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ABSTRACT

Online Healthcare Forums (OHFs) have become increasingly popular for patients to

share their health-related experiences. The healthcare-related texts posted in OHFs could

help doctors and patients better understand specific diseases and the situations of other

patients. To extract the meaningful information of a post, a common way is to classify

the sentences into several pre-defined categories of different semantics. However, the un-

structured form of online posts brings challenges to existing classification algorithms. In

addition, though many sophisticated classification models such as deep neural networks

may have good predictive power, it is hard to interpret the models and the prediction re-

sults, which is, however, critical in healthcare applications. To tackle the challenges above,

we propose an effective and interpretable OHF post classification framework. Specifi-

cally, we classify sentences into three classes: Medication, Symptom, and Background.

Each sentence is projected into an interpretable feature space. A forest-based model is

developed for categorizing OHF posts. An interpretation method is also developed, where

the decision rules can be explicitly extracted to gain an insight of useful information in

texts. Experiments and an application system will be implemented based on the proposed

framework.
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1. INTRODUCTION∗

1.1 Background

The past few years have witnessed the increasing popularity of online health forums

(OHFs), such as WebMD Discussions, Patient, etc., as communication platforms among

patients. According to a survey by PwC in 2012, 54% of 1060 participants are comfort-

able with their doctors getting information related to their health conditions from online

physician communities [1]. OHFs can be used for patients to ask for suggestions and share

experiences. The abundant user-generated content related to healthcare on the OHFs could

provide insightful information to the other patients, medical doctors, and decision makers

to promote the understanding about diseases and the health conditions of patients.

To extract insightful information from OHF posts, a commonly adopted strategy is to

split posts into sentences and classify each sentence into different categories according

to their semantical meanings [2][3]. For example, Figure 1.1 shows a post from an OHF

called patient.info. We highlight the sentences about symptoms in orange, and the one

about medication in violet. The former ones provide the information about the user’s

symptoms, reflected by the terms “heartburn”, “acid reflux”, “abdominal pain” and “IBS”.

The latter one tells user’s medication treatment, where the term “nexium” presents the

medication for the disease. These pieces of information can help other users to gain a

more comprehensive understanding of the disease.

However, it is a challenging task to effectively analyze the expressions in online health

forums. First, the user-generated content in OHFs is usually unstructured and contains

∗Reprinted with permission from “An Interpretable Classification Framework for Information Extraction
from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare Engineering, Volume 2017
(2017), Copyright 2017 by Jun Gao et al.
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Figure 1.1: An example of online health forum post

background information that is relatively less important to analyze [3]. The irregularity

and noises in data impede us from directly applying existing classification models to an-

alyze posts automatically. A more sophisticated classification framework is needed for

processing unstructured data in OHFs, in order to extract useful patterns (e.g., terms, text

sequences) for accurate categorization. Second, when categorizing post sentences into

different classes, it is difficult to make the tradeoff between classification accuracy and in-

terpretability [4][5]. In health related tasks, besides desirable classification performance,

human-understandable explanations for classification results are also crucial, because pa-

tients or doctors will not take the risk to trust the predictions they do not understand.

Complex models (e.g., deep neural networks, SVM) are accurate in classification, but they

do not directly provide the reasons for individual classification results. Simple models

such as linear classifiers and decision trees can provide interpretations along with classi-

fication outcomes, but usually they cannot achieve comparable performances as complex

models.

1.2 Contributions

In this paper, we propose an effective framework for analyzing OHF posts. We pro-

pose to develop a random forest model to classify the sentences into three categories, i.e.,

2



Medication, Symptom, and Background, in order to get an accurate understanding of the

role of each sentence in the overall expression of the health situation. Besides, human-

understandable interpretations for classification results are generated for the forest model.

To enable interpretation, the features involved in the classification task are designed in a

human understandable manner. Moreover, the contribution of features to a classification

instance can be explicitly measured by the decision rules constructed during training pro-

cess [6][7][8]. Specifically, we represent healthcare-related sentences with various seman-

tic features such as labeled sequential patterns (LSPs), UMLS semantic type features[3],

sentence-based and heuristic features. LSPs represent the frequent tag-based patterns in

texts. UMLS features indicate the existence terminologies defined by domain experts. In

this way, each unstructured sentence is mapped to the feature space which facilitates fur-

ther analysis. Also, word-based and heuristic information can also be used to enhance the

classification performance. The contributions of this paper are summarized as below:

• We propose a forest-based framework to deal with the healthcare-related text classi-

fication problem. Labeled sequential pattern features are involved in characterizing

the unstructured healthcare-related texts from both syntactic and semantic levels.

• We develop a method for constructing decision rules integrated from decision trees

in forest-based models to achieve model interpretability.

• The effectiveness and interpretability of our framework are demonstrated through

experiments on a real OHF dataset, where we analyze the interpretations provided

by our framework in detail.

1.3 Framework Overview

In this section, we will briefly introduce each module of our proposed framework (Fig-

ure 1.2) including data pre-processing, interpretable feature extraction, and forest-based

3
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Figure 1.2: An overview of the interpretable classification framework

models for classification and interpretation. We categorize each sentence of posts into one

of the three categories: Medication, Symptom, and Background. The definition of each

category is given as below.

• Medication: If a sentence contains information relevant to curing diseases, treat-

ing any medical conditions, relieving any symptoms of diseases, or preventing any

diseases, then we assign the sentence to the Medication category.

• Symptom: If a sentence contains any contents relevant to departures from normal

functioning or feelings of individuals, which may express the phenomenon affected

by diseases, we assign the sentence to the Symptom category.

• Background: If a sentence cannot be classified to Medication or Symptom category,

then we assign the sentence to Background category.

Given a sentence “I am taking 90 units Lantus twice a day” for classification, for

example, we will first convert it into an instance in a feature space through pre-processing

to identify the number term “90”, the drug term “Lantus”, the frequency term “twice a

day”, the context of each term, etc. Then we will use the forest-based model to classify

4



the sentence, along with the explanations based on the discriminative features identified

by the model.

1.3.1 Module 1: Pre-processing and Labeling

In this module, we split the collected online health community posts into sentences

and manually assign each sentence one label from the classes {Medication, Symptom,

Background}. Formally, let H be the healthcare-related natural language space, and L =

{Medication, Symptom, and Background} be the target label space. Suppose a collection

of N labeled sentences

S = {(si, li)|1 ≤ i ≤ N, si ∈ H, li ∈ L}

are available for model training and testing, si represents the original text of the i-th sen-

tence, and li represents the label of the i-th sentence. In other words, each sentence is

labeled as Medication, Symptom, or Background.

1.3.2 Module 2: Interpretable Features Extraction

In this module, we propose the feature extraction method f : H → RD to convert

healthcare-related sentences into instances in a D-dimensional numerical space, where D

is the number of features used to represent each sentence. In this way, we can represent

each unstructured sentence with a numerical vector, which facilitates model training and

testing. After that, the overall dataset is transformed to

X = f(S) = {(xi, li)|1 ≤ i ≤ N},

where S is the original labeled sentence dataset, N is the number of sentences, while

xi = (x1, x2, . . . , xD) is the resultant numerical instance represented byD features. These

5



features are also intuitive and insightful to help people better understand the sentences.

We will discuss this module in detail in Section 3.

1.3.3 Module 3: Forest-Based Models for Classification & Interpretation

In this module, the task is to train a model F : RD → L that can classify an instance

into a class from {Medication, Symptom, or Background} and interpret the sentences be-

longing to class Medication and Symptom. We mainly introduce building forest-based

models to classify and interpret the instances: (1) Random forests [9] are grown on the nu-

merical instances obtained from the feature engineering module, which can be interpreted

by the features of higher importance according to some criterion, e.g. Gini impurity. (2)

DPClass [7] is a method based on random forest models to extract discriminative combina-

tions of decision rules in the forest, which can be implemented by using forward selection

to choose the top combinations. This module will be discussed in detail in Section 4.

6



2. LITERATURE REVIEW∗

2.1 Medication Information Extraction

Previous medication information extraction research mainly focused on extracting med-

ication information from clinical notes and online healthcare-related texts. [22], by Patrick

et al., proposes to use conditional random fields and support vector machines to classify a

variety of sets of generated features based on the results of records pre-processed by a sen-

tence boundary detector and a tokenizer. Specifically, the approach is based on cascaded

classifiers, i.e. conditional random fields and support vector machines. The first classifier

is responsible for identifying named entities while the second is for classifying entity re-

lationships. [23], by Sirohi et al., proposes to use three sets of drug lexicons as sources

to conduct medication extraction. [24] by Xu et al. claims that using simple methods like

regular expressions is not effective enough to extract medication information in the free

texts from clinical notes. This paper proposes to adopts a variety of tags, including drug

lexicons, number tag, etc., to tag the corresponding terms in sentences and parse sentences

into structured forms by using a dynamic programming parsing method. [25] proposes an

unsupervised method to extract adverse drug reactions on the online health forums. This

paper adopts a probabilistic topic model to mine adverse drug reactions from OHF posts.

[26] proposes to mine drug-related adverse events on large-scale tweets by using support

vector machines.

∗Part of this section is reprinted with permission from “An Interpretable Classification Framework for
Information Extraction from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare
Engineering, Volume 2017 (2017), Copyright 2017 by Jun Gao et al.
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2.2 Sentence Classification

In terms of sentence classification, previous works mainly focus on classifying the sen-

tences. [3], by Sondhi et al., uses conditional random fields and support vector machines to

classify texts from online health forums and word-based features, semantic features, and

other heuristic features. The problem of this representation is that word-based features

have a huge dimension but the data are usually sparse, which introduces considerable

computation costs for feature selection and building models. [27], by Ding et al., proposes

to represent the texts using word features, local context features, and web context features.

In addition to the large and sparse data in word feature space, the web context features are

generated online during the training process by querying Google and collecting titles and

snippets, which could also introduce a significant amount of crawling and extracting com-

putations and increase the feature representation dimension. A method to represent the

texts in a space with low dimension is proposed in [10]. This method adopts the labeled

sequential patterns as features and achieves both decent performance and efficiency.

2.3 Model Interpretability

In addition to classifying healthcare-related texts, our work focuses on both classifying

and interpreting the online healthcare-related texts. The major challenges in healthcare-

related text classification and interpretation are how to represent the texts and how to

classify and interpret the data. In terms of modeling and enabling the interpretability, lasso

[21] is proposed to enhance both the performance and the interpretability of regression

models by tuning the parameter to shrink the features. Features with greater weights can be

considered as more important, which enables the interpretability of the regression models.

Tree-based and forest-based methods, e.g. CART [17] and random forest [9], are also

widely utilized to handle classifying and interpreting the data using the decision rules in

the trees.

8



3. EXTRACTING INTERPRETABLE FEATURES∗

Interpretable features play an essential role in enabling users to understand prediction

results. In this section, we discuss how to convert health-related sentences into instances

in numerical feature space composed of labeled sequential patterns, UMLS semantic type

features, sentence-based features, and heuristic features. The method of extracting labeled

sequential patterns is introduced in detail.

3.1 Labeled Sequential Patterns

In sentences classification, if we simply use bag of words to represent each sentence,

the overall data matrix will be huge and sparse, because there are a large number of terms,

and many terms only occur in few sentences about some specific diseases. It is undesirable

to use these raw terms to explain their correlations with sentence category as interpreta-

tions for classification results. The reason is that the raw terms do not explicitly specify

the semantics of words, or contain the structural information of sentences. Therefore, we

propose to use higher-level features to represent a sentence rather than words. We will rely

on these higher-level features to interpret the sentences classification results.

3.1.1 Labeled Sequence Mapping

We first extract labeled sequences as preliminary representations of sentences [10]. A

labeled sequence is in the form: Sequence→ Label, where Sequence is a sequence of tags

and Label is the class label. To convert a sentence into a sequence, we use the tags in

Table 3.1 to replace the words in the sentence. Words with similar semantics are mapped

to the same tag.

∗Reprinted with permission from “An Interpretable Classification Framework for Information Extraction
from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare Engineering, Volume 2017
(2017), Copyright 2017 by Jun Gao et al.
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For example, the medication sentence “I am taking 90 units Lantus twice a day", can be

converted into a sequence of tag-word pairs ((PRP, “I"), (VBP, “am"), (VBG, “taking"),

(CD, “90"), (NNS, “units"), (DRUG, “Lantus"), (FREQ, “twice a day")) and the entire

sentence is represented as a labeled sequence: (PRP, VBP, VBG, CD, NNS, DRUG, FREQ)

→ Medication.

Tag Description
CC, CD, DT, EX, ... Part-of-Speech Tags

DRUG Medications or Drug Terms
SYMP Symptom Terms
FREQ Frequency Phrases

Table 3.1: Tags introduction

Given a training set of labeled sentences S = {(s1, l1), . . . , (sn, ln)}, we convert each

pair into a labeled sequence pi → li by applying the method mentioned above so that we

can obtain the database D of labeled sequences. Our next goal is to mine the frequent

patterns in the labeled sequences from D and adopt these frequent patterns as features to

capture the characteristics of the healthcare-related sentences. This task can be divided

into two steps: (1) frequent sequential pattern mining and (2) building frequent labeled

sequential patterns.

3.1.2 Frequent Sequential Pattern Mining

We now focus on mining the frequent sequential patterns from database D. Before

that, we first define sequential pattern as below:

Definition 3.1.1. A sequential pattern is a sequence of tags which is a subsequence of one

or more Sequences in the database. The adjacent tags are not necessarily adjacent in the
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original Sequences, but their distance should be not greater than a threshold in the original

Sequences, which is set as 5 in experiments [10].

For example, given two labeled sequences (a, b, c, d, e, f)→ l1 and (a, c, d, e, g, h)→

l2 in the database D, (a, c, e) can be considered as a sequential pattern of both Sequences.

Note that a Sequence is different from a labeled sequence. The former only consists of

the sequence of tags, while the latter includes the mapping from sequence to the label, i.e.,

pi → li.

Definition 3.1.2. A frequent sequential pattern (FSP) is a sequential pattern p′ with sup(p′) ≥

µ, where µ is a customized threshold, and sup(p′) denotes the support of p′ in D, i.e.,

sup(p′) =
|{p|p contains p′, p ∈ D}|

|D|
, (3.1)

where p is any Sequence in the database D that contains p′. sup(p′) represents the per-

centage of the sequences in the database that contain p′, which shows the generality of p′

in the database D.

There are several algorithms to mine frequent patterns from a database. We select CM-

SPAM [11] to obtain FSPs fromD. The minimum threshold µ is customized by users such

that the resultant FSPs would be general enough.

3.1.3 Frequent Labeled Sequential Patterns

With FSPs available, the next step is to select a subset of promising FSPs called fre-

quent labeled sequential patterns (FLSPs) which are then used for classification.

Note that we have two classes Medication and Symptom, thus the FLSPs are different

for each class. Formally, an FLSP of label l is defined as the FSP with high confidence

with respect to l. Given a specific label l, the confidence of a frequent sequential pattern
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p′, denoted by conf(p′), is computed as:

conf(p′) =
|{p|p contains p′, p→ l ∈ D}|
|{p|p contains p′, p ∈ D}|

, (3.2)

which is the ratio of Sequences that contain the FSP p′ and are labeled l to the Sequences

containing the FSP p′. FSPs with high confidence show strong relations to the given label

l, since a large portion of those frequent sequential patterns are labeled as l.

We would also like to set the minimum support threshold to a small percentage in order

to include more FSPs. In our experiments, we set the minimum support to 5%. Besides,

the minimum confidence threshold might also not necessarily be set very large since we

would like to obtain more FLSPs by reducing some predictive ability of them in the early

stage. In the experiments, we set the minimum confidence to 85% [10]. Algorithm 1

shows the entire process of generating FLSPs from text data.

Finally, we obtain a set of FLSPs, which can be used as features to identify the relation-

ship between labels and patterns in sentences [12]. We use each frequent labeled sequential

pattern as a feature. For each instance in the training set, if its mapped Sequence contains

a FLSP, we will set the value of the corresponding feature entry to 1; otherwise 0.

3.2 UMLS Metathesaurus Semantic Types

In addition to FLSPs, we also use UMLS [13] Metathesaurus semantic types as fea-

tures. There are 133 UMLS Metathesaurus semantic types in total. By using the third-party

software MetaMap [14], we can map the sentence to these semantic types. Thus, for each

semantic type feature, we set the value to 1 if the sentence contains any phrases related to

the semantic type; otherwise 0.

Generally, for each sentence si in S, it is converted into xi which is a representation

vector of the sentence in the feature space of FLSPs and the UMLS semantic types. If si

contains any FLSPs or phrases related to UMLS semantic types, the value of the corre-
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Algorithm 1: Frequent Labeled Sequential Patterns Generation
Input : A collection of labeled sentences S, a minimum support threshold sup,

and a minimum confidence threshold conf
Output: A collection of FLSPs denoted as P
Labeled sequence database D := ∅;
for each sentence sample (si, li) in S do

Convert si into a sequence pi that consists of POS tags, DRUG, SYMP, and
FREQ;
lsi := pi → l;
D := D ∪ {lsi};

end
FSP set P ′ := CM-SPAM(D, sup) [11];
FLSP set P := ∅;
for each FSP p′ in P ′ do

if conf(p′) ≥ conf then
P := P ∪ {p′};

end
end
return P

sponding feature entry in xi is set to 1.

3.3 Sentence-Based Features

Sentence-based features are capable of representing the sentence in a direct way [3].

In this paper, we use the following sentence-based features to represent sentences.

Word-Based Features

Although word-based features such as bag-of-word representation usually suffer from the

curse of dimensionality, we still take them into account to compare the classification per-

formance because of their effectiveness [15]. Unigrams and bigrams can capture those

significant and frequent words or phrases related to a specific label. For example, it is

likely that a sentence is classified into medication category if the word “prescribe" occurs.

Each unigram or bigram corresponds a binary feature to indicate if a sentence contains this

feature or not.
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Morphological Features

Capitalized words and abbreviations can be good indicators of whether there are any medi-

cal terminologies in the sentence, which could be highly related to medication or symptom

sentences. We can use two binary features to indicate whether the sentence contains any

capitalized words or abbreviations, respectively.

3.4 Heuristic Features

In addition to all the features originated from the texts of the sentences, we can also

adopt useful side information of posts [3]. Specifically, a sentence written by the thread

creator is more likely to be symptom-related compared to the one written by the other

users, because thread creators tend to ask for help from other users by posting their own

conditions. Besides, the position of the post which a sentence is from can also indicate

the category, because the first post written by the thread creators are usually describing the

patients’ situations, while the latter posts tend to answer the potential questions that arise

in the first couple of posts. Thus, two binary features are considered to indicate whether a

sentence is written by the thread creator, and the position of the post which the sentence is

from, respectively.

In general, we can select different combinations of the features introduced in this sec-

tion to represent health-related sentences, and then build models to predict the categories

of sentences with interpretations.
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4. INTERPRETABLE CLASSIFICATION WITH FOREST-BASED MODELS∗

In this chapter, we first introduce the classification of health forum sentences using

a random forest model, and how to interpret the forest model with features of high im-

portance. Second, we introduce how to collect rules from decision trees in the forest to

construct a new pattern space [7], and achieve the interpretability by selecting the top

patterns.

4.1 Classification with Random Forests

A random forest consists of an ensemble of tree-based classifiers and calculates the

votes from the trees for the most popular class in classification problems [9]. The growth

of the ensemble is determined by the growth of each tree therein. The process of tree

growth is introduced as follows [16]:

1. SampleNT instances at random with replacement from the training set. The samples

will then be used to grow the tree model.

2. A subset of m features are selected from the total D features at random, where

m � D. The best split on the m features will be used to construct the tree nodes

such that the Gini impurity for the descendants will be less than that of the parent

node, using the method introduced in CART [17]. The value of m remains constant

during the forest growing process.

3. Each tree grows to the maximum size without pruning.

When growing a tree using the samples from the original training set, about one-third

∗Reprinted with permission from “An Interpretable Classification Framework for Information Extraction
from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare Engineering, Volume 2017
(2017), Copyright 2017 by Jun Gao et al.
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of the instances in the training set are left out of the samples selected at random. This out-

of-bag data will be an unbiased estimate of the classification accuracy for the currently

growing tree and also can be used to estimate features importance.

4.2 Interpretation with Discriminative Features

The classification mechanism of a random forest is explained through a set of decision

paths. To interpret random forest models, we propose to quantify the contributions of node

features, rank them according to their contributions, and find out the most discriminative

ones [6][18].

For a decision tree in the random forest, its decision function can be formulated as

below,

f(x) =
M∑

m=1

cmI(x, Rm), (4.1)

where M is the number of leaf nodes in the tree. cm denotes the criterion score, which

is a scalar in regression problems or a vector in classification problems, learned from the

training process. x is the input sample. Rm is the path from the root to the m-th leaf node.

I(·, ·) is an indicator function identifying whether x is run through Rm. As we are solving

a classification problem, cm and f(x) should be vectors whose sizes are the number of

the classes. The i-th value in the vector f(x) represents the criterion score of the instance

x being classified into the i-th class, which can be converted to a probability value by

normalization. In our problem of classification, an input instance x is classified into one

class from the classes {Medication, Symptom, Background} according to the maximum

probability specified by f(x) of the decision tree.

From another perspective, we can observe how a feature contributes to the criterion

score (i.e., Gini impurity or entropy) vector by calculating the score vector difference

between the current node and the next node in the path. The final prediction result along a

tree path is determined under the cumulative influences of nodes in the path. Therefore, a
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prediction can be defined as a sum of feature contributions plus a bias:

ft(x) =
D∑

k=1

FCt,k(x) + βt, (4.2)

where FCt,k(x) is the feature contribution vector from the k-th feature in the t-th tree for

an input vector x, D is the number of features, and βt is the bias of tree t. Both FCt,k(x)

and βt are criterion score vectors. Our goal is to calculate the feature contributions for an

instance x classified by a decision tree t that has been trained on the training set. Specif-

ically, it is achieved by running through the decision paths in tree t. On the root node in

the path, FCt,k(x) = 0 and ft(x) is initialized to βt. Each time the instance arrives at

a node with a decision branch on the r-th feature, and FCt,r(x) will be incremented by

the difference between the criterion scores at the child node along the path and the current

node. Once the decision process of x reaches a leaf node, we assign a class to x and obtain

all feature contributions along the decision path.

The prediction function of a forest, which is an ensemble of decision trees, takes the

average of the predictions of its trees:

F (x) =
1

T

T∑
t=1

ft(x), (4.3)

where T is the number of trees in the forest. Similarly, the prediction function of a forest

can also be decomposed with respect to feature contributions:

F (x) =
1

T

T∑
t=1

(
D∑

k=1

FCt,k(x) + βt

)

=
D∑

k=1

(
1

T

T∑
t=1

FCt,k(x)

)
+

1

T

T∑
t=1

βt,

(4.4)

where FCt,k is the contribution of the k-th feature in the t-th tree. Therefore, the contri-
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bution of the k-th feature to classify an instance x can be defined as

FCk(x) =
1

T

T∑
t=1

FCt,k(x), (4.5)

and the bias of the forest β̄ = 1
T

∑T
t=1 βt. The idea of interpreting the random forest

model, which classifies sentences into Medication or Symptom category, is to find out

those features with the most contribution to leading an instance to Medication or Symptom

leaf nodes. We will not interpret Background sentences since they are not as informative

as the other two classes.

Suppose a random forest modelF (x) is constructed given the training setX = {(xi, li)|1 ≤

i ≤ N} with N labeled instances. To find out the important features for category Medi-

cation and Symptom, we select two subsets of training sets whose labels are Medication

and Symptom, respectively. Let XM = {(x, l)|(x, l) ∈ X , l = Medication} be the subset

of Medication instances, and XS = {(x, l)|(x, l) ∈ X , l = Symptom} be the subset of

Symptom instances, the average feature contributions for the two classes can be calculated

as follows:

FCM,k =
1

|XM |
∑

(x,l)∈XM

FCk(x), (4.6)

FCS,k =
1

|XS|
∑

(x,l)∈XS

FCk(x), (4.7)

where FCM,k and FCS,k are the positive contribution vectors of the k-th feature for Medi-

cation class and Symptom class, respectively. After computing the contribution of features

for each class, we rank these features to indicate their relative significance. Finally, the

ones with larger contribution are selected as the discriminative features of each class.
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4.3 Interpretation with Discriminative Patterns

To further exploit interpretability, we extract decision rules from the forest model to

form a new space, where the forward selection is applied to select the top discriminative

decision rule combinations, i.e., discriminative patterns [7].

Specifically, a pattern is defined as the form of

(xi,j1 ≤ vj1) ∧ (xi,j2 > vj2) ∧ · · · ∧ (xi,jk ≤ vjk), (4.8)

where xi,j is the value on feature j of instance xi, and vj is a scalar threshold. In our

problem, a pattern can be any combination of rules from a decision tree. Furthermore,

discriminative patterns (DPs) are those strong signaling patterns with high information

gain or low Gini impurity in classification. In our problem, a pattern refers to a complete

decision path, and a discriminative pattern is the path with low Gini impurity.

However, since the dimension |DP | of discriminative patterns is still high, we need to

identify the most informative ones from them. To this end, we apply forward selection [19]

to select the top K discriminative patterns. Let fs be the forward selection function, then

we have fs : {0, 1}|DP | → {0, 1}K . We run K iterations, where the DP set at iteration k is

denoted as Patk. At iteration I , we traverse the discriminative patterns dpj 6∈ PatI−1. A

temporary DP set PatIj at current iteration is built by adding dpj to the DP set obtained

in iteration I − 1, i.e.,

PatIj = PatI−1
⋃
{dpj}. (4.9)

Then we build a classifier using support vector machines [20] based on the selected pat-

terns PatIj , and obtain the accuracy accIj of the classifier. The best pattern dpj∗ is added

into the DP set, where j∗ = arg maxjPatIj and accIj∗ > accI−1, so that PatI = PatIj∗ .

After K iterations, we obtain the top K discriminative patterns PatK . At last, each in-
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stance x in the dataset is mapped to the DP space as y ∈ {0, 1}K . If the kth pattern appears

in x, then the corresponding entry yk is set to 1; otherwise 0.
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5. EXPERIMENT RESULTS AND DISCUSSIONS∗

In this chapter, first we present the experiments results which show that the forest-

based models outperform the baseline methods. Second, we compare the interpretability

between Lasso and our forest-based model by analyzing their discriminative features and

discriminative patterns.

5.1 Experimental Setup

5.1.1 Dataset

Since there are few datasets available for health-related texts classification, we created

our dataset by collecting texts from online health communities to solve this problem. The

data used for the experiment in this study were crawled from Patient.info using Scrapy, a

python framework. The ground truth was obtained by assigning a label to each sentence

in the data set. 257187 discussions in 616 sub-forums from the forum were crawled.

Then we used NLTK tokenize package to split the texts in each discussion into a list of

sentences. Given lists of sentences from all the discussions, we randomly select sentences

from each list in portion and the number of selected sentences is 2585. We recruited

two volunteers to complete the labeling work. Both volunteers were provided with the

total 2585 randomly selected sentences and asked to categorize each of the sentences into

Medication, Symptom, or Others. The labeled sentences were merged based on unanimous

voting. We discarded the sentences that were labeled with disagreements and obtained

2099 sentences categorized into the same label. The result of the sentences labeling is

in Table 5.1. In the experiments, we set the label of class Background, Medication, and

∗Reprinted with permission from “An Interpretable Classification Framework for Information Extraction
from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare Engineering, Volume 2017
(2017), Copyright 2017 by Jun Gao et al.
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Symptom to 0, 1, and 2, respectively.

Med. Symp. Others Total
1127 772 200 2099

Table 5.1: Labeled sentences

5.1.2 Baseline Methods

The contributions of our study we want to claim are how much improvement of the

performance our proposed method can achieve by introducing the labeled sequential pat-

terns as features and how the interpretability can be enabled by applying our proposed

methods to sentence representatives in a variety of spaces to gain an insight of the health-

related text classification model. To show the first contribution, we choose support vector

machines trained on a variety of features proposed in [3]. We built binary classification

SVM models for class Medication and Symptom with RBF kernel exp(−γ|x−x′|2), where

γ is the reciprocal of the number of features. To predict an instance, the SVM models cal-

culate the probabilities using Platt scaling. If the probabilities to classify the instance into

Medication and Symptom are both less than 0.5, then we classify the instance into class

Background; otherwise, it is classified into the class with greater probability. In order to

ensure the performance, we implement feature selection based on entropy using a decision

tree model. In terms of the second contribution, we compare the model interpretability be-

tween lasso [21] to random forests and DPClass and interpret the models using the features

with non-zero weights in lasso with L1 term coefficient set to 0.001.
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5.1.3 Evaluation Metrics

The metrics for the evaluation are accuracy, weighted average precision, weighted av-

erage recall, and weighted average F1 score. For multi-class classification, the weighted

average precision, recall, and F1 score can be computed as follows:

Precision =
1

N

∑
l∈L

NlPrecisionl,

Recall =
1

N

∑
l∈L

NlRecalll,

F1 =
1

N

∑
l∈L

NlF1l,

whereN is the size of the test set, L is the label set, i.e. L = {Medication, Symptom,Back-

ground}, Nl is the size of the test subset with label l, and Precisionl, Recalll, and F1l

are the precision, the recall, and the F1 score of the binary classification for instances with

label l.

5.2 Classification Performance Evaluation

Table 5.2, Table 5.3, and Table 5.4 show the evaluation of each model using 5-fold

cross validation. Each row represents the evaluation results of a model trained on data

in different feature spaces. Each type of features used for training models are the ones

selected with entropy-based methods, so that they are more informative and more discrim-

inative in classification. For each model, the average accuracy (Acc), weighted average

precision (Prec), recall (Rec), and F-score (F1) for Medication class (M), Symptom class

(S), and the overall classes are presented respectively.

For the SVM model, the entire average predicting accuracy achieves 79.8% with only

word-based features, which outperforms the accuracies of Lasso. SVM also performs
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very well in terms of precision, recall, and F1 score. The model trained on LSP features

alone fails to outperform the model trained on word-based features, but the former could

achieve better performance than the latter if we add the UMLS semantic type features.

Note that there are only hundreds of LSP features while there are more than 16k word-

based ones. Without feature selection, the performance of SVM is not very good, since

the word-based features are considerably sparse. Furthermore, SVMs with RBF kernels

do not provide interpretability directly for us to gain an insight of the sentences although

the models achieve good performance.

From the experiments results using Lasso, we can find that the recall scores for classi-

fying medication sentences are better than those for symptom ones, while the accuracies

and precision scores indicate the opposite trend. As we use multi-class classifiers, many

of the test instances are classified as medication class. The Lasso models trained on the

word-based features slightly outperform the ones trained on the LSP features. As Table 5.6

shows, the weights of the LSP features are much smaller than those of the word-based ones

in Lasso.

For the forest-based model, we can find that the accuracies of Medication and Symp-

tom class can both achieve more than 80% with only LSP features and UMLS semantic

type features. The overall accuracy achieves 80.9% and outperforms the other methods.

Besides, with LSP and UMLS semantic type features, the precisions and recalls of both

classes are greater 0.8. Moreover, with position feature and word-based features, the per-

formance of the forest-based model is even better. In general, the random forest model can

achieve the relatively better F1 scores for both medication and symptom sentences classi-

fication. Similarly, the random forest models trained on the word-based features slightly

outperform those trained on the LSP features.

Although it is not guaranteed that the models trained on LSP features outperform the

ones trained on word-based features, we would still like to take advantage of LSP features
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since the feature dimension is significantly reduced without sacrificing the discrimination

ability of models. In addition, LSP features provide a valuable perspective in both tag and

structural levels to interpret classification results for health-related sentences.

5.3 Interpretability Evaluation

5.3.1 Interpretability of Lasso

Table 5.5, Table 5.6, and Table 5.7 list the features with the largest weights in the

combination of the word-based features, LSP features, UMLS Metathesaurus semantic

type features, position feature, thread creator indicator feature, and word count features.

After learning process, medication-related features are assigned negative weights, while

potential symptom-related features are assigned positive weights. Meanwhile, most of

the word-based features have greater weights than the other features. The words “avoid",

“prescribe", and “increase" are the most signaling words in medication sentences. The

possible reason behind might be that medications usually require patients to avoid certain

things, to take prescription drugs, or to adjust the dosages. The words such as “bleeding",

“anxiety", “swelling", “migraines", and “fever" are common for symptom sentences in the

forum, as they express external physical injury and mental diseases.

For LSPs, they are usually assigned with positive weights as they are capable of mining

the symptom terms in the sentences. The pattern (PRP, PRP, RB, SYMP), for example,

is common for symptom-related sentences like “someone suffers from some symptom

frequently/occasionally." However, we also find that the tag SYMP is very frequent in

both medication and symptom sentences, which is due to the reason that Lasso could not

achieve good performance using LSP features, and is also hard to interpret the differences

between class Medication and class Symptom.

Several UMLS semantic type features are assigned relatively larger weights to identify

symptom sentences. For examples, the term “sosy", short for “Sign or Symptom", is
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obviously a useful feature to identify symptom sentences. The term “mobd” (i.e., “Mental

or Behavioral Dysfunction") can be used to detect mental disease symptoms. “patf" (i.e.,

“Pathologic Function") is a parent semantic type of “mobd", which is also an informative

feature to detect pathologic terms.

5.3.2 Interpretability of Forest-Based Model

To interpret healthcare-related sentences in forest-based models, we calculate the fea-

ture contributions from decision trees in the forest. We select one random forest model

with the best accuracies in the experiments and list the 10 features with the greatest con-

tributions for each class in Table 5.8 and Table 5.9.

In identifying Medication sentences, the unigram feature “prescribed" has the largest

contribution. This is because such kind of sentences usually contain information about

prescribing drugs. LSP features (PRP, CD, CD), (PRP, CD, IN, NN, NN), (CD, IN, CD,

CD), and (PRP, CD, JJ, JJ) also contribute to recognizing sentences as medication-related

ones as they all contain the POS tag CD, which represents the numbers in describing the

dosages of medications. The morphological features are selected as the names of many

drugs are capitalized terms or abbreviations. The UMLS semantic type feature “hlca"

(i.e., “Health Care Activity") is important since healthcare activity terms are commonly

seen in medication sentences. On the contrary, if a sentence does not contain LSP (NN,

SYMP, SYMP, CC) or “sosy" (“Sign or Symptom"), or is not posted by the user (thr. crt.

= 0), this sentence may also be classified into medication class, as it is less likely to be

symptom-related.

For the Symptom class, the UMLS semantic type features “sosy" and “patf" are among

the top relevant ones since they are capable of detecting symptom terms and pathologic

terms, respectively. Thread Creator indicator is also useful since symptom sentences are

mainly posted by users to share their situations and ask for more information. If a sentence
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does not contain the word “prescribed", then it is less likely to be medication-related. LSP

features (SYMP, SYMP, SYMP), (NN, SYMP, SYMP, CC), and (SYMP, CC, JJ) are selected

since there are usually multiple terms matching the tag SYMP in symptom sentences. The

position feature is also important in identifying Symptom class, as it is natural for users

to mention their symptoms in the first vth1 posts, where vth1 is a threshold learned by the

decision tree. Similarly, if the number of words from a sentence is greater than vth2 learned

by the decision tree, the sentence will be more likely to be a symptom sentence.

Compared to the feature ranking in Lasso, we can have a better understanding from

the feature contribution rankings for each class in the random forest. The relationships

between features and classes can be learned from the feature contribution vectors while

Lasso only provides the weights of the features, which may not be expressive enough to

represent the relationships between features and classes. The random forest model can

achieve both better performance and interpretability compared to Lasso.

DPClass [7] proposes to take further advantages of the discriminative patterns in a

random forest built on the training set. The selected DPs can help users gain insights of

the data. In the experiments, we chose K = 30 to obtain the top 30 DPs. Table 5.10 lists

the selected 10 DPs of a forest-based model trained on all proposed features. For example,

considering the discriminative pattern ((RB,CD,IN,IN)=0) ∩ ((VBP,IN,CD ,CD,NN)=0) ∩

(“mg"=0) ∩ (“prescribed"=1) ∩ (dsyn=0), if an instance satisfies each rule in the pattern,

its corresponding DP feature entry will be set to 1. The existence of this pattern increase

the likelihood of classifying the instance into Medication class in the decision tree. From

the patterns in the table, we can find that the terms matching tag SYMP are likely to occur

in symptom sentences, while tag CD and DRUG often lead to non-Symptom leaves as

they are more likely to occur in medication sentences. In another word, symptom sentences

usually contain symptom terms while medication sentences usually contain drug terms

and numbers which represent the dosages of the medications. In addition to LSP features,
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there are two conspicuous unigram patterns “anxiety" and “cough", because the training

set contains many sentences related to anxiety and cough conditions.
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Ft. Set M. Acc. M. Prec. M. Rec. M. F1.

Se
le

ct
+S

V
M

Word-Based 0.843 0.846 0.867 0.856
+ Semantic 0.851 0.854 0.871 0.862
+ Position 0.843 0.846 0.867 0.856
+ Thr. Crt. 0.844 0.846 0.867 0.857
+ Morpho. 0.848 0.855 0.864 0.859
+ Word Cnt. 0.802 0.785 0.871 0.826
LSP 0.799 0.894 0.709 0.790
+ Semantic 0.849 0.865 0.852 0.858
+ Position 0.841 0.851 0.852 0.851
+ Thr. Crt. 0.844 0.852 0.859 0.855
+ Morpho. 0.851 0.860 0.864 0.861
+ Word Cnt. 0.848 0.856 0.862 0.859
+ Word-Based 0.810 0.810 0.844 0.826

L
as

so

Word-Based 0.794 0.730 0.979 0.837
+ Semantic 0.793 0.741 0.947 0.831
+ Position 0.795 0.742 0.947 0.832
+ Thr. Crt. 0.796 0.745 0.945 0.833
+ Morpho. 0.797 0.745 0.947 0.834
+ Word Cnt. 0.798 0.746 0.947 0.834
LSP 0.715 0.663 0.955 0.782
+ Semantic 0.769 0.712 0.955 0.816
+ Position 0.767 0.710 0.955 0.814
+ Thr. Crt. 0.771 0.715 0.953 0.817
+ Morpho. 0.771 0.715 0.953 0.817
+ Word Cnt. 0.771 0.715 0.953 0.817
+ Word-Based 0.799 0.745 0.950 0.835

Fo
re

st
-B

as
ed

Word-Based 0.848 0.795 0.969 0.873
+ Semantic 0.815 0.761 0.956 0.847
+ Position 0.820 0.767 0.957 0.851
+ Thr. Crt. 0.817 0.765 0.949 0.847
+ Morpho. 0.832 0.776 0.965 0.860
+ Word Cnt. 0.830 0.779 0.954 0.858
LSP 0.786 0.742 0.921 0.822
+ Semantic 0.837 0.824 0.887 0.854
+ Position 0.840 0.836 0.873 0.854
+ Thr. Crt. 0.832 0.825 0.875 0.849
+ Morpho. 0.841 0.829 0.886 0.856
+ Word Cnt. 0.829 0.816 0.881 0.847
+ Word-Based 0.848 0.816 0.927 0.868

Table 5.2: Model evaluation. We evaluate each model using 5-fold cross validation.
Each of the average accuracy, weighted average precision, weighted average recall, and
weighted average F-score for Medication class performance is presented in each col-
umn. Each row represents the performance of each model trained on different feature
combinations.
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Ft. Set S. Acc. S. Prec. S. Rec. S. F1.

Se
le

ct
+S

V
M

Word-Based 0.886 0.875 0.804 0.838
+ Semantic 0.884 0.874 0.801 0.836
+ Position 0.886 0.875 0.805 0.838
+ Thr. Crt. 0.896 0.894 0.814 0.852
+ Morpho. 0.891 0.883 0.811 0.846
+ Word Cnt. 0.864 0.888 0.722 0.796
LSP 0.831 0.862 0.644 0.737
+ Semantic 0.891 0.878 0.818 0.846
+ Position 0.893 0.883 0.817 0.848
+ Thr. Crt. 0.897 0.885 0.826 0.855
+ Morpho. 0.896 0.883 0.826 0.854
+ Word Cnt. 0.897 0.884 0.830 0.856
+ Word-Based 0.870 0.887 0.739 0.806

L
as

so

Word-Based 0.886 0.969 0.712 0.820
+ Semantic 0.886 0.923 0.752 0.828
+ Position 0.886 0.920 0.754 0.829
+ Thr. Crt. 0.889 0.922 0.762 0.834
+ Morpho. 0.889 0.924 0.759 0.833
+ Word Cnt. 0.891 0.927 0.762 0.836
LSP 0.802 0.875 0.538 0.666
+ Semantic 0.861 0.911 0.689 0.785
+ Position 0.860 0.910 0.686 0.782
+ Thr. Crt. 0.864 0.911 0.700 0.791
+ Morpho. 0.864 0.910 0.698 0.790
+ Word Cnt. 0.864 0.910 0.698 0.790
+ Word-Based 0.893 0.930 0.765 0.839

Fo
re

st
-B

as
ed

Word-Based 0.881 0.891 0.773 0.827
+ Semantic 0.878 0.901 0.751 0.819
+ Position 0.887 0.908 0.772 0.833
+ Thr. Crt. 0.872 0.884 0.749 0.811
+ Morpho. 0.890 0.907 0.781 0.838
+ Word Cnt. 0.893 0.893 0.804 0.846
LSP 0.863 0.861 0.748 0.801
+ Semantic 0.879 0.860 0.802 0.829
+ Position 0.882 0.844 0.834 0.839
+ Thr. Crt. 0.879 0.849 0.814 0.831
+ Morpho. 0.881 0.843 0.832 0.837
+ Word Cnt. 0.880 0.856 0.808 0.831
+ Word-Based 0.887 0.861 0.827 0.843

Table 5.3: Model evaluation. We evaluate each model using 5-fold cross validation.
Each of the average accuracy, weighted average precision, weighted average recall, and
weighted average F-score for Symptom class performance is presented in each column.
Each row represents the performance of each model trained on different feature combina-
tions.

30



Ft. Set Acc. Prec. Rec. F1.

Se
le

ct
+S

V
M

Word-Based 0.798 0.808 0.798 0.802
+ Semantic 0.804 0.816 0.804 0.808
+ Position 0.798 0.808 0.798 0.802
+ Thr. Crt. 0.800 0.812 0.800 0.805
+ Morpho. 0.801 0.816 0.801 0.807
+ Word Cnt. 0.761 0.773 0.761 0.763
LSP 0.691 0.821 0.691 0.731
+ Semantic 0.806 0.823 0.806 0.813
+ Position 0.800 0.815 0.800 0.806
+ Thr. Crt. 0.801 0.814 0.801 0.807
+ Morpho. 0.808 0.820 0.808 0.813
+ Word Cnt. 0.807 0.819 0.807 0.812
+ Word-Based 0.768 0.792 0.768 0.776

L
as

so

Word-Based 0.791 0.785 0.791 0.756
+ Semantic 0.789 0.754 0.789 0.757
+ Position 0.790 0.757 0.790 0.758
+ Thr. Crt. 0.791 0.756 0.791 0.759
+ Morpho. 0.792 0.757 0.792 0.760
+ Word Cnt. 0.793 0.759 0.793 0.762
LSP 0.711 0.678 0.711 0.665
+ Semantic 0.767 0.727 0.767 0.728
+ Position 0.765 0.716 0.765 0.725
+ Thr. Crt. 0.769 0.728 0.769 0.731
+ Morpho. 0.769 0.728 0.769 0.730
+ Word Cnt. 0.769 0.728 0.769 0.730
+ Word-Based 0.795 0.759 0.795 0.763

Fo
re

st
-B

as
ed

Word-Based 0.819 0.808 0.819 0.795
+ Semantic 0.802 0.805 0.802 0.778
+ Position 0.807 0.791 0.807 0.779
+ Thr. Crt. 0.799 0.792 0.799 0.774
+ Morpho. 0.816 0.815 0.816 0.789
+ Word Cnt. 0.814 0.797 0.814 0.783
LSP 0.771 0.725 0.771 0.739
+ Semantic 0.809 0.805 0.809 0.805
+ Position 0.808 0.800 0.808 0.803
+ Thr. Crt. 0.802 0.796 0.802 0.797
+ Morpho. 0.812 0.802 0.812 0.804
+ Word Cnt. 0.800 0.791 0.800 0.793
+ Word-Based 0.821 0.803 0.821 0.802

Table 5.4: Model evaluation. We evaluate each model using 5-fold cross validation.
Each of the average accuracy, weighted average precision, weighted average recall, and
weighted average F-score for overall performance is presented in each column. Each
row represents the performance of each model trained on different feature combinations.
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Word-Based Average Weight
avoiding -0.413
wrong -0.363
avoid -0.343

prescribe -0.323
bleeding 0.283
anxiety 0.281
swelling 0.233
increased -0.185
migraines 0.185

fever 0.160

Table 5.5: Top 10 average weight of word-based features in Lasso

LSP Average Weight
(PRP, PRP, RB, SYMP) 0.081
(PRP, PRP, VB, SYMP) 0.060
(PRP, PRP, VB, SYMP) 0.060

(VBZ, CC, SYMP) 0.058
(SYMP, SYMP, SYMP) 0.054

(PRP, SYMP, CC, SYMP, IN) -0.053
(CC, SYMP, IN, SYMP) -0.052

(PRP, SYMP, VBG) 0.049
(RB, SYMP, VB) 0.048
(JJ, IN, JJ, SYMP) 0.036

(NN, SYMP, RB, SYMP) -0.033

Table 5.6: Top 10 average weight of LSP features in Lasso

Semantic Average Weight
sosy 0.329
mobd 0.207
patf 0.190
resa -0.173
inpo 0.100
anab 0.094
mcha -0.092
aggp -0.090
plnt -0.063

mamm -0.052

Table 5.7: Top 10 average weight of semantic features in Lasso
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Top 10 FC for Medication Sentences
Feature Back. Med. Sym.

prescribed = 1 -0.00275 0.01195 -0.00920
(PRP, CD, CD) = 1 -0.00251 0.01156 -0.00905

morpho. = 1 -0.00206 0.00660 -0.00455
hlca = 1 -0.00071 0.00559 -0.00489

(NN, SYMP, SYMP, CC) = 0 0.00115 0.00429 -0.00544
sosy = 0 0.00191 0.00406 -0.00597

(PRP, CD, IN, NN, NN) = 1 -0.00075 0.00402 -0.00327
(CD, IN, CD, CD) = 1 -0.00120 0.00396 -0.00276

thr. crt. = 0 0.00154 0.00381 -0.00535
(PRP, CD, JJ, JJ) = 1 -0.00086 0.00362 -0.00276

Table 5.8: Top 10 feature contributions for medication class in a random forest model

Top 10 FC for Symptom Sentences
Feature Back. Med. Sym.
sosy = 1 -0.00589 -0.00783 0.01371

prescribed = 0 0.00234 -0.015734 0.01339
thr. crt. = 1 -0.00381 -0.00683 0.01064

(PRP, CD, CD) = 0 0.00271 -0.01264 0.00993
(SYMP, SYMP, SYMP) = 1 -0.00330 -0.00564 0.00895

(NN, SYMP, SYMP, CC) = 1 -0.00209 -0.00667 0.00876
position ≤ vth1 -0.00334 -0.00540 0.00874

patf = 1 -0.00254 -0.00379 0.00633
(SYMP, CC, JJ) = 1 -0.00172 -0.00404 0.00576
word count > vth2 -0.00131 -0.00423 0.00554

Table 5.9: Top 10 feature contributions for symptom class in a random forest model
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Pattern Leaf Class
((RB,CD,CD)=0)∩((PRP,CD,CD,JJ)=0)∩

Med.
((PRP,CD,NN,NN,NN)=0)∩((TO,VB,CD)=1)

((IN,NN,NN,comma,SYMP)=0)∩((CD,RB,CD)=1)∩
Med.

((RB,IN,IN,CD,IN)=0)∩((PRP,CC,CD,NN)=1)
((SYMP,NN,VBG)=1) Sym.

((VBP,CD,NN,NN)=0)∩((SYMP,SYMP,NN)=1) Sym.
((RB,CD,IN,IN)=0)∩((VBP,IN,CD,CD,NN)=0)∩

Med.
(“mg"=0)∩(“prescribed"=1)∩(dsyn=1)

((PRP,VBP,CD)=0)∩((CD,CD,NN,NN)=1)∩
Med.

((TO,CD,IN)=1)
(“cough"=1) Sym.

((RB,CD,IN,IN)=0)∩((VBP,IN,CD,CD,NN)=0)∩(“mg"=0)∩
Sym.

(“prescribed"=0)∩(fndg=0)∩((NN,comma,comma,SYMP)=1)
((RB,CD,IN,IN)=0)∩((VBP,IN,CD,CD,NN)=0)∩

Med.
(“mg"=0)∩(“prescribed"=1)∩(dsyn=0)

(“anxiety"=1) Sym.

Table 5.10: Top 10 discriminative patterns in a DPClass model
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6. CONCLUSIONS AND FUTURE WORK∗

In our research, we propose to use labeled sequential patterns to represent the healthcare-

related sentences in order to reduce the dimension and sparsity of the data, which can both

guarantee the performance and enhance the efficiency. Then we build forest-based models

on the training data which is capable of predicting with decent performance and inter-

preting the healthcare-related sentences by extracting the important features used in the

decision rules, ranked by their contributions, and the discriminative patterns consist of the

decision rules. Overall, the forest-based models trained on the proposed feature space can

achieve good performance and enable the interpretability of the data. In the future, we will

build a compact system based on this framework to help users directly extract and high-

light the insightful sentences while they are viewing healthcare-related articles, posts, etc.

Also, in addition to OHF posts, we will also apply our framework to real-world clinical

notes. Moreover, we will also target to extract and interpret the insightful sentences from

other categories such as medication effects, user questions, etc., and include data from

other sources like clinical notes.

∗Reprinted with permission from “An Interpretable Classification Framework for Information Extraction
from Online Healthcare Forums" by Jun Gao et al. 2017. Journal of Healthcare Engineering, Volume 2017
(2017), Copyright 2017 by Jun Gao et al.
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