009).  Cologni and Manera (2008) show shocks to the 

price of oil cause an instantaneous but temporary effect on price levels in most G-7 

countries. 

Jones and Kaul (1996) find US and Canadian stock prices react to shocks in oil 

prices through their effects on current and future cash flows.  Oil prices have played a 

larger role than interest rates on the forecast error variances of stock returns since the 
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middle of the 1980s (Sadorsky 1999).  Oil prices increase in the months following an 

interest rate shock, and there are smaller, less sustained increases in oil price in response 

to shocks in industrial production and stock returns.  On the other hand, a shock in oil 

prices leads to an immediate decrease in stock returns that appears to stabilize after one 

quarter.  Huang, Masulis, and Stoll (1996), however, find no relationship between 

returns for oil futures and returns in the equity markets except for oil companies.   

Oil Prices and the Energy Industry 

Activities of the petroleum industry are commonly classified as upstream, midstream, or 

downstream.  Upstream activities are concerned primarily with exploration, drilling, and 

extraction; midstream activities involve the transportation and storage of raw products; 

and downstream activities are associated with refiners’ production of consumable 

products.  While the literature on the dynamics of the energy industry as a whole is 

limited, substantial research has been performed on specific sectors.  Ederington et al. 

(2011) provide discussions of these topics. 

Upstream 

Upstream activities revolve around exploration and discovery.  Oil production 

demonstrates unit root behavior for many producing countries (Maslyk and Smyth 

2009), so production shocks, therefore, likely have a non-transitory effect on economic 

output.  Güntner (2014) finds oil production responds to speculative demand shocks at a 

lag but has no statistically significant responses to oil demand shocks.  The number of 

drilling sites is inelastic with respect to oil prices but more elastic than the volume of 
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reserves (Smith and Lee 2017), evident during the 2014 decrease in oil prices as 

reductions in reserve additions and production were less than those in drilling activity.   

Rig count is a common metric of this sector’s level of activity (Cheng 1998; Dahl 

and Duggan 1998) and commonly used as a proxy for oil production.  Chen and Linn 

(2017) find a lagged relationship between changes in field production of oil and natural 

gas and changes in futures prices for oil and gas.  Guerra (2008) uses rig counts as a 

proxy for investment and finds at least 40 percent of rig activity is explained by oil price.  

Oil prices show only a small and temporary response to changes in rig count.  Mohn 

(2008) examines the relationship between oil prices and production though changes in 

drilling efforts and efficiency.  He finds a long-run relationship between oil prices, 

drilling efforts, success, and discovery size.  Cheng (1998) finds no Granger causality 

between wells drilled and oil price.  This result holds even when rig count is substituted 

for the number of wells drilled.  In the long-run, however, prices are found to Granger-

cause wells drilled.  Olatubi and No (2003) find both price shocks and shocks in price 

volatility increase exploration activity in the short run.  Dahl and Duggan’s (1998) 

survey of price elasticities reveals rig activity responds to prices.  Some of the responses 

are slowly realized, and all but one of the surveyed long-run price elasticities are greater 

than one.  They suggest, however, the omission of drilling costs and the effect of 

geography may bias the estimated coefficients.  Ringlund, Rosendahl, and Skjerpen 

(2008) find rig activity increases following an increase in oil prices.  The response of the 

rig count to the price increase is noticeable after three months in the US but at later times 

in less developed countries.  They estimate the long-run elasticity of rig count with 
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respect to oil prices is 1.3.  Mohn and Osmundsen (2008) study drilling activity on the 

Norwegian Continental Shelf and determine drilling activity is best proxied by the 

number of wells when comparing alternative measures, such as number of drilling days, 

and expenditures on exploration.  The long-run elasticity of drilling activity with respect 

to price is between 0.20 and 0.41.  There is evidence of a long-term effect on drilling of 

oil price, but over 80 percent of the short-term deviations from equilibrium are adjusted 

within one year.   

Midstream 

Compared to the upstream and downstream, the midstream is researched less frequently.  

One component of midstream operations is storage.  The economic theory of storage has 

its origins in Working (1949), who suggests there is an implicit price for storage 

necessary to understand futures prices.  Pindyck (2001, p. 2) shows “…inventories play 

a crucial role in price formation …” because they “…reduce costs of changing 

production.”  Inventories also dampen price volatility (Du, Yu, and Hayes 2011).  

Unalmis, Unalmis, and Unsal (2012) find the impact of supply shocks on oil prices is 

overstated when the model does not account for storage.  Ye, Zyren, and Shore (2002) 

explore the performance of forecasts for crude prices using OECD petroleum 

inventories.  Their best forecasting model includes current and lagged deviations from 

normal OECD inventory levels.  The ratio of inventory to sales decreases following a 

shock in oil price (Herrera 2018).  

Transportation, too, is an important part of midstream operations.  Interruptions 

in the flow of petroleum products from upstream to downstream or from downstream to 
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retailers affect prices.  In September 2016 gasoline futures, for example, increased when 

a pipeline leak was detected in Alabama (Friedman 2016).  Olsen (2011) finds evidence 

of cointegrating relationships between North American natural gas markets, suggesting 

regional deviations from the “one price” are due to transportation and transaction costs.  

Olsen, Mjelde, and Bessler (2015) cite bottlenecks as a reason markets separated by 

greater distances are less integrated.  Mu (2007) finds the volatility of natural gas prices 

increases the day storage information is released.  Pipeline capacity constraints also 

increase wholesale natural gas prices for regional markets.  For the Florida Gas 

Transmission Company between 2006 and 2011, pipeline capacity utilization of 95 

percent or more raised average regional prices over 11 percent (Avalos, Fitzgerald, and 

Rucker 2016). 

Downstream 

Gabel (1979), using a simultaneous equation model of the US refining industry, finds 

increased capacity utilization causes an increase in the price markup.  There is a negative 

relationship between the number of refineries and capacity utilization.   Kaufmann et al. 

(2008) find a negative relationship between refinery utilization rates and oil prices.  

Reducing refinery activity by one percentage point would increase oil prices four 

percent.  In addition, because light, sweet crudes command higher prices and revenues, 

refinery utilization rates may also affect the spread between prices for heavy and light 

crude oil.  Dèes et al. (2008), on the other hand, show the increase in crude oil prices 

from 2004 to 2006 was caused by conditions in the futures markets and a decrease in 
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refinery capacity utilization, but they conclude an increase in refinery capacity would not 

decrease crude oil prices.  

Adams and Griffin (1972) formulate a linear programming model of the refining 

industry.  At 88.1 percent utilization, output prices decrease because marginal costs are 

low, leading to price wars.  Policies affecting oil prices alter the prices for end products.   

Chesnes (2009) finds the optimal utilization rate for refineries increases early in 

the year and peaks in late summer.  Shocks in oil prices are passed through to the 

consumers of end products, but price increases in gasoline are less than the increase in 

refiners’ costs.  A 20 percent shock in crude price decreases consumer surplus by 58 

percent, refiners’ profits by 37 percent, and total welfare by 45 percent in the year 

following the shock.  A late summer hurricane similar in magnitude to Katrina or Ike is 

hypothesized to cause a 25 percent decrease in refinery capacity and as a result almost a 

70 percent decrease in consumer surplus, a 15 percent increase in profits, and a decrease 

in total welfare of 11 percent.  Unplanned outages decrease capacity utilization (Chesnes 

2015).  Planned outages, on the other hand, tend to occur when operating margins are 

lowest.  Outages, in general, tend to increase the price of refined products, but the 

amount of the increase depends on the available capacity. 

While the dynamics of gasoline prices are frequently investigated, sales of 

gasoline are studied less frequently.  Gasoline prices demonstrate asymmetry in response 

to increases and decreases in oil prices (Radchenko 2005).  Kuper (2012) decomposes 

the asymmetry, finding higher marketing and storage costs cause prices to increase fast 

than they decrease.  Similar to oil prices, gasoline prices are explained in the long-run 
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substantially (68 percent of the variation) by oil and aggregate demand shocks, while in 

the short-run, gasoline prices are primarily explained by gasoline demand shocks (Kang, 

Perez de Gracia, and Ratti 2018). 

The FAVAR Model 

Bernanke, Boivin, and Eliasz (2005), following Stock and Watson (2002a, c), introduce 

the FAVAR.  Researchers often have substantial information at their disposal, but a lot 

of this information is not included in typical VAR analyses.  The VAR’s inability to 

incorporate the information from many variables results in “sparse information,” 

necessitating the researcher to “…[take] a stand on specific observable measures 

corresponding precisely to some theoretical constructs” (Bernanke, Boivin, and Eliasz 

2005, p. 389).  The FAVAR approach combines the strengths of traditional VAR 

analysis – the ability to model dynamic relationships among variables through impulse 

response functions (IRFs) and forecast error variance decompositions (FEVDs) – with 

the ability to analyze many series simultaneously.  In their empirical application, 

Bernanke, Boivin, and Eliasz (2005), for example, estimate the relationships between 

one policy variable, the federal funds rate, and 120 informational series, including 

measures of output and income, employment, consumption, housing activity, 

inventories, stock indices, exchange, interest, and inflation rates, and money supply. 

 The FAVAR is built on statistical factor analysis, a technique commonly used for 

dimension reduction (Rencher and Christensen, 2012).  Statistical factor analysis 

emerged as a cross-sectional data analysis technique concerned with choosing an 

appropriate number of latent factors k that adequately captures the features of n variables 
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and then estimating both the factors fj and their contributions ijλ  to each of the observed 

variables yi.  Dimension reduction is achieved by k being less than n.  If each of the 

observed variables yi has mean ,iµ  then the orthogonal factor model is ,y f eµ− Λ +=  

where y is a vector of the original, observed series, 𝜇𝜇 is a vector of the means of each 

variable, f is a vector of the factors, and e is a vector of residuals.  The conformable 

matrix Λ contains factor loadings, the linear transformations of the factors into the 

observed variables.  Many techniques are available for estimating the factors and their 

loadings.  As an application of statistical factor analysis, the FAVAR model tries to 

capture the features of many time series.   

Zagaglia (2010) employs the FAVAR to investigate the term structure of oil 

futures with many informational series.  His FAVAR includes 230 series and improves 

out-of-sample, one- and three-step ahead forecasts of oil futures prices relative to a 

traditional VAR, a VAR of factors only, and a random walk.  Ipatova (2014), using an 

updated version of Zagalia’s (2010) dataset, shows forecasts of oil futures are improved 

using the FAVAR approach.  Four oil futures prices are modeled in addition to 301 

informational series.  An, Jin, and Ren (2014) use the FAVAR to study the asymmetry in 

the responses of macroeconomic variables to oil price shocks.  Using quarterly data on 

114 macroeconomic series, they find rising oil prices decrease, among others, output, 

saving, payrolls, and house prices.  The asymmetry in the responses to positive versus 

negative oil price changes is larger in the short run compared to the long run.  Aastveit 

(2014) also studies oil price shocks with the FAVAR with 112 informational series and 

concludes “…it is important to consider the causes behind the movements of oil price” 
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(Aastveit 2014, p. 278).  Binder, Pourahmadi, and Mjelde (forthcoming) show different 

methods for factor extraction affects the ability of FAVAR models to forecast oil prices.  

Other studies employing the FAVAR but unrelated to oil prices include Forni and 

Gambetti (2010), Bahadir and Lastrapes (2015), Lutz (2015), Ratti and Vespignani 

(2015), Duangnate (2015), and Binder (2016). 

The Time-Varying Parameter FAVAR Model 

The FAVAR model of Bernanke, Boivin, and Eliasz (2005) assumes a k-vector of latent 

factors ft captures the movements of an n-vector of informational series xt.  The latent 

factors are assumed to evolve dynamically with an m-vector of observational variables yt 

in the VAR framework  

(3.1) ( ) ,t
t

t

f
L v

y
 

Φ = 
 

  

where ( )LΦ  is a lag polynomial matrix and vt is a vector of zero-mean innovations such 

that ( ) .t tE v v′ = Ω  The informational series, latent factors, and vector of observational 

variables are related by 

(3.2) ,t f t y t tx f y e= Λ +Λ +   

where fΛ  and yΛ are n k× and n m×  matrices of coefficients and et  is assumed to be an 

uncorrelated vector of errors with diagonal covariance matrix R.   

Mumtaz, Zabczyk, and Ellis (2011) build on the Bernanke, Boivin, and Eliasz 

(2005) FAVAR framework with Primiceri’s (2005) time-varying parameter (TVP) VAR.  

The TVP-FAVAR with l lags can be written in state-space form with observation 

equation  
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where I is the identity matrix and all other variables are as previously defined.  The 

vector of observational series includes both the Cushing West Texas Intermediate crude 

oil spot price (oil prices) and the federal funds rate (interest rate).  Here, the n-vector of 

informational series xt includes many series describing each sector of the petroleum 

industry.  The informational series also include many macroeconomic series, 

representing current economic activity.  The inclusion of many industry-specific time 

series allows for the simultaneous estimation of these series’ responsiveness to changes 

in oil price and the federal funds rate.  The latent factors ft span the space of the entire set 

of informational series, meaning the information contained in each of the series, both the 

industry-specific and macroeconomic, contributes to the values of each factor.   

For the transition equation, the dynamics of the latent factors and observational 

series are jointly specified as a VAR 

(3.4) , 1 1, 1

, 1 1, 1

,t k t k
t t

t m t m

f f
v

y y
× − ×

× − ×

   
= Φ +   

   
  

where tΦ is a conformable matrix of time-varying coefficients and vt is a vector of 

residuals.  On occasion, the VAR will also be written in the shorthand notation  

(3.5) 1 ,t t t tFF v−= Φ +   

where [ ] .tt tF f y ′′ ′=   While this notation implies only one lag of the state vector is 

included in the VAR, additional lags can be incorporated by considering equation (3.5) 
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to represent the companion or VAR(1) form of a multiple-lag VAR model (Lutkepohl 

2005). 

It is assumed the VAR coefficients follow a random walk  

(3.6) , , 1( ) ( ) ,l t l t tvec vec η−Φ = Φ +   

where ( )vec ⋅ is the vectorization operator, , ,l tΦ  is the lth member of the lag polynomial, 

and ηt is a vector of white noise with covariance matrix Q. 

The covariance matrix ( )t tE v v′  also evolves over time and can be decomposed 

(3.7) 1 1( ) ( ) .t ttt t t tE v v A H H A− −′′ ′= Ω =   

The matrix Ht is a diagonal matrix of the standard deviations of the innovations for each 

equation of the VAR.  Let ht denote the vector of the diagonal elements of Ht.  Each 

standard deviation is assumed to evolve independently according to the stochastic 

volatility model of Kim, Shephard, and Chib (1998) such that  

(3.8) 1(ln ) ln )( t t thh ξ−= +   

where tξ  is a vector of independently distributed white noise distributed according to 

diagonal covariance matrix G.   

The matrix At  describes the contemporaneous relationships between the variables 

of the VAR system such that  

(3.9) 1( ) ,t t t t t tA FF wH−−Φ =   

where 
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each ,l tΦ  is the coefficient matrix at time t associated with the lth lag of the VAR, and wt 

is a vector of independent and identically distributed white noise with unit variance.  The 

matrix At is assumed to have a lower triangular structure scheme.  Let at  denote a vector 

of the unrestricted values of At, the lower-triangular, non-diagonal members only, 

ordered by row and column such that  
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corresponds to the vector 2,1, 3,1, 3,2, 4,1, .t t t t ta A A A A ′ =    The elements of this 

vector are assumed to evolve according to a random walk 

(3.10) 1 ,t t ta a ε−= +   

where tε  is a vector of Normally distributed white noise with covariance matrix S. 

Bernanke, Boivin, and Eliasz (2005) employ a recursive identification scheme 

using the Cholesky decomposition to perform innovation accounting, ordering the 

monetary policy variable last.  In this dissertation, Uhlig’s (2005) sign restriction 

technique, in conjunction with the elasticity bound of Kilian and Murphy (2010), is used 
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to set identify the structural responses, so the ordering of the series does not matter for 

identification of the structural shocks.  This is discussed in detail later. 

Estimation 

The TVP-FAVAR model is complex with numerous parameters to estimate.  There are 

hundreds of informational series, leading to many equations of factor loadings; there are 

also time-varying coefficients for the VAR, the time-varying volatilities, and time-

varying contemporaneous relationships between the variables in the VAR.  In addition, 

the model is nonlinear with respect to the log volatility of the transition equation.  As a 

result, estimators requiring optimization of global extrema are likely to be 

computationally infeasible.   

 Bernanke, Boivin, and Eliasz (2005) propose two estimation methods: a two-step 

estimator using principal components that first estimates the factors and then their 

loadings and VAR coefficients.  Their second method, a one-step method, uses Bayesian 

methods to estimate the posterior distribution of all parameters jointly.  Because they 

find little difference in the numerical results, the simplicity of the two-step method is 

appealing.  The two-step estimator, however, does not provide a ready solution for the 

estimation of the TVP-FAVAR.  Korobilis (2012) applies a two-step estimation with 

time-varying parameters by first estimating and identifying the factors using the 

principal components technique and then applying the framework of the Bayesian TVP-

VAR (Primiceri 2005, Cogley and Sargent 2005) extended to the FAVAR.   Mumtaz, 

Zabczyk, and Ellis (2011), however, use Bayesian methods to estimate all the model’s 
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parameters, obtaining even the factors through Bayesian methods.  Bayesian methods are 

pursued here to estimate jointly the factors and the parameters of the TVP-FAVAR. 

Overview of Bayesian Methods.  The Bayesian paradigm is summarized by Gelman et 

al. (2013).  Bayesian statistical estimation and inference is built on probability 

statements conditioned on the observed data.  Gelman et al. (2013, p. 6) explain: 

It is at the fundamental level of conditioning on observed data that 
Bayesian inference departs from the approach to statistical inference 
described in many textbooks, which is based on a retrospective evaluation 
of the procedure used to estimate [the unknown parameters] over the 
distribution of possible [observed values] conditional on the true 
unknown value of [the parameters]. 

Bayesian inference treats unknown parameters as random variables and attempts to 

estimate the probability distribution describing the potential values of the parameters 

(Gelman et al. 2013; Hoff 2009).  The probability distribution depends on the likelihood 

of the data and the investigator’s prior beliefs regarding the values of the parameters 

being estimated.  In Bayesian statistics, observed data are treated as given and are the 

only values known to the researcher.  Samples from the population that could have been 

drawn or would be drawn in repeated sampling are not of interest.  In contrast, many 

frequentist estimators are evaluated by considering their performance under other 

potential draws of the observed data.  A common performance metric of frequentist 

estimators is bias; an estimator is said to be unbiased if, in resampling from the 

population, the expectation of its sample mean is the true value of the parameter being 

estimated.  While the results of Bayesian inferences are often numerically similar to 

those of their frequentist counterparts, Bayesian analysis has an advantage in its ability 

to handle large, complex models such as the TVP-FAVAR.   



 

45 

 

In the TVP-FAVAR model, the observed data include informational series xt and 

observational series yt.  The unknown parameters of interest are:  

• ft , the latent factors for time 1,  2,  ...,  ;t T=   

• fΛ and ,yΛ   the matrices of coefficients in the measurement equation 

(3.3) 

• R, the matrix of the variances of the residuals of the measurement 

equation; 

• ,tΦ  the matrix of the time-varying coefficients of the VAR in the 

transition equation (3.4) for time 1,  2,  ...,  ;t T=  

• Ht, the diagonal matrix of the time-varying volatility of the VAR 

residuals from the transition equation for time 1,  2,  ...,  ;t T=  

• At, the lower-triangular matrix of the time-varying contemporaneous 

relationships of the variables in the VAR in the transition equation for 

time 1,  2,  ...,  ;t T=  

• Q, the covariance matrix of the innovations to the random walk governing 

the evolution of the coefficients in ,tΦ  as defined in equation (3.6); 

• G, the covariance matrix of the innovations to the random walk governing 

the evolution of the coefficients in Ht as defined in equation (3.8); and 

• S, the covariance matrix of the innovations to the random walk governing 

the evolution of the coefficients in At as defined in equation (3.10). 
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Following Kim and Nelson (1999, p. 197), let the “~” notation denotes the entire set of 

values of the time-varying random variables across all periods, for example, 

1 2 }.{ , , , tx x x x…=   Define , , , , , , , , )(p H A R S Q Gf Λ Φ   as the prior distribution of the 

unknown parameters.  The prior distribution is a probabilistic summary of the 

investigator’s beliefs regarding the unknown parameters.  The likelihood of the data 

, , , , , , , , , )( |p x y H Af R S Q GΛ Φ 

  is the probability of the observed the data conditional on 

the parameters.  Probability statements on the parameters conditional on the observed 

data are made using Bayes’ Theorem to obtain 

(3.11)
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where , , , , , , , , | , )(p H A R S Q G x yf Λ Φ 





  is the posterior distribution, the probability 

distribution of the parameters conditional on the observed data.  By the properties of 

probability, the left-hand side of the relationship in equation (3.11) can be rewritten 

(Kim and Nelson 1999, p. 197) as 
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This equality simplifies the posterior into several conditionally independent components, 

leading to a simplified estimation strategy.   



 

47 

 

1) Conditional on the observational series, the informational series, and the other 

parameters of the model, draw the latent factors.  

2) Conditional on the latent factors and the observational series, draw the factor 

loadings and the residual covariance of the observation equation from equation 

(3.3). 

3) Conditional on the latent factors and the observational series, draw the 

parameters of the transition equation, equations (3.4), (3.6), (3.8), and (3.10): 

a. the time-varying VAR coefficients and the covariance matrix governing 

their evolution,  

b. the time-varying volatilities and the variance parameters governing their 

evolution, and  

c. and the time-varying contemporaneous relations and the covariance 

matrix governing their evolution. 

A detailed description of each step of the iteration is now provided. 

Step 1. Draw the Latent Factors. Conditional on all the parameters of the model, the 

estimation focuses on equations (3.3) and (3.4).  Assuming et is Normally distributed 

with covariance matrix R, vt is Normally distributed with covariance matrix tΩ , and et 

and vt are independent, these equations constitute a linear, Gaussian state space model.  

As such, the Kalman Filter, “…a recursive procedure for computing the optimal estimate 

of the unobserved-state vector…” (Kim and Nelson 1999, p. 22), can be applied to 

obtain the conditional expectation and covariance of the latent state vector Ft at each 
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period.  Applied to this state-space model, the Kalman Filter equations for each period 

are 

(3.12) 
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where, following the notation of Kim and Nelson (1999):  

• | 1t tF −  is the conditional expectation of the latent state vector Ft at time t as in 

equation (3.5) given information up to 1;t −   

• | 1t t
FP −  is the conditional covariance of the latent state vector at time t given 

information up to 1;t −  

• | 1t tu −  is the conditional forecast error of the observation equation at time t given 

information up to 1;t −  

• | 1t tW −  is the conditional covariance of the forecast error of the observation 

equation at time t given information up to 1;t − and  

• 
| 1

1
| 1 0 t tt t t

f yFK
I

WP
−−
−

′Λ Λ 
=  

 
 is the Kalman gain at time t, a weighting matrix used 

to update the expectation and covariance of the state vector.   
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To use the Kalman Filter technique, initial values for 0|0F  and 0|0
FP must be provided.  

Because the coefficients of the VAR in the transition equation follow a random walk and 

are unrestricted, the latent factor vectors are not guaranteed to be stationary, so the 

unconditional mean and covariance of the factors do not exist.  The recursions, therefore, 

are initialized with 0|0 1,0 2,00 0 ,
k

F y y
′ 

 
 

=






where 1,0y  is the previous known 

value of the first observational variable (oil prices), 2,0y  is the previous known value of 

the second observational series (federal funds rate), and the sequence of k zeros 

correspond to the starting values for the k factors.  The prediction covariance 0|0
FP  is 

initialized as a diagonal matrix with one on each element of the diagonal corresponding 

to the positions of the factors to be estimated and zeroes in the positions corresponding 

to the known values of the observed series.  

 Once the Kalman Filter iterations are complete, backward recursions based on 

Carter and Kohn (1994) as outlined in Kim and Nelson (1999) are used to obtain 

samples from the full conditional posterior of the factors.  To begin, draw a value of the 

state vector at time T, the final observation, from | |, ),( t t
F

t tN F P  where N denotes the 

Normal distribution with mean |t tF  and covariance | .F
t tP   The updating steps for times 

1T −  to 1 are 

(3.13) 
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where *
1| , tt t F

F
+

 is the conditional expectation at time t of the state vector given information 

up to time t and *
1,tF +  the draw of the state vector at time 1,t +  and *

1| , tt t F
P

+
 is the 

conditional covariance at time t of the state vector given information up to time t.  When 

the updated conditional mean and covariance for time t is obtained, a draw is made from 

* *
1 1| , | ,

,  )(  
t tt t

F
t F t F

N F P
+ +

 to obtain *,tF  this iteration’s draw for the state vector at time t.  

Repeat the updating steps for each period until the first observation is reached. 

 In applications where the number of lags in the transition equation, exceeds one, 

a modification is needed to the backwards recursions because of the singularity of .tΩ  In 

the backwards recursions, all instances of the matrices tΦ  and tΩ  are truncated after 

m k+  rows.  Kim and Nelson (1999) provide more details on this procedure. 

 For the TVP-FAVAR estimated by Bayesian methods, there are two components 

to identification.  The first is the identification of the state space model to prevent 

rotation of the factors; the second is the identification of structural innovations for 

innovation accounting (discussed later).  The state space model specified here is 

unidentified without any restrictions on the coefficients of the observation or transition 

equations.  Bernanke, Boivin, and Eliasz (2005) show that in their one-step, Bayesian 

estimation method, identification is achieved using information from both the 

observation and transition equations.  To prevent rotation of the factors, restrictions must 

be placed on the coefficient matrices of either the observation or transition equation.  

Following Bernanke, Boivin, and Eliasz (2005) and Mumtaz, Zabczyk, and Ellis (2011), 

the first k rows of the matrix of coefficients from equation (3.3) are set to zero.  In the 
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first row, the coefficient corresponding to the first latent factor is set to one; in the 

second row, the coefficient corresponding to the second latent factor is set to one; similar 

restrictions are placed through the kth row of the coefficient matrix. 

Step 2. Draw Observation Equation Parameters.  Conditional on the factors, the 

observation equation of the state-space model in equation (3.3) is independent of the rest 

of the model.  This is a system of regression equations. The regressors for each equation 

are the latent factors generated previously.  In cases where the number of lags in the 

transition equation exceeds one, only the values of tF  and not 1,tF −  2 ,  ...,  t t lF F− −  are 

included as regressors in the observation equation.  It was previously assumed the vector 

et is Normally distributed with covariance matrix R.  Now, it is further assumed R is 

diagonal.  Because of the independence of the innovations across equations, each row of 

the observation equation can be treated as a separate regression model and estimated 

separately.  A conjugate prior for the single regression model is the multivariate Normal-

Inverse Gamma prior such that the prior of ith row of the matrix of coefficients is 

( ) (0, ).
if yp N I Λ Λ =    For , ,i iR  the ith diagonal element of R, the prior is Inverse 

Gamma , ) (0.01,0.01),( i i IGp R =  denoting the shape and rate parameters.  The choice of 

the identity covariance matrix for the coefficients matches that of Bernanke, Boivin, and 

Eliasz (2005) and Amir-Ahmadi and Uhlig (2009).  Experimentation with Jeffrey’s 

noninformative prior and a uniform prior resulted in difficulties with numerical stability 

of the Markov Chain Monte Carlo (MCMC) algorithm and caused explosive behavior in 

the parameters of R and .tΩ   The conditional posterior for the coefficients is Gaussian 
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( )1 1
, , ,) / ) ( / ),  )( ( ,/ )i i i i i i iF R F X RN I F FF I R− −′′ ′+ +  where F is the matrix of the latent 

state vectors, Xi represents the column vector of the values of the ith dependent variable 

in the matrix equation (Hoff 2009).  The conditional posterior of the residual variance is 

Inverse Gamma ( )0.01 0.5 ,0.01 0.5 SSR ,R
iIG T+ × + ×  where T is the number of 

observations and SSR R
i  is the sum of squared residuals for the ith regression equation 

(Hoff 2009).   

Step 3a. Draw the Transition Equation Time-Varying VAR Coefficients.  Conditional on 

the factors and ,tΩ  the transitional equation from (3.4) becomes 
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1
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−

−

−

′ 
 ′ = Φ +
 
 ′ 





   



  

where the time-varying VAR coefficients evolve 1( ) ( ) .t ttvec vec η−Φ = Φ +  Previously, it 

was assumed vt is Normally distributed with covariance matrix .tΩ   It is additionally 

assumed tη  is Normally distributed with covariance matrix Q and that vt and tη  are 

independent.  As a result, these equations also constitute a linear, Gaussian state space 

model estimable by Kalman Filter as discussed previously.  The Kalman Filter 

recursions are started with a zero vector except for the coefficient on each variable’s first 

lag which is set to 0.9.  The starting covariance is specified as a diagonal matrix with 

0.0001 for each diagonal element.  The backward recursions of Carter and Kohn (1994) 

are then applied to obtain draws for the coefficients. 
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 The covariance matrix Q is then updated.  Cogley and Sarget (2005) and 

Primiceri (2005), along with the experience garnered during the estimation of this 

model, suggest the choice of prior for Q is key to maintaining non-explosive behavior of 

the VAR coefficients as they evolve in the random walk.  The literature proposes a 

relatively tighter prior on this covariance matrix, so the prior is specified as the Inverse 

Wishart distribution ( ) ( ,0.0001 ),p Q IW Iδ δ= × ×  where I is an identity matrix of the 

same dimensions as Q and the constant δ is set at one more than the number of time-

varying coefficients in the VAR (the dimension of Q plus one).  For the Inverse Wishart 

distribution, having degrees of freedom exceeding the dimension of the matrix 

guarantees the matrix is positive definite (Hoff 2009).  Because the Inverse Wishart is 

naturally conjugate to the Normal density, the conditional posterior is also Inverse 

Wishart ( )11 , (0.0001 ) ,40 QI I UW T δ −− + × × +  where 

[ ][ ]1 1( ( ( ( .) ) ) )Q t t t t
t

U vec vec vec vec− −Φ − Φ Φ Φ ′−=∑   

Step 3b. Draw the Time-Varying Volatilities of the Transition Equation.  Conditional on 

the factors, the time-varying coefficients, and the time-varying contemporaneous 

relationships, values for the time-varying volatilities can be drawn.  Following Primiceri 

(2005) and Del Negro and Primiceri (2015), the transition equation as given in equation 

(3.9) is a nonlinear matrix equation.  On the right side of the equation is the matrix of 

standard deviations multiplied by white noise.  This equation is linearized by first 

squaring both sides.  By squaring both sides, the diagonal matrix Ht of standard 

deviations becomes a diagonal matrix of variances.  The natural logarithm is taken on 
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both sides to complete the linearization, forcing the product on the right side of the 

equation to become the sum of the natural logarithms of each component.  The linearized 

equation is  

(3.14) ˆ 2 ln ,t t tf h e+=   

where ( )2
1

ˆ ( )] ,ln [t t t t tf A cFF −= Φ− +  2 ,lnit ite w=  and i indexes the rows of the vector ˆ .tf   

The constant c is used for numerical stability when taking the natural logarithm of small 

values and is set to an arbitrarily small value, here 0.00001.  In equation (3.8), it was 

assumed the log volatility of the transition equation evolved as a random walk.  

Together, equations (3.8) and (3.14), yield the state space model 

(3.15) 
1

ˆ 2 ln
ln ,ln

t t t

t t t

f h e
hh ξ−

+=

= +
  

where tξ  is Normally distributed white noise with diagonal covariance matrix G.  The 

innovations of the two equations are assumed independent of each other, but the 

innovations of the observation equation are distributed according to the 2log χ  

distribution with one degree of freedom.  As a result, this state space model is linear but 

not Gaussian.  Following Del Negro and Primiceri (2015) and Kim, Shephard, and Chib 

(1998), the density of the 2ln χ  distribution can be approximated by a mixture of 

Gaussian distributions described in Table 4 of Kim, Shephard, and Chib (1998) because 

a linear combination of Normal distributions yields a Normal distribution.  The moments 

of each component distribution are selected such that the moments of the mixture of 

Normal distribution are close to those of the 2ln χ  distribution.  Let sit indicate which of 
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the component distributions is applied to ,
ˆ .i tf  The ,i ts  can be sampled from the 

multinomial distribution  

(3.16) ( )2
, 1 ,Pr( ( ) | 2 ln ,) 1.2704,i t j t t t t i t j js q Aj F hF µ σφ −= Φ− +∝ −   

where ϕ is the Normal density with mean  , 42 .ln 1 270i t jh µ+ −  and variance 2
jσ  and all 

constants are as given in Table 4 of Kim, Shephard, and Chib (1998) .   

 Upon sampling ,i ts  for all variables in all periods, the covariance matrix of te  at 

each period is constructed.  The variance of ,i te  is the variance of the ,i ts  component of 

the mixture of Normal distributions.  The system given in equation (3.15) is now a 

linear, approximately Gaussian state space model, and the Kalman Filter and backward 

recursions can be applied to sample values for ,ln .i th  The Kalman Filter is initialized 

with a zero vector and identity covariance matrix. 

 Del Negro and Primiceri (2015), a corrigendum to Primiceri’s (2005) original 

TVP-VAR, provide an additional step that corrects for the fact the likelihood of the 

2ln χ   distribution is approximated by the mixture of Normal distributions proposed by 

Kim, Shephard, and Chib (1998).  Upon obtaining sampled values for the time-varying 

volatilities using the Carter and Kohn (1994) backwards recursions, a Metropolis-

Hastings step is used to accept or reject the drawn values.  The proposed value is 

accepted with probability  

(3.17) 
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where φ  is the density of the mixture of Normal distributions approximation to the 

2ln χ   distribution 2 ,( ) ( 1.2704| , )j
j

jφ φ µ σ⋅ −⋅=∑  the “**” denotes the previous value of 

the Markov Chain, and the “*” denotes the value proposed in the current iteration of the 

chain.   

An additional benefit of the t̂f  transformation and the diagonal assumption for G 

is that each row of the observation equation in (3.15) is independent of the others.  This 

allows for an improved single-component Metropolis-Hastings update.  The single-

component strategy increases the sampler’s efficiency because the acceptance or 

rejection of one row’s proposed values is determined without considering the proposed 

values for the other rows.  In this application, it allows the sampler to accept and update 

the Markov Chain more frequently than if all rows of the vector ht are accepted or 

rejected simultaneously.  To perform the single-component update, the Kalman Filter, 

backwards recursions, and acceptance/rejection steps are performed one row at a time. 

The diagonal covariance matrix G is then updated.  Following Cogley and Sarget 

(2005), the conjugate Inverse Gamma distribution is selected as the prior for each 

diagonal element of for each ( )( ) 0.5 0.0001,0.5 .iip G IG= ×   This yields an Inverse 

Gamma conditional posterior ( )0.5 (0.0001 ),0.5 1 SSR ) ,( G
iIG T+ +××  where SSRG

i  is 

the sum of squared residuals tξ  from the random walk of the ith log volatility. 

Step 3c. Draw the Time-Varying Contemporaneous Relations of the Transition Equation.  

Conditional on the factors, the time-varying coefficients, and the time-varying 
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innovation volatilities, values for the time-varying contemporaneous relationships are 

drawn.  By the lower-triangular assumption for At, equation (3.9) can be rewritten as 

(3.18) 
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where ( )p
tF ′  denotes the first p elements of the transpose of vector Ft truncated at the 

first m k+  elements and the vector at is as previously defined.  In equation (3.10), it was 

assumed each element of at follows a random walk.  Assuming tε  is Normally 

distributed with covariance S, this is a nonlinear, Gaussian state space model, and it 

cannot be estimated by the Kalman Filter.  With the additional assumption of S block 

diagonal  
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where the subscript notation i,t denotes the ith element of the vector at at time t, each 

row of the matrices in equation (3.18) is independent of the others.  In addition, each row 

of the equation is linear.  The Kalman Filter and backwards recursions are then be 

applied row-by-row of the equation to obtain draws for the elements of at.   
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The first row of the system corresponding is a vector of zeros, so sampling 

begins with the second row of the matrix equation.  For the second row of the matrix 

equation, the state space model is  
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The variance of 1,tε  is the first diagonal element of S.  For the third row of the system, 

the state space model is  
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The relevant 2 2×  block of S used in the Kalman Filter is the second block in the series 

of blocks along the diagonal of S, the covariance matrix 2, 3,cov( , ).t tε ε ′     

 For each row of the matrix equation, the Kalman Filter and backwards recursions 

are applied to obtain samples for the current portion of the vector at.  Upon obtaining the 

sample, the corresponding block of the residual covariance S is updated.  Following 

Primiceri (2005), the prior for the block of S related to the ith row of the equation is 

Inverse Wishart ( ,0.01 ),( )ip S IW i i I= × ×  where I is an identity matrix of dimension 

1.i −   Specifying at least i degrees of freedom in the Inverse Wishart prior for the block 

of S with dimension 1i −  guarantees each block of the covariance matrix is positive 
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definite (Hoff 2009).  The conditional posterior is also Inverse Wishart 

( )11 , (0.01 ) ,SIW T i i I U −× ×− + +  where [ ][ ]1 1 .
t

tS t t taU a a a− −− ′−=∑   

The procedure continues until all elements of at have been drawn when row 

m k+  of the matrix equation in equation (3.18) is reached.  Again because of the non-

stationary nature of the random walk, each run of the Kalman Filter is initialized with a 

zero vector and diagonal covariance matrix with 0.01 on each diagonal element. 

Model Comparison.  In the construction of a VAR model, an adequate number of lags 

must be selected to capture the dynamics of the system.  Additional lags can provide 

better fit at the cost of model parsimony and additional computational burden.  In 

constructing the TVP-FAVAR model, a lag selection must be made for equation (3.4).  

The TVP-FAVAR, however, has additional complexity in that the number latent factors 

must also be selected.  The literature applying FAVARs estimated with traditional, 

frequentist methods have proposed criteria such as that of Bai and Ng (2002) and the 

improvements to the same proposed by Alessi, Barigozzi, and Capasso (2010). 

 Gelman et al. (2013) discuss information criteria for Bayesian model 

comparison.  Information criteria weigh the tradeoff between model fit and complexity.  

Akaike’s Information Criterion (AIC) is often used in both frequentist and Bayesian 

applications.  A Bayesian generalization of the AIC is the Deviance Information 

Criterion (DIC), proposed by Spiegelhalter et al. (2002, p. 584), which incorporates 

“…an information theoretic argument to motivate a complexity measure pD for the 

effective number of parameters in a model, as the difference between the posterior mean 
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of the deviance and the deviance at the posterior estimates of the parameters of interest.”  

Berg, Meyer, and Yu (2004, p. 107) present the DIC as “…easy to calculate and 

applicable to a wide range of statistical models.”  Following Berg, Meyer, and Yu 

(2004), the DIC can be written 

(3.19) DIC ,DD p= +   

where  

 ( , , , , , , , , )D E fD H A R S Q G = Λ Φ 
    
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where ( )E ⋅  denotes the expectation operator, and ( )D ⋅ is the deviance function, or 

(3.20) .( 2 ln (, , , , , , , , ) , | , , , , , , , , )D f p x fH A R S Q G y H A R S Q GΛ Φ Λ= − Φ  








   

Substituting equation (3.20) into equation (3.19) and rearranging yields  

(3.21) 
( )

DIC  4 ln ( |

 2 ln | ( .

, , , , , , , , , )

, , , , , , , , , )

yE

f

H A R S Q G

H

p x

x y A R S G

f

p E Q

 = −  Λ

Φ+

Φ

Λ



















  

The population expectations, however, are not known and must be estimated.  For the 

TVP-FAVAR model, the likelihood function , , , , , , , , , )( |p y H Ax f R S Q GΛ Φ 

 


  is 

complex and difficult to evaluate.  Berg, Meyer, and Yu (2004) employ Kitagawa’s 

(1996) particle filter to approximate the likelihood.  The particle filter propagates a 

series of Z particles, or draws, representing the entire set of the model’s time-varying 

parameters – the latent factors and the time-varying VAR coefficients, volatility, and 
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contemporaneous relationships – according to the dynamics specified in equations (3.3), 

(3.4), (3.6), (3.8), and (3.10).  As they move from observation to observation, the 

particles are resampled with weights proportional to the likelihood of the vector of 

residuals from the observation equation given in equation (3.3).  The complete algorithm 

for each iteration 1,  2,  ,  b B=  of the MCMC samples is as follows. 

1. Given the time-constant parameters of the bth iteration from the MCMC chain, 

the filter is initialized at 0t =  by randomly sampling values for the time-varying 

parameters.  The starting values for the VAR coefficients, volatility, and 

contemporaneous relationships are each drawn from a Normal distribution 

centered at their corresponding time 0t =  mean from the B MCMC samples.  

The covariance matrices for the starting values are: 

• state vectors: a diagonal matrix of ones for the location of each factor and 

zeros for each known value of the observational series; 

• VAR coefficients: a diagonal matrix with 0.0001 for each diagonal 

element; 

• log volatility of the transition equation residuals: a diagonal matrix with 

0.1 for each diagonal element; and 

• the contemporaneous relationships: a diagonal matrix with 0.1 for each 

diagonal element. 

2. For each period 1,  2,  ,  t T=   iterate the following steps. 

a. Stochastically propagate the VAR parameters, volatility, and 

contemporaneous relationships to time t from time 1t −  using the 
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dynamics specified in equations (3.6), (3.8), and (3.10).  Once the new 

parameters have been propagated, calculate tΩ  using equation (3.7). 

b. For each set of particles, a vector of random draws for vt is made from the 

distribution of the residuals of the transition equation, that is )(0, .tN Ω   

c. The predicted value of the latent state vector at time t is calculated for 

each particle using the dynamics of the transition equation described by 

equation (3.4) for the tth observation and the draws for vt obtained in the 

previous step. 

d. Having the predicted value of the latent state vector for each particle, the 

vector of residuals for the measurement equation (3.3), or 

 ,
0 0

t tt f y

t t

x fe
y yI

Λ      
= −      

   

Λ

   
  

is calculated from the relationship described in equation.  For the zth 

particle, the joint density of the residuals, (0, ),N R  is evaluated at the 

vector of predicted residuals to obtain the weights ,ztω  where 

1,  2,  ,  .z Z=    

e. The particles are resampled with weights ,ztω  and the algorithm 

continues to the next t by returning to step (a) and continuing the filter 

with the resampled particles. 

Upon completion of the particle filtering algorithm, the log-likelihood for the bth 

MCMC iteration is estimated  
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(3.22) 1
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





  

The algorithm is repeated for each iteration b of the MCMC procedure.  By the Law of 

Large Numbers, the DIC can then be estimated using the sample analog of the 

population expectation in equation (3.21) so that  

(3.23) ( )1

ˆ
DIC 4 2ln | ,, , , , , , , , ,

B

b
b y H

l
p Sx f A R Q

B
G= Λ≈ − + Φ

∑




    

where the second term is the likelihood of the measurement equation (3.3) evaluated at 

the sample mean of the parameters (denoted by the bar notation) across all B draws of 

the MCMC.  This, too, can be estimated via particle filter.  Kitagawa (1996) suggests 

1,000Z =  is sufficient for estimating the mean of the distribution. 

Postestimation Analysis.  The informational series contain a broad variety of series 

describing the upstream, midstream, and downstream of the petroleum industry and the 

US economy.  The TVP-FAVAR setup allows each of these series to be examined 

individually to understand its dynamics and their evolution.  As mentioned previously, 

one strength of the FAVAR framework is the ability to include many time series while 

still being able to use the traditional tools of VAR analysis, such as IRFs and FEVDs. 

 In traditional VAR analysis, the IRFs are commonly calculating using the 

moving-average (MA) representation of the system (Lutkepohl 2005).  The MA 

representation transforms the system such that the VAR in equation (3.5) is a function of 

lags of the innovation noise 
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(3.24) 1, 1 2, 2 ( ) ,t t t t t t t tF L vv v v− −Θ Θ + = Θ= + +    

where ( )t LΘ  is a lag polynomial operator and, like the original VAR coefficient 

matrices tΦ  from equation (3.5), is time-varying.  A p-step-ahead IRF, as defined in 

Hamilton (1994), is the vector of changes in the values of the variables in the VAR 

system given a unit shock in one of the innovations in ,tv  or  

(3.25) ,t p

tv
F +

∂

∂
 

where p is a nonnegative integer denoting the time steps ahead.  The IRF shows how a 

shock in one of the VAR’s variables at a given period affects the values of the variables 

for future time periods.  Using the MA representation from equation (3.24), the IRF can 

be shown to be  

(3.26) 1, 1 2, 2 ,
, ,t p t t p t t p p tt p

t t

t
p t

v v v
v

vF
v

+ + − + −+ ∂ + +
=

∂  Θ Θ + +Θ +  = Θ
∂ ∂

 

  

where the item at the ith row and jth column is the effect of a shock in the jth variable on 

the ith variable in the vector .t pF +   

In economic data, the innovations in vt, however, are not necessarily 

independent, so a shock in one variable could happen concurrently with a shock in 

another variable.  Recall that vt is Normally distributed with covariance matrix .tΩ  The 

IRFs as currently defined “…may provide a misleading picture of the actual dynamic 

relationships between the variables” (Lutkepohl 2005, p. 57).  The common practice is to 
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calculate structural IRFs (SIRFs) in which the innovations to each variable are 

independent of each other.   

Gambetti (2012) provides the orthogonalized version of equation (3.24) under 

TVP as   

(3.27) 
1 21, 1 1 2, 2 2

( )

. ,
t

t t t

t t t t

t t t t t t t t

F L C W v

C W C W C Wv v v
− −

Ω

Ω Ω − − Ω − −

Θ

Θ += Θ +

=

+ 

  

where 
t

CΩ  is the Choleski decomposition of the time-varying residual covariance matrix 

tΩ  and Wt is the rotation matrix determining the ordering of the series.  The SIRF at p 

steps ahead of time t can be obtained using the orthogonalized MA representation in 

equation (3.27) to find ( ) .
t pt p t p t p t pF L C W v
++ + Ω + += Θ   and then differentiating to obtain 

(3.28) , .
t

t p
p t p t

t

F
C W

v
+

+ Ω

∂
= Θ

∂
  

The pth matrix of ( )t LΘ  is the only matrix in the MA representation needed to calculate 

the SIRF, and it can be obtained by substitution (Gambetti 2012).  For 1,p =  the one-

step-ahead forecast is 1 1 1.t t t tF F v+ + += Φ +   By substituting 1t t tF v−Φ +  for Ft the expression 

becomes 

 [ ]
1 1 1

1 1 1

1 1 1 1

ˆ

.

t t t t

t t t t t

t t t t t t

F
F v

F v

F v
v

v

+ + +

+ − +

+ − + +

= +

=

+

+ +

= Φ

Φ Φ +

Φ Φ Φ

  

The needed coefficient matrix is 1.t+Φ  Similarly, using the two-step-ahead forecast to 

obtain the matrix for 2p =  provides 
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[ ]

( )

2 2 1 2

2 1 1 2

2 1 1 1 2

2 1 1 2 1 2 1 2

ˆ

.

ˆ
t t t t

t t t t t

t t t t t t t

t t t t t t t t t t

F
v

v

F v
F v

F v v

F v v v

+ + + +

+ + + +

+ + − + +

+ + − + + + + +

= +

= +

= Φ +
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Φ Φ Φ Φ Φ Φ

 
= + + +

  

In this case, the coefficient matrix is 2 1.t t+ +Φ Φ   Following this pattern, for a p-step ahead 

SIRF, the coefficient matrix from the MA representation is 1 2 1.t p t p t t+ + − + +Φ Φ Φ Φ   

 Upon calculating the SIRFs for the vector Ft, the SIRFs for informational series 

can be obtained.  Given ,f yt p t p t px F e+ + +Λ += Λ   the time-varying SIRFs for t px +  

are 

(3.29) 

, .
t

t p t p
f y

f y

t t

p t p t

x F
v v

C W

+ +

+ Ω

∂ ∂
 = Λ ∂ ∂

 = Λ Θ 

Λ

Λ

  

Many techniques to identify the rotation matrix Wt exist, such as recursive 

ordering schemes and graph-based approaches.  An “agnostic” approach proposed by 

Uhlig (2005) is the placement of restrictions on the signs of the SIRFs.  In this method, 

potential SIRFs are calculated and then evaluated compared to theoretical responses.  

For example, Uhlig (2005) identifies a monetary policy shock such that the SIRFs of the 

price level and nonborrowed reserves are not positive while the SIRFs for the federal 

funds rate are not negative for six months.  Lippi and Nobili (2008) employ a sign 

restriction identification scheme to identify shocks in oil supply and demand as well as 

aggregate demand and supply.  Amir-Ahmadi and Uhlig (2009) employ sign restrictions 

to identify a monetary policy shock as an extension of Bernanke, Boivin, and Eliasz’s 

(2005) original FAVAR.  Juvenal and Petrella (2012) investigate speculation for oil 
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using an FAVAR with SIRFs identified by sign restrictions.  The TVP-FAVAR of 

Mumtaz, Zabcyk, and Ellis (2011) is also identified by sign restrictions. 

 The literature using sign identification for VARs while examining crude oil 

commonly identify three shocks that are applied here (Kilian and Murphy 2010, Juvenal 

and Petrella 2012, Melolinna 2012, Baumeister and Peersman 2013).  The first shock is a 

negative oil supply shock, “…defined as any unanticipated shift in the oil supply curve 

that results in an opposite movement of oil production and the real price of crude oil.  

During an oil supply disruption inventories are depleted in an effort to smooth oil 

production and real activity contracts” (Juvenal and Petrella 2012, p. 13).  In the context 

of the TVP-FAVAR, for this shock, the following restrictions are applied: 

• real oil prices increase contemporaneously with the shock; 

• field production of crude oil and crude oil stocks at tank farms decrease 

contemporaneously with the shock;  

• the consumer price index (CPI) and producer price index (PPI) increase with the 

shock; and 

• real activity, measured by the industrial production index (IP), decreases 

contemporaneously with the shock. 

The second shock is an aggregate demand shock (Juvenal and Petrella 2012), which 

increases the demand across the economy, raising the price level.  Because of the 

increased demand in the economy, oil demand also increases, causing oil prices and 

production to increase.  In the context of this TVP-FAVAR, this shock necessitates: 

• IP increases contemporaneously with the shock; 
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• CPI and PPI increase with the shock; and 

• real oil prices and field production of crude oil increase contemporaneously with 

the shock.  

The third shock is an oil demand shock in which: 

• real oil prices and field production of crude oil increase contemporaneously with 

the shock; 

• IP decreases contemporaneously with the shock; and 

• CPI and PPI increase with the shock. 

Kilian and Murphy (2010) study the petroleum industry and argue sign 

restrictions alone are insufficient for identification of a VAR.  In a purely sign-identified 

model, the price elasticities of oil suppliers in the same month as the shock can be large 

in magnitude, while the literature is largely in agreement that the short-run elasticity of 

oil supply is close to zero.  They propose an additional restriction limiting the elasticity 

of oil production to 0.0258 in the period of the shock for the two demand shocks.  In 

addition, the restrictions are only required to be valid at the contemporaneous period and 

not at any future horizon.  This additional restriction is used here. 

Sign identification is performed following the algorithm of Rubio-Ramirez, 

Waggoner, and Zha (2010) and as outlined in Kilian and Lutkepohl (2017) and 

Baumeister and Peersman (2013).  For each period 1,  2,  ,  ,t T=   the following are 

iterated. 

1. For the current period t, draw at random one of the saved iterations from the 

MCMC output.  Given the values of the time-varying parameters from this draw 
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at t, the time-varying VAR coefficients, residual volatility, and contemporaneous 

relationships are propagated forward in time using the transition dynamics 

described in equations (3.6), (3.8), and (3.10).  In this way, all potential sources 

of uncertainty determining the SIRFs are considered (Baumeister and Peersman 

2013).   

a. Given the simulated time-varying parameters, draw an )( ()m k m k× ++  

proposal matrix of independently distributed standard Normal variables.  

Use the QR decomposition with necessary modifications (Kilian and 

Lutkepohl 2017) to obtain an orthonormal matrix O from the proposal 

matrix of random deviates.  By drawing the matrices in this manner, the 

proposal impact matrix O is uniformly distributed over the space of 

orthonormal matrices.   

b. The proposed zero-step SIRF for the VAR equation is .
t

C OΩ ′   The 

Cholesky decomposition here is not used for identification but rather to 

orthogonalize the residuals, so the ordering of the variables is not 

important.  Calculate 
tf y C OΩ ′  ΛΛ  to obtain the SIRFs for the 

informational series.  For each of the restricted responses series, verify 

the sign and impact elasticity of the responses in  
tf y C OΩ ′  ΛΛ  agree 

with the restrictions.  None of the inequalities tested are strict.  If the 

restrictions are satisfied, the draw is saved, and the SIRFs are calculated.  
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If they are not satisfied, the draw is discarded, and the algorithm begins 

again.   

2. The proposal-rejection step is repeated until 100 realizations of the impact matrix 

have been accepted for each set of coefficients drawn in the first step at each t.   

3. The mean SIRF across the 100 accepted realizations is calculated and saved for 

this set of parameters. 

The entire preceding procedure is performed 100 times for each t, using a random draw 

for the parameters from the MCMC output for each realization.   

In VARs estimated using Bayesian techniques and identified via sign restrictions, 

the highest posterior density (HPD) interval and median for each SIRF are commonly 

reported to describe the distributions for potential responses.  The median and HPD, 

however, only represent features of the set of possible SIRFs and not actual realizations 

of draws of the dynamics of the variables following a shock (Killian and Murphy 2010, 

Uhlig 2017).  In addition, the HPD is constructed assuming each realized SIRF is 

equally likely, but Killian and Murphy (2010) show this is not necessarily true.  In their 

application, they successfully reduce via sign and elasticity restrictions the number of 

accepted IRFs to a smaller number that are qualitatively similar.  In this dissertation’s 

model, however, the same kind of reduction is not achieved; sign and elasticity 

restrictions identified a set of IRFs of which the individual IRF realizations potentially 

suggest different conclusions about the magnitude and shape of the responses to shocks.  

Because of the difficulty in selecting a representative model and to simplify comparison 

across the literature, the median and HPD intervals are reported. 
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 Gambetti (2012) also provides formulas for the time-varying FEVDs.  Let the p-

step SIRF at time t of the ith informational series with respect to the jth shock be the 

entry of at row i, column j of the matrix 

(3.30) , ,
,

tp t py t jf i
C W+ Ω

  Λ Λ Θ    

and denote this value ,
, .i j

p t pθ +  The p-step time-varying FEVD for informational series i 

with respect to shock j at time t is then  

(3.31) 
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+

=

∑

∑∑
  

Here, the FEVDs for each time period are calculated using the output of the SIRF 

identification procedure. 

Simulation Details.  Models specified with different combinations of the number of 

latent factors and the number of lags included in the VAR are estimated.  The limiting 

factor for the MCMC estimation and analysis of the TVP-FAVAR model is a system’s 

memory.  Saving the results for convergence analysis and traditional VAR analysis 

requires storing many iterations of hundreds of parameters.  Simulations are written in R 

(R Core Team 2018) and performed using high-performance computing resources at 

Texas A&M University. 

While the literature provides clear suggestions for prior specification, substantial 

experimentation was performed using less informative priors (such as Jeffrey’s) than 

those used here.  For most of the prior specifications attempted, there were many issues 

with numerical stability in the Kalman Filter caused by the inability to invert the 



 

72 

 

covariance matrix.  The two most important prior specifications for attaining results 

appear to be Q, the covariance matrix governing the evolution of the time-varying VAR 

parameters, and the prior covariance for the observation equation coefficients.  Weak 

priors on both led to explosive behavior in the estimated parameters.  Explosive behavior 

in the time-varying VAR coefficients, residual volatility, or contemporaneous 

relationships also led to degeneracy in the positive definiteness of covariance matrices, 

making numerical evaluation of matrix inverses impossible.  Primiceri (2005) also notes 

the importance of prior choice, especially in the case of the time-varying coefficients. 

As such, other strategies were adopted to improve numerical stability of the 

estimation algorithm.  First, the Joseph form of the Kalman Filter prediction covariance 

update ensures a numerically symmetric covariance matrix is obtained for each 

observation of the state vectors (McClure 2016).  The Joseph update replaces the final 

step of each iteration in equation (3.12) with 

| | 1 .
0

( ) ( )
0t t t t t

f y f yF
t t tP P RK

I I
I K I K K−

Λ Λ Λ Λ    ′=  ′− −
  

− 


  Matrix inversion was avoided 

as it is generally not computationally efficient nor precise (Cook 2010).   

To analyze convergence, each run of the simulation is performed in parallel with 

two chains of 60,000 iterations, discarding the first 30,000.  The starting values of the 

two chains are: 

1. all coefficients are set to zero, all variance parameters are set to one, and all 

covariance parameters are set to zero; and 
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2. all values are drawn randomly from an “overdispersed” uniform distribution. 

The diagonal elements of Q, G, and S are drawn from the range [0.0001, 10]; 

the diagonal elements of R are drawn from [0.0001, 10]; the time-varying VAR 

volatility are drawn from [0.0001, 4]; the VAR coefficients are drawn from [-2, 

2]; the lower-triangular elements of A are drawn from [-5, 5], and the 

coefficients in the observation equation are set to zero. 

Because of the large number of parameters – especially those that are time-varying – in 

the model, the output of long chains cannot be feasibly saved for analysis.  In models 

with many parameters, Gelman et al. (2013) recommend thinning.  Here, every 15th 

iteration is kept, yielding 2,000 draws from the posterior.  The use of thinned chains also 

reduces autocorrelation of the samples in the smaller portion that is kept for analysis.  

Assessing convergence is difficult due to the large number of parameters.  The chains 

are monitored for convergence using a combination of visual inspection, the effective 

sample size, and the scale reduction factor (Gelman et al. 2013).   

Data 

Monthly data used for estimation include two broad categories of time series: industry-

specific measures for the petroleum industry in the US and macroeconomic variables for 

the overall economy.  Data cover the period January 1993 through March 2018.  In the 

first set of informational series, variables pertinent to each sector of the petroleum 

industry are included.  As indicated by the literature, rig counts and field production are 

commonly used to gauge upstream activity.  For the downstream, measures of refinery 

production and utilization are also included.  Volumes of storage, imports and exports 



 

74 

 

are barometers of midstream activity.  The petroleum industry data are obtained from the 

United States Energy Information Administration (2018).   

The second type of informational series includes macroeconomic variables 

comparable to those included in Zagaglia (2010), Amir-Ahmadi and Uhlig (2009), An, 

Jin, and Ren (2014), Ipatova (2014) and Binder, Pourahmadi, and Mjelde (2018).  These 

series include measures of money supply, inflation, interest rates, employment, wages, 

production measures, exchange rates and international trade flows, housing activity, and 

price deflators.  These data are obtained from the Federal Reserve Bank of St. Louis 

(2018). 

A full list of the series employed by the model is included in Table 3.1.  All 

dollar amounts are deflated using the CPI.  For each series, the table provides the source 

of the data, and the transformation used, if any, either to dampen visually observed 

heteroskedasticity (log transformation) or to induce stationarity (first difference or first 

difference of log transformation).  These are the same transformations used by 

Bernanke, Boivin, and Eliasz (2005).  Upon application of a transformation (if 

applicable), each series is standardized by subtracting the mean and dividing by its 

standard deviation.   

As mentioned previously, the two observational series are oil prices (first 

difference of log transformation) and the federal funds rate.  A plot of oil prices is shown 

in Figure 3.1.  Shaded areas represent recessions (National Bureau of Economic 

Research 2018).  In the sample, there are several interesting time periods, including 1) 

June 2008, the all-time high oil price; 2) February 2009: the lowest oil price during the 
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Great Recession, a 70 percent decrease in price in less than one year; and 3) February 

2016: most recent low price.  A plot of federal funds rate is shown in Figure 3.2.  

Historically low values of the federal funds rate, used to stimulate the economy during 

the Great Recession and present through 2017, are easily spotted relative to the higher 

rates of the 1990s and mid-2000s.  

Results 

The DIC value for each estimated specification of the TVP-FAVAR is shown in Table 

3.2.  Combinations of lags and factors were selected for computational feasibility.  Some 

of the DIC values for the three- and four-factor specifications are large compared to the 

others.  These DIC values may reflect issues with convergence of the MCMC chains, as 

examination of the chains for the three-factor, two-lag specification suggested longer 

chains would be beneficial.   

One latent factor is preferred by the DIC.  The model with one latent factor and 

three lags in the VAR is suggested as the best tradeoff between fit and complexity by the 

DIC.  The DIC values for the models with one latent factor and either one or 12 lags are 

similar to the one-factor, three-lag specification.  Hamilton and Herrera (2004) argue the 

effects of oil price shocks are understated in VAR models with short lag lengths.  In their 

survey of the literature, they find, for studies using quarterly data, the two lags with the 

largest coefficients are usually lags three and four.  They suggest longer lag lengths are 

necessary to control for seasonality and argue Bernanke, Gertler, and Watson (1997) do 

not include sufficient lags.  While 90-percent HPDs for the time-varying lag-12 

autoregressive coefficient of the latent factor contains zero, 80-percent HPDs for these 
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coefficients do not.  The equivalent 80- and 90-percent HPDs for the 12th lag 

autoregressive coefficients from the equations for oil price and interest rate, however, 

contain zero.  Given the similar DIC values and the potential importance of lag 12 for 

the latent factor, the model with one latent factor and 12 lags in the TVP-VAR is 

selected for analysis.  Results and inference only from this model are presented. 

For the selected model and chain, parameters with relatively small effective 

sample sizes include the latent factor and the time-varying matrix Ht (at some, but not 

all, periods), and parts of the diagonal covariance matrix G.  Because two chains were 

run simultaneously, convergence can be assessed with the potential scale reduction 

factor (Gelman et al. 2013).  This metric decreases to one as the number of iterations in 

the MCMC goes to infinity.  Of the parameters evaluated, the diagonal elements of R in 

general have the smallest values of the potential scale reduction factor, and those for the 

coefficients of the observation equation are also relatively small.  In general, the highest 

values found during evaluation are those for the elements of G, with the largest value at 

1.643.   

The Latent Factor 

A plot of median of the latent factor’s evolution over time is shown in Figure 3.3 along 

with 68- and 90-percent HPDs.  The practice of showing 68- and 90-percent HPDs is 

followed from the Bayesian VAR literature (Primiceri 2005, Mumtaz, Zabczyk, and 

Ellis 2011, Amir-Ahmadi and Uhlig 2009, Lippi and Nobili 2008).  For the latent factor, 

both HPDs are almost indistinguishable from the median.  A few distinct periods of 

economic history are suggested by the plot.  The first period runs from the start of the 
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data in the mid-1990s through 2000.  In this period, the latent factor is relatively larger 

than in the early 2000s and after the Great Recession.  Around the 2001 recession, the 

factor decreases, but following the recession, it trended upward until about 2005.  At the 

beginning of the Great Recession, the value of the latent factor drops but returns to its 

2008 levels values by 2010.  Since 2010, the latent factor is relatively constant.  The 

latent factor also demonstrates seasonality.  This partially explains why the lag-12 

autoregressive coefficient for the latent factor in the TVP-VAR does not contain zero in 

the HPDs compared to the autoregressive coefficients of the oil price and interest rate 

equations.  This is expected as most of the informational series are not seasonally 

adjusted.   

An important consideration in evaluating the factor model is the fit provided by 

the factors.  A simple method to determine which series are loaded onto the factor is the 

R-squared value from an OLS regression of each informational series individually on the 

latent factor.  A graphical summary of the series-level fit is provided in Figure 3.4.  For 

each informational series, the median R-squared value across the kept posterior draws is 

plotted.  The series are grouped into broad categories to study patterns in the latent factor 

for different types of variables (Table 3.3).  The R-squared values for series categorized 

as petroleum-related prices, which include spot prices for gasoline and futures prices for 

crude oil, are very small, as are R-squared values for series categorized as related to the 

federal funds rate.  The Bayesian estimation of the model provides joint estimation of the 

latent factor and its loading.  The low R-squared values for regressions involving 

informational series closely related to oil prices and the federal funds rate likely occurs 
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because the full set of regressors for each informational series in the TVP-FAVAR 

model includes both oil prices and the federal funds rate in addition to the latent factor.  

Because these series are explained well by oil prices, the “uncovering” of the latent 

factor appears to place more weight on the categories series less related to the oil prices 

and the federal funds rate.  Many of the R-squared values obtained using industrial 

production series as regressor are relatively larger.  This is likely due to the restrictions 

necessary for identification of the factors which placed IP first in the ordering of all 

series.  Across the various industry-specific IP series, however, there is a substantial 

amount of variation in R-squared values, suggesting the latent factor is not closely tied to 

all of these.   

Time-Varying Residual Volatility 

The time-varying VAR median residual volatility is plotted for each equation in the 

VAR equation, latent factor, oil price, and federal funds rate, in Figure 3.5 along with 

68- and 90-percent HPDs.  While visual inspection of the plots suggests time-varying 

volatility for oil prices and the federal funds rate, the residual volatility of the latent 

factor is relatively constant, potentially decreasing slowly over time.  Oil price volatility 

generally increases from 1994 through the early 2000s where the volatility becomes 

relatively constant.  An increase in oil price volatility occurs between 2008 and 2009, 

corresponding to the 70 percent decrease in prices over the same period.  Oil price 

volatility again increases in 2016 as oil prices fell again.  The volatility in the federal 

funds rate increases in 1994, 2001, and 2008.  In each of these periods, the federal funds 

rate either increased or decreased over a short period of time.   
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Dynamic Effects of the Structural Shocks 

Several series are selected for analysis and discussion to understand the dynamics of the 

petroleum industry over the sample period.  For each selected series, three plots are 

provided to analyze the effects of the shocks over time:  

1) a plot showing the cumulative effect of the shocks at one year after the shock 

against time along with 68- and 90-percent HPDs; 

2) a plot showing the FEVD at the 12-month horizon against time along with 

68- and 90-percent HPDs; and  

3) a plot showing the time to stabilization (TTS) in months following the shock.  

For each period, the plots show values obtained from the time-varying SIRFs and 

FEVDs using that period’s values of the time-varying parameters as the base for the 

propagation procedure described previously.  To calculate TTS of a shock, a 90-percent 

HPD is constructed for the instantaneous SIRF at each horizon from zero to 42 steps 

ahead.  The first horizon with an HPD interval containing zero is considered the period 

of stabilization.  Each of the duration plots contains an overlay of a 12-month arithmetic 

moving average.   

These plots provide insights into the evolution of the dynamics of the industry 

and the economy.  In the text that follows, the median values are discussed unless 

otherwise noted.  In addition, the median cumulative change in each series in response to 

the shocks at the period contemporaneous to the shock and one year ahead are shown for 

selected series in Table 3.4.  Appendix A contains plots of instantaneous IRFs for these 

series at selected periods.  No results are presented on the federal funds rate; the federal 
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funds rate was included as an observational series for its importance in policy, but it is 

not analyzed.  

Oil Prices.  By the sign restrictions imposed for identification, oil prices must not 

decrease concurrently with a shock in oil supply, aggregate demand, or oil demand.  A 

plot of the time-varying 12-month cumulative response of oil prices to the shocks is 

displayed in Figure 3.6.  The effect of oil supply shocks is relatively constant over time 

but is marked by increases in 2001, 2008, and 2009.  The evolution of the effects of 

aggregate demand shocks (Figure 3.6) is similar in shape to that of the residual volatility 

for oil prices (Figure 3.5).  The magnitude of responses to shocks in aggregate demand 

shows a generally upward trend between 1994 and 2008.  To compare, the median 

cumulative increase in oil prices one year after aggregate demand shocks in December 

1994 and December 2008 are 20.9 and 37.9 percent.  Following the Great Recession, the 

responses of oil prices decreased in magnitude to their mid-1990s levels.  The 

cumulative effects of oil demand shocks demonstrate the most variability of the three 12-

month ahead cumulative responses.  The effects of oil demand shocks generally evolve 

opposite of the oil supply shocks; as the responses of oil prices to oil supply shocks 

increases, the responses to oil demand shocks decreases.   

The relative importance of shocks over most of the sample period, measured by 

the magnitude of the change in oil prices, is oil demand, aggregate demand, and oil 

supply shocks.  This ordering is consistent with Kilian and Murphy (2010).  Both the 

2001 and 2008 recessions are preceded approximately half a year by rapidly decreasing 

responsiveness of oil prices to shocks in oil demand.  Shortly after the beginning of both 
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recessions, there is a jump in price responsiveness to oil supply shocks.  There is a 

reduction in the magnitude of oil price responses to shocks in aggregate demand and oil 

demand beginning in 2016, but there have been no changes in the magnitude of 

responses to supply shocks. 

A plot of the time-varying proportion of the 12-month forecast error variance for 

oil prices is shown in Figure 3.7.  Oil demand shocks also account for the largest 

proportion of forecast error variance in oil prices.  For the majority of the sample, oil 

demand shocks explain at least half of the forecast error variance for oil prices, followed 

by aggregate demand shocks and oil supply shocks.  During the 2001 and 2008 

recessions, the proportion of variance explained by oil demand shocks falls, while the 

proportion explained by oil supply shocks increases.  This change is similar to the 

change exhibited in the 12-month cumulative responses shown in Figure 3.6.   

TTS of oil prices after the shocks has been relatively constant (Figure 3.8).  Price 

changes continue about one year following an oil supply shock.  In the early 1990s, TTS 

is generally 12 months, but since 2006, shocks often resolve in less than 12 months.  

TTS following an aggregate demand shock is over one year.  TTS for oil demand is 

similar to TTS for aggregate demand shocks, but at the beginning of the Great 

Recession, TTS dropped temporarily. 

Oil Production (Upstream).  By the sign restrictions imposed for identification, oil 

production also responds concurrently to all three shocks.  Unlike those of oil prices, the 

responses of oil production to the shocks generally exhibit small variations over time 

(Figure 3.9).  For an oil supply shock, the plot shows a brief increase in the magnitude of 
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the responses during the 2001 and 2008 recessions.  Note the shock is negative, so an 

increase in magnitude of the shock implies the response is more negative.  After 

decreasing in magnitude at the beginning of the Great Recession, the effects of aggregate 

demand shocks increase in magnitude between 2008 and 2009.  Responses to oil demand 

shocks increase slightly in magnitude during the recessions. 

 Kilian and Murphy (2010 p. 12), following Hamilton (2009), argue “Oil 

producers will respond to unanticipated oil price increases only if that increase is 

expected to persist.”  The difference in oil producers’ responses to aggregate demand 

shocks and oil demand shocks suggests producers perceive unanticipated aggregate 

demand shocks as relatively more permanent than unanticipated oil demand shocks.  For 

most of the sample, aggregate demand shocks explain over half of the forecast error 

variance (Figure 3.10).  The proportion of forecast variance explained by oil supply 

shocks increases abruptly in 2001, 2008 and 2009 in a similar manner to the increases 

seen in the proportions of forecast error variance for oil prices.   

 Over time, TTS of oil supply shocks decreases from around one year in the mid-

1990s to under two quarters in 2018 (Figure 3.11).  At the beginning of the recessions, 

TTS of oil supply shocks increases by about one quarter.  TTS of aggregate demand 

shocks increases over time.  Except during recessions and prior to 2008, aggregate 

demand shocks appear to resolve in approximately two quarters, but after 2009, TTS 

increases, and shocks in aggregate demand stabilize at approximately three quarters.  Oil 

demand shocks generally resolve in one quarter, but during the 2008 recession, TTS 

increases to almost two quarters. 
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Oil Storage (Midstream).  Time-varying cumulative responses of oil storage 12 months 

following the shock are presented in Figure 3.12.  The effects of oil and aggregate 

demand shocks are relatively larger in magnitude compared to oil supply shocks.  While 

the 12-month cumulative effect of an oil supply shock on storage is relatively constant 

over the sample period, the magnitude of the responses increases early in the two 

recessions.  The effects of the two demand shocks again evolve like the volatility of oil 

prices, increasing in magnitude over the 1990s and decreasing in magnitude following 

the Great Recession.  Unlike the responses to shocks in oil supply and oil demand, the 

responses to aggregate demand shocks demonstrate no jumps during either recession.  

Storage is less responsive to oil demand shocks during the recessions.  

In the following discussion, consider decreasing oil prices (Figure 3.1) and the 

responses of oil production (Figure 3.9) and oil storage (Figure 3.12) during the two 

recessions.  During recessions, shocks in oil supply generate larger decreases in crude oil 

production than in normal periods.  This is driven by both reduced economic activity as 

well as a decrease in the profitability of oil production due to decreasing oil prices.  

Because the reduction in crude oil production is relatively larger, stores of crude oil are 

depleted more quickly in recessions than in other periods.    

Examination of the time-varying proportions of 12-month forecast error variance 

explained by the shocks (Figure 3.13) reveals an increase in the proportion explained by 

oil supply shocks during the recessions, especially at the beginning of the Great 

Recession.  In both recessions, the explanatory role of oil demand shocks for oil storage 

diminished.  TTS following an oil supply shock is generally six months (Figure 3.14).  
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Stabilization following aggregate demand shocks is not achieved until over 12 months.  

TTS for oil demand shocks is under 12 months but decreases to about six months during 

the recessions. 

Refinery Capacity Utilization (Downstream).  A plot of 12-month cumulative changes 

in refinery capacity utilization is provided in Figure 3.15; the FEVD for 12 months 

ahead is shown in Figure 3.16.  The reduction in utilization after an oil demand shock 

follows from the increased acquisition costs for oil, leading to higher prices for refined 

goods, causing the quantity demanded of their products to decline.  While the 12-month 

ahead change in refinery capacity utilization shows little change over time, the FEVD 

shows some change, as oil demand shocks account for a larger share of forecast error 

variance in the mid-1990s and during the two recessions.  Like oil storage, refinery 

capacity utilization demonstrates a reduction in responsiveness to oil supply shocks and 

an increase in responsiveness to oil demand shocks during recessions.  TTS following an 

oil supply shock is less than 12 months but decreases during the recessions (Figure 

3.17).  Through the early 2000s, the effects of aggregate demand shocks are usually 

stabilized in less than 12 months, but since the mid-2000s, TTS is six months or less.  

Oil demand shocks stabilize within six months or less.  This may be because oil demand 

shocks are likely the result of precautionary measures of producers and are not driven by 

changes in demand for consumption of refiners’ final products.   

Gasoline Sales by Refineries (Downstream).  The dynamics of refiners’ sales of 

gasoline to retail outlets are relatively time invariant; neither the plots of 12-step ahead 

cumulative changes (Figure 3.18) nor the 12-step ahead FEVD (Figure 3.19) show 



 

85 

 

changes over time.  For all shocks, TTS is less than one year (Figure 3.20) and has been 

generally decreasing since the mid-1990s.  During recessions, TTS decreases for oil 

supply shocks.  

Industrial Production (Broader US Economy).  For IP, the cumulative response after 

one year is relatively constant (Figure 3.21), and the 12-step ahead FEVD shows little 

variation (Figure 3.22).  During recessions, the effects of oil supply shocks decrease in 

magnitude slightly, while those of oil demand shocks increase slightly in magnitude.  Of 

the three shocks, aggregate demand shocks and oil supply shocks are associated with the 

largest responses in magnitude after one year.  Most of the HPDs for cumulative 

responses to oil demand shocks after one year contain zero, implying IP reverts to its 

pre-shock levels within a year.  Oil demand shocks to IP are generally stabilized at one 

quarter but longer during recessions (Figure 3.23).  TTS for aggregate demand shocks 

decreases since the 1990s. 

Producer Price Index (Broader US Economy).  In Figure 3.24, a plot of the 

cumulative responses of PPI after one year is provided.  PPI increases in response to the 

three shocks.  Oil demand shocks generate the largest increases in PPI, followed by 

aggregate demand and oil supply shocks.  This is likely because oil prices respond in 

magnitude most to oil demand shocks, so the increase in oil prices following an oil 

demand shock likely causes PPI to increase.  The effects of the shocks, especially the 

aggregate demand and oil demand shocks, display variation over time.  An oil demand 

shock in December 1994, for example, would yield a median increase in PPI of 1.9 

percent after one year, while a shock in December 2000 would generate a 3.1 percent 
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increase.  For the two demand shocks, the 12-month responses in PPI increase 

throughout the 1990s and until the 2001 recession.  For oil demand shocks, the 

magnitude of the responses decreases prior to the recessions.  A small increase in the 

magnitude of responses to oil supply shocks is also characteristic of the beginnings of 

the recessions.  The 12-month FEVD (Figure 3.25) also demonstrates this pattern.  TTS 

of the shocks are shown in Figure 3.26.  Aggregate demand shocks, which produce the 

responses that stabilize slowest, demonstrate stabilization at five quarters, followed by 

oil demand shocks (four quarters) and oil supply shocks (two quarters).  There is more 

variability in TTS following an oil supply shock compared to the other two shocks. 

Discussion and Conclusions 

A TVP-FAVAR model (Mumtaz, Zabczyk, and Ellis 2011) is applied to both capture 

information contained in many data series and allow for changes in the dynamic 

responses of the variables in the system.  This model is used to study components of the 

upstream, midstream, and downstream sectors of the petroleum industry by examining 

the effects of hypothesized shocks in oil supply, aggregate demand, and oil demand as 

identified through sign restrictions.  There is visual evidence of time-varying residual 

volatility for oil prices and the federal funds rate, but the residual volatility for the latent 

factor is relatively constant.  For oil prices specifically, the findings here are similar to 

those of Kilian and Murphy (2010); oil prices are most responsive in terms of magnitude 

to shocks in oil demand, followed by aggregate demand and oil supply.  On the other 

hand, for crude oil production, shocks in aggregate demand commonly have a larger 

impact than oil demand shocks.  For series displaying time variation in the cumulative 
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responses, the evolution of the magnitude of these effects is similar to the evolution of 

oil price volatility.  The effects of shocks in oil supply increase in magnitude during 

recessions. 

 The results suggest oil prices and oil storage at tank farms (midstream) have 

evolved in their responses over the last 25 years, but the dynamics of field production 

(upstream), refinery capacity utilization (downstream), and gasoline sales (downstream) 

show little visual evidence of evolution in the profiles of their responses.  While the 

magnitude of the responses of field production of crude oil, refinery capacity utilization, 

and gasoline sales are relatively constant as measured by magnitude, TTS shows some 

variability, many of the responses are affected by recessions.  For the economy as a 

whole, the Industrial Production Index also appears relatively constant in its dynamics 

over the sample, but the dynamics of the Producer Price Index are exacerbated by 

increased oil price volatility. 

As a way of addressing the use of large datasets in VAR analysis, the TVP-

FAVAR model incorporates many variables while providing methods for innovation 

accounting with time variation.  It now may be feasible to include hundreds of series in 

the VAR framework, but with new methodologies, there are new, or at least different, 

costs.  One cost of the Bayesian TVP-FAVAR is the difficulty in prior selection given its 

importance in obtaining numerically stable results.  A second is the tradeoff between 

model parsimony and fit.  Third is the practical application of the sign identification 

procedure.  Kilian and Murphy (2010) reduce the number of acceptable VAR models to 

a small set displaying similar dynamics using sign and elasticity restrictions.  In this 
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application, a much broader set of SIRFS was accepted during identification, motivating 

the reporting of medians and HPDs.  This makes interpretation of the dynamics of any 

one realization impossible.  The set of accepted models could potentially be further 

limited by imposing additional sign or elasticity restrictions, but identifying an FAVAR 

via sign restrictions is challenging.  Although the researcher can impose theoretical 

restrictions on the dynamics of any of the informational series, the placement of 

restrictions in the FAVAR context is difficult because of the vast number of series 

(potentially hundreds).  With additional restrictions, it can become more difficult to 

accept rotation matrices.  And while it must be used to guide the choice of restrictions, 

economic theory does not distinguish between different but closely related series.  

Examples of these are the CPI and PPI series.  There are many variations of these series 

disaggregated by type of good or industry.  A shock in aggregate demand increases 

prices in the economy, but which series should be restricted?  This is generally not an 

issue encountered in the sign identification of small-scale VARs.  Uhlig’s (2017, p. 99) 

first two principles guiding the placement of sign restrictions are “If you know it, impose 

it!” and “If you do not know it, do not impose it!” 

Further research should continue to investigate model performance and prior 

selection.  Because the residual volatility of the latent factor is relatively constant, it may 

be beneficial to restrict this parameter to be a known constant to simplify the model.  An 

additional means of simplifying the parameterization of the TVP-FAVAR is to consider 

the observation equation of the state space model as a seemingly unrelated regressions-

type model with each equation’s regressors being determined by Bayesian methods.  In 
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attempting this formulation, it became apparent the computing time required to estimate 

such a model rendered it infeasible: another realization of the curse of dimensionality.  

For each iteration of the estimation, there are many potential combinations of regressors 

given the hundreds of rows in the observation equation matrices.  Future research should 

examine the feasibility of a variable selection methodology as a means of dimension 

reduction. 
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CHAPTER IV 

A MONTE CARLO STUDY OF THE EFFECTIVENESS OF THE PC ALGORITHM 

AT IDENTIFYING THE STRUCTURE OF A VECTOR AUTOREGRESSION 

 

The modeling revolution started by Sims’ (1980) vector autoregression (VAR) 

fundamentally altered time series analysis.  By the time Sims’ article was published, 

studies had established univariate, non-structural time series models were outperforming, 

at least in terms of out-of-sample forecasting, the large macroeconometric models of the 

1970s (Nelson 1972; Cooper and Nelson 1975; Cicarelli and Narayan 1980).  Univariate 

models, however, generally cannot provide information necessary for policy 

implementation.  By including multiple time series, the VAR explicitly captures 

relationships among variables.  One major drawback of the VAR, however, is the curse 

of dimensionality.  As additional variables are added to the system, the number of 

parameters to be estimated in the unrestricted VAR system rapidly increases, decreasing 

degrees of freedom and increasing the uncertainty surrounding the underlying 

parameters (Bruggemann 2004).  

VAR modeling approaches addressing the curse of dimensionality have been 

developed.  These approaches include Bayesian methods (Litterman 1986), subset VARs 

(Hsiao 1979), and, more recently, factor VARs (Bernanke, Boivin, and Eliasz 2005).  

Each method imposes restrictions on the parameter space.  That is, if the value, 

distribution, or some prior belief about a parameter is known a priori, its estimation can 

be simplified.   
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Hsiao (1979) proposes a subset VAR methodology which Lutkepohl (2005, p. 

211) classifies as a type of “sequential elimination of regressors.”  Most applications of 

Hsiao’s method find the combination of regressors that minimizes an information 

criterion.  Akleman, Bessler, and Burton (1999) propose the use of directed acyclic 

graphs (DAGs) to select lags in a subset VAR.  The primary benefit of the graph-

theoretical version of the Hsiao search is not needing an “…a priori ranking of the 

importance of lags of each ‘other variable’” (Akleman, Bessler, and Burton, 1999 p. 

518).  In other words, all lags of all variables are determined simultaneously using an 

algorithm of inductive causation. 

Demiralp and Hoover (2003) evaluate the effectiveness of the PC Algorithm for 

identifying the contemporaneous structure of the VAR, that is, the placement of zeros 

and ordering of the elements of the contemporaneous relationships between variables.  I, 

however, am unaware of a Monte Carlo study on the PC Algorithm’s ability to detect the 

structure of the lag coefficients in a VAR.  The objective of this research is to investigate 

the appropriateness of the PC Algorithm as a subset VAR methodology in determining 

both the contemporaneous and lag structure of the data-generating process (DGP).  

Specifically, the Akleman, Bessler, and Burton (1999) DAG-based methodology using 

the PC Algorithm (Spirtes, Glymour, and Scheines 2000) is evaluated using Monte Carlo 

simulation following Demiralp and Hoover (2003).  Two results designed to aid applied 

analyses are provided.  First, significance levels for the PC Algorithm’s search and 

discovery of the structure are suggested.  Second, the PC Algorithm is assessed for its 

ability to identify the structural innovations of a VAR.   
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The Problem of Zero Coefficients 

Following textbook treatment such as Hamilton (1994) or Lutkepohl (2005), the VAR is 

(4.1) ( ) ,t tA L z e=  

where A(L) is a conformable lag polynomial matrix of degree p, zt is an m-vector of time 

series, and et is a vector of innovations of the same dimension as zt.  The first term of the 

lag polynomial matrix, A0, is a lower-triangular matrix with a diagonal of ones and 

determines the contemporaneous relationships between the series in zt.  Let the 

covariance matrix of the innovations, ( ) ,t tE e e′ = Ω  be diagonal.  This is a structural VAR 

(SVAR) in which the innovations are orthogonalized and independent.  If the covariance 

matrix is not diagonal, a shock in one series would be accompanied by shocks in other 

correlated series, and interpretation of the “tangled” responses is problematic.  Empirical 

research has been primarily concerned with the placement of zeros in A0, the matrix 

designating the contemporaneous relationships between the time series. Once the 

structure of A0 is known, the transformation  

(4.2) 
1 1

0 0( )
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B L z w

− −=
=

  

where 1
0( ) ( )B L A A L−=  and 1

0 ,t tA e w− =  provides the reduced-form representation of the 

VAR in which the innovations are likely correlated, that is, ( )t tE w w′  is most likely not 

diagonal. The reduced-form representation is the most commonly used form in 

estimating VARs. 

The structure of A(L), however, is unknown and has the potential for zero 

coefficients in its both its contemporaneous and lag matrices.  If a variable does not 
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affect some variable(s) in the VAR, including itself, at a given lag, the coefficient on that 

value is zero. The ability to impose zero restrictions prior to estimation reduces the 

dimensionality of the estimation problem.  The difficulty, of course, is obtaining a priori 

knowledge of the location of zero restrictions in A(L).  This is the problem for which 

methodologies addressing the curse of dimensionality have been developed.  

Hsiao’s (1979, 1981) search methodology for a bivariate vector of stationary 

time series xt and yt begins by fitting univariate autoregressive processes to the individual 

series by minimizing Akaike’s Final Prediction Error (FPE) to determine the optimal lag 

length.  Next, a model is constructed for yt as a function of its own lags (the number of 

which is suggested by the univariate modeling procedure).  Next, lags of xt are 

sequentially added, and as an additional lag is added, the FPE is calculated, and the 

number of lags of xt included is determined again by the combination of lags of xt and yt 

that minimizes the FPE.  If the FPE of the best model including lags of xt is greater than 

that of the univariate models, the univariate process is selected for yt. The procedure is 

repeated to determine the order of the lags for xt.  Once the lag structures are determined, 

the equations are reestimated using a systems estimator to account for the cross-equation 

correlation of the errors.  Hsaio (1979, p. 555) recommends diagnostic checks on the 

residuals of the system “Because the sequential procedure may bias the joint nature of 

the process and the single-equation approach is equivalent to ignoring the effect of 

possible correlations within the components of innovations…”  Applications of the 

Hsiao methodology include Ahking and Miller (1985), Bessler and Babula (1987), 



 

94 

 

Karfakis and Moschos (1990), Ghatak, Milner, and Utkulu (1997), Liu, Song, and 

Romilly (1997), and Tan et al. (2012). 

Most studies use an information criterion-based approach as initially proposed by 

Hsiao (1979, 1981).  Akleman, Bessler, and Burton (1999, p. 509), however, “…offer 

[DAGs] as an alternative to regression-based search procedures for placing zero 

restrictions on relationships among a set of variables.”  Their procedure uses graph 

theory and algorithms of inductive causation to determine the appropriate lags.  They 

study corn exports using three-variable VARs using Hsiao-like subset VAR methods, 

including Hsiao’s regression procedure using the FPE, Hsiao’s regression procedure 

using the Schwarz Information Criterion (SIC), and finally a regression-free DAG 

approach, to determine zero restrictions.  Mean squared errors (MSE) of out-of-sample 

forecasts are generally smaller when using the DAG or SIC to determine the VAR’s 

restrictions.  For only one forecast did the MSE of the model suggested by the FPE 

outperform the models determined using either the SIC or DAG method.  

Bruggeman (2004) classifies subset VAR procedures into two categories, single-

equation and system.  In single-equation techniques, regressors are sequentially deleted 

equation by equation.  These techniques are preferable when there are no 

contemporaneous relationships between the series.  System-based searches typically 

incorporate a search of all possible variables in every equation.  If there is 

contemporaneous causality amongst the innovations, a systems search is preferable.  In a 

Monte Carlo evaluation of subset VAR methodologies, Bruggeman (2004) finds many 

of the subset methodologies correctly discover the underlying data-generating process.  
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He did not, however, evaluate the DAG approach nor Hsiao’s method.  Simple and 

complex search procedures are about equally successful.  In addition, the forecasting 

performance of subset VARs was often superior to that of unrestricted VARs.  

DAGs and the PC Algorithm 

A graph is an ordered triple of vertices V, marks M, and ordered pairs E between the 

vertices, where V and M are non-empty sets (Spirtes, Glymour, and Scheines 2000).  In 

the VAR application, vertices represent each time series at each included lag.  The 

ordered pairs E describe the position of edges between vertices, and the presence and 

direction of arrows denote the flow of information.  A directed path between two 

vertices X and Y occurs when there is a unidirectional sequence of arrows between 

variables beginning at source X and ending at Y.  Paths which pass through each of their 

vertices only once are acyclic. A DAG contains no cyclic paths between vertices.  DAGs 

are commonly used to describe the transmission of information among a set of variables.   

DAGs are a convenient way of predicting contemporaneous or intertemporal 

relationships between variables.  Algorithms of inductive causation provide a means of 

estimating these structures.  As in any statistical problem, unfortunately, the researcher 

does not know the true causal relationships, so assumptions regarding the data and the 

underlying DGP are necessary so the structure can be empirically estimated.   

Three major assumptions of the PC Algorithm are the faithfulness condition, the 

Markov condition, and causal sufficiency (Spirtes, Glymour, and Scheines 2000).  Under 

faithfulness, the lack of an edge between two variables in a graph is the result of no true 

relationship between the variables and not of cancellation of underlying structural 
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parameters.  The Markov condition states the joint probability of a graph can be written 

as the product of all events conditioned on only the variable(s) by which they are 

immediately preceded.  The final and most tenuous assumption is causal sufficiency.  

This assumption requires there are no omitted causes of two or more variables in the set 

of variables considered.  In many VARs, the set of variables considered is quite small 

because of the curse of dimensionality.  The small number of endogenous series suggests 

that there is a high potential for violations of the causal sufficiency assumption.  In 

addition, it is assumed the series are Normally distributed.   

Spirtes, Glymour, and Scheines (2000, p. 84-85) provide a thorough discussion 

of the algorithm which is summarized here.  The algorithm begins with a complete graph 

of adjacent, undirected edges connecting every variable in the set V.  Two nodes are said 

to be adjacent if there is an edge connecting them.  To begin, let 0.n =    

1. Test for (conditional) independence of the variables.  

a. Two adjacent nodes x and y in V (an ordered pair) are selected such that 

the set of adjacent nodes to x in V but not including y has cardinality 

(number of elements in the set) of at least n.  A subset S of these 

adjacencies not including y and of cardinality n is selected.  The variables 

x and y are tested for independence conditional on the nodes in S.  When 

0,n =  this is equivalent to calculating the conventional unconditional 

correlation between the series.  If the two are independent as deemed by 

the test statistic and the specified significance level (discussed later), the 
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edge between x and y is removed, and the subset S is recorded as a 

member of the sepset between x and y and between y and x. 

b. Step (1a) is repeated until all possible ordered pairs of nodes in V 

satisfying the criteria in (1a) have been tested for (conditional) 

independence.  The value of n is then incremented, and the testing 

continues by starting over at step (1a).  When all sets of adjacencies in V 

for the ordered pair x, y not including y have cardinality less than n, step 

(1) of the algorithm is complete. 

2. After edges have been removed, the skeleton is in place.  The edges must now be 

ordered. 

a. Select from V nodes x, y, and z such that x and y are adjacent, y and z are 

adjacent, but x and z are not adjacent.  If the node y is not contained in the 

sepset of x and z, then orient the collider .x y z→ ←  Repeat step (2a) for 

all ordered triples satisfying these criteria. 

b. For x, y, and z in V, if 1) ,x y→  2) y and z are adjacent, 3) x and z are not 

adjacent, and 4) not ,z y→  then .y z→  If there is an edge between x and 

y and a directed path from x to y, then .x y→  Repeat step (2b) until 

finished. 

To test statistically the (conditional) independence of two series, a hypothesis test 

of the series’ (conditional) correlation ρ is performed with null and alternative 

hypotheses 0ρ =  and 0ρ ≠  (Spirtes, Glymour, and Scheines 2000, p. 94).  Fisher’s Z 

transformation of the sample (conditional) correlation ρ̂  is 
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If the corresponding p-value is smaller than the specified significance level, there is 

statistical evidence of a nonzero (conditional) correlated between the series.  In the case 

when 0n =  in the algorithm, then 0.S =    

Methodology 

To determine the appropriateness of the PC Algorithm at placing zero restrictions in the 

coefficient matrices of a VAR process, a Monte Carlo experiment is performed.  In this 

experiment, known contemporaneous and lagged structures are used to simulate datasets 

with various levels of innovation noise.  These datasets are then evaluated by the PC 

Algorithm, and the selected graph is compared to that of the true process to measure the 

algorithm’s success.   

Simulation 

Various VARs of either two and three variables with either one or two lags are 

simulated.  Let p be the maximum number of lags in the true underlying DGP.  In each 
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iteration of the simulation, the coefficients of A(L), including the placement of zeros, 

change.  In other words, the structure of A(L) changes to allow the strengths of the 

lagged and contemporaneous relationships to vary from none – a zero coefficient – to 

relatively strong.  Demiralp and Hoover (2003) and Bryant, Bessler, and Haigh (2009) 

employ multiple levels of “relationship strengths” to test the effect of the strength of the 

relationship on the algorithm’s efficacy, but each additional level necessitates many 

additional simulation iterations.   

For each of the p lag matrices in A(L), let alij denote the coefficient at the ith row 

and jth column of the lth lag matrix.  In this simulation, each alij can have zero effect or it 

can have nonzero effect in the open interval -1 to 1.  In the case of a nonzero effect, a 

coefficient is drawn uniformly between zero and one, not inclusive and transformed to 

be negative with probability 0.5.  For example, a two-variable, one-lag SVAR in which 

xt is a function of itself and yt is a function of itself and xt is  

(4.3) 1,1111 112
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1 0
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1 0
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where [ ]t t tx y z′ =  is the vector of time series at time t, 1, 2,t t teε ε ′  =   is a vector of 

structural innovations at the same t.  The “0” represents a zero coefficient in the true 

DGP, and the other alij are assumed to be nonzero.  For this experiment, every 

combination of zero and non-zero placements is explored.  The graphical representation 

of this DGP is shown in Figure 4.1.  Corresponding to the coefficient placement in 

equation (4.3), the arrows in the figure show information flows from lags of both 

variables to xt and from yt-1 to yt.  The flow of information from xt to yt corresponds to 



 

100 

 

a021, the coefficient in the contemporaneous design matrix.  In the discussion below, the 

alij refer to the lag structure in the experiment when 1l >=  and to the contemporaneous 

structure of the experiment when 0.l =    

After the SVAR coefficients have been drawn, the VAR is transformed into its 

reduced form as in equation (4.2) to simplify the simulation.  The reduced-form VAR is 

tested for stationarity by determining the roots of the polynomial  

(4.4) 2
1 2 ... ,p

pI B r B r B r− − − −   

where I is the identity matrix, Bk is the kth member of the lag polynomial matrix B(L), r 

is a conformable vector, and .  is the matrix determinant.  If the determinant is nonzero 

and its roots are outside the unit circle, then the VAR is stationary (Lutkepohl 2005).  If 

the VAR is nonstationary, the SVAR coefficients are redrawn until a stationary DGP is 

obtained.  

Once the DGP is determined, observations are simulated.  For each structural 

VAR, two values, one and four, are used for the standard deviation of the white noise, 

which is assumed to be Normally distributed.  This vector of uncorrelated white noise is 

premultiplied by A0
-1 as in equation (4.2) to obtain the correlated innovations.  The 

starting vector for each simulated series is the zero vector; a warm-up period of 1,000 

observations is used to mitigate starting value effects.  Each observation is generated by 

the sum of its deterministic components (the products of the lags and their coefficients) 

and the stochastic component (correlated residuals).  An additional, informal test of 

stationarity is performed on the simulated series.  The series is simulated again if the 
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difference between the starting and ending values of the chain is greater in magnitude 

than the product of eight and the residual standard deviation. 

 To use the PC Algorithm to determine the lag structure, the researcher must 

include one variable for each lag believed to affect the contemporaneous values of each 

series.  The researcher, of course, has no knowledge of the true number of lags, so it is 

necessary to perform a search over possible lags.  In the simulation, for each dataset, the 

graph is estimated under several search lags to imitate a researcher’s lack of knowledge 

regarding the lag structure.  The PC Algorithm is evaluated with between one and four 

lags for each test.  

Evaluation 

The estimated DAG is evaluated relative to the true DGP.  Using the language of 

Demiralp and Hoover (2003), the PC Algorithm-estimated graph is called the selected 

graph, and the true graph defined by the actual structure of the DGP is the reference 

graph.  A correct link occurs when the selected graph exactly matches the reference 

graph on a given arrow.  An edge is unresolved when it is directed in the reference graph 

but no orientated in the selected graph.  An error of omission occurs when the entire 

edge is not included in the selected graph but is present in the reference graph.  This 

occurs when the PC Algorithm suggests no relationship between two nodes when there 

is a relationship between the variables.  An insertion occurs when the selected graph 

includes an edge that is not in the reference graph.  Finally, a reversal error occurs when 

a mark on the selected graph occurs on the opposite end of an edge in the reference 

graph.  Because the DGP is a time series, the only possible way of obtaining a reversal 
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error is when evaluating the selected graph’s suggested contemporaneous structure.  

Arrows, in theory, cannot be oriented from future to past, but in practice, however, 

reversals do occur.  One way to prevent the PC Algorithm from orienting from future to 

past is by providing background knowledge preventing backwards orientations.  This 

requires slight modification to the PC Algorithm as outlined in Spirtes, Glymour, and 

Scheines (2000, p. 93).  This modification is applied here.   

 Following Tsamardinos et al. (2006) and Kalisch and Buhlmann (2007), the 

performance metric utilized is the Structural Hamming Distance (SHD), which is the 

count of omitted, reversed, and inserted edges in the selected graph relative to the 

reference graph.  Other things equal, a smaller SHD is preferred and implies fewer errors 

are made in determining the true structure of the DGP and suggests the PC Algorithm 

could be used in a subset VAR procedure. 

A graphical depiction of each potential error for the DGP given in equation (4.3) 

is shown in Figure 4.2.  The top graph is the reference graph, the true graph described by 

the DGP; this graph matches that of Figure 4.1.  In the leftmost pane of the second row, 

an unresolved edge is shown between xt and yt because, while the algorithm correctly 

identified the edge, it was unable to determine in which direction the causality flows.  In 

the second pane of the second row, an error of omission occurs because the directed 

edge from yt-1 to xt is missing.  An insertion is demonstrated in the third pane as an edge 

is added from xt-1 to yt.  In the final pane, a reversal is shown because the algorithm 

identified the information flowing backwards from yt to xt.   
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SHD metrics are calculated separately for the lag structure, the contemporaneous 

structure, and finally the total of both the lag and contemporaneous SHD valaues.  For 

the second, third, and fourth graphs shown in the second row of Figure 4.2, the value of 

the total SHD considering both lag and contemporaneous structures is one.  The total 

SHD of the first graph in the second row is zero because unresolved edges are not 

penalized by this metric.  The values of the SHD for the lag portion of the DGP are zero 

(no errors considered by SHD) in the first and last graphs and one in the second and third 

graphs (an omission or insertion).  The contemporaneous SHD values are zero for all 

except the last graph where it is one.  

When interpreting SHD values across the different DGPs, it is important to 

consider the number of relationships in the DGP.  One relationship corresponds to one 

coefficient in the VAR structure, either lagged or contemporaneous.  The number of 

nodes in the reference graph is the product of the number of series and one plus the 

number of lags.  There are, however, potentially more relationships than nodes because 

there can be an edge from any node to any other node that does not violate the time 

ordering of the nodes.  To clarify, consider the DGP represented by the DAG in Figure 

4.1.  There are four total nodes considering periods t and 1t −  (one for each x and y).  

Arrows could potentially occur, however, from each node at 1t −  to each node at t (four 

lag relationships in total).   There could potentially be an arrow between xt and yt (one 

contemporaneous relationship).  A summary of the number of nodes and relationships 

for the DGPs in this experiment follows.  
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• Two-variable, one-lag VAR (2V1L): There are four nodes in the reference graph 

which gives four potential lag relationships and one potential contemporaneous 

relationship. 

• Two-variable, two-lag VAR (2V2L): There are six nodes in the reference graph 

which gives eight potential lag relationships and one potential contemporaneous 

relationship. 

• The three-variable, one-lag VAR (3V1L): There are six nodes in the reference 

graph which gives nine potential lag relationships and three contemporaneous 

potential contemporaneous relationships.   

To simplify comparisons across DGPs, values of the SHD are normalized by the 

number of potential relationships in the reference graph, referred to as the SHD per 

relationship.  As in the case of the SHD discussed previously, three SHD per relationship 

metrics are presented.  First, the SHD per lag relationship (SHDLR) considers only the 

lag portion of the graph only.  Next, the SHD per contemporaneous relationship 

(SHDCR) considers only errors in the contemporaneous design matrix.  Finally, the 

SHD per the total number of relationships (SHDTR) measures the total error per 

relationship in the graph.  The SHDTR is not the sum of the SHDLR and SHDCR 

because their denominators differ. 

Summary 

The entire procedure is repeated to accommodate combinations of sample size, 

significance levels, and the number of lags included in the PC Algorithm’s search.  To 

summarize, the procedure is 
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1. Specify the lag and contemporaneous structure of the VAR to be tested.  

Each lag and contemporaneous relationship coefficient is drawn 

according to the current structure which is either zero or in the range 

between -1 and 1 not inclusive and not including zero.  Test each VAR 

structure for stationarity.  If the process is not stationary, redraw 

coefficients for this structure.  

2. For each level of innovation white noise, simulate a vector time series 

according to the DGP created in the first step.  A warm-up period of 

1,000 observations is discarded to mitigate the effects of the starting 

values (a vector of zeros). Perform a second, informal test for stationarity 

of the time series by calculating the difference between the starting and 

ending values.  Any series with a difference greater than a threshold (the 

innovation standard deviation multiplied by eight) prompts a redraw of 

the time series. 

3. After obtaining a stationary set of time series, the PC Algorithm is used to 

test the VAR under each combination of the following scenarios: 

a. Number of observations: 50, 100, 250, 500, and 1,000 (five total); 

b. Significance levels: from one to 20 percent in increments of one 

percentage point, plus 0.5, 25, and 30 percent (23 total); and 

c. Number of lags tested in the PC Algorithm: one through four (four 

total). 
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4. Evaluate the selected graph against the reference graph for errors of 

omission, reversal, addition, as well as edges that are unresolved. 

For each simulated dataset, then, the PC Algorithm is evaluated for a total of 

5 23 4 460× × = times or 

 
number of observations 
number of significance levels 
number of search lags.

×
×   

In addition, for each structure, 100 datasets are drawn for the DGPs with two variables; 

25 datasets are drawn for the DGPs with three variables.  The reduction in the number of 

datasets generated for the two- and three-variable DGPs because of the increased 

computational time required to simulate and analyze the results of the three-variable 

VAR.  The total number of iterations is  

 

number of contemporaneous structures 
number of lag structures 
number of residual variance levels 
number of evaluations 
number of datasets,

×
×

×
×

  

which for the 3V1L, 932 2 2 460 25 94,208,000.× × × × =   Similarly, the number of 

simulations for 2V1L is 2,944,000, and the number of simulations for 2V2L is 

47,104,000.   

The experiment is written in C utilizing free and open source software including 

OpenMPI (The OpenMPI Project 2018), OpenMP (OpenMP 2018), the GNU Scientific 

Library (Free Software Foundation, Inc. 2018), OpenBLAS (Xianyi 2018), and dSFMT 

(Saito and Matsumoto 2013).  Java code for the PC Algorithm and Tetrad are available 
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from the Tetrad Project (2017) and adapted for use here.  The experiments are performed 

using high performance computing resources at Texas A&M University. 

System R-Squared 

For each simulated system, the system R-squared (Vahid and Issler 2002), an extension 

of the traditional R2 to a VAR system is calculated to determine the relative strength of 

the system’s coefficients compared to the other simulated systems.  The system R-

squared is 

(4.5) 
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where 0 ),( t tE z z′Γ =  ),( t tE ε ε ′Ω =  ( )E ⋅  is the expectation operator, and the other 

variables are as previously defined.  The population expectations needed to calculate 

equation (4.5) can be calculated in a straightforward manner because the DGP is known 

and stationary.  

Results 

The proportion of graphs with an SHDTR of zero (no errors) are shown by DGP in 

Table 4.1.  The additional complexity of the 2V2L and 3V1L DGPs compared to the 

2V1L result in a substantial reduction in the proportion of graphs with zero SHDTR. 

Evaluating the Lag Structure of the DGP 

A graphical summary of the simulation results for the lag portion of the DGP is 

presented in Figure 4.3.  The average SHDLR across all datasets for every combination 

of DGP, the number of variables and lags in the DGP and the standard deviation of the 

residuals, is plotted as a function of the number of lags searched in the PC Algorithm 



 

108 

 

search, the number of observations, and the significance level used in the PC 

Algorithm’s hypothesis tests.  Several patterns emerge from this broad view of the 

simulations: 1) robustness to residual variability, 2) the benefits of additional 

observations, and 3) the choice of significance level and the number of search lags 

included substantially affect search accuracy. 

Variability of the Residuals.  First, comparing across the same variable and lag 

combination but with different levels of residual volatility (for example, the top-left 

panel in Figure 4.3 compared to the panel below it), the results are almost identical.  The 

SHDLR generally is not affected by a fourfold increase in the noise of the process for 

the DGPs tested.  This suggests the detection of the VAR’s lag structure is fairly robust 

to the innovation white noise.  To simplify the presentation, the results presented in 

Figure 4.3 are re-presented in Figure 4.4, where the partitioning of the effects by 

standard deviation of the residuals is removed. 

Number of Observations.  In Figure 4.4, the advantage of having additional 

observations is clear.  Increasing the number of observations consistently decreases the 

SHDLR for a given significance level.  In Table 4.2, the average SHDLR is shown by 

the number of observations in the series.  For all three structures tested, the benefits of 

1,000 observations versus 50 observations in determining the lag structure are 

approximately a 30 to 40 percent reduction in the SHDLR.  The benefits, however, are 

not directly proportional to the number of additional observations.  When moving from 

50 to 100 observations, a doubling of observations, the reduction in the average SHDLR 

is between 11 and 16 percent, but an additional 500 observations in a dataset with 500 
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observations already, another doubling of observations, only reduces the average SHD 

up to eight percent. 

Significance Level Selection in PC Algorithm.  The SHDLR tends to be minimized 

when the significance level used in the PC Algorithm is small.  In Figure 4.5, the results 

are presented where the partitioning of the effects by lags used in the search is removed.  

In applied analysis, researchers likely only have accurate knowledge of the number of 

observations available for estimation.  In most cases, researchers know which variables 

might belong in the system, but there is still uncertainty, and the existence of omitted 

variables is likely.  As such, Figure 4.5 is useful for determining the “optimal” 

significance level to utilize in the PC Algorithm when constructing a subset VAR 

because its level of detail reflects the researcher’s lack of knowledge of the true number 

of lags or variables in the DGP.  Selection of an appropriate significance level 

substantially improves the PC Algorithm’s discovery of the lag structure.  Depending on 

the number of observations, the SHDLR is reduced between 18 and 60 percent by 

moving from the significance level that performed the worst to the level that performed 

best.  For all DGPs examined, the two percent significance level generally provides the 

smallest SHDLR.  In the case of datasets with 50 observations, the optimal significance 

level is five percent.  Using the smallest significance level tested, 0.5 percent, yields a 

notable increase in the SHDLR over the two percent level.   

A major exception to the pattern regarding the choice of significance level 

discussed previously is identified in Figure 4.4.  When the number of search lags used in 

the PC Algorithm exactly equals the number of lags in the DGP, the two percent 
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significance level does not appear to be optimal for smaller datasets.  For datasets with 

50 observations, significance levels from 15 to 30 percent are all almost equally 

effective at identifying the lag structure of the VAR.  For datasets with 100 observations, 

significance levels from 10 to 20 percent are almost equally effective.  Given a small 

dataset with prior knowledge of the number of lags in the DGP, a practitioner should be 

equally as effective at discovering the lag structure of the VAR using any significance 

level in these ranges.  In most cases, however, such knowledge is not available, and the 

findings generalized from Figure 4.5 should be used to guide applied analyses.   

Lag Selection in PC Algorithm.  In VAR analysis, careful selection of the number of 

lags is important to capture the dynamics of the system.  As discussed previously, when 

constructing a graphical version of the VAR using an algorithm of inductive causality, 

the researcher is also faced with the selection of the lags to search.  In practice, this 

choice involves a balance between under- and over-fitting, or the inclusion of 

insufficient or too many lags compared to the true number of lags in the DGP.  As 

expected for all DGPs, the SHDLR is minimized when the number of search lags exactly 

equals the number of number of lags in the DGP (Table 4.3).  That is, if searching over 

the true model (the correct variables and the correct number of lags), the number of 

errors is minimized.  This minimization is expected because one cannot obtain a graph 

with too few or too many lags.  While it does increase the SHDLR, the inclusion of extra 

lags, however, increases the SHDLR less than the inclusion of too few lags.  In the first 

panel of the second row in Figure 4.4 with 2V2L structures tested using only one lag in 

the PC Algorithm, the SHDLR is larger than in the following three frames.  In fact, the 
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benefit of small significance levels in the case of insufficient lags is only marginal.  The 

SHDLR for graphs estimated with insufficient lags is on average 48 percent larger than 

the SHDLR for graphs with at least the number of lags in the DGP for the simulated 

2V2L.  The effect of including extra lags is shown in Figure 4.6.  The penalty incurred 

by the inclusion of extra lags is partially offset by using small significance levels.  In the 

case of the 2V1L with 250 observations evaluated at the two percent level, the SHDLR 

increases 41 percent when extra lags are included.  Using a ten percent significance 

level, the SHDLR increases 96 percent.  At the largest significance levels tested, the 

SHDLR increases considerably for graphs constructed using extra lagged values.  When 

unsure of the correct number of lagged values to include, a smaller significance level 

should be utilized to minimize the number of errors.   

Overview of Findings for the Lag Portion of the DGP.  From the preceding, the 

following inferences arise when implementing the PC Algorithm to obtain the SHDLR-

minimizing graph for a VAR’s lag structure with no prior knowledge of the DGP. 

1. A two percent significance level is optimal in many, but not all, cases.  

2. Over-fitting in the number of search lags in the PC Algorithm produces smaller 

SHDLRs compared to not including sufficient lags.  While there is a penalty for 

including lags exceeding the true number of lags, the penalty is decreased by 

using smaller significant levels. 

3. Additional observations are beneficial but maybe not always possible based on 

data limitations.  
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Evaluating the Contemporaneous Structure of the DGP 

The average SHDCR for every combination of data structure plotted in Figure 4.7 as a 

function of the number of lags included in the PC Algorithm search, the number of 

observations, and the significance level used in the PC Algorithm’s hypothesis tests.  

Similar patterns to those seen in Figure 4.2 regarding the number of observations and the 

significance level are present in Figure 4.7.  Datasets with more observations have 

smaller SHDCR values.  Employing a small significance level decreases the SHDCR. 

The average SHDCR is shown by number of observations in Table 4.4.  For each 

DGP, the SHDCR decreases as more observations are available.  For the 2V1L 

inspected, there are insertions, deletions, and reversals in 20 to 33 percent of the graphs 

evaluated, decreasing as the number of observations in the dataset increase.  These 

values for the contemporaneous portion of the graph are similar to their lag-portion 

counterparts.  Similar findings are found for the other two DGPs.  In all cases, however, 

the SHDCR is larger – up to 35 percent – than the corresponding values for the lag 

portion. 

Although the SHDCR only evaluates the PC Algorithm’s efficacy at determining 

the contemporaneous relationships between the VAR’s variables, knowledge of the true 

number of lags in the DGP still generally produces a smaller SHDCR.  Compared to 

those of the first, third, and final panes of the same row, the SHDCR values in second 

pane in the second row of Figure 4.7 are smaller for datasets of at least 250 observations. 

There is a small, yet consistent penalty to using the incorrect number of lags in the 

search.  In addition, the values of the SHDCR for the 2V1L are slightly smaller, other 
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things equal, than those of the 2V2L despite both DGPs containing the one 

contemporaneous relationship.  This suggests additional information flowing from the 

additional lagged variables increase the chances of errors in discovering 

contemporaneous relationships.   

System R-Squared 

In Figure 4.8, the SHDTR is plotted against the system R-squared by DGP.  A histogram 

of all simulated datasets with system R-squared values falling into bins each five 

percentage points wide is also shown.  The distribution of system R-squared values 

provided by the simulated VARs are similar for the 2V2L and 3V1L, but distribution of 

the 2V1L is different.  The discrepancy suggests comparisons across DGPs may not be 

valid as the larger DGPs generally have higher values of the system R-squared.   

In most cases, the SHDTR is minimized when the system R-squared falls between 20 

and 60 percent.  For systems with small R-squared values, there is likely insufficient 

information to produce the correct graph, while for systems with larger R-squared 

values, there is likely too much information to produce the correct graph.  While the 

population system R-squared is unknown to the researcher, it provides insight here into 

the kinds of VAR systems the PC Algorithm is best able to identify.   

Discussion and Conclusions 

The PC Algorithm is examined for its ability to propose zero restrictions on the lag and 

contemporaneous matrices in a VAR for different sizes of datasets, different 

combinations lagged values, and significance levels.  This extends the work of Demiralp 

and Hoover (2003), who evaluate the PC Algorithm’s ability to detect the causal 
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ordering of a VAR postestimation using its residuals.  The experiments suggest the PC 

Algorithm can be effective at discovering the lag structure of a VAR.  In addition, it 

appears to be almost equally effective at obtaining the contemporaneous portion of the 

DGP and the lag portion. In both cases, the efficacy is increased when more observations 

are available to the researcher and the appropriate number of lags is employed in the 

search graph.  Obtaining more data is often impractical, and researchers do not have 

prior knowledge of the appropriate number of lags to include in the search.  If they did, 

there would be no reason to search for the number of lags.  As such, results suggest 

significance levels between two and five percent should be used in the hypothesis testing 

portion of the algorithm regardless of the number of observations.   

 The subset VAR methodology is a potential solution for VAR analysis of larger 

datasets.  This methodology, however, can be limited in its efficacy or be rendered 

ineffective if the DGP implies no zero restrictions.  In these cases, the subset VAR 

methodology is unable to mitigate the effects of the curse of dimensionality, and another 

solution for dimension reduction is necessary.  

For DGPs for which the subset VAR methodology can assist in the 

dimensionality problem, there are still other prominent issues in practice.  Sufficient data 

and knowledge of the lag structure are likely not the only problems faced when 

employing the PC Algorithm for causal discovery.  Given the causal sufficiency 

assumption of the PC Algorithm, mistakenly assuming the incorrect variables to include 

in the DGP will likely lead to additional errors regardless of the search lag and 

significance level used.  For the presented experiments, the DGPs were all stationary, 
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Gaussian processes, but non-Gaussian data and nonstationary time series are both 

common in applied research.  While the PC Algorithm is unable to infer causality for 

these types of data, other algorithms are available.  Further research should provide 

Monte Carlo evidence of their efficacy in the construction of subset VAR models when 

the assumptions of the PC Algorithm do not hold.  As also suggested by Demiralp and 

Hoover (2003), the problem of selecting the maximum number of lags to be included in 

the PC Algorithm is still not solved.  The results here suggest over-fitting, while prone to 

added insertion errors, produces a smaller SHDR on average than under-fitting. 
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CHAPTER V 

CONCLUSION 

 

Manifestations of the curse of dimensionality have changed.  What once was a lack of 

computing resources to handle high-dimensional problems is, at least in applied time 

series econometrics, a potential need for new methodologies to handle the larger and 

larger datasets commonly available for analysis.  In this dissertation, three studies are 

presented that were affected by the curse of dimensionality.   

In the ductless heat pump (DHP) adoption study, the curse is addressed, as most 

studies do, by ignoring many potential variables.  Adoption is modeled using an 

extension (Jain and Rao 1990) of Bass’s (1969) simple model of adoption.  This 

modeling technique is in line with a statement made by Oscar Burt during the 1980s; the 

essence of modeling is to capture reality as simply as possible.  The second study uses 

Bayesian techniques to include large datasets in the factor-augmented vector 

autoregression (FAVAR) framework with time-varying parameters.  In this 

methodology, the data included is not limited a priori but rather is used directly in the 

dimensionality reduction to obtain one or more unobservable factors that evolve over 

time and explain some common co-movements of the data.  Here, the curse is still 

realized in the computational burdens of estimating and comparing several specifications 

of a complex model.  Through Monte Carlo experiments, the final study evaluates 

directed acyclic graphs (DAGs) as a potential tool for dimension reduction; data-driven 

techniques are used to identify the “best” model in line with Burt’s statement.  Together, 
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these studies address the overall objective of demonstrating three very different 

methodologies and applications that all attempt to do the same thing: simplify the not-so-

simple.  

Summary of Results 

Adoption of DHPs 

The aim is increasing the understanding of DHP adoption in the Pacific Northwest of the 

US by quantifying the effect of utility-provided rebates and Northwest Energy 

Efficiency Alliance (NEEA) expenditures on the number of installations and providing 

forecasts of DHP installations through 2018 given various rebate and NEEA expenditure 

levels is addressed by modeling using household-level data provided by NEEA.  The 

adoption mechanism is complex, driven by innovation, communication channels, time, 

and the social system (Rogers 1962).  Each of these is difficult to quantify and, in fact, 

may be difficult to identify until after adoption has happened.  When modeling a 

complicated socio-economic process, the curse of dimensionality reveals itself as a need 

for a methodology to capture the adoption profile of consumers that is both flexible for 

forecasting and identifiable without a large number of variables that, in fact, may not be 

identified yet.  In this case, the simple model of Bass (1969) with extensions by Jain and 

Rao (1990) are applied.  The Bass (1969) model assume a sigmoid-shaped adoption 

profile that is driven by coefficients of innovation and imitation as well as market 

potential.  The results are directed to policymakers and utility providers in the Pacific 

Northwest concerned with finding cost-effective methods to promote energy efficiency 

and reduce future load growth. 



 

118 

 

Rebates are more effective at increasing installations than are NEEA’s 

expenditures on marketing and installer training because DHP adoptions are elastic with 

respect to net cost of installation.  In addition, the reduction of federal tax incentives 

after 2011 decreases the probability of adoption.  The adoption profile for DHPs grows 

slowly; consultation with NEEA indicated the forecasted adoption rate is slower than 

their goal.  Three reasons are posited for the slow growth.  First, the up-front costs of 

adoption are high.  In addition, DHPs are not “leisure-enhancing,” making adoption rates 

lower.  Finally, economic conditions during and after the Great Recession, the period 

studied, may have inhibited adoptions. 

Dynamics of the Oil Prices and the Petroleum Industry 

The objective of the second study is to investigate the dynamic effects of shocks in oil 

supply, aggregate demand, and oil demand on oil prices, the upstream, midstream, and 

downstream sectors of the petroleum industry, and the broader US economy.  The 

dynamics effects are studied over time in a data-rich environment.  Baumeister and 

Peersman (2013) have similarly studied the effects of oil supply shock using Primiceri’s 

(2005) time-varying parameter (TVP)-VAR, but a similar TVP investigation of these 

shocks has not been performed in a data-rich environment.  Because no single variable 

completely describes an economy or industry, a large set of informational time series are 

selected, representing data from the upstream, midstream, and downstream of the 

petroleum industry, as well as interest rates, money supply, exchange rates, employment 

and earnings, unemployment, and indices of real activity, production, and prices.  The 

findings are beneficial for decision makers inside the petroleum industry to understand 
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the magnitude and duration of shocks in oil supply and demand as well as aggregate 

demand. 

The curse of dimensionality is encountered here as analysis of a large set of 

series using traditional, small-scale VARs is infeasible.  As such, the TVP-FAVAR 

model (Mumtaz, Zabczyk, and Ellis 2011) is employed as a solution to the 

dimensionality dilemma.  This technique addresses the curse by using all the data 

simultaneously to reducing the co-movements of the data to one or more latent factors.  

Although feasible, Bayesian estimation of the TVP-FAVAR using Markov Chain Monte 

Carlo techniques requires considerable computational time and memory.  Depending on 

the model specification, one chain of the Markov Chain Monte Carlo estimation required 

up to 40 hours.  In addition, computation of the Deviance Information Criterion, using 

the particle filter for estimation of the likelihood, for model comparison requires 

substantial computing time made possible by parallelization.  In this application, several 

specifications were run simultaneously using advanced computing resources that are not 

always available to researchers.  As such, the methodology is not feasible for all 

applications.   

The effects of oil supply shocks on oil prices, production, and storage increase 

during recessions.  For oil prices, the findings here support those of previous studies 

showing oil demand shocks generate the largest responses in magnitude of the shocks 

studied.  On the other hand, for crude oil production, shocks in aggregate demand 

commonly have a larger impact than oil demand shocks.  As oil price volatility 

increases, the responses of oil prices to oil demand also become larger in magnitude.  
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The dynamics of oil prices and oil storage show the most variability over the last 25 

years, while those of field production, refinery capacity, and gasoline sales appear to be 

relatively time-invariant.  Real activity, as measured by the Industrial Production Index, 

also appears to be relatively time-invariant in its dynamics, but the dynamics of the 

Producer Price Index are influenced by oil price volatility.     

Subset VARs and Directed Acyclic Graphs 

Another solution to the curse of dimensionality in VAR analysis is the subset VAR 

methodology which can potentially reduce the number of parameters in a VAR.  A 

regression-based subset VAR approach for determining parameters to constrain is 

suggested by Hsaio (1979, 1981), whereas Akleman, Bessler, and Burton (1999) propose 

directed acyclic graphs (DAGs) as a means of determining the placement of zero 

restrictions.  Of course, one could argue the subset VAR approach is not actually a 

reduction of dimensionality but rather identification of the model that correctly describes 

the dynamics of multivariate time series.  Identification of the correct model, however, 

often results in a lower dimension model.   

Here, the objective is to investigate the appropriateness of the PC Algorithm as a 

subset VAR methodology in determining both the contemporaneous and lag structure of 

the data-generating process (DGP).  Previous research (Demiralp and Hoover 2003) has 

examined the PC Algorithm’s ability to identify the placement of zero restrictions in the 

contemporaneous portion of the VAR structure.  To my knowledge, no study has 

investigated: 1) the placement of zeros for a subset VAR methodology on the lag portion 

of the DGP; 2) choices in significance level on the graphs recovered for VARs; and 3) 
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how searching over different numbers of lags impacts the efficacy of the PC Algorithm 

at identifying the VAR structure.  The results are directly applicable to researchers who 

model using VARs 1) to reduce the parameterization; 2) to identify the “correct” model 

for the specific DGP; or 3) to improve forecast performance using subset VARs 

(Akleman, Bessler, and Burton 1999; Bruggeman 2004). 

 The PC Algorithm is equally effective uncovering the contemporaneous and lag 

portions of the DGP and, as such, is potentially useful tool for constructing subset 

VARs.  For the DGPs considered, significance levels between two and five percent are 

optimal for minimizing the value of the Structural Hamming Distance per relationship.  

Other things equal, the algorithm is also more effective when there are more 

observations.  When researchers do not have a priori knowledge of the true number of 

lags in the data-generating process, overfitting provides a smaller penalty than 

underfitting. 

Limitations and Suggestions for Further Research 

The coefficients of innovation and imitation play a key role in the shape of the adoption 

function (Bass 1969), and estimation of these parameters using limited data may yield 

inaccurate forecasts (Heeler and Hustad, 1980).  Particularly, the adoption curve is fit 

best when the peak of instantaneous adoptions has been realized.  Now that the forecast 

window has almost been realized, future research should evaluate the accuracy of the 

probability forecasts generated from the adoption model.  In addition, data were only 

provided for households receiving financial incentives for adoption, but adoptions of 

DHPs that did not receive incentives are likely affected by adoptions that did receive 
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incentives (and vice versa).  Analyses quantifying the effects of “cross-adoption” are 

needed.  Finally, the adoption profile for DHPs should be compared to those of other 

energy-efficient technologies and under different modeling assumptions to examine if 

and how the adoption profile varies by type of technology.  

 The complexity of the Bayesian TVP-FAVAR lends itself to limitations which 

are the result of necessary simplifying assumptions.  One limitation is prior selection.  In 

most cases, conjugate priors are chosen for computational simplicity, so further research 

should investigate less informative priors.  A specification with controls for seasonality 

might be beneficial given the potential importance including up to the 12th 

autoregressive lag for the latent factor in the VAR.  Identification by sign restrictions in 

the TVP-FAVAR context, too, is not always straightforward.  More informational series 

allow for more flexibility in the placement of restrictions because many different types 

of series can be used to identify the shocks, but additional restrictions can lead to a 

decrease in the number of accepted rotation matrices, making innovation accounting 

difficult.  It is also not clear which variables in a closely related group should and should 

not be restricted.  Amir-Ahmadi and Uhlig (2009) consider this issue for a monetary 

policy shock in the original Bernanke, Boivin, and Eliasz (2005) FAVAR formulation, 

but further research should investigate the sensitivity of innovation accounting to the 

placement of restrictions for the petroleum industry TVP-FAVAR. 

 Assumptions of the PC Algorithm are often questionable in practice.  Many time 

series are not stationary, and many are not Normally distributed.  In addition, the causal 

sufficiency assumption is likely not to hold for VARs.  These experiments should be 
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repeated using other algorithms of inductive causality that relax these assumptions.  In 

line with Demiralp and Hoover (2003), this study reaffirms the selection of the 

appropriate number of lags to include for the search remains an issue.  

Final Words 

Has the curse of dimensionality disappeared from applied time series econometrics?  No.  

Will it ever disappear?  Probably not.  Just as the science of economic and statistical 

analyses grows and adapts to the present challenges at hand, so too, will the curse of 

dimensionality likely continue to evolve and be encountered in different ways for very 

different research problems. 
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APPENDIX A 

TABLES AND FIGURES 

 

Table 2.1 Summary Statistics for Ductless Heat Pump Installations by Month 

Month 
Number of Installations Total Per-Unit Cost NEEA Expenditures 

Households Std. Dev. Dollars Std. Dev. Dollars Std. Dev. 
January 169 89 4,206 207 135,073 36,335 
February 148 40 4,371 322 130,167 30,489 
March 214 70 4,323 482 191,446 57,157 
April 174 22 4,563 563 129,412 52,945 
May 201 54 4,611 564 128,821 54,135 
June 213 57 4,562 386 153,766 36,191 
July 282 89 4,374 360 117,287 42,220 
August 299 132 4,640 664 147,338 36,442 
September 373 171 4,284 214 142,923 33,510 
October 352 155 4,359 350 144,919 26,696 
November 403 179 4,413 444 163,220 41,383 
December 648 261 4,465 366 354,877 40,818 
The average value for each variable is shown by month; the standard deviations are given by Std. Dev. The data cover 
January 2009 through August 2013. All dollar amounts are CPI-adjusted.  Household includes single-family 
households heated by electricity. Total per-unit cost represents all costs of a DHP installation, including but not 
limited to, equipment, labor, electrical, permit, tax, etc.  This cost is before any rebates and/or tax credits.  
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Table 2.2 Parameter Estimates for the Adoption Model 

Parameter 
Coefficient 

Estimate p-value 
Coefficient of Innovation (α) 0.002 0.176 
Coefficient of Imitation (β) 0.068 0.001 
Market Potential (M) 329,442 0.395 
Net Installation Costs -1.495 0.042 
NEEA Expenditures  0.316 0.223 
Tax Code Change (= 1 if before the change) 0.930 0.085 
Constant ( ĉ ) 4.783 0.322 
February -0.218 0.440 
March 0.102 0.710 
April 0.019 0.958 
May 0.209 0.560 
June 0.192 0.582 
July 0.487 0.161 
August 0.545 0.127 
September 0.691 0.067 
October 0.591 0.081 
November 0.751 0.033 
December 1.185 0.009 
AR(1) 0.894 0.000 
Adoption model estimated using nonlinear least squares in SAS procedure 
PROC MODEL.  The convergence criterion is set to 0.0000001.  The 
estimation procedure uses 55 observations.  Root mean squared error is 61.133 
and the mean absolute percentage error is 19 percent. 
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Table 2.3 Assumptions for Five-Year Forecast Simulations 
Parameter Value 
Cost per Outdoor Unit  

Mean $4,435 
Standard Deviation $414 

NEEA Annual Expenditures  
2013 $0 
2014 $1,857,000 
2015 $1,116,000 
2016 $1,396,000 
2017 $1,856,000 
2018 $1,207,000 

Monthly Share of NEEA’s Annual Expenditures  
January 0.072 
February 0.071 
March 0.088 
April 0.076 
May 0.059 
June 0.080 
July 0.053 
August 0.071 
September 0.076 
October 0.077 
November 0.086 
December 0.193 

Average Tax Credit $500 
NWDHPP Installation Rebate $1,500 
NWDHPP Annual Rebate Budgets  

2013 $3,903,541 
2014 $5,289,868 
2015 $5,103,705 
2016 $4,924,095 
2017 $4,750,805 
2018 $17,390,363 

Beginning Cumulative Installations 15,662 
Maximum Market Potential 1,658,148 
Cost per outdoor unit is taken as the median value of all installations in August 2013.  
Budgets for NEEA expenditures and rebates provided by NEEA.  All dollar amounts are 
assumed to be in real dollars. Monthly shares of NEEA’s annual expenditures calculated 
from NEEA’s 2010 through 2012 expenditure data.  Maximum market potential is an 
estimate of the number of electrically-heated single-family houses in the four-state region. 
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Figure 2.1 Monthly and cumulative installations of ductless heat pumps, 2009 through August 2013, with installations 
forecasted through 2018 (shaded area) using proposed annual rebate and marketing budgets
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Figure 2.2 Cumulative distribution function for forecasted additional ductless heat 
pump installations through 2018 assuming base scenario
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Figure 2.3 Expected and 95-percent confidence interval for forecasted additional 
ductless heat pump installations through 2018 for different rebate amounts
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Figure 2.4 Expected and 95-percent confidence interval for forecasted additional 
ductless heat pump installations through 2018 for different annual NEEA 
expenditures on marketing and installer training
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Figure 2.5 Expected and 95-percent confidence interval for additional installations 
through 2018 for different rebate amounts and levels of annual NEEA expenditures
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Table 3.1 Data Series, Transformations, and Sources 
 
Transformations: 1) no transformation; 2) first difference; 3) log; 4) first difference of log-transformation 
Sources: EIA, US Energy Information Administration; FRED, US Federal Reserve Bank of St. Louis 
* denotes observational series in the estimated FAVAR model 

Series Trans. Source 
Industrial Production Index 4 FRED 
Disposable Personal Income 4 FRED 
Manufacturers Sales 4 FRED 
Retailers Sales 4 FRED 
US Crude Oil Rotary Rigs in Operation 4 EIA 
US Percent Utilization of Refinery Operable Capacity 1 EIA 
US Field Production of Crude Oil (Thousand Barrels) 4 EIA 
US Imports from Persian Gulf Countries of Crude Oil (Thousand Barrels) 4 EIA 
US Imports from OPEC Countries of Crude Oil (Thousand Barrels) 4 EIA 
US Imports from Non-OPEC Countries of Crude Oil (Thousand Barrels) 4 EIA 
US Imports from OPEC Countries of Total Petroleum Products (Thousand Barrels) 4 EIA 
US Imports from Non-OPEC Countries of Total Petroleum Products (Thousand Barrels) 4 EIA 
US Exports of Crude Oil (Thousand Barrels) 4 EIA 
US Exports of Finished Petroleum Products (Thousand Barrels) 4 EIA 
US Ending Stocks of Crude Oil in SPR (Thousand Barrels) 4 EIA 
US Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) 4 EIA 
US Crude Oil Stocks in Transit (on Ships) from Alaska (Thousand Barrels) 4 EIA 
US Crude Oil Stocks at Refineries (Thousand Barrels) 4 EIA 
US Product Supplied of Crude Oil and Petroleum Products (Thousand Barrels) 4 EIA 
US Product Supplied of Hydrocarbon Gas Liquids (Thousand Barrels) 4 EIA 
US Product Supplied of Finished Petroleum Products (Thousand Barrels) 4 EIA 
US Ending Stocks of Total Petroleum Products (Thousand Barrels) 4 EIA 
US Ending Stocks of Hydrocarbon Gas Liquids (Thousand Barrels) 4 EIA 
US Ending Stocks of Unfinished Oils (Thousand Barrels) 4 EIA 
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Table 3.1 Continued 
Series Trans. Source 
US Ending Stocks of Gasoline Blending Components (Thousand Barrels) 4 EIA 
US Ending Stocks of Finished Motor Gasoline (Thousand Barrels) 4 EIA 
US Ending Stocks of Conventional Motor Gasoline (Thousand Barrels) 4 EIA 
US Ending Stocks of Aviation Gasoline (Thousand Barrels) 4 EIA 
US Ending Stocks of Kerosene-Type Jet Fuel (Thousand Barrels) 4 EIA 
US Ending Stocks of Kerosene (Thousand Barrels) 4 EIA 
US Ending Stocks of Distillate Fuel Oil (Thousand Barrels) 4 EIA 
US Ending Stocks of Residual Fuel Oil (Thousand Barrels) 4 EIA 
US Ending Stocks of Lubricants (Thousand Barrels) 4 EIA 
US Ending Stocks of Waxes (Thousand Barrels) 4 EIA 
US Ending Stocks of Petroleum Coke (Thousand Barrels) 4 EIA 
US Ending Stocks of Asphalt and Road Oil (Thousand Barrels) 4 EIA 
US Ending Stocks of Miscellaneous Petroleum Products (Thousand Barrels) 4 EIA 
US Total Gasoline Retail Sales by Refiners (Thousand Gallons per Day) 4 EIA 
New York Harbor Conventional Gasoline Regular Spot Price FOB (Dollars per Gallon) 4 EIA 
US Gulf Coast Conventional Gasoline Regular Spot Price FOB (Dollars per Gallon) 4 EIA 
New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars per Gallon) 4 EIA 
US Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB (Dollars per Gallon) 4 EIA 
Mont Belvieu, TX Propane Spot Price FOB (Dollars per Gallon) 4 EIA 
Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel) 4 EIA 
Cushing, OK Crude Oil Future Contract 2 (Dollars per Barrel) 4 EIA 
Cushing, OK Crude Oil Future Contract 3 (Dollars per Barrel) 4 EIA 
Cushing, OK Crude Oil Future Contract 4 (Dollars per Barrel) 4 EIA 
New York Harbor No. 2 Heating Oil Future Contract 1 (Dollars per Gallon) 4 EIA 
New York Harbor No. 2 Heating Oil Future Contract 3 (Dollars per Gallon) 4 EIA 
All Employees: Manufacturing 4 FRED 
All Employees: Construction 4 FRED 
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Table 3.1 Continued 
Series Trans. Source 
All Employees: Government 4 FRED 
All Employees: Retail Trade 4 FRED 
All Employees: Education and Health Services 4 FRED 
All Employees: Financial Activities 4 FRED 
All Employees: Professional and Business Services 4 FRED 
All Employees: Durable Goods 4 FRED 
All Employees: Mining and Logging 4 FRED 
All Employees: Leisure and Hospitality 4 FRED 
All Employees: Wholesale Trade 4 FRED 
All Employees: Private Service-Providing 4 FRED 
All Employees: Nondurable Goods 4 FRED 
All Employees: Utilities 4 FRED 
All Employees: Other Services 4 FRED 
All Employees: Information 4 FRED 
All Employees: Mining and Logging: Oil and Gas Extraction 4 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Construction 4 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Private Service-Providing 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Private Service-Providing 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Mining and Logging 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Mining and Logging 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Construction 1 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1 FRED 
Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 1 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Durable Goods 1 FRED 
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Table 3.1 Continued 
Series Trans. Source 
Average Hourly Earnings of Production and Nonsupervisory Employees: Durable Goods 4 FRED 
Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Durable Goods 1 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Nondurable Goods 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Nondurable Goods 4 FRED 
Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Nondurable Goods 1 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Trade, Transportation, and Utilities 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Trade, Transportation, and Utilities 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Wholesale Trade 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Wholesale Trade 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Retail Trade 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Retail Trade 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Transportation and Warehousing 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Transportation and Warehousing 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Utilities 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Utilities 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Information 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Information 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Financial Activities 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Financial Activities 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Professional and Business Services 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Professional and Business Services 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Education and Health Services 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Education and Health Services 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Leisure and Hospitality 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Leisure and Hospitality 4 FRED 
Average Weekly Hours of Production and Nonsupervisory Employees: Other 1 FRED 
Average Hourly Earnings of Production and Nonsupervisory Employees: Other Services 4 FRED 
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Table 3.1 Continued 
Series Trans. Source 
Number of Civilians Unemployed for Less Than 5 Weeks 1 FRED 
Number of Civilians Unemployed for 27 Weeks and Over 1 FRED 
Number of Civilians Unemployed for 5 to 14 Weeks 1 FRED 
Number of Civilians Unemployed for 15 to 26 Weeks 1 FRED 
Civilian Unemployment Rate 1 FRED 
Consumer Price Index for All Urban Consumers: All Items 4 FRED 
Consumer Price Index for All Urban Consumers: Apparel 4 FRED 
Consumer Price Index for All Urban Consumers: Food and Beverages 4 FRED 
Consumer Price Index for All Urban Consumers: Housing 4 FRED 
Consumer Price Index for All Urban Consumers: Medical Care 4 FRED 
Consumer Price Index for All Urban Consumers: Transportation 4 FRED 
Consumer Price Index for All Urban Consumers: Durables 4 FRED 
Consumer Price Index for All Urban Consumers: Transportation services 4 FRED 
Consumer Price Index for All Urban Consumers: Tuition, other school 4 FRED 
Consumer Price Index for All Urban Consumers: Sugar and sweets 4 FRED 
Consumer Price Index for All Urban Consumers: Tobacco and smoking 4 FRED 
Consumer Price Index for All Urban Consumers: Electricity 4 FRED 
Consumer Price Index for All Urban Consumers: Professional services 4 FRED 
Consumer Price Index for All Urban Consumers: New vehicles 4 FRED 
Consumer Price Index for All Urban Consumers: Airline fare 4 FRED 
Chicago Fed National Activity Index: Sales, Orders and Inventories 2 FRED 
Capacity Utilization: Total Industry 2 FRED 
Vehicle Miles Traveled 4 FRED 
Real personal consumption expenditures: Durable goods 4 FRED 
Real personal consumption expenditures: Food 4 FRED 
Real personal consumption expenditures: Nondurable goods 4 FRED 
Real personal consumption expenditures: Energy goods and services 4 FRED 
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Table 3.1 Continued 
Series Trans. Source 
Real personal consumption expenditures: Services 4 FRED 
Privately Owned Housing Starts: 1-Unit Structures 4 FRED 
Housing Starts: 2-4 Units 3 FRED 
Privately Owned Housing Starts: 5-Unit Structures or More 4 FRED 
Housing Starts in Midwest Census Region 4 FRED 
Housing Starts in Northeast Census Region 4 FRED 
Housing Starts in South Census Region 4 FRED 
Housing Starts in West Census Region 4 FRED 
Industrial Production: Final products 4 FRED 
Industrial Production: Consumer goods 4 FRED 
Industrial Production: Durable consumer goods 4 FRED 
Industrial Production: Miscellaneous durable goods 4 FRED 
Industrial Production: Miscellaneous nondurable goods 4 FRED 
Industrial Production: Consumer energy products 4 FRED 
Industrial Production: Residential utilities 4 FRED 
Industrial Production: Industrial and other equipment 4 FRED 
Industrial Production: Industrial equipment 4 FRED 
Industrial Production: Other equipment 4 FRED 
Industrial Production: Defense and space equipment 4 FRED 
Industrial Production: Consumer parts 4 FRED 
Industrial Production: Equipment parts 4 FRED 
Industrial Production: Computer and other board assemblies and parts 4 FRED 
Industrial Production: Other equipment parts 4 FRED 
Industrial Production: Other nondurable materials 4 FRED 
Industrial Production: Miscellaneous nondurable materials 4 FRED 
Industrial Production: Nonindustrial supplies 4 FRED 
Industrial Production: Construction supplies 4 FRED 
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Table 3.1 Continued 
Series Trans. Source 
Industrial Production: Business supplies 4 FRED 
Industrial Production: General business supplies 4 FRED 
Industrial Production: Finished processing 4 FRED 
Industrial Production: Final Products and Nonindustrial Supplies 4 FRED 
Industrial Production: Mining 4 FRED 
Industrial Production: Electric and gas utilities 4 FRED 
Industrial Production: Durable manufacturing 4 FRED 
Industrial Production: Other manufacturing 4 FRED 
Industrial Production: Computers, communications equipment, and 4 FRED 
Industrial Production: Manufacturing (SIC) 4 FRED 
Producer Price Index for All Commodities 4 FRED 
Producer Price Index by Industry: Total Manufacturing Industries 4 FRED 
Producer Price Index by Industry: Total Mining Industries 4 FRED 
Producer Price Index by Industry: Oil and Gas Field Machinery and Equipment Manufacturing  4 FRED 
Producer Price Index by Industry: Support Activities for Oil and Gas Operations 4 FRED 
Producer Price Index by Industry: Drilling Oil and Gas Wells 4 FRED 
Effective Federal Funds Rate* 1 FRED 
3-Month Treasury Bill: Secondary Market Rate 1 FRED 
6-Month Treasury Bill: Secondary Market Rate 1 FRED 
Monetary Base; Total 4 FRED 
M1 Money Stock 4 FRED 
M2 Money Stock 4 FRED 
Total Reserves of Depository Institutions 4 FRED 
Canada / US Foreign Exchange Rate 4 FRED 
China / US Foreign Exchange Rate 4 FRED 
Japan / US Foreign Exchange Rate 4 FRED 
Switzerland / US Foreign Exchange Rate 4 FRED 
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Table 3.1 Continued 
Series Trans. Source 
US / Australia Foreign Exchange Rate 4 FRED 
US / U.K. Foreign Exchange Rate 4 FRED 
1-Year Treasury Constant Maturity Rate 1 FRED 
10-Year Treasury Constant Maturity Rate 1 FRED 
5-Year Treasury Constant Maturity Rate 1 FRED 
Commercial and Industrial Loans, All Commercial Banks 4 FRED 
Consumer Loans, All Commercial Banks 4 FRED 
Cushing, OK WTI Spot Price FOB (Dollars per Barrel)* 4 FRED 
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Table 3.2 Values of the Deviance Information Criterion (DIC) 
Latent Factors Lags in Transition Equation DIC 

1 

2 230,357  
3 219,797  
4 252,678  
6 261,513  

12 234,266  

2 

2 265,708  
3 350,914  
4 330,155  
6 302,747  

3 
2 6,128,302  
3 423,844  
4 425,358  

4 2 25,869,065  
3 3,368,701 

All DIC values are calculated from log-likelihoods estimated by particle filter using 
1,000 particles. 
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Table 3.3 Median R-Squared Values for Ordinary Least Squares-Estimated Regressions of Each Informational 
Series (Individually) on the Latent Factor 
Category Transformed Series Name R-Squared 

Activity Measures 

Percentage Change in Manufacturers Sales 0.379 
Percentage Change in Retailers Sales 0.222 
Percentage Change in Vehicle Miles Traveled 0.109 
Change in Capacity Utilization: Total Industry 0.060 
Percentage Change in Real personal consumption expenditures: Services 0.031 
Percentage Change in Real personal consumption expenditures: Durable goods 0.019 
Percentage Change in Real personal consumption expenditures: Nondurable goods 0.016 
Change in Chicago Fed National Activity Index: Sales, Orders and Inventories 0.012 
Percentage Change in Real personal consumption expenditures: Food 0.006 
Percentage Change in Disposable Personal Income 0.003 
Percentage Change in Real personal consumption expenditures: Energy goods and services 0.000 

Consumer Price Indices 

Percentage Change in Consumer Price Index for All Urban Consumers: Electricity 0.070 
Percentage Change in Consumer Price Index for All Urban Consumers: Sugar and sweets 0.068 
Percentage Change in Consumer Price Index for All Urban Consumers: New vehicles 0.053 
Percentage Change in Consumer Price Index for All Urban Consumers: Transportation 0.040 
Percentage Change in Consumer Price Index for All Urban Consumers: Apparel 0.033 
Percentage Change in Consumer Price Index for All Urban Consumers: Medical Care 0.029 
Percentage Change in Consumer Price Index for All Urban Consumers: Food and Beverages 0.027 
Percentage Change in Consumer Price Index for All Urban Consumers: Airline fare 0.025 
Percentage Change in Consumer Price Index for All Urban Consumers: Tobacco and smoking 0.020 
Percentage Change in Consumer Price Index for All Urban Consumers: All Items 0.014 
Percentage Change in Consumer Price Index for All Urban Consumers: Tuition, other school 0.013 
Percentage Change in Consumer Price Index for All Urban Consumers: Housing 0.008 
Percentage Change in Consumer Price Index for All Urban Consumers: Professional services 0.008 
Percentage Change in Consumer Price Index for All Urban Consumers: Durables 0.002 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Consumer Price Indices Percentage Change in Consumer Price Index for All Urban Consumers: Transportation 
services 

0.000 

Employment: Earnings 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Private Service-Providing 

0.172 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Trade, Transportation, and Utilities 

0.156 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Nondurable Goods 

0.113 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Retail Trade 

0.112 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Professional and Business Services 

0.090 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Wholesale Trade 

0.071 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Education and Health Services 

0.057 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Transportation and Warehousing 

0.039 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Goods-Producing 

0.032 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Financial Activities 

0.029 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Mining and Logging 

0.024 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Utilities 

0.022 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Information 

0.021 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Construction 

0.018 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Durable Goods 

0.014 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Other Services 

0.004 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Employment: Earnings 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Manufacturing 

0.001 

Percentage Change in Average Hourly Earnings of Production and Nonsupervisory 
Employees: Leisure and Hospitality 

0.001 

Employment: Employees by Industry 

Percentage Change in All Employees: Manufacturing 0.637 
Percentage Change in All Employees: Durable Goods 0.569 
Percentage Change in All Employees: Professional and Business Services 0.542 
Percentage Change in All Employees: Wholesale Trade 0.539 
Percentage Change in All Employees: Nondurable Goods 0.527 
Percentage Change in All Employees: Private Service-Providing 0.479 
Percentage Change in All Employees: Construction 0.378 
Percentage Change in All Employees: Financial Activities 0.305 
Percentage Change in All Employees: Leisure and Hospitality 0.290 
Percentage Change in All Employees: Mining and Logging 0.285 
Percentage Change in All Employees: Information 0.271 
Percentage Change in All Employees: Other Services 0.268 
Percentage Change in All Employees: Retail Trade 0.213 
Percentage Change in All Employees: Utilities 0.054 
Percentage Change in All Employees: Mining and Logging: Oil and Gas Extraction 0.041 
Percentage Change in All Employees: Government 0.040 
Percentage Change in All Employees: Education and Health Services 0.013 

Employment: Hours 

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Durable 
Goods 

0.004 

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: 
Manufacturing 

0.002 

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: 
Nondurable Goods 

0.001 

Average Weekly Hours of Production and Nonsupervisory Employees: Financial Activities 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Education and Health 
Services 

0.000 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Employment: Hours 

Average Weekly Hours of Production and Nonsupervisory Employees: Professional and 
Business Services 

0.000 

Average Weekly Hours of Production and Nonsupervisory Employees: Information 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Utilities 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Nondurable Goods 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Leisure and 
Hospitality 

0.000 

Average Weekly Hours of Production and Nonsupervisory Employees: Wholesale Trade 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Private Service-
Providing 

0.000 

Average Weekly Hours of Production and Nonsupervisory Employees: Other 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Mining and Logging 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Transportation and 
Warehousing 

0.000 

Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Retail Trade 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Trade, 
Transportation, and Utilities 

0.000 

Average Weekly Hours of Production and Nonsupervisory Employees: Durable Goods 0.000 
Average Weekly Hours of Production and Nonsupervisory Employees: Construction 0.000 

Employment: Unemployment 

Number of Civilians Unemployed for 27 Weeks and Over 0.025 
Number of Civilians Unemployed for 15 to 26 Weeks 0.015 
Number of Civilians Unemployed for 5 to 14 Weeks 0.010 
Civilian Unemployment Rate 0.008 
Number of Civilians Unemployed for Less Than 5 Weeks 0.002 

Exchange Rates 
Percentage Change in US / U.K. Foreign Exchange Rate 0.007 
Percentage Change in US / Australia Foreign Exchange Rate 0.006 
Percentage Change in Canada / US Foreign Exchange Rate 0.003 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Exchange Rates 
Percentage Change in China / US Foreign Exchange Rate 0.001 
Percentage Change in Japan / US Foreign Exchange Rate 0.001 
Percentage Change in Switzerland / US Foreign Exchange Rate 0.000 

Housing 

Percentage Change in Housing Starts in Midwest Census Region 0.134 
Percentage Change in Housing Starts in Northeast Census Region 0.083 
Percentage Change in Privately Owned Housing Starts: 1-Unit Structures 0.081 
Log Housing Starts: 2-4 Units 0.066 
Percentage Change in Privately Owned Housing Starts: 5-Unit Structures or More 0.013 
Percentage Change in Housing Starts in West Census Region 0.012 
Percentage Change in Housing Starts in South Census Region 0.005 

Interest Rates 

3-Month Treasury Bill: Secondary Market Rate 0.078 
6-Month Treasury Bill: Secondary Market Rate 0.075 
1-Year Treasury Constant Maturity Rate 0.072 
5-Year Treasury Constant Maturity Rate 0.036 
10-Year Treasury Constant Maturity Rate 0.018 

Money Supply 

Percentage Change in Total Reserves of Depository Institutions 0.069 
Percentage Change in Commercial and Industrial Loans, All Commercial Banks 0.04 
Percentage Change in Monetary Base; Total 0.037 
Percentage Change in M2 Money Stock 0.001 
Percentage Change in M1 Money Stock 0.001 
Percentage Change in Consumer Loans, All Commercial Banks 0.000 

Petroleum: Downstream 

Percentage Change in US Total Gasoline Retail Sales by Refiners (Thousand Gallons per 
Day) 

0.163 

Percentage Change in US Product Supplied of Finished Petroleum Products (Thousand 
Barrels) 

0.034 

Percentage Change in US Product Supplied of Hydrocarbon Gas Liquids (Thousand Barrels) 0.019 
Percentage Change in US Product Supplied of Crude Oil and Petroleum Products (Thousand 
Barrels) 

0.018 

US Percent Utilization of Refinery Operable Capacity 0.000 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Petroleum: Imports & Exports 

Percentage Change in US Exports of Finished Petroleum Products (Thousand Barrels) 0.020 
Percentage Change in US Imports from Non-OPEC Countries of Total Petroleum Products 
(Thousand Barrels) 

0.015 

Percentage Change in US Imports from OPEC Countries of Crude Oil (Thousand Barrels) 0.011 
Percentage Change in US Exports of Crude Oil (Thousand Barrels) 0.003 
Percentage Change in US Imports from Persian Gulf Countries of Crude Oil (Thousand 
Barrels) 

0.003 

Percentage Change in US Imports from OPEC Countries of Total Petroleum Products 
(Thousand Barrels) 

0.001 

Percentage Change in US Imports from Non-OPEC Countries of Crude Oil (Thousand 
Barrels) 

0.001 

Petroleum: Prices 

Percentage Change in New York Harbor No. 2 Heating Oil Future Contract 3 (Dollars per 
Gallon) 

0.044 

Percentage Change in Cushing, OK Crude Oil Future Contract 4 (Dollars per Barrel) 0.021 
Percentage Change in Cushing, OK Crude Oil Future Contract 3 (Dollars per Barrel) 0.020 
Percentage Change in Cushing, OK Crude Oil Future Contract 2 (Dollars per Barrel) 0.019 
Percentage Change in Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel) 0.018 
Percentage Change in New York Harbor No. 2 Heating Oil Future Contract 1 (Dollars per 
Gallon) 

0.017 

Percentage Change in US Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB (Dollars per 
Gallon) 

0.010 

Percentage Change in New York Harbor Conventional Gasoline Regular Spot Price FOB 
(Dollars per Gallon) 

0.009 

Percentage Change in New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars per 
Gallon) 

0.008 

Percentage Change in US Gulf Coast Conventional Gasoline Regular Spot Price FOB 
(Dollars per Gallon) 

0.006 

Percentage Change in Mont Belvieu, TX Propane Spot Price FOB (Dollars per Gallon) 0.003 

Petroleum: Storage 

Percentage Change in US Ending Stocks of Hydrocarbon Gas Liquids (Thousand Barrels) 0.176 
Percentage Change in US Ending Stocks of Gasoline Blending Components (Thousand 
Barrels) 

0.166 

Percentage Change in US Ending Stocks of Petroleum Coke (Thousand Barrels) 0.054 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 

Petroleum: Storage 

Percentage Change in US Ending Stocks of Asphalt and Road Oil (Thousand Barrels) 0.052 
Percentage Change in US Ending Stocks of Unfinished Oils (Thousand Barrels) 0.029 
Percentage Change in US Ending Stocks of Conventional Motor Gasoline (Thousand 
Barrels) 

0.025 

Percentage Change in US Crude Oil Stocks at Refineries (Thousand Barrels) 0.021 
Percentage Change in US Ending Stocks of Finished Motor Gasoline (Thousand Barrels) 0.019 
Percentage Change in US Ending Stocks of Total Petroleum Products (Thousand Barrels) 0.013 
Percentage Change in US Ending Stocks of Crude Oil in SPR (Thousand Barrels) 0.013 
Percentage Change in US Ending Stocks of Miscellaneous Petroleum Products (Thousand 
Barrels) 

0.012 

Percentage Change in US Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) 0.010 
Percentage Change in US Ending Stocks of Distillate Fuel Oil (Thousand Barrels) 0.007 
Percentage Change in US Ending Stocks of Lubricants (Thousand Barrels) 0.006 
Percentage Change in US Ending Stocks of Kerosene-Type Jet Fuel (Thousand Barrels) 0.004 
Percentage Change in US Ending Stocks of Aviation Gasoline (Thousand Barrels) 0.003 
Percentage Change in US Ending Stocks of Waxes (Thousand Barrels) 0.001 
Percentage Change in US Crude Oil Stocks in Transit (on Ships) from Alaska (Thousand 
Barrels) 

0.000 

Percentage Change in US Ending Stocks of Kerosene (Thousand Barrels) 0.000 
Percentage Change in US Ending Stocks of Residual Fuel Oil (Thousand Barrels) 0.000 

Petroleum: Upstream 
Percentage Change in US Crude Oil Rotary Rigs in Operation 0.025 
Percentage Change in US Field Production of Crude Oil (Thousand Barrels) 0.000 

Producer Price Indices 

Percentage Change in Producer Price Index by Industry: Drilling Oil and Gas Wells 0.025 
Percentage Change in Producer Price Index by Industry: Total Manufacturing Industries 0.023 
Percentage Change in Producer Price Index for All Commodities 0.019 
Percentage Change in Producer Price Index by Industry: Support Activities for Oil and Gas 
Operations 

0.008 

Percentage Change in Producer Price Index by Industry: Oil and Gas Field Machinery and 
Equipment Manufacturing 

0.004 
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Table 3.3 Continued 
Category Transformed Series Name R-Squared 
Producer Price Indices Percentage Change in Producer Price Index by Industry: Total Mining Industries 0.003 

Production Indices 

Percentage Change in Industrial Production: Nonindustrial supplies 0.629 
Percentage Change in Industrial Production: Miscellaneous durable goods 0.619 
Percentage Change in Industrial Production: General business supplies 0.571 
Percentage Change in Industrial Production: Construction supplies 0.531 
Percentage Change in Industrial Production: Manufacturing (SIC) 0.435 
Percentage Change in Industrial Production: Business supplies 0.402 
Percentage Change in Industrial Production: Final Products and Nonindustrial Supplies 0.379 
Percentage Change in Industrial Production: Durable manufacturing 0.354 
Percentage Change in Industrial Production: Other equipment parts 0.353 
Percentage Change in Industrial Production: Computers, communications equipment, and 0.353 
Percentage Change in Industrial Production: Equipment parts 0.353 
Percentage Change in Industrial Production: Computer and other board assemblies and parts 0.326 
Percentage Change in Industrial Production: Finished processing 0.304 
Percentage Change in Industrial Production: Industrial and other equipment 0.303 
Percentage Change in Industrial Production: Miscellaneous nondurable goods 0.299 
Percentage Change in Industrial Production: Final products 0.247 
Percentage Change in Industrial Production: Other equipment 0.239 
Percentage Change in Industrial Production: Industrial equipment 0.236 
Percentage Change in Industrial Production: Other manufacturing 0.215 
Percentage Change in Industrial Production: Miscellaneous nondurable materials 0.180 
Percentage Change in Industrial Production: Durable consumer goods 0.152 
Percentage Change in Industrial Production: Consumer goods 0.146 
Percentage Change in Industrial Production: Other nondurable materials 0.131 
Percentage Change in Industrial Production: Defense and space equipment 0.126 
Percentage Change in Industrial Production Index 0.118 
Percentage Change in Industrial Production: Mining 0.101 
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Table 3.3 Continued 
Category Transformed Series Names R-Squared 

Production Indices 

Percentage Change in Industrial Production: Consumer parts 0.088 
Percentage Change in Industrial Production: Residential utilities 0.063 
Percentage Change in Industrial Production: Consumer energy products 0.058 
Percentage Change in Industrial Production: Electric and gas utilities 0.020 
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Table 3.4 Median Responses of Selected Variables to the Structural Shocks across All Periods 

Variable 

Change in Contemporaneous Period Cumulative Change at One Year 

Oil Supply 
Aggregate 

Demand 
Oil 

Demand Oil Supply 
Aggregate 

Demand 
Oil 

Demand 
Percentage Change in Oil Prices 3.6* 4.6* 6.2* 23.5* 30.1* 39.6* 
Percentage Change in Oil Production -0.1* 0.4* 0.1* -1.0* 2.2 0.6  
Percentage Change in Oil Storage -0.3* -0.7* -0.6* -2.0* -4.5* -4.2* 
Change in Refinery Capacity Utilization (Percentage Points) -1.0* 0.7* -0.6* -6.7* 5.6* -3.5 
Percentage Change in Gasoline Sales -1.5* 1.2* -0.7* -9.9* 8.1* -4.2 
Percentage Change in Industrial Production Index -0.2* 0.2* -0.0* -1.1* 1.2* -0.3 
Percentage Change in Producer Price Index 0.2* 0.4* 0.5* 1.5* 2.7* 3.0* 
Percentage Change in Canada-US Exchange Rate -0.4* -0.4* -0.6* -2.4* -2.9* -3.9* 
* The entry’s 90-percent HPD interval does not contain zero. 
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Figure 3.1 Plot of oil prices (Cushing WTI Spot Price) over time with recessions shaded
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Figure 3.2 Plot of the federal funds rate over time with recessions shaded
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Figure 3.3 Plot of the median of the latent factor with 68- and 90-percent highest posterior densities
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Figure 3.4 Median R-squared values for the informational series (individually) 
regressed on the latent factor regressed across all MCMC iterations, organized by 
category
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Figure 3.5 Plots of the median of the time-varying residual volatilities for latent 
factor, oil prices, and federal funds rate with 68- and 90-percent highest posterior 
densities
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Figure 3.6 Evolution of 12-month cumulative responses of oil prices to shocks in oil supply, aggregate demand, and oil 
demand with 68- and 90-percent highest posterior densities
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Figure 3.7 Evolution of proportions of the 12-month forecast error variance for oil prices explained by shocks in oil 
supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.8 Number of months until stabilization of oil prices following shocks in oil supply, aggregate demand, and oil 
demand with 12-month arithmetic moving average
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Figure 3.9 Evolution of 12-month cumulative responses of oil production to shocks in oil supply, aggregate demand, 
and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.10 Evolution of proportions of the 12-month forecast error variance for oil production explained by shocks in 
oil supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.11 Number of months until stabilization of oil production following shocks in oil supply, aggregate demand, 
and oil demand with 12-month arithmetic moving average 
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Figure 3.12 Evolution of 12-month cumulative responses of oil storage to shocks in oil supply, aggregate demand, and 
oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.13 Evolution of proportions of the 12-month forecast error variance for oil storage explained by shocks in oil 
supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.14 Number of months until stabilization of oil storage following shocks in oil supply, aggregate demand, and 
oil demand with 12-month arithmetic moving average
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Figure 3.15 Evolution of 12-month cumulative responses of refinery capacity utilization to shocks in oil supply, 
aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.16 Evolution of proportions of the 12-month forecast error variance for refinery capacity utilization 
explained by shocks in oil supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior 
densities 
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Figure 3.17 Number of months until stabilization of refinery capacity utilization following shocks in oil supply, 
aggregate demand, and oil demand with 12-month arithmetic moving average
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Figure 3.18 Evolution of 12-month cumulative responses of gasoline sales to shocks in oil supply, aggregate demand, 
and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.19 Evolution of proportions of the 12-month forecast error variance for gasoline sales explained by shocks in 
oil supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.20 Number of months until stabilization of gasoline sales following shocks in oil supply, aggregate demand, 
and oil demand with 12-month arithmetic moving average
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Figure 3.21 Evolution of 12-month cumulative responses of Industrial Production Index to shocks in oil supply, 
aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.22 Evolution of proportions of the 12-month forecast error variance for Industrial Production Index 
explained by shocks in oil supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior 
densities 
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Figure 3.23 Number of months until stabilization of Industrial Production Index following shocks in oil supply, 
aggregate demand, and oil demand with 12-month arithmetic moving average
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Figure 3.24 Evolution of 12-month cumulative responses of Producer Price Index to shocks in oil supply, aggregate 
demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.25 Evolution of proportions of the 12-month forecast error variance for Producer Price Index explained by 
shocks in oil supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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Figure 3.26 Number of months until stabilization of Producer Price Index following shocks in oil supply, aggregate 
demand, and oil demand with 12-month arithmetic moving average
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Table 4.1 Proportion of Graphs with Structural Hamming Distance per Total 
Relationship (SHDTR) Value of Zero 
Data-Generating Process Graphs Evaluated  Proportion Zero SHDTR 
2V1L 2,944,000  0.333 
V2L 47,104,000  0.109 
3V1L 94,208,000  0.062 
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Table 4.2 Average Structural Hamming Distance per Lag Relationship by 
Number of Observations 
 Number of Observations 
Data-Generating Process 50 100 250 500 1,000 
2V1L 0.314 0.264 0.221 0.204 0.187 
2V2L 0.342 0.305 0.271 0.254 0.242 
3V1L 0.341 0.294 0.252 0.232 0.217 
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Table 4.3 Average Structural Hamming Distance per Lag Relationship 
by the Number of Lags in the PC Algorithm Search 
 Search Lags 
Data-Generating Process Insufficient Exact Extra 
2V1L  0.140 0.271 
2V2L 2.993 0.192 0.283 
3V1L  0.181 0.296 
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Table 4.4 Average Structural Hamming Distance per Contemporaneous 
Relationship by Number of Observations 
 Number of Observations 
Data-Generating Process 50 100 250 500 1,000 
2V1L 0.325 0.293 0.255 0.227 0.203 
2V2L 0.379 0.358 0.334 0.317 0.301 
3V1L 0.382 0.359 0.330 0.310 0.292 
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Figure 4.1 Directed Acyclic Graph representation of the data-generating process 
defined in equation (4.3)
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Figure 4.2 Potential errors of the PC Algorithm’s selected graph for the data-generating process in equation (4.3) 
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Figure 4.3 Overview of all simulation results for the lag portion of the data-
generating process.  The values of the Structural Hamming Distance per lagged 
relationship are averaged, aggregated over data-generating process, the standard 
deviation of the residuals, the number of lags included in the PC Algorithm, the 
number of observations in the time series, and the significance level used.
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Figure 4.4 Overview of all simulation results for the lag portion of the data-
generating process.  The values of the Structural Hamming Distance per lagged 
relationship are averaged, aggregated over data-generating process, the number of 
lags included in the PC Algorithm, the number of observations in the time series, 
and the significance level used.  
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Figure 4.5 Average Structural Hamming Distance per lagged relationship for the 
lag portion of the data-generating process by significance level
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Figure 4.6 Average Structural Hamming Distance per lagged relationship by lags 
included in the PC Algorithm search.  When extra lags is true, the number of lags 
used in the search exceeds the true number of lags in the data-generating process.  
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Figure 4.7 Overview of all simulation results for the contemporaneous portion of 
the data-generating process.  The values of the Structural Hamming Distance per 
contemporaneous relationship are averaged, aggregated over data-generating 
process, the number of lags included in the PC Algorithm, the number of 
observations in the time series, and the significance level used.  
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Figure 4.8 Structural Hamming Distance per total relationship for each data-
generating process by system R-squared value.  The system R-squared values are 
aggregated into 20 bins five percentage points wide.  A histogram with the 
proportion of all datasets generated falling in each R-squared bin is shown.  
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APPENDIX B 

ADDITIONAL STRUCTURAL IMPULSE RESPONSE FUNCTION PLOTS 

 

For each variable, the structural impulse response functions (SIRFs) are plotted at four 

selected periods for shocks in oil supply, aggregate demand, and oil demand.  Each plot 

also contains 68- and 90-percent highest posterior densities (HPDs).  In general, it is 

difficult to ascertain the degree of time variation using a small number of selected 

periods, especially when considering the entire credible set provided by the HPDs.   

 SIRFs for oil prices in response to these shocks for four selected periods are 

shown in Figure A.1.  A visual examination of these SIRFs reveals no major differences 

in shape or magnitude for the same shocks across different periods.  For an oil supply 

shock, the median oil prices increase is largest for June 2008, but well within the 

confidence intervals associated with any of the other three periods.  Oil prices respond 

relatively more to shocks in aggregate demand than to oil supply shocks.  The median 

increase in oil prices for a shock in aggregate demand is the largest in June 2008, but 

again well within the confidence intervals associated with any of the other three periods.  

An oil demand shock produces the largest median increase in oil prices of the three 

shocks regardless of the period.   

SIRFs for oil production are plotted in Figure A.2.  Again, visual examination 

reveals no major differences in shape or magnitude for the same shock across different 

periods.   
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SIRFs for oil storage at the selected periods are shown in Figure A.3.  Storage of 

oil decreases with all three shocks.  Time differences are most pronounced in the 

response to oil demand shocks; oil storage decreases at the median more for 2009 and 

2016 than the other two periods.  The effects of oil and aggregate demand shocks are 

relatively larger in magnitude compared to oil supply shocks. 

Capacity utilization for refineries responds to the identified shocks during the 

same period (Figure A.4).  As for the previous variables, the general shapes of the SIRFs 

are similar across the time periods.  The median IRF for 2005 shows a distinct increase 

after six months that is not as distinct in the other periods.  Oil demand shocks produce 

the smallest responses in magnitude.   

SIRFs for gasoline retail sales are similar to those for refinery utilization in shape 

and differences by period (Figure A.5).  The effects of aggregate demand shocks are 

similar in magnitude but opposite in sign to those of the oil supply shock.  Shocks in oil 

demand decrease refiners’ sales of gasoline.  The negative response can be explained 

considering the identifying restrictions for this shock.  In this shock, as oil demand 

increases, so does the price of oil.  Because the acquisition costs of oil increase for 

refiners, their output prices also increase, leading to an increase in gasoline prices for 

consumers, reducing the quantity demanded of gasoline.  At the same time, the demand 

shock decreases real activity in the economy.  Together, these serve to decrease gasoline 

sales to retail outlets.  The effects of oil demand shocks are the smallest in magnitude 

and shortest in duration of the three shocks.   
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SIRFs are shown by period for the Industrial Production Index in Figure A.6.  

None of the responses demonstrate much variability with respect to time.  Further, none 

of the shocks produces a contemporaneous response larger in magnitude than 0.2 

percent.    
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Figure A.1 Instantaneous structural impulse response functions for oil prices to shocks in oil supply, aggregate 
demand, and oil demand with 68- and 90-percent highest posterior densities   
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Figure A.2 Instantaneous structural impulse response functions for oil production to shocks in oil supply, aggregate 
demand, and oil demand with 68- and 90-percent highest posterior densities
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Figure A.3 Instantaneous structural impulse response functions for oil storage to shocks in oil supply, aggregate 
demand, and oil demand with 68- and 90-percent highest posterior densities   
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Figure A.4 Instantaneous structural impulse response functions for refinery capacity utilization to shocks in oil supply, 
aggregate demand, and oil demand with 68- and 90-percent highest posterior densities   
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Figure A.5 Instantaneous structural impulse response functions for refiners’ retail sales of gasoline to shocks in oil 
supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities   
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Figure A.6 Instantaneous structural impulse response functions for the Industrial Production Index to shocks in oil 
supply, aggregate demand, and oil demand with 68- and 90-percent highest posterior densities 
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