
GOODNESS-OF-FIT TESTING USING CROSS-VALIDATION BAYES FACTORS

A Dissertation

by

MATTHEW R. MALLOURE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jeffrey D. Hart
Committee Members, Thomas Wehrly

Suojin Wang
Ximing Wu

Head of Department, Valen Johnson

December 2017

Major Subject: Statistics

Copyright 2017 Matthew R. Malloure

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/187125528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Statistical methods for selecting between two competing models have a long and sto-

ried history from both the frequentist and Bayesian perspectives. That being said, there

are known limitations that exist when using frequentist tests based on P -values for model

selection. Therefore, we prefer to take a Bayesian approach to model selection that utilizes

Bayes factors. In this research, we consider two different model selection problems: mul-

tivariate nonparametric goodness-of-fit and comparing two parametric models. For both

problems, we propose intuitive and computationally simple model selection methods that

take advantage of data splitting and cross-validation Bayes factors.

Bayesian multivariate nonparametric goodness-of-fit is a difficult problem. The alter-

native model often requires an infinite-dimensional prior distribution that makes compu-

tation of the marginal likelihood complex. By applying data splitting, we are able to form

a nonparametric alternative model using the familiar multivariate kernel density estimate

and compute a cross-validation Bayes factor very easily.

As for comparing two parametric models (either nested or non-nested), difficulties can

arise when formulating prior distributions or approximating marginal likelihoods for either

model. We can avoid both of these concerns by computing a prior-free cross-validation

Bayes factor by using data splitting. These Bayes factors depend solely on computing

maximum likelihood estimates and evaluating likelihood functions.

In both scenarios, we show that our cross-validation Bayes factors are consistent at an

exponential rate, regardless of which hypothesis is true. This includes the traditionally

difficult case where the smaller of two nested parametric models is true. We also provide

numerous simulation studies and real data analyses to explore performance and practical

application of these methods.

ii

DEDICATION

I dedicate this to Yeni, my parents (John and Suzy),

and my sisters (Lisa, Karen, and Kristen).

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to the following individuals for making

this dissertation and my doctoral studies possible.

First, I would like to thank Dr. Jeffrey D. Hart for serving as my advisor and allowing

me the opportunity to research cross-validation Bayes factors. Dr. Hart’s enthusiasm for

research and dedication to teaching his students truly made this an enjoyable experience.

This dissertation would not have been possible without his guidance, wisdom, meticulous

attention to detail, and seemingly infinite patience.

Next, I would like to thank Dr. Thomas Wehrly, Dr. Suojin Wang, and Dr. Ximing

Wu for serving as members of my committee and offering their questions, comments, and

suggestions along the way.

I am especially grateful to Dr. Michael Longnecker for always having the time to

answer questions, give teaching advice, provide needed motivation, see how things were

going, and of course talk about everything Michigan over my entire career at Texas A&M.

I would also like to thank all of my professors and classmates whether it be at Grand

Valley State or here at Texas A&M, for helping me discover my passion for Statistics and

for fostering my education over the last 11 years.

Last, but certainly not least, I am extremely grateful for the love, continued support,

and unwavering belief in me expressed by Yeni and my family. I can finally answer your

question, my research project is now complete!

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Jeffrey D.

Hart [advisor], Professor Thomas Wehrly and Professor Suojin Wang of the Department

of Statistics and Professor Ximing Wu of the Department of Agricultural Economics.

The gene expression microarray data analyzed in Chapter 4 were collected by Profes-

sor Robert S. Chapkin and associates of the Department of Nutrition and Food Science.

A larger analysis of these data can be found in the article by Davidson et al. (2004). The

other three data sets can all be found in publicly available repositories. Specifically, the

kevlar data (Chapter 2) are found in Andrews and Herzberg (1985), the Academic Perfor-

mance Index data (Chapter 4) are from the survey package in R (Lumley, 2017), and civil

engineering data (Chapter 5) are posted on the University of California at Irvine Machine

Learning Repository (Lichman, 2013).

The research in Chapter 5 on the parametric CVBF method has been submitted for

publication (co-authored with Professor Jeffrey D. Hart).

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by a Graduate Merit Fellowship from Texas A&M Uni-

versity and a state funded (Technology) Teaching Assistantship from the Department of

Statistics.

v

NOMENCLATURE

API Academic Performance Index

BF Bayes Factor

CVBF Cross-Validation Bayes Factor

CVBFK Kernel Cross-Validation Bayes Factor

CVBFK(A) Kernel Cross-Validation Bayes Factor for bandwidth
matrix class A

CVBFP Parametric Cross-Validation Bayes Factor

CVWE Cross-Validation Weight of Evidence

DP Dirichlet Process

DPM Dirichlet Process Mixture

EDF Empirical Distribution Function

HJ Hjort-Jones Estimator

IBF Intrinsic Bayes Factor

iid Independent and Identically Distributed

IQR Interquartile Range

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimate

UIR Unit Information Reference

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiv

1. INTRODUCTION AND LITERATURE REVIEW 1

1.1 History of Goodness-of-Fit Testing . 2
1.1.1 Frequentist Tests . 2
1.1.2 Comparison of Frequentist and Bayesian Hypothesis Testing . . . 9
1.1.3 Bayesian Tests . 13

1.2 Research Layout . 19

2. UNIVARIATE CVBFK METHOD . 20

2.1 General Description . 20
2.2 Formal Methodology . 20
2.3 Real Data Example: Kevlar Strand Data 25
2.4 Conclusions . 28

3. MULTIVARIATE KERNEL DENSITY ESTIMATION 30

3.1 Definition . 30
3.2 Bandwidth Matrix Classes . 31
3.3 Density Estimation Comparison Across Bandwidth Matrix Classes 32
3.4 Curse of Dimensionality . 33
3.5 Applying Multivariate Kernel Density Estimation to Kernel CVBF 34

vii

4. TESTING MULTIVARIATE GOODNESS-OF-FIT USING KERNEL CROSS-
VALIDATION BAYES FACTORS . 36

4.1 Multivariate Kernel CVBF Methodology 38
4.2 Construction and Computation of the Alternative Marginal Likelihood . . 39

4.2.1 Scalar Bandwidth Matrix Class : CVBFK(S) 40
4.2.2 Diagonal Bandwidth Matrix Class : CVBFK(D) 42
4.2.3 Unconstrained Bandwidth Matrix Class : CVBFK(F) 43
4.2.4 Numerical Approximation of the Alternative Marginal Likelihood 44

4.3 Testing Multivariate Normality Simulation 46
4.3.1 Derivation of the Null Marginal Likelihood 46
4.3.2 Testing Bivariate Normality Simulation 47
4.3.3 Testing d-variate Normality Simulation 50
4.3.4 Simulation Conclusions . 53

4.4 Effect of Location and Scale on Kernel CVBF 54
4.4.1 Location Invariance . 54
4.4.2 Scale Invariance . 56
4.4.3 Location-Scale Invariant Version of the CVBFK(S) and CVBFK(D)

Methods . 59
4.4.4 Simulation Results for CVBFK(S) on Re-Scaled Observations . . 60
4.4.5 Summary . 62

4.5 Choosing Training Set Size m and Number of Splits N 64
4.5.1 Calibration Steps to Choose m 64
4.5.2 Number of Splits N . 66

4.6 Bayes Factor Consistency and Computation in Large Samples 67
4.6.1 Mathematical Justification for Consistency 68
4.6.2 Empirical Consistency Results 75
4.6.3 Divide and Conquer Kernel CVBF 79

4.7 Comparison to Frequentist Goodness-of-Fit Tests 86
4.7.1 Type I Error Rates . 87
4.7.2 Power Study . 88
4.7.3 Conclusions . 90

4.8 Curse of Dimensionality . 91
4.8.1 The Impact of the Curse of Dimensionality on Kernel CVBF Methods 91
4.8.2 Dimension Reduction Techniques Applied to Kernel CVBF 94

4.9 Data Analysis . 98
4.10 Application to Random Effects Models 101

4.10.1 Formulation of the Null and Alternative Marginal Likelihoods . . 102
4.10.2 Random Effects Model Simulation (n = 2) 104
4.10.3 Real Data Example: Gene Expression Levels in Rats 105

4.11 Summary and Conclusions . 108

5. COMPARING TWO PARAMETRIC MODELS USING CVBF 111

viii

5.1 Introduction . 111
5.2 CVBFP Methodology . 114
5.3 Bayes Factor Consistency Results . 116

5.3.1 Non-Nested Models . 116
5.3.2 Nested Models . 119
5.3.3 The Benefit of Multiple Data Splits 125

5.4 Simulation Studies . 127
5.4.1 Testing the Fit of a Univariate Exponential Versus Gamma Model 127
5.4.2 Testing Trivariate Normality Versus Skew-Normality 129
5.4.3 Comparing CVBFP to a Frequentist Test 133
5.4.4 Comparing CVBFP to a Traditional Bayes Factor 135

5.5 Real Data Analysis . 138
5.6 Summary and Conclusions . 140

6. SUMMARY AND FUTURE WORK . 143

REFERENCES . 147

APPENDIX . 156

ix

LIST OF FIGURES

FIGURE Page

2.1 Distribution of the log(time to failure) for 100 Kevlar 49 epoxy strands
under 80% stress. A kernel density estimate (solid line) and an estimated
normal curve (dashed line) are also provided. 26

2.2 Left Panel: CVWE values for the observed Kevlar data with N = 1, 000
random splits at training set sizes 5 ≤ m ≤ 50. Right Panel: CVWE30,100

values from 500 random samples from the estimated null model. 28

4.1 Shape of the d-dimensional prior distribution for the scalar bandwidth ma-
trix class. 41

4.2 Testing 4-D normality using CVWEK(S) (left panel) and CVWEK(D)
(right panel) for 100 random samples (n = 2000) from a standard nor-
mal distribution (solid), t3 distribution (dashed), skew-normal distribution
(dotted), and Laplace distribution (dotdashed). Each sample is randomly
split N = 30 times for training set sizes m = 200, 400, 600, 800, and 1000 51

4.3 Testing 4-D normality using CVWEK(S) for re-scaled data from a t3 dis-
tribution (dashed), skew-normal distribution (dotted), and Laplace distri-
bution (dotdashed). In total, 100 independent random samples of size
n = 2000 are considered for each distribution and the CVWE values are
based on N = 30 splits and training set sizes m = 200, 400, 600, 800, and
1000. 61

4.4 Testing 3-D normality using CVWEK(S) on the original data (solid curves)
and re-scaled data (dashed curves) as well as CVWEK(D) on the original
data (dotted curves). In total, 96 random samples of size n = 1, 000 were
drawn from the normal (top left panel), skew-normal (top right panel), t3
(bottom left panel), and Laplace (bottom right panel) distributions. 63

4.5 Effect of the number of splits on the interquartile range of 200 CVWEK(S)
values for bivariate data (left panel) trivariate data (right panel) from a
standard normal distribution (solid), t3 distribution (dashed), skew-normal
distribution (dotted), and Laplace distribution (dotdashed). 67

x

4.6 Bayes factor consistency of the scaled CVBFK(S) (N = 30, p = .1, .2, .3,
.4, .5) method when testing four-dimensional normality for standard nor-
mal data. In decreasing order, the curves correspond to the following sam-
ple sizes: n = 500, 1000, 2000, 5000 and 10000. 77

4.7 Bayes factor consistency of the scaled CVBFK(S) (N = 30, p = .1, .2, .3,
.4, .5) method when testing four-dimensional normality for skew-normal
data (top panel) and Laplace data (bottom panel). Each curve corresponds
to one of the following sample sizes: n = 500, 1000, 2000, 5000 and 10000. 78

4.8 Testing 10-dimensional normality using the scaled CVBFK(S) method.
The simulation consists of 32 samples from normal (solid), skew-normal
(dotted), and Laplace (dotdashed) distributions, N = 30 random splits,
and training set sizes m = 500, 1000, 1500, 2000, and 2500. 92

4.9 Left Panel: Contour plot displaying the bivariate distribution of API scores
from the year 2000 for two schools chosen from 570 districts in California.
Right Panel: Contour plot of 570 observations from a N2

(
µ̂, Σ̂

)
distribu-

tion based on the sample estimates from the API data. 99

4.10 Scaled CVWEK(S) curves for the observed API data based on N = 52
random splits and bivariate normal data based onN = 20 splits for training
set sizes m = {30, 31, . . . , 284, 285}. 101

4.11 Verifying the applicability of the scaled CVBFK(S) method to check the
Gaussian model assumption in a simple random effects model. For 25
samples, either Xij ∼ L(0, 1) (dashed line) or Xij ∼ N(0, 1) (solid line),
of size p = 1000 and dimension n = 2, the CVWEK(S) values are com-
puted using N = 30 and m = 100, 200, . . . , 500. 105

4.12 The estimated distribution of gene expression levels for each of n = 5 rats
and p = 8, 038 genes from the colon cancer study conducted by Davidson
et al. (2004). 106

4.13 Bivariate scatterplots of gene expression levels for the pairs of rats: (1,2)
(left panel), (3,4) (middle panel), and (1,5) (right panel). 107

xi

5.1 Median of transformed CVWE when testing exponential versus gamma
densities. Results are based on 1,000 replications from gamma(1,2) (top
panel), gamma(1/2,2) (middle panel), and gamma(2,2) (bottom panel) den-
sities. The solid, dashed and dotted lines correspond to n = 100, 500, and
1000, respectively. The upper and lower ends of the vertical lines indicate
quartiles, and the dashed horizontal line indicates strong evidence accord-
ing to the scale of Kass and Raftery (1995). 128

5.2 Median of transformed CVWE when testing trivariate normality for 256
samples from N(0, I3) (top panel) and SN(0, I3,10) (bottom panel) data.
The solid, dashed and dotted lines correspond to n = 1000, 2500 and 5000,
respectively. The upper and lower ends of the vertical lines indicate quar-
tiles, and the dashed and dotted horizontal lines indicate strong and posi-
tive evidence according to the scale of Kass and Raftery (1995). 131

5.3 Comparison of the parametric CVWE values and the Bayes factors from a
traditional Bayesian regression analysis. Each color represents one of the 6
(n,m) pairs: (1, 000, 250), (5, 000, 500), (10, 000, 750), (25, 000, 1, 000),
(50, 000, 1, 500), and (100, 000, 2, 000). Each individual point is one of
10, 000 replications of an (n,m) pair. 137

5.4 Residuals from homoscedastic linear model fitted to the civil engineering
data. 139

5.5 At each training set size, the median and quartiles for the CVWE values
from the observed civil engineering data based on 200 random splits (top
panel) and for the 1,000 data sets from the estimated homoscedastic model
with 50 splits (bottom panel) are provided. 141

A.1 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for uncorrelated normal data. 156

A.2 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for correlated normal data. 157

A.3 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for skewed data. 157

A.4 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for kurtotic data. 158

A.5 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (I) data. 158

xii

A.6 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (II) data. 159

A.7 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (III) data. 159

A.8 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (IV) data. 160

A.9 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (I) data. 160

A.10 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (II) data. 161

A.11 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (III) data. 161

A.12 Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for quadrimodal data. 162

xiii

LIST OF TABLES

TABLE Page

1.1 Distance measures for univariate goodness-of-fit tests based on empirical
distribution functions (D’Agostino and Stephens, 1986). 5

1.2 Amount of evidence in favor of the alternative model for varying values of
a Bayes factor (Kass and Raftery, 1995) 11

4.1 Application of a Divide and Conquer scheme to testing four-dimensional
normality of a single data set of n = 10, 000 observations from a normal,
skew-normal, t3, and Laplace distributions. Each data set is partitioned
into w = 1, 2, 5, 10, 20, 40, and 100 subgroups and the scaled CVBFK(S)
method is applied to each partition with N = 30 and m = .3k. The
median CVWEK(S) value across all w partitions is reported along with
the respective computation times. 84

4.2 Number of Type I errors in 1,000 randomly generated trivariate normal
distributions with n = 1, 000 using common frequentist goodness-of-fit
tests for normality. 87

4.3 The proportion of 1,000 randomly generated skew-normal random sam-
ples with n = 1, 000 where each goodness-of-fit test correctly concludes
against trivariate normality. 89

4.4 The proportion of 1,000 randomly generated Laplace random samples with
n = 1, 000 where each goodness-of-fit test correctly concludes against
trivariate normality. 89

4.5 Testing four-dimensional normality of n = 1, 000 SN(ξ = 0,Ω = I4, α =
10) observations using the scaled CVWEK(S) values from the six two-
dimensional marginal distributions (m = 400, N = 30) 96

4.6 Scaled CVWEK(S) values for testing bivariate normality for the 10 bivari-
ate marginal distributions for the n = 5 rats using a Divide and Conquer
scheme with w = 10, N = 30, and 20% / 80% split. 108

5.1 Median CVWE values (with interquartile ranges) for 500 replications of
testing normal against skew-normal densities. The CVWE values are ob-
tained from N = n/m independent (I) or dependent (D) training sets. . . 126

xiv

5.2 Median CVWEP and scaled CVWEK(S) values for 100 random samples
of size n = 1, 000 from either a trivariate normal or skew-normal model
using training set sizes m = 100, 200, 300, 400, and 500 and N = 28
random splits. 132

xv

1. INTRODUCTION AND LITERATURE REVIEW

Statistical methods are often derived based on the assumption that the data follow a

specific parametric distribution. For instance, methods such as t-tests, linear regression,

ANOVA, MANOVA, principal components analysis, and linear discriminant analysis re-

quire the data to follow either a univariate or multivariate normal distribution (Korkmaz

et al., 2016). While the normal distribution is by far the most prevalent model used, there

are situations where distributions such as the chi-square, log-normal, exponential, or Pois-

son distributions need to be assumed. For example, Rayner and Best (1989) mention that

"Safety limits for extreme rainfall used by hydrologists involved in flood control may as-

sume a lognormal distribution", as well as, "Estimates of bacteria in sewage may be based

on an exponential distribution". Regardless of which parametric distribution is assumed,

when applying a statistical method in practice, the validity of the conclusions will depend

on how well the necessary probability model fits the observed data. Therefore, in order

to perform a valid statistical analysis, it is of paramount importance to develop statistical

methods, known as goodness-of-fit tests, to verify that the underlying data model meets

the necessary assumptions. As quoted in Rayner and Best (1989), H.J. David defined a

goodness-of-fit test as "... a statistical test of a hypothesis that the sample population is

distributed in a specific way" and Oscar Kempthorne coined goodness-of-fit tests as the

"classical problem of statistical inference". Prior to the development of goodness-of-fit

tests, the only way to assess distributional assumptions was visually, which can only be

done feasibly in fewer than three dimensions.

In their most general form, goodness-of-fit tests compare a parametric model to a non-

parametric model. The parametric model in this case is a density function (univariate

or multivariate) that is indexed by a finite set of unknown parameters. The challenge

1

facing statisticians in developing these tests lies in forming the nonparametric alterna-

tive. Since by definition, a nonparametric model assumes nothing regarding its functional

form, the model is infinite-dimensional. Therefore, while defining the parametric model

and specifying its parameters is easy, finding a suitable nonparametric model over a high-

dimensional function space is often difficult.

1.1 History of Goodness-of-Fit Testing

Goodness-of-fit tests have a long and storied history dating back to 1900 and are still

studied extensively to this day. Over the course of the first 100 years of study, goodness-

of-fit tests were mainly approached from the frequentist perspective due to computational

ease. It was not until the mid 1990s that we saw the first practical application of Bayesian

methods to test distributional fit in the statistical literature. In this section, we will ex-

plore the history of multivariate goodness-of-fit testing by pointing out the more notewor-

thy advances from both the frequentist and Bayesian paradigms. As we will see in both

paradigms, the majority of the earliest goodness-of-fit tests applied only to univariate data.

However, over time, the need for multivariate tests became apparent and the natural ap-

proach was to either directly or indirectly extend the univariate tests to multivariate data.

In fact, the current thesis extends a univariate approach to multivariate data. Therefore,

the history included in this section will not only include the basic details of the main mul-

tivariate techniques, but also their respective univariate foundations. With two different

approaches to the same problem, it is also important to include the logic behind our de-

cision to take the Bayesian viewpoint. Thus, this section also includes a comparison of

frequentist and Bayesian hypothesis testing.

1.1.1 Frequentist Tests

The first goodness-of-fit test found in the statistical literature is Karl Pearson’s chi-

squared test, published in 1900 (Pearson, 1900). Even though this test is over 100 years

2

old, it is still taught in every introductory statistics course and used in practical statistical

analyses daily. In fact, this seminal work was so monumental in the field of statistics that

a conference on Goodness-of-Fit Tests and Model Validity, was held in Paris, France in

May of 2000 to commemorate its 100 year anniversary (Huber-Carol et al., 2002). As

summarized by C.R. Rao (Huber-Carol et al., 2002), the chi-squared test is ideally suited

for qualitative data in the form of frequencies for a finite number s of natural categories.

In order to compare the fit of the observed data to an assumed discrete probability model

(multinomial, Poisson, etc.) we test the hypotheses,

H0 : πi = πi(θ), i = 1, . . . , s

H1 : πi 6= πi(θ), i = 1, . . . , s

where the probability for category i is a function of the completely specified parameter

vector θ. To test these hypotheses, Pearson (1900) computed the chi-square statistic,

χ2 =
s∑
i=1

(Oi − Ei)2

Ei
, (1.1)

which compares the observed frequencies (Oi = npi) from the data to the expected fre-

quencies (Ei = nπi(θ)) under the assumed model for each of the s categories. The χ2

statistic is a dissimilarity measure such that smaller values indicate that the observed data

are more consistent with the assumed model (χ2 = 0 indicates a perfect match). Asymp-

totically, the χ2 statistic follows a χ2
s−1 distribution and tail probabilities can be used to

make conclusions about how well the parametric model fits the data.

Pearson’s goodness-of-fit test is a specific form of a more general class of goodness-

of-fit tests defined by Neyman (1937) known as "smooth" goodness-of-fit tests. "Smooth"

refers to departures from the null model that are based on the first four central moments of

3

the distribution. To carry out Neyman’s tests, the null hypothesis is based on applying the

probability integral transform to the specified null probability density function f(x) (with

cdf F (x)) so that H0 : Y = F (x) ∼ U(0, 1). The smooth alternative distribution of order

k has the form,

gk(y; θ) = C(θ) exp
[k∑
i=1

θiπi(y)
]
,

where θT = (θ1, · · · , θk) is a vector of parameters, C(θ) is the normalizing constant, and

πi(y)’s are orthonormal polynomials. The alternative model is considered an extended

model since when θ is the zero vector, it reduces to the null model. The resulting Neyman

test statistic is

Ψ2
k =

k∑
i=1

[n∑
j=1

πi(Yj)/
√
n
]2

, (1.2)

which asymptotically follows a χ2
k distribution. Neyman’s "smooth" goodness-of-fit tests

can be extended to a wide variety of scenarios including both simple or composite hy-

potheses and discrete or continuous models as detailed further in Rayner and Best (1989).

Notice that in Neyman’s "smooth" goodness-of-fit tests, the null model is embedded

in the alternative model. Thus, the next natural advancement in nonparametric goodness-

of-fit testing looked to test the fit of a parametric model F (·|θ) versus a nonparametric

estimate of the true distribution function without this embedding. The most basic non-

parametric estimate of a distribution function, F (x), is the empirical distribution function

(EDF), Fn(x) = n−1
∑n

i=1 I(−∞,x](Xi). In order to conduct these tests, researchers con-

sidered using dissimilarity measures between Fn and F (·|θ). Three well known methods

based on the EDFs that are still used today are the, Cramér-von Mises, Kolmogorov-

Smirnov, and Anderson-Darling tests (D’Agostino and Stephens, 1986). The respective

distance measures used in the three tests are provided in Table 1.1. Besides being based

on the EDF, these three methods also have the commonalities that they can be used to

4

Goodness-of-Fit Test Distance Measure

Cramér-von Mises Q = n
∫∞
−∞[Fn(x)− F (x|θ)]2dF (x|θ)

Kolmogorov-Smirnov D = supx |Fn(x)− F (x|θ)|

Anderson-Darling A2 = n
∫∞
−∞

[Fn(x)−F (x|θ)]2
F (x|θ)(1−F (x|θ))dF (x|θ)

Table 1.1: Distance measures for univariate goodness-of-fit tests based on empirical dis-
tribution functions (D’Agostino and Stephens, 1986).

test goodness-of-fit for any continuous distribution function and their critical values are

not based on well-known distribution functions. That being said, there is no one test that

has superior performance compared to the others in all situations (presence of outliers,

influential points, skewness, heavy/light tails, etc.). In fact, when it comes to specifically

testing for univariate normality, the Shapiro-Wilk test is superior (and preferred) to those

in Table 1.1. The test statistic for the Shapiro-Wilk test is

W =

(∑n
i=1 aix(i)

)2∑n
i=1(xi − x̄)2

, (1.3)

where xi is the i-th order statistic and the constants a = (a1, . . . , an) = (c′V−1c)−1/2(c′V−1)

are a function of the expected values (c) and covariance matrix (V) of independent and

identically distributed (iid) standard normal random variables (D’Agostino and Stephens,

1986). The four univariate tests mentioned here represent the current gold standard for

distributional goodness-of-fit in statistics today, but of course are only a snapshot of the

many goodness-of-fit tests in the literature.

So far, the frequentist nonparametric goodness-of-fit tests provided are only applicable

to univariate data. As is common with many multivariate methods, once the univariate ver-

5

sion is well understood, the next natural step is to extend the one-dimensional methods to

d-dimensional scenarios. This is precisely what took place in the goodness-of-fit literature

for the tests based on the EDF. Some authors indirectly tested multivariate goodness-of-

fit by first transforming the multivariate data to scalar data and then applying the uni-

variate methods described above. For instance, Malkovich and Afifi (1973) note that if

X1, X2, . . . , Xn ∼ Nd(µ,Σ) then asymptotically Yi = (Xi − X̄n)T Σ̂−1
X (Xi − X̄n) ∼

χ2
p and test goodness-of-fit by applying both the Kolmogorov-Smirnov and Cram’er-von

Mises tests to the Yi’s. Also, Hawkins (1981) tests multivariate normality by computing

a P -value from an F -distribution based on the squared Mahalanobis distance (from the

mean) for each observation and then applies an Anderson-Darling test to test for uniformity

of the P -values. Finally, Royston (1982) and Villasenor Alva and González Estrada (2009)

apply the Shapiro-Wilk test to test multivariate normality by computing the Shapiro-Wilk

test statistic for each univariate marginal distribution from the centered and rescaled data.

Royston then centers and rescales the d test statistics, computes a weighted average us-

ing the normal cumulative distribution function, and uses its respective asymptotic chi-

squared distribution to find a P -value (Mecklin and Mundfrom, 2004). Villasenor Alva

and González Estrada (2009) simply take the arithmetic average of the Shapiro-Wilk test

statistics and numerically compute P -values via Monte Carlo simulation. Each of these

authors found creative ways to apply univariate goodness-of-fit tests to multivariate data

to assess multivariate goodness-of-fit.

Other authors derived analogous goodness-of-fit tests to the univariate ones that apply

directly to multivariate data using the multivariate EDF Fn(x) = n−1
∑n

i=1 1(Xi ≤ x),

where X1, . . . , Xn ∈ Rd constitute a random sample from F . Justel et al. (1997) derived

a multivariate version of the Kolmogorov-Smirnov statistic for testing H0 : F = F0,

where F0 is completely specified. The natural test statistic in the multivariate setting would

6

simply be

K = sup
x∈Rd

|Fn(x)− F0(x)|,

the largest absolute difference between the null distribution function and the EDF. How-

ever, unlike the univariate Kolmogorov-Smirnov statistic, K is not distribution-free. In

order to derive a distribution-free statistic, the authors cite the following result of Rosen-

blatt (1952). Let Y ∈ Rd be a random vector with joint density

f(y1, . . . , yd) = f1(y1)f2(y2|y1) · · · fd(yd|y1, . . . , yd−1)

and define the transformation U = T (Y) by

U1 = F1(Y1)

Ul = Fl(Yl|Y1, . . . , Yd−1), l = 2, . . . , d.

Then, U1, . . . , Ud
iid∼ uniform[0, 1]. Applying this multivariate probability integral trans-

form to the observed data, the test statistic for testing d-dimensional uniformity is given

by

D = sup
u∈[0,1]d

|Gn(u)−
d∏
l=1

ul|,

where Gn(·) is the EDF of the transformed data. However, due to the sequential nature of

the transformation, D is not invariant to permutations of the coordinates. Therefore, the

multivariate Kolmogorov-Smirnov statistic DKS
d is the maximum of D over all possible

permutations of the coordinates. Chiu and Liu (2009) extended these ideas to provide a

multivariate version of the Cramér-von Mises statistic with the following form:

∫
[0,1)d

∣∣∣Gn(u)−
d∏
l=1

ul

∣∣∣2du.
7

Notice in both cases, the similarity between the multivariate and univariate versions of the

Kolmogorov-Smirnov and Cramér-von Mises test statistics. However, implementing both

of these tests can become computationally demanding for d of any size due to requiring

all d! permutations of the coordinates.

The multivariate normal distribution is the most common parametric model in a goodness-

of-fit test, so the final two tests that we will talk about, which are not direct extensions of

univariate methods, are specifically for testing normality. Mardia’s test (Mardia, 1970) is

one of the first tests of multivariate normality and is based on multivariate measures of

skewness and kurtosis, respectively given by,

b1,d = n−2

n∑
i=1

n∑
j=1

[(Xi − X̄)TS−1(Xj − X̄)]3

b2,d = n−1

n∑
i=1

[(Xi − X̄)TS−1(Xi − X̄)]2.

Asymptotically, nb1,d
6
∼ χ2

(d(d+1)(d+2))/6 and b2,d ∼ N(d(d + 2), 8d(d + 2)/n). Each of

these two statistics and their respective P -values are simple to compute, making them

very attractive in practice. The Henze-Zirkler test (Korkmaz et al., 2016) is based on a

non-negative functional that measures the distance between the empirical and parametric

distribution functions. The formula for the test statistic is given by

HZ = n−1

n∑
i=1

n∑
j=1

exp
(
−β

2

2
Dij

)
−2(1+β2)−d/2

n∑
i=1

exp
(
− β2Di

2(1 + β2)

)
+n(1+2β2)−d/2,

where β = 2−1/24−1/(d+4)(2(2d + 1))1/(d+4), Dij and Di are the squared Mahalanobis

distances between the ith and jth observations and the ith observation and the mean, re-

spectively. For normal data, HZ follows a lognormal distribution, which is also easy to

work with. Since both Mardia’s test and the Henze-Zirkler test are easy to implement in

8

practice, they are arguably the most common approaches to testing multivariate normality.

Since no one test is preferable the best in all situations, research for univariate and mul-

tivariate goodness-of-fit tests is still on-going and there are many more frequentist methods

that are not covered here. D’Agostino and Stephens (1986) provide a more thorough sur-

vey of goodness-of-fit tests for a variety of parametric models. Regarding tests specifically

for normality, Thode (2002) provides dozens of different tests primarily focused on uni-

variate data. For a summary of testing multivariate normality, see Mecklin and Mundfrom

(2004). Finally, for a more theoretical look at goodness-of-fit tests (and hypothesis tests

for that matter) see Lehmann and Romano (2005).

1.1.2 Comparison of Frequentist and Bayesian Hypothesis Testing

Based on the discussion in the previous subsection, it is clear that the distributional

goodness-of-fit problem has been well studied from the frequentist perspective. Before

delving into the history of Bayesian approaches to goodness-of-fit testing, the following

comparison of frequentist and Bayesian hypothesis testing provides an explanation as to

why we prefer using a Bayesian approach. Under the frequentist goodness-of-fit testing

framework, the hypotheses are typically defined as

H0 : Y1, . . . , Yn ∼ f(·|θ ∈ Θ)

H1 : Y1, . . . , Yn � f(·|θ ∈ Θ)

where Y1, . . . , Yn comprise the random sample and f(·|θ) is the parametric model of inter-

est, indexed by parameter vector θ in parameter space Θ. Now, when carrying out the test,

we either "reject" or "fail to reject" the null hypothesis. Therefore, for small P -values,

we "reject" the null model, but this tells us very little regarding which model we should

consider next since the alternative model is often vague (potentially infinite-dimensional).

9

On the other hand, for large P -values (those larger than the size of interest) we "fail to

reject" the null model, thus considering it a plausible model, but we cannot "accept" the

null model as truth. Notice also that these conclusions about the null model are based on

the usual P -value. Often, the typical cutoff value for rejecting the null is α = .05. How-

ever, for P = .05, Delampady and Berger (1990) show that the conclusion made based

on a given P -value can be misleading and more often than not it provides more evidence

against the null than exists. This problem of comparing the Bayesian and frequentist tests

to illustrate the contradicting amount of evidence for/against the null model has been stud-

ied by many authors, namely: Lindley (1957), Berger and Delampady (1987), and Berger

and Sellke (1987). In more recent research, Johnson (2013) argues that carrying out hy-

pothesis tests of size α = .05 is inappropriate, especially for large data sets. One can easily

construct simple examples showing that, as n → ∞, the level of significance should tend

to 0. Therefore, taking a frequentist approach to goodness-of-fit testing is less than ideal.

Suppose we now consider goodness-of-fit tests from the Bayesian perspective. In the

most simple Bayesian hypothesis testing framework, we require a well-defined probability

model for both the null and alternative hypotheses. Therefore, the hypotheses often take

the form (taken from Verdinelli and Wasserman (1998)),

H0 : Y ∼ F0 = {f(·|θ0); θ0 ∈ Ω0}

H1 : Y ∼ F1 = {g(·|θ1); θ1 ∈ Ω1}.

Given these two models, we compute the Bayes factor in favor of the alternative model

BF =

∫ [∏n
i=1 g(Yi|θ1)

]
p(θ1)dθ1∫ [∏n

i=1 f(Yi|θ0)
]
π(θ0)dθ0

,

which is the ratio of marginal likelihoods. According to Lavine and Schervish (1999), the

10

Bayes factor measures the change in the odds in favor of the alternative model from the

prior to the posterior (after observing the data). Furthermore, when the prior odds ratio of

the two models is 1, the Bayes factor is the posterior odds. This can be seen rather easily

by applying Bayes Theorem to the posterior probabilities of each model to show that,

P (F1|Y)

P (F0|Y)
=
P (Y|F1)

P (Y|F0)

P (F1)

P (F0)
.

For a more detailed description of Bayes factors see Kass and Raftery (1995) and for

Bayesian hypothesis testing see Gelman et al. (2014). The beauty of using Bayes factors

for model comparison is that regardless of the hypothesized models, the set of critical

values indicating the amount of evidence in favor of the alternative (or null) model is the

same. The two most common sets of critical values can be found in Appendix B of Jef-

freys (1961) and in Kass and Raftery (1995). For the purposes of this research, we will

consider the scale in Kass and Raftery (1995) given in Table 1.2. This is unlike frequentist

BF log BF Evidence for F1

1 to 3 0 to 1.1 Not worth more than a bare mention

3 to 20 1.1 to 3 Positive

20 to 150 3 to 5 Strong

> 150 > 5 Very strong

Table 1.2: Amount of evidence in favor of the alternative model for varying values of a
Bayes factor (Kass and Raftery, 1995)

goodness-of-fit tests where the critical values depend on the asymptotic distribution of the

11

test statistic. Each of the tests provided in Subsection 1.1.1 utilize a different test statistic

and thus a different asymptotic distribution. In fact, for some tests the null hypothesis is

rejected for large values of the test statistic and for others, the null is rejected for small

values. The appropriate conclusions regarding the null model are either based on comput-

ing tail probabilities analytically or comparing the test statistic to specific critical values.

These corresponding P -values do not even quantify how much evidence for/against the

null model was obtained from the observed data. In Bayesian hypothesis testing, since

the Bayes factor is a ratio, conclusions in favor of the null model can be made using the

same scale in Table 1.2 and the reciprocal of BF = BF−1. This role reversal of H0 and H1

is not possible in frequentist testing as the entire testing problem has been fundamentally

changed.

One important property of a good Bayesian hypothesis test that utilizes Bayes factors

for model comparison is known as Bayes factor consistency and is defined in Definition 1

(Chib and Kuffner, 2016).

Definition 1. (Bayes Factor Consistency): The Bayes factor defined by BF comparing the

alternative model F1 to the null model F0 in Bayesian hypothesis testing is consistent if,

as n→∞:

• BF→∞ (log(BF)→∞) when F1 is the true model; and

• BF→ 0 (log(BF)→ −∞) when F0 is the true model.

As the sample size increases in tests that satisfy Definition 1, the evidence in favor

of the true model increases, regardless of which hypothesis is true. This implies that the

probability of making a Type I or Type II error tends to 0 as the sample size increases.

Certainly, this is what we expect in any hypothesis test, but is not necessarily true in

frequentist goodness-of-fit tests as described previously.

12

A final benefit to Bayesian hypothesis testing is we can now "accept" or "reject" the

null model. This means we can determine which one of the two models best fits the data

since BF is the updated odds that the observed data were sampled from the alternative

model compared to the null model. Of course, even if both models fit the data poorly, one

will still be preferred. However, as we will see, our alternative family is defined in such a

way that some member of the alternative will be close to the truth in a Kullback-Leibler

discrepancy (Kullback and Leibler, 1951) sense.

Certainly, from a philosophical viewpoint, the Bayesian approach to hypothesis testing

is far more suitable to testing goodness-of-fit compared to the frequentist approach. The

question becomes, why did it take until 1996 for the first practical application of Bayesian

hypothesis testing to any goodness-of-fit problem to appear in the literature, when promi-

nent Bayesians were well aware of the deficiencies of frequentist goodness-of-fit tests prior

to this time? Remember that the Bayes factor in a Bayesian hypothesis test requires both

the null and alternative marginal likelihoods. The null marginal likelihood is a finite di-

mensional integral over the parameter space, whereas, the alternative marginal likelihood

is often a very high (or even infinite) dimensional integral. At least one of these inte-

grals must be computed using either a numerical integration scheme or a Markov Chain

Monte Carlo (MCMC) algorithm (see Evans and Swartz (1995) and Robert and Casella

(2004) for more details). Therefore, practical implementation of a Bayesian nonparamet-

ric goodness-of-fit test was not possible until sufficient computing power and resources

were readily available. So prior to this time, frequentist methods were preferred simply

because the test statistics and P -values were easy to compute analytically.

1.1.3 Bayesian Tests

The history of Bayesian nonparametric goodness-of-fit tests follows a similar path as

the frequentist tests of Subsection 1.1.1 in terms of the sequence of advancements; how-

13

ever, the research is far less dense. Many of the initial Bayesian goodness-of-fit methods

for univariate data are based on Bayesian nonparametric density estimation techniques

that utilize Dirichlet processes, Pólya tree processes, and Gaussian processes. These tech-

niques are summarized briefly in Müller and Quintana (2004), in more detail from a theo-

retical perspective in Ghosh and Ramamoorthi (2003), and in more detail from an applied

perspective in Müller et al. (2015).

Carota and Parmigiani (1996) published the first Bayesian nonparametric goodness-

of-fit test which utilized a Dirichlet process prior on F , the family of all probability dis-

tribution functions F when forming the nonparametric alternative model. The parametric

model of interest is denoted by F0(·|θ) with parameter θ ∈ Θ. In their approach, the data

vector y = yij is comprised by subsequences i = 1, . . . , s of lengths j = 1, . . . , ni. Thus,

the alternative model is defined as

y|F , θ ∼
s∏
i=1

ni∏
j=1

Fi(yij|θi), F = (F1, . . . , Fs) ∈ F θ = (θ1, . . . , θs) ∈ Θ

F |θ ∼
s∏
i=1

Di, Di ∼ Dirichlet process with measure αi(θi, y)

θ ∼ Q,

where Q is the prior distribution function of θ. The null model, F0 is then defined as the

class of distributions F 0 = (F01(·|θi), . . . , F0s(·|θs)) where F 0 is the vector of conditional

means of the Dirichlet process. Using these two models, the Bayes factor in favor of the

null model can be easily computed, but it has one very significant drawback. As Berger and

Guglielmi (2001) point out, it is inappropriate to use Dirichlet processes when testing an

absolutely continuous null model. In fact, this is verified by Carota and Parmigiani (1996)

in Corollary 2, where if no ties exist in the data, (i.e. the data are absolutely continuous),

the Bayes factor only depends on the data via the sample size. So, while this first approach

14

was novel at the time, its use in practice is severely limited.

The next approach to Bayesian goodness-of-fit testing was proposed by Verdinelli and

Wasserman (1998) and used a Gaussian process prior in the alternative model. Their

approach is very similar in principle to the "smooth" tests of Neyman (1937) in that they

embed the parametric null model in an infinite-dimensional exponential family to form the

alternative model. The null model is defined by F = {F (·|θ) : θ ∈ Ω} and a random

variable from this model is expressed as Y = F−1(U |θ) where U ∼ U(0, 1) and θ ∈ Ω,

using the inverse probability integral transform. The alternative model is an extended

model defined by the infinite-dimensional exponential family of distributions on [0, 1],

G = {G(·|ψ) : ψ ∈ §}. If a random variable Y was from this extended model, then Y

could be expressed as Y = F−1(U |θ) where U ∼ G(·|ψ), θ ∈ Ω and ψ ∈ S. When

ψ = ψ0, G(·|ψ0) = U(0, 1) and hence G = F . The probability densities associated with

G can be written as

g(u|ψ) = exp

(
∞∑
j=1

ψjφj(u)− c(ψ)

)
,

where ψ = (ψ1, ψ2, . . .) are the polynomial coefficients for the rescaled Legendre polyno-

mials φ = (φ1, φ2, . . .) and c(ψ) is the normalizing constant. The unknown parameters,

θ and ψ are taken to be independent such that the prior distribution is given by p(θ, ψ) =

p(θ)p(ψ). Take p(θ) to be any standard reference prior for θ and p(ψ) =
∏∞

j=1 p(ψj|τ)p(τ)

such that each ψj ∼ N(0, τ 2) and τ follows a truncated standard normal distribution on

[0,∞). Under this construction,
∑∞

j=1 ψjφj(u) is a Gaussian process. To use this method

in practice, the infinite series must be truncated to a finite number of terms and compu-

tation of the Bayes factor requires Metropolis-Hastings algorithms embedded in a Gibbs

sampler when calculating the alternative marginal likelihood. The benefit to this approach

is its applicability to any absolutely continuous null model for univariate data.

Berger and Guglielmi (2001) offered another approach to goodness-of-fit whereby the

15

alternative model is based on a mixture of Pólya tree processs. The motivation for using

Pólya trees stems from their ability to nonparametrically model continuous densities as

well as maintaining objective, noninformative priors for unknown parameters. Also, the

Pólya tree process remains flexible as an alternative model since after specifying the mean,

there are many free parameters remaining. They argue that this is superior to Dirichlet pro-

cesses since only one free parameter remains post null specification. The formulation of

the alternative model requires embedding the parametric model into the Pólya tree process

by choosing the appropriate mixture of Pólya trees (the authors provide two such mixtures

that are not included here). Computing the Bayes factor in favor of the null model merely

requires a Monte Carlo approximation based on importance sampling, but again there is

a significant drawback as noted by Tokdar and Martin (2013). Due to the required binary

tree of partitions, this approach does not scale well with increasing dimension and thus is

limited to univariate data.

One of the newer Bayesian nonparametric goodness-of-fit tests was published by Tok-

dar and Martin (2013). Their method is specifically designed to test for normality in

any dimension using a non-subjective Dirichlet process mixture of normals as the alterna-

tive model. They argue that this approach is superior to those already described because

the alternative model only depends on the precision parameter of the Dirichlet process

and the Dirichlet process mixture of normals is computationally more efficient to use

in any dimension. The setup of their method is rather straightforward in principle. Let

X1:n = (X1, . . . , Xn), where each Xi ∈ Rd, denote n independent draws from an un-

known d-variate distribution F . We want to test normality of the data, so the null model of

interest is F0 = {Fµ,Λ : µ ∈ Rd,Λ ∈ Ld} where ΛΛ′ is the covariance matrix in Cholesky

decomposition form and Ld is the set of all d× d lower-triangular matrices. Now, for any

(µ,Λ) a Dirichlet process mixture of normals denoted by DPMµ,Λ(α,Ψ) is the distribution

16

of the random probability measure

F̄µ,Λ =

∫
N(µ+ Λu,ΛV Λ′)dΨ̄(u, V), where Ψ̄ ∼ DP(α,Ψ)

Much like the prior distribution for the Berger and Guglielmi (2001) approach, the prior

distribution for both models is the same. Here, the right Haar measure is the prior of

choice given by dπH(µ,Λ) =
∏d

j=1 Λj−d−1
jj dµdΛ. The difficulty with this approach is

calculating the marginal likelihood for the alternative model (the null marginal likelihood

is analytically tractable). In order to approximate the integral

∫
Rd×Ld

∫ [n∏
i=1

dF (Xi)

]
dDPMµ,Λ(F |α,Ψ)dπH(µ,Λ),

Tokdar and Martin (2013) recommend computing the inner integral using sequential impu-

tation, and then embed this algorithm in an importance sampling scheme (Basu and Chib,

2003). This is certainly a more complex numerical integration technique compared to pre-

vious methods. Also, while this approach can tackle goodness-of-fit in d dimensions, it

only applies to testing normality, which is an unfortunate restriction.

There are a few other Bayesian nonparametric goodness-of-fit tests in the literature

that will not be described in detail here. First, Conigliani et al. (2000) sought to find a

Bayesian alternative to the chi-square goodness-of-fit test for binomial and Poisson data

in cases with weak prior information regarding the parameters of the null model and the

form of the alternative model. Using fractional Bayes factors (O’Hagan, 1995), since

their noninformative priors are improper, they showed via numerous examples that their

Bayesian approach was comparable to using the Anderson-Darling statistic. Of course,

this approach suffers from the same problem as the chi-square test in that discretization of

continuous data is required, which is overly restrictive and causes a loss of information.

17

Another approach by McVinish et al. (2009) considered an alternative model based

on mixtures of triangular distributions. These authors provided a set of sufficient (but not

necessary) conditions in which Bayes factor consistency holds and verified that these con-

ditions are met for mixtures of triangular distributions. They argued that showing Bayes

factor consistency theoretically for the alternative models listed thus far proves to be very

challenging, however consistency does appear to hold in all previous methods. They also

claim that mixtures of triangular distributions are easy to work with and estimate smooth

density functions well, but details regarding practical implementation of their method are

lacking, let alone practical use beyond one dimension.

Certainly, from the Bayesian perspective there are many approaches to testing goodness-

of-fit for probability distributions, so why should we consider yet another one? Each of

the Bayesian approaches listed have their respective downsides, some of which are: re-

striction to univariate data, inability to test continuous null models, restriction to testing

a normal null model, and complex computation of at least one marginal likelihood in the

Bayes factor. Also, the formulation of the alternative model using the partitioning schemes

and/or mixtures of various processes is often neither intuitive nor simple. The literature on

practical Bayesian goodness-of-fit tests is already sparse to begin with, but none of these

tests can be used to test any multivariate parametric null model.

The main method we propose in this research is a simple and intuitive approach for

testing multivariate goodness-of-fit for any absolutely continuous parametric null model.

It is based on the most recent Bayesian nonparametric goodness-of-fit testing procedure,

the kernel cross-validated Bayes factor (CVBFK) approach proposed by Hart and Choi

(2016) (described in much more detail in Chapter 2). In their paper, the authors ex-

plore a novel goodness-of-fit approach for univariate data where the alternative model

is based on a family of kernel density estimates. Therefore, the alternative model only has

one unknown parameter, which means the marginal likelihood can be computed by one-

18

dimensional numerical integration. Since we know kernel density estimates can be used

to estimate multivariate densities, it only seems natural to consider extending the CVBFK

to test multivariate goodness-of-fit.

The kernel CVBF method addresses goodness-of-fit by comparing a parametric model

to a nonparametric one using a Bayes factor. We can also use Bayes factors for model com-

parison where both the null and alternative models are parametric. In a typical Bayesian

analysis though, we still need to determine prior distributions for all parameters as well as

compute the necessary marginal likelihoods, which can be rather daunting tasks. There-

fore, we also propose a secondary method that still uses the idea of cross-validation Bayes

factors. However, computing the Bayes factor becomes a trivial task in that we simply

evaluate a likelihood ratio. When testing two parametric models, this parametric CVBF

(CVBFP) approach is extremely simple to compute, easy to interpret, and has nice large

sample properties under both nested and non-nested models. Of course, this is no longer

a nonparametric goodness-of-fit test, but it does make many tests that are difficult using

traditional Bayesian methods extremely straightforward.

1.2 Research Layout

The remainder of this research contains the following chapters. Chapter 2 continues

the literature review by examining the univariate CVBFK method of Hart and Choi (2016)

in more detail to set the foundation before we consider multivariate data. In Chapter 3,

we briefly introduce multivariate kernel density estimates and discuss how the bandwidth

matrix will potentially impact the CVBFK method. In Chapter 4, we formally combine

Chapters 2 and 3 to extend the CVBFK method to multivariate data. Chapter 5 formalizes

the parametric CVBF method and Chapter 6 provides a look at future work that combines

material from Chapters 1-5.

19

2. UNIVARIATE CVBFK METHOD

2.1 General Description

The alternative hypothesis in a typical Bayesian nonparametric goodness-of-fit test

is a broad class of nonparametric models (including the null model as a special case)

indexed by a large (and sometimes infinite) number of unknown parameters. Looking for

a way to simplify this goodness-of-fit testing process, Hart and Choi (2016) consider an

alternative model based on a family of univariate kernel density estimators indexed solely

on the smoothing parameter, h > 0. Kernel density estimates are attractive for use in the

alternative model because they are familiar and easy to implement. Also, provided that the

true data generating density is smooth, we can assume that at least one of the estimates in

the alternative model is close to the true density function. Therefore, regardless of which

model the CVBFK method favors, the resulting model will be a well-defined probability

model that fits the observed data well.

One important detail left out in the previous paragraph is that the family of kernel

density estimates is only well-defined once data are given. Hence, the Hart and Choi

(2016) procedure is called the kernel cross-validated Bayes factor method because we

need to use data splitting in order to compute a kernel estimate. For a given random split

of the data into a training and validation data set, the Bayes factor is computed on the

validation data given the training data. The resulting overall Bayes factor for the test is the

geometric average of the individual Bayes factors over numerous random data splits.

2.2 Formal Methodology

Let X = (X1, X2, . . . , Xn) be a univariate random sample from some unknown para-

metric density function g. Suppose we want to test that g = f(·|θ), where f is a specific

density function indexed by parameter vector θ. According to the CVBFK method, the

20

hypotheses for this test are written as

H0 : XV ∼M0 = {f(·|θ) : θ ∈ Θ}

H1 : XV ∼M1 = {f̂(·|XT , h) : h > 0}.

In the alternative model,

f̂(x|XT , h) =
1

mh

m∑
i=1

K1

(x−Xi

h

)
, (2.1)

is the typical univariate kernel density estimator with kernel function K1 taken to be a

symmetric, unimodal, finite variance density function. The authors recommend using

the Gaussian kernel function for its convenient properties and ease of implementation.

Also, in order for this alternative model to be well-defined, the data vector X is ran-

domly split into a training data set, XT = (X1, X2, . . . , Xm), and a validation data set,

XV = (Xm+1, Xm+2, . . . , Xn). An appropriate choice of training set size will be dis-

cussed later.

With both the null and alternative models well-defined, we can compute a Bayes factor

to determine which of the two models best fits the data. The Bayes factor for a single

random split in favor of the alternative model is given by

BFm =

∫∞
0

∏n
j=m+1 f̂(Xj|XT , h)p(h)dh∫

Θ

∏n
j=m+1 f(Xj|θ)π(θ)dθ

. (2.2)

In order to mitigate the dependence of our conclusions on a given random split, we ran-

domly split the data N times such that (XT
k ,X

V
k) represents the training and validation

sets from the kth split (k = 1, 2, . . . , N), respectively. The resulting CVBFm,N value is

21

the geometric mean,

CVBFm,N =

(
N∏
k=1

BFm,k

)1/N

,

where BFm,k represents the Bayes factor computed using (XT
k ,X

V
k). In practice, we of-

ten consider the weight of evidence, log(CVBFm,N) when making conclusions for the

hypotheses. Therefore, define the cross-validation weight of evidence (CVWE) to be

CVWEm,N = log(CVBFm,N). For notational simplicity, we may drop the subscripts m

and N and simply refer to either a CVBF or CVWE value.

In order to compute the Bayes factor in equation (2.2), we require prior distributions,

π(θ) and p(h). Hart and Choi (2016) suggest taking a unit-information, reference (UIR)

prior for π(θ) that contains the same amount of information (in terms of Fisher’s Infor-

mation) as one observation from the data and is centered at the observed data. The au-

thors mention that using UIR priors results in Bayes factors that are invariant to location

and scale when testing univariate normality. Maybe more importantly, clever choice of

the prior distribution (perhaps a (semi-) conjugate prior) under the null model can ease

the computational burden on the method provided that closed-form expressions for the

marginal likelihood exist.

Deriving an appropriate prior for the smoothing parameter is a bit more complicated.

Typically, since the bandwidth in a kernel density estimator acts like a scale parameter, the

natural prior to consider first is the scale-invariant, improper prior p(h) ∝ h−1. However,

proper priors must be used in any Bayesian hypothesis test since, when using an improper

prior, the Bayes factor is proportional to an arbitrary constant. Therefore, we can find a

proper prior by using the intrinsic Bayes factor (IBF) idea proposed by Berger and Per-

richi (1996). According to the IBF idea, take the minimal sample size (in this case two

observations) so that L(X1|X2, h)p(h) ∝ h−2K1

(
X1−X2

h

)
produces a proper posterior

distribution. After normalizing, this posterior distribution is used as the prior distribution

22

for the entire sample. For the Gaussian kernel function the proper posterior distribution

has a closed form given by

p(h|β) =
2β√
πh2

exp
(
− β2

h2

)
, (2.3)

where β2 is a robust estimate of .5E [(X1 −X2)2] = σ2 calculated from the validation

data. Therefore, take β = IQR(XV)/1.35. In this prior distribution, as h → 0, the prior

takes on values nearly 0. In kernel density estimation, as n → ∞, the optimal choice of

the bandwidth parameter tends to 0. Therefore, this form of prior is similar in principle

to non-local priors of Johnson and Rossell (2010) since it greatly downweights the most

plausible values of h under the null model. Thus, in order to conclude in favor of the

null model, there must be overwhelming evidence to indicate that the data truly are from

the null model. That being said, Hart and Choi (2016) provide a proof that shows the

Bayes factor in (2.2) is consistent at an exponential rate under both the null and alternative

hypotheses regardless of the form of prior distribution. Typically, the convergence rate is

exponential only under the alternative model when testing a parametric null model against

a nonparametric alternative model (McVinish et al., 2009), so the kernel CVBF method

has improved asymptotic properties compared to other Bayesian nonparametric goodness-

of-fit tests.

Unlike the null marginal likelihood that is often analytically tractable, the marginal

likelihood under the alternative model must be computed numerically. This is not a signif-

icant concern since evaluating the marginal likelihood amounts to a one-dimensional inte-

gration problem. Hart and Choi (2016) utilize the integrate function in R (R Core Team,

2016); however, there are many efficient numerical integration techniques available, such

as Simpson’s approximation, Gaussian quadrature, and the Laplace approximation (Davis

and Rabinowitz, 2007). We prefer to use the Laplace approximation where applicable

23

since it is faster, more reliable, and avoids underflow problems since the optimization and

evaluation are both on the log scale.

In order to implement the CVBFK method, we only need to determine the training set

size m and the number of random splits of the data N . Theoretically, methods for spec-

ifying m and N for a given data set were still open problems in Hart and Choi (2016),

however, the authors typically set N = 100. For choosing the training set size, one can

argue that .05n < m < n
2

since the training set needs to have enough observations for

the kernel estimate to approximate the observed density function sufficiently well. How-

ever, it also should not contain more observations than the number used to evaluate the

Bayes factor for a single data split. As seen in Hart and Choi (2016), as m increases, the

CVWEm,N value increases monotonically to 0 under the null model. In contrast, when

the alternative model is true, the CVWEm,N value increases for increasing m until a max-

imum is reached and then it decreases toward 0. So in order to determine the value of m

for a specific sample data set, Hart and Choi (2016) recommend using a scheme called

calibration, consisting of the following 6 (slightly modified) steps:

1. Carry out the CVBFK method for numerous training set sizes (every integer between

b.05nc and d.5ne) with a sufficiently large number of random splits, N .

2. Plot a curve of the CVWEm,N values against the training set sizes. Determine

CVWEmax, the maximum of the curve, and its corresponding training set size mmax.

3. If CVWEmax < 0, then conclude in favor of the null model.

4. If CVWEmax > log(3), indicating positive evidence in favor of the alternative model

(Kass and Raftery, 1995), carry out the CVBFK method using mmax and N for 500

simulated, independent data sets from the null model. Plot a histogram for these 500

CVWE0 values.

24

5. Conclude in favor of the alternative model if CVWEmax > log(3) and (nearly) all

CVWE0 < 0 in the histogram.

6. If 0 ≤ CVWEmax < log(3), cautiously favor the null model as there is not enough

evidence to favor the alternative model.

This calibration technique has a frequentist flavor to it because we repeatedly sample data

from the null model, compute a CVWE value for each data set, and check to see how often

these values exceed 0. In the fifth step, it is not guaranteed that all 500 CVWE0 values will

be negative. As long as the CVBFK method behaves well under the null model, we can

reasonably conclude in favor of the alternative model provided that CVWEmax > log(3)

indicating positive evidence against the null model (Kass and Raftery, 1995).

2.3 Real Data Example: Kevlar Strand Data

In order to see how to implement the CVBFK method and compare its respective per-

formance to some of its Bayesian nonparametric counterparts, consider the time to failure

(or static fatigue) data for each of 100 Kevlar 49 epoxy strands under 80% stress found

in the textbook by Andrews and Herzberg (1985). It is hypothesized that the lifetimes

(X1, X2, . . . , X100) constitute a random sample from a log-normal distribution. Therefore,

we equivalently test if the transformed data Yi = log(Xi) follow a normal distribution.

Figure 2.1 contains a histogram of the log(lifetimes) with a kernel density estimate (Gaus-

sian kernel, h = .318) and a normal curve (µ̂ = 4.84, σ̂ = 1.24) overlaid. Notice that

the histogram and kernel estimate are skewed to the left and the peak is much larger com-

pared to the normal density. Graphically, normality, hence log-normality, appears to be

inappropriate.

Under the normal null model, we assume the data come from a N(µ, σ) distribution.

25

Figure 2.1: Distribution of the log(time to failure) for 100 Kevlar 49 epoxy strands under
80% stress. A kernel density estimate (solid line) and an estimated normal curve (dashed
line) are also provided.

Hart and Choi (2016) provide a normal-inverse gamma UIR prior distribution of the form,

π(µ, σ|Ȳ , γ) = (2πσ2)−1/2 exp
[
− 1

2σ2
(µ− Ȳ)2

] 2γ√
πσ2

exp
[
− γ2

σ2

]
, (2.4)

where γ = σ̂/
√

2 for σ̂2 = 1
n−m

∑n
j=m+1(Yj − Ȳ)2 and Ȳ = 1

n−m
∑n

j=m+1 Yj . Using

the prior in equation (2.4) and normal likelihood for validation data YV , the marginal

likelihood for the null model is,

m(YV |M0) = Γ
(n−m+ 1

2

)
(n−m+ 1)−(n−m+2)/2π−(n−m+1)/2σ̂−(n−m).

As for the alternative model, using the univariate kernel density estimate in (2.1) with

Gaussian kernel function and the prior distribution in (2.3), the marginal likelihood is

26

given by

m(YV |M1) =

∫ ∞
0

n∏
j=m+1

[
(2π)−1/2(mh)−1

m∑
i=1

exp

(
− (Yj − Yi)2

2h2

)]

×

[
2β√
πh2

exp

(
− β2

h2

)]
dh. (2.5)

Employing the calibration scheme, a CVWEm,N value is computed for training set sizes

m = {5, 6, . . . , 49, 50} using N = 1, 000 random splits. This curve is plotted in the left

panel of Figure 2.2 and is maximized at m = 30 with a value equal to 7.241. Next, to

ensure the test performs appropriately under the null, 500 random samples are drawn from

the estimated null normal model and the CVWE30,100 value for each sample is plotted in

the histogram in the right panel of Figure 2.2. All 500 CVWE30,100 values are less than

0 indicating that when m = 30, if the observed data were truly normally distributed, the

resulting CVWE value should be negative. According to Kass and Raftery (1995), the

observed CVWE30,100 value from the Kevlar data of 7.241 > 5 indicates that there is very

strong evidence against the normal model, which implies log-normality of the original

times to failure is not appropriate.

The Bayesian nonparametric goodness-of-fit tests of Verdinelli and Wasserman (1998),

Berger and Guglielmi (2001), and Tokdar and Martin (2013) were also applied to the

Kevlar data. The Verdinelli and Wasserman (1998) method gave the smallest Bayes factor

(BF = 10), hence the smallest amount of evidence against the null model. Next, depending

on the parameters used in the Berger and Guglielmi (2001) approach, far more evidence

in favor of the alternative model is found with Bayes factors between 556 and 1389. Fi-

nally, the method by Tokdar and Martin (2013) produced an extremely large Bayes factor

(BF = 105) against the null model. So for this specific example, the kernel CVBF method

finds greater evidence against the null model (BF = 1395) than Verdinelli and Wasserman

27

10 20 30 40 50

−
4

−
2

0
2

4
6

Training Sample Sizes

C
V

W
E

30

CVWE

F
re

qu
en

cy

−4 −3 −2 −1 0

0
50

10
0

15
0

Figure 2.2: Left Panel: CVWE values for the observed Kevlar data with N = 1, 000
random splits at training set sizes 5 ≤ m ≤ 50. Right Panel: CVWE30,100 values from 500
random samples from the estimated null model.

(1998), a similar amount of evidence as Berger and Guglielmi (2001), and less evidence

than Tokdar and Martin (2013).

2.4 Conclusions

This chapter contains sufficient detail to understand the general formulation of the ker-

nel CVBF method in its most basic form before we make any modifications in subsequent

chapters. Based on the methodology in Section 2.2, we can see how the CVBFK method

should naturally extend to multivariate data. Also, even though the Kevlar data exam-

ple in Section 2.3 explores the most common test of normality, the kernel CVBF method

can be applied to any parametric null model (see Hart and Choi (2016) for further exam-

ples). For our purposes, it makes more sense to include the Kevlar data since it allows

for a direct comparison to existing Bayesian nonparametric tests. Even though the kernel

28

CVBF method falls in between its Bayesian counterparts in terms of the amount of ev-

idence against the normal model, the combination of its performance, intuitiveness, and

simplicity make it an attractive alternative nonetheless.

29

3. MULTIVARIATE KERNEL DENSITY ESTIMATION

In order to carry out the kernel CVBF method for data in more than one dimension

we need to better understand the concept of multivariate kernel density estimation. For

a detailed description of these methods see the texts by Silverman (1986), Scott (1992),

Simonoff (1996), and Wand and Jones (1995).

3.1 Definition

To estimate a d-dimensional multivariate density function fd for observed data Y =

(Y1, Y2, . . . , Yn) where each Yi ∈ Rd, we can use the multivariate kernel density estimate

which has the following general form (Wand and Jones, 1995),

f̂d(y|Y,H) = n−1|H|−1/2

n∑
i=1

Kd

(
H−1/2(y −Yi)

)
. (3.1)

The first thing to notice in equation (3.1) is that instead of having a scalar smoothing pa-

rameter, the multivariate kernel density estimate is indexed by a bandwidth matrix, H. The

bandwidth matrix is restricted to the class of symmetric, positive definite matrices, which

is an analogous restriction to the scalar bandwidth h > 0. Next, the kernel function Kd(·)

is typically taken to be a d-variate unimodal probability density function that is symmetric

about the origin. There are many possible kernel functions; however, we recommend the

d-variate Gaussian kernel,

Kd(t) = (2π)−d/2 exp(−tT t/2) =
d∏
l=1

K1(tl),

for a variety of reasons. First, the Gaussian kernel is the most common kernel function

with noncompact support and satisfies all necessary properties. When using kernel density

30

estimates to compute a pseudo-likelihood, there is a positive probability that the likelihood

function will be 0 for any compact kernel function. Also, the d-variate Gaussian kernel

is a product kernel, which means it can be written as the product of univariate Gaussian

kernels. This means that we can adapt results from the univariate kernel CVBF method in

the necessary derivations for the d-dimensional kernel CVBF method.

3.2 Bandwidth Matrix Classes

In the multivariate kernel density estimate literature, it is common to consider one of

three different classes of bandwidth matrices (Wand and Jones, 1995):

• Full (Unconstrained): The class of all symmetric, positive definite bandwidth matri-

ces with d(d+1)
2

parameters, denoted as F .

• Diagonal: The class of all diagonal bandwidth matrices with d parameters, D =

{H = diag(h2
1, h

2
2, · · · , h2

d) : hl > 0, l = 1, · · · , d}.

• Scalar: The class of all diagonal matrices indexed by a single, scalar bandwidth,

S = {H = h2Id : h > 0}.

What are the differences between the three classes? Wand and Jones (1993) give a nice

description in terms of the bivariate Gaussian kernel function. Scalar bandwidth matrices

restrict the contours of the kernel function to be circular, hence smoothing each coordinate

direction of the data by the same amount. For the diagonal bandwidth matrix, the contours

are elliptical, but lie parallel to the coordinate axes. Thus, the estimator smooths each

coordinate direction by a different amount parallel to the coordinate axes. Finally, the

unconstrained bandwidth matrices allow for the contours to be arbitrary ellipses, and thus

the estimator smooths in any arbitrary orientation.

31

3.3 Density Estimation Comparison Across Bandwidth Matrix Classes

There has been some research comparing kernel density estimators based on each of

the 3 classes of bandwidth matrices for a variety of densities. Wand and Jones (1993)

provide one of the most complete simulation studies with 12 different densities (mixtures

of normals) considered. The first notion they point out is that scalar bandwidth matri-

ces should not be used on unscaled multivariate data since the coordinate directions are

smoothed by the same amount. Next, when using diagonal bandwidth matrices, the estima-

tor does well for densities where the curvature lies close to the coordinate axes. However,

it can be made to do arbitrarily poorly since it does not allow for arbitrary orientations of

the data. In order to consider arbitrary orientations of the data while still implementing the

kernel estimate based on a diagonal bandwidth matrix, a common technique is to pre-scale

and/or pre-smooth the data matrix using the sample covariance matrix (Wand and Jones

(1993) and Fukunaga (1990)). The authors point out that this works well for nearly normal

densities, but for multimodal densities, these estimators can be made to perform poorly.

Therefore, they advise to use an optimal rotation of the data (independent of the covari-

ance matrix) prior to using a diagonal bandwidth matrix as a surrogate for the full matrix.

Taking any of these re-scaling approaches would require back transforming the estimator

in order to smooth the original data. Their final major conclusion is that for most well

behaved densities, considering a diagonal bandwidth matrix is often adequate when com-

pared to the full bandwidth matrix. Of course there are instances where the full bandwidth

matrix will be preferred, but in general, a diagonal bandwidth matrix will suffice.

The description from Wand and Jones (1993) compares the efficiencies of the kernel

density estimate when using each of the three bandwidth matrix classes for estimation of

the true density function. In order to find the best estimate of the unknown density, we need

to compute the optimal bandwidth matrix Hopt. There are a wide variety of methods for

32

finding Hopt, but much like the bandwidth selection problem in univariate kernel density

estimation, they typically fall into one of three approaches: standard reference rules, plug-

in, and cross-validation (Wand and Jones, 1995).

Standard reference rules are the least sophisticated techniques and require knowledge

(or assumption) of the true density function, but they can be used to find Hopt in any of the

three bandwidth matrix classes (Silverman (1986), Scott (1992), Wand and Jones (1993),

and Wand and Jones (1995)). Plug-in estimators for Hopt can also be used for all three

classes since at some stage, a standard reference rule is used to estimate a higher order

density derivative functional (Wand and Jones (1994) and Duong and Hazelton (2003)).

However, compared to using a simple reference rule, using a plug-in approach is often not

worth the trouble due to the added complexity of estimating at least one higher order func-

tional. Until recently, more sophisticated cross-validation methods of bandwidth selection

that do not require knowledge of the underlying density function were not feasible compu-

tationally for unconstrained bandwidth matrices (Sain et al. (1994), Duong and Hazelton

(2005), and Zhang et al. (2006)). The Bayesian approach of Zhang et al. (2006) allows

us to estimate Hopt in any of the bandwidth matrix classes using a simple random walk

Metropolis-Hastings algorithm.

3.4 Curse of Dimensionality

The term curse of dimensionality takes two different meanings in statistics (Wasser-

man, 2006). On the one hand, the curse refers to the severe increase in computational

burden as the data dimension increases. We see this when we consider the cost/benefit

trade-off of choosing the optimal bandwidth matrix within a given bandwidth matrix class

and how well we want to estimate the underlying density function in the previous sub-

section. The scalar bandwidth matrix is the simplest bandwidth matrix to work with as it

produces the easiest density estimate to evaluate since as the data dimension increases, the

33

number of smoothing parameters remains constant at 1. However, due to the inflexibility

of the scalar bandwidth matrix, the density estimate is often the least accurate. For a better

overall estimate of the true density in most cases, we can consider the diagonal bandwidth

matrix class. We do have to pay a small price for a better estimate though. As we increase

the data dimension, the number of unknown parameters (d) that we must optimize over

to find Hopt increases linearly. Finally, a full bandwidth matrix would undoubtedly give

us the best density estimate in all cases, but now the number of smoothing parameters

(d(d+ 1)/2) scales quadratically with increasing dimension.

On the other hand, Scott (1992) defines the second meaning as the sparsity of data in

multiple dimensions. Scott and Thompson (1983) refer to the "empty space phenomenon",

which occurs when few observations fall in high-density regions of a multivariate distribu-

tion. In order to get an accurate estimate of a multivariate density at a single point, either

the smoothing parameter has to be large to include enough observations or the number of

observations must be large for the neighborhood to be local. Silverman (1986), Scott and

Wand (1991), and Scott (1992) all produce a variety of tables and simulations to show

that large data sets are required to estimate the multivariate normal distribution at the zero

vector in ten dimensions at the same mean squared error as in one or two dimensions. In

all of these references, the general consensus is that kernel density estimation beyond five

dimensions is not appropriate in practice.

3.5 Applying Multivariate Kernel Density Estimation to Kernel CVBF

So this discussion leads to two very important questions. First, which one of these three

estimation schemes should be used in the multivariate kernel CVBF method? Perhaps we

should only consider a full bandwidth matrix class since it gives the best estimate of the

underlying density function. However, the computational cost may be too much and in the

interest of simplicity, the scalar bandwidth matrix may be preferred. Another possibility

34

is to take the advice of Wand and Jones (1993) and re-scale the data using the sample

covariance matrix before considering a restricted bandwidth matrix class. This way, we

can improve our density estimate while still taking advantage of the reduced number of

smoothing parameters.

The choice of bandwidth matrix class may also differ depending on the data dimension.

When d = 2, the computational cost may be inconsequential regardless of bandwidth

matrix class, so using H ∈ F may be preferred. As dimension increases, due to the curse

of dimensionality, the respective computation times will increase such that eventually H ∈

D and/or H ∈ S become(s) the only feasible option(s).

The second important question is, what are the practical limits on the number of dimen-

sions for which the kernel CVBF method works reasonably well? Of course, the answer

to this question depends on the number of observations. Regardless of which bandwidth

matrix class we consider, when the data dimension becomes moderately large, accurate es-

timation of the true density function will become difficult (if not impossible). This could

play a pivotal role in determining plausible dimensions for application of the kernel CVBF

method. If the kernel model never fits the data well, then we will always favor the null

model which makes for a miserable goodness-of-fit test.

Both of these questions will be answered in the next chapter where we consider how to

extend the univariate kernel CVBF method of Hart and Choi (2016) to multivariate data.

35

4. TESTING MULTIVARIATE GOODNESS-OF-FIT USING KERNEL

CROSS-VALIDATION BAYES FACTORS

The goal in this chapter is to combine the contents of Chapters 2 and 3 to extend the

univariate CVBFK technique of Hart and Choi (2016) to test goodness-of-fit for data in

any dimension. Section 4.1 begins with a description of the overall CVBFK methodology

when applied to multivariate data as slight modifications of the univariate approach must

be made. Next, Section 4.2 contains the necessary details for constructing and computing

the alternative marginal likelihoods using each of the three bandwidth matrix classes. In

order to compare the performance of these three constructions, we carry out simulations in

which we test for multivariate normality in Section 4.3. A common theme in this chapter

is that we will only consider tests for multivariate normality since the multivariate normal

distribution is by far the most common distributional assumption in multivariate analysis

and inference. However, keep in mind that the CVBFK methods can be applied to test any

d-dimensional parametric model.

In Section 4.4, we explore the location-scale invariance of the kernel CVBF method

and make the necessary modifications to ensure that the resulting conclusions are indepen-

dent of changes in location and scale. In order to implement the kernel CVBF method in

practice, we need to choose the training set size m and the number of random splits N .

Section 4.5 describes modifications to the calibration scheme in Subsection 2.2 for finding

m as well as a small simulation to explain our recommendation for the choice of N for

multivariate data. Arguably the most important property of any model selection technique

using Bayes factors is consistency (Definition 1) which will be assessed in Section 4.6 for

the scalar bandwidth construction. Also, Section 4.6 includes a description of a Divide and

Conquer scheme for increasing the computational efficiency of the kernel CVBF method

36

in large samples without compromising the overall conclusions.

As described in Subsection 1.1.1, there are a few commonly used frequentist tests for

goodness-of-fit. Section 4.7 contains a power study for these frequentist tests along with

a few kernel CVBF constructions. It is here that we make a final recommendation as to

which kernel CVBF construction we recommend in practice after examining their respec-

tive performances in terms of power and Type I error rates. However, it will be clear early

on in this chapter that the computational burden is far too great for the unconstrained and

diagonal bandwidth matrix constructions. One topic that is almost synonymous with mul-

tivariate analysis is the curse of dimensionality, which we briefly introduced in Section

3.4. In Section 4.8, we describe how the curse of dimensionality impacts the kernel CVBF

methods, in particular its applicability to data beyond moderate dimensions. We also pro-

vide possible approaches in which goodness-of-fit can be assessed in higher dimensional

data.

Sections 4.2 to 4.8 are all focused on the formulation, properties, and overall perfor-

mance of the three kernel CVBF constructions. To see how we can assess multivariate

goodness-of-fit in practice, Section 4.9 examines testing bivariate normality for Academic

Performance Index (API) scores in California schools. In this example we carryout all the

calibration steps and illustrate the importance of choosing m appropriately. An interesting

application of the kernel CVBF method based on the scalar bandwidth matrix case is in

checking the normality assumptions in random effects models. There are some simple

modifications to the method that must be made which will be described in Section 4.10.

Then, using gene expression data from five rats, we will apply the kernel CVBF method

to check the assumptions while also implementing some of the dimension reduction and

Divide and Conquer techniques described in this chapter. Lastly, an overall summary of

this chapter is given in Section 4.11.

37

4.1 Multivariate Kernel CVBF Methodology

The overall setup of the multivariate kernel CVBF method is very similar to the uni-

variate methodology in Section 2.2. Let X = (X1, X2, . . . , Xn), Xi ∈ Rd, comprise a

random sample from an unknown d-variate probability density function. The hypotheses

we want to test are given by

H0 : XV ∼M0 = {fd(·|θ) : θ ∈ Θ}

H1 : XV ∼M1 = {f̂d(·|XT ,H) : H ∈ S,D, or F}.

The null model is based on the parametric density function of interest, fd(·|θ), and the

alternative model requires a family of d-variate kernel density estimates indexed by a d×d

bandwidth matrix from one of the three bandwidth matrix classes.

The original data must again be randomly split into a training set, XT = (X1, X2, . . . ,

Xm), and a validation set, XV = (Xm+1, Xm+2, . . . , Xn). For a single random split, the

Bayes factor in favor of the alternative model can be written as,

BFm =

∫
A
∏n

j=m+1 f̂d(Xj|XT ,H)p(H)dH∫
Θ

∏n
j=m+1 fd(Xj|θ)π(θ)dθ

. (4.1)

Depending on the parametric model being tested, the null marginal likelihood in the de-

nominator of (4.1) may be analytically tractable. In fact, for the normal distribution, we

will see that a closed form does exist for the null marginal likelihood when using a common

UIR prior distribution for π(θ). The alternative marginal likelihood based on the kernel

density estimate is far more complicated, however. Not only does the prior distribution,

p(H), change depending on the bandwidth matrix class A, but the bounds of integration

(hence the dimension of the integral) change as well. These differences motivate the need

to have three different CVBFK constructions, one for each bandwidth matrix class.

38

For the most part, the remaining steps of the multivariate kernel CVBF approach di-

rectly carry over from the univariate case. The optimal choice for the training set size m

is still an open theoretical question, but we can use a modified version of calibration (see

Subsection 4.5.1 for the modifications) to make an appropriate choice in practice. Natu-

rally, we expect both the optimal and practical choices of m to be larger proportions of n

in the d-dimensional case because more observations are required to adequately estimate

the underlying density. Regarding the number of random data splits N to use in practice,

typically 30 ≤ N ≤ 50 will be more than sufficient. We will provide the justification

for this choice in Subsection 4.5.2. One of the main differences between the univariate

and d-variate kernel CVBF approaches is how we compute the overall CVWE value for a

given data set. For k = 1, 2, . . . , N random splits of the data matrix into XT
k and XV

k , we

compute the weights of evidence log(BFm,1), . . . , log(BFm,N) and instead of taking the

arithmetic mean of the respective weights of evidence, when d > 1 we prefer to use

CVWEm,N = median
(

log(BFm,1), . . . , log(BFm,N)
)
.

For n large, the mean and median are comparable for any appropriate choice of N . How-

ever, for smaller values of n andm, there are often outlying weights of evidence that cause

the mean and median to give contradictory results. Lastly, to determine the strength of the

evidence in favor of either the null or alternative models, we continue to use the scale from

Kass and Raftery (1995) given in Table 1.2.

4.2 Construction and Computation of the Alternative Marginal Likelihood

In order to carry out the multivariate kernel CVBF method for a given bandwidth ma-

trix class, we require the likelihood function based on the d-dimensional kernel density

estimate and the prior distribution p(H). In this section, we provide the form of the likeli-

hood function and the derivation of the prior distribution for each class. Then, we suggest

39

approaches for numerically approximating the marginal likelihoods. For simplicity, we

will denote the CVBFm,N values constructed using the scalar, diagonal, and unconstrained

bandwidth matrix classes as CVBFK(S), CVBFK(D), and CVBFK(F), respectively (sim-

ilar notation extends to the weights of evidence CVWE).

4.2.1 Scalar Bandwidth Matrix Class : CVBFK(S)

Under the scalar bandwidth class, the bandwidth matrix used in multivariate kernel

density estimation takes the form H = h2Id, where Id is the d × d identity matrix. Thus,

the likelihood function based on the multivariate kernel density estimate with Gaussian

kernel function reduces to

L(XV |h,XT) =
n∏

j=m+1

m−1(2πh2)−d/2
m∑
i=1

exp
(
− [Xj −Xi]

T [Xj −Xi]

2h2

)
, (4.2)

since H−1 = h−2Id, and |H| = h2d.

We want to formulate the prior distribution p(h) in such a way that it is centered at the

validation data and has as much information as a single observation. Let w represent the

d-dimensional vector where each wl (l = 1, 2, . . . , d) is the median of the l-th column in

the validation data. Consider taking p(h) ∝ f̂d(w|XT , h), an evaluation of the likelihood

for a single observation at the median. For d ≥ 2, f̂d(w|XT , h) is easily integrable when

using the Gaussian kernel function. Let γi = .5[w −Xi]
T [w −Xi], then

∫ ∞
0

m−1(2πh2)−d/2
m∑
i=1

exp
(
− γih−2

)
dh =

1

2
m−1(2π)−d/2Γ

(d− 1

2

) m∑
i=1

γ
−(d−1)/2
i .

Therefore, p(h) is a proper prior distribution given by

p(h|γ) =
2
∑m

i=1 exp
(
− γi/h2

)
Γ
(
d−1

2

)
hd
∑m

i=1 γ
−(d−1)/2
i

. (4.3)

40

Figure 4.1 displays p(h|γ) for dimensions d = 2, 3, 5, 7, 10 for d-dimensional standard

normal data (n = 1, 500 and m = 500). Even though we use a different approach to

derive the prior distribution than in the univariate Hart and Choi (2016) method, for d > 1

the prior distribution in (4.3) is non-local near 0. In fact, as dimension increases, the

neighborhood near 0 where the prior takes very small values gets larger. This aligns with

the notion that the optimal smoothing parameter gets larger as dimension increases.

Figure 4.1: Shape of the d-dimensional prior distribution for the scalar bandwidth matrix
class.

41

4.2.2 Diagonal Bandwidth Matrix Class : CVBFK(D)

The bandwidth matrices in the diagonal class have the form, H = diag(h2
1, h

2
2, . . . , h

2
d)

which means the likelihood function with d unknown bandwidth parameters reduces to

L(XV |h1, . . . , hd,X
T) = m−(n−m)

n∏
j=m+1

m∑
i=1

d∏
l=1

(2πh2
l)
−1/2 exp

(
− 1

2h2
l

(Xjl −Xil)
2
)
,

(4.4)

since H−1 = diag(h−2
1 , h−2

2 , . . . , h−2
d) and |H| =

∏d
l=1 h

2
l .

To derive the prior distribution for the diagonal bandwidth matrix class, we must con-

sider a different approach to the one we used in the scalar case since taking p(h1, . . . , hd) ∝

f̂d(w|XT , h1, . . . , hd) results in an improper prior distribution. However, finding a proper

prior is still a rather straightforward task thanks to the Gaussian kernel being a prod-

uct kernel and the bandwidth matrix being diagonal. Since the kernel density estimator

using a diagonal bandwidth matrix smooths each coordinate independently, we can as-

sume that p(h1, . . . , hd) =
∏d

l=1 p(hl). Therefore, p(h1, . . . , hd) will be a proper prior

distribution when each p(hl) is a proper prior distribution. We can apply the IBF ap-

proach from Hart and Choi (2016) for finding the univariate prior, by first considering

the natural scale invariant improper prior distribution for each smoothing parameter, i.e.,

p(h1, . . . , hd) ∝
∏d

l=1 h
−1
l . Multiplying this improper prior distribution by the form of the

likelihood in (4.4) for two random observations from the data (X1 and X2), we see that

p(h1, . . . , hd) ∝
d∏
l=1

h−2
l exp

(
− 1

2h2
l

(Xjl −Xil)
2
)
. (4.5)

The integration of (4.5) is made easier by the fact that we have a product kernel and

independent smoothing parameters. In fact, we can integrate over each hl separately and

notice that the resulting prior distributions p(hl)’s have the same form as (2.3) with βl =

42

IQR(XV
·l)/1.35. Thus, the prior distribution we use in the diagonal bandwidth matrix case

is given by

p(h1, . . . , hd|β) = (4π−1)d/2 exp

(
−

d∑
l=1

β2
l

h2
l

)
d∏
l=1

(
βl
h2
l

)
. (4.6)

It is important to point out that the prior distribution in (4.6) is slightly more infor-

mative than we would prefer. However, compared to other unit-information priors, this

prior is far more stable in practice and for the large sample sizes considered in multivari-

ate analyses, the effect this prior has on the value of the marginal likelihood is negligible.

Also, while we do not include graphical displays of the prior distribution in (4.6), the non-

local property near the origin is maintained since the d-dimensional prior is the product of

univariate non-local priors.

4.2.3 Unconstrained Bandwidth Matrix Class : CVBFK(F)

Unlike the more restrictive scalar and diagonal bandwidth matrix classes, the likeli-

hood function in the unconstrained bandwidth matrix class does not have a simpler form.

Using the general d-variate kernel density estimate, the likelihood function using any sym-

metric, positive definite bandwidth matrix is given by

L(XV |H,XT) =
n∏

j=m+1

[(2π)dm2|H|]−1/2

m∑
i=1

exp
(
− 1

2
(Xj −Xi)

TH−1(Xj −Xi)
)
.

(4.7)

To construct the prior distribution, we again take an IBF approach beginning with an

improper prior, namely p(H) ∝ |H|−d. Using the minimum sample size of two observa-

43

tions, multiplication of the improper prior and the likelihood has the form,

p(H) ∝ |H|−d−
1
2 exp

(
− 1

2
[X1 −X2]TH−1[X1 −X2]

)
= |H|−

2d+1
2 exp

(
− 1

2
tr(2Σ̂V H−1)

)
. (4.8)

Notice that we have used the trace operator on the quadratic form, [X1 −X2]TH−1[X1 −

X2] and substituted Σ̂V for [X1−X2][X1−X2]T since E
(

[X1−X2][X1−X2]T
)

= 2Σ.

Now, the prior distribution in (4.8) is proportional to an Inverse-Wishart(ν,Ψ) kernel with

parameters ν = d and Ψ = 2Σ̂V . Therefore, the resulting proper prior distribution is

p(H|Σ̂V) =
|Σ̂V |d/2

Γd

(
d
2

) |H|−d− 1
2 exp

(
− tr(Σ̂V H−1)

)
, (4.9)

where Γd(a) = π(d−1)/2
∏d

l=1 Γ
(
a+ 1−l

2

)
is the multivariate gamma function.

Notice that we do not begin with the typical Jeffreys’ prior p(H) ∝ |H|−(d+2)/2 as

our initial improper prior. This is due to the restriction on the degrees of freedom ν >

d − 1 in an Inverse-Wishart distribution. This implies that the degrees of freedom must

increase with dimension. However, if we were to use Jeffreys’ prior distribution in the IBF

approach, ν = 2. Thus, the degrees of freedom are constant and our resulting prior would

not be a valid Inverse-Wishart distribution when d > 2. Therefore, we opt to begin with

p(H) ∝ |H|−d instead.

4.2.4 Numerical Approximation of the Alternative Marginal Likelihood

For all three bandwidth matrix classes, the alternative marginal likelihood is analyti-

cally intractable. One common approach in Bayesian analyses is to use Laplace’s method

to approximate these integrals (Ruli et al., 2016). The multivariate Laplace approximation

44

is given by ∫
Rp

exp(−r(h))dh ≈ (2π)d/2|V̂|−1/2 exp(−r(ĥ)) (4.10)

where

• p is the dimension of h, the vector of distinct smoothing parameters.

• r(h) is a smooth and concave function.

• ĥ is the unique minimum of r(h).

• V̂ = ∂2r(h)
∂h∂hT is the Hessian matrix evaluated at ĥ.

In our case, we let −r(h) = log(p(h)L(XV |XT ,h)). Experience shows that the kernel

likelihood function is bell-shaped, which is the main requirement for the Laplace approx-

imation to be applicable (for more on the required conditions for the appropriateness of

the Laplace approximation, see de Bruijn (1961)). All we need to do in order to apply the

Laplace approximation to the marginal likelihood is minimize r(h) and find its Hessian

matrix, which can often be well-approximated numerically.

In practice, the marginal likelihood for the scalar, diagonal, and unconstrained (d = 2)

bandwidth matrix classes can be approximated very accurately using a one-, d-, and three-

dimensional Laplace approximation, respectively. We can only use a Laplace approxima-

tion when d = 2 in the full bandwidth matrix class because we must constrain the integral

to the class of symmetric, positive definite matrices. In two dimensions, we can write

the marginal likelihood as a three-dimensional integral using the constraint, |h3| ≤ h1h2,

where H =
[h21 h3
h3 h22

]
. For d > 2, we must compute the marginal likelihood using some of

the approximation techniques found in Evans and Swartz (1995). Essentially, this com-

putation is a typical Bayesian problem which we are trying to avoid in the interest of

simplicity. Given the posterior distribution, the integration is difficult due to the large

45

number of parameters (d(d+ 1)/2), the complexity of integrating over symmetric positive

definite matrices, and the uncertainty of how to carry out the integration efficiently. By us-

ing methods like importance sampling or an MCMC approach such as Gibbs sampling or

a Metropolis-Hastings algorithm, we require drawing tens of thousands of matrices from

an appropriate proposal density. It is pretty easy to see that this will be extremely costly

compared to the Laplace approximation in the scalar and diagonal bandwidth matrix cases

and should be avoided when possible.

4.3 Testing Multivariate Normality Simulation

In this section we carry out two simulations for testing multivariate normality. The first

simulation considers testing bivariate normality using the same distributions as in Wand

and Jones (1993), which allows us to compare the relative performance of the three kernel

CVBF constructions. The second simulation looks at testing four-dimensional normality

for a smaller number of standard distributions. Before we address the simulations, we first

derive the null marginal likelihood for the d-variate normal distribution.

4.3.1 Derivation of the Null Marginal Likelihood

In order for the marginal likelihood under the normal model to have a closed form we

parameterize the multivariate normal model in terms of the precision matrix Ψ = Σ−1.

The likelihood function for the validation data is given by

L(XV |µ,Ψ) = (2π)−(n−m)/2|Ψ|(n−m)/2 exp
(
− 1

2

n∑
j=m+1

[Xj − µ]TΨ[Xj − µ]
)
. (4.11)

Under this parameterization, Hoff (2009) provides a UIR prior distribution for µ,Ψ. Take

µ|Ψ ∼ Nd(X̄,Ψ
−1) and Ψ ∼ Wishart(d + 1, Σ̂−1), where X̄ is the sample mean vector

and Σ̂ = (n − m)−1
∑n−m

j=1 [Xj − X̄][Xj − X̄]T from the validation data. This prior

46

distribution is as follows:

π(µ,Ψ) =
|Ψ|(n−m)/2 exp

(
− 1

2
[X̄ − µ]TΨ[X̄ − µ]

)
exp

(
− 1

2
tr(Σ̂Ψ)

)
(2π)d/2

[
2(d(d+1)/2)Γd

(
d+1

2

)
|Σ̂|−(d+1)/2

] . (4.12)

Multiplying the prior distribution in (4.12) by the normal likelihood in (4.11) and inte-

grating with respect to µ and Ψ, the marginal likelihood M0 can be written as

M0 = π−
d(n−m)

2

[
Γd

(
n−m+d+1

2

)
Γd

(
d+1

2

)]
(n−m+ 1)−d(n−m+d+2

2
)|Σ̂|−(n−m)/2. (4.13)

Now, we can compute the Bayes factor in (4.1) for each of the three kernel CVBF con-

structions when testing multivariate normality.

4.3.2 Testing Bivariate Normality Simulation

In the following simulation for testing bivariate normality, we use the twelve different

mixtures of normal distributions from Wand and Jones (1993) listed below. These dis-

tributions cover a wide variety of models with the null model being true for the first two

distributions and the alternative model being true for the remaining ten. Note that each

component normal distribution is written according to the convention N(µ1, µ2, σ
2
1, σ

2
2, ρ).

1. Uncorrelated Normal: N(0, 0, 1
4
, 1, 0)

2. Correlated Normal: N(0, 0, 1, 1, 7
10

)

3. Skewed: 1
5
N(0, 0, 1, 1, 0) + 1

5
N(1

2
, 1

2
, 4

9
, 4

9
, 0) + 3

5
N(13

12
, 13

12
, 25

81
, 25

81
, 0)

4. Kurtotic: 2
3
N(0, 0, 1, 4, 1

2
) + 1

3
N(0, 0, 4, 1,−1

2
)

5. Bimodal I: 1
2
N(−1, 0, 4

9
, 4

9
, 0) + 1

2
N(1, 0, 4

9
, 4

9
, 0)

6. Bimodal II: 1
2
N(−3

2
, 0, 1

16
, 1, 0) + 1

2
N(3

2
, 0, 1

16
, 1, 0)

47

7. Bimodal III: 1
2
N(−1, 1, 1, 1, 3

5
) + 1

2
N(1,−1, 1, 1, 3

5
)

8. Bimodal IV: 1
2
N(1,−1, 7

9
, 7

9
, 0) + 1

2
N(−1, 1, 7

9
, 7

9
, 7

10
)

9. Trimodal I: 9
20
N(−6

5
, 6

5
, 4

5
, 4

5
, 7

10
) + 9

20
N(6

5
,−6

5
, 4

5
, 4

5
,−1

4
) + 1

10
N(0, 0, 1

5
, 1

5
, 1

16
)

10. Trimodal II: 1
3
N(−6

5
, 0, 1, 1, 7

10
) + 1

3
N(6

5
, 0, 1, 1, 7

10
) + 1

3
N(0, 0, 1, 1,− 7

10
)

11. Trimodal III: 3
7
N(−1, 0, 9

25
, 49

100
, 3

10
)+3

7
N(1, 2

√
3

3
, 9

25
, 49

100
, 0)+1

7
N(1,−2

√
3

3
, 9

25
, 49

100
, 0)

12. Quadrimodal: 1
8
N(−1, 1, 1, 1, 2

5
) + 3

8
N(−1,−1, 1, 1, 3

5
) + 1

8
N(1,−1, 1, 1,− 7

10
) +

3
8
N(1, 1, 1, 1,−1

2
)

For each of the twelve distributions, the three kernel CVBF methods will be applied

using the following simulation parameters:

• Sample Size: n = 500

• Independent Random Samples: 100

• Random Data Splits: N = 30

• Training Set Size: m = 50, 100, 150, 200, 250

The twelve figures in Appendix A contain the simulation results for each distribution

considered. The first panel of each plot displays a contour plot of the true bivariate den-

sity function based on the two-dimensional kernel density estimate with each coordinate

smoothed using the same normal reference bandwidth. The second panel provides results

for each of the three kernel CVBF methods applied to the same 500 random samples. The

solid, dashed, and dotted curves represent the median CVWE values from the CVBFK(S),

CVBFK(D), and CVBFK(F) methods, respectively. Also, the vertical lines correspond

interquartile range of CVWE values with endpoints at the first and third quartiles.

48

When the true density is a normal distribution, all three curves increase monotonically

to 0 as the training set size increases, without reaching 0. For the uncorrelated normal

model, only when m = 50 does the scalar method find much stronger evidence in favor of

the normal model compared to the other two constructions. At the remaining four training

set sizes, the three kernel CVBF methods produce comparable results. When the two co-

ordinates are correlated, the CVBFK(D) method produces the lowest CVWE values at all

training set sizes. So when the null hypothesis is true for testing normality, it appears that

CVBFK(S) is preferred when the coordinates are uncorrelated and CVBFK(D) when cor-

relation is present. That being said, the CVWE values for all three constructions correctly

find strong evidence in favor of the normal model based on the Kass and Raftery (1995)

criterion, CVWE < − log(20), at any training set size m ∈ [50, 250].

For the remaining ten distributions in which the alternative model is true, the three

curves tend to have the following relationship: CVWEK(D) ≤ CVWEK(F) ≤ CVWEK(S).

This relationship between the three CVBF constructions holds for all distributions except

the bimodal II density in Figure A.6 if we consider the training set size that maximizes

each of the three CVWE curves. However, in this instance, the training set size is m = 50,

which in practice is too small to adequately estimate the true bivariate density. For suit-

able choices of the training set size, the CVBFK(S) method finds the strongest evidence

against the normal model in the ten alternative models considered.

Considering the results from the twelve bivariate distributions as a whole, the CVBFK(S)

method generally provides the strongest conclusions in favor of the correct hypothesis

when testing bivariate normality. That being said, the CVBFK(D) and CVBFK(F) ap-

proaches also perform very well in that they too favor the true model in all twelve cases.

The real distinction between the respective performances of these three constructions is the

drastic difference in computation time. In order to compute the kernel CVBF value for a

single data set of n = 500 bivariate normal observations, the CVBFK(D) and CVBFK(F)

49

methods take about 4 and 400 times longer, respectively, compared to the CVBFK(S)

method. This is extremely intriguing because we often have to pay a penalty in the inter-

est of a simpler method. Yet here, the simplest and most intuitive kernel CVBF approach

performs the best and is the fastest to compute.

Overall, this simulation for testing bivariate normality shows that the CVBFK(F)

method is not worth pursuing further because of its computational inefficiency and mediocre

performance. Our goal is to find a simple and intuitive Bayesian method for testing

goodness-of-fit and certainly we have two approaches, namely CVBFK(S) and CVBFK(D),

that better suit this goal compared to CVBFK(F). Even though the CVBFK(D) method

is slightly more computationally demanding compared to the CVBFK(S) method, it did

outperform its counterparts in certain cases. Therefore, in the simulations and discussion

to follow we will still explore both the CVBFK(S) and CVBFK(D) approaches.

4.3.3 Testing d-variate Normality Simulation

As we saw for bivariate data, all three CVBFK constructions perform quite well when

testing normality, most notably the CVBFK(S) method. How well do these constructions

perform if we consider more than two dimensions when testing normality?

To answer this question we consider another simulation, but this time we will test

four-dimensional normality. In this simulation, we only consider four distributions:

• Standard Normal Distribution: N(µ = 0,Σ = I4),

• Independent Laplace Distribution: each coordinate vector follows a Laplace(µ =

0, b = 1) distribution,

• t Distribution (df = 3): t3(µ = 0,Σ = I4), and

• Skew Normal Distribution: SN(ξ = 0,Ω = I4, α = 10).

50

These four distributions were chosen such that we can not only see performance under the

null hypothesis (standard normal) but also under a few alternative models that encompass

the most common departures from normality: peakedness (Laplace), heavy tails (t3), and

skewness (skew-normal). A bimodal mixture distribution was also included in the simula-

tion, but, the resulting CVWE values were so large that we merely report this fact rather

than providing plots. In total, 100 independent samples of size n = 2, 000 are drawn

from each of the four distributions. Each sample is then randomly split N = 30 times

for training set sizes m = 200, 400, 600, 800, and 1000. Figure 4.2 displays the resulting

CVWEK(S) and CVWEK(D) values, respectively. We do not consider the CVBFK(F)

construction beyond two dimensions based on the discussion in the previous subsection.

●

●

●

●

●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●

●
●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●

●

●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

● ● ●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●

●

Normal
T
SkewNormal
Laplace

●

●

●

●

●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E ●

●

●
● ●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●

●
●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●
● ●

200 400 600 800 1000

−
20

0
−

10
0

0
10

0
20

0

training set size

C
V

W
E

●

●

●

●

Normal
T
SkewNormal
Laplace

Figure 4.2: Testing 4-D normality using CVWEK(S) (left panel) and CVWEK(D)
(right panel) for 100 random samples (n = 2000) from a standard normal distribution
(solid), t3 distribution (dashed), skew-normal distribution (dotted), and Laplace distribu-
tion (dotdashed). Each sample is randomly split N = 30 times for training set sizes
m = 200, 400, 600, 800, and 1000

51

The first thing to notice straight away in Figure 4.2 is the overall similarity between

the two panels in that the CVWEK curves only differ slightly across the two constructions.

This should not come as a surprise because the coordinate variances are equal in each of

the four distributions considered in this simulation. In fact, the normal, t3, and Laplace

distributions all have covariance matrices proportional to the identity matrix. Therefore,

the kernel density estimates of the underlying density functions should be similar for both

constructions. For these three distributions, the CVBFK(S) and CVBFK(D) methods have

no problem reaching the correct conclusions.

The skew-normal distribution proves to be problematic in that we would incorrectly

conclude in favor of normality for all training set sizes in both CVBFK constructions. We

believe the poor performance of both CVBFK(S) and CVBFK(D) stems from a com-

bination of two factors. First, unlike the other three distributions in this simulation, the

covariance matrix of our skew-normal model is not proportional to the identity matrix (the

impact of the covariance matrix on the kernel CVBF methods will be explored further in

the next section). The true covariance matrix for the skew-normal distribution when ξ = 0

is given by Σ = Ω−µµt, where µ =
(

2
π(1+αT Ωα)

)1/2

Ωα (Azzalini and Capitanio, 1998).

Plugging in our parameters, Σ ≈ I4− .16J4, where Jd is a d×d matrix with each element

equal to 1. Secondly, with so few observations in the training set, the kernel density es-

timate cannot adequately detect the skewness. Both of these factors lead to the estimated

parametric model serving as a better representation of the skew-normal data compared to

the kernel model based on either a scalar or diagonal bandwidth matrix.

To better explain this phenomenon, we compared each of the true alternative models

to both the multivariate kernel density estimate and estimated multivariate normal model

using Kullback-Leibler discrepancies. Define f to be the true alternative model, f̃ to be the

estimated multivariate null model using the maximum likelihood parameter estimates, and

f̂ to be the kernel density estimate based on the optimal scalar bandwidth matrix chosen

52

using a standard reference rule. A crude approximation to log(BFm) for a single random

split in (4.1) is the log likelihood ratio log(Λ). It can be shown that log(Λ):

log Λ =
n∑

j=m+1

log(f̂(Xj))−
n∑

j=m+1

log(f̃(Xj))

≈ (n−m)
[∫

log
(f̂(x)

f(x)

)
f(x)dx−

∫
log
(f̃(x)

f(x)

)
f(x)dx

]
= (n−m)

[
KL(f̃ , f)− KL(f̂ , f)

]
, (4.14)

where KL(g, f) denotes the Kullback-Leibler divergence. Expression (4.14) provides fur-

ther intuition as to what is happening in the kernel CVBF method. When log(Λ) > 0, the

optimal kernel model is closer to the true density compared to the estimated parametric

model and vice versa when log(Λ) < 0. If we compute the approximation in (4.14) for the

three alternative models, the resulting values should be positive since the alternative hy-

pothesis is true. After 25 independent samples of size n = 2, 000 from the skew-normal,

t3, and Laplace distributions with training set size m = 400, the approximate average

log likelihood ratios are -175.47, 32.28, and 44.96, respectively. What we learn from this

exploration is that the skew-normal distribution is closer to the estimated normal model

than the optimal kernel density estimate in a Kullback-Leibler sense. Therefore, it is not

surprising that the CVBFK methods favor normality over skew-normality.

4.3.4 Simulation Conclusions

Overall, both of these simulations for testing multivariate normality indicate that the

univariate CVBFK method of Hart and Choi (2016) can be extended to test multivariate

goodness-of-fit. From the bivariate simulation, we saw that for a variety of distributions

all three formulations from Section 4.2 performed similarly well when testing normality.

With a moderate sample size of n = 500, the CVBFK(S) approach performed the best

in general. However, the most telling difference between the three constructions is their

53

respective computation times. The CVBFK(F) is certainly not useful in practice since its

computation time is immensely longer than the other two approaches without drastically

outperforming them.

The simulation results for testing four-dimensional normality were positive, but left

us with a few unanswered questions. Both the CVBFK(S) and CVBFK(D) methods per-

formed very well under the null model for standard normal data. However, under the

alternative models, both approaches correctly detected departures from normality in the

form of peakedness and heavy tails, but struggled to detect skewness. Due to their sim-

ilar performances, at this point we do not have a recommendation in favor of either the

CVBFK(S) or CVBFK(D) construction. In subsequent sections we will look at different

d-dimensional distributions from the four families considered in Subsection 4.3.3 in order

to better compare these two approaches as well as to try and remedy their difficulty in

detecting skewness.

4.4 Effect of Location and Scale on Kernel CVBF

Any goodness-of-fit test should be location-scale invariant. In terms of the kernel

CVBF method, this means that if we change the location and/or scale of the data, the

resulting CVBF values remain the same. When testing univariate normality, Hart and

Choi (2016) showed that the Bayes factor in (2.2) is location-scale invariant when using

the UIR prior in (2.4). Does this invariance property extend to the scenario of testing

multivariate normality?

4.4.1 Location Invariance

Let X continue to represent the random sample of n observations from the true d-

variate density function. By definition, the kernel CVBF method is invariant to changes

in location if the CVBFm,N value computed from X equals the CVBFm,N value computed

from Yi = Xi+c, for constant vector c ∈ Rd, for the sameN random splits. Provided that

54

we use a UIR prior distribution for the null model, it is easy to see that the kernel CVBF

method based on any of the three bandwidth matrix classes is location invariant.

In the derivation of the normal marginal likelihood in Subsection 4.3.1, we see that the

only term in (4.13) that depends on the data vectors is |Σ̂X|−(n−m)/2. If we compute the

sample covariance matrix from the validation data YV , we see that

Σ̂Y =
1

n−m

n∑
j=m+1

[Yj − Ȳ][Yj − Ȳ]T

=
n∑

j=m+1

[Xj + c− X̄ − c][Xj + c− X̄ − c]T

= Σ̂X.

In Subsections 4.2.1-4.2.3, the three kernel marginals in the CVBF constructions depend

on the sample covariance matrix and/or the following quantities:

• [Xj −Xi]
T [Xj −Xi],

• γi = 1
2
[w − Xi]

T [w − Xi], where w is a vector of column medians of the training

data,

• βl = IQR(XV
·l)/1.35, and

• [Xj −Xi]
TH−1[Xj −Xi].

Noting that the interquartile range is location invariant and median(YV
·l) = median(XV

·l)+

cl, all of these terms are invariant to location changes by the same simple argument as for

the sample covariance matrix. Therefore, changing the center of the observed data vectors

does not effect the resulting kernel CVBF value.

55

4.4.2 Scale Invariance

In order to show that the kernel CVBF method is scale invariant, we want to show

that the CVBF value remains unchanged whether we use the original data X or scale

transformed data Yi = AXi, where A is an invertible d × d matrix of constants. Unlike

the previous subsection where we get a cancellation of the location change in the null and

alternative marginal likelihoods, the changes in scale do not always cancel out so nicely.

Beginning again with the null marginal likelihood, the sample covariance matrix Σ̂Y =

AΣ̂XAT using standard properties of covariance. This means that

|Σ̂Y|−(n−m)/2 = |A|−(n−m)|Σ̂X|−(n−m)/2.

Therefore, in order for the kernel CVBF method to be scale invariant, the alternative

marginal likelihood must contain the factor |A|−(n−m) that cancels under each of the three

bandwidth matrix classes.

For both the scalar and diagonal bandwidth matrix classes, scale invariance only occurs

for specific transformations. First consider scale invariance of the CVBFK(D) construc-

tion. Let A = diag(a1, . . . , al) with al 6= 0 for l = 1, 2, . . . , d. The alternative marginal

likelihood computed from the transformed data Y is as follows:

∫
· · ·
∫
L(Y V |Y T , h1, . . . hd)p(h1, . . . , hd)dh1 · · · dhd =

C

∫
· · ·
∫ [n∏

j=m+1

m∑
i=1

d∏
l=1

h−1
l exp

(
− (alXjl − alXjl)

2

2h2
l

)]

× exp
(
−

d∑
l=1

a2
l βl
h2
l

) d∏
l=1

alβl
h2
l

dh1 · · · dhd,

where C is the appropriate normalizing constant unaffected by changes in scale. Now,

consider the change of variables bl = hl/al for l = 1, . . . , d. Using the fact that the

56

required Jacobian is |A|−1 =
∏d

l=1 a
−1
l , the marginal likelihood reduces to

C|A|−(n−m)

∫
· · ·
∫ [n∏

j=m+1

m∑
i=1

d∏
l=1

b−1
l exp

(
− (Xjl −Xjl)

2

2b2
l

)]

× exp
(
−

d∑
l=1

β∗l
b2
l

)
|A|

d∏
l=1

β∗l
b2
l

|A|−1db1 · · · dbd,

where β∗l is βl in (4.6) for the data X . If we rewrite this integral in terms of the likelihood

function in (4.4) and prior distribution p∗ in (4.6) for the data X , the marginal likelihood

for Y equals

|A|−(n−m)

∫
· · ·
∫
L(XV |XT , b1, . . . bd)p

∗(b1, . . . , bd)db1 · · · dbd.

Therefore, the CVBFK(D) method is scale invariant for the transformation Yi = AXi

when A is a diagonal matrix since we get the cancellation of |A|−(n−m) with the null

marginal likelihood.

A similar result holds in the scalar bandwidth matrix case. Consider the same trans-

formation Yi = AXi, but let A = aId for a 6= 0. For the likelihood function in (4.2) and

prior distribution in (4.3), the alternative marginal likelihood for the transformed data Y

reduces to

∫
L(Y V |Y T , h)p(h|γY)dh =

∫
L(XV |XT , b)|A|−(n−m)p(b|γX)aa−1db

= |A|−(n−m)

∫
L(XV |XT , b)p(b|γX)db.

Thus, under this scalar transformation, the CVBFK(S) method is scale invariant.

Unlike the CVBFK(S) and CVBFK(D) constructions, the CVBFK(F) method is scale

invariant for any invertible constant matrix A. Once again, consider the alternative marginal

57

likelihood for Y using (4.7) and (4.9). After substituting in Yi = AXi and Σ̂Y =

AΣ̂XAT , the marginal likelihood is as follows:

C

∫ n∏
j=m+1

|H|−1/2

m∑
i=1

exp
(
− 1

2
(Xj −Xi)

TATH−1A(Xj −Xi)
)

×|A|d|Σ̂X |
d/2|H|−d−1/2 exp

(
− tr(AΣ̂XATH−1)

)
dH.

Let B−1 = ATH−1A such that H = ABAT . Making the change of variables, the

marginal likelihood reduces to

C

∫
|A|−(n−m)

n∏
j=m+1

|B|−1/2

m∑
i=1

exp
(
− 1

2
(Xj −Xi)

TB−1(Xj −Xi)
)

×|A|d|Σ̂X |
d/2|A|−2d−1|B|−d−1/2 exp

(
− tr(Σ̂XB−1)

)
|A|d+1dB.

When making this change of variables, we have implicitly stated that dH = |A|d+1dB. In

order to determine that |A|d+1 is the appropriate Jacobian, consider making this change of

variables to only the prior distribution, which we know must integrate to 1. Therefore, we

know that

|A|−(d+1)J

∫ |Σ̂X |
d/2

Γd

(
d
2

) |B|−d−1/2 exp
(
− tr(Σ̂XB−1)

)
dB = 1,

where we have made the necessary substitutions and J is the unknown Jacobian. Clearly,

J = |A|d+1 since the integral of an Inverse-Wishart distribution is 1. Thus, the final form

of the marginal likelihood for Y is given by

|A|−(n−m)

∫
L(XV |XT ,B)p(B|Σ̂X)dB.

Hence, the CVBFK(F) method is scale invariant.

58

Overall, while the kernel CVBF method for testing multivariate normality is location

invariant, the CVBFK(S) and CVBFK(D) methods cannot be made scale invariant. The

scalar and diagonal kernel CVBF methods are only scale invariant under specific transfor-

mations, namely, the transformation matrix must be a member of each of their respective

bandwidth matrix classes. In practice, these restricted transformations are only useful in a

handful of scenarios. For instance, the diagonal transformation would be applicable when

the coordinates are known to be pairwise independent and the scalar transformation as-

sumes each coordinate has the same variance in addition to pairwise independence. The

CVBFK(F) method is the only kernel CVBF approach that is both location and scale in-

variant for general data transformations. This lack of scale invariance across all bandwidth

matrix classes is an unfortunate difference from the univariate approach of Hart and Choi

(2016) even though we also utilize a UIR prior distribution for the parameters under the

null model.

4.4.3 Location-Scale Invariant Version of the CVBFK(S) and CVBFK(D) Methods

An additional price we have to pay for using a restricted bandwidth matrix in place

of the full bandwidth matrix is a lack of scale invariance. This means that the amount

of evidence in favor of the null model depends on the underlying covariance matrix of

the true density function. For bivariate normal data for instance, the CVBFK(S) value

decreases as the correlation between the two coordinates tends toward ±1. Therefore,

every d-dimensional normal model with a different covariance matrix will produce a dif-

ferent CVBFK(S) value. Similar dependencies may exist for other parametric null models,

which is less than ideal from a goodness-of-fit perspective. So what alternative approaches

(if any) can we explore that will in effect make the CVBFK(S) and CVBFK(D) methods

location-scale invariant?

Back in Section 3.3, we summarized the recommendations of Wand and Jones (1993)

59

regarding when to use each bandwidth matrix class for multivariate density estimation.

They strongly recommended avoiding the scalar bandwidth matrix unless the data are re-

scaled so that it would make more sense to smooth each coordinate by the same amount.

Similarly, in most cases, the full bandwidth matrix can be replaced with the diagonal

bandwidth matrix provided that the data are re-scaled appropriately. Staying consistent

with their recommendations, if we re-scale the data using the sample covariance matrix

based on all n data vectors, so that Yi = Σ̂
−1/2
X Xi, then Σ̂Y = Id. This transformation

is especially appealing in the case of testing normality because testing X ∼ Nd(µ,Σ) is

equivalent to testing Σ−1/2X ∼ Nd(Σ
−1/2µ, Id). Also, thinking back to the situations

where the scale invariant transformations for CVBFK(S) or CVBFK(D) are appropriate,

the transformed data Y have identity sample covariance. Now, provided that we re-scale

the data to have identity sample covariance prior to applying the kernel CVBF method,

location and scale invariance holds and it makes perfect sense to use either the CVBFK(S)

or CVBFK(D) construction.

4.4.4 Simulation Results for CVBFK(S) on Re-Scaled Observations

How does this transformation approach perform when testing four-dimensional nor-

mality? Remember back in Subsection 4.3.3, three of the four distributions already had

sample covariance matrices proportional to the identity matrix. Certainly, we expect com-

parable performance for these distributions, but they will be slightly different due to the

constant of proportionality. The real question will be how do the CVBF results differ for

the skew-normal distribution after applying the scale transformation. The first simula-

tion in this subsection explores the performance of the CVBFK(S) method on the scale

transformed data from the three alternative distributions in Subsection 4.3.3. The resulting

median CVWE values from this simulation (same distributions and parameters as before)

are provided in Figure 4.3. We exclude the standard normal data from this simulation since

60

Σ̂X ≈ I4. Thus, we expect the resulting CVWE values to be approximately the same as

those in Figure 4.2.

●

●

●
●

●

200 400 600 800 1000

−
10

0
0

50
15

0

training set size

C
V

W
E

●

●

●
●

●

200 400 600 800 1000

−
10

0
0

50
15

0

training set size

C
V

W
E

●

●

● ● ●

200 400 600 800 1000

−
10

0
0

50
15

0

training set size

C
V

W
E

●

●

●

T(df=3)
SkewNormal
Laplace

Figure 4.3: Testing 4-D normality using CVWEK(S) for re-scaled data from a t3 distribu-
tion (dashed), skew-normal distribution (dotted), and Laplace distribution (dotdashed).
In total, 100 independent random samples of size n = 2000 are considered for each
distribution and the CVWE values are based on N = 30 splits and training set sizes
m = 200, 400, 600, 800, and 1000.

For the t3 and Laplace distributions, the CVWE curves in Figure 4.3 are comparable

to those in the left panel of Figure 4.2. In fact, by re-scaling the data prior to computing

the CVWEK(S) values, we see much larger CVWE values for the smaller training set

sizes m = 200, 400. Regarding the skew-normal model, notice the vast improvement in

Figure 4.3. When using the raw observations, the CVWEK(S) values in Figure 4.2 were

negative for all training set sizes. Now, after transforming the data to have identity sample

covariance, provided that m ≥ 600, we would correctly conclude against normality.

A more logical simulation to explore the performance of this location-scale invariant

approach to the original CVBFK(S) and CVBFK(D) constructions is to consider members

61

of these four families (t3, normal, skew-normal, and Laplace) that do not have covariance

matrices proportional to identity. Consider the following four trivariate distributions:

• Normal: µ = (3.4, 5.5, 3.5)T , Σ =
[

5.5 2.1 −.2
2.1 2.0 .02
−.2 .02 9.9

]
,

• Skew-Normal: ξ = (−14.1, 18.9, 15.5)T , Ω =
[

5.5 −3.9 1.3
−3.9 5.1 −1.6
1.3 −1.6 2.1

]
, α = (15.9, 7.1,−6.0)T ,

• t3: µ = (0, 0, 0)T , Σ =
[

7.0 −2.0 3.1
−2.0 4.4 0.5
3.1 0.5 3.5

]
, and

• Laplace: µ = (−8.2,−6.6, 5.3)T , λ = (1.4, 0.8, 12.7)T .

Figure 4.4 contains the median CVWE values from the scale invariant CVBFK(S) ap-

proach and the original CVBFK(S) and CVBFK(D) methods. From each distribution, we

drew 96 independent random samples of n = 1, 000 observations.

In the top right panel of Figure 4.4, all three kernel CVBF methods perform similarly

well when the null hypothesis is true. The real difference exists when the alternative hy-

pothesis is true. First, when the sample covariance matrix is not proportional to the identity

matrix, the standard CVBFK(S) approach performs very poorly. In fact, for each of the

alternative models, we would strongly favor normality. Next, the CVBFK(D) approach

correctly favors the kernel model for the t3 (bottom left panel) and Laplace distributions

(bottom right panel), but not the skew-normal model (top right panel). The only kernel

CVBF method that reaches the appropriate conclusion in the four distributions for suitable

training set sizes is the CVBFK(S) method computed on the transformed data. In subse-

quent sections, "the scaled CVBFK(S) method" will refer to the application of the original

CVBFK(S) method to re-scaled data.

4.4.5 Summary

Overall, this section illustrates a few very important aspects of applying the kernel

CVBF method to distributions with varying centers and scales. The original constructions

62

●

●

●

●

●

100 200 300 400 500
−

20
0

−
10

0
0

training set size

C
V

W
E ●

●

●
●

●

100 200 300 400 500
−

20
0

−
10

0
0

training set size

C
V

W
E

●

●

●
●

●

100 200 300 400 500
−

20
0

−
10

0
0

training set size

C
V

W
E

●

●

●

Scalar
Scalar(S)
Diagonal

●

●

●

●
●

100 200 300 400 500

−
15

0
−

50
0

training set size

C
V

W
E ●

●

●
● ●

100 200 300 400 500

−
15

0
−

50
0

training set size

C
V

W
E

●

●

●

●
●

100 200 300 400 500

−
15

0
−

50
0

training set size

C
V

W
E

●

●

●

●

●

100 200 300 400 500

−
30

0
−

10
0

0
10

0

training set size

C
V

W
E

●

●
● ● ●

100 200 300 400 500

−
30

0
−

10
0

0
10

0

training set size

C
V

W
E

●

●
● ● ●

100 200 300 400 500

−
30

0
−

10
0

0
10

0

training set size

C
V

W
E

●

●

●

●

●

100 200 300 400 500
−

10
00

−
60

0
−

20
0

training set size

C
V

W
E

●
● ● ● ●

100 200 300 400 500
−

10
00

−
60

0
−

20
0

training set size

C
V

W
E

●
● ● ● ●

100 200 300 400 500
−

10
00

−
60

0
−

20
0

training set size

C
V

W
E

Figure 4.4: Testing 3-D normality using CVWEK(S) on the original data (solid curves)
and re-scaled data (dashed curves) as well as CVWEK(D) on the original data (dotted
curves). In total, 96 random samples of size n = 1, 000 were drawn from the normal
(top left panel), skew-normal (top right panel), t3 (bottom left panel), and Laplace (bottom
right panel) distributions.

of Section 4.2 are location invariant, but only the CVBFK(F) method is scale invariant.

However, this lack of scale invariance for both the CVBFK(S) and CVBFK(D) methods

can be remedied quite simply by transforming the data to have identity sample covariance

prior to applying either of these constructions. This is a neat result in that it aligns with

the recommendations of Wand and Jones (1993), especially when considering a scalar

bandwidth matrix. Also, the results in Figure 4.2 that showed CVBFK(S) and CVBFK(D)

performing similarly were artificially optimistic due to the simple covariance matrices.

The distributions used for Figure 4.4 are more realistic in practice, and we see the potential

benefits for implementing the CVBFK(D) approach. However, a simple transformation of

63

the data allows us to use the simpler and easier to compute CVBFK(S) approach, which

meets our overall goal for the goodness-of-fit test. An added bonus is the fact that the

simpler approach also tends to perform better compared to the slower and slightly more

complicated CVBFK(D) method.

4.5 Choosing Training Set Size m and Number of Splits N

In order to use any of the multivariate kernel CVBF methods in practice, we must

choose values for m and N . Calibration gives us a way of selecting a suitable training set

size such that the kernel CVBF performance is appropriate for data from the null model

while optimizing the performance for non-null data. The steps for choosing m in the

univariate kernel CVBF approach of Hart and Choi (2016) are detailed in Chapter 2, but

in the multivariate case we prefer to use a slight modification of these steps.

Methods for choosing the number of random splits to take is not so clear. Of course,

in an ideal case, we would take all possible random splits of the data. However, unless

n is very small, this number of splits is impossible to consider in practice. Therefore, we

must choose N large enough to get a more precise CVBF value, but at the same time,

small enough to make computations more efficient. In the univariate case, Hart and Choi

(2016) use N = 100 in their simulations, but we only use N = 30 random splits in the

multivariate normality simulations in Sections 4.3 and 4.4. We claimed in Section 4.1

that between 30 and 50 splits will be more than sufficient, so how did we come to this

conclusion?

4.5.1 Calibration Steps to Choose m

In order to choose the training set size for a given set of multivariate data, we propose

using the following calibration scheme. The overall idea is to compare the observed scaled

CVWEK(S) curve to the scaled CVWEK(S) curve we would expect to see if the null

model was the true density function. Looking at these two curves over many training

64

set sizes, we can choose m such that the CVWE value for the observed data is (nearly)

maximized, yet under the null it is as small as possible.

1. Transform the data such that Σ̂ = Id.

2. For 30 ≤ N ≤ 50, compute CVWEK(S) for training sample sizesm = {b.05nc, b.05nc+

1, . . . , d.5ne − 1, d.5ne}.

3. For at least 25 independent random samples from the null model, compute the scaled

CVWEK(S) values for the same N and m as in (2). Note: for computational effi-

ciency, choosing fewer training set sizes and N < 30 will suffice.

4. On the same set of axes, plot the pairs (m, CVWEm,N) from (2) along with the

median, first quartile, and third quartile of the CVWEm,N values from (3) across the

25+ samples.

5. Choose m̂ as small as possible such that the observed CVWE curve is nearly maxi-

mized and the distribution of the null CVWE values is well below 0.

6. If CVWEm̂,N > log(3) for the observed data, based on Kass and Raftery (1995),

conclude that there is at least positive evidence against the null model.

7. If CVWEm̂,N < − log(3) for the observed data, conclude that there is at least posi-

tive evidence in favor of the null model.

8. If − log(3) ≤ CVWEm̂,N ≤ log(3), there is not enough evidence to favor either

model.

The choice of m̂ falls under the "art" side of statistics. While we would like to take

m̂ to be the training set size that maximized the observed CVWE curve, this is not always

the best approach. In fact, we will see this in the data analysis of Section 4.9. There

65

is the interplay between taking m̂ to ensure the scaled CVBFK(S) method behaves ap-

propriately under the null while optimizing its performance on the observed data. How-

ever, the conclusions are the same regardless of the actual CVWE values provided that

we remain in the same range using the scale in Table 1.2. For instance any training set

sizes that produce CVWE values greater than log(150) all indicate very strong evidence

against the null model. Therefore, we can take m̂ to be the smallest value of m such that

CVWEm,N > log(150).

If we were to reach step (8) in a real data analysis, it would sometimes still be fairly

evident based on the plot in step (4) which of the two models is more plausible. If the two

CVWE curves are very close and both negative then the null model is certainly plausible.

Whereas, if the observed curve is barely positive near its maximum and the null curve

is negative, then the alternative model is plausible. We simply cannot make a definitive

conclusion in these two cases. For an example of how to implement these calibration steps

in practice, see the real data analysis in Section 4.9.

4.5.2 Number of Splits N

In order to determine the plausible number of splits we should consider, we examine

how the spread of CVWEK(S) values changes as we increase the number of splits. For

each of the four distributions (normal, skew-normal, t3, and Laplace) used in Subsection

4.3.3, we draw 200 random samples of size n = 500 from their two- and three-dimensional

counterparts (i.e. the skew normal model has parameters ξ = 0, Ω = Id, and α = 10

regardless of the dimension). The training set size is fixed at m = 150 and the numbers

of splits evaluated are N = 1, 2, 5, 10, 15, 20, 25, 30, 40, 60, 80, and 100. For each N ,

we compute the interquartile range of the 200 CVWE150,N values. Figure 4.5 shows the

effect of increasing N on the interquartile range for each of the four distributions in two-

dimensions (left panel) and three-dimensions (right panel).

66

0 20 40 60 80

0
10

20
30

40

Number of Splits

IQ
R

Normal
Skew−Normal
Laplace
T

0 20 40 60 80

0
10

20
30

40

Number of Splits

IQ
R

Normal
Skew−Normal
Laplace
T

Figure 4.5: Effect of the number of splits on the interquartile range of 200 CVWEK(S)
values for bivariate data (left panel) trivariate data (right panel) from a standard normal dis-
tribution (solid), t3 distribution (dashed), skew-normal distribution (dotted), and Laplace
distribution (dotdashed).

Regardless of the data dimension, the interquartile range of the CVWEK(S) values

tends to level off (if not increase slightly) after N = 20. It should be noted that similar

results hold when using the CVBFK(D) method as well as the CVBFK(S) approach after

re-scaling the observed data vectors. Therefore, taking 30 ≤ N ≤ 50 seems reasonable in

practice. Using any more splits is not worth the extra computation time.

4.6 Bayes Factor Consistency and Computation in Large Samples

Thus far, we have only considered multivariate data sets of small or moderate size. As

mentioned in Chapter 1, one important property of any model comparison technique based

on Bayes factors is Bayes factor consistency (Definition 1). In this section, we examine

consistency of the CVBFK(S) method as the sample size increases under both the null and

alternative hypotheses. We will provide sufficient conditions for consistency in Theorems

4.1 and 4.2 with proofs, as well as empirical results that indicate consistency does hold

at the more optimal exponential rate for the CVBFK(S) method when both the null and

67

alternative hypotheses are true.

As n→∞ however, computation of the kernel density estimate becomes increasingly

burdensome. Thus, even with a scalar bandwidth matrix, application of the CVBFK(S)

method to a data set with tens or hundreds of thousands of observations becomes tedious.

However, we can take advantage of the consistency results and employ a Divide and Con-

quer strategy to minimize this computation burden.

4.6.1 Mathematical Justification for Consistency

In this subsection, we will show that Definition 1 holds for the CVBFK(S) method

and that the rate of convergence is exponential under both hypotheses. Note that both

Theorems 4.1 and 4.2 only consider a single random split of the data. Therefore, since the

performance of the CVBFK(S) will only improve for larger N , these consistency results

hold for any number of splits.

Under both the null and alternative hypotheses, we use the following notation and

make the following assumptions.

Notation:

• Let X1, . . . , Xn ∈ Rd
iid∼ f0 and XT = (X1, . . . , Xm) and XV = (Xm+1, . . . , Xn)

denote the training and validation sets, respectively.

• Let f̂d(·|XT , h) denote the d-dimensional kernel density estimate with scalar band-

width parameter h > 0 and Gaussian kernel function.

• Let fd(·|θ) denote the parametric model with parameter θ ∈ Θ.

Assumptions:

1. The true parameter value is θ0 under H0 such that f0 ≡ fd(·|θ0). The integral∫
log f(x|θ)f0(x)dx exists for all θ ∈ Θ, and under the alternative is maximized for

some θ0 ∈ Θ.

68

2. The null marginal likelihood is asymptotic to the Laplace approximation in (4.10)

given by

(2π)p/2(n−m)−p/2|I(θ̂)|−1/2π(θ̂)L(XV |θ̂),

where θ̂ is the MLE from XV and I(θ̂) is the observed information matrix.

3. The MLE θ̂ converges to θ0 in probability as n → ∞, I(·) and π(·) are continuous

at θ0, and π(θ) > 0 in a neighborhood of θ0.

In order to show consistency at an exponential rate under the null hypothesis, we re-

quire many additional assumptions. As we will see, the crux of the proof is the Kullback-

Leibler discrepancy between f̂d(·|h,XT) and fd(·|θ0), which will converge to 0 under

the null hypothesis, even though it is strictly positive. We need a number of assumptions

to ensure that other terms in the log Bayes factor to tend to 0 at a faster rate than the

Kullback-Leibler discrepancy. The assumptions we provide are sufficient conditions for

which consistency holds at an exponential rate.

That being said, we know that when the null model is true, we fully expect the para-

metric model to outperform the kernel model even as n → ∞. In fact, we have seen and

will see that empirically, consistency is easier to show under the null than under the alter-

native. Ironically, the opposite is true mathematically. We now state a consistency result

under the null as a theorem, and provide a proof of the result.

Theorem 4.1. In addition to Assumptions 1-3, also assume the following:

4. 1
n−m

∑n
j=m+1 log fd(Xj|θ0)− 1

n−m
∑n

j=m+1 log fd(Xj|θ̂) = Op

(
1√
n−m

)
.

5. Define

DKL(fd(·|θ0), f̂d(·|h0,X
T)) =

∫
log

fd(x|θ0)

f̂d(x|h0,X
T)
fd(x|θ0)dx.

69

There exists h0 > 0 that maximizes
∫

log f̂d(x|h0,X
T)fd(x|θ0)dx, and

∫
[log fd(x|θ0)]2f0(x)dx <∞.

Also, mγDKL converges in probability to a constant C > 0 for some 0 < γ < 1.

6. There exists ĥ > 0 that maximizes the kernel likelihood L(XV |XT , h).

7. For all x,m, E
(

log f̂d(x|h0,X
T)
)2 ≤ g(x) with

∫
g(x)fd(x|θ0)dx <∞.

8. Let log f̂d(x|ĥ,XT) admit the Taylor series expansion

log f̂d(x|ĥ,XT) = log f̂d(x|h0,X
T) + (ĥ− h0)

∂
∂h
f̂d(x|h,XT)|h̃
f̂d(x|h̃,XT)

where h̃ is between h0 and ĥ.

9. Define ĝl(x|h,XT), l = 1, . . . , d to be a multivariate kernel density estimate given

by

ĝl(x|h,XT) =
1

mhd

m∑
i=1

Ll(h
−1(x−Xi)),

where Ll(h−1(x −Xi)) = (xl−Xil)
2

h2
Kd(h

−1(x −Xi)) for Gaussian kernel function

Kd(·). Then,

1

n−m

n∑
j=m+1

ĝl(Xj|h̃,XT)

f̂d(Xj|h̃,XT)
− 1 = Op(1), l = 1, . . . , d.

10. For some 0 < a < 1, (ĥ− h0)/h̃ = Op(n
−a).

11. The training set size m is such that m = nb with b < min
(
a
γ
, 1

2γ

)
.

70

Under Assumptions 1-11

log BFm,1 ≤ −nm−γC + op(nm
−γ).

Proof of Theorem 4.1 Using the Laplace approximation for the null marginal, we can

bound the log BFm,1 value for a scalar bandwidth parameter by

log BFm,1 ≤
n∑

j=m+1

log f̂d(Xj|ĥ,XT)−
n∑

j=m+1

log fd(Xj|θ0)

+
n∑

j=m+1

log fd(Xj|θ0)−
n∑

j=m+1

log fd(Xj|θ̂) +Op(log n).

From Assumptions 4 and 5, the fact that

1

n−m

n∑
j=m+1

log f̂d(Xj|ĥ,XT) =

∫
log f̂d(x|h0,X

T)fd(x|θ0)dx + δ1 + δ2,

where

δ1 =
1

n−m

n∑
j=m+1

log f̂d(Xj|ĥ,XT)− 1

n−m

n∑
j=m+1

log f̂d(Xj|h0,X
T),

δ2 =
1

n−m

n∑
j=m+1

log f̂d(Xj|h0,X
T)−

∫
log f̂d(x|h0,X

T)fd(x|θ0)dx,

and noting that

1

n−m

n∑
j=m+1

log fd(Xj|θ0) =

∫
log fd(x|θ0)fd(x|θ0)dx +Op

(1√
n−m

)
,

we can write

log BFm,1 ≤ (n−m)m−γ[−mγDKL(fd(·|θ0), f̂d(·|h0,X
T))+mγδ1+mγδ2]+Op(

√
n−m).

71

By Assumptions 5 and 11, the result will hold provided that mγδi
p→ 0 for i = 1, 2.

From the Taylor series expansion in Assumption 8, we can write δ1 as

δ1 =
1

n−m
(ĥ− h0)

n∑
j=m+1

∂
∂h
f̂d(Xj|h,XT)|h̃
f̂d(Xj|h̃,XT)

.

Using the kernel estimate from Assumption 9, the derivative of the kernel density estimate

is given by

∂

∂h
f̂d(Xj|h,XT)|h̃ =

1

h̃

[d∑
l=1

ĝl(Xj|h̃,XT)− df̂d(Xj|h̃,XT)
]
.

Therefore,

δ1 =

(
ĥ− h0

h̃

)
d∑
l=1

(
1

n−m

n∑
j=m+1

ĝl(Xj|h̃,xT)

f̂d(Xj|h̃,xT)
− 1

)
.

Thus, by Assumptions 9 and 10, δ1 = Op(n
−a) and so mγδ1

p→ 0 since b < a/γ.

Next, consider δ2, which is completely determined by the training data. Therefore,

conditioning on XT and using the fact that

E[log f̂d(Xj|h0,X
T)|XT] =

∫
log f̂d(x|h0,X

T)fd(x|θ0)dx for j = m+ 1, . . . , n,

E[δ2
2] = E[E(δ2

2|XT)]

= E
[
Var
(1

n−m

n∑
j=m+1

log f̂d(Xj|h0,X
T)
∣∣∣XT

)]
=

1

n−m
E
[∫

(log f̂d(x|h0,X
T))2fd(x|θ0)dx−

(∫
log f̂d(x|h0,X

T)fd(x|θ0)dx
)2]

.

Thus, by Assumption 7, δ2 = Op

(
1√
n−m

)
, which means, mγδ2

p→ 0 and hence, we have

reached the desired result.

We should point out that many of the assumptions in Theorem 4.1 are made to expedite

the proof. However, all are reasonable based on a combination of intuition and known

72

results. For instance, Assumption 9 is anticipated in light of Hall (1987), Hall and Marron

(1987), and van der Laan et al. (2004).

Now we consider the scenario where the kernel model is true. We take a similar ap-

proach to Hart and Choi (2016) in that we approximate the alternative marginal likeli-

hood using a quadrature approximation, namely a Riemann sum over a finite support. In

practice, we noted that a Laplace approximation is our preferred method for computing

the marginal. However, asymptotically, the bandwidth parameter approaches a boundary

point, which is problematic for applying maximum likelihood methods in the Laplace ap-

proximation. That being said, any quadrature approach works very reliably in the scalar

bandwidth case, albeit a little slower computationally depending on how many evaluation

points we consider. Similar to the null case, we state the additional assumptions and result

in Theorem 4.2, followed by a proof.

Theorem 4.2. In addition to Assumptions 1-3, also assume the following:

12. The alternative marginal likelihood can be approximated by the Riemann sum ap-

proximation given by

hM − h1

M − 1

M∑
k=1

L(XV |hk,XT)p(hk)

where the set of evaluation points {h1, . . . , hM} are equally spaced such that hM =

m−β , h1 = m−α, hk = h1 +(hM −h1)(k−1)/(M−1), k = 1, . . . ,M , 0 < β < α,

1/4 < α < 1, and m = o(n) for some arbitrarily large n.

13. The quantity
∫

[log f0(x)]2f0(x)dx is finite.

14. The kernel likelihood evaluated at h1, 1
n−m

∑n
j=m+1 log f̂d(Xj|h1,X

T), is consis-

tent for
∫

log f0(x)f0(x)dx.

15. The training set size m = nc where 0 < c < 1.

73

16. The quantity log
(
m−1

∑m
i=1 γ

−(d−1)/2
i

)
= op(n) where γi = 1

2
[w −Xi]

T [w −Xi]

in (4.3) and w is the vector of column medians from XV .

17. The true density function is continuous in a neighborhood of w and f0(w) > 0.

If m→∞, then as n→∞ the approximate Bayes factor for a single random split

B̃Fm,1 =
hM−h1
M−1

∑M
k=1 L(XV |hk,XT)p(hk)

(2π)p/2(n−m)−p/2|I(θ̂)|−1/2π(θ̂)L(XV |θ̂)

is bounded below by

exp
(
nDKL(f0(·), fd(·|θ0)) + op(n)

)
.

Proof of Theorem 4.2. Noting that

M∑
k=1

L(XV |hk,XT)p(hk) ≥ L(XV |h1,X
T)p(h1),

with probability tending to 1, the approximate Bayes factor is at least

B̃Fm,1 ≥ B(n−m)−p/2
hM − h1

M
p(h1)

× exp
(n∑
j=m+1

log f̂d(Xj|h1,X
T)−

n∑
j=m+1

log fd(Xj|θ̂)
)
,

where B is a positive constant. Taking the log Bayes factor, we can write this inequality

as,

log B̃Fm,1 ≥ (n−m)

(
1

n−m

n∑
j=m+1

log f̂d(Xj|h1,X
T)− 1

n−m

n∑
j=m+1

log fd(Xj|θ̂)

+

∫
log fd(x|θ0)f0(x)dx−

∫
log fd(x|θ0)f0(x)dx

)
+ log p(h1) +O(log n).

74

Using Assumptions 12-14,

B̃Fm,1 ≥ (n−m)
(
DKL(f0(·), fd(·|θ0)) +

1

n−m
log p(h1) + op(1) +O

(log n

n

))
.

The result will be shown provided that 1
n−m log p(h1) → 0. Taking the log of the prior

distribution in (4.3) evaluated at h1,

log p(h1|γ) = log(A) + log(f̂d(w|XT , h1))− log
(
m−1

m∑
i=1

γ
−(d−1)/2
i

)
,

where A is a positive constant. Since f̂d(w|XT , h1))
p→ f0(w), it follows from Assump-

tions 16 and 17 that log p(h1)/n = op(1). Therefore, we have reached the desired result.

There are a few important details to point out in this theorem and proof. First, As-

sumption 14 is included out of necessity, but it is not unreasonable since as n → ∞

we know that the kernel density estimate evaluated at the smallest bandwidth evaluation

point h1 will converge in probability to the true density function so long as h1 → 0 with

mh1 → ∞. The remaining assumptions (save for Assumption 12) are rather weak, but

are included since a few select densities could prove to be problematic. For instance, one

could construct a bimodal density such that f0(w) = 0. In this case, log p(h1) = −∞ and

the consistency result would not hold without Assumption 17.

4.6.2 Empirical Consistency Results

While Theorems 4.1 and 4.2 require many assumptions, they do indicate that an ex-

ponential rate of consistency can be attained under both hypotheses as the sample size

increases towards infinity. In order to verify that consistency of the CVBFK(S) method

holds for more practical sample sizes (n ≤ 10, 000), consider the following small sim-

ulations. For sample sizes n = 500, 1000, 2000, 5000, and 10000, 32 independent ran-

dom samples are drawn from four-dimensional distributions either from the null model

75

(standard normal distribution) or the alternative model (Laplace and skew-normal distri-

butions). For each of these random samples, we compute the scaled CVWEK(S) value

using training set proportions p = .1, .2, .3, .4, and .5 and N = 30 random splits. A

training set proportion p simply means that we randomly split the data such that m = pn

observations are in the training set.

Figure 4.6 displays the resulting scaled CVWEK(S) values when we assume the null

model to be true and sample data from the standard normal distribution. Notice that as

the sample size increases, the entire CVWE curve shifts toward −∞. Each curve has

the same rough shape, monotonically increasing as the training set size increases, that we

have come to expect under the null model. Also, as a function of sample size, for a fixed

training set proportion, the decrease in CVWE values is nearly linear. Though we do not

include the results here, we have found a similar relationship between sample size and

CVWE values for two- and three-dimensional normal data. Therefore, these empirical

results lend credence to the Kullback-Leibler discrepancy being the dominant term in the

log Bayes factor leading us to conclude that the CVBFK(S) method is consistent under

the null hypothesis at an exponential rate.

Figure 4.7 contains the simulation results when the alternative model is true. The top

and bottom panels correspond to the scaled CVWEK(S) values when the data are sam-

pled from the skew-normal (SN(0, I4,10)) and Laplace distributions (each coordinate

L(0, 1)), respectively. Unlike Figure 4.6 where the conclusions regarding normality were

the same at every sample size and training set size, under the alternative models things

are not so clean. For the skew-normal data, because we need a larger number of obser-

vations in the training set for the kernel model to be accurate, the consistency results are

less obvious. For instance, when m = .4n, there is a slow but steady increase in CVWE

values for the smaller sample sizes n ≤ 2000. This increase becomes more apparent when

n ≥ 5000. Now consider the smallest training set size of m = .1n. As the sample size

76

●
●

● ● ●

0.1 0.2 0.3 0.4 0.5

−
60

0
−

40
0

−
20

0
0

training set proportion

C
V

W
E

●

●
●

● ●

0.1 0.2 0.3 0.4 0.5

−
60

0
−

40
0

−
20

0
0

training set proportion

C
V

W
E

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
60

0
−

40
0

−
20

0
0

training set proportion

C
V

W
E

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

−
60

0
−

40
0

−
20

0
0

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
60

0
−

40
0

−
20

0
0

training set proportion

C
V

W
E

n = 500
n = 1000
n = 2000
n = 5000
n = 10000

Figure 4.6: Bayes factor consistency of the scaled CVBFK(S) (N = 30, p =
.1, .2, .3, .4, .5) method when testing four-dimensional normality for standard normal
data. In decreasing order, the curves correspond to the following sample sizes: n =
500, 1000, 2000, 5000 and 10000.

increases to n = 2000, we actually see a slight decrease in CVWE values. Once the sam-

ple size increases beyond n = 2000, so that the training set contains enough observations,

however, the CVWE values increase as expected. As for the Laplace data, consistency

is much clearer to see. The CVWE curves slowly shift upwards away from 0 for sample

sizes n = 500, 1000, and 2000. For sample sizes n > 2000, the curves shoot off toward

∞.

The most important takeaway from Figure 4.7 is the lack of agreement in the respective

conclusions against/for normality across all sample sizes for both distributions. When

n = 500, we would conclude that the Laplace data were normally distributed when m =

100, 200 (similarly for n = 1000, m = 200). As for the skew-normal model and any

combination of n and p such that m ≤ 500, the scaled CVWEK(S) values will favor

normality. Since we know the true data generating distributions in this simulation, we

know that we are incorrectly favoring normality in these instances. However, in practice,

77

●
●

● ● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

0
30

0

training set proportion

C
V

W
E

●

●
●

● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

0
30

0

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

0
30

0

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

0
30

0

training set proportion

C
V

W
E

●

●

● ●
●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

0
30

0

training set proportion

C
V

W
E

n = 500
n = 1000
n = 2000
n = 5000
n = 10000

● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

0
40

0
80

0

training set proportion

C
V

W
E

●
● ● ● ●

0.1 0.2 0.3 0.4 0.5

0
40

0
80

0

training set proportion

C
V

W
E

●
● ● ● ●

0.1 0.2 0.3 0.4 0.5

0
40

0
80

0

training set proportion

C
V

W
E

●

● ● ●
●

0.1 0.2 0.3 0.4 0.5

0
40

0
80

0

training set proportion

C
V

W
E

●

● ●
●

●

0.1 0.2 0.3 0.4 0.5

0
40

0
80

0

training set proportion

C
V

W
E

Figure 4.7: Bayes factor consistency of the scaled CVBFK(S) (N = 30, p = .1, .2, .3,
.4, .5) method when testing four-dimensional normality for skew-normal data (top panel)
and Laplace data (bottom panel). Each curve corresponds to one of the following sample
sizes: n = 500, 1000, 2000, 5000 and 10000.

we do not know the true density function. Therefore, when the sample size is small for

multivariate data, it is imperative to implement the calibration scheme of Subsection 4.5.1

to compare the observed CVWE curve to the null curve. That being said, consistency

does hold at an exponential rate so once we have a large enough sample, the probability of

correctly favoring the kernel model tends to 1 for any alternative model.

78

4.6.3 Divide and Conquer Kernel CVBF

The kernel density estimator in (3.1) with Gaussian kernel function is inefficient to

compute for large sample sizes as described in Raykar et al. (2010). In order to compute

the likelihood function L(XV |H,XT), m(n − m) evaluations of the kernel function are

required for a single random split. This scales quadratically with increasing sample size,

which becomes incredibly costly. For an example of how computation time scales with

increasing sample size, consider computing the scaled CVWE(S) value for a single four-

dimensional t3 random sample with 30 random splits and training sample proportion p =

.30. On a MacBook Pro (2.8 GHz Intel Core i5, 16 GB RAM) the respective run times

for sample sizes n = 500, 1000, 2500, 5000, and 10000 are 3.62, 7.32, 25.80, 125.13, and

583.39 seconds.

In an effort to decrease the computational burden, we could implement one of the

many approximation methods to greatly reduce the number of kernel function evaluations

required to compute the kernel likelihood function. Most of these approximations uti-

lize some form of binning (Silverman (1986), Härdle and Scott (1992), Wand (1994), and

Tang and Karunamuni (2016)). When applied to multivariate kernel density estimation,

let gl1 < · · · < glM be an equally spaced grid of M << n points (Ml = M for simplicity)

in the l-th coordinate direction for l = 1, . . . , d such that all observed data values are con-

tained within the grid. The raw observations are then replaced with grid counts using a

binning rule like simple, linear, centered, or rounding. These grid counts represent the

amount of data within a neighborhood of a given grid point. In their simplest form, the

binned approximation to the kernel likelihood function now requires O(M2d(n−m)) ker-

nel evaluations (Wand, 1994), which is only more efficient whenM is very small compared

to n. Utilization of the fast Fourier transform can reduce the number of kernel evaluations

to a much more efficient O((M log(M))d(n−m)). Keep in mind that increasing M will

79

lead to more accurate approximations, while at the same time, increasing the computation

time required (especially in higher dimensions). Even though these binning approxima-

tions may be more efficient than the brute force computation of the kernel likelihood, we

would still see an increase in run time as the sample size gets very large. Thus, how can

we expedite the computation of kernel CVBF, regardless of computation method, without

compromising the overall conclusions?

A common approach for tackling massive data sets is known as Divide and Conquer

and has been discussed by many authors (see Li et al. (2013) and Chang et al. (2016) for a

couple examples). The idea is very simple. Suppose we want to compute a statistic θ̂n from

the entire sample Z1, Z2, . . . , Zn where n is extremely large. In an effort to save run time

and computer memory, randomly partition the sample intow smaller data sets of equal size

k. Now, compute the statistic of interest on each of the partitions to obtain θ̂1, θ̂2, · · · , θ̂w.

Finally, recombine the w statistics, each based on k observations, appropriately to find

θ̃, such that θ̃ is comparable to the overall statistic θ̂n. Bhattacharya and Hart (2016) ap-

ply this idea to determining the optimal bandwidth parameter in kernel density estimation

using partitioned cross-validation. They partition the data into disjoint subgroups, find

the optimal smoothing parameter for each subgroup using standard cross-validation tech-

niques, and then re-scale and average the smoothing parameters across subgroups to get

an overall smoothing parameter. Another common application is in estimating slope pa-

rameters in (generalized) linear models for subgroups by simply averaging the estimates

to determine the model for the entire dataset (Chang et al., 2016). For more applications

of Divide and Conquer strategies, see the references within Bhattacharya and Hart (2016).

Does a Divide and Conquer approach make sense in the kernel CVBF methodology?

First, the overall run time for computing the w CVWE values on all partitions must be

faster than the run time on the entire data set. Next, the appropriate number of parti-

tions must be used such that the conclusions from each partition are not contradictory to

80

the overall conclusions. Finally, an appropriate method must be derived such that the re-

combined estimate from the partitions is comparable to the overall CVWE value. In the

discussion to follow, we only consider the scaled CVBFK(S) method.

Since the computation time increases quadratically with increasing sample size, the

time required to compute the CVWE value over all partitions will certainly be quicker. As

a simple example, suppose we had a four-dimensional data set of n = 10, 000 observations

from a t3 distribution. Using the run times given above for a 30% / 70% split into training

and validation set and N = 30 random splits, if we partitioned the largest data set into

w = 20, 10, 5, and 2 partitions, the overall run times across the partitions would be 72.34,

73.20, 129.00, and 250.26 seconds for subgroup sizes, k = 500, 1000, 2000, and 5000,

respectively. All of these times are less than the 583.39 seconds required for one split of

the entire dataset. Therefore, in general, the overall run time decreases as the number of

partitions increases, however there is a point where the decrease reaches a minimum and

then either levels off or begins to increase slightly. This means that there is a computational

limit such that the trade-off between the number of partitions and the sample size in each

partition produces (roughly) the same overall run time. However, this limit is still a fraction

of the computation time required to compute the kernel CVWE value on the entire data

set.

In the results of Figure 4.7, we noted that for certain combinations of training set

size m and sample size n, the CVBFK(S) method incorrectly favored the null model for

four-dimensional Laplace and skew-normal data. This poses a problem for applying a Di-

vide and Conquer algorithm since the conclusions based on each partition may contradict

the overall results if we choose w to be too large. Therefore, choosing w is incredibly

important. We want to use as few partitions as possible to ensure that we reach correct

conclusions in each partition, but at the same time the number of partitions should be big

enough to substantially speed up computations. A practical solution to optimize this trade-

81

off is to select a variety of w values and then for each w, compute the CVWEK(S) value

(and run time) on a single random sample from the original data set of size kw = n/w.

Keep in mind that the training set proportion plays a pivotal role in the choice of w as

well. As w increases, kw decreases, so for a fixed training set proportion, the training set

size within a subgroup will decrease. Therefore, for increasing w, we must let p increase

toward .5 in order for the training set to contain enough observations to produce an accu-

rate kernel density estimate. This idea is backed up in the theory which says the training

set proportion tends to 0 as sample size increases. Once we have our test CVWE values

for different subgroup sizes, we should be able to get a sense which hypothesis is favored

by examining the trend toward ±∞ as w → 1. We then choose one of the w values for

which the CVWEK(S) conclusions are in agreement, taking into account the respective

computation times, as the final number of partitions.

Often times in practice, the above scheme for choosing w is unnecessarily extensive.

We can begin by taking random subsamples from the data which are both "large enough"

and computationally manageable. Then compute the CVWEK(S) value using a suitable

training set size. If the evidence from that subsample is overwhelmingly in favor (or

against) the null model, then we can likely stop with the exploration and report our con-

clusions. For more satisfactory conclusions, take a new random subsample of the same

size and repeat the process. The only time we want to carefully choose w and p is when

the amount of evidence is close to 0. However, under consistency, if the subsample size

is large enough, for any appropriate training set size, the CVWEK(S) value will be suffi-

ciently far from 0.

The toughest part of a Divide and Conquer algorithm is determining the appropriate

method of recombination. In the kernel CVBF method, this is more complicated than a

simple average and/or rescaling. In Figures 4.6 and 4.7, not only does the CVBF value

shift away from 0 (direction depending on which model is true), the CVWE values are not

82

exactly a linear function of sample size. Therefore, a scaling value will be some function

of w and averaging all of the CVWEw values will result in an underestimate of the overall

CVWE value. However, since the CVBFK(S) method is consistent at an exponential rate

under both hypotheses, if |CVWEw| > q for critical value q, then |CVWE| > q for the

entire data set. This means that if we choose w appropriately, our conclusions in terms of

the amount of evidence in favor (or against) the null model will agree.

In order to see how a Divide and Conquer strategy would apply in the kernel CVBF

context, consider the four-dimensional distributions used in the simulation for testing nor-

mality in Subsection 4.3.3. For each of the four distributions, we randomly sample a single

data set of n = 10, 000 observations. We then apply a Divide and Conquer strategy using

w = 2, 5, 10, 20, 40, and 100 subgroups. Note that we would never consider using 100

subgroups with 100 observations each in practice. This row is included simply to show

that the computation time will begin to increase for w too large. Within each subgroup, we

compute the scaled CVWEK(S) value with N = 30 and m = .3k. We mentioned that the

training set size should change with w, however for simplicity we keep it fixed at a propor-

tion that is reasonable in all cases considered here. The recombination method is simply

the median CVWE value across all w subgroups. Table 4.1 provides the CVWEK(S) val-

ues for each Divide and Conquer scheme based on the six subgroup sizes for each data

set, the CVWEK(S) value on each entire data set, and the respective computation times to

produce each CVWEK(S) in the table.

If we were to compute the scaled CVWEK(S) value from each of the four distributions

we certainly find overwhelming evidence in favor of the correct model. However, for 30

random splits and just a single training set size of m = 3, 000, the computations would

take around 8 to 10 minutes. Keep in mind that in practice we would want to repeat these

computations for a large number of training set sizes on both the observed data and data

sampled from the null model. Therefore a real data analysis would take hours to complete.

83

(w, k) Normal Skew-Normal t3 Laplace

1 (10, 000) −298.09 (476) 323.48 (441) 1994.04 (600) 1080.04 (562)

2 (5, 000) −182.37 (237) 97.65 (260) 695.74 (287) 433.17 (310)

5 (2, 000) −86.77 (129) 7.76 (130) 180.98 (128) 118.80 (145)

10 (1, 000) −50.90 (79) −6.47 (91) 56.56 (103) 42.67 (105)

20 (500) −26.06 (65) −5.27 (69) 10.24 (68) 16.71 (66)

40 (250) −10.08 (62) −2.98 (69) 6.20 (74) 5.71 (61)

100 (100) 0.03 (84) 2.07 (88) 4.74 (91) 4.41 (72)

Table 4.1: Application of a Divide and Conquer scheme to testing four-dimensional nor-
mality of a single data set of n = 10, 000 observations from a normal, skew-normal, t3,
and Laplace distributions. Each data set is partitioned into w = 1, 2, 5, 10, 20, 40, and 100
subgroups and the scaled CVBFK(S) method is applied to each partition withN = 30 and
m = .3k. The median CVWEK(S) value across all w partitions is reported along with the
respective computation times.

To speed up the analysis, we might consider a Divide and Conquer approach. Remem-

ber that we want to choose w so that we have enough observations k in each subgroup

so that our conclusions agree with the entire data set. However, we want w to be small

enough so that we minimize the total computation time. First consider the column for the

normal data in Table 4.1. We would find strong evidence in favor of the normal model with

as many as w = 40 subgroups with k = 250 observations. The overall computation time

to compute the CVWEK(S) value of -10.08 is a mere 62 seconds compared to 476 sec-

onds for the entire data set (13% the full run time). Of course, with k = 250, the training

set within each subgroup is only 75 observations. Therefore, we may consider the extra

17 seconds of computation time to use w = 10, which results in a CVWEK(S) value of

84

-50.90, but more importantly each training set contains 300 observations. This is why we

recommend determining the computing time and CVWEK(S) value for a single subgroup

of a few partitions of size w.

For the t3 and Laplace distributions, we conclude against the normal model in all

schemes. However, the overall run times begin to increase once w gets too large. For

the t3 distribution this is at w = 40 and for the Laplace distribution when w = 100.

So with such strong results at w = 20 (CVWEK(S) values of 10.24 and 16.71 for t3

and Laplace, respectively) and respective computation times just over one minute, we can

strongly favor the kernel model in both cases in about 10% the run time.

Finally, the skew-normal model illustrates the need for choosing w large enough such

that the conclusions reached on the subgroups agree with those from the whole data set.

When w ≤ 5, we find strong evidence against normality and when 10 ≤ w ≤ 40 we

find positive to strong evidence in favor of normality. Therefore, we would likely take

w = 5, since we have strong evidence against normality (CVWEK(S) value of 7.76),

but a computation time of 2 minutes (29% of the overall time). We could double our

computing time for far stronger results (CVWEK(S) value of 97.65), but for the purpose

of testing goodness-of-fit, this is unnecessary.

The moral of this simulation, and this section for that matter, is that a Divide and

Conquer approach could be extremely useful when testing goodness-of-fit with the scaled

CVBFK(S) method on data with moderate dimension and extremely large sample size. Of

course, there is some fine-tuning required in the choice of w as well as training set propor-

tion p before conducting a full analysis. However, once w and p are chosen, simply carry

out the calibration steps of Subsection 4.5.1 using the resulting CVWEK(S) values from

the Divide and Conquer scheme. Because the scaled CVBFK(S) method is consistent, the

resulting conclusions must be stronger for the overall data than those from the Divide and

Conquer approach.

85

4.7 Comparison to Frequentist Goodness-of-Fit Tests

In Chapter 1, we looked at a variety of Bayesian and frequentist multivariate goodness-

of-fit tests and compared the general hypothesis testing framework from both perspectives.

We argued that taking a Bayesian approach to hypothesis testing had many advantages,

especially in the goodness-of-fit problem. In this section, we look at how the kernel CVBF

method compares in performance to the more common frequentist multivariate goodness-

of-fit tests in a simple simulation for testing trivariate normality.

We only consider frequentist methods in this simulation because of all the Bayesian

tests mentioned in Subsection 1.1.3, the only one capable of testing multivariate normality

is that of Tokdar and Martin (2013). However, remember that the motivation for the kernel

CVBF method is to have a simple and intuitive Bayesian approach to testing goodness-of-

fit for any parametric null model. The method of Tokdar and Martin (2013), while effec-

tive for testing multivariate normality, is neither simple nor intuitive. In reality, statisticians

verify multivariate normality assumptions using one of the following frequentist tests (Ko-

rkmaz et al., 2016): Mardia’s test for skewness, Mardia’s test for kurtosis, Royston’s test,

and the Henze-Zirkler test. Therefore, we will compare the CVBFK(S), CVBFK(D), and

the scaled CVBFK(S) methods to the four aforementioned frequentist tests in the follow-

ing simulation.

Consider 1,000 trivariate random samples of size n = 1, 000 from the normal, Laplace,

and skew-normal families, where each sample uses randomly generated parameters. For

each data set, the four frequentist tests as well as three kernel CVBF methods at training

set sizes m = 100, 200, 300, 400, and 500 are carried out. Using the normal data, we first

want to compare the Type I error rates for all the tests considered. Next, we look at a

power study using the skew-normal and Laplace data. Not only will these comparisons

compare our kernel CVBF methods to common frequentist tests, but we will also be able

86

to finally recommend a single kernel CVBF method.

4.7.1 Type I Error Rates

For the frequentist goodness-of-fit tests of normality, a Type I error is made when

P < .05 when the data are truly normally distributed. We will define a Type I error to be

CVWEm,N=32 > log(3), since this represents positive evidence against the normal model

according to Kass and Raftery (1995). Table 4.2 provides the number of Type I errors for

each of the four frequentist tests.

Mardia (Skew) Mardia (Kurtosis) Royston Henze-Zirkler

Type I Errors (Rate) 59 (.059) 44 (.044) 80 (.080) 49 (.049)

Table 4.2: Number of Type I errors in 1,000 randomly generated trivariate normal distri-
butions with n = 1, 000 using common frequentist goodness-of-fit tests for normality.

We expect the Type I error rates for the frequentist tests to be fairly close to α = .05.

This is true for both of Mardia’s tests and the Henze-Zirkler test with Type I error rates

ranging from .044 to .059. However, Royston’s test produced a surprisingly large Type I

error rate of .08. The corresponding Type I error rates for the three kernel CVBF methods

are not included in a table since for all but 2 of the 15 tests, zero Type I errors are made.

Only two and five errors are made when m = 500 for the CVBFK(S) approach for the

original data and the scale transformed data, respectively. Based on the simulations in

this chapter and the steps of calibration, a 50/50 split of the data is less than ideal and

would rarely (if ever) be used in practice. Under the null model, the CVBF curve increases

monotonically to 0 and thus we expect poorer performance for normal data whenm = 500.

Also, as n→∞ the consistency results in Section 4.6 and in Hart and Choi (2016) require

87

m/n → 0, which means the training set size will be a smaller proportion of the data

as n increases. Even if we relax the definition of a Type I error under the kernel CVBF

methods to be CVWEm,N=32 > − log(3), then we still fail to make a Type I error provided

m ≤ 400. This means that in all 1,000 samples, we have positive evidence in favor of

normality.

An interesting question to ask is what the level of each frequentist test should (roughly)

be in order for the Type I error rates to agree with the kernel CVBF methods. Since we did

not make any Type I errors for suitable choices of m, we cannot find the corresponding

level using this simulation. Conservatively though, we could set α = .001, which implies

the frequentist tests make a Type I error in 1 out of every 1,000 tests. This significance

level is far less than the usual .05 level. In frequentist testing, the probability of a Type

I error remains fixed at the chosen level α as n → ∞. However, we know from the

consistency of the CVBFK(S) method that as n→∞, P (Type I Error)→ 0 and thus the

level of the frequentist test should in fact tend to 0 as well.

4.7.2 Power Study

Now that we have compared the performance of kernel CVBF methods to frequentist

tests of multivariate normality when the null hypothesis is true, it makes sense to see

what happens when the alternative hypothesis is true. The empirical power of a test γ is

defined as the probability of correctly concluding in favor of the alternative hypothesis.

For the kernel CVBF methods, we find positive evidence in favor of the kernel model

when CVWEm,N=32 > log(3). Instead of using α = .05 for the frequentist tests, to make

the comparisons fair we use α = .001 since the corresponding Type I error rates are now

roughly equivalent across all tests. Tables 4.3 and 4.4 contain the respective powers of

each test for skew-normal and Laplace data. Notice that we do not include the kernel

CVBF methods when m = 500 due to the discussion in the previous subsection.

88

CVBFK(S) γ Scaled CVBFK(S) γ CVBFK(D) γ Freq. Test γ

m = 100 0 m = 100 .001 m = 100 0 Mardia (Skew) .999

m = 200 .026 m = 200 .717 m = 200 .086 Mardia (Kurt.) .205

m = 300 .270 m = 300 .980 m = 300 .325 Royston .554

m = 400 .611 m = 400 .994 m = 400 .538 Henze-Zirkler .995

Table 4.3: The proportion of 1,000 randomly generated skew-normal random samples with
n = 1, 000 where each goodness-of-fit test correctly concludes against trivariate normality.

CVBFK(S) γ Scaled CVBFK(S) γ CVBFK(D) γ Freq. Test γ

m = 100 .005 m = 100 .249 m = 100 .223 Mardia (Skew) .649

m = 200 .160 m = 200 .992 m = 200 .992 Mardia (Kurt.) 1

m = 300 .278 m = 300 1 m = 300 1 Royston 1

m = 400 .381 m = 400 1 m = 400 1 Henze-Zirkler 1

Table 4.4: The proportion of 1,000 randomly generated Laplace random samples with
n = 1, 000 where each goodness-of-fit test correctly concludes against trivariate normality.

The results in Tables 4.3 and 4.4 are quite illuminating for both the kernel CVBF

methods and frequentist tests. First, consider those in Table 4.3 for skew-normal data.

From previous simulations and discussions in Sections 4.3 and 4.4, we already knew the

power of the unscaled kernel CVBF methods was rather poor when testing normality for

skew-normal data. This is exactly what we find over the 1,000 random samples as the em-

pirical powers for CVBFK(S) and CVBFK(D) never exceed .611 and .538, respectively

for suitable training set sizes. The empirical power for the scaled CVBFK(S) method is

89

rather impressive when m ≥ 300 and far superior to its kernel CVBF counterparts. In

fact, γ ≥ .980 for the scaled CVBFK(S) method is comparable to Mardia’s test based on

multivariate skewness (γ = .999) and the Henze-Zirkler test (γ = .995). The version of

Mardia’s test that uses multivariate kurtosis performs rather poorly with empirical power

γ = .205 and Royston’s multivariate Shapiro-Wilk test rejects multivariate normality in

just over half the random samples.

Next, much like the skew-normal data, the results for the Laplace data in Table 4.4

resemble what we have seen in previous simulations. Both the scaled CVBFK(S) method

and the CVBFK(D) method perform very similarly with at least 992 of the 1,000 samples

favoring non-normality when m ≥ 200. Since the scale parameters of each coordinate

of the Laplace distribution are randomly chosen, the covariance matrix is not necessarily

proportional to the identity matrix; however, it is a diagonal matrix. Therefore, the poor

performance of the CVBFK(S) construction and the great performance of the CVBFK(D)

method are not surprising. For the frequentist tests, the Henze-Zirkler test performs very

well once again with all 1,000 samples rejecting normality at the α = .001 level. For the

heavy tailed Laplace data, Mardia’s test based on multivariate kurtosis performs perfectly

well, while the test based on skewness rejects normality in 65% of samples, which is

opposite what we saw with the skew-normal data.

4.7.3 Conclusions

Overall, the results from this simulation illustrate why we prefer a Bayesian approach

to goodness-of-fit testing. The Type I error rates for the kernel CVBF methods are far

superior to the frequentist tests. A frequentist would have to set α < .001 in order for the

Type I error rates to agree with our Bayesian approach. For larger data sets, this signif-

icance level will need to tend to 0 since the kernel CVBF methods are consistent. Once

we set the Type I error rates to be roughly the same for all tests, the Henze-Zirkler test

90

performed quite well, on par with the scaled CVBFK(S) approach for appropriate training

set size. The other frequentist tests, both of Mardia’s approaches and Royston’s method,

perform well for one alternative model, but not the other. Therefore, combining the excel-

lent performance under both the null and alternative models, as well as the performance

in the many previous simulations in this chapter, we can safely conclude that the scaled

CVBFK(S) method is the superior kernel CVBF approach.

4.8 Curse of Dimensionality

In Section 3.4, we provided two different definitions for the curse of dimensionality,

namely the increase in computational complexity and the "empty space phenomenon" that

occurs as the data dimension increases. We also described the drastic impact that this

curse has when nonparametrically estimating a multivariate density function, specifically,

the fact that the typical multivariate kernel density estimate should not be used for data in

more than 5 dimensions.

In this section, we will answer the questions posed in Section 3.5 relating to the effect

the curse of dimensionality has on the multivariate kernel CVBF method. We will first get

a sense of the applicability of the kernel CVBF method to higher dimensional data using a

simulation for testing 10-dimensional normality. After discussing the potential pitfalls of

testing goodness-of-fit of high dimensional data with the kernel CVBF method, we offer

viable work-around solutions to the curse by means of dimension reduction techniques.

4.8.1 The Impact of the Curse of Dimensionality on Kernel CVBF Methods

If the kernel density estimate is only appropriate for estimating data in moderate di-

mensions, how well would it work in a 10-dimensional case? So far in this chapter, we

have concluded that applying the scaled CVBFK(S) method is the preferred kernel CVBF

approach as it outperforms and is far simpler than its kernel CVBF counterparts. The ker-

nel estimate simply needs to pick up on major departures from the null model. Consider

91

testing normality once again, but this time in 10 dimensions. We draw 32 random samples

of size n = 5, 000 from the standard normal (N(0, I10)), skew-normal (SN(0, I10,10)),

and independent Laplace (each coordinate L(0, 1)) distributions. For each distribution, the

scaled CVWEK(S) values are computed for training set sizes m = 500, 1000, 1500, 2000,

and 2500 using N = 30 random splits. The results are in Figure 4.8.

●

●

●

●

●

500 1000 1500 2000 2500

−
25

00
−

15
00

−
50

0

training set size

C
V

W
E

●

●

●

●

●

500 1000 1500 2000 2500

−
25

00
−

15
00

−
50

0

training set size

C
V

W
E ●

●

●
●

●

500 1000 1500 2000 2500

−
25

00
−

15
00

−
50

0

training set size

C
V

W
E

●

●

●

Normal
Skew−Normal
Laplace

Figure 4.8: Testing 10-dimensional normality using the scaled CVBFK(S) method.
The simulation consists of 32 samples from normal (solid), skew-normal (dotted), and
Laplace (dotdashed) distributions, N = 30 random splits, and training set sizes m =
500, 1000, 1500, 2000, and 2500.

Not surprisingly, the scaled CVBFK(S) method performs very well under the null

model. We expect the parametric model to be favored when the null model is true com-

pared to a nonparametric estimate. With only n = 5, 000 observations, the scaled CVBFK(S)

method concludes in favor of the normal model for skew-normal data. We saw earlier in

this chapter (Figure 4.3) how transforming the data to have identity covariance matrix of-

fered improved performance for the skew-normal model when d < 5. Now, for higher

dimensional data, the scale transformation is no longer a suitable remedy for skew-normal

92

data. Maybe most impressively, with a training set size m ≥ 1750, even in 10 dimen-

sions, we conclude in favor of non-normality for the Laplace distribution. However, the

major takeaway from Figure 4.8 is that while the scaled CVBFK(S) method can be used

to test goodness-of-fit in more than moderate dimensions, the multivariate kernel density

estimate is too inaccurate without massive data sets to have confidence in the conclusions.

The difficulty in the scaled CVBFK(S) method in successfully favoring the kernel

model for skew-normal data in 10 dimensions is directly related to the second definition

of the curse of dimensionality. Comparing Figures 4.8 and 4.7, for the same skew-normal

distribution with the same parameters (save for dimension) and n = 5, 000 the scaled

CVBFK(S) method overwhelmingly favors non-normality when d = 4, but when d = 10,

we would overwhelmingly favor normality. The following results are not shown in any

figure, but in two dimensions, we only need n = 500 and m ≥ 100 to reach the correct

conclusion for skew-normal data. However, in order to favor the kernel model in three and

four dimensions, the (n,m) pairs required are (2000, 500) and (5000, 2000), respectively.

The increasing training set size reflects the "empty space phenomenon" since we need a

far larger number of observations in order for the kernel model to detect the skewness and

reject the normal model. Therefore, it is no surprise that with only n = 5, 000 observations,

the scaled CVBFK(S) method favors normality.

For other alternative models, the increased dimension does not have as drastic an ef-

fect on the number of observations required to reject normality. In fact, for the four-

dimensional Laplace model the scaled CVBFK(S) method favors the kernel model with

sample size n = 500 and training sample sizem = 150. We can even conclude against nor-

mality in the 10-dimensional Laplace model in Figure 4.8 with m = 1750 for n = 5000.

Certainly the curse of dimensionality impacts different densities with different amounts of

severity. Unfortunately, we do not know this severity prior to analyzing a single data set

from an unknown density function.

93

The effect of increasing data dimensions on computing the kernel CVBF is far less

substantial, even minimal, provided that we only consider scalar bandwidth matrices. We

have already mentioned previously in this chapter that the computation time increases dra-

matically for the diagonal and full bandwidth matrix classes. For bivariate data, compared

to the CVBFK(S) method, computing the CVBFK(D) and CVBFK(F) values for 500

normal observations (m = 100, N = 40) takes roughly 4 (1 extra smoothing parameter)

and 400 (2 extra smoothing parameters) times longer, respectively. These ratios are only

exacerbated as d gets larger!

All that being said, if we restrict ourselves to the scaled CVBFK(S) method, we only

incur a slight increase in computing time due to the matrix and vector calculations needed

to evaluate the priors and likelihood functions. When d = 2, the computing time for a

single random split of one data set (n = 5000, m = 2000) is 6.5 seconds compared to

22.7 seconds for the same scenario when d = 10. This increase is rather inconsequential

in the long run and thus, the curse of dimensionality does not impact computation time

significantly.

4.8.2 Dimension Reduction Techniques Applied to Kernel CVBF

Even though we may be able to apply the multivariate kernel CVBF method to data

beyond moderate dimensions with some success as seen in the 10-dimensional example in

Figure 4.8, unless the sample size is very large, we will undoubtedly favor the null model

far too often in practice. In today’s world of big data, it is common to encounter high-

dimensional data sets in practice, so how can we utilize the scaled CVBFK(S) method

to test goodness-of-fit for data when d ≥ 6? In this subsection we provide two possible

work-around solutions: test goodness-of-fit on all possible joint marginal distributions and

perform goodness-of-fit tests after projecting to data into a lower dimensional space.

The most natural of the two solutions is to test the goodness-of-fit for all marginal

94

distributions of dimension 1 ≤ d′ < d from the original data set. This is natural because

when d ≥ 3, the only way we can visually examine the data is by looking at univariate and

bivariate plots. Now, we simply extend this idea to the goodness-of-fit testing scenario.

The feasibility of this approach depends on the parametric null model being tested. For

instance, we know that all d′-dimensional marginal distributions from a d-variate normal

distribution are also normally distributed. More specifically, let x ∼ Nd(µ,Σ) and let E be

a d′×dmatrix where each row corresponds to a vector indexing a specific coordinate of x.

For instance, E =
[

1 0 0
0 0 1

]
refers to the bivariate marginal comprised of the first and third

components of a trivariate normal distribution. Then, Ex ∼ Nd′(Eµ,EΣE′). Similar

results hold for other null models, particularly the multivariate t3 distribution (Nadarajah

and Kotz, 2005) and the multivariate skew-normal distribution (Azzalini and Capitanio,

1998).

In each of these distributions where the marginal distributions are members of the

same family as the full data, assuming that
(
d
d′

)
is not prohibitively large, we can test

goodness-of-fit for each of the possible d′-dimensional marginal distributions. However,

it is not necessarily true that if all possible d′-dimensional marginal distributions are from

the null model, then the d-dimensional data are also from the parametric model. By testing

goodness-of-fit on the marginal distributions, we can only show that the original data set

does not follow the null model if at least one marginal distribution has a kernel CVBF

value that favors the alternative model. Unfortunately, we would not be able to formally

conclude in favor of the null model. However, much like a frequentist goodness-of-fit test,

if all of the marginals were deemed to follow the null model by kernel CVBF, then we

could argue that the parametric model is plausible.

Take the ever problematic skew-normal model (SN(ξ = 0,Ω = I4, α = 10)) as

an example. For a single data set of n = 1, 000 observations, taking a training set size

of m = 400 produced a scaled CVWEK(S) value of 0.88 over N = 30 random splits.

95

According to the scale of Kass and Raftery (1995), 0.88 < log(3), and thus we could not

conclude definitively in favor of the kernel model. Suppose that instead, we tested each

of the six bivariate marginal distributions for normality for this data set. For the original

data X , denote the lth coordinate vector to be X ·l. The scaled CVWEK(S) values for the

six bivariate marginals (X ·i,X ·j) for i 6= j are given in Table 4.6 using the same training

set size and number of splits. Note that for each bivariate distribution, we re-scale the data

using only the coordinates being tested.

(X ·i,X ·j) X ·2 X ·3 X ·4

X ·1 -5.22 3.31 -1.33

X ·2 -5.00 -0.11

X ·3 2.71

Table 4.5: Testing four-dimensional normality of n = 1, 000 SN(ξ = 0,Ω = I4, α = 10)
observations using the scaled CVWEK(S) values from the six two-dimensional marginal
distributions (m = 400, N = 30)

Of the six bivariate marginal distributions, the scaled CVWEK(S) values for (X ·1,X ·3)

and (X ·3,X ·4) indicate strong and positive evidence against normality, respectively. Based

on these conclusions, we would doubt the normality of the original four-dimensional data

set. One word of caution when using the skew-normal model in practice. The skew-

normal distribution we consider in the simulation has parameters ξ = 0, Ω = I, and

α = 10. From Proposition 2 of Azzalini and Capitanio (1998), it is true that the bivariate

marginals are indeed skew-normal distributions as well; however, the skew parameter is

attenuated. Ignoring the scale transformation, each of the bivariate marginal distributions

96

has parameters ξ′ = 0, Ω′ = I, and α′ = 102

(1+10T
2 102)1/2

= .705. This attenuation still

exists after transforming the data to have identity covariance matrix and is exacerbated as

the difference d − d′ increases. Similar phenomena may exist for other distributions, so

even though this approach of testing the d′-dimensional marginal distributions works well

in this example, it is not foolproof.

Another solution to the large d problem is to apply dimension reduction techniques

to the full data set and perform a goodness-of-fit test using kernel CVBF on the reduced

dimension space. This is a common two-stage approach to estimating a density function

for high-dimensional data using kernel density estimates (Biau and Mas, 2010). As Scott

(1992) points out, the underlying structure of d-dimensional data is often d′′-dimensional

where d′′ << d. He claims that, in practice, data of any dimension can be reduced down to

a four- or five-dimensional structure. This implies that the kernel CVBF approach can be

applied to any goodness-of-fit problem once a dimension reduction procedure is applied

to the original data. There are numerous dimension reduction techniques in the literature

(see Fodor (2002) for a list), including principal components analysis, factor analysis, and

projection pursuit. We only consider principal components at this time because it is the

simplest to implement and the resulting components are linear combinations of the original

data vectors. The goal is to find the underlying structure that explains more than 95% of

the variation in the original data with fewest number of dimensions d′′. Then, apply the

scaled CVBF(S) method to the d′′-dimensional principal component transformed data.

The goodness-of-fit conclusions for the original data based on the kernel CVBF results for

the reduced data will again be subject to restrictions depending on the properties of the null

parametric model. This approach would work well for the t3, normal, and skew-normal

models since any linear combination of the d coordinates will follow a distribution within

the same family. However, once again, we can only conclude against and never in favor of

the parametric model. Also, this approach can be problematic in that we are not assured

97

of reducing the data dimension to d′′ that is small enough for the kernel CVBF method to

behave appropriately.

Both of these approaches allow us to apply the kernel CVBF method to test distribu-

tional goodness-of-fit of any parametric model when the data dimension gets large. How-

ever, we do have to pay a penalty for making the test simpler through dimension reduction.

That penalty comes in the form of the possible conclusions we can make regarding the full

data. No longer can we simply conclude in favor of either the null or alternative models.

Even in the reduced dimension cases, we can still favor the alternative model, but regard-

ing the null model, at best we can say it is a plausible data generating model. These two

conclusions have the same feeling as "rejecting" and "failing to reject" the null model in a

frequentist goodness-of-fit test.

4.9 Data Analysis

From 1999-2013, the state of California assessed the academic performance of schools

(Elementary, Middle, and High School) using standardized tests in accordance with the

Public Schools Accountability Act of 1999. Based on these tests, schools are ranked

according to their Academic Performance Index (API) which can range from 200 to 1,000.

The higher the API, the better students performed on the test, but the goal is to have

all schools above 800. For more information about API and full reports/data, see the

California Department of Education webpage (www.cde.ca.gov/ta/ac/ap/).

In order to see how to apply the scaled CVBFK(S) method to test goodness-of-fit in

practice, consider testing bivariate normality for the following data taken from the survey

package in R (Lumley, 2017). There are 757 school districts in California with at least one

school having more than 100 enrolled students and 570 of these 757 districts have two or

more such schools. Two schools are randomly selected from each of the 570 districts and

a bivariate kernel density estimate of the API scores from 2000 is plotted in the contour

98

plot in the left panel of Figure ??. From the contour plot, the distribution of API values

appears to be roughly normally distributed with some slight bimodality. To compare the

API data to normal data, the right panel of Figure ?? contains the contour plot of 570

randomly sampled bivariate normal observations with location and scale parameters set

to the parameter estimates from the API data. Certainly, the two distributions are very

similar, with the exception of the extra mode.

School 1 API

S
ch

oo
l 2

 A
P

I

 1e−06

 2e−06

 3e−06

 4e−06

 5
e−

06

 6e−06

 7
e−

06

 8
e−

06

 9e−06

 1
e−

05

 1
.3

e−
05

400 600 800 1000

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Coordinate 1

C
oo

rd
in

at
e

2

 1e−06

 2e−06

 3e−06

 4e−06

 5e−06

 6e−06

 7
e−

06

 8e−06

 9e−06

 1
e−

05

400 600 800 1000

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Figure 4.9: Left Panel: Contour plot displaying the bivariate distribution of API scores
from the year 2000 for two schools chosen from 570 districts in California. Right Panel:
Contour plot of 570 observations from a N2

(
µ̂, Σ̂

)
distribution based on the sample esti-

mates from the API data.

To carry out the goodness-of-fit test, we follow the steps of calibration in Subsection

4.5.1. We first transform the API data to have identity sample covariance. Therefore,

for each of the n = 570 observed API values (Xi), we compute Yi =
[

13738 10663
10663 14396

]−1/2
Xi.

Next, we compute the scaled CVWEK(S) value for training set sizesm = {30, 31, . . . , 284, 285}

99

and N = 52 random splits. The resulting (m,CVWEm,52) pairs are plotted in Figure 4.10

along with curves for the respective first and third quartiles. Ignoring the curve for the null

data for now, what makes this such an interesting example is the fact that for m ≤ 75, we

would find positive evidence in favor of the normal model, but when m ≥ 100 we would

conclude positively against normality. This illustrates the importance of comparing the

observed kernel CVWE values to those from data sampled from the null model.

For each of 25 independent random samples of size n = 570 from the estimated bivari-

ate normal model, we compute CVWEm,20 for training set sizes m = 30, 34, . . . , 281, 285

using the scaled CVBFK(S) method. The black dashed curve in Figure 4.10 represents

the median CVWEm,20 value across the 25 null samples. Similarly, the gray dashed curves

below and above the median curve represent the first and third quartiles of the 25 CVWE

values, respectively. The median CVWE curve is always negative and only for training

set sizes larger than m = 260 does the third quartile curve take a nonnegative value. By

simply comparing the observed and null CVWE curves, bivariate normality is unlikely for

the API data since the curves differ so greatly.

In order to choose a training sample size we continue with the calibration steps. We can

see that using any training set size m ≥ 150 produces essentially the same conclusions,

with a CVWE value more than 10. According to Kass and Raftery (1995), a CVWE value

greater than 5 represents very strong evidence against the null. Remember that we want to

choose m such that the observed CVWE curve is (nearly) maximized, while at the same

time the null CVWE curve is as small as possible. The strict maximum of the observed

CVWE curve occurs for m = 277 (CVWE277,52 = 17.64), but at this training set size,

the null CVWE curve is very close to 0. To follow the calibration rules, instead of taking

m = 277, consider m = 170 (30% / 70% split) such that CVWE170,52 = 14.95 for the API

data. Not much is lost in terms of the amount of evidence in favor of the kernel model, but

much is gained under the null model since the CVWE value is −8.92. Therefore, we have

100

very strong evidence that the API data are not normally distributed.

50 100 150 200 250

−
40

−
20

0
20

training set size

C
V

W
E

API Data
Null Data

Figure 4.10: Scaled CVWEK(S) curves for the observed API data based on N = 52
random splits and bivariate normal data based on N = 20 splits for training set sizes
m = {30, 31, . . . , 284, 285}.

4.10 Application to Random Effects Models

One interesting application of the kernel CVBF method is in testing the distributional

assumptions in random effects modelling. Let X1, X2, . . . , Xp comprise a random sample

with Xi = (Xi1, . . . , Xin) ∈ Rn and consider the simple random effects model given by:

Xij = µi + εij, j = 1, . . . , n, i = 1, . . . , p. (4.15)

The typical assumptions for this model include:

• µ1, µ2, . . . , µp
iid∼ N(µ, σ2

µ).

101

• εij
iid∼ N(0, σ2

ε) ∀ i, j.

• µ and ε are independent of each other.

• n ≥ 2.

Under these assumptions, the underlying distributions of the parameters µi and εij follow

a Gaussian model, which is by far the most common. If these distributional assumptions

appear reasonable for the data at hand, then the subsequent analyses seek to determine if

the two variance terms, σ2
µ and σ2

ε significantly differ from 0. Our goal here is to apply the

scaled CVBFK(S) method to test the fit of the Gaussian model.

When n = 2, Reiersøl (1950) showed that the distribution functions Fµ and Fε of

µi and εij , respectively, are completely determined by the joint distribution of (Xi1, Xi2)

provided the characteristic functions of Fµ and Fε meet mild regularity conditions. This

result naturally extends to n ≥ 2 using properties of the normal distribution, so we would

simply need to verify that (Xi1, . . . , Xin) ∼ Nn(µ,Σ). We should point out that we could

simply test univariate normality of the Xij’s using the Hart and Choi (2016) method citing

Cramér’s Normal Decomposition Theorem. However, we will still apply the multivariate

kernel CVBF method since for other parametric null models the marginal of Xij does not

determine the distributions of µi and εij .

4.10.1 Formulation of the Null and Alternative Marginal Likelihoods

Under the null Gaussian model, define the variance of Xij to be σ2 = σ2
µ + σ2

ε and let

ρ = σ2
µ/σ

2. Thus, we can parameterize the null model as Nn

(
µn, σ

2[(1 − ρ)In + ρJn]
)

.

Based on this model, Xi1, . . . , Xin are exchangeable, implying that all n′-dimensional

(n′ < n) marginal distributions are the same. Therefore, the major modification to the

kernel CVBF methods when applied to random effects models is that we should force the

kernel model to have the same marginal distributions of any dimension less than n.

102

Once the data are randomly split, the simple fix is to augment the training data using a

Latin square such that each column of the augmented training data contains the same nm

observations. Certainly, other augmentation schemes can be implemented, such as per-

muting all columns, but the computations become too unwieldy, even in moderate dimen-

sions. We still transform the data to have identity sample covariance prior to computing

the CVWEK(S) values; however, the augmented training data will no longer have identity

sample covariance. That being said, the difference from identity is small enough to not

be of any practical consequence. So computation of the alternative marginal likelihood

remains the same as the scaled CVBFK(S) method provided we augment the training data

set appropriately.

As for the null marginal likelihood, we can write the n-dimensional normal likelihood

function as

L(X|µ, σ2, ρ) = (2π)−pn/2[σ2n(1− ρ)(n−1)(1 + (n− 1)ρ)]−p/2

× exp
[
− npσ̂2[1 + ρ(n− 2) + ρρ̂(1− n)] + np(1− ρ)(µ− µ̂)2

2σ2(1− ρ)(1 + (n− 1)ρ)

]
,

where we have used the facts that

• |σ2[(1− ρ)In + ρJn]| = σ2n(1− ρ)n−1(1 + (n− 1)ρ),

• S = adjoint(Σ) where Sjj = σ2(n−1)(1− ρ)n−2(1 + (n− 2)ρ), and

Sjj′ = Sj′j = −σ2(n−1)ρ(ρ− 1)n−2, j 6= j′, and

• Σ−1 = |Σ|−1S.

Consider the following UIR prior distributions for µ, σ2, and ρ:

• π(µ|σ2, ρ) = (2π)−1/2n1/2[σ2(1 + (n− 1)ρ)]−1/2 exp
[
− 1

2
n(µ−µ̂)2

σ2(1+(n−1)ρ)

]
,

• π(σ2|ρ) = nσ̂2[1+ρ(n−2)+ρρ̂(1−n)]
2(1−ρ)(1+(n−1)ρ)

(σ2)−2 exp
[
− 1

σ2

nσ̂2[1+ρ(n−2)+ρρ̂(1−n)]
2(1−ρ)(1+(n−1)ρ)

]
, and

103

• π(ρ) = 1[0,1](ρ),

where the parameter estimates µ̂, σ̂2, and ρ̂ are given by

• µ̂ = 1
np

∑p
i=1

∑n
j=1Xij ,

• σ̂2 = 1
np

∑n
j=1

∑p
i=1(Xij − µ̂)2, and

• ρ̂ = 2
n(n−1)σ̂2p

∑p
i=1

∑n−1
k=1

∑n
j=k+1(Xik − µ̂)(Xij − µ̂).

The resulting marginal likelihood function is as follows:

M0(X) =

∫ 1

0

∫ ∞
0

∫ ∞
−∞

L(X|µ, σ2, ρ)π(µ|σ2, ρ)π(σ2|ρ)π(ρ)dµdσ2dρ

= π−
pn
2 Γ
(np+ 2

2

)
(p+ 1)−

(np+3)
2 (nσ̂2)−

pn
2

×
∫ 1

0

(1− ρ)−
p(n−1)

2 (1 + (n− 1)ρ)−
p
2

[1 + ρ(n− 2) + ρρ̂(1− n)

(1− ρ)(1 + (n− 1)ρ)

]− pn
2
dρ.

(4.16)

4.10.2 Random Effects Model Simulation (n = 2)

In order to verify that the scaled CVBFK(S) method can adequately test the appro-

priateness of the Gaussian model in a simple random effects model (4.15), consider the

following small simulation. Using the marginal likelihoods given in Subsection 4.10.1,

consider n = 2 and p = 1, 000. Let µ = 0 so that Xij ∼ Laplace(0, 1) or Xij ∼ N(0, 1).

For each data set, we draw 25 independent random samples and compute the scaled

CVWEK(S) values using training set sizes m = 100, 200, 300, 400, and 500 as well as

N = 30 random splits of the data. The results are given in Figure 4.11. Certainly, the

scaled CVBFK(S) method correctly concludes in favor of the null model for normal data

and in favor of the kernel model for Laplace data regardless of training set size. Thus,

the scaled CVBFK(S) method is reasonably well-suited to checking the Gaussian model

assumption in random effects models.

104

●

●

●
●

●

100 200 300 400 500

−
20

0
20

40
60

training set size

C
V

W
E

●

●
● ●

●

100 200 300 400 500

−
20

0
20

40
60

training set size

C
V

W
E

●

●

Normal
Laplace

Figure 4.11: Verifying the applicability of the scaled CVBFK(S) method to check the
Gaussian model assumption in a simple random effects model. For 25 samples, either
Xij ∼ L(0, 1) (dashed line) or Xij ∼ N(0, 1) (solid line), of size p = 1000 and dimension
n = 2, the CVWEK(S) values are computed using N = 30 and m = 100, 200, . . . , 500.

4.10.3 Real Data Example: Gene Expression Levels in Rats

Davidson et al. (2004) conducted a study to explore the effect of n-3 polyunsaturated

fatty acids on colon cancer tumors in ninety rats using gene expression analysis. The data

we consider here is a subset of n = 5 rats, each with expression levels for p = 8, 038 genes.

The expression levels for each rat have been demeaned such that the average expression

level for all 8,038 genes is 0 for each rat. The distributions of all expression levels for each

rat are plotted in Figure 4.12.

Suppose, for the purposes of this example, the researchers were interested in determin-

ing how much of the variability in rat gene expression levels is due to the overall gene

effect σ2
µ and the gene effect within each rat σ2

ε . Based on the distributions in Figure 4.12,

there appears to be a rat effect since there are two distinct groups of rats({1, 2}, {3, 4, 5}).

To answer these questions, we would use the model in (4.15), which means we need to

assume the Gaussian model. We will use the scaled CVBFK(S) method to address this

105

−4 −2 0 2 4 6

0.
00

0.
10

0.
20

Expression Level

D
en

si
ty

Rat 1
Rat 2
Rat 3
Rat 4
Rat 5

Figure 4.12: The estimated distribution of gene expression levels for each of n = 5 rats
and p = 8, 038 genes from the colon cancer study conducted by Davidson et al. (2004).

assumption.

Using the entire data set and computing the scaled CVWEK(S) value for N = 30 ran-

dom splits and training sample size m = 1, 606, we find that CVWE1606,30 = 19, 914.01,

which represents astronomical evidence against the Gaussian model. We do not consider

more training set sizes because regardless of m, there is no debate about the inappropri-

ateness of the Gaussian model.

In order to compute the CVWE value over the entire data set, the corresponding run

time was 2,352 seconds. Could we use a Divide and Conquer scheme to make this even

faster? Consider choosing w = 10 such that 2 subgroups have p = 803 and 8 subgroups

have p = 804 genes. Using N = 30 and a 30% / 70% split into training and validation sets

in each subgroup, we find an overall CVWE value of 1, 641.16 in just 202 seconds. We use

a larger training set proportion in the subgroups since we are estimating a five-dimensional

distribution with only 800 observations in each subgroup. Keep in mind that as n gets

larger, choosing a larger training sample proportion will cause a more dramatic increase

106

in computation time due to the augmentation. However, we still find an overwhelming

amount of evidence against the Gaussian model but in 8.5% of the time.

Since we cannot visualize five-dimensional data to see if the gene expression levels

follow a multivariate normal distribution, we can combine the dimension reduction idea

of Subsection 4.8.3 with the Divide and Conquer scheme to quickly compute the CVWE

values on the 10 bivariate marginal distributions. First, if we look at the bivariate marginal

distributions in Figure 4.13 the "dagger" shape and/or slight curvature of the contour plots

give us reason to doubt bivariate normality.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−2 0 2 4 6

−
4

−
2

0
2

4
6

Rat 1

R
at

 2

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Rat 3

R
at

 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6

−
4

−
2

0
2

4

Rat 1

R
at

 5

Figure 4.13: Bivariate scatterplots of gene expression levels for the pairs of rats: (1,2) (left
panel), (3,4) (middle panel), and (1,5) (right panel).

For the Divide and Conquer scheme, we use the same setup as before for the full data

set with w = 10 partitions and N = 30 random splits, but now consider a 20% / 80%

allotment to the training and validation sets. The resulting CVWE values for each of the

10 bivariate distributions are provided in Table 4.6. The corresponding run time for each

CVWE value was roughly 56 seconds and the smallest CVWE value between any two rats

107

is 28.32, for rats 1 and 5. Once again, on the scale of Kass and Raftery (1995), we have

overwhelming evidence against bivariate normality for each of the 10 marginals, hence the

five-dimensional data are also non-normal.

Rat 2 Rat 3 Rat 4 Rat 5

Rat 1 68.57 35.73 62.75 44.49

Rat 2 28.32 63.87 63.93

Rat 3 47.84 40.10

Rat 4 33.01

Table 4.6: Scaled CVWEK(S) values for testing bivariate normality for the 10 bivariate
marginal distributions for the n = 5 rats using a Divide and Conquer scheme with w = 10,
N = 30, and 20% / 80% split.

Clearly, whether we consider the full five-dimensional gene expression data set or

the bivariate marginal distributions, there is overwhelming evidence against the Gaussian

model for these rat data. The real difference in these approaches is the computation time,

which can be greatly reduced using a Divide and Conquer scheme and/or a dimension

reduction approach. Regardless, the assumptions for the random effects model are not met

and another analysis must be considered as the findings from the standard linear mixed

model method might be invalid.

4.11 Summary and Conclusions

Over the course of this chapter, we have shown that the kernel CVBF methods of Hart

and Choi (2016) can be extended to test distributional goodness-of-fit in the multivari-

ate setting. For completeness, we developed separate constructions for each of the three

108

bandwidth matrix classes. However, the scaled CVBFK(S) construction proved to be su-

perior in terms of performance and simplicity. This is a surprising finding since typically,

the simplest method rarely outperforms more sophisticated approaches. Not only does it

outperform the CVBFK(D) and CVBFK(F) methods in terms of finding evidence for or

against the null model, but it also takes fractions of the time to compute.

We also looked at some important properties of the goodness-of-fit test based on the

scaled CVBFK(S) construction. Provided that we re-scale the data to have identity covari-

ance matrix, the kernel CVBF method is location-scale invariant, which is very important

in a goodness-of-fit test. More importantly, we argued both mathematically and empiri-

cally that the CVBFK(S) method is consistent at an exponential rate under both hypothe-

ses. The consistency of the CVBFK(S) implies that the probability of making a Type I

or Type II error tends to 0 for increasing sample size. This makes the scaled CVBFK(S)

method superior to common frequentist tests for normality since the Type I error rate re-

mains constant as sample size increases. In order for the frequentist and kernel CVBF

methods to agree in terms of Type I error rate, the significance level in the frequentist test

must tend to 0!

The curse of dimensionality is still a concern for the kernel CVBF method. Whether

we talk about increasing d and/or n the computation and feasibility of testing goodness-

of-fit using the kernel CVBF method becomes difficult and risky. By restricting ourselves

to only using the CVBFK(S) approach, increasing d does not greatly impact computation

time. However, as many authors have discussed, the standard multivariate kernel density

estimate is very poor beyond moderate dimensions. This is due to the "empty space phe-

nomenon" and can only be remedied by considering extremely large data sets. This is a

catch-22 for the kernel CVBF method because computation time increases quadratically

with increasing sample size. A potential remedy to the large d problem is to reduce the

dimension by considering subset marginal distributions or statistical dimension reduction

109

techniques. The solution to large n is to use a Divide and Conquer approach, which is

made possible thanks to consistency. Both of these remedies can be applied simultane-

ously to a large n, large d data set, though we should proceed with extreme caution in this

scenario. However, this means we can essentially make a recommendation regarding the

goodness-of-fit of any multivariate model.

The real data examples illustrate how we might assess goodness-of-fit using the scaled

CVBFK(S) method in practice. More specifically, the API data example walks through

the steps of calibration to show the importance of selecting the training sample size appro-

priately. The gene expression data example explores how the scaled CVBFK(S) method

can be modified and applied to check the model assumptions in a simple random effects

model. We also saw how to implement the dimension reduction and Divide and Conquer

ideas to a real data set using the rat data.

Overall, the scaled CVBFK(S) method is a very simple, intuitive, and computationally

efficient Bayesian nonparametric approach to testing multivariate goodness-of-fit.

110

5. COMPARING TWO PARAMETRIC MODELS USING CVBF

5.1 Introduction

In Chapters 1 to 4, we were interested in comparing a parametric null model to a

nonparametric alternative model using Bayes factors. While both the null and alternative

models were required to be well-defined, no assumptions regarding the functional form

of the alternative model were made. This is typical in the goodness-of-fit testing problem

because we want to compare the parametric model to all other possible models. The

question we are often asking in the hypotheses is, "Can we reasonably conclude that the

data were sampled from the parametric model? If the answer to this question is "yes"

based on the Bayes factor, then we proceed assuming the parametric model generated the

data. If the answer is "no", we simply know that at least one nonparametric model is a

better representation of the data and further exploration of the data is required. Certainly,

this is an unsatisfactory conclusion, however it is simply the nature of the nonparametric

goodness-of-fit test.

Now suppose that we have two competing parametric models which we would like

to compare. This is the quintessential Bayes factor problem dating at least to Jeffreys

(1961), which we described briefly in Subsection 1.1.2. Let M1 represent the null para-

metric model with parameter space Λ and M2 represent the alternative parametric model

with parameter space Θ (both parameter spaces are subsets of multidimensional Euclidean

spaces). Suppose we observe a data vector x. When M1 is the true model, the likelihood

function for x is L1(x|λ) and when M2 is true, L2(x|θ) is the corresponding likelihood

function. For prior distributions π1(λ) and π2(θ), the corresponding marginal likelihoods

are

m1(x) =

∫
Λ

π1(λ)L1(x|λ) dλ and m2(x) =

∫
Θ

π2(θ)L2(x|λ) dθ.

111

Using these marginal likelihood, the Bayes factor for comparing M1 and M2 is given by

BF =
m2(x)

m1(x)
,

the ratio of the posterior odds to the prior odds in favor of the alternative model.

In some cases, the marginal likelihoods are analytically tractable due to the choice of

prior distribution ((semi-) conjugate prior) or the form of the likelihood (Gaussian). We

saw in Chapter 4, that when testing multivariate normality, closed form solutions were eas-

ily attainable for the null marginal likelihood. However, in the majority of instances, the

marginal likelihoods require some form of numerical integration (see Subsection 4.2.4) to

evaluate. When the dimension of the parameter space becomes moderately large and/or the

number of constraints imposed on the parameters becomes too complex, these integration

techniques become time consuming and potentially impossible. The Laplace approxima-

tion in (4.10) is ideally suited for computing the marginals due to the approximate nor-

mality of the posterior distribution; however, we must numerically compute the posterior

mode and the observed Hessian matrix of the posterior distribution. As we will see, there

are instances where the Hessian matrix (or its inverse) do not exist for certain parameter

values, rendering the Laplace approximation useless.

Another less than ideal aspect of Bayes factors is their behavior when the two models

are nested. When the smaller model is true, both models are so similar that the Bayes

factor has more difficulty choosing the correct model. Thus, the Bayes factor is typically

consistent at a "power-of-n" rate (for sample size n). This is much slower than the expo-

nential rate achieved when the larger model is true, where the Bayes factor more easily

favors the larger model. This scenario of consistency for nested models was the driving

force behind the non-local priors solution of Johnson and Rossell (2010).

In this chapter, we propose the parametric CVBF (CVBFP) method that (a) uses Bayes

112

factors, (b) does not require prior distributions for the parameters in each model, (c) is

computationally simple, and (d) is Bayes consistent at an exponential rate for both nested

and non-nested models regardless of which model is true. The main crux of the approach

is data splitting, which made the kernel CVBF methods of Chapters 2 and 4 possible. In

the parametric CVBF method, we compute maximum likelihood estimates (MLEs) on a

subset of the data and then compute a Bayes factor, which turns out to be a likelihood ratio,

on the remainder of the data. So the difference in the two CVBF approaches is the training

set was used to make the kernel model well-defined in the kernel CVBF method, but in

the parametric CVBF method, both parametric models are determined using the MLEs

from the training data. The simplicity in (c) stems from no longer needing to integrate or

compute Hessian matrices to evaluate the marginal likelihoods.

The idea of data splitting has been used in Bayesian statistics by other researchers

in contexts other than the previously described CVBF methods. For instance, Rust and

Schmittlein (1985) apply a Bayesian cross-validated likelihood using leave-one-out cross-

validation for model selection using posterior probabilities instead of Bayes factors. An-

other common use involves taking noninformative, improper priors and making them

proper so they are suitable for model comparison in Bayes factors. Some examples in-

clude: intrinsic Bayes factors (Berger and Perrichi 1996, 2004), partial Bayes factors

(O’Hagan, 1991), pseudo Bayes factors (Geisser and Eddy, 1979), and posterior Bayes

factors (Aitkin, 1991). Each of these methods form a proper prior on the training set of

various size (as small as a single observation and as large as the whole data set) which is

then used as the prior for the entire data set.

The remainder of this chapter contains the following sections. First, we introduce the

parametric CVBF (CVBFP) methodology in Section 5.2. In Section 5.3, we discuss the

necessary consistency results in both nested and non-nested cases and how they relate to

other frequentist and Bayesian tests. Numerous different simulation studies and a real data

113

example are provided in Sections 5.4 and 5.5 to show the applicability and performance of

the parametric CVBF approach for model comparison. Lastly, some overall conclusions

are given in Section 5.6.

5.2 CVBFP Methodology

Before we describe the overall methodology of the parametric CVBF approach, we

first examine the form of the Bayes factor when testing two simple hypotheses. Suppose

we have observed data x and we want to compare to densities f1 and f2, both of which

are fully specified densities for x. If p and 1 − p are the prior probabilities for f1 and f2,

respectively, the posterior probabilities of f1 and f2 are

P (f1|x) =
pf1(x)

pf1(x) + (1− p)f2(x)

and

P (f2|x) =
(1− p)f2(x)

pf1(x) + (1− p)f2(x)
.

Taking the ratio of the posterior probabilities, it follows that

P (f2|x)

P (f1|x)
=
f2(x)

f1(x)

1− p
p

,

which means the Bayes factor is f2(x)/f1(x) (Kass and Raftery, 1995). The important

point here is that the Bayes factor only depends on the likelihood ratio and is free of prior

probabilities on the parameters.

Now assume that X = (X1, . . . , Xn), Xi ∈ Rd, are a random sample from some

density function f0. Let M1 = {g(·|λ) : λ ∈ Λ} and M2 = {f(·|θ) : θ ∈ Θ} be

parametric models for f0, where Λ and Θ are subsets of q and p dimensional Euclidean

spaces, respectively. Since we do not require prior distributions for λ and θ, the Bayes

114

factor is completely determined by the likelihood functions, which when computed on the

whole data set are given by, L1(λ) =
∏n

i=1 g(Xi|λ) and L2(θ) =
∏n

i=1 f(Xi|θ).

In order for this method to work, we need to randomly split the data into a training set

XT = (X1, . . . , Xm) and a validation set XV = (Xm+1, . . . , Xn). Note that the training

and validation sets are mutually exclusive and exhaustive. Define the MLEs of λ and θ to

be λ̂m and θ̂m, respectively, computed on the training data. Using these MLEs, f(·|θ̂m)

and g(·|λ̂m) are fully specified, simple models for the underlying distribution of Xi. Thus

the Bayes factor is the likelihood ratio

BFm(XT ,XV) =

∏n
j=m+1 f(Xj|θ̂m)∏n
j=m+1 g(Xj|λ̂m)

, (5.1)

computed from the validation data. Notice the slight, but very important difference be-

tween the Bayes factor in (5.1) and the classical likelihood ratio statistic. The standard

likelihood ratio statistic for this test (provided the two models are nested) is given by

L2(θ̂n)

L1(λ̂n)
, where θ̂n and λ̂n are the MLEs from all n observations (i.e. the likelihood ratio and

MLEs come from the same data). However, by computing the MLEs on the training data

and computing the Bayes factor from the validation data, our models come from outside

the evaluation data, hence we have a legitimate Bayes factor.

The Bayes factor (5.1) is based on a single random split, which means our conclusions

would depend on the specific data split. Using a similar approach to the univariate ker-

nel CVBF method of Hart and Choi (2016), we take N random splits and the resulting

CVBFm,N value is the geometric mean over the N partitions (XT
1 ,X

V
1), . . . , (XT

N ,X
V
N)

given by

CVBFm,N =

[
N∏
k=1

BFm(XT
k ,X

V
k)

]1/N

.

For the remainder of this chapter, we will refer to log CVBFm,N as the CVWE value,

115

the weight of evidence in favor of the alternative model. As we have seen in the kernel

CVBF methods, when we use data splitting to compute the Bayes factor, we pay a penalty

in that we must determine what values of m and N to use in practice. We will have

recommendations for both of these variables later in this chapter.

5.3 Bayes Factor Consistency Results

Proving consistency of the parametric CVBF method depends on whether or not the

two models are nested. Two models are nested when one of the two contains more pa-

rameters than the other and when certain parameters of the larger model are set to 0, we

obtain the smaller model. For simplicity, we initially consider BFm,1, the Bayes factor for

a single random split. We will explore BFm,N for N > 1 in Subsection 5.3.3. We first

provide sufficient conditions for consistency when the models are not nested.

5.3.1 Non-Nested Models

Let f0 continue to be the true underlying density of Xi and assume that there exist

parameters θ0 ∈ Θ and λ0 ∈ Λ such that

∫
log f(x|θ0)f0(x)dx = sup

θ∈Θ

∫
log f(x|θ)f0(x)dx

and ∫
log g(x|λ0)f0(x)dx = sup

λ∈Λ

∫
log g(x|λ)f0(x)dx.

In the non-nested case, we assume that at most one of the two models is correct, meaning

that the model contains f0. However, there still exists the possibility that neither model

is correct. When both models are incorrect, we would like the Bayes factor to favor the

model that is closer to the truth in a Kullback-Leiber sense. Without loss of generality,

116

assume that

D =

∫
log
(f0(x)

g(x|λ0)

)
f0(x)dx−

∫
log
(f0(x)

f(x|θ0)

)
f0(x)dx < 0, (5.2)

or that the Kullback-Leibler divergence between f0 and g(·|λ0) is less than that between f0

and f(·|θ0). The conditions for Bayes consistency in the non-nested case are established

in the following theorem.

Theorem 5.1. Assume that the following conditions hold:

A1. On the basis of a random sample from f0, the MLEs of θ and λ converge in proba-

bility to θ0 and λ0, respectively, as sample size tends to∞.

A2. As a function of the parameter, each of log f(x|θ) and log g(x|λ) satisfies a Hölder

condition for each x. Specifically, there exist functions A and B and positive num-

bers α1 and α2 such that

| log f(x|θ1)− log f(x|θ2)| ≤ A(x)||θ1 − θ2||α1

for all x and all θ1, θ2 ∈ Θ, and

| log g(x|λ1)− log g(x|λ2)| ≤ B(x)||λ1 − λ2||α2

for all x and all λ1, λ2 ∈ Λ.

A3. The integrals
∫
A(x)f0(x) dx and

∫
B(x)f0(x) dx exist finite.

A4. The training set size m tends to∞ and is bounded by pn for some p ∈ (0, 1).

117

If, in addition to A1-A4, (5.2) holds, then

log BFm,1(XT ,XV) = (n−m)[D + op(1)]

as n→∞.

To give a simple proof of Theorem 5.1, we can write the CVBF value based on a single

random split as

log(BFm,1(XT ,XV)) =
n∑

j=m+1

log f(Xj|θ̂m)−
n∑

j=m+1

log g(Xj|λ̂m)

= (n−m)[D + δ1 + δ2 + δ3 + δ4],

where

δ1 =
1

n−m

n∑
j=m+1

log f(Xj|θ0)−
∫

log f(x|θ0)f0(x)dx,

δ2 =
1

n−m

n∑
j=m+1

log f(Xj|θ̂m)− 1

n−m

n∑
j=m+1

log f(Xj|θ0),

δ3 =

∫
log g(x|λ0)f0(x)dx− 1

n−m

n∑
j=m+1

log g(Xj|λ0),

and

δ4 =
1

n−m

n∑
j=m+1

log g(Xj|λ0)− 1

n−m

n∑
j=m+1

log g(Xj|λ̂m).

We simply need to show that δi = op(1) for i = 1, 2, 3, 4. By the weak law of large

numbers, δ1 and δ3 are both op(1) since n −m → ∞. Then, by assumption, δ2 = op(1)

118

since

|δ2| ≤
1

n−m

n∑
j=m+1

| log f(Xj|θ̂m)− log f(Xj|θ0)|

≤ 1

n−m

n∑
j=m+1

A(Xj)||θ̂m − θ0||α1 ,

which converges to 0 in probability since θ̂m is consistent for θ0 and (n−m)−1
∑n

j=m+1 A(Xj)

converges to its finite expectation. Using a similar argument, δ4 = op(1) and we reach the

desired result.

Therefore, the Bayes factor is bounded by exp(n(1−p)[D+op(1)]), which implies that

it converges to 0 at an exponential rate. Notice that (5.2) assumed the null model M1 was

true, or at least is closer to f0 in a Kullback-Leibler sense. We just as easily could assume

M2 to be the true model, in which the result of Theorem 5.1 would still hold. However,

since D > 0 under the alternative, the Bayes factor converges to∞ at an exponential rate.

Thus, consistency holds under both the null and alternative model. It is also interesting

that the Bayes factor is consistent for a training set size that is a fixed proportion of n. In

contrast, we saw in Chapter 4 that the kernel CVBF method requires m = o(n). We will

see the same requirement for m in the next subsection when we examine consistency for

nested models.

5.3.2 Nested Models

In the case of nested models, suppose that q < p and define r = p − q. Assume that

Λ is the set of all q-vectors (θ1, . . . , θq) such that (θ1, . . . , θq, 0, . . . , 0) ∈ Θ. Also assume

that M1 is a subset of M2 in the sense that g(·|λ) ≡ f(·|(λ, 0 . . . , 0)) for each λ ∈ Λ.

Before we provide the conditions for consistency when the smaller model (M1) is true,

we first define some notation. Let k denote the size of a random sample X1, . . . , Xk. De-

fine `k(θ) =
∑k

i=1 log f(Xi|θ), θ ∈ Θ to be the corresponding log-likelihood. Assuming

119

the existence of derivatives, define ˙̀
k(θ) to be the p-dimensional score vector with ith

element
∂`k(θ)

∂θi
, i = 1, . . . , p,

and ῭
k(θ) to be the p× p Hessian matrix having (i, j) element

∂2`k(θ)

∂θiθj
, i = 1, . . . , p, j = 1, . . . , p.

Theorem 5.2 contains the consistency results when the smaller of two nested models is

true.

Theorem 5.2. Assume that the following conditions hold:

A5. The true density is f(· |θ0), where θ0 is an interior point of Θ and of the form θ0 =

(λ, 0, . . . , 0) for some λ ∈ Λ.

A6. The likelihood `k admits the following Taylor series expansion:

`k(θ) = `k(θ0) + (θ − θ0)T ˙̀
k(θ) +

1

2
(θ − θ0)T ῭

k(θ̃)(θ − θ0),

where θ ∈ Θ and ||θ̃ − θ0|| ≤ ||θ − θ0||.

A7. Let θ̂k be the maximizer of `k(θ) and λ̂ the q-vector that maximizes `k(λ, 0, . . . , 0)

with respect to λ. Then θ̂k and θ̂k,0 = (λ̂, 0, . . . , 0) are
√
k-consistent for θ0 as

k →∞.

A8. For any sequence θ̂ that converges in probability to θ0, −῭
k(θ̂)/k is consistent for

the Fisher information matrix I(θ0) as k →∞.

If m tends to∞ with m = o(n), then

log BFm,1(XT ,XV) = − n

2m
χ2
m,r + op

(n
m

)
,

120

where χ2
m,r converges in distribution to a random variable having the chi-squared distri-

bution with r degrees of freedom.

Proof of Theorem 5.2. Let the parameter vector be θT = (θ1, . . . , θp) and let ˙̀
n−m(θ)

be the p × 1 score vector for the validation data and ῭
n−m(θ) the p × p Hessian ma-

trix for the validation data. Using the Taylor series expansions in (A6), we can write

log
(
BFm,1(XT ,XV)

)
= `n−m(θ)− `n−m(λ) as

log
(
BFm,1(XT ,XV)

)
= (θ̂m − θ0)T ˙̀

n−m(θ0) +
1

2
(θ̂m − θ0)T ῭

n−m(θ1m)(θ̂m − θ0)−

(θ̂m,0 − θ0)T ˙̀
n−m(θ0)− 1

2
(θ̂m,0 − θ0)T ῭

n−m(θ2m)(θ̂m,0 − θ0),

where ||θ1m − θ0|| ≤ ||θ̂m − θ0|| and ||θ2m − θ0|| ≤ ||θ̂m,0 − θ0||.

Since E(˙̀
n−m(θ0)) = 0 andm = o(n), ˙̀

n−m(θ0) is
√
n-consistent. Combining this fact

with Assumption (A7), both (θ̂m−θ0)T ˙̀
n−m(θ0) and (θ̂m,0−θ0)T ˙̀

n−m(θ0) areOp(
√
n/m).

Therefore, using Assumptions (A7) and (A8),

log
(
BFm,1(XT ,XV)

)
= −n

2

[
(θ̂m − θ0)T I(θ0)(θ̂m − θ0)− (5.3)

(θ̂m,0 − θ0)T I(θ0)(θ̂m,0 − θ0)
]

+ op

(n
m

)
.

Consider partitioning I(θ0) as follows: I(θ0) =
[
I11 I12
IT12 I22

]
, where I11 is q × q, I12 is

q × r and I22 is r × r. Now define Ap×p =
[
I−1
11 0q×r

0r×q 0r×r

]
. From p. 231 of van der Vaart

(1998), we have the following two equations.

√
m(θ̂m − θ0) =

1√
m
I(θ0)−1 ˙̀

m(θ0) + op(1)

and
√
m(θ̂m,0 − θ0) =

1√
m
A ˙̀

m(θ0) + op(1),

121

where ˙̀
m(θ) is the score vector for the training data. Substitution of the last two expres-

sions into (5.3) yields

log
(
BFm,1(XT ,XV)

)
= −

(n

2m

) 1√
m

˙̀
m(θ0)T

[
I(θ0)−1 − A

] 1√
m

˙̀
m(θ0) + op

(n
m

)
.

We will utilize Result 5.15 on p. 112 in Monahan (2008), to show that

1√
m

˙̀
m(θ0)T

[
I(θ0)−1 − A

] 1√
m

˙̀
m(θ0)

D→ χ2
r

by verifying that B = [I(θ0)−1 − A] I(θ0) is idempotent and of rank r, since by the mul-

tivariate Central Limit Theorem, m−1/2 ˙̀
m(θ0)

D→ Np(0, I(θ0)).

Let Ik denote the k × k identity matrix. Then,

B2 =
[
I(θ0)−1 − A

]
I(θ0)

[
I(θ0)−1 − A

]
I(θ0)

= [Ip − AI(θ0)]
[
I(θ0)−1 − A

]
I(θ0)

=
[
I(θ0)−1 − 2A+ AI(θ0)A

]
I(θ0)

=
[
I(θ0)−1 − A

]
I(θ0),

and thus B is idempotent. Finally, the rank of B can be determined by examining the rows

of

[
I(θ0)−1 − A

]
I(θ0) = Ip −

[
I−1
11 0q×r

0r×q 0r×r

] [
I11 I12
IT12 I22

]
= Ip −

[
Iq I−1

11 I12
0r×q 0r×r

]
=
[

0q×q −I−1
11 I12

0r×q Ir

]
.

The last r rows are certainly linearly independent, but the first q rows are linear combina-

122

tions of the last r rows. Hence, the rank of B is indeed r and the proof is complete.

Theorem 5.2 shows that under standard regularity conditions found in likelihood the-

ory, the CVBF value for a single random split is Bayes consistent at an exponential rate

under the null hypothesis. As seen in Johnson and Rossell (2010), under these same con-

ditions, a standard Bayes factor would converge to 0 at the rate n−r/2 when the smaller

model (null hypothesis) is true. However, provided that m increases with n sufficiently

slowly, the CVBF will be bounded in probability by exp(−nα) for α arbitrarily close to 1.

Notice how the Bayes factor depends on a chi-square random variable with r degrees

of freedom, asymptotically. If we were to test these nested hypotheses from a frequentist

perspective, when the null hypothesis is true, 2[`n(θ̂n) − `n(θ̂n,0)] → χ2
r according to

Wilks (1938) where θ̂n,0 and θ̂n are the constrained and unconstrained MLEs from the

entire data set. Therefore, both the parametric CVBF and the standard likelihood ratio test

for the same nested hypotheses depend on the same chi-squared random variable when the

smaller model is true. The difference of course is the −n/m term in the Bayes factor. It is

because of this factor that we have the convergence to 0. Since the likelihood ratio statistic

is always at least 1, it is not an odds ratio and will not be consistent if we used it as a

Bayes factor. Remarkably, it is due to the data splitting and formulation of the two simple

models from the training data that lead to the consistency of the likelihood ratio under the

null hypothesis.

Lastly, the following theorem gives the conditions for consistency when the larger

model (alternative hypothesis) is true. We do not prove this result as it follows similar

arguments as in the proof of Theorem 5.1.

Theorem 5.3. Assume that the model is identifiable in the sense that DKL(θ1, θ2) > 0

for all θ1 6= θ2 ∈ Θ, where

DKL(θ1, θ2) =

∫
f(x|θ1) log

f(x|θ1)

f(x|θ2)
dx.

123

Let the true parameter value be θ1, which is such that at least one of its last r compo-

nents is nonzero. Let λ0 (which is assumed to exist) be the element of Λ that maximizes∫
f(x|θ1) log f(x|(λ, 0, . . . , 0))dx with respect to λ. If

1

n−m

n∑
j=m+1

log f(Xj|θ̂m) and
1

n−m

n∑
j=m+1

log f(Xj|θ̂m,0)

are consistent for

∫
f(x|θ1) log f(x|θ1)dx and

∫
f(x|θ1) log f(x|(λ0, 0, . . . , 0))dx,

respectively, then as n−m→∞

log BFm,1(XT ,XV) = (n−m)DKL(θ1, (λ0, 0, . . . , 0)) + op(n−m).

According to Theorem 5.3, the Bayes factor is asymptotic (in probability) to exp(Cn)

for some positive constant C and thus converges to ∞ as n → ∞ when the alternative

hypothesis is true. As in the case where the smaller model is true, it is necessary for both

m and n −m to tend to∞ when the larger model is true. However, we may allow m to

be a fixed fraction of n such that m = pn for 0 < p < 1. Combining these two rules

for m, we can use the following rule for choosing m in nested models: "Let m be the

largest integer smaller than n/2 that produces desirable behavior of the Bayes factor when

the smaller model is true." The term "desirable behavior" means that the Bayes factor is

less than 1/20 with probability close to 1 under the null hypothesis. This rule will help us

determine m using either of the calibration methods described in previous chapters.

124

5.3.3 The Benefit of Multiple Data Splits

As we have seen repeatedly thus far, we typically choose between 30 ≤ N ≤ 50 ran-

dom splits of the data when computing the overall CVBF value. Most of the justification

has been based on empirical evidence, but in the case of nested models, we can directly

see the effect theoretically. For a single random split, expression (5.3) shows that when the

smaller model is true, the dominant (random) term χ2
m,r depends completely on the train-

ing data. LetN = n/m, which is chosen to be an integer for convenience, and consider the

N data splits for which the training sets are XT
i = (X(i−1)m+1, . . . , Xim), i = 1, . . . , N .

According to Theorem 5.2, the log-Bayes factor for the ith of these splits has the form

log BFm,1(XT
i ,X

V
i) = − n

2m
χ2
m,r,i + op

(n
m

)
,

where χ2
m,r,i depends only on XT

i . Since, the N → ∞ training sets are independent of

each other, it follows that

1

N

N∑
i=1

log BFm,1(XT
i ,X

V
i) = − n

2m
r + op

(n
m

)
.

Thus, the random noise due to the χ2 random variable can be completely removed by

averaging over independent splits. Also, this gives us a more definitive approach for how

to choose the form and number of the N data splits in the case of nested hypotheses. For a

given sample size n, takeN = n/m and then the training sets areN independent partitions

of the observed sample. In small sample cases this may not be the wisest approach since

using this scheme can result in a very small number of training sets. For instance if n =

500 and m = 100, then the resulting CVBF value is based on only N = 5 random splits.

In order to compare the performance of the parametric CVBF method when using the

independent training set approach to the more typical choice ofN ≥ 30 dependent random

125

splits, we consider testing a normal model against a skew-normal alternative for univariate

data. Under the null model, we sample data from the standard normal distribution N(0, 1)

and under the alternative, the data come from a SN(0, 1, 10) model. The training set sizes

are taken to bem = 100, 125, 200, 250, and 400 for n = 500, 1000, 2000, 5000, and 10000,

respectively. These training set sizes are chosen such that m/n → 0 and m → ∞ which

are conditions in Theorems 2 and 3. Also, n/m is an integer for our convenience.

For each data set in the case of dependent training sets we compute the CVWE value

based on N = 5, 8, 10, 15, 20, 25, 40, 60, 80, and 100 random splits. We draw 500 in-

dependent random samples from each of the two models. The relative effect of using

independent and dependent training sets is seen in Table 5.1, where for each n, n/m and

N are the same.

Truth Type of n = 500 n = 1000 n = 2000 n = 5000 n = 10000

Split m = 100 m = 125 m = 200 m = 250 m = 400

N(0, 1) I −2.3(3.0) −4.0(3.9) −4.6(3.6) −10.1(5.2) −11.9(5.4)

D −2.3(3.4) −4.1(3.9) −5.0(3.8) −10.0(5.2) −12.0(5.5)

SN(0, 1, 10) I 22.5(168.9) 71.9(167.0) 205.0(46.5) 557.5(60.2) 1170.2(55.5)

D 29.8(169.7) 75.1(159.5) 207.2(39.3) 559.1(60.3) 1171.0(50.9)

Table 5.1: Median CVWE values (with interquartile ranges) for 500 replications of testing
normal against skew-normal densities. The CVWE values are obtained from N = n/m
independent (I) or dependent (D) training sets.

Notice in Table 5.1 that it really does not make a difference whether we compute the

CVWE value on independent or dependent training sets. Also, under the normal (null)

model, we expect the the CVWE value to be approximately − n
2m

since r = 1. This is

126

what we see from this small simulation for both types of splits. For ease of construction

and computation, we will simply take N ≥ 30 dependent random splits since the results

are essentially the same.

5.4 Simulation Studies

In this section, we carry out a series of simulation studies to explore the performance of

the parametric CVBF method and compare it to standard frequentist and Bayesian meth-

ods. In Subsection 5.4.1 we test the fit of a univariate exponential model against gamma

model alternatives and examine the choice of training set size. Next, we look at compar-

ing the normal and skew-normal models for trivariate data in Subsection 5.4.2, which turns

out to be a more difficult problem than might be expected. We also compare the paramet-

ric CVBF method to the standard frequentist t-test (Subsection 5.4.3) and to a traditional

Bayes factor approach (Subsection 5.4.4) in a simple linear regression context.

5.4.1 Testing the Fit of a Univariate Exponential Versus Gamma Model

To investigate the effect of m, we will test an exponential density against a gamma al-

ternative. Letting gamma(α, β) denote a gamma density with shape parameter α and rate

parameter β, data were generated from three densities: gamma(1/2, 2), gamma(1, 2) (ex-

ponential), and gamma(2, 2). Three sample sizes, n = 100, 500, and 1000 were considered

for each gamma density and CVWE values were computed for m in {.05n, .10n, . . . , .5n}

and N = 50. The simulation results are provided in Figure 5.1.

In order to make the scale of the plots more informative, we have used the transfor-

mation t(CVWE) = sgn(CVWE)|CVWE|1/2, where sgn(u) is the sign of u. The dashed

horizontal line at ±
√

log 20 in each plot represents the strong evidence threshold from

Kass and Raftery (1995). When the null model is true (top panel of Figure 5.1) for the

gamma(1,2) distribution, the CVWE values decrease monotonically as m → 0. This is

what we have seen under the null in every CVWE (either kernel or parametric) scenario.

127

●

●

●
●

●
● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
8

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●

●
●

● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
8

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●
●

● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
8

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●

●

n = 100
n = 500
n = 1000

●

● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10
15

training set proportion

t(
C

V
W

E
)

● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10
15

training set proportion

t(
C

V
W

E
)

● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10
15

training set proportion

t(
C

V
W

E
)

●

●

● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10

training set proportion

t(
C

V
W

E
)

●
● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10

training set proportion

t(
C

V
W

E
)

● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
5

0
5

10

training set proportion

t(
C

V
W

E
)

Figure 5.1: Median of transformed CVWE when testing exponential versus gamma densi-
ties. Results are based on 1,000 replications from gamma(1,2) (top panel), gamma(1/2,2)
(middle panel), and gamma(2,2) (bottom panel) densities. The solid, dashed and dotted
lines correspond to n = 100, 500, and 1000, respectively. The upper and lower ends of the
vertical lines indicate quartiles, and the dashed horizontal line indicates strong evidence
according to the scale of Kass and Raftery (1995).

128

Any training set size m ≤ 0.15n for sample size n would produce CVWE values that

indicate strong evidence in favor of the exponential model. Though not included in the

plots, all training set sizes provide positive evidence in favor of the exponential model.

Under the alternative models (gamma(1/2, 2) and gamma(2, 2)), provided that n ≥

500, any training set size between .05n and .5n will produce (with very high probability)

a CVWE value that indicates strong evidence against the exponential model. For smaller

sample sizes, like n = 100 here, the choice of m becomes more important. For instance,

in Figure 5.1 when α = 1/2 (middle panel) we need to choose m ≥ 0.1n and when α = 2

(bottom panel) the training set size needs to be even larger with m ≥ 0.2n. Based on our

intuition and the results of this simulation, mn/n must be larger for smaller n where mn is

the ideal choice ofm under the alternative model for given n. Overall, since the parametric

CVBF performs adequately under the null, we can use our advice from Subsection 5.3.2

and take m to be a larger proportion of n, especially when n is small.

5.4.2 Testing Trivariate Normality Versus Skew-Normality

The parametric CVBF method is well-suited for applications to multivariate data pro-

vided that we can compute the necessary MLEs. Here we consider the example of testing

normality against a skew-normal alternative for trivariate data. On the surface it seems that

this situation could be easily handled using Bayesian methods, but in fact, it is rather dif-

ficult. In the typical (ξ,Ω, α) parameterization, a singularity exists in the Hessian matrix

when the skew parameter α is a 0-vector. Therefore, to perform a standard Bayesian hy-

pothesis test, one could reparameterize the skew-normal model and follow the population

Monte Carlo approach using objective priors, as developed by Liseo and Parisi (2013).

Unfortunately, this approach becomes very complicated beyond two dimensions. In con-

trast, the parametric CVBF method easily handles this hypothesis test in all dimensions.

For sample sizes n = 1000, 2500, and 5000, we draw 256 independent sample from the

129

trivariate standard normal distribution and the trivariate skew-normal distribution with pa-

rameters ξ = 0, Ω = I3, and α = 10. For each data set we usem = 0.1n, 0.2n, 0.3n, 0.4n,

and 0.5n and N = 50. The results are summarized in Figure 5.2 using the same transfor-

mation of the CVWE values that was utilized in Subsection 5.4.1.

When the data are sampled from the trivariate standard normal distribution, the para-

metric CVBF method finds strong evidence in favor of the normal model when m ≤ 0.3n

and positive evidence for all training set sizes. For sample sizes n ≥ 2500, the CVWE

values for skew-normal data indicate overwhelming evidence in favor of the skew-normal

model for any training set size. When n = 1, 000, the training set needs to contain at least

m = 200 observations before we find positive evidence in favor of the skew-normal model.

As the dimension increases, we simply need more observations to adequately estimate the

(quadratically) increasing number of parameters. However, provided that we have a large

enough sample, these results extend for dimension greater than 3. Thus, the parametric

CVBF approach can make quick and easy work of a difficult hypothesis test.

How does the parametric CVBF method compare to the scaled CVBFK(S) method for

testing trivariate normality for normal and skew-normal data. Back in Subsection 4.4.4,

we conducted a similar test in three dimensions using data from non-standard distribu-

tions. Specifically, the normal distribution had parameters: µ = (3.4, 5.5, 3.5)T and Σ =[
5.5 2.1 −.2
2.1 2.0 .02
−.2 .02 9.9

]
and the skew normal distribution had parameters: ξ = (−14.1, 18.9, 15.5)T ,

Ω =
[

5.5 −3.9 1.3
−3.9 5.1 −1.6
1.3 −1.6 2.1

]
, and α = (15.9, 7.1,−6.0)T .

For 100 random samples with n = 1, 000 observations from both of these distributions,

we computed the parametric and kernel CVBF methods using N = 28 random splits and

training set sizes m = 100, 200, 300, 400, and 500. The resulting median CVWE values

over the 100 samples are provided in Table 5.2.

The results from this simulation are very interesting. For normal data, both the para-

metric and kernel CVBF methods find at least positive evidence in favor of the normal

130

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
6

−
4

−
2

0

training set proportion

t(
C

V
W

E
)

●

●

●

n = 1000
n = 2500
n = 5000

●

●

● ● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20
30

training set proportion

t(
C

V
W

E
)

● ● ● ● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20
30

training set proportion

t(
C

V
W

E
)

● ●
●

●
●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20
30

training set proportion

t(
C

V
W

E
)

Figure 5.2: Median of transformed CVWE when testing trivariate normality for 256 sam-
ples from N(0, I3) (top panel) and SN(0, I3,10) (bottom panel) data. The solid, dashed
and dotted lines correspond to n = 1000, 2500 and 5000, respectively. The upper and
lower ends of the vertical lines indicate quartiles, and the dashed and dotted horizontal
lines indicate strong and positive evidence according to the scale of Kass and Raftery
(1995).

131

Method Model m = 100 m = 200 m = 300 m = 400 m = 500

CVBFP Normal −26.6 −9.0 −4.5 −2.9 −1.7

Skew-Normal −37.5 67.7 79.3 74.6 62.5

CVBFK Normal −84.1 −46.2 −28.5 −16.9 −7.6

Skew-Normal −34.9 6.5 22.5 29.9 31.9

Table 5.2: Median CVWEP and scaled CVWEK(S) values for 100 random samples of
size n = 1, 000 from either a trivariate normal or skew-normal model using training set
sizes m = 100, 200, 300, 400, and 500 and N = 28 random splits.

model. However, the kernel CVWE values indicate far stronger (overwhelming) evidence

across all training set sizes. When the alternative model is true, the two methods reverse

roles in that the parametric CVBF method finds magnitudes more evidence against the

normal model compared to the kernel approach.

These results are exactly what we expect to see. In the parametric CVBF method, we

are comparing two nested parametric models with only n = 1, 000 observations using a

likelihood ratio of simple models estimated from the training data. In the kernel CVBF

method, we are using a Bayes factor to compare a parametric model to a nonparamet-

ric model, where the marginal likelihoods serve as model averages over their respective

parameters. Therefore, when the null model is true, it is not surprising to see the larger

CVBF values for the parametric approach compared to the kernel approach. The paramet-

ric model in the kernel approach will look markedly better compared to the nonparametric

model, whereas both the estimated skew-normal and normal models will be harder to dis-

tinguish. When the skew normal model is true, the parametric approach should produce

larger CVBF values since the estimated skew-normal model will fit the data far better than

the estimated normal model. In the kernel approach, at least one member of the alternative

model should be closer to the skew-normal model, but we know from a Kullback-Leibler

132

sense that the kernel model is often closer to a normal model. Therefore, the skew-normal

model should be more difficult to distinguish.

5.4.3 Comparing CVBFP to a Frequentist Test

When comparing a frequentist test and a Bayesian test for the same hypothesis testing

problem, we have described how the significance level of α = .05 is often too liberal and

should tend to 0 in order to agree with the Bayesian test. In fact, in the simulations of

Section 4.7, we showed that the frequentist tests for multivariate normality all had Type I

error rates near α = .05, whereas for the same data sets, the Type I error rate for the kernel

CVBF method was 0 for appropriate training set size.

To explore this scenario once again, consider testingH0 : β1 = 0 versusH1 : β1 6= 0 in

a simple linear regression setting. The model we consider is such that (X1, Y1), . . . , (Xn, Yn)

are independent with Yi|(Xi = x) ∼ N(β0 + β1x, σ
2) and Xi ∼ N(µ, σ2

X), i = 1, . . . , n.

Take X1, . . . , Xn, Y1, . . . , Yn
iid∼ N(0, 1), in which the null hypothesis is true, and sample

10,000 data sets of size n = 1, 000.

For each data set we compute the P -value from the classical t-test on β̂1, the least

squares estimate of the slope parameter. More specifically, the P -value is equal to

2P (|t̂| > tn−2) where t̂ =
β̂1

(σ̂2/
∑n

i=1 X
2
i)
,

with

β̂1 =

∑n
i=1(Yi − Ȳn)(Xi − X̄n)∑n

i=1(Xi − X̄n)2
, σ̂2 = n−1

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2, and

β̂0 = Ȳn − β̂1X̄n.

The parameter estimates and sample means are computed on all n pairs of observations

133

for the t-test. As for the CVBF method, we only use the training data, m = 100 in this

simulation, to compute the estimates and means. For a single random split, the Bayes

factor we compute is given by

BFm,1 =
σ̂
−(n−m)
1 exp

(
− 1

2σ̂2
1

∑n
j=m+1(Yj − β̂0 − β̂1Xi)

2
)

σ̂
−(n−m)
0 exp

(
− 1

2σ̂2
0

∑n
j=m+1(Yj − Ȳm)2

)
where σ̂2

0 = m−1
∑m

i=1(Yi − Ȳm)2. The resulting CVWE value is the average of values of

the form log(BFm,1) over 50 random splits.

Over the 10,000 data sets, 94.86% of the CVWE values were less than− log 20, which

indicates strong evidence in favor of the correct null model. As for the t-test, as expected

roughly 5% (5.04% to be exact) of the data sets produce P -values less than α = .05. In

order to see that a level 0.05 test is too liberal, in 268 of the 504 t-tests that produced

Type I errors, the corresponding CVWE value finds strong evidence in favor of the null

model. That means that in over 53% of data sets where the frequentist makes a Type I

error, we can actually find strong evidence for the null model. Similarly, in 466 (92.5%)

of the 504 data sets, we would find positive evidence in favor of the null model using

the parametric CVBF method. This situation will only continue to be more disturbing

as the sample size increases because of the consistency results of Theorem 5.2. In fact,

P (CVWE < − log(20)|P ≤ α)→ 1 as n→∞ for any fixed α.

The CVWE and P -value tend to agree when the CVWE values are very large. Suppose

we rejected the null model when the CVWE value was greater than log 3, which occurred

only 3 times in the 10,000 data sets. This is fairly liberal when it comes to odds ratios

because a log-odds ratio must be greater than 0 for the alternative model to be favored.

For the t-test to have the same Type I error rate α would be 0.0003. In fact, using this

significance level, 4 data sets produce significant P -values, and in 2 of these data sets

134

the Bayesian would also reject the null. Since P (CVWE > log(3)) → 0 as n → ∞, a

necessary condition for the frequentist and Bayes tests to agree closely in terms of Type I

errors is that α→ 0 as n→∞.

5.4.4 Comparing CVBFP to a Traditional Bayes Factor

In a traditional Bayesian hypothesis test where the two models are nested, the Bayes

factor is typically consistent at a slower than exponential rate when the smaller model is

true. Theorem 5.2 proves that the parametric CVBF method is consistent at an exponential

rate when the null hypothesis is true. To explore this large sample property, we compare

the parametric CVWE values to traditional log Bayes factors in a simple regression setting.

Consider testing the following hypotheses:

H0 : Yi = εi, εi ∼ N(0, σ2)

H1 : Yi = Xiβ + εi, εi ∼ N(0, σ2), Xi ∼ N(0, 1), β 6= 0,

where Xi and εi are independent. We assume that the null model is true, i.e., that β = 0.

The parametric CVBF approach closely follows the computations in the previous sub-

section, with the extra caveat that we do not consider the intercept parameter β0. Thus

the CVWE value for a single random split of the observed data pairs (Xi, Yi) and training

sample size m is given by

log(BFm,1) =
n−m

2
log
(σ̂2

0

σ̂2
1

)
−
∑n

j=m+1(Yj − β̂Xj)
2

2σ̂2
1

+

∑n
j=m+1 Y

2
j

2σ̂2
0

,

where σ̂2
0 , σ̂2

1 , and β̂ are computed from the training data as follows:

β̂ =

∑m
i=1XiYi∑m
i=1X

2
i

, σ̂2
0 =

1

m

m∑
i=1

Y 2
i , and σ̂2

1 =
1

m

m∑
i=1

(Yi − β̂Xi)
2.

135

The overall CVWE value is the arithmetic average of values of the form log(BFm,1) across

N = 50 splits.

As for the traditional Bayes factor, we require prior distributions for the parameters

under both the null and alternative hypotheses. The only unknown parameter in the null

model is σ2, so we take σ2 ∼ inverse-gamma
(

1
2
, (2n)−1

∑n
i=1 Y

2
i

)
, which is a conjugate

reference prior. For the alternative model, Hoff (2009) provides UIR priors for β|σ2 and

σ2: β ∼ N
(
β̂, nσ2(XTX)−1

)
and σ2 ∼ inverse-gamma

(
1
2
, (2n)−1[Y − β̂X]T [Y −

β̂X]
)

. Use of these priors leads to marginal likelihoods that can be computed analytically

resulting in the following Bayes factor

BF =

(
[Y − β̂X]T [Y − β̂X]

)1/2[
Y TY

(
2n+1

2n

)
+ β̂2XTX

(
3

2n

)
− β̂Y TX

]−n+1
2(

Y TY
)1/2[

Y TY
(

2n+1
2n

)]−(n+1)/2
.

To compare the traditional Bayes factor to the parametric CVBF method, we simu-

late 10,000 data sets such that X1, . . . , Xn, Y1, . . . , Yn
iid∼ N(0, 1). The sample sizes we

consider are n = 1000, 5000, 10000, 25000, 50000, and 100000 with respective training

set sizes of m = 250, 500, 750, 1000, 1500, and 2000. The pairs (m,n) are chosen such

that both m,n → ∞ and m/n → 0 as required in Theorem 5.2. For each data set we

compute the log-Bayes factor and CVWE value and the resulting pairs (CVWE, log(BF))

are plotted in Figure 5.3.

The results of Figure 5.3 verify that indeed the traditional log-Bayes factor tends to

−∞ at a much slower rate than the parametric CVBF method. Also notice that regardless

of sample size, there are data sets where the traditional Bayesian regression approach will

incorrectly favor the alternative model. This is unlike the CVBFP approach where once

n ≥ 10, 000, the CVWE value correctly concludes in favor of the null model in all 10,000

data sets.

136

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●
●●

●

●

●
●

●●

●

●

● ●

●

●
●

●

● ●

●
●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●
●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●●

●
●

●

●
●

●
●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●● ●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●
●

●

●

●●
●

●●●
●

●

●

●
●●

●
●●

●

●

●

●

●
●●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●●
●
●● ●●

●

●
●

●

●
●

●

●
●

●

●
●

●●

● ●
●

●

●

●

●●● ●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●●

●
● ●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●●
●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●●
●

●

●

●

●

●

●
●●●

●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●

●
●

●

●

●
●

●
● ●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

● ●● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

● ●
●

● ●

●
●
●

●

●

●

●

●

●

●

● ●
●●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●

●● ●●

●

●

●

●
●

●●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

● ●
●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●
● ●●

●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●
●
●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●●●●●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●● ●

●
●

●

●
●●

●

●

●

●

●●

●
●

●

●

●●
●●●

●

●
●

●

●

●
●

●

●
●●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●●
● ●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●
●●

●
●

●

●

●

●
●
●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

● ●

●

●
●

●●

●

●

●

●

●

●

●●●●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●● ●

●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●● ●●

●
●

●●
●
●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●
● ●

●● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●●● ●

● ●

●

●

●

●
● ●● ●

●

● ●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●● ●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

● ● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

● ●
●●

● ●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●

●
● ● ●

●● ●● ●
●

●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

● ● ●
●●

●

●

●

●
●

●
●

●

●

●● ●

●

●
●●●

●● ●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●●

●●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

● ●●

●

●
● ●●

●

●
●●●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●●

●

● ●●●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

● ●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●
●

●
●

● ●

●

●

●● ●

●

●

●

●

●

●

●●

● ●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●
● ●●●

●
● ●

●

●●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ● ●●● ●
●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●
● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

● ●

●●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●●

●

●

●

●

●●●

●

●●

●
●

● ●
●

●

●

●

●

● ●●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●●
●

●

● ●

●

●●

●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●
●

●

●
●

●

●

● ●● ●●

●

●
●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●
● ●
● ●

●

●
●●

●●
●●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●●

●

●

●
●●

●

●

●

●
●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●
●●

●

●
●●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●
●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●
●

●●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●● ●
●

●

●●

●

●

●
●

●

●

● ●

●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●●●

●

● ●

●

●

●● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●●
● ●● ●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●●
●●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
● ●●

●

●

●
● ●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

● ●
●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●
●
●● ●●

●

●● ●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●● ●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●● ●

●
●

●

●●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

● ● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●●

●● ●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●● ●●
●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●●

●

●
●

●●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●

●●

●

●

●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●●●●● ●
●

●

●
●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●●

●

●●
●

●

● ●
●

●

●●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

● ●●●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●●

●

●

●●●●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●
●● ●

●
●

●

●●

●●● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●●●
●●

●
●
●

●

●

●

●

● ●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●●●
●

●●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●●

●

●● ●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●
● ●

●

●

●●●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
● ● ●●

●
●

●●

●

●●

●

● ●
●

●

●
●●

●
●

●

●
●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●● ●● ●

●

●

●

●
●
●

●

●

●

● ● ●

● ●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

● ●●●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
● ●
●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●●

●

●
●

●

● ●

●
●

●

●

●●●
●

● ●

●
●

●

●

●

●●

●

●●
●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●● ●●●

●
●

●●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●● ●●

●
●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

● ●
●

●

●

●

●

●

● ●● ●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●
●

●

● ●●

●

●

●

●

● ●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●
●

●●
●

●

●

●
● ●●

●

●

●
●

●

● ●

●

●●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
● ●●

●
●

●

●

●
● ●

●

●

●●●

●

●
●●

●
●●●●

●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

● ●
●

●

●

●●

●

●

●

●

● ●●●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

● ●

●●

●
●

●

●

●

●

●

●

●

● ●●

●

●

● ●●
●

●

●

●

●

●

●

●

● ●
●●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●
● ●● ●

●
●

●

● ●●

●

●

●

●●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●●

●

●●

●

●
●

● ●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●
●

●

●

● ●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●●

●

● ●
●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
● ●

●

● ●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●● ●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●● ●

●

●
●

●●●
●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●
● ●

● ●

●

●
●

● ●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●●
●

●

● ●

●

●
●

●

●

●

●●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●●

● ●

●

●
●●

●

●

●

●

●
●

● ● ●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●●●

●

●
●●

●

●

●

●
●

●●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

● ●

●

● ●●
●

●●
●

●●

●

●

●

● ●

●

●●

●

●
● ●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●
●

●
●

●

●
●

●

●

●

● ●
●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●● ●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

● ●
●●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

● ●

●

●

● ●
●●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●● ●

●● ●

●●●

●

●

●

●●●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●● ●●●

●

●

● ●

●

●

●

●

●
●

●

●●● ●●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●●●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●
●

●
●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●

● ●

●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●●● ●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●

●
●●●●

●

●

●

●

● ●

●

●

●

●

●●●
● ●●
●

●

●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●●● ●●●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●●
●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●●●
●

●

●
●● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●●●●

●
●

●

●● ●

●

● ●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●
●● ●●

●

●
●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●●●

●

●

●

●●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●● ● ●
●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●
●●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●
●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●● ●
●

●●● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●● ●●●
●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●
●

●●●

●

●

●

●● ●
●

●
●

●

●

● ●●

●

●

●
●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●●

●

●● ●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●
●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●● ●

●

●
● ●

● ●
●

●

●

●●

●

●

●

●
●

●● ● ●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●
●

●●

● ●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●● ● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●
●● ● ●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
● ● ●

●
●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

● ●●

●

●

●

●

●

●
● ●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

● ●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●
●●

●

●●

●

●

●

●

● ●

●

● ●●● ●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●● ●●

● ●

●
●

●

●

●

●
●

●

●

●●●● ●●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●

● ●

●

● ●
●

●

●
● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ● ●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●● ●
●

●
●

●
●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

● ●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●●
●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

● ●●

●

● ●●

●

●
●

●
●

●

●

●

●

●● ●●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●● ●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●●
●

●●

●

●●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●
● ●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
● ●

●

●

● ●
●

●

●

● ● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●● ●

●

●●

●

●●
●
● ●

●

●

●

●

●●

●
●

●

●

●● ● ●

●

●

●

●
●

● ● ●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●
●

●●

●

●

● ● ●

● ●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ● ●● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●●

●●

●

● ●

●

●

●
●●●

●

●

●
●

●
●

●

● ●●

●●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●
● ●

●

●

●
● ●

●

●

●
●

●

● ●

●● ●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●●●

●

●

●

●
●

●

●

●●
●

● ●●

●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●
● ●●

●

●

●
●

●

●● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

● ●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
● ●

●

●

●

●

●
●

●
● ●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●● ●

●
●

●

●

●

●

●

● ●

●

●

●● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●
● ●●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●

●
●

●

● ●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●

● ●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●●
●●

●

●

●● ●●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

● ●●
● ●

●

●

●
●●

●

●

● ●

●

●

●●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ● ●

●

●
● ●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●● ●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●● ●

●

●

●●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●●

● ●

●
●

●

●

●●●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

● ●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●● ●

●

●
●●

●●

● ●

●

●● ● ●
●

●

●

●

●

●

●

●
●

●● ●

●

● ●●●
●

●

●

●
●

●●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●● ●

●

●

● ●
●

●
●●

●●
●

●

●

●

●●

●

●
●

●
●

●

●

● ●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●● ●
●

●● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●●
●

●● ●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●●

●

●●

●
●

●
●

●
●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
● ● ● ●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

● ●
●

●

●

●

●●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●
● ●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●●
● ●●

●

●

●●
●● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

● ● ●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●
● ●

●

●

●
●●

●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●
●

●
●

●● ●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●● ●
●

● ●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
● ●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●
●

● ●
●

●
●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●
●

●

●●
●● ●

●●

●

●

●

●
●●●

●

●

●

●
●

●

● ● ●●
●●

● ●

●
●

●

●

●

●
●

●

●

●● ●●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●

● ●

●
● ●

●

●

●

●

●

●

● ●

●

●●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

● ●●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●● ●●

●

●
●

●

●

●

● ●

●

●

●

●

●●
●●
● ● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●●

●
●

●
●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

●

● ●● ●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●● ●●

● ●

●●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

● ●

●

●
●● ●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●●
● ●● ●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

● ●
●

●

●

● ●●

●

●
● ●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●
●● ●

●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●● ●●
● ●

●●

●

●
●

● ●●

●

●

● ●

●

●

●

●

● ●●
●

●

●●
●

●
●

●

●

●

●

●●
● ●●

●

●

●
●

●

●

●● ●
●

●
●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
● ●● ●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●●●
●

●

●

●

●
●

●●

●

●

●

●

●
●● ●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●● ●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●
●

●

●

●
● ●

●

●●

●

●

●

●●●
●●

●
●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●●

● ●●

● ●

●

●

●

●

●●●

●
●

●

●

●
●

●
●

●●

●

●

●
● ●
●

●
●

●

●
●

●

●●●

●

●

●

●
● ●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ●●
● ●
●

●

● ●
●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

● ●●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●●

●
●●

●
●

●

● ●
●

●

●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●
●●

●

●

● ●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●
●

●● ●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●● ●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●● ● ●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

● ●
●

●
●

●

●

●●
● ●

●

● ●
●

●

●

●
●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●● ●●

●●
●

●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●●

●

●

●
●●

●●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

● ●●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●●

● ●
● ●

●

●

●●

●

●

●

●
●

●
●●

●

●
●●

●

●

● ●●

●
● ●

● ●

●

● ● ●

●

●

●●

●

●●

●

● ●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

● ●●

●

●●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

● ●●
●

●

●

●

●● ●

●
●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●● ●

●● ●●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

● ●
●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●

●

●●
●●

●

● ●

●

●●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●
●

●

●

●

●

●●● ●

●
●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●●●
●

●
●●●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

● ●
●

●

●

● ● ●●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●● ●

●
●●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●●

●

● ●

● ●

●

●
●

●●

●

●

● ●

●

●●●●●

● ●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●
● ●● ●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●
● ● ●

●

●

●
●

●● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●● ●●● ● ●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●●●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●
●

●

●

●

● ●●
●

●●

●

●
●●● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●

●● ●

● ●●

●

●

● ●

●

●

● ●● ●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●●

● ●

●

● ●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●●●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●
●

●

● ●

●

●

●

●

●

● ●
●●

●
●

●

●

●
●●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●
● ● ●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●
●

●●
● ● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

● ●

●

●
●

●

● ●

●
●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●

●

●● ●

●

●● ●

●

●●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

● ●

●●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

● ●●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●● ●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●
●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●● ●

●
● ●●

●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●● ●
●●

●

●

●

●●

●

●● ●

●

●
●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●●

●

●●
●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●●●

●●
●

●

●

●

● ●

●

●
●●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
● ●

●●

●

●●

●

●

●

●
●

● ● ● ●●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●
●

●● ●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●

●

●

●

●●
●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

● ●

● ●

●
●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

● ●

●
●

●
●

● ●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●
● ●● ●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●● ●●● ●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●

● ●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

● ●

●

●
● ●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

● ●●●
● ●

●

●

● ●●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●●● ●

●
●

●

●

●

●

●

● ●
●

●● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●●●

●

●

●

● ●●

●

●

● ●
●● ●●● ●●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●●● ●

●

●

●●

●

●

●

●

●

● ●●●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●●
●

●
●

●
●

●

●

●
●

● ●
●●

●
●

●

●
●

●
●●

●

●

●● ●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●
●

●
●

●

● ●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●
●

●

● ● ●

●

●

●

●

● ●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

● ● ●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●

●●● ●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
● ● ● ●● ●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●● ● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●●●
●

● ●●●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

● ● ●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●●
●●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●
●

● ●●

●

●● ●
● ●

●

●●●

●● ●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

● ●●● ●

●

●
●

●

●

● ●

●

●
●

● ●●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●●

● ●
●

●
●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●
● ●●

●

●

●
● ●

● ●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●
● ●

●

●
●●

●

●

● ●

●
●●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●●

●●

●

● ●

●●
●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●●

●
●

●
●

● ●
●

●

●

●

●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●● ●
● ●●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●●

● ●
●●

●

●

●

●

●

●

●
●

●
●●

●
●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●●
●

● ●●

●

●
●

● ●

●●

●
●●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●
●

●

● ● ●

●●
●

● ●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●●●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●● ●

●

●

●●

●
●

● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●
●

●

● ●
●

●

●

●

●

●●●

●

●

●

● ●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●●

● ●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●

●

●

● ●

●

●

●●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●●●

●

● ●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●●

●

●
●

●

●

●

●
●

●

●

●●

● ●

● ●
● ●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●●●●
●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●
● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●● ●
●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●
●

●

●
●

●
●●

●

●

●

●

●

●●● ● ●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●● ●
●

● ●● ●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
● ●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

● ● ●

●

●

●

●

● ●

●

●

●

●●● ●

●

●

●

●

●

● ●

●
●
●●

● ●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●●

●

●
●

● ●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

● ●

● ●

●

●

●
●

●

●
●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●● ●●

●●

●

●●

●

●
●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●● ● ● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●●

●

●

●

● ●

●

●

●

●

●● ● ●

●

●

●

●

● ●●

●

●

●

●
● ●● ●

●●

●
●●

●

●
●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

● ●

●

● ●

●

●

●
● ●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●● ●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●●

●

●● ●●

●

●

●

●

●●

●●

●
●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●
● ●● ●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●●●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●
●●

● ● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

● ●
● ●

●

●

● ●
●

●

●

●

● ●
●

●

●
●

● ●

●
●

●

●

● ●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●● ●

●

●

● ●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●
●

●
●

●●

●

●
●

●

●●

●●

●

●

●

●

● ● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●●●

●

●●
●

●

●
●

●

●

●

●

●
● ●

●●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●●

● ●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●● ●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●
●●● ●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●● ●
●

●

●

●

●

●● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

● ●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●● ●● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●●

●

●●
● ●●

●
●●

●
●●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●

●

●● ●● ●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●●

●

●

●

●

●

●●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●●

● ●
●

● ● ●

●

●

●

●

●

●●
● ●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●● ●● ● ●●

●

●

●

●
●

●

●● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●
●

●

●
●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●
●
●●

●●

●

●
●● ●

●●
●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ● ●
●
●
●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●●●

●

●
●

●
● ●

● ●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●●

●

●●
●●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●
●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
● ●

●● ●

●

●

●
● ●

●

●

●

● ●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●
●

● ●

●
●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●
●●

●

●
●

●
● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●● ●●

●●

●

●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

● ● ●
●

●
●●

●

●
●

●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●● ● ●

●

●

●

●
● ●

●

●

●
●●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●● ●●

●
●

●●

●

●

●

●● ●●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ● ● ●●●

●

●

● ●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

● ●●
●●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

● ●

●●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
● ● ●●● ●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

● ● ●

●

●● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●●● ●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●●
●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

● ●
●

●

●

●

●

● ●●

●●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

● ●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●
●●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

● ● ●● ●
●● ●●● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●●

● ●
●●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●
●

●

● ●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

● ● ●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

● ●
●

●

● ●

●●

●

●●

●
●

●● ●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
● ●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

● ●
● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
● ● ●●●

● ●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●
●● ● ●

●

●

●

● ●

●

●

●

●

● ●

●●
●

●
●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

● ●

● ●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

● ●●

● ●

●
● ●

●

●

● ●

● ●
●

●

●● ●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●● ● ●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

● ●

●

●
●●

●

●

● ● ●

●

● ●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

● ●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●●

●

●●

●

●

●

● ●●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●● ●

●

●

●
●

● ●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●
●

●

●

●

●

●
●

●

●

● ●●●

●

●●

●
●

●

●

● ●

●

●

●

●
●
● ●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●●
● ● ●

●

●●

●

●

● ●●

●

●

●

●

●
●●

●

●●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●●●

●

●

●

●
●

●
●●

● ●

●
● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

● ●

●●

●

●●

●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●●

●●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●

●● ● ●

●

●
●

●

●
●

●

●
● ●

●

●●● ●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

● ● ●
●

●

●
●

● ●
● ●

●

●

●
●

●● ●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ●
●●

●● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

● ●

●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●
●

●

●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●
●

●
●

●

●

●

●

● ●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

●
●

●

● ●
●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●● ●

●
●

● ●
●●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●● ●
●●

●
●

●

● ●●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

● ●●
●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●●
● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●●

● ●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●●

●

●

●

●
●

●

●

●●
● ●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●
●

● ●
●

●

● ●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

● ●●

●

●
●

●

●

● ●

●

●
●●

●

●

●

●

●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●
● ●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

● ●●

●

●
● ●●

●

●

●

●

●

●
●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

● ●

●
●

●

●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●●
●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

● ● ●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●●

●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

● ●●●●

●

●●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●● ●● ●●
●

●

●●●

●

●

●

●●

●

●

●

● ●

●

●

●

●● ●

●

●
●

●
● ●

●

●●

●● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ● ●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●●
●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

●

●

●●

●●

●● ●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ● ●

●
●

● ● ●

●

●

●

●

●

● ●
●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●
● ●● ●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●
●●●

●
●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●● ●

●

●

●

●●●

●
●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●
●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●●● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●
●

●

●●

●

●
●

●

●

●
●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

● ●
●

●

●●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●
●

●

●

●

●
●

●●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●●

●
●

●

●●●

●

●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

● ●
●

●●
●

●

●

●
●

●

●●
●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●● ●●

●

●●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●
●

●●

● ●

●

●

●

●
● ●

●
●

●● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●
●

● ●●

●
●

●

●

●

●●

●

●

●

●

● ●●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●●

● ●

●

●

●

●

● ●●

●

●● ●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

● ●

●● ●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●● ●●●

●

●

● ●
●

●
● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

● ●

● ●● ●

●

●

●
●●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●

● ●●

●

● ●●

●

●

●

●

●
●●

●

●

●

●● ●●
●

● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●
●●●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
● ●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●●

●

●

● ●●●

●

●
●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

● ●
●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●

●
●

●

● ●

●

●

●

●

●

●

● ●●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

● ●

●

●

●● ●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●
●●

●

●
●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●● ●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

● ●
● ●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●●

●
●

●

●

●

●● ● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ● ●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

● ● ●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

● ●

●

●●
●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●
●

● ●●
● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●● ●●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●
●

●

●

● ●

●

● ●

●

● ●
●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●●

● ●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●
●

●

●

●
●●

●

● ●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
● ●

●

● ●
●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●
●●

●

●

●●
●

●
● ●
●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●●●

●

●

●

●
●

●

●
●

●

●●

● ●●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●
●●● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

● ● ●
● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

● ●●

●

●

●
●

● ● ●

●

●

● ●
●

●
●● ●

●

●
● ●

●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●
●● ●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

● ● ●

●

●

●

●

●
●

●

● ●●

●

●

●●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

● ●

●

●

●

●●

●●

●

●
●

●●
●

●

●

●

●●●●

●

●
●
● ●

●

●
●

● ●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●●
● ●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ● ●●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

● ●●

●
●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●●●

●

●

●
●●●

●
●

●

●
●

●

●

●

●●

●

●

●
●●

●

●●

●

● ●

●

●

●

● ●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●●
● ●

●

● ●●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●
●

●
●

● ●

●

● ●

●

●●●

●

● ●
●● ●

● ●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●● ●
●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●
●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●
● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●

● ● ●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

● ●
● ●

●
●

●

●

●
●

●

●
●● ●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●
●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

● ●
●

●

● ● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●●

●

●

●

●

●● ●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●● ● ●
●

●

●

●

●●

● ●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●● ● ●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●●●
●

●

●

●●

●

●

● ● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●●

●●
●

●

●

●

●●●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●●●

●

●
●

●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●
●

● ● ●●

●

● ●

●

● ●

●

●
●

●

●

●

●
●

●

●● ●● ●

●

●●

●

●

● ●

●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●
●●

●

●
●●

●

●
●

●

●

●
●

●
● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●
●

●

● ●●

●

●● ●

●

● ●●
●●

●

●
●●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●

●● ● ●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●● ●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

● ●

●

●

●

● ●●

●

●

●

● ●

●
●

●●

●

● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ●

● ●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

● ●
●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●●

●●
●●

●
●

●

●

●

●

●

●
●

● ●●

● ●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●● ●

●

●
●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

● ●
●

●

●

●

●●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●● ●

●
●

●● ●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●

●
●

●● ●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●●
●

●

●
● ●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●
●

● ●

●

●●

●

●
● ●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

● ●●

●

●●

●

●

● ●
● ●

●

●

●

● ●
●

● ●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ● ●
● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

● ●

●
● ●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●● ●

●
●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●●●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●● ●

●

●●

●
●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●● ●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●
●

●

●●

●
●●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●
●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●● ● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●
●

●
●●●

●

●

● ●
●

●●

●

●
●

● ●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

● ●

●

●

●

●

●

● ●●● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●●●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ● ●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

● ● ●●

●

●

● ●
●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●● ●

●

●
●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●● ●

●

●

●

●

●

●

●● ●
●

●

●

●●
●

●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
● ●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

● ●
●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

● ●● ●●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●

●

●

●

● ●

●●●

●

●

●● ●

●

●

● ●

●

●

●

●

●

● ●

●

● ●
●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

● ●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

● ●●
●

●

●
●

●
●● ●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

● ● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●●

●

●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●
●

●

●
● ●

●

●

● ●●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
● ●

●

●

●●
●

●●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●
● ●●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

● ●
● ●

●

●

●●

●

●

●

●

● ●

●● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●
●

●

●

●

●

●●
● ●

●

●
● ●

●

●

●● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

● ●

●

●

●● ●●

●

●

●

●

●

●
●● ●

● ●
●

●

●

●

●
●

●

●
● ●● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●
● ●

●

●
●

●

● ●
● ●●

●

●

●
●● ●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●●

●●

●

● ●
●

●

●●

● ●

●

●
●

●

● ●
●

●● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
● ●

●
● ● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

● ●● ● ●●

●

●

●●
●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●
●

●
● ●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●

●●
●●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ● ●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●●
●

●
●

●

●

●● ●● ●
●

●

●

●

●

●
● ●

●

●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●● ●
●

● ●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

● ● ●● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●● ●● ●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●●
●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●● ● ●

●

●●
●

●

● ●

●

● ●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●● ●● ●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●● ●●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●●

●

● ●

●

● ●

●
●

●

●

●● ● ●● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
● ● ●

●

●
● ●

●
●

●

●
●●● ●●

●

●
●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

● ●

●● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

● ●

●

●
●

●●

●

●

●

●
●

●●

●

●●

●

●
●

●

● ● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●● ●●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●●

●●
●

●● ●
●

●
●

●

●●

●●

●

● ●

●

●

●

●
●

●

● ●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
● ●

●

●

●

● ●●●
● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ● ●
●
●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
● ●

● ●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●● ●● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●●

●

● ●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●
●

●

●●

●

●

●

● ●
● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ● ●●●

●

●
●

●●

●

●

●
●

●●

● ●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●● ●●

●

●

● ●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●● ● ●●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ● ●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

● ●
● ●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●
●

●●

●

●●
●

●

●

●

●●

●●●

●
●

●

●

●

●

● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
● ●●

●●

●●● ●
● ●

●

●
●

●

●

● ●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●●

●
●●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●●
●

●

●
●●

● ●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

● ●
●

●● ●

●

●

●
●

●

●
●● ● ● ●● ●●

●

●
●

●

●
●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

● ●
●

●

●

● ●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●
●●

●

●●

●

●
●●

●

●
●

●
●

●

●

●

●

● ●
●●

●

●

●

●●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

● ●
● ●

●
●

●
●●

●

●
●

●●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

● ●

●

● ●● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●● ●

●

●
●

●

●●

●

●

●

●

●● ●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

● ●●

●

●●
●●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

● ●●
● ●

●

● ●
●

●

●
●

● ●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ● ●●

●

●●
●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●
●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●
●●

●● ●

● ●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●● ●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

● ●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●● ●

●

●

●

●●
●

●

●

●

● ●

● ●

●

●●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●
●

●

●
●●●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●● ●●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●●

●
●

●

●

●

●

●

●●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●● ●

●

●

● ●

●

●
● ● ● ●

●

●
●

●

● ●

●
●●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●

●

●●

●

●

● ●

●

●
●●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●
●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●
●

●●
●●

●

●●

●

●

● ●

●

●●

●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

● ●●
●

●

●

●

●
● ●

●

● ●●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
● ●●

●● ●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

● ●
●●

●

●

●

● ●●
● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●●

●●
●●

●

●

●

●●
●

●
●

● ●

●

●

● ●●
●

● ●
●

●

●

●
●

●
● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

● ●

●
●

●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●

●

●

● ●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●
●

●
●
●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●
● ●

●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●
● ●●●

●

●

●
●

●

●

●

●

●

●

●

●●
●● ●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●

●●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●● ●
●

●

●

●

●

●

●●●●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●
●●

●

● ●

●

●
●

●●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●

●
●

●

●

● ●

●●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●● ●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●

●

●● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●●

●●

●

●

●
●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

● ●

●●

●

●● ●

●

● ●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

● ●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

●
●● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●● ●

●

●●

●

●●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

● ● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●
●

●● ●

●

●

●
●

●

●
●

●
●

●●
●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●

●●●

●●
● ●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●● ●

●

●●

●

●

● ●

● ● ●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●
●●

●●

●

●
●

●

●

●●●

●

● ● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●● ●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●
● ●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

−40 −30 −20 −10 0

−
6

−
4

−
2

0
2

4
6

CVWE

lo
g(

B
F

)

●

●

●

●

●

●

n=1000
n=5000
n=10000
n=25000
n=50000
n=1e+05

Figure 5.3: Comparison of the parametric CVWE values and the Bayes factors from
a traditional Bayesian regression analysis. Each color represents one of the 6 (n,m)
pairs: (1, 000, 250), (5, 000, 500), (10, 000, 750), (25, 000, 1, 000), (50, 000, 1, 500), and
(100, 000, 2, 000). Each individual point is one of 10, 000 replications of an (n,m) pair.

137

5.5 Real Data Analysis

In this section, we apply the parametric CVBF methodology to civil engineering data

that are publicly available at the UC Irvine Machine Learning Repository and originally

published by Yeh (1998). The data consist of n = 1030 determinations of Y = concrete

compressive strength under a variety of different settings for the following eight design

variables: x1 = kg cement, x2 =kg blast furnace slag, x3 = kg fly ash, x4 = kg water, x5 =

kg superplasticizer, x6 = kg coarse aggregate, x7 = kg fine aggregate, and x8 = age (in

days). We consider the following two models, both of which regress Y on all eight design

variables. The first model is a Gaussian linear model in which the errors are assumed to

be homoscedastic and the second model uses the same linear model, however the errors

are heteroscedastic. The errors are assumed to be independent, thus the likelihoods for the

two models have standard forms.

The model considered for the mean of Y was linear in x1, . . . , x8, and
√
x8. When the

errors are assumed to be homoscedastic, this model has an R2 value of .820. However,

based on the residual plot in Figure 5.4, perhaps this assumption is invalid since the vari-

ance of the residuals tends to increase with the mean. The goal is to use the parametric

CVBF method to determine if a model allowing for heteroscedastic errors better models

these data.

To show that the homoscedastic and heteroscedastic models are indeed nested, cond-

sider the following. Let r denote the model for the conditional mean of Y |X = (x1, . . . , x8)

given by

r(x1, . . . , x8) = β0 + β1x1 + · · ·+ β8x8 + β9

√
x8.

If V (x1, . . . , x8) is the variance of an error term when the values of the design variables

138

0 20 40 60 80

−
20

−
10

0
10

20
30

predicted values

re
si

du
al

s

Figure 5.4: Residuals from homoscedastic linear model fitted to the civil engineering data.

are x1, . . . , x8, then we take

V (x1, . . . , x8) = exp(a0 + a1r(x1, . . . , x8)),

where a0 and a1 are unknown parameters and when a1 = 0 we obtain the homoscedastic

model.

Under the null model, the MLEs for the error variance and slope parameters are easily

obtained for the homoscedastic model using ordinary least squares regression. As for the

heteroscedastic model, the parameters a0, a1, and β are determined through maximization

of the log-likelihood function for the weighted least squares regression model. Using

training sample sizes m = 100, 200, 300, 400, and 500 and N = 200 random splits we

compute the CVWE value from the civil engineering data. The resulting median and

quartiles of the 200 CVWE values at each training set size are in the top panel of Figure

139

5.5. Certainly there appears to be strong evidence in favor of the heteroscedastic model.

While the interquartile range is very large (and extends below 0) for m = 100, any other

choice of m results in overwhelming evidence for non-constant variance. To choose m,

we employ a calibration technique where we randomly sample 1,000 data sets (each of

size 1030) from the fitted homoscedastic linear model. For each of the 1,000 data sets, we

compute the CVWE values at the same five training set sizes and N = 50 random splits.

The resulting medians and quartiles from the null data are provided in the bottom panel

of Figure 5.5. Based on our recommendations for choosing m when the smaller of two

nested models is true, m = 200 is a suitable choice here. If the homoscedastic model were

indeed the true model, then it would be extremely unlikely to see the median CVWE value

that we observed when m = 200.

5.6 Summary and Conclusions

In order to compare two parametric models with a Bayes factor, using cross-validation

Bayes factors proves to be a very simple and intuitive approach that also has excellent

large sample properties. The methodology in Section 5.2 is straightforward, but contains

some subtle yet important details. First, by selecting the models from outside the data

upon which we evaluate the Bayes factor, the likelihood ratio is a valid Bayes factor.

Without the data splitting, the classical likelihood ratio would be inconsistent as a Bayes

factor. Also, while we can use a likelihood ratio test from the frequentist perspective for

non-nested models, there are a few philosophical problems that arise. For instance, we

may need to arbitrarily choose which of our two models is the null model and the entire

formulation of the test will depend on this choice. Also, the nice result of Wilks (1938) will

no longer apply and thus the asymptotic distribution of the likelihood ratio will no longer

be χ2. However, since the likelihood ratio in the parametric CVBF methodology truly is

a Bayes factor, we can apply Bayesian hypothesis testing methods which easily handle

140

●
●

●
●

●

100 200 300 400 500

0
20

40

training set size

C
V

W
E

●

●
● ● ●

100 200 300 400 500

−
25

−
10

0

training set size

C
V

W
E

Figure 5.5: At each training set size, the median and quartiles for the CVWE values from
the observed civil engineering data based on 200 random splits (top panel) and for the
1,000 data sets from the estimated homoscedastic model with 50 splits (bottom panel) are
provided.

141

these difficulties. Lastly, instead of formulating proper prior distributions and numerically

integrating the marginal likelihoods, we only need to estimate unknown parameters from

the training data and evaluate the likelihood function on the validation data.

In Section 5.3, we provided the conditions required for the parametric CVBF method

to be consistent at an exponential rate for both nested and non-nested models, regardless

of which model is correct. This is superior to typical Bayes factors which often converge

at a slower rate when the smaller of two nested models is true. In order to use the data

splitting technique, we must determine m and N . However, the conditions in Theorems

5.1-5.3 give us some guidance for choosing the number and form of the random splits N

and how to select m using calibration.

The simulations in Section 5.4 and the data analysis in Section 5.5 really illustrate the

superiority of the parametric CVBF method to its frequentist and Bayesian counterparts.

First, the parametric CVBF method makes the difficult Bayesian problem of testing mul-

tivariate normality versus skew-normality extremely easy in any dimension. Next, in the

simple linear regression setting, the significance level of the classical t-test for the slope

parameter must tend to 0 as n → ∞ for it to agree with the parametric CVBF method.

Also, we see the far superior convergence and Type I error rates of the parametric CVBF

compared to the traditional Bayes factor approach. Finally, in the real data analysis we see

how useful the parametric CVBF method is in testing for heteroscedasticity in a linear re-

gression model. There are frequentist tests for this same problem, i.e. Breusch and Pagan

(1979), but they suffer from the same significance level and Type I error rate problems of

frequentist testing as n→∞.

142

6. SUMMARY AND FUTURE WORK

The next natural course of action is to combine the kernel and parametric CVBF meth-

ods into a new hybrid approach for goodness-of-fit testing. In the kernel CVBF method,

we use the training data to fit the kernel model and then compute the marginal likelihood

by integrating over the smoothing parameter space. Suppose that instead of going through

the formal Bayesian approach to find the marginal likelihood, we determine the optimal

smoothing parameter for the kernel density estimate on the training data and consider that

our simple model to use as the alternative model. In essence, we use the methodology

from the parametric CVBF method and instead of having two parametric models, we have

a parametric null and a nonparametric alternative. On the training data, we determine the

nonparametric model that best fits the data as well as the MLEs for the parametric model.

Those become the two simple models from which we can compute the likelihood ratio on

the validation data.

By considering this hybrid approach, we may be able to combine the computational

simplicity of the parametric CVBF approach with more sophisticated nonparametric den-

sity estimation techniques. Take for instance the full bandwidth matrix version of the

multivariate kernel density estimate. We saw just how complicated the evaluation of the

likelihood can be even in only two dimensions. Now, for testing multivariate normality, the

hybrid methodology would be as follows. First, form the training and validation data sets

XT and XV , respectively by randomly splitting the data. Under the parametric normal

model fd(·|µ,Σ), compute µ̂ = m−1
∑m

i=1Xi and Σ̂ = m−1
∑m

i=1[Xi− µ̂][Xi− µ̂]T from

the training data. As for the nonparametric kernel model f̂d(·|H), determine the optimal

bandwidth matrix Hopt using Zhang et al. (2006) on the training data. Now, we have our

143

two simple models for which we can compute the Bayes factor (likelihood ratio) given by

BFm,1 =

∏n
j=m+1 f̂d(Xj|Hopt,X

T)∏n
j=m+1 fd(Xj|µ̂, Σ̂)

.

Now, we avoid the problem of maximization and numerical integration over the con-

strained space of symmetric positive definite matrices. Just in this simple example, the

hybrid approach has great potential in terms of computational simplicity.

Another advantage to using the hybrid CVBF is we can adopt more sophisticated den-

sity estimation techniques that are both faster and provide more accurate representations

of the true density compared to the simple kernel density estimate. In Chapter 4, we

only considered the multivariate kernel density estimate with a single smoothing matrix

to make finding the prior distribution easy and minimize the number of unknown param-

eters. However, provided that the training data has a sufficient number of observations

to fit the nonparametric model of our choosing, we can essentially use any density esti-

mation technique as our alternative model. One possible simple extension would be to

consider adaptive or variable bandwidth kernel density estimates (Breiman et al. (1977),

Silverman (1986), and Terrell and Scott (1992)). This would be a first step toward better

estimation of the density in regions with few observations. For further improvement on the

kernel density estimate we could consider the fastKDE method of O’Brien et al. (2016)

which represents the kernel density estimate as the product of the empirical characteristic

function and the inverse Fourier transform of the kernel. We could also take a method

from machine learning called BoostKDE (Di Marzio and Taylor, 2005) which is another

iterative procedure that begins with the multivariate kernel density estimate as the initial

estimate, updates the weights for each data vector (originally wi = 1/n), and then multi-

plies (and renormalizes) the M estimates. Certainly, these extensions of the basic kernel

density estimate would be far too complicated to use in the kernel CVBF method for a

144

variety of reasons, all of which no longer exist in the hybrid approach.

We can also consider density estimation techniques that are not kernel methods (see

Izenman (1991) for a brief overview). In the univariate case, we could use any orthogonal

series or basis expansion method such as wavelets, B-splines, Fourier series, or polyno-

mials as our nonparametric estimate. For a cursory look at all of these expansions see

Ramsay and Silverman (2005). For any dimension we could let the the alternative model

be a finite mixture of normal distributions. The mixing proportion, mean vector, and co-

variance matrix for each of the component normal distributions can be determined using

the Expectation-Maximization algorithm on the training data. Another possible method is

projection pursuit density estimation described by Friedman et al. (1984) which is an it-

erative updating procedure beginning with a proposed parametric density and multiplying

it by a series of univariate kernel estimates. A very interesting approach specific to find-

ing a way around the curse of dimensionality was proposed by Nagler and Czado (2016)

who examine simplified vine copulas noting that the joint d-dimensional density can be

written as a decomposition into marginal densities and bivariate copula densities. The

authors argue that under certain conditions, their density estimate achieves a rate of con-

vergence equal to the rate of a two-dimensional estimator regardless of d, ergo the curse

of dimensionality ceases to exist.

One final method that we considered in the kernel CVBF method for an improvement

over the typical kernel density estimate is a semiparametric one first created by Hjort and

Jones (1996) and then extended to multivariate data by Jarnicka (2009). The Hjort-Jones

(HJ) estimator is very simple intuitively and is written as,

f̂(x) =
finit(x)f̃(x)

(Kd ∗ finit)(x)
,

where f̃(·) is the multivariate kernel density estimate, finit(·) is a parametric distribution,

145

and ∗ denotes convolution. This estimate can be thought of as a nonparametric start with

a parametric correction (or vice versa). Regardless if the parametric model finit fits the

data well, the resulting estimate will still be reasonable. This is due to the property that

as h → ∞, f̂ → finit and as h → 0, f̂ → f̃ . Therefore, if finit is completely wrong, the

selected bandwidth will be small, resulting in a near fully nonparametric estimate. If the

parametric model is correct, the bandwidth will be extremely large and the final estimate

will be fully parametric.

One very concerning detail in using the HJ estimator in this hybrid approach occurs

when the null model is true. By selecting the null model to be finit, under the null, the like-

lihood ratio may be 1 since the MLEs are computed from the same training data. Certainly,

this would prove to be worthless as a Bayes factor, but perhaps certain modifications could

be used. For instance, let finit be a different parametric model that may be plausible. This

would be the ultimate hybrid CVBF approach since we have two competing parametric

models that we can simultaneously test along with a nonparametric model.

Of course this list of techniques is by no means an exhaustive list of methods for

multivariate density estimation that we could apply to this new hybrid CVBF approach.

However, it does show the vast number of research avenues that we can take in the fu-

ture. Certainly some of these methods may not prove worthwhile due to complexity, con-

sistency, convergence rates, formulation, etc. But we can imagine that one of the more

sophisticated methods for multivariate density estimations will help alleviate the curse of

dimensionality allowing us to apply the CVBF method to higher dimensional data beyond

d = 10. The combination of the kernel and parametric CVBF methods appears to be a

very fruitful area of further research.

146

REFERENCES

Aitkin, M. (1991). Posterior Bayes factors. Journal of the Royal Statistical Society Series

B (Methodological) 53(1), 111–142.

Andrews, D. and A. Herzberg (1985). Data: a collection of problems from many fields

for the student and research worker. Springer Series in Statistics. New York: Springer-

Verlag.

Azzalini, A. and A. Capitanio (1998, February). Statistical applications of the multivariate

skew-normal distribution. arXiv:0911.2093.

Basu, S. and S. Chib (2003). Marginal likelihood and Bayes factors for Dirichlet process

mixture models. Journal of the American Statistical Association 98, 224–235.

Berger, J. and M. Delampady (1987). Testing precise hypotheses. Statistical Science 2(3),

317–335.

Berger, J. and A. Guglielmi (2001). Bayesian and conditional frequentist testing of a

parametric model versus nonparametric alternatives. Journal of the American Statistical

Association 96(453), 174–184.

Berger, J. and L. Perrichi (1996). The intrinsic Bayes factor for model selection and

prediction. Journal of the American Statistical Association 91(433), 109–122.

Berger, J. and T. Sellke (1987). Testing a point null hypothesis: The irreconcilability of P

values and evidence. Journal of the American Statistical Association 82(397), 112–122.

Bhattacharya, A. and J. D. Hart (2016, August). Partitioned cross-validation for divide-

and-conquer density estimation. arXiv:1609.00065.

Biau, G. and A. Mas (2010, March). PCA-kernel estimation. arXiv:1003.5089.

Breiman, L., W. Meisel, and E. Purcell (1977). Variable kernel estimates of multivariate

densities. Technometrics 19(2), 135–144.

147

Breusch, T. and A. Pagan (1979). A simple test for heteroscedasticity and random coeffi-

cient variation. Econometrica 47(5), 1287–1294.

Carota, C. and A. Parmigiani (1996). On Bayes factors for nonparametric alternatives.

Bayesian statistics 5, 507–511.

Chang, X., S. Lin, and Y. Wang (2016, March). Divide and conquer local average regres-

sion. arXiv:1601.06239.

Chib, S. and T. Kuffner (2016, July). Bayes factor consistency. arXiv:1607.00292.

Chiu, S. and K. Liu (2009). Generalized Cramér-von Mises goodness-of-fit tests for mul-

tivariate distributions. Computational Statistics and Data Analysis 53(11), 3817–3834.

Conigliani, C., J. Castro, and A. O’Hagan (2000). Bayesian assessment of goodness of fit

against nonparametric alternatives. The Canadian Journal of Statistics 28(2), 327–342.

D’Agostino, R. and M. Stephens (1986). Goodness-of-fit techniques, Volume 68 of Statis-

tics: textbooks and monographs. New York: Marcel Dekker.

Davidson, L. A., D. V. Nguyen, R. M. Hokanson, E. S. Callaway, R. B. Isett, N. D. Turner,

E. R. Dougherty, N. Wang, J. R. Lupton, R. J. Carroll, and R. S. Chapkin (2004).

Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during

colon cancer initiation and progression in the rat. Cancer Research 64, 6797–6804.

Davis, P. and P. Rabinowitz (2007). Methods of Numerical Integration (Second ed.). Mi-

neola, N.Y.: Dover Publications.

de Bruijn, N. (1961). Asymptotic methods in analysis (Second ed.). Bibliotheca math-

ematica, a series of monographs on pure and applied mathematics: v. 4. New York:

Interscience Publishers.

Delampady, M. and J. Berger (1990). Lower bounds on Bayes factors for multinomial

distributions, with application to chi-squared tests of fit. The Annals of Statistics 18(3),

1295–1316.

Di Marzio, M. and C. Taylor (2005). On boosting kernel density methods for multivariate

148

data: density estimation and classification. Statistical Methods & Applications 14, 163–

178.

Duong, T. and M. Hazelton (2003). Plug-in bandwidth matrices for bivariate kernel density

estimation. Journal of Nonparametric Statistics 15(1), 17–30.

Duong, T. and M. Hazelton (2005). Cross-validation bandwidth matrices for multivariate

kernel density estimation. Scandinavian Journal of Statistics 32, 485–506.

Evans, M. and T. Swartz (1995). Methods for approximating integrals in statistics with

special emphasis on Bayesian integration problems. Statistical Science 10(3), 254–272.

Fodor, I. (2002). A survey of dimension reduction techniques. Technical report, Lawrence

Livermore National Lab.

Friedman, J., W. Stuetzle, and A. Schroeder (1984). Projection pursuit density estimation.

Journal of the American Statistical Association 79(387), 599–608.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (Second ed.). Boston:

Academic Press.

Geisser, S. and W. Eddy (1979). A predictive approach to model selection. Journal of the

American Statistical Association 74(365), 153–160.

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. H. Rubin (2014). Bayesian

data analysis (Third ed.). Texts in Statistical Science. Boca Raton: CRC Press.

Ghosh, J. and R. Ramamoorthi (2003). Bayesian Nonparametrics. Springer Series in

Statistics. New York: Springer-Verlag.

Hall, P. (1987). On Kullback-Leibler loss and density estimation. Annals of Statis-

tics 15(4), 1491–1519.

Hall, P. and J. Marron (1987). Extent to which least-squares cross-validation minimises

integrated squared error in nonparametric density estimation. Probability Theory and

Related Fields 74, 567–581.

Härdle, W. and D. Scott (1992). Smoothing by weighted average of rounded points. Com-

149

putational Statistics 7, 97–128.

Hart, J. and T. Choi (2016). Nonparametric goodness of fit via cross-validated Bayes

factors. Bayesian Analysis 12, 653–677.

Hawkins, D. (1981). A new test for multivariate normality and homoscedasticity. Techno-

metrics 23(1), 105–110.

Hjort, N. L. and M. Jones (1996). Locally parametric nonparametric density estimation.

The Annals of Statistics 24(4), 1619–1647.

Hoff, P. (2009). A First Course in Bayesian Statistical Methods. Springer Texts in Statis-

tics. New York: Springer Science + Business Media.

Huber-Carol, C., N. Balakrishnan, M. Nikulin, and M. Mesbah (Eds.) (2002). Goodness-

of-fit tests and model validity. Statistics for Industry and Technology. New York:

Springer Science + Business Media.

Izenman, A. (1991). Recent developments in nonparametric density estimation. Journal

of the American Statistical Association 86(413), 205–224.

Jarnicka, J. (2009). Multivariate kernel density estimation with a parametric support.

Opuscula Mathematica 29(1), 41–55.

Jeffreys, H. (1961). Theory of Probability (Third ed.). Oxford: Clarenden Press.

Johnson, V. (2013). Revised standards for statistical evidence. Proceedings of the National

Academy of Sciences of the United States of America 110(48), 19313–19317.

Johnson, V. and D. Rossell (2010). On the use of non-local prior densities in Bayesian

hypothesis tests. Journal of the Royal Statistical Society B 72(2), 143–170.

Justel, A., D. Peña, and R. Zamar (1997). A multivariate Kolmogorov-Smirnov test of

goodness of fit. Statistics and Probability Letters 35(3), 251–259.

Kass, R. and A. Raftery (1995). Bayes factors. Journal of the American Statistical Asso-

ciation 90(430), 773–795.

Korkmaz, S., D. Goksuluk, and G. Zararsiz (2016). MVN: An R package for assessing

150

multivariate normality. R Journal 6(2), 151–162.

Kullback, S. and R. Leibler (1951). On information and sufficiency. The Annals of Math-

ematical Statistics 22(1), 79–86.

Lavine, M. and M. Schervish (1999). Bayes factors: What they are and what they are not.

The American Statistician 53(2), 119–122.

Lehmann, E. and J. Romano (2005). Testing Statistical Hypotheses (Third ed.). Springer

Texts in Statistics. New York: Springer Science + Business Media.

Li, R., D. K. J. Lin, and B. Li (2013). Statistical inference in massive data sets. Applied

Stochastic Models in Business and Industry 29(5), 399–409.

Lichman, M. (2013). UCI machine learning repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.

Lindley, D. V. (1957). A statistical paradox. Biometrika 44, 187–192.

Liseo, B. and A. Parisi (2013). Bayesian inference for the multivariate skew-normal

model: A population Monte Carlo approach. Computational Statistics and Data Anal-

ysis 63, 125–138.

Lumley, T. (2017). survey: analysis of complex survey samples. R package version 3.32.

Malkovich, J. and A. Afifi (1973). On tests for multivariate normality. Journal of the

American Statistical Association 68(341), 176–179.

Mardia, K. (1970). Measures of multivariate skewness and kurtosis with applications.

Biometrika 57(3), 519–530.

McVinish, R., J. Rousseau, and K. Mengersen (2009). Bayesian goodness of fit testing

with mixtures of triangular distributions. Scandinavian Journal of Statistics 36, 337–

354.

Mecklin, C. and D. Mundfrom (2004). An appraisal and bibliography of tests for multi-

variate normality. International Statistical Review 72(1), 123–138.

Monahan, J. (2008). A Primer on Linear Models. Texts in Statistical Science. Boca Raton:

151

CRC Press.

Müller, P. and F. Quintana (2004). Nonparametric bayesian data analysis. Statistical

Science 19(1), 95–110.

Müller, P., F. Quintana, A. Jara, and T. Hanson (2015). Bayesian nonparametric data

analysis. Springer Series in Statistics. Switzerland: Springer International Publishing.

Nadarajah, S. and S. Kotz (2005). Matematical properties of the multivariate t distribution.

Acta Applicandae Mathematica 89(1-3), 53–84.

Nagler, T. and C. Czado (2016, May). Evading the curse of dimensionality in nonpara-

metric density estimation with simplified vine copulas. arXiv:1503.03305.

Neyman, J. (1937). "smooth" tests for goodness of fit. Scandinavian Actuarial Jour-

nal 1937(3-4), 149–199.

O’Brien, T., K. Kashinath, N. Cavanaugh, and J. Collins, W.D. O’Brien (2016). A fast and

objective multidimensional kernel density estimation method: fastKDE. Computational

Statistics and Data Analysis 101, 148–160.

O’Hagan, A. (1991). Discussion on "posterior bayes factors," by M. Aitkin. Journal of

the Royal Statistical Society Series B (Methodological) 53(1), 136.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the Royal

Statistical Society B (Methodological) 57(1), 99–138.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable

in the case of a correlated system of variables is such that it can be reasonably supposed

to have arisen from random sampling. Philosophical Magazine Series 5 50, 157–175.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing.

Ramsay, J. and B. Silverman (2005). Functional Data Analysis. Springer Series in Statis-

tics. New York: Springer Science + Business Media.

Raykar, V., R. Duraiswami, and L. Zhao (2010). Fast computation of kernel estimators.

152

Journal of Computational and Graphical Statistics 19(1), 205–220.

Rayner, J. and D. Best (1989). Smooth Tests of Goodness of Fit. New York: Oxford

University Press.

Reiersøl, O. (1950). Identifiability of a linear relation between variables which are subject

to error. Econometrica 18(4), 375–389.

Robert, C. and G. Casella (2004). Monte Carlo statistical methods (Second ed.). Springer

Texts in Statistics. New York: Springer Science + Business Media.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathe-

matical Statistics 23(3), 470–473.

Royston, J. (1982). An extension of Shapiro and Wilk’s w test for normality in large

samples. Journal of the Royal Statistical Society Series C 31(2), 115–124.

Ruli, E., N. Sartori, and L. Venture (2016, December). Improved Laplace approximation

for marginal likelihoods. arXiv:1502.06440.

Rust, R. and D. Schmittlein (1985). A Bayesian cross-validated likelihood method for

comparing alternative specifications of quantitative models. Markeing Science 4, 20–

40.

Sain, S., K. Baggerly, and D. Scott (1994). Cross-validation of multivariate densities.

Journal of the American Statistical Association 89(427), 807–817.

Scott, D. (1992). Multivarate density estimation: theory, practice, and visualization. Wi-

ley Series in Probability and Mathematical Statistics. New York: New York : John Wiley

& Sons.

Scott, D. and J. Thompson (1983). Probability density estimation in higher dimensions. In

J. Gentle (Ed.), Proceedings of the Fifteenth Interface of Computer Science and Statis-

tics, pp. 173–179.

Scott, D. and M. Wand (1991). Feasibility of multivariate density estimation.

Biometrika 78(1), 197–205.

153

Silverman, B. (1986). Density estimation for statistics and data analysis (1st ed.). Num-

ber 26 in Monographs on Statistics and Applied Probability. London: Chapman & Hall.

Simonoff, J. (1996). Smoothing methods in statistics. Springer Series in Statistics. New

York: Springer-Verlag.

Tang, Q. and R. Karunamuni (2016). Fast and accurate computation for kernel estimators.

Computational Statistics and Data Analysis 94, 49–62.

Terrell, G. and D. W. Scott (1992). Variable kernel density estimation. The Annals of

Statistics 20(3), 1236–1265.

Thode, H. (2002). Testing for normality, Volume 164 of Statistics: textbooks and mono-

graphs. New York: Marcel Dekker.

Tokdar, S. and R. Martin (2013). Bayesian test of normality versus a Dirichlet process

mixture alternative. arXiv:1108.2883.

van der Laan, M., S. Dudoit, and S. Keleş (2004). Asymptotic optimality of likelihood-

based cross-validation. Statistical Applications in Genetics and Molecular Biology 3,

online publication.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Prob-

abilistic Mathematics. New York: Cambridge University Press.

Verdinelli, I. and L. Wasserman (1998). Bayesian goodness-of-fit testing using infinite-

dimensional exponential families. The Annals of Statistics 26(4), 1215–1241.

Villasenor Alva, J. and E. González Estrada (2009). A generalization of Shapiro-Wilk’s

test for multivariate normality. Communication in Statistics - Theory and Meth-

ods 38(11), 1870–1883.

Wand, M. (1994). Fast computation of multivariate kernel estimators. Journal of Compu-

tational and Graphical Statistics 3(4), 433–445.

Wand, M. and M. Jones (1993). Comparison of smoothing parameterizations in bivariate

kernel density estimation. Journal of the American Statistical Association 88(422),

154

520–528.

Wand, M. and M. Jones (1994). Multivariate plug-in bandwidth selection. Computational

Statistics 9, 97–116.

Wand, M. and M. Jones (1995). Kernel Smoothing (First ed.). Number 60 in Monographs

on Statistics and Applied Probability. New York: Chapman & Hall.

Wasserman, L. (2006). All of nonparametric statistics. Springer Texts in Statistics. New

York: Springer.

Wilks, S. (1938). The large sample distribution of the likelihood ratio for testing composite

hypotheses. Annals of Mathematical Statistics 19, 60–62.

Yeh, I.-C. (1998). Modeling of strength of high-performance concrete using artificial

neural networks. Cement and Concrete Research 28(12), 1797–1808.

Zhang, X., M. King, and R. Hyndman (2006). A Bayesian approach to bandwidth se-

lection for multivariate kernel density estimation. Computational Statistics and Data

Analysis 50, 3009–3031.

155

APPENDIX

Coordinate 1

C
oo

rd
in

at
e

2

 0.01

 0.02

 0
.0

3

 0.04

 0
.0

5 0.06

 0
.0

7 0.08

 0
.0

9

 0
.1

 0.17

 0.2

 0.22

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
40

−
20

training set proportion

C
V

W
E

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

−
40

−
20

training set proportion

C
V

W
E

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

−
40

−
20

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.1: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for uncorrelated normal data.

156

Coordinate 1

C
oo

rd
in

at
e

2

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0
.0

35

 0
.0

4

 0.045

 0.05

 0
.0

55
 0
.0

6

 0.1

 0.12

 0.125

 0
.1

4
 0

.1
5

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
60

−
40

−
20

0

training set proportion
C

V
W

E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
60

−
40

−
20

0

training set proportion
C

V
W

E

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
60

−
40

−
20

0

training set proportion
C

V
W

E

●

●

●

Scalar
Diagonal
Full

Figure A.2: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for correlated normal data.

Coordinate 1

C
oo

rd
in

at
e

2

 0.01

 0.02
 0.03

 0.04

 0.05

 0.06

 0
.0

7

 0
.0

8

 0.11

 0.18

 0
.2

1

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
15

−
5

5
15

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
15

−
5

5
15

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
15

−
5

5
15

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.3: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for skewed data.

157

Coordinate 1

C
oo

rd
in

at
e

2

 0.002

 0.004

 0.006

 0.
00

8

 0
.0

1

 0.012

 0.014

 0.016

 0.018

 0
.0

2

 0
.0

26

 0.042

 0.05

−4 0 2 4

−
4

−
2

0
2

4

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
5

15

training set proportion
C

V
W

E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
5

15

training set proportion
C

V
W

E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
5

15

training set proportion
C

V
W

E

●

●

●

Scalar
Diagonal
Full

Figure A.4: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for kurtotic data.

Coordinate 1

C
oo

rd
in

at
e

2 0.01

 0.02 0.03

 0.04 0.05

 0
.0

6

 0.07

 0.08 0.09

 0.1

 0
.1

1

 0.13

 0.13

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
10

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
10

training set proportion

C
V

W
E

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
20

−
10

0
10

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.5: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (I) data.

158

Coordinate 1

C
oo

rd
in

at
e

2

 0.01

 0.01 0.02

 0.02

 0.03

 0.03 0.04

 0
.0

4

 0
.0

5

 0
.0

5

 0.06

 0.06

 0.07

 0.08

−3 −1 1 2 3

−
3

−
1

0
1

2
3

● ●

●

●

●

0.1 0.2 0.3 0.4 0.5

20
0

30
0

40
0

training set proportion
C

V
W

E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

20
0

30
0

40
0

training set proportion
C

V
W

E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

20
0

30
0

40
0

training set proportion
C

V
W

E

●

●

●

Scalar
Diagonal
Full

Figure A.6: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (II) data.

Coordinate 1

C
oo

rd
in

at
e

2

 0.005

 0.01

 0.015

 0.02

 0.02

 0.025

 0.025

 0
.0

3

 0
.0

3

 0
.0

35

 0
.0

35

 0
.0

4

 0
.0

4

 0.065

−4 −2 0 2 4

−
4

−
2

0
2

4

●

● ●

●

●

0.1 0.2 0.3 0.4 0.5

30
40

50
60

training set proportion

C
V

W
E

●

● ●

●

●

0.1 0.2 0.3 0.4 0.5

30
40

50
60

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

30
40

50
60

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.7: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (III) data.

159

Coordinate 1

C
oo

rd
in

at
e

2

 0.01

 0.02

 0.02

 0.03

 0.03

 0.04

 0.04

 0.05

 0.05

 0
.0

6

 0.06

 0
.0

7

 0
.0

7

 0
.0

8

 0
.0

8

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

70
90

11
0

13
0

training set proportion
C

V
W

E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

70
90

11
0

13
0

training set proportion
C

V
W

E

● ●

●

●

●

0.1 0.2 0.3 0.4 0.5

70
90

11
0

13
0

training set proportion
C

V
W

E

●

●

●

Scalar
Diagonal
Full

Figure A.8: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for bimodal (IV) data.

Coordinate 1

C
oo

rd
in

at
e

2

 0.005

 0.01

 0.015

 0.02

 0
.0

25

 0.025

 0
.0

3

 0.03

 0.035

 0
.0

4

 0.04

 0
.0

45
 0.07

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●
●

●

●

0.1 0.2 0.3 0.4 0.5

60
80

10
0

12
0

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

60
80

10
0

12
0

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

60
80

10
0

12
0

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.9: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (I) data.

160

Coordinate 1

C
oo

rd
in

at
e

2

 0.005

 0.01

 0.015

 0.02

 0.025 0.03
 0.035

 0.04

 0
.0

45

 0
.0

5

 0.065

 0.07

 0.075

 0.11

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20

training set proportion
C

V
W

E

●

●

● ● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20

training set proportion
C

V
W

E

●

●

● ● ●

0.1 0.2 0.3 0.4 0.5

−
10

0
10

20

training set proportion
C

V
W

E

●

●

●

Scalar
Diagonal
Full

Figure A.10: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (II) data.

Coordinate 1

C
oo

rd
in

at
e

2

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.
08

 0
.0

9
 0

.1

 0.1 0
.1

1

−3 −1 1 2 3

−
3

−
1

0
1

2
3

●

●
●

●

●

0.1 0.2 0.3 0.4 0.5

50
60

70
80

90

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

50
60

70
80

90

training set proportion

C
V

W
E

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

50
60

70
80

90

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.11: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for trimodal (III) data.

161

Coordinate 1

C
oo

rd
in

at
e

2

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0
.0

4
 0

.0
45

 0
.0

55

 0.065

−4 −2 0 2 4

−
4

−
2

0
2

4

●

●

● ●
●

0.1 0.2 0.3 0.4 0.5

−
5

5
15

25

training set proportion

C
V

W
E

●

●

● ●
●

0.1 0.2 0.3 0.4 0.5

−
5

5
15

25

training set proportion

C
V

W
E

●

●

● ●
●

0.1 0.2 0.3 0.4 0.5

−
5

5
15

25

training set proportion

C
V

W
E

●

●

●

Scalar
Diagonal
Full

Figure A.12: Testing bivariate normality using CVWEK(S), CVWEK(D), and
CVWEK(F) for quadrimodal data.

162

