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ABSTRACT 

 

This dissertation provides frameworks to select production function estimators in both 

the state-contingent and the general monotonic and concave cases. It first presents a Birth-

Death Markov Chain Monte Carlo (BDMCMC) Bayesian algorithm to endogenously 

estimate the number of previously unobserved states of nature for a state-contingent frontier. 

Secondly, it contains a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm 

to determine a parsimonious piecewise linear description of a multiplicative monotonic and 

concave production frontier. The RJMCMC based algorithm is the first computationally 

efficient one-stage estimator of production frontiers with potentially heteroscedastic 

inefficiency distribution and environmental variables. Thirdly, it provides general 

framework, based on machine learning concepts, repeated learning-testing and parametric 

bootstrapping techniques, to select the best monotonic and concave functional estimator for a 

production function from a pool of functional estimators. This framework is the first to test 

potentially nonlinear production function estimators on actual datasets, rather than 

extrapolation of Monte Carlo simulation results.  
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CHAPTER I*  

INTRODUCTION AND LITERATURE REVIEW 

 

Efficiency Analysis is a framework under which we measure the ability a firm has to 

produce a particular output bundle given a set of inputs and environmental conditions. More 

specifically, we are interested in benchmarking the firm’s performance in the production of 

these outputs (Coelli et al. 2005), as compared to the optimally attainable output levels, costs 

or profits. The relative performance of a firm, depending on the comparison criteria, is called 

either Technical Efficiency in the case of output levels or Allocative Efficiency in terms of 

picking the best mix of outputs and inputs. The concepts of Technical Efficiency and 

price/cost related efficiencies relative to an optimal estimated standard were first explored by 

Debreu (1951) and Farrell (1957). If we focus on comparing output levels, we can describe 

the feasible input-output combinations in terms of a set, called the production possibility set 

(Koopmans 1951). Moreover, in the case where we consider outputs to be aggregable into a 

single output, its maximum level for all given input levels can be summarized in the form of 

a function. This function is known as a production function or the production frontier. Thus, 

as this function is not directly observed, we need to estimate it with a dataset of firms that are 

producing the same output and using the same input bundle. 

                                                 

* Section I.1 reprinted with permission from “A birth-death Markov Chain Monte Carlo Method to Estimate the 

Number of States in a State-Contingent Production Frontier Model” by Preciado Arreola, J.L. and A. L. 

Johnson, 2015. American Journal of Agricultural Economics, 1267-1285, Copyright by American Agricultural 

Economics Association. 
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Historically, there have been two frameworks to estimate production frontiers. On 

one side, Data Envelopment Analysis (DEA) (Charnes, Cooper and Rhodes, 1978) is a 

nonparametric technique that fits a convex hull to the observed input-output data. DEA does 

not assume the functional form of the production frontier a priori and it results in a function 

described by a set of enveloping hyperplanes. Classic Stochastic Frontier Analysis (SFA) 

(Aigner, Lovell and Schmidt, 1977; Meeusen and van den Broeck, 1977), on the other hand, 

estimates the parameters of a functional form chosen by the researcher. More recently, novel 

estimation procedures have been developed to overcome the inherent shortcomings of both 

DEA and the classic parametric SFA. Specifically, DEA has been shown to be a special case 

of Stochastic Nonparametric Envelopment of Data (StoNED) method, Kuosmanen and 

Johnson (2010) and Kuosmanen and Kortelainen (2012). Moreover, the StoNED method 

specifies using a shape constrained nonparametric estimation method in the first stage, and 

thus generalizing classic parametric SFA.  

However, in spite of relaxing assumptions such as the deterministic nature of DEA 

and the parametric forms of classical SFA, these and other recent production function and 

frontier estimation methods have generally not addressed basic model selection issues. In 

other words, either parametric functional estimators are without theoretical justification or 

nonparametric methods have been proposed without concern for their parsimony, thus 

affecting their predictive ability, or even their in-sample fit1. Thus, the objective of this 

research is to expand the literature on model selection strategies for production 

                                                 

1 See Chapter 7 of Hastie, Tibshirani and Friedman (2009) for a discussion of overfitting and its consequences 

on in-sample and predictive error of a model. 
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function/frontier functional estimators. We note that except for the specific state-contingent 

production function/frontier application in Chapter 2, the remaining functional estimators and 

framework represent not only improvements, but the first explicit efforts to incorporate 

model selection strategies to production functions and frontiers.  

This dissertation is organized as follows: in the remaining sections of this chapter, we 

present the literature review specific to chapters II, III, IV and V. In Chapter II, we propose a 

one-stage method to estimate state-contingent production frontiers which simultaneously 

estimates the state-contingent frontier descriptions and the number of states of nature, thus 

endogenously controlling the complexity of the functional estimator, under the assumption of 

a Translog parametric production function. The method is introduced for the purposes of 

analyzing rice-farm performance. In Chapter III, we present a one-stage shape-constrained 

semiparametric stochastic frontier method, which results in more parsimonious and 

economically sound frontiers than state-of-the art estimators. The method in Chapter III 

augments both the Bayesian SFA and the general SFA literature by being the first shape-

constrained model to include highly flexible descriptions of both the production function and 

the inefficiency distributions while maintaining scalability in the number of observations 

used for estimation.  In Chapter IV, we first present an adaptively-partitioned functional 

estimator that improves the in-sample and predictive performance of existing methods. Then, 

we proceed to introduce a general framework to evaluate production function estimators on 

real manufacturing survey data. In Chapter V we conclude and summarize the lines of 

research that are now open. 
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I.1 Literature Specific to Chapter II: Bayesian Model Selection and Model Estimation 

in a State-Contingent Production Framework 

State-contingent production provides a flexible framework for estimating production 

functions (Quiggin and Chambers 2006), particularly in industries with subsets of firms that 

operate in environments lacking data at the producer level. Using rice farming as an example, 

data on each farm’s rainfall, temperature, pests, diseases, and other environmental factors are 

potentially observable, but rarely collected at the farm level. It is possible, however, to 

employ state-contingent production frontiers to separate the impacts of inefficiency and state-

dependent production conditions by allowing different parameters for each state of nature. 

The simultaneous estimation of production frontiers, using Stochastic Frontier Analysis 

(SFA) for example, and creation of unobserved variable clusters, needed to define the states 

of nature, can be addressed by using Latent Class Stochastic Frontier Models (LCSFM), 

either from a sampling framework, an example of which appears in Orea and Kumbhakar 

(2004), or from a Bayesian framework via Markov Chain Monte Carlo (MCMC) methods. 

We select the Bayesian framework, because it allows us to obtain the complete posterior 

distribution of the number of states and to calculate weights for our output predictions. 

Moreover, MCMC methods make it relatively easy to add common constraints, such as 

monotonicity in inputs, to the production frontier estimation algorithm, and to model the 

observed outputs as the outcome of a finite mixture of Gaussian distributions.  

Several uses of the state-contingent approach have been described in the production 

economics literature. Chavas (2008) develops an input cost-minimizing methodology under a 

state-contingent technology. Nauges, O’Donnell and Quiggin (2010) use the state-contingent 

approach and MCMC methods to model production with Constant Elasticity of Substitution 
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(CES) flexible production functions. Other studies include O’Donnell and Shankar (2010) 

and Serra and Lansink (2010). The work most closely related to ours is O’Donnell and 

Griffiths (2006), who estimate a state-contingent frontier model using MCMC methods, 

specifically a Gibbs sampler, for the same data set we analyze. Further, O’Donnell and 

Griffiths determine the number of states of nature by minimizing the Bayesian Information 

criterion (BIC) for a model in which only the intercepts of the production function and the 

precision parameters (the inverses of the variances of the noise distribution) are state-

contingent. Then they impose the BIC-minimizing number of states to a model for which the 

input slopes are also state-contingent and monotonicity of the production function is 

imposed. We caution, however, that the BIC-minimizing number of states can differ across 

models, since the number of parameters increases for models in which the state-contingent 

input slopes are estimated. In other words, the number of states imposed may be 

inappropriate even though imposing the number of states calculated for a simpler model is 

computationally easier. 

Further, in the frontier-estimation models discussed above, the number of states is 

either fixed or obtained by using BIC as model selection criterion. Biernacki, Celeux and 

Govaert (1998) observe that the assumptions needed in order to use BIC as a model selection 

criterion, do not hold for mixture models. For example, the needed assumption of all model 

parameters being well inside of the parameter space is violated when evaluating models for 

which the number of states is larger than the true one, as state probabilities for some states 

will approach zero which is a boundary value for a probability parameter, making BIC 

inappropriate. Biernacki, Celeux and Govaert (2000) and Biernacki and Govaert (1997) show 

that other criteria, such as the Integrated Classification Likelihood (ICL) and the 
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Classification Likelihood Criterion (CLC), are often better suited for this type of application. 

Banfield and Raftery (1993) show that Approximate Weight of Evidence (AWE), derived as 

a Bayes Factor approximation, can be used to compute the posterior probabilities for each 

number of states given the data. It is also possible to use these posterior probabilities to 

weight the chosen model, instead of simply choosing one with the best score. Regardless of 

the model selection criterion chosen, a two-stage procedure is required, i.e. the first stage 

estimates all plausible models, and the second stage scores and obtains the posterior 

probabilities to weight the models.  

In contrast, endogenous estimation of the number of states involves solving the model 

selection and estimation problems simultaneously. Specifically, selection is inferring the 

number of states in the model and estimation is calculating the coefficients for the regression 

models given a certain number of states. Both endogenous estimation and the model selection 

criteria mentioned above allow identification of the best model; however endogenous 

estimation also calculates weighted output across all plausible models in a single run of the 

estimation algorithm. Moreover, although in both endogenous estimation and the two-stage 

procedure described above the range of possible values for the number of states has to be 

specified a priori, in the endogenous estimation algorithm presented in Chapter II, only the 

plausible values of this range are visited by the estimation algorithm significantly reducing 

computational complexity. 

Our survey of the literature indicates that efforts to endogenously estimate the number 

of components in a Gaussian mixture in an econometric context have been limited. For 

example, in a macroeconomic setting Chopin and Pelgrin (2004) develop a general hidden 

Markov chain and estimate all transition probabilities where the number of transition 
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probabilities grows quadratically in the number of states. Other methods can be used to 

estimate a mixture model where the number of components is unknown, such as Reversible 

Jump Markov Chain Monte Carlo (RJMCMC) introduced by Green (1995) and first applied 

to mixture modeling by Richardson and Green (1997). Nevertheless, Richardson and 

Greene’s RJMCMC algorithm is not directly applicable in a regression context, because the 

equations for the parameter means become datapoint specific and cause estimation 

difficulties (Kottas and Gelfland 2001). Some efforts to tailor RJMCMC algorithms within a 

regression context have been successful, such as Denison, Mallick and Smith (1998) and 

Biller (2000). 

 However, we select the birth-death Markov Chain Monte Carlo (BDMCMC) method 

(Stephens 2000), which was first used in a regression context by Hurn, Justel and Robert 

(2003). BDMCMC computes the rates of a simpler hidden Markov Chain, which they 

characterize as a birth and death process. By reducing the number of parameter estimates, the 

use of BDMCMC is better suited for applications with limited data. We note also that the 

computational process becomes simpler compared to RJMCMC, because the use of 

BDMCMC reduces the types of jumps across states, while still achieving consistent 

estimation results. 

 

I.2 Literature Specific to Chapter III: Multivariate Bayesian Constrained Regression 

with Inefficiency and Flexible Variances 

In Chapter III, we move away from the very specific state-contingent context to a 

general monotonic and concave production function. Further, we strive to achieve greater 

flexibility than allowed by the Translog function in our production frontier estimation. The 
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estimation of flexible production, cost, and utility functions that globally satisfy certain 

second order shape restrictions consistent with economic theory, such as monotonicity and 

convexity/concavity, remains challenging (Diewert and Wales, 1987). Isotonic Regression, 

Constraint Weighted Bootstrapping, and Data Sharpening have been devised to impose such 

restrictions (Henderson and Parmeter, 2009), but no solution methods so far are able to both 

impose concavity and handle very large datasets. Motivated by the challenge, we are also 

interested in models that allow for firms to make errors in optimization and thus model firm 

inefficiency. Because the inefficiency is not directly measurable, we use a Stochastic Frontier 

Analysis (SFA) framework (Aigner et al., 1977). Recently, several non-parametric estimators 

that include inefficiency, such as Kumbhakar et al. (2007)’s estimator, Stochastic 

Nonparametric Envelopment of Data (Kuosmanen and Kortelainen, 2012), and Constraint 

Weighted Bootstrapping (Du, Parmeter and Racine, 2013) have been devised, but even these 

methods are limited by computational issues or homoscedasticity assumptions on the 

inefficiency term or both. To the best of our knowledge, Kumbhakar et al. (2007) is the only 

frontier production function estimation method that allows the inefficiency term to be 

heteroscedastic without additional observable variables that predict inefficiency; however, 

this method does not impose shape constraints.  

A survey of the relevant literature indicates that Banker and Maindiratta (1992) are 

the first to propose an estimator with second order shape restrictions and a composed error 

term; however, their maximum likelihood methods are only tractable for small instances and 

no applications or Monte Carlo studies of their method have been reported. Allon et al. 

(2005) use entropy methods, but little is known about their estimator’s computational 

performance for datasets of more than a few hundred observations.  Least Squares 
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approaches, such as Convex Nonparametric Least Squares (CNLS) (Kuosmanen, 2008) or 

the Penalized Least Squares splines approach by Wu and Sickles (2013), which allow 

estimation of production frontiers with minimal assumptions about the residual term require a 

separable and homoscedastic distribution for the inefficiency term.2 Constraint Weighted 

Bootstrapping (CWB) (Du, Parmeter and Racine (2013)) can impose a vast array of 

derivative-based constraints, including both monotonicity and concavity. The concavity 

constraints in CNLS and CWB require satisfying O(n2) constraints simultaneously which is 

computationally difficult (Lee et al. 2013). Moreover, their use in a stochastic frontier setting 

requires a two-stage procedure, such as Kuosmanen and Kortelainen (2012), which does not 

allow a feedback structure between the frontier estimation procedure and the inefficiency 

estimation procedure. Thus, prior distributional assumptions about the inefficiency 

distribution, namely the family of distributions and homoscedasticity, are imposed 

throughout the frontier estimation procedure. 

An alternative two-stage procedure by Simar and Zelenyuk (2011) adapts the Local 

Maximum Likelihood method developed by Kumbhakar et al. (2007) to shape constrained 

estimation by using Data Envelopment Analysis on the fitted values obtained from the Local 

Maximum Likelihood method. The approach is constrained by the Local Maximum 

Likelihood method, and scalability appears to be limited to a few hundred observations 

(Kumbhakar et al., 2007).  

                                                 

2 While the homoscedastic assumption can be relaxed by using a specific parametric form on heteroscedasticity, 

see Kuosmanen and Kortelainen (2012), general models of heteroscedasticity are not available. 
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The first Bayesian SFA semiparametric estimators in the general multivariate setting 

proposed by Koop and Poirier (2004) and Griffin and Steel (2004) do not address the 

imposition of a concavity constraint on the estimations. O’Donnell and Coelli (2005) impose 

homogeneity, monotonicity, and convexity in inputs on a parametric multi-output, multi-

input production frontier for a Panel dataset by means of a Metropolis-Hastings (M-H) 

random walk algorithm and restricting the Hessian matrix. While the approach is feasible in 

the parametric setting, a nonparametric equivalent requires numerical estimates of the 

production function derivatives, similar to Du et al. (2013), and significant computational 

effort.  

When shape restrictions between the dependent variable and each regressor are 

imposed separately, Shively et al. (2011) estimate Bayesian shape-constrained nonparametric 

regressions using fixed and free-knot smoothing splines. The knots are endogenously inferred 

using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green 1995) algorithm. 

Unfortunately, the method can result in complex and numerous conditions, and consequently 

low acceptance rates within the parameter-sampling rejection algorithm. Furthermore, the 

RJMCMC algorithm cannot be directly extended to a general multivariate setting.  Meyer, 

Hackstadt and Hoeting (2011), who sample from a set of basis functions for which the 

imposition of concavity constraints only relies on the non-negativity of their coefficients, 

thus reducing complexity, avoid rejection sampling or M-H methods. Nevertheless, the 

monotonicity and concavity constraints are still imposed only separately between each 

regressor and the dependent variable and a partial linear model form is assumed for the 

multivariate case. 
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The only Bayesian semi-nonparametric constrained method for a general multivariate 

context is the Neural Cost Function (Michaelides et al. 2015). Even though it can impose 

shape restrictions a priori to estimate a cost function, the method relies on an exogenous 

model selection criterion to select the number of intermediate variables, focuses on an 

average cost function rather than a frontier, and potentially has an overfitting problem due to 

near perfect correlation between predicted and actual costs.  

Hannah and Dunson (2013) and Hannah and Dunson (2011) propose two adaptive 

regression-based multivariate nonparametric convex regression methods for estimating 

conditional means: Least-Squares based Convex Adaptive Partitioning (CAP), and a 

Bayesian method, Multivariate Bayesian Convex Regression (MBCR), both of which scale 

well in large data. Unlike CAP, the Markov Chain Monte Carlo nature of MBCR (Hannah 

and Dunson, 2011, henceforth H-D) allows to create extensions of the method in a modular 

manner and without risking its convergence guarantees. MBCR approximates a general 

convex multivariate regression function with the maximum value of a random collection of 

hyperplanes. Additions, removals, and changes of proposed hyperplanes are done through a 

RJMCMC algorithm. MBCR’s attractive features include the block nature of its parameter 

updating, which causes parameter estimate autocorrelation to drop to zero in tens of iterations 

in most cases, the ability to span all convex multivariate functions without need for any 

acceptance-rejection samplers, scalability to a few thousand observations, and relaxation of 

the homoscedastic noise assumption.  
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I.3 Literature Specific to Chapter IV: Evaluating Monotonic and Concave 

Production Function Estimators for Use on Manufacturing Survey Data  

Despite proposing more parsimonious alternatives than existing methods for frontier 

estimation in Chapter III, an explicit general framework for model selection in production 

frontiers does not exist. To accomplish this, we shift to the two-stage production frontier 

estimation paradigm and focus on model selection on the estimation of production functions. 

Moreover, due to computational challenges of our semiparametric Bayesian approach in 

small sample sizes, we demonstrate our framework on frequentist estimators of both 

parametric and nonparametric nature. Our model selection framework is based on basic 

machine learning concepts and algorithms. 

Key concepts from the machine learning literature such as sample-specificity and 

prediction error over-optimism have been critically overlooked in the assessment of 

production functions. The importance of these issues becomes immediately evident when 

estimating a production function using non-exhaustive survey data.3 These machine learning 

concepts allow us to investigate the extent to which an estimated production function 

characterizes both the set of surveyed establishments and the set of un-surveyed 

establishments for a particular industry. Classical frontier estimators such as Stochastic 

Frontier Analysis (SFA, Aigner et al., 1977), and Data Envelopment Analysis (DEA, Banker 

et al., 1984), as well as more recent developments such as Stochastic DEA (Simar and 

Zelenyuk, 2008), or Convex Nonparametric Least Squares (CNLS, Kuosmanen, 2008), 

3 The U.S. annual survey of manufacturers is conducted annually, except for years ending in 2 and 7 in which a 

Census is performed, Foster et al. (2008). This survey includes approximately 50,000 establishments selected 

from the census universe of 346,000 or approximately a 15% sampling, Fort et al. (2014).  
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Constraint Weighted Bootstrapping (CWB, Du et al., 2013) and Shape-Constrained Kernel 

Weighted Least Squares (SCKLS, Yagi et al., 2016) have all justified their use based on 

Monte Carlo simulation results for production functions estimated from random samples 

drawn from a known data generation process (DGP) and evaluated estimator performance on 

the same sample with which they were estimated.4 The literature provides independent 

comparisons between some of these methods considering a more ample set of scenarios in a 

Monte Carlo simulation framework, but still using the same dataset to fit the production 

function/frontier and test its goodness-of-fit, see Andor and Hesse (2012) as an example. 

Furthermore, numerous applied studies to fit production functions and frontiers with real data 

have been conducted using the aforementioned methods without assessing estimator sample-

specificity or even comparing the performance of multiple estimators on the actual 

application datasets.5 Finally, the Monte Carlo simulations used to illustrate the performance 

of existing estimators do not explore the accuracy with which the estimator predicts the noise 

level of the DGP, which further obscures insights about the performance of a functional 

estimator. 

4 A body of economic literature of a less computational and more aggregate nature is the growth accounting 

literature, Solow (1957) and Barro and Sala-i-Martin (2004). These methods rely on price information, the cost 

minimization assumption and parametric forms to deterministically compute the coefficients of a first order 

approximation of a general production function using observed input cost shares (see for example Syverson, 

2011). This literature’s main model adequacy check is to compute the R-squared value on the full dataset of 

interest, again forgoing insights about the adequacy of the estimator in survey to full sample data or in less 

aggregate datasets with noisier input cost share measurements.   
5 For DEA-based studies, see the survey paper by Emrouznejad, Parker and G. Tavares (2008). For relevant 

SFA applications see Section 2.10 on Greene (1993). Practical studies involving more recent methods include 

Mekaroonreung and Johnson (2012), Eskelinen and Kuosmanen (2013), among others. This is also common in 

the productivity literature, see for example Olley and Pakes (1997), Levinsohn and Petrin (2003) and De 

Loecker et al. (2015).  
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Thus, we consider a model selection strategy that improves on the current paradigm 

for selecting a production function model among a pool of models generated by different 

functional estimators both on simulated and the actual application datasets. The common 

framework we will follow in both simulated and real data encompasses three elements: 

estimation of the optimism-corrected in-sample error (defined in Section 3) for the observed 

establishment set, use of a learning set-testing set context to estimate the predictive error on 

the unobserved establishment set (Hastie, Tibshirani and Friedman, 2009 pp. 222) and a 

finite-sample weighting, which acknowledges the existence of a finite set of establishments 

and thus weights the in-sample and predictive errors proportionally to the survey size. For 

simulated datasets, we take advantage of the practically infinite data-generating capability the 

Monte Carlo context. We estimate the expected optimism-corrected in-sample error by fitting 

a learning set and then evaluating the fitted function error on data drawn from the same DGP 

and restricting input vectors to the set observed in the learning set, but with potentially 

different output vectors due to random noise. To estimate the predictive error, we compute 

the mean-squared error for production functions fitted from random learning datasets on 

large, previously unobserved, testing sets.  This is an important measure, providing estimates 

of the functional estimator’s expected predictive error for an arbitrary unobserved 

establishment. Additionally, we also compute the performance against the known true DGP 

in both the in-sample and learning-to-testing set contexts. 

In case of the manufacturing survey data, for which we do not know the data 

generating process of the production function a priori, we have to follow a different approach 

to estimate the expected in-sample and predictive errors. For the in-sample error, given the 

different natures of the considered estimators, we cannot simply compute Mallow’s - Cp 
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(1973), Akaike Information Criterion (AIC, 1974) or similar optimism penalization, which is 

specific to linear models. Thus, we employ the parametric bootstrap approach by Efron 

(2004) to estimate in-sample optimism for potentially non-linear functional estimators. For 

our predictive error estimation, we estimate production functions using random subsamples 

of the survey data and assess the predictive error of the fit, thus following a cross-validation 

strategy (see Stone, 1974; Allen, 1974 and Geisser, 1975 for seminal work on cross-

validation). The universal nature of cross-validation is key in comparing production function 

estimators (Arlot and Celisse, 2010), as they usually arise from different regression 

paradigms and have different sets of assumptions. More specifically, Hastie, Tibshirani and 

Friedman (2009, pp. 230) mention that when evaluating nonlinear, adaptive regression 

techniques6 it is usually difficult to estimate the effective number of parameters, and cross-

validation is one of the few available model selection strategies available. There exist several 

cross-validation methods, among which two frequently used non-exhaustive methods, k-fold 

cross-validation and repeated learning-testing (RLT) (Breiman et al, 1984) have significant 

computational advantages over methods that exhaustively explore all the possible 

combinations of learning and validation sets, such as leave-one out cross-validation (Stone, 

1974, Geisser, 1975) or leave-p-out cross-validation (Shao, 1993).  Unlike k-fold cross-

validation, the variance of RLT can be controlled by increasing the number of replicates 

given any learning set size (Burman, 1989). A key aspect of our functional estimator 

selection strategy is that we do not use RLT to estimate the predictive error of a learning set 

6 All the nonparametric estimators we will evaluate on this chapter fall into that category.  More generally, 

Burman (1989) shows that k-fold cross-validation has 𝑂(𝑛−2) bias against the true predictive error on a general

model selection problem after applying a simple correction described in the application section. 
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of the size of our census set, as is normally the objective on cross-validation, but rather to 

obtain the expected predictive error for a dataset of the size of the learning set itself, this 

variance-controlling feature is the main feature of interest. Thus, we proceed to evaluate the 

fits of our different production function estimators on a RLT cross-validation scheme. 

Furthermore, we use our model selection strategy to assess the required survey sizes 

to obtain reliable production function estimates for each of the studied industries. This type 

of insight is valuable to the Census Bureaus that need to determine the size of the surveys in 

the years in which Censuses are not performed.  Development of an optimism-corrected 

model selection method which allows the evaluation of estimator performance in both 

simulated datasets and the actual manufacturing survey data is the main contribution of 

Chapter IV. Additionally, evaluation of existing estimators on simulated data resulted in 

valuable general insights about the different estimators’ performance and led to the 

development of a novel nonparametric shape-constrained production function estimator. We 

describe this estimator which performs robustly on a learning set – testing set environment. 

Further, we argue that relative performance of an estimator on the real application dataset 

should be the main criterion to follow when choosing a production frontier estimation for that 

dataset, as the application may have characteristics that favor the use of that particular 

estimator. 

The functional estimator we propose as an additional contribution to our model 

selection framework, Convex Adaptively Partitioned Nonparametric Least Squares (CAP-

NLS), integrates the idea of adaptive partitioning from CAP (Hannah and Dunson, 2013) 

with the global optimization strategy of the CNLS estimator. The CNLS estimator is an 

example of a sieve estimator which is extremely flexible and is optimized to fit the observed 
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data set, White and Wooldridge (1991) and Chen (2007). Alternatively, the adaptive least 

squares-based CAP developed in the machine-learning literature has demonstrated good 

predictive performance by integrating model estimation and selection strategies, (and thus 

resulting in parsimonious functional estimates) as opposed to only optimizing fit on the 

observed dataset. Specifically, Hannah and Dunson (2013) recognize that the CNLS 

estimator overfits the observed dataset at the boundaries of the data, thus affecting the quality 

of prediction for the true underlying function. Other researchers, such as Huang and 

Szepesvári (2014) and Balázs, György and Szepesvári (2015) build examples in which CNLS 

estimation results in infinite Mean Squared Error due to overfitting of the sample. 
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CHAPTER II* 

ENDOGENOUS ESTIMATION OF THE NUMBER OF STATES ON A STATE-

CONTINGENT PRODUCTION FRONTIER 

This chapter is the first work to endogenously estimate the number of states in a state-

contingent stochastic production frontier, as well as the first to perform a goodness of fit 

analysis on a state-contingent production frontier model. We apply the proposed BDMCMC 

method to a case study of 44 rice farms in the Philippines operating between 1990 and 1997, 

which were investigated in Villano, O’Donnell and Battese (2004) and later in O’Donnell 

and Griffiths (2006). In addition, we relax the linear time trend assumption of the models in 

O’Donnell and Griffiths (2006) for changes in production over time, to consider a model 

with a state-independent dummy time trend, which more accurately separates the frontier 

shifts over time from state-contingent yield variability, inefficiency, and noise. We discuss 

the implications of the use of both the linear time trend and dummy time trend models on the 

estimated posterior parameters, the relevant economic interpretations, and the existence of 

state-specific production. We describe the use of Mean Squared Error (MSE) and visual 

tools, such as Quantile-Quantile (QQ) plots, to compare the performance of a model using 

the full distribution of the number of states versus a model using only the mode of this 

distribution. 

* Reprinted with permission from “A birth-death Markov Chain Monte Carlo Method to Estimate the Number

of States in a State-Contingent Production Frontier Model” by Preciado Arreola, J.L. and A. L. Johnson, 2015. 

American Journal of Agricultural Economics, 1267-1285, Copyright by American Agricultural Economics 

Association. 
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The chapter is organized as follows: The Model section, Section II.1, presents the 

functional form and our assumptions about the production frontier, the dependence and 

distributional assumptions about the frontier parameters to be estimated, and the steps 

followed to conduct inference. The Empirical Application section, Section II.2, describes the 

rice farm case study including the application-specific prior parameter values, the estimation 

results, our economic interpretations, and our incorporation of some common economic 

constraints. We test the fit and robustness of our results and discuss our sensitivity analyses. 

We also assess the degree of label-switching present in our results.  

 

II.1 Model 

We estimate a production frontier and the number of states using a BDMCMC 

algorithm with a “nested” Gibbs sampler. This Gibbs sampler draws from the conditional 

posterior distributions of the parameters to be estimated and infers the frontier coefficients, 

precisions, state probabilities, state allocations and inefficiency terms of the observations in 

the dataset for a fixed number of states. In order to obtain expressions that are proportional to 

these conditional posterior distributions of each parameter, we must multiply the joint prior 

distribution against the likelihood function - the joint density of all output levels in our 

dataset conditioned on all other parameters - to obtain an unnormalized joint posterior 

distribution. The joint prior distribution is defined by the assumed prior distributions on all 

parameters and by the Bayesian Hierarchical model that specifies the dependence structure 

between them.   

The BDMCMC algorithm selects the number of states by computing the birth and 

death rates for states through likelihood comparisons (see step 1 of the algorithm in the 
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Bayesian Inference via BDMCMC subsection below) between the current model and models 

where an individual state is removed. Once these rates are obtained at each pass of the 

BDMCMC algorithm, a birth or death happens within a Markov Chain describing the number 

of states. Stephens (2000) proves that the stationary distribution of this Markov Chain, 

obtained after a large enough number of births and deaths, converges to the correct posterior 

distribution for the number of states. Moreover, Stephens (2000) proves that using the Gibbs 

sampler to obtain draws from all frontier parameters each time a state is born or dies results 

in a valid joint distribution of all of the parameters estimated within the BDMCMC 

algorithm, which simultaneously solves both the estimation and model selection problems. 

 

II.1.1 Production Frontier Regression Model 

We first define a state-contingent production frontier regression model (henceforth, 

the production frontier) that will be estimated by our BDMCMC algorithm  

 ln Y = fj(X1, …, Xk)+ε, (II.1) 

where fj is the production function associated with state j, and ε=v-u is a composite error 

term obtained by subtracting a non-negative variable u representing the technical inefficiency 

of a farm relative to the efficient frontier from a random effect v, which follows a finite 

normal scale mixture distribution centered at 0. We assume all fj’s have the same functional 

form; however, the production frontier coefficients are state-dependent following O’Donnell 

and Griffiths (2006)’s most general random effects model. We scale all input variables to 

their mean values and adapt the model for a panel context resulting in 

 ln Yit=ditβ0
+(xit⊗dit )'β

-0
+ vit-ui.   (II.2) 

Note that we assume a fully separable intercept term β
0
 from the chosen functional 
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form. To have state-varying coefficients, we define J to be the number of states and dit as a 

vector containing J state-specific binary dummy variables. Moreover,  β
0
=[ β

01
,…, β

0J
]' is a 

vector of state-varying intercepts, ⨂ is the Kronecker product,  β
-0

=[ β
-01

,…, β
-0J

]' is a vector 

of state-varying slope coefficients and β=[ β
0
,  β

-0
]' is a vector containing the coefficients of 

all J frontiers. The dit vector is used to specify the distributions of the random effects 

 vit~N(0,[d
it
h]

-1
), where h is the vector of state-specific precisions. Finally, the output vector 

Yit is the rice yield of farm i at time t.  

Next, we consider two distinct time trend assumptions and fit separate models for 

each: in the first model, the linear time trend model,  β
TRj

 (included in β
-0j

), is a scalar and in 

the second model, the dummy time trend model, it is a vector of state-independent dummy 

coefficients for each year, i.e.  β
TRj

=[ β
TR2j

,…, β
TRTj

] with β
TRtj

=  β
TRtk

 ∀ j,k ∈{1,…,J} , for 

each year t ∈{2,…,T} in the timespan. The dummy time trend model is important, because 

the results produced by models with less flexible time trends, i.e. the linear trend model and 

the models estimated by O’Donnell and Griffiths (2006), could lead us to attribute output 

variations over time to the state-specific effects on mean output, to noise, and/or to 

inefficiency. 

 

II.1.2 Bayesian Hierarchical Model 

To estimate the parameters of the production frontier with a Gibbs sampler, as done 

in our application of BDMCMC, we define a dependence structure using a Bayesian 

Hierarchical model. Figure 1 illustrates this hierarchical structure; the circles indicate 

parameters to be inferred during the BDMCMC algorithm, the squares indicate known or 
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assumed quantities, and the arrows indicate that the value of the parameter located at the end 

of an arrow depends on the value of the parameter at its beginning (see the Prior and 

Conditional Posterior Distributions subsections for details of the explicit mathematical prior 

and posterior dependence among the parameters). 

Similar to Richardson and Green (1997), our hierarchical model extends the models 

in O’Donnell and Griffiths (2006) by including g and m as hyperparameters of Θ (the 

precision of the random effect associated with each state), which allows for smooth precision 

estimates among the states. Similar to O’Donnell and Griffiths (2006) and Hurn, Justel and 

Robert (2003), the output is dependent on the input matrix X leading to a standard regression 

structure. For clarity, we include J, the number of states in the model, and the 

hyperparameter for its prior mean, λ. Further, we define π, a vector of state probabilities (or 

the probability that any given observation is assigned to a particular component of the 

mixture) and ρ to be a hyperparameter of u related to median efficiency. Finally, note that the 

dependence structure detailed in Figure 1 can also be described as the joint prior distribution, 

given by 

p(β,h,d,u,π,ρ,Θ,J) = p(β|J,ξ,κ) p(h|J,ν,Θ) p(π|J,δ) p(d|π) p(u|ρ,ζ) p(Θ|g,m)  

p(ρ|τ*) p(J|λ) 

(II.3) 

and the likelihood function p(y|X,β,h,d,u,π,ρ,Θ,J). Note the output, y, appears in the 

likelihood function which is further discussed in the likelihood function section below, but 

not in the joint prior distribution.  
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Figure 1 Directed acyclic graph for the hierarchical model used for parameter estimation. All 

parameters to be inferred are in circles. 

II.1.3 Prior Probability Distributions

To obtain conditional posterior distributions from which the Gibbs sampler will draw, 

we define the prior probability distributions for the parameters to be estimated. The prior 

distributions are dependent on the known prior hyperparameter values. Our production 

frontier includes a large number of parameters to be estimated and thus requires us to define 

proper prior distributions on all parameters. A commonly used prior distribution for the 

regression coefficients and precisions of a production frontier in a Bayesian framework is the 

Normal – Inverse Gamma (NIG). We also use the prior distributions to impose structure to 

the states being estimated. Although a loss function has been used to address the state 

identifiability problem (Hurn, Justel and Robert 2003), we use a labeling restriction that 

ranks the states of nature from “least favorable” to “most favorable” in order to gain 

knowledge about the relative desirability of each state. We define our labeling restriction to 

constrain the expected log-output from a lower-indexed state to be on average less than that 
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of a higher-indexed state with the NIG assumption to obtain 

β ~N(ξ,κ)⋅I(E( ln Yit|xit=0,j=1) ≤…≤E( ln Yit|xit=0,j=J) ), where ξ, κ are fixed and the 

indicator function describes the labeling restriction.  

Consistent with the NIG prior, we assign a gamma prior for each state-specific 

precision, hj, such that hj~Γ(ν,Θ) for all j∈{1,…,J}, where its hyperparameter Θ has a prior 

Γ(g,m) distribution and ν is fixed. We choose a uniform prior for π over J states, a 

Multinomial(π) distribution for d and following Stephens (2000), we choose the number of 

states to follow a prior Poisson distribution, Po(λ). Also, we assume a (properly normalized) 

truncated exponential prior distribution for the inefficiency term of the ith farm, ui. Thus, 

ui~c∙expo(ρ)⋅I(ui≤- log(ζ) ), where c is a normalization constant and -log(ζ) is an upper bound 

on the inefficiency term. Note that this upper bound translates into a lower bound ζ on the 

technical efficiency of each farm (TEi) due to TEi= exp(-ui)
7. Finally, we assume that ρ, the 

prior hyperparameter of the ui terms, follows an expo (-1/ln(τ*)) distribution, where we 

assume that τ* is a prior estimate of the median technical efficiency.  

 

II.1.4 Likelihood Function 

Having specified the prior distributions and dependence structure for our parameters, 

we now need to specify a likelihood function to multiply with them in order to obtain 

expressions that are proportional to the conditional posterior parameter distributions that our 

Gibbs sampler will draw from. We construct the standard likelihood for a mixture of 

                                                 

7 While there are justifications for this in some industries, in this chapter, this assumption is needed for 

estimation proposes. 
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Gaussians with unobserved state allocations by weighting the Gaussian likelihoods with 

different coefficients and precisions, each of which corresponds to a particular component in 

the mixture, times the component’s relative frequency within the mixture.  In equation (II.3) 

below, the total number of farms is denoted by N and the index of the last time period 

denoted by T. Below y denotes the vector of all observations ln(Yit). Note that we use “…” 

to denote conditioning an all parameter models except for the one of interest. 

y|…~(2π)
-NT/2 ∏ ∏ {∑ πj√hj

J

j=1

exp[-0.5hj( ln(Yit) -β
0j

-xit
' β

-0j
+ui)

2
]}

T

t=1

N

i=1

 (II.4) 

  

II.1.5 Conditional Posterior Distributions 

We multiply the likelihood against the joint prior distribution assumed for our 

parameters to obtain an expression that is proportional to their joint posterior distribution, 

which we then condition. To obtain valid parameter estimates, given a fixed J, for the 

production frontier coefficients β, precisions h, state probabilities π, the dummy variables to 

assign observations to states d, the inefficiency terms ui and hyperparameters Θ and ρ, we 

need to draw from their conditional posterior distributions using the Gibbs sampler until the 

parameter estimates reach stationarity. For our production frontier model, and given our 

choices of dependence structure, prior distributions and likelihood, the conditional posteriors 

for β, h, π and d correspond to the results of a NIG finite Gaussian mixture model for fixed J, 

while the ones corresponding to ui, Θ and ρ are straightforward to derive. Note that the 

conditional posterior distribution for ui is not conjugate, it is a 2-sided truncated normal, but 

has a truncated exponential prior distribution. For simplicity, we define zit=(dit
' ,(xit⨂dit)

'
)
'
. 
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Noting that parameters nj refer to the number of observations allocated to state j, the 

conditional posterior distributions for our parameters are given by the following8: 

π|…~D(δ+n1,…, δ+nk) (II.5) 

β|…~N(ξ̅, κ̅)⋅I(E( ln Yiy|xit=0,j=1) ≤…≤E( ln Yiy|xit=0,j=J) ) (II.6) 

hj|…~Γ{v+
1

2
 nj, Θ+

1

2
∑ [y

i
+ui-(β0jit:zit=j +xitβ-0j

)]
2
}  (II.7) 

d|…= ∏ ∏ fM(dit|1,T
t=1

N
i=1 d̅it)   (II.8) 

Θ|…~Γ(g+Jν, m+ ∑ hjj )  (II.9) 

ui|…~N(μ
ui

,σui
2 )⋅I(0≤ui≤- log(TEl) ) (II.10) 

ρ-1|…~Γ(
N+1

u'jN- ln(τ*)
,2(N+1)).  (II.11) 

  

II.1.6 Bayesian Inference via BDMCMC 

Having specified the conditional posterior distributions from which we will sample, 

the last step is to simultaneously estimate the parameters of our state-contingent production 

frontier model and its number of states. Prior to explaining this, we will discuss some 

technicalities of the random variable simulation process conducted in our Gibbs sampler, as 

random variable generators do not suffice for simulation of our model’s parameters. Efficient 

sampling from the restricted normal distribution of β becomes critically important as the 

dimensionality of the model increases, for larger values of J, therefore we incorporate an 

efficient sampling method (Geweke 1991) when the standard accept-reject criterion fails to 

                                                 

 
8 See Appendix A for the posterior hyperparameter expressions. 
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produce a satisfactory draw from β’s posterior distribution after 30 trials. We select this 

number to ensure a reasonable running time, while frequently sampling from the simple 

accept-reject sampler, and because Geweke’s sampler produces draws whose variance 

depends on the number of iterations of its internal algorithm, which we want to avoid where 

possible. Unlike O’Donnell and Griffiths (2006), we use the 2-sided truncated normal 

sampler (Robert 1995) to simulate from the posterior distribution. Finally, we nest our Gibbs 

sampler within the BDMCMC algorithm and solve the model estimation and model selection 

problems simultaneously by adapting the algorithm outlined in Stephens (2000). Letting 

η(s)=(β
(s)

,h
(s)

)
'
, the steps in our BDMCMC algorithm are: 

1. Run the Birth and Death process, starting at time s for a fixed time s0, fixing d, ρ-1,u,Θ,π 

and η. Keep J
(s+s0)

 as a draw from the conditional posterior of J. 

a) Fix a birth rate λb = λ. 

b) Compute death rate for each component δj(π,η)=
L((π,η)\(πj,ηj

))

L(π,η)
    ∀j. 

c) Compute total death rate δ(π,η)= ∑ δj(π,η)j . 

d) Compute next time snew until a birth or death occurs from an expo(λb+δ(π,η)) 

distribution and let s*=s+ snew. 

e) Decide type of jump: Birth with probability 
λb

λb+δ(π,η)
 or death with probability 

δ(π,η)

λb+δ(π,η)
. 

f) Adjust sizes of d, π and η according to the type of jump. For birth jumps, 

generate π according to a Beta(1,k) distribution and generate a new component for 

η from its prior. Assign the new component an index j
*
 such that it does not violate 
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the labeling restriction. For death jumps, select a component to die with 

probability δj(π,η) δ(π,η)⁄ .

g) Repeat until  s*≥s+ s0.

2. Draw d(s+1) from p(d| J(s+1), π(s+s0),η(s+s0),Θ
(s)

,ρ-1(s),u(s)).

3. Draw Θ
(s+1)

 from p(Θ| J(s+1), π(s+s0),η(s+s0),d(s+1),ρ-1(s),u(s)).

4. Draw π(s+1) from p(π| J(s+1), η(s+s0),d(s+1),Θ
(s+1)

,ρ-1(s),u(s)).

5. Draw η(s+1) from p(η| J(s+1)
, π(s+1),d

(s+1)
,Θ

(s+1)
,ρ-1(s),u(s)).

6. Draw ρ(s+1)from p(ρ| J(s+1)
, π(s+1),η(s+1),d

(s+1)
,Θ

(s+1)
,u(s)).

7. Draw u(s+1)from p(u| J(s+1)
, π(s+1),η(s+1),d

(s+1)
,Θ

(s+1)
,ρ-1(s+1)).

Note that the choice of λb is inconsequential for the algorithm to converge, because λb 

can take any finite positive value (Stephens 2000). Since the birth or death jumps of the 

algorithm must consider the labeling restriction, we add another instruction to Step 1, (f), 

which assigns the newly generated index component j
*
 such that its intercept is larger than

that of the (j
*
-1)th component and smaller than that of the (j

*
+1)th component. Finally, note

that drawing from our Gibbs sampler takes place on steps 2-5. 

II.2 Empirical Application

As mentioned previously, our dataset contains observations for 44 rice farms 

operating in the Tarlac region of the Philippines between 1990 and 1997. Each observation, 

which refers to a farm i at year t, comprises the value for the yield (in tons), the output 

variable Y, and the values for Area planted (hectares planted), Labor used (person-days), and 

Fertilizer (kilograms of nitrogen, phosphorus and potassium or NPK fertilizer) used, the input 
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variables, X1, X2 and X3, respectively. Summary statistics for our database, identical to the 

ones shown in O’Donnell and Griffiths (2006), are shown in Table 1. We use a translog 

production function, for which the input vector is 

xit=[TRit, ln(X1it) , ln(X2it) , ln(X3it) , 0.5ln(X1it)
2 , ln(X1it) ln(X2it) , 

ln(X1it) ln(X3it) , 0.5ln(X1it)
2, ln(X2it) ln(X3it) , 0.5ln(X3it)

2]',  (II.12) 

where TR is either a scalar or a vector of the binary dummy variables, depending on which 

model we consider. We scale all input variables at their means and define all of the dummy 

variables of the dummy time trend model as the difference in the yearly shift of the 

production year against the base year, 1990, following Baltagi and Griffin (1988); note that 

this base year has no associated time dummy variable. Since the variables are scaled at their 

input means, ordering states by their intercept values ensures that the mean log-output of a 

higher-indexed state will be greater than that of a lower-indexed state, i.e. I(β
01

≤β
02

≤…≤β
0J

) 

is equivalent to I(E( ln Yiy|xit=0,j=1) ≤…≤E( ln Yiy|xit=0,j=J)) .  

 

Table 1 Summary Statistics 

 

Variables Mean SD Minimum Maximum 

Y = Rice output (tons) 6.47 5.08 0.09 31.10 

X1 = Area 2.12 1.45 0.20 7.00 

X2 = Labor 107.20 76.65 8.00 436.00 

X3 = Fertilizer 187.05 168.59 3.40 1030.90 

 

The current section is organized as follows: the application-specific prior parameter 

values are detailed on the Prior Parameter Values subsection, the estimation results and 

economic interpretations are discussed on the Posterior Parameter Estimates and 
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Interpretation subsection; also, some common economic constraints incorporated to our 

models are discussed in the Incorporating Monotonicity and Convexity constraints to the 

Frontier Model subsection. We then proceed to test the fit and robustness of our results, in 

the Goodness of Fit subsection and Sensitivity Analysis and a Label-switching subsection 

respectively.     

   

II.2.1 Prior Parameter Values 

We begin by selecting a value of 1J for hyperparameter δ, which is a J-dimensional 

vector of ones, to reflect the least possible prior knowledge about the probability occurrence 

of each state of nature. We select prior values for the slopes and intercepts, ξ and covariance 

matrix κ, so that the intercept terms of ξ comply with our labeling restriction and the slopes 

of the main variables have a relatively small value with a large variability and thus are not 

significant a priori. We assign no prior significance and large variability to the coefficients 

corresponding to the interaction terms. We select precision-related hyperparameters, ν, g and 

m, based on the range of the errors resulting from a frequentist regression using a translog 

functional form and considering a linear time trend. We use 3, O’Donnell and Griffiths 

(2006)’s result for the number of states, as the prior value for λ, which is the mean of the 

distribution describing the number of states. Finally, we consider a prior median Technical 

Efficiency (TE) τ*of 0.875 with a prior lower bound of 0.7 (see corresponding subsections 

for the sensitivity analysis performed on λ, τ* and the prior lower bound of TE). Table 2 

summarizes the prior values for the hyperparameters. 
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Table 2 Summary of Prior Values for Model Hyperparameters 

 

Hyperparameter Prior Value Justification 

Intercepts on ξ,κ  

(2j-1)/2Jth percentile of output 

vector, where j is the state number 

,2.25 

Comply with labeling 

restriction. Assign large prior 

variance. 

Time trend on ξ,κ  

(for linear time 

trend model) 

0.02,0.15 

Annual output growth rate 

from database. Assign large 

prior variance. 

Time dummies on 

ξ,κ  
(for dummy trend 

model) 

0.02*(year-1990), 0.15 

Annual output growth rate 

from database. Assign large 

prior variance. 

Hyperparameter Prior Value Justification 

Slopes on ξ,κ 
0.5,6.5 

Small value, not significant 

due to its large variance.  

Interaction terms 

on ξ,κ 

0,26 

Consider no impact of input 

interactions a priori. Also, 

assign large prior variance. 

δ 1J 

Consider all states to be 

equiprobable a priori; assign 

smallest possible weight to 

prior distribution. 

ν 2 Same as Richardson and 

Green (1997) to ensure data-

dependent vague precision 

prior; {eit} are the errors of a 

least squares regression with 

the translog function. 

g 0.2 

m 

100*g/(v*( max
i,t

eit- min
i,t

eit)
2
) 

λ 

3 

Best estimation obtained by 

O’Donnell and Griffiths 

(2006) 

Max. of number of 

allowed states 

100 

Needed for BDMCMC; 

choose very large value so as 

not to affect estimation 

τ* 
0.875 

Assumed prior median 

technical efficiency 

ζ 
0.7 

Assumed prior lower bound 

for technical efficiency 
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II.2.2 Posterior Parameter Estimates and Interpretation

We run both the linear and dummy time trend models as well as their monotonicity-

constrained versions. Here, we discuss the results of the monotonicity-constrained linear and 

dummy time trend models and compare them against those of the monotonicity-constrained 

fully state-contingent model in O’Donnell and Griffiths (2006). We run 5500 iterations for all 

our models, discarding the first 500 as burn-in. From the observed mixing on the trace plots 

for the number of states, precisions, state probabilities and frontier coefficients (available in 

Appendix B for both the monotonicity-constrained dummy time trend model and the 

monotonicity-constrained linear time trend model), this period appears to be sufficient. After 

estimating the frontier, we find that the posterior distribution of the number of states of 

nature, J, is unimodal with a mode 3 for both monotonicity-constrained models. Moreover, 

the highest probability region of the posterior distribution of J allows us to create a 90% 

credible set including the values 2, 3 or 4 (Figure 2). This distribution, which provides 

evidence of at least two major groups of farms based on differences in environmental 

conditions, supports our state-contingent hypothesis. 
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Figure 2 Posterior distribution for the number of components in the mixture for dummy time 

trend. 

Moreover, if hyperparameter Θ is held fixed, our linear time trend model is 

equivalent to the fully state-contingent model in O’Donnell and Griffiths (2006), but with Θ 

held fixed, our estimation procedure results in a posterior distribution for the number of 

states with a mode of 2 versus the 3 states estimated in O’Donnell and Griffiths (2006). This 

latter finding suggests that O’Donnell and Griffiths (2006) overestimate the number of states 

by relying on BIC as the model-selection criterion. Tables 3a and 3b shows the results for our 

models for J=3 and for the fully state-contingent models in O’Donnell and Griffiths (2006). 

The expected efficient log-output for the first state (the intercept term) in our two 

models, is not as low as the estimates in O’Donnell and Griffiths (2006). Hence, we infer that 

factors other than land area, labor and fertilizer have fewer detrimental effects relative to the 

results of O’Donnell and Griffiths (2006). For instance, if we exponentiate the intercepts to 

obtain expected efficient yields for the first year of the timespan, 1990, we find that for state 
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2 of our dummy time trend model this figure is only 6% higher than that of the most 

unfavorable state (state 1) whereas this same comparison results in a 200% difference for 

O’Donnell and Griffiths (2006). 

We define four confidence levels (99% - highly; 95% - moderately; 90% - mildly; 

and 85% - barely significant)9, to compare our two models with O’Donnell and Griffiths 

(2006). For our two models and O’Donnell and Griffiths (2006), the Area, Labor, and the 

state-contingent intercepts are significant at approximately the same levels for all states. The 

primary difference is in the estimated effect of fertilizer, which is highly significant for all 

states in our dummy model, moderately significant for two states in our linear model, and 

highly significant only for state 1 in O’Donnell and Griffiths (2006); recall that state 1 has 

unfavorable (low expected yield) weather conditions. Unlike O’Donnell and Griffiths (2006), 

however, our two models do not estimate negative fertilizer elasticities for state 1. O’Donnell 

and Griffiths (2006) posit excessive fertilizer application as detrimental to rice yield in bad 

weather conditions. We suggest that the disagreement in our parameter estimates and 

O’Donnell and Griffiths (2006)’s are likely driven by the differences between our worst 

state’s expected yield results. O’Donnell and Griffiths (2006)’s worst state is associated with 

a significantly lower yield compared to ours (see Tables 3a and 3b). 

O’Donnell and Griffiths (2006)’s significantly lower estimates of the yield in state 1 

are likely to have effects on the parameter estimates of the production function associated 

with that state. Our positive elasticity results for fertilizer are supported by SriRamaratnam et 

9 For the sake of computational simplicity, we use classical hypothesis testing, because we 

only want to evaluate the intercepts, time trends, and elasticities, which have a posterior 

normal distribution. Thus, the normality of classical hypothesis testing holds. 
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al. (1987). They show that for yield per unit area levels similar to the ones obtained in our 

state 1, fertilizer, ranging from very low to very high concentrations per unit of area, has a 

positive effect on field yield. Thompson et al. (1985), show similar results in the context of 

ratoon crops. Thus, we conclude that for all states estimated in our application, fertilizer has a 

non-decreasing relationship to yield. Furthermore, this result does not contradict the notion of 

fertilizer being a risky input in a profit-maximization context, as the increase in yield may not 

out weight its acquisition and application costs. Moreover, O’Donnell and Griffiths (2006) 

shows moderately or barely significant elasticities for the squared fertilizer term for all states. 

Combining these with their fertilizer elasticities, O’Donnell and Griffiths (2006)’s results and 

ours are roughly consistent for states 2 and 3, suggesting a moderately to barely significant 

positive elasticity of fertilizer on rice yields. 

The planted area elasticities of our two models seem to be slightly higher for states 1 

and 3 and significantly higher for state 2, suggesting a higher per hectare yield relative to 

O’Donnell and Griffiths (2006)’s results. For labor, our estimated elasticities and O’Donnell 

and Griffiths (2006) are similar. Finally, and unlike O’Donnell and Griffiths (2006), our two 

models show no significant second-order or interaction terms and first order input 

coefficients have a sum close to unity. From these results, we conclude that approximately 

constant returns-to-scale characterize the Tarlac region’s rice production. 
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Table 3a Estimated Production Frontier Coefficient Means for BDMCMC Linear, Dummy 

Time Trend and O’Donnell and Griffiths (2006) Models at the Posterior Mode J=3 

Means 

Linear Trend Dummy Trend 
 O’Donnell and 

Griffiths (2006) SC-all 

Coefficient State Free Mono Free Mono Free Mono 

Intercept 1 1.886**** 1.886**** 1.917**** 1.918**** 1.118**** 1.112**** 

2 2.002**** 2.002**** 1.983**** 1.976**** 1.814**** 1.803**** 

3 2.098**** 2.101**** 2.061**** 2.049**** 2.082**** 2.079**** 

Time Trend 1 0.024* 0.023* Multiple Multiple 0.028** 0.029** 

2 0.011 0.012 Multiple Multiple -0.014 -0.013 

3 0.013 0.014 Multiple Multiple 0.009 0.010 

ln(Area) 1 0.708**** 0.696**** 0.735**** 0.623**** 0.615*** 0.434*** 

2 0.645**** 0.637**** 0.66**** 0.584**** 0.133 0.143** 

3 0.556**** 0.546**** 0.586**** 0.577**** 0.561* 0.369*** 

ln(Labor) 1 0.016 0.036 -0.033 0.127 -0.333 0.107 

2 0.071 0.079 0.044 0.138 0.024 0.119** 

3 0.231** 0.241** 0.201 0.204** -0.106 0.184** 

ln(Fertilizer) 1 0.197 0.193 0.212 0.187*** -0.199 -0.368*** 

2 0.151** 0.151** 0.183 0.18*** 0.112 0.049 

3 0.15** 0.152** 0.159 0.169*** 0.313** 0.231 

ln(Area)^2/2 1 -0.259 -0.297 -0.256*** -0.297 0.011 0.006 

2 -0.558 -0.545 -0.40**** -0.398 -0.408 -0.395 

3 -0.637 -0.619 -0.59**** -0.567 -0.690 -0.158 

ln(Area)* 

ln(Labor) 

1 0.420 0.481 0.413 0.454 0.176 0.213 

2 0.611 0.592 0.494 0.504 0.336 0.391 

3 0.740 0.731 0.732 0.700 0.700 0.379 

ln(Area)* 

ln(Fert.) 

1 0.157 0.141 0.165 0.093 0.171 0.048 

2 0.159 0.169 0.156 0.106 -0.005 -0.048 

3 0.039 0.033 0.047 0.047 -0.529 -0.492 

ln(Labor)^2/

2 

1 -0.441 -0.537 -0.442** -0.399 -0.580 -0.366 

2 -0.493 -0.481 -0.496** -0.501 -0.145 -0.066 

3 -0.772 -0.746 -0.827*** -0.779 -0.221 -0.408 

ln(Labor)* 

ln(Fert.) 

1 -0.307 -0.278 -0.287 -0.262 -0.288** -0.223 

2 -0.349 -0.346 -0.269 -0.228 -0.181 -0.204 

3 -0.145 -0.153 -0.106 -0.111 0.555 0.637** 

ln(Fert.)^2/2 1 0.151 0.133 0.119 0.136 -0.172 -0.228* 

2 0.129 0.117 0.085 0.091 0.152** 0.145** 

3 0.035 0.046 0.005 0.016 -0.395* -0.385* 

Precision 1 11.540 11.433 14.616 14.342 5.81 5.648 

2 12.809 12.985 14.752 14.701 8.513 8.528 

3 15.138 15.248 16.807 16.582 8.303 8.346 

State Prob. 1 0.296 0.293 0.347 0.330 0.312 0.306 

2 0.345 0.344 0.325 0.335 0.363 0.364 

3 0.358 0.361 0.327 0.333 0.325 0.330 

Note: *, **, ***, and **** denote significance at 15%, 10%, 5% and 1%, respectively 
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Table 3b Estimated Production Frontier Coefficient Standard Deviations for BDMCMC 

Linear, Dummy Time Trend and O’Donnell and Griffiths (2006) Models at the Posterior 

Mode J=3 

Standard Deviations 

Linear Trend Dummy Trend 
 O’Donnell and 

Griffiths (2006) SC-all 

Coefficient State Free Mono Free Mono Free Mono 

Intercept 1 0.102 0.098 0.075 0.071 0.200 0.196 

2 0.079 0.077 0.070 0.066 0.087 0.087 

3 0.085 0.085 0.080 0.074 0.108 0.103 

Time Trend 1 0.020 0.020 Multiple Multiple 0.018 0.018 

2 0.015 0.015 Multiple Multiple 0.016 0.016 

3 0.014 0.014 Multiple Multiple 0.014 0.014 

ln(Area) 1 0.270 0.268 0.060 0.158 0.296 0.239 

2 0.209 0.206 0.204 0.157 0.195 0.103 

3 0.192 0.192 0.230 0.161 0.471 0.241 

ln(Labor) 1 0.268 0.265 0.215 0.109 0.242 0.094 

2 0.206 0.203 0.199 0.115 0.184 0.090 

3 0.173 0.171 0.188 0.131 0.347 0.144 

ln(Fertilizer) 1 0.174 0.177 0.218 0.105 0.239 0.227 

2 0.122 0.119 0.197 0.096 0.124 0.110 

3 0.102 0.108 0.170 0.090 0.201 0.190 

ln(Area)^2/2 1 0.742 0.744 0.128 0.641 0.339 0.344 

2 0.738 0.688 0.113 0.674 0.933 0.927 

3 0.921 0.867 0.100 0.837 1.795 1.416 

ln(Area)* 

ln(Labor) 

1 0.659 0.647 0.602 0.567 0.341 0.334 

2 0.656 0.636 0.709 0.607 0.647 0.641 

3 0.780 0.764 0.905 0.770 1.237 1.154 

ln(Area)* 

ln(Fert) 

1 0.414 0.407 0.517 0.330 0.241 0.229 

2 0.380 0.360 0.633 0.341 0.456 0.415 

3 0.430 0.407 0.815 0.401 0.581 0.578 

ln(Labor)^2/2 1 0.882 0.896 0.327 0.786 0.510 0.489 

2 0.861 0.864 0.361 0.811 0.733 0.729 

3 0.993 0.981 0.417 0.975 1.332 1.296 

ln(Labor)* 

ln(Fertilizer) 

1 0.374 0.399 0.735 0.301 0.223 0.218 

2 0.365 0.354 0.837 0.327 0.459 0.437 

3 0.404 0.391 0.993 0.372 0.495 0.484 

ln(Fertilizer)^2/2 1 0.281 0.288 0.297 0.205 0.189 0.186 

2 0.241 0.232 0.351 0.235 0.109 0.106 

3 0.297 0.280 0.390 0.267 0.358 0.357 

Precision 1 3.075 3.014 3.555 3.870 1.082 1.084 

2 3.221 3.254 3.866 4.415 1.298 1.286 

3 3.639 3.706 4.494 0.094 1.466 1.513 

State Prob. 1 0.091 0.091 0.087 0.097 0.060 0.063 

2 0.107 0.109 0.092 0.087 0.050 0.051 

3 0.093 0.091 0.081 0.060 0.058 0.062 
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The time trend effects are only significant for state 1 in O’Donnell and Griffiths 

(2006)’s results, indicating either technological progress regarding the methods to handle bad 

weather conditions, or increasingly more benign “bad” weather conditions throughout the 

timespan. Our state-contingent linear trend model, which shows that the time trend 

coefficients are barely significant for state 1, partially supports this insight. Our time trend 

coefficient for state 3, which is the largest in magnitude, aligns with O’Donnell and Griffiths 

(2006). Furthermore, our dummy time trend model gives an additional insight into changes in 

the production environment of the Tarlac region over time. Thus far, the only indicator of the 

overall change in production conditions over time is O’Donnell and Griffiths (2006)’s model 

with J=1 (equivalent to the RE model in the O’Donnell and Griffiths (2006) paper), which 

indicates a significant linear trend coefficient of 0.014. Figure 3, shows a more complicated 

pattern of output fluctuation over time, as the dummy time trend model’s coefficient values 

relative to the base year are at least barely significant for every year except for 1991 and 

1994, and they show that both “good” (1997) and “bad” (1996) years occur. 

The state-contingent intercepts for the dummy time trend model are slightly more 

similar to one another than for the linear time trend model, while the estimated precisions are 

larger for the dummy trend model. Both of these results indicate that the dummy trends 

capture a larger percentage of output variability. This finding translates into a smaller 

percentage of the expected output being assigned to the unobserved variables modeling the 

different states (for details, see the Label-switching subsection). In general, the precisions of 

the noise terms are larger in our two models than in O’Donnell and Griffiths (2006), which is 

consistent with the smaller MSE obtained using our models (for details, see the Goodness of 

Fit subsection). The technical efficiency estimates for our two models have a Spearman 
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correlation coefficient of roughly 80% if compared to O’Donnell and Griffiths (2006), 

meaning that the efficiency rankings do not change radically (see top figure on page 47). For 

the 44 rice farms as a group, the mean technical efficiency estimated using either the dummy 

or the linear time trend models is lower than O’Donnell and Griffiths (2006). However, if we 

set a lower bound on technical efficiency to 0.8, our result is less than 1% different from that 

of O’Donnell and Griffiths (2006). In any case, O’Donnell and Griffiths (2006)’s TE 

distribution differs from the results of our two models, based on a series of Kolmogorov-

Smirnov tests with p-values lower than 0.1% for the null hypothesis of distributional 

equality. One exception occurs when we compare O’Donnell and Griffiths (2006)’s TE 

distribution with our linear model with a lower bound on technical efficiency set to 0.8, 

where the p-value for the null hypothesis is equal to 0.105. Hence, the hypothesis is not 

rejected at the usual significance levels, indicating statistically equivalent distributions. 
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Figure 3 Dummy trend compared against the state-contingent linear time trends. 

 

When comparing the random effects model against a fully state-contingent model, 

O’Donnell and Griffiths (2006) find a 7% higher mean TE when using the state-contingent 

model. While we can neither validate nor refute O’Donnell and Griffiths (2006)’s result, 

since our mean TE depends on the prior lower bound, we can assess the degree to which 

mean TE increases when using a state-contingent frontier, by estimating a random effects 

model with the same value for the lower bound on TE. For the dummy time trend model, a 

less than 1% increase in the TE is observed when considering a state-contingent frontier 

instead of a random effects frontier suggesting that state-contingency does not account for as 

much variability in output as O’Donnell and Griffiths (2006)’s results indicate. 

 

State 1 Linear trend: Top solid line 

State 2 Linear trend: Bottom solid line 

State 3 Linear trend: Middle solid line 

Dummy trend: Dashed line (circled values 

are at least barely significant) 
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II.2.3 Incorporating Monotonicity and Convexity Constraints into the Frontier Model 

To impose monotonicity of inputs, we use an accept-reject method to sample from the 

truncation region for the multivariate normal draws of β (Area, Labor, Fertilizer). We define 

the truncated region by the monotonicity and labeling restrictions. Our BDMCMC algorithm 

produces satisfactory monotonicity-constrained draws for both the linear time trend and the 

dummy time trend models. Tables 3a and 3b shows that there is not a large difference 

between the restricted and unrestricted models, implying that the unrestricted models nearly -

satisfy monotonicity. Regarding the imposition of a convexity constraint, we form the 

Hessian matrix to test quasi-convexity in the inputs used as suggested by O’Donnell and 

Coelli (2005). Given the selected dataset, production frontier model, and the distributional 

assumptions on the parameters, some observations do not comply with a convexity 

assumption. Hence, we conclude that by using a simple accept-reject method, it is not 

possible to estimate a convexity-constrained version of our two models using our BDMCMC 

algorithm for this data set. 

 

II.2.4 Goodness of Fit 

To assess the goodness of fit (GOF) of both our linear time trend and dummy time 

trend models, we compare the MSEs and the quantiles of the posterior distribution of the 

observed residuals with those of a Gaussian mixture distribution. First, we generate predicted 

output values from our state-contingent models by simulating from the posterior distribution 

of the number of states and then simulating from the posterior distribution of π, given the 

simulated value of J. Drawing the values for these parameters tells us both the state to which 

an observation is assigned and which production function will predict the output level. 
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Second, we compare these predicted output levels to the observed output level to obtain a 

prediction error and to calculate MSE. Third, we compare the prediction error quantiles 

against those of a Gaussian mixture error with mean zero and the corresponding state-

specific precisions in order to validate the distribution of the observed prediction errors. 

Fourth, since both the observed and theoretical standard errors depend on the generated 

values of the uniform random numbers we use to draw from the aforementioned posterior 

distributions, we run the error-generating algorithm until both the observed and theoretical 

standard error vectors reach stationarity. 

We consider two simulation scenarios: the full posterior scenario, which weights 

predictions from all values of J using the full distribution for the number of states described 

previously, and the posterior mode scenario, which gives full weighting to the mode of the 

posterior number of states. Table 4, listing the MSE values obtained for the monotonicity 

constrained linear and dummy time trend models, shows that the %RMSE is practically 

identical for all of our models and scenarios and is below 5%, indicating a good in sample 

performance of our estimated state-contingent production frontier model. Figure 4 and 

Appendix C show the QQ plots for the stationary vectors for the dummy time trend model 

and the linear time trend model, respectively. Note that the full posterior scenario exhibits a 

slightly better fit, and is consistent with our conclusions using MSE. Moreover, the two 

models predict different sets of outliers, each containing 15 observations, or roughly 4% of 

the total sample (the right column of figure 4 shows the outlier-free fit results). Based on the 

minimal difference in MSE obtained when using the mode for J instead of its full 

distribution, we conclude: 1) for our application, using the mode of the number of states to 

predict efficiency provides a reasonable fit; and 2) re-running the model assuming the mode 
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of the posterior distribution of J is the correct number of states gives a parsimonious and 

nearly as well-fitting model (bottom panels of figure 4). Our conclusions suggest that in this 

particular application using the mode of the posterior distribution for the number of states is a 

reasonable choice due to the small MSE difference versus using the full posterior distribution 

although this may not be the case in a general setting. Comparing both scenarios’ GOF shows 

that using a model based on a point estimate of the number of states, such as using the mode 

of the posterior distribution or the BIC-minimizing number of states, is in fact a special case 

of the full posterior model we develop. Table 4 also compares the MSE figures from our 

models and O’Donnell and Griffiths (2006). The MSE obtained from our models is roughly 

¼ the magnitude of the MSE obtained by using O’Donnell and Griffiths (2006)’s estimated 

frontier and could be a result of the additional smoothing provided in the estimation of the 

precision parameters, meaning that our models provide a better explanation of the variability 

in output.  

 

Table 4 MSE, RMSE, %RMSE Comparison Between Different Models 

 

MSE Linear Dummy ODG 

J = 3 0.075 0.074 0.290 

Full 0.075 0.072 - 

RMSE Linear Dummy ODG 

J = 3 0.274 0.272 0.538 

Full 0.273 0.269 - 

%RMSE Linear Dummy  ODG 

J = 3 4.7% 4.7% 9.2% 

Full 4.7% 4.6% - 

 



44 

II.2.5 Sensitivity Analysis

Implementing the BDMCMC algorithm allows us to analyze the estimated posterior 

probability distribution for the number of states of nature. To determine the model’s 

robustness, we investigate whether our results depend on the mean value of the prior 

distribution on the number of states of nature, λ. We assign integer values ranging from 1 to 

5 for lambda. In all instances, the posterior shows evidence of at least 2 states. 

For both the linear and dummy trend models, the posterior mean and mode for J 

indicate that J=3 in most cases. The 90% Highest Posterior Density (HPD) set for the value 

of J seems to be invariant over the distinct choices for λ. Finally, the maximum number of 

possible states J=100 is far from being reached during the estimation process, since 8 is the 

highest number of components at any point of time for all choices of λ. Therefore, we 

conclude that this parameter is immaterial to the estimation of the model. Table 5 

summarizes the findings for the dummy time trend model. 

Table 5 Sensitivity Analysis on Hyperparameter λ, Prior Mean on the Number of States for 

the Dummy Time Trend Model 

Prior 

lambda 

Posterior mode 

for J 

Posterior mean 

for J P(J=2|X) P(J=3|X) 90% HPDa 

1 3 3.02 0.3162 0.4076 {2,3,4} 

2 3 3.07 0.2938 0.413 {2,3,4} 

3 3 3.07 0.306 0.4018 {2,3,4} 

4 3 3.1 0.285 0.395 {2,3,4} 

5 3 3.1 0.3056 0.386 {2,3,4} 
a Highest Posterior Density set 
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To conduct sensitivity analysis on our assumptions about the inefficiency levels, we 

vary the prior lower bound on TE from its base value of 0.7 on the range [0.5, 0.8] in 0.1 

increments. that the mean of the posterior distribution for TE shifts upward relative to the 

prior lower bound, and that the distribution changes to accommodate the smaller range of TE. 

Figure 5, the scatterplot of the rankings considering all sensitivity scenarios against our base 

assumption, shows that there are no significant changes in the inefficiency rankings of the 

firms. Computing Spearman’s correlation coefficients for the base scenario rankings against 

those of the three alternative lower bound values shows that the lowest coefficient is 96.4% 

for the dummy time trend model, which still indicates a strong relationship between the 

rankings. Thus, we conclude that while the relative efficiency rankings do not change 

depending on the value of the lower bound on TE, our inefficiency distribution is sensitive to 

this assumption.  

Finally, we also perform sensitivity analysis on the prior median level of TE. We 

consider three different values for τ*: a low value of 0.825, O’Donnell and Griffiths (2006) 

base value of 0.875, and a high value of 0.925. Figure 6 shows that the inefficiency 

distribution is approximately independent on the choice of τ* for our dummy time trend 

model. The efficiency rankings are approximately maintained for the three scenarios, with 

the lowest Spearman’s correlation coefficient being greater than 99% overall compared to the 

base scenario. The results for our linear time trend model for all the sensitivity analyses 

performed are similar and their details can be found on Appendix C. 
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Figure 4 Goodness of fit results for dummy model. Results for full posterior scenario (top 

left panel), 4% outliers removed for full posterior scenario (top right panel), results for mode 

scenario(bottom left panel), 4% outliers removed for mode scenario (bottom right panel). 
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Figure 5 Rankings of the three alternative prior TE lower bound assumptions against the 

base value of 0.7 for the dummy trend model. 

 

 
Figure 6 Technical Efficiency distribution for low (top panel), base (middle panel) and high 

(bottom panel) values of τ* for the dummy trend model. 
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II.2.6 Label-Switching 

Our labeling restriction alternative addresses the mixture component label-switching 

problem by setting a labeling restriction to ensure that the drawn intercept value from a 

lower-indexed state has a lower value than that of a higher-indexed state on each iteration of 

the BDMCMC algorithm. Since the drawn values differ for each iteration, varying degrees of 

overlap between the intercept distributions can exist. Figure 7 (left panel) shows that the 

state-contingent linear time trend model gives a large degree of overlap between these 

distributions, i.e. the distribution of the first state’s intercept has approximately a 50% 

overlap with the second state’s intercept and the second state’s intercept distribution has 

almost a 55% overlap with the third state’s intercept distribution. Figure 7 (right panel) 

shows that the overlap is slightly more significant for the dummy trend model, i.e. if we plot 

all of the intercept distributions together, the compound histogram is slightly closer to 

unimodality, making the state-contingency of the intercepts less clear. Restated, the level of 

state-contingency of mean log-output diminishes only slightly when using a more flexible 

model to capture the time shifting effect, and continues to support the state-contingent 

hypothesis about the mean yield per state. Moreover, some coefficients, such as the labor-

related components, are noticeably state-contingent when comparing states 1 and 3 (see the 

dummy time trend model results in table 3a). 
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Figure 7 Distribution of intercept (expected output at time 0) for three states, the mode of J. 

Fitted curves for dummy time trend model (left panel), linear time trend model results (right 

panel). Solid line denotes distribution for state 1 intercept, dashed line denotes distribution 

for state 2 intercept and dotted line denotes distribution for state 3 intercept. 
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CHAPTER III 

A ONE-STAGE MULTIVARIATE SEMI-NONPARAMETRIC BAYESIAN CONCAVE 

REGRESSION METHOD TO FIT STHOCASTIC PRODUCTION FRONTIERS 

This chapter describes a method to estimate a production frontier that satisfies the 

axioms of monotonicity and concavity in a semi-nonparametric Bayesian setting. An 

inefficiency term that allows for significant departure from the homoscedastic prior 

distributional assumption is jointly estimated in a single stage. Our method is the first to 

estimate a nonparametric shape constrained frontier jointly with a flexible non-

homoskedastic inefficiency term allowing investigation regarding the tradeoff between the 

flexibility of a nonparametric production function and flexibility of the inefficiency term in 

cross-sectional data. Our Monte Carlo simulation experiments demonstrate that the frontier 

and efficiency estimations are competitive, economically sound, and allow for the analysis of 

larger datasets than existing nonparametric methods. We use the proposed method to 

investigate the Japan’s concrete industry for the period of 2007-2010.  The results show that 

concrete industry efficiency, a critical component of construction industry efficiency, is 

relatively high providing support for the continued use of funding construction projects as a 

method of economic stimulus. 

To model inefficiency, this chapter extends MBCR to an MBCR-based semi-

nonparametric SFA method. Developing our estimator in the Bayesian context allows us to 

learn about the inefficiency distribution beyond prior assumptions and to obtain 

heteroscedastic firm-specific inefficiency estimates that are shrunk both to local variance 

parameters and to a common population value. The shape-constrained frontier and the 
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components of the error term are jointly estimated in a single stage. The proposed method, 

MBCR with Inefficiency (henceforth MBCR-I) is computationally efficient and provides 

straightforward inference, returning the posterior distributions of the estimated parameters. 

These characteristics are unique among the estimators available in the literature. Specifically, 

MBCR-I is unique among SFA estimators in the literature by combining a one-stage 

framework, shape constraints on the frontier, heteroscedastic posterior distributions of 

inefficiency that can depart from the homoscedastic prior, a heteroscedastic error term, and 

computational feasibility for large datasets. Further, due to its one-stage framework, MBCR-I 

allows the analyst to explore how the inclusion of an inefficiency term affects the detail with 

which a highly flexible frontier specification is estimated. 

The remainder of this chapter is organized as follows. Section III.1 describes the SFA 

model that we use to fit the observed data, the H-D’s MBCR regression method, and our 

proposed method, MBCR-I) and its characteristics.  Section III.2 presents our Monte Carlo 

simulations for comparing the performance of MBCR-I against Stochastic Nonparametric 

Envelopment of Data (StoNED), a nonparametric method to fit production frontiers, on the 

basis of three criteria: functional estimation accuracy, mean inefficiency estimation accuracy 

and estimator variability across replicates from the same DGP for several generated datasets.  

Further, we discuss MBCR-I’s capability to produce full-dimensional hyperplanes (Olesen 

and Petersen, 2003) and the dataset characteristics for which MBCR-I use is recommended. 

Section III.3 discusses several extensions allowing MBCR-I to model time trends of the 

frontier shift for Panel data and datasets with contextual variables. Section III.4 applies 

MBCR-I to estimate a production frontier for the Japanese concrete industry and analyzes the 

substitution rates, most productive scale size, and inefficiency estimates.  
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III.1 Methodology 

 

III.1.1 Production Frontier Model 

We define the regression model for our semi-nonparametric estimation procedure as 

Y=f(X)eε , (III.1) 

where Y represents observed output, f(X) denotes the best attainable output level, given a 

certain input mix X=(X
1
, …, Xk)', and ε=v-u  is a composite error term obtained by 

subtracting a non-negative, skewed random variable u representing a firm’s technical 

inefficiency from a symmetric random effect v, which we term noise, assuming a mean 0. 

For our estimation purpose, we use the firm-specific equation in (III.2) to derive our 

likelihood function for vi. 

ln(Yi) = ln(f(X1i, …, Xki)) +vi-ui,     i=1,…,n . (III.2) 

For notational simplicity, we let fi=f(X1i, …, Xki)  and Xi=X
1i

, …, Xki. This allows us to 

describe the decreasing marginal productivity (concavity) property in terms of ∇f(X), i.e., the 

gradient of f with respect to X, 

f(Xi)≤+ f(Xj)+ ∇f(Xj)
T(Xi-Xj) ∀i,j. (III.3) 

Given that the constraints in (III.3) hold, the additional constraint ∇f(Xi)>0 ∀i imposes 

monotonicity. 

 

III.1.2 Multivariate Nonparametric Bayesian Concave Regression 

Even though equation (III.3) leads to a series of pairwise constraints that can be 

difficult to impose for even moderate datasets, H-D note that the global concavity constraint 
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is met automatically for the class of functions encompassing the minimums of K 

hyperplanes. Moreover, H-D prove that the piecewise planar functions estimated by the 

MBCR algorithm are able to consistently estimate any continuous and concave function. 

Thus, following H-D, we estimate the function  

f̂(X)= min
k∈{1,…,K}

αk+β
k

T
X (III.4) 

to approximate the concave function f(X).  

The estimation procedure in H-D is based on proposing additions, relocations, and 

removals of hyperplanes, the coefficients of which are determined by fitting Bayesian linear 

regressions. The MBCR algorithm fits K(t) approximating hyperplanes at a given iteration t. 

Given the current K(t) hyperplanes, H-D partition the set of all observations into subsets Ck, 

k∈{1,… , K}, term each subset a basis region, and define each one by Ck= 

{i:k= arg  min
k∈{1,… , K}

αk+β
k

T
Xi}. The MBCR algorithm decides the type of move based on the 

current status of the Markov Chain. After choosing the type of move, the procedures (see 

Figure 8) are: 

Hyperplane addition:  A basis region is split, which creates two proposed basis 

regions. To divide each region, we consider L different proposal splitting knots and M 

different proposal search directions along each knot,10 i.e, each region now has LM splitting 

proposals.  

                                                 

10 The number of hyperplanes estimated is sensitive to the knot and direction selection criteria when adding a 

hyperplane. Hannah and Dunson (2011) create the  knot and direction proposals randomly and we also 

implement this knot and direction proposal generation scheme.  
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Relocation: The current basis regions are kept except for minor changes due to 

refitting. 

Removal: Basis regions are proposed for the K(t)-1 remaining hyperplanes.  

 

 

Figure 8 Three basis regions defined by the current number of hyperplanes K(t)=3 (top left); 

proposed basis regions for removal of the second hyperplane (top right); proposal basis 

regions for hyperplane addition and split of third basis region (bottom left) ); and, proposal 

basis regions for hyperplane addition and split of third basis region using a different splitting 

knot and the same splitting direction (bottom right). 

 

Regardless of the move type chosen at iteration t, the hyperplane coefficients for each 

new basis region proposal are obtained after refitting. As is common in Bayesian analysis, 

prior distributional assumptions are placed on the parameters to be estimated by Bayesian 
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linear regression for each basis region. Due to the difficulties resulting from the 

homoscedasticity assumption, H-D specify hyperplane-specific Gaussian noise distributions 

with variances (σ
k

2
)
k=1

K
.  

 

III.1.3 A Multiplicative Production Frontier 

To fit the model described in (III.1) using (III.2), we assume vi follows the Gaussian 

mixture distribution vi~ N(ln(Yi) - ln(f̂i) +ui,σ[i]
2 ), where σ[i]

2  is the noise variance of the basis 

region that includes the ith observation. Unlike H-D, which consider a conjugate Multivariate 

Normal-Inverse Gamma (NIG) prior for estimating the proposal distributions of the 

hyperplane coefficients (α
k
,β

k
)
k=1

K
 and the hyperplane-specific noise variances (σ

k

2
)
k=1

K
, we 

cannot rely on such conjugate proposal distributions for (α
k
,β

k
)
k=1

K
. 

Specifically, the logarithm operator applied to fî prevents the Multivariate Normal 

distribution on (α
k
,β

k
)
k=1

K
 from being conjugate, given the Gaussian mixture likelihood 

function on vi, shown in (III.5). We prioritize computational performance and forgo the 

ability to draw from the full posterior distributions of (α
k
,β

k
)
k=1

K
, instead estimating the 

hyperplane parameters by nonlinear least squares with a lower bound of 0 for all β
k
’s to 

impose monotonicity.11 Like Denison, Mallick and Smith (1998), who compute regression 

coefficients by least squares, but conduct the remaining analysis on a Bayesian framework, 

we conduct a Bayesian analysis of the remaining parameters to preserve the key MBCR 

                                                 

11 Given a vague prior on each (𝛼𝑘 , 𝛽𝑘), this is equivalent to the Maximum a Posteriori (MAP) estimate 

obtained from a Bayesian estimation; see Appendix D for a fully Bayesian version of the algorithm. 
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property of the endogenous estimation of K. Recalling equation (III.4), we estimate  

fi=f(Xi;θ) by

Yi= f̂ie
vie-ui , vi~N(ln(Yi)- ln(f̂i) +ui,σ[i]

2 ),        ui~H 

β
k
>0 ,      σ

k

2
 ~IG(a,b),     k=1,… , K 

K-1 ~ Poisson(λ) 

(III.5) 

As mentioned, β
k
>0,  k=1,… , K are necessary to impose monotonicity, whereas the

concavity constraints are automatically satisfied, given the construction of the function set 

from which we choose f̂. Initially, we consider different options for H, the distribution of the 

prior inefficiency terms ui, the most general of which correspond to the Gamma distribution 

with two unknown continuous parameters, Γ(P,θ) as in Tsionas (2000).  While Tsionas 

(2000) is able to estimate the shape parameter P, which Ritter and Simar (1997) show to be 

difficult in a frequentist setting unless several thousand observations are available, Tsionas 

obtains parameter estimates close to their true valuesonly when at least 1000 observations are 

available. Moreover, since Tsionas (2000) estimates P and θ in a parametric regression 

setting, we expect that in a nonparametric setting this moderate-sample bias will be larger if 

P is at all identifiable. In fact, our experiments with generated datasets indicate that P is not 

identifiable in our nonparametric setting, even if a few thousand observations are available 

and a single input is considered. Therefore, we evaluate scenarios considering the 

Exponential and Half-Normal prior inefficiency distributions first presented in van den 

Broeck et al. (1994). Moreover, we place a Poisson prior on the number of hyperplanes, K. 

While this prior is not to be multiplied against the likelihood function in order to obtain a 

posterior distribution, we still need it to determine the addition, relocation, and removal 
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probabilities at each iteration of MBCR as described by equations (III.6), where c∈(0,0.5] is 

a tunable parameter. 

b
K

(t)=c min {1,
p(K

(t)+1)

p(K
(t))

} ,    d
K

(t)=c min {1,
p(K

(t)-1)

p(K
(t))

} ,    r
K

(t)=1-b
K

(t)- dK
(t)  

(III.6) 

Equation (III.7) describes the mathematical program used to fit the hyperplanes and 

obtain (α
k
,β

k
)
k=1

K
, where Yi[k] and Xi[k] refer to the ith observation in basis region Ck and nk 

refers to the number of observations in the basis region. Due to the conjugacy of the IG prior 

with each σk
2, we can easily sample these posterior variances for each of the proposed basis 

regions by using (III.8). For all cases, we assume that θ, the scale parameter of our prior 

inefficiency distribution, has a prior Γ (w0) distribution, as shown in (III.10). We also assume 

w0=-1/ln(τ*) and that τ* is a prior estimate of the median Technical Efficiency. The posterior 

distributions for either the Exponential or the Half-Normal prior assumptions on ui are the 

Truncated Normals shown in (III.9a) and (III.9b), respectively, and εi=ln(Yi)-ln(x
i

'
β) denotes 

the residuals. 

min
αk,βk

∑ ((ln(Yi)
nk

i=1 +ui-ln(αk+β
k

T
Xi))

2
 subject to β

k
>0,    k=1,… , K   (III.7) 

σk
2 ~IG(ak

*,bk
*),     k=1,… , K, where    

ak
*= ã+

nk

2
   ,   bk

*
=b̃+

1

2
 (∑ (ln(

nk

i=1 Yi[k])+ui-ln(αk+β
k

T
Xi[k]))

2
) 

(III.8) 

ui|…∝exp(-1/2σui

2  (μ
ui

-ui)),   ui≥0,  i=1,…,n , where μ
ui

=-(ε
i
+θσ[i]

2 ),   σui

2 = σ[i]
2  (III.9a) 

ui|…∝exp(-1/2σui

2  (μ
ui

-ui)),   ui≥0,  i=1,…,n  where μ
ui

= 
-σ0u

2 εi

σ0u
2 +σ[i]

2 ,  σui

2 = 
σ0u

2 σ[i]
2

σ0u
2 +σ[i]

2  
(III.9b) 

θ|…~Γ(n+1, w0+ ∑ ui
n
i=1 )  (III.10) 
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III.1.4 The Proposed MBCR-I Algorithm 

We propose an algorithm, MBCR-I, with a smoothed and a non-smooth variant.  Our 

Metropolis-Hastings algorithm first calculates the block (α
k
,β

k
,σk

2)
k=1

K
 from our multiplicative 

error version of MBCR, then draws the block (u
i
)
i=1

n
 on a Gibbs step, and ends by drawing θ 

on another Gibbs step. After verifying that MBCR’s fast convergence is around 100 

iterations for the examples presented in H-D,12 we consider a burn-in period for the 

Metropolis-Hastings sampling algorithm of 150 iterations which is safely beyond the needed 

convergence period. Then, we monitor mean squared error at iteration t, MSEy (t) = 

1

n
∑ (Ŷi-Yi)

2n
i=1 , where Ŷi=f̂ie

-ûi. We declare that the MBCR-I algorithm has reached

stationarity when the running median does not change significantly and the variability across 

iterations is constant for at least 200 iterations.13 Finally, as we usually obtain a few hundred 

draws from the sampling algorithm, we average the functional estimates across iterations to 

obtain a smoothed estimator, or we select a single iteration for a non-smooth estimator, 

resulting in two versions of the MBCR-I algorithm, henceforth MBCR-I S and MBCR-I NS. 

We find that the non-smooth estimator performs better in small datasets for which the 

inefficiency model is mis-specified, although it relies on a heuristic criterion to select the best 

iteration and inference is not possible, whereas the smoothed estimator performs well in all 

other settings, without relying on heuristics and inference is available directly from MBCR-

I’s output. 

12 The numerical results are available from the author upon request.  
13 Under this stopping criterion, MBCR-I rarely needs more than 1000 iterations to reach stationarity. 
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Our iteration selection criterion for the non-smooth estimator is motivated by 

observing that for small sample sizes (n<200), MBCR-I can overfit the data with highly 

flexible inefficiency terms. To prevent overfitting, we choose a stationary iteration with 

relatively conservative MSEy. 14 Finally, we note that as n increases, the iteration selection 

criterion becomes irrelevant at n≥300 as the variability decreases across the iterations. This 

decrease in variability is the reason why the smoothed and non-smooth estimators are 

increasingly similar in n. We summarize the MBCR-I algorithm as follows: 

 

0. Let t = 1, K = 1 and set tBurn-in, draw (u
i
)
i=1

n
 and θ from their priors. 

1. Use MBCR to get ((α
k
,β

k
,σk

2)
k=1

K
,K)

(t)
. 

2. Draw (u
i

(t)
)
i=1

n
 from (III.9a) or (III.9b), depending on the prior assumption. 

3. Draw θ
(t)

 from (III.10). 

4. If t>tBurn-in, save ((α
k
,β

k
,σk

2)
k=1

K
,(u

i
)
i=1

n
,θ,K)

(t)
 draw and compute 

    MSEy
(t)=

1

n
∑ (Ŷi-Yi)

2n
i=1 . Otherwise, go back to 1. 

5. Stop when the cumulative median of MSEy meets the stationarity criterion. 

Otherwise, go back to 1. 

6a. To obtain a smoothed estimator: Average (f̂
i
)
i=1

n
 across the stationary iterations for 

the f estimator and average mean inefficiency across the stationary iterations to obtain 

E(u̅)̂ . 

                                                 

14 Our simulations consider the iteration with maximum 𝑀𝑆𝐸𝑦  within the described subset of iterations. 
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6b. To obtain a non-smooth estimator: Choose an iteration according to the iteration 

selection criterion and return the parameters ((α
k
,β

k
)
k=1

K
,(u

i
)
i=1

n
,θ,K) associated with 

that iteration.  

 

III.1.5 Additional Computational Considerations due to Inefficiency Modeling 

Incorporating inefficiency into the MBCR algorithm requires the following 

adaptations and augmentations. First, we need an efficient and robust Truncated Normal 

sampler for the inefficiency terms to quickly sample from extreme tails and avoid stalling. 

We use a MATLAB implementation of Chopin’s (2011) fast truncated normal sampling 

algorithm by Mazet (2014), because other samplers do not achieve the degree of accuracy or 

posterior coverage needed to make MBCR-I computationally feasible. Second, as described 

in the MBCR-I algorithm, at any given iteration t, we sample the inefficiency draws (u
i
)
i=1

n
 as 

a block after computing the hyperplane coefficients and simulating the associated variances 

as a different parameter block. Here, the only step of the algorithm in which the model size is 

allowed to change is when we draw the block ((α
k
,β

k
,σk

2)
k=1

K
,K).  

Nevertheless, we observe that due to the differences in the (u
i
)
i=1

n
 values from 

iteration t to iteration t+1, the number of hyperplanes supporting a positive number of 

observations can change even if the move at iteration t+1 is only a relocation (or conversely, 

the number of hyperplanes supporting a positive number of observations remains the same 

even if the move is an addition or removal). We automatically reject such proposal 

distributions and we draw different (u
i
)
i=1

n
 values, given the (α

k
,β

k
,σk

2)
k=1

K
 of iteration t. If this 

rejection policy results in stalling, measured as the time taken to generate the (t+1)th draw 
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compared to the average time to generate a draw, we restart the Markov Chain 

((α
k
,β

k
)
k=1

K
,(u

i
)
i=1

n
,θ,K) at its value on a randomly chosen previous iteration. The restarting

policy is analogous to H-D’s chain restarting policy when the number of tries to produce the 

(t+1)th draw of the chain goes above a preset threshold. Third, we run a small number of 

warm-up iterations, i.e., 20, in our simulation scenarios. In these iterations, which are a 

subset of the burn-in iterations, we draw (u
i
)
i=1

n
 from their prior, and we run MBCR to get a 

good initial guess of K, as opposed to the K = 1 starting value chosen by H-D. Otherwise, the  

(u
i
)
i=1

n
 draws from the initial iterations will be heavily overestimated and complicate, or even

prevent, the MBCR-I algorithm from running fluently. An alternative to the warm-up 

iterations is to use the multiplicative-error MBCR estimates of ((α
k
,β

k
)
K

k=1
,K) for the same

dataset. Section III.2.6 below and Appendix F illustrate our use of the latter strategy when 

analyzing the Japanese concrete industry and show that allowing flexible inefficiency terms 

decreases the number of hyperplanes with which the frontier is fit. 

III.1.6 MBCR-I as a One-Stage Estimator for Stochastic Frontiers 

Unlike StoNED (Kuosmanen and Kortelainen, 2012) and Constraint Weighted 

Bootstrapping (CWB) (Du et al. 2013), the ability of MBCR-I to significantly depart from 

prior distributional assumptions on  ui makes the method more robust against model mis-

specifications for the inefficiency term. Our posteriors show that besides globally shrinking 

the inefficiency terms using either θ or σ0u
2 , we can locally shrink them with the σ[i]

2  
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parameters.15 Moreover, within the bounds established by the shrinking parameters, doing so 

allows each ui to have a potentially different posterior distribution. In Section 3, we explain 

how the posterior specification in (III.9a) allows a significantly better prediction of mean 

inefficiency and the production frontier when the inefficiency distribution is mis-specified. 

Our posterior specifications are not a source of additional inaccuracy when the prior 

distributions are in fact correct. Finally, the use of a one-stage framework imposes a 

correctly-skewed distribution of εi at each iteration of the MBCR-I algorithm and avoids the 

wrong skewness issues of two-stage methods (see, for example, Almanidis and Sickles, 

2012). 

 

III.2. Monte Carlo Simulations 

This section describes Monte Carlo simulations and their results comparing the 

performance of MBCR-I versus StoNED on the Data Generation Processes (DGPs) used in 

Kuosmanen and Kortelainen (2012), some of which are presented in Simar and Zelenyuk 

(2011).16 These DGPs, henceforth Example 1 through 4, are based on Cobb-Douglas 

production functions and they explore the performance of both estimators as dimensionality, 

noise-to-signal ratio, and sample size vary. Example 2 is added to the DGPs in Kuosmanen 

and Kortelainen (2012) for completeness, as they do not include a bivariate input example. 

Example 4 assesses the robustness of each method against mis-specification on the prior 

                                                 

15 Shrinking refers to the common parameter shrinkage concept in Hierarchical Regression Models (HRM), 

where parameters are constrained by a common distribution. For further discussion see Gelman and Hill (2006). 
16 CWB is a state-of-the-art two-stage method that can be used to estimate production frontiers. Nevertheless, its 

application is not straightforward for the proposed DGPs, because the CWB formulation in Du, Parmeter and 

Racine (2013) considers an additive error structure. 
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inefficiency distribution. For all four examples we consider three noise-to-signal scenarios, 

ρ
nts

=1,2,3, and vary the number of observations, n=100, 200, 300, and 500. StoNED is the 

only shape constrained frontier estimation method that can handle more than a few hundred 

observations under a multiplicative error assumption, and therefore is the most natural 

benchmark for comparison. 

We compare the estimators based on criteria including quality and degree of 

variability in frontier estimates and quality of the inefficiency estimate. We measure the 

frontier estimation performance as MSE f=
1

n
∑ (f̂i-fi)

2n
i=1 . As measures of degree of variability 

in our frontier estimates, we also report the number of replications needed to obtain stable 

estimates in terms of near-constant mean and standard deviation of MSE f. Instead of using 

MSE u=
1

n
∑ (ûi-ui)

2n
i=1  to measure the accuracy of our inefficiency estimation as in 

Kuosmanen and Kortelainen (2012), we use E(u̅)̂  -E(u̅)= 
1

n
∑ ûi

n
i=1 -

1

n
∑ ui

n
i=1 , the mean 

inefficiency prediction deviation.17 MBCR-I is advantageous because its estimates typically 

are more consistent with production theory. Specifically, we report the number of 

observations supported by fully dimensional hyperplanes and the percentage of replicates for 

which StoNED has negatively skewed residuals.  

For MBCR-I, we conduct a MATLAB implementation, considering an Exponential 

prior with parameter θ. We randomly draw the prior values used for the θ  parameter from 

ranges described in each of the examples. In Tables 6-13 we show results for both MBCR-I S 

                                                 

17 The metric 𝑀𝑆𝐸 𝑢 focuses on firm specific efficiency estimates from the Jondrow et al. (1982) estimator that 

have been shown to be inconsistent, Greene (2008). Instead, we measure the quality of the inefficiency estimate 

based on the population parameter 𝐸(𝑢̅).  
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and MBCR-I NS. In the case of StoNED, since multiplicative CNLS is a mathematical 

program with a generally nonlinear objective function its solutions are sensitive to the choice 

of starting point and solver. Thus, we conduct several implementations of CNLS and select 

the one with the lowest MSE f for each example. Our MATLAB CNLS implementations use 

the built-in fmincon solver and the KNITRO solver. Our GAMS implementations uses the 

MINOS 5.5 solver. For every implementation, we consider different starting points, such as 

the (global) optimal solution of additive CNLS, single hyperplane solutions, and full vectors 

of zeros. 

 

III.2.1 Evaluation Based on Four Data Generation Processes 

Example 1: Univariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We fit the univariate Cobb-Douglas frontier Yi=xi
0.5e-uievi , considering a 

homoscedastic DGP with ui~Expo(μ
u
=σu=1/6) and vi~N(0,σv

2), where σv=ρ
nts

σu. We 

randomize the nearly uniformative prior on θ across replicates by choosing v0=1  and 

drawing w0 uniformly on the (0.1, 0.2) range. Table 6 shows that in terms of MSE f, StoNED 

only outperforms MBCR-I S for a noise-to-signal ratio of 1 and less than 300 observations.  

MBCR-I S and StoNED perform similarly for a noise-to-signal ratio of 1 and n ≥ 300. For 

ρ
nts

=2,3, MBCR-I S outperforms StoNED for all n.18 In terms of the quality of efficiency 

estimates, all of the estimators perform similarly for a noise-to-signal ratio of 1, but the 

                                                 

18 We display results for our MATLAB fmincon implementation, which outperforms Kuosmanen and 

Kortelainen’s (2012) results for a low noise-to-signal ratio, 𝜌𝑛𝑡𝑠 = 1, and has similar performance in Kuosmanen 

and Kortelainen’s high noise-to-signal ratio, 𝜌𝑛𝑡𝑠 = 2. We did not compare performance when 𝜌𝑛𝑡𝑠 = 3, because 

Kuosmanen and Kortelainen do not estimate this scenario. See Kuosmanen and Kortelainen (2012) for a 

demonstration of StoNED’s superior performance relative to standard implementations of SFA and DEA for all 

scenarios that included 𝜌𝑛𝑡𝑠 > 0. 
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MBCR-I estimators are superior when there is a larger noise-to-signal ratio. Finally, the 

results for StoNED show that non-full dimensional hyperplanes support 1%-8% of the 

observations. 

Table 6 Results for Example 1: Univariate Cobb-Douglas Frontier with Homoscedastic 

Inefficiency Terms 

MSE f E(u̅)̂  -E(u̅)
% Non-Full 

Dimensional 

n 
Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

1 

100 0.003

5

0.0046 0.0036 0.01 0.01 0.01 4% 0% 

200 0.001

0

0.0020 0.0024 0.01 0.01 0.01 2% 0% 

300 0.000

9

0.0014 0.0007 0.01 0.01 0.01 3% 0% 

500 0.000

5

0.0008 0.0006 0.01 0.01 0.01 1% 0% 

2 

100 0.005

4

0.0056 0.0035 0.02 -0.02 -0.02 6% 0% 

200 0.006

8

0.0052 0.0035 0.05 -0.03 -0.03 2% 0% 

300 0.006

2

0.0055 0.0028 0.05 0.01 -0.05 3% 0% 

500 0.006

8

0.0049 0.0023 0.07 0.05 -0.02 3% 0% 

3 

100 0.033

4
0.0097 0.0153 0.09 0.00 -0.01 8% 0% 

200 0.046

4
0.0054 0.0061 0.18 0.02 0.02 7% 0% 

300 0.042

0

0.0059 0.0046 0.18 -0.03 -0.04 8% 0% 

500 0.041

3

0.0050 0.0028 0.16 -0.06 -0.07 2% 0% 

Table 7 shows that the percentage of replicates with a negatively skewed εi 

distribution for StoNED is non-decreasing for the noise-to-signal ratio, ρ
nts

, and non-

increasing in the sample size, n, as expected. As explained in the previous section, this 

problem does not affect MBCR-I, because it is a one-stage method and automatically 

imposes correct skewness on the distribution of εi. For MSE f, both methods need a small 

𝜌𝑛𝑡𝑠
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number of replicates to reach relatively constant19 values;  StoNED needs only 10 replicates 

for all scenarios, whereas MBCR-I needs 20 replicates for 2 of the 12 considered scenarios 

We attribute the variability of MBCR-I’s prediction error, which is smaller both in absolute 

and relative terms as quantified by the standard deviation and the coefficient of variation of 

MSE f across all replicates, as the result of non-smooth MBCR-I fitting the production 

frontier with a smaller number of hyperplanes than StoNED. 

Table 7 Estimator Robustness Analysis for Example 1: Univariate Cobb-Douglas Frontier 

with Homoscedastic Inefficiency Terms 

Replicates for 

MSE f 

convergence 

Standard Deviation 

of MSE f 

MSE f 

coefficient of 

variation 

% 

Negative 

Skew 

n 
Sto 

NED 
MBCR-I 

Sto 

NED 
MBCR-I 

Sto 

NED 

MBCR-

I 

Sto    

NED 

1 

100 10 10 0.0046 0.0019 132% 42% 10% 

200 10 10 0.0011 0.0016 108% 64% 0% 

300 10 20 0.0009 0.0018 101

%

128% 0% 

500 10 10 0.0005 0.0005 85% 63% 0% 

2 

100 10 10 0.0056 0.0036 104% 64% 10% 

200 10 10 0.0058 0.0018 85% 34% 0% 

300 10 10 0.0022 0.0038 35% 69% 0% 

500 10 10 0.0048 0.0047 71% 95% 0% 

3 

100 10 20 0.0246 0.0077 74% 75% 20% 

200 10 10 0.0278 0.0024 60% 45% 0% 

300 10 10 0.0167 0.0019 40% 37% 0% 

500 10 10 0.0142 0.0033 34% 57% 0% 

19 We define relatively constant as within a 5% difference across replicates for both the running mean and 

running standard deviation of 𝑀𝑆𝐸 𝑓.  

𝜌𝑛𝑡𝑠
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Example 2: Bivariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We fit the bivariate Cobb-Douglas frontier Yi=x1i
0.4x

2i

0.5
e-uievi , where we consider a 

homoscedastic distribution for both noise and inefficiency, ui~expo(μ
u
=σu=1/6) and

vi~N(0,σv
2), where σv=ρ

nts
σu

20, the same inefficiency assumptions as in Example 1. We also

consider the same prior assumptions for θ as in Example 1.  MBCR-I’s estimators 

performance in terms of functional fit, MSE f, is better in all scenarios with a noise-to-signal 

ratio greater than 1. Despite StoNED’s lower MSE f in the ρ
nts

=1 scenarios, MBCR-I’s

estimates give a more economically sound description of the frontier, because more of its 

hyperplanes are full-dimensional. In Example 2, non-full dimensional hyperplanes support 

between 14% and 23% of the observations for StoNED, whereas it is always less than 6% for 

MBCR-I. Finally, MBCR-I NS performs well when the number of observations is low and 

MBCR-I S well estimates inefficiency consistently. 

Table 8 shows that predictions of the mean inefficiency are competitive for both 

StoNED and the MBCR-I estimators across the different scenarios varying the noise-to-

signal ratio and number of observations, with the exception of the ρ
nts

=3 scenarios, where

only MBCR-I S performs well. In Example 1 and the less noisy scenarios of Example 2, 

StoNED’s functional estimates improve, as measured by MSE f, as the number of 

observations increases typical of any consistent estimator. However, in the high 

dimensionality and high noise scenarios for Example 2, StoNED’s ability to fit the function, 

20 To make the CNLS problem feasible to solve, we reduced our optimality tolerance from 10-10 to 10-4 for the 𝑛 

=500 scenarios on our GAMS with MINOS 5.5 implementation. Kuosmanen and Kortelainen (2012) did not 

perform 𝑛 =500 simulation scenarios in any of their multivariate examples. 
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measured by MSE f, decreases as the number of observations increases. StoNED’s erratic 

performance relates to the increase in local optima for the optimization problem associated 

with the first step of StoNED, CNLS, and occurs across all of the MATLAB and GAMS 

implementations. Even though we implement versions of CNLS which use global solvers,21 

the solvers cannot find solutions for data instances with more than 100 observations. MBCR-

I, which uses an adaptive partitioning strategy rather than a full dataset optimization strategy 

does not suffer from these solution algorithm complexity issues. 

Table 8 Results for Example 2: Bivariate Cobb-Douglas Frontier with Homoscedastic 

Inefficiency Terms 

MSE f E(u̅)̂  -E(u̅)
% Non-Full 

Dimensional 
 

n 
Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

1 

100 0.00

22

0.0032 0.0038 -0.02 -0.07 0.03 16% 2% 

200 0.00

15

0.0015 0.0018 -0.02 -0.01 0.04 15% 0% 

300 0.00

14

0.0020 0.0016 -0.02 -0.01 0.02 17% 0% 

500 0.00

04

0.0010 0.0012 -0.01 0.01 0.02 10% 6% 

2 

100 0.00

58

0.0043 0.0040 0.02 -0.09 0.01 18% 1% 

200 0.00

51
0.0039 0.0050 0.01 -0.04 0.06 19% 0% 

300 0.00

45

0.0040 0.0036 0.01 -0.08 0.03 20% 0% 

500 0.00

47

0.0029 0.0014 0.07 -0.08 0.00 16% 0% 

3 

100 0.02

37
0.0085 0.0175 0.10 -0.06 0.12 23% 0% 

200 0.02

59
0.0045 0.0057 0.14 -0.11 0.00 23% 5% 

300 0.03

06

0.0050 0.0046 

..

0.17 -0.11 -0.02 22% 2% 

500 0.02

70

0.0047 0.0032 0.13 -0.12 -0.06 14% 3% 

21 We attempted to use global nonlinear optimization algorithms such as MSNLP, BARON and ANTIGONE. 

𝜌𝑛𝑡𝑠
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Table 9 shows that the percentage of negatively skewed replicates also exhibits 

roughly consistent behavior throughout the different noise-to-signal ratio and the number of 

observations. However, for this more computationally challenging example, the percentage 

of negatively skewed replicates for StoNED is in general higher than in Example 1, and thus 

predicts negligible inefficiency levels more frequently. Further, both StoNED and MBCR-I 

need more replicates for their estimates to stabilize if compared with the simpler Example 1. 

However, we note that MBCR-I functional estimate converges in significantly less replicates 

than StoNED. 

Table 9 Estimator Robustness Analysis for Example 2: Bivariate Cobb-Douglas Frontier 

with Homoscedastic Inefficiency Terms 

Replicates for MSE f 

convergence 

Standard Deviation 

of MSE f 

MSE f coefficient 

of variation 

% 

Negative 

Skew 

n 
Sto 

NED 
MBCR-I 

Sto 

NED 
MBCR-I 

Sto 

NED 
MBCR-I 

Sto   

NED 

1 

100 50 10 0.0024 0.0013 113% 40% 10% 

200 50 10 0.0017 0.0007 120% 48% 10% 

300 50 40 0.0020 0.0013 145% 65% 10% 

500 10 20 0.0002 0.0007 56% 69% 0% 

2 

100 20 10 0.0032 0.0017 56% 40% 15% 

200 20 10 0.0038 0.0017 75% 43% 20% 

300 20 20 0.0024 0.0015 54% 39% 20% 

500 10 20 0.0023 0.0017 49% 58% 0% 

3 

100 20 10 0.0164 0.0045 69% 53% 15% 

200 20 10 0.0130 0.0012 50% 27% 5% 

300 20 20 0.0120 0.0024 39% 48% 0% 

500 10 10 0.0141 0.0013 52% 34% 10% 

𝜌𝑛𝑡𝑠
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Example 3: Trivariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We consider the Trivariate Cobb-Douglas frontier, y
i
= x1,i

0.4x2,i
0.3x3,i

0.2e-uievi . The 

distributional assumptions for the noise and inefficiency terms are the same as those of 

Examples 1 and 2, ui~expo(μ
u
=1/6) and vi~N(0,σv

2). Prior assumptions on θ are the same as 

in previous examples. Table 10 shows that in this higher-dimensional setting, CNLS has  a 

poor functional fit, MSE f, for scenarios with a large number of observations, n = 500, and 

for scenarios with a high noise-to-signal ratio,  ρ
nts

=3.22  

 

Table 10 Results for Example 3: Trivariate Cobb-Douglas Frontier with Homoscedastic 

Inefficiency Terms 

 
  

MSE f E(u̅)̂  -E(u̅) 
% Non-Full 

Dimensional 
 

n 
Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

1 

100 0.0015 0.0055 0.0056 -0.01 -0.01 0.07 33% 5% 

200 0.0014 0.0030 0.0033 -0.02 0.01 0.06 25% 12% 

300 0.0020 0.0026 0.0028 0.02 0.02 0.05 23% 1% 

500 0.0070 0.0019 0.0013 -0.08 0.01 0.03 6% 0% 

2 

100 0.0053 0.0078 0.0072 0.00 -0.07 0.04 38% 8% 

200 0.0054 0.0060 0.0070 0.03 -0.07 0.09 38% 10% 

300 0.0075 0.0047 0.0045 0.07 0.04 0.04 

.19 
34% 4% 

500 0.0147 0.0039 0.0031 0.14 -0.07 0.01 6% 6% 

3 

100 0.0286 0.0076 0.0088 0.12 -0.10 0.01 42% 2% 

200 0.0243 0.0077 0.0063 0.12 -0.10 0.01 38% 1% 

300 0.0218 0.0058 0.0042 0.13 -0.10 -0.02 32% 3% 

500 0.0257 0.0066 0.0034 0.11 -0.12 -0.04 14% 0% 

 

                                                 

22 Again, the StoNED results from our GAMS with MINOS 5.5 implementation were similar or better than 

Kuosmanen and Kortelainen (2012). Kuosmanen and Kortelainen (2012) did not consider 𝑛 =500 scenarios. To 

make the CNLS problem feasible to solve, we reduced our optimality tolerance from 10-10 to 10-2 for the 𝑛 =500 

scenarios. 

𝜌𝑛𝑡𝑠 
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While the results for the noise-to-signal ratio equal to 1 scenarios are similar to 

Examples 1 and 2, with the MBCR-I estimators only being competitive in some of the 

scenarios in Example 3, the proportion of observations supported by non fully-dimensional 

hyperplanes fit by StoNED first-stage, CNLS, increases and ranges between 6% and 42%. 

For larger noise-to-signal ratios, ρ
nts

=2,3, the performance comparison is similar to Examples

1 and 2, with MBCR-I S performing the best in most of the scenarios. The variability in the 

functional fit, Standard Deviation of MSE f, and negative skewness results in Table 11 show 

behavior similar to Examples 1 and 2, with MBCR-I showing a lower inter-replicate 

variability in functional fit, MSE f. 

Example 4: Trivariate Cobb-Douglas frontier with heteroscedastic inefficiency terms 

We consider a heteroscedastic inefficiency DGP, where ui|xi~N+(0,σ0u(x1,i+ x2,i)),

where σu=0.3. The noise distribution is a homoscedastic Normal vi~N(0,σv
2), where σv= 

ρ
nts

∙σu∙√(π-2)/π. The production frontier is y
i
= x1,i

0.4x2,i
0.3x3,i

0.2e-uievi , as in Example 3. The 

hyperparameter for our Exponential prior on inefficiency,  θ, is lower than in Examples 1, 2, 

and 3 due to the scale of the data, although still nearly uninformative with v0=1  and w0 

drawn uniformly from the range (0, 0.1). Unlike Tables 6, 8, and 10, we include an additional 

set of results for StoNED from a different implementation.23 We note that even if this 

23 The GAMS with MINOS 5.5 implementation is our main implementation for this example. The additional 

results are from our MATLAB fmincon implementation. Our main implementation was similar to the MSE f 

results in Kuosmanen and Kortelainen (2012) for all 𝜌𝑛𝑡𝑠 = 1 scenarios. None of our implementations achieved

Kuosmanen and Kortelainen (2012)’s  𝜌𝑛𝑡𝑠 = 2, 𝑛 = 300 MSE f results.
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alternative implementation has better functional fit, MSE f has inconsistent behavior with 

regard to the percentage or negatively-skewed replicates. 

Table 11 Estimator Robustness Analysis for Example 3: Trivariate Cobb-Douglas Frontier 

with Homoscedastic Inefficiency Terms 

Replicates for 

MSE f 

convergence 

Standard Deviation 

of MSE f 

MSE f coefficient 

of variation 

% 

Negative 

Skew 

n 
Sto  

NED 
MBCR-I 

Sto  

NED 
MBCR-I 

Sto 

NED 
MBCR-I 

Sto   

NED 

1 

100 20 10 0.0006 0.0020 39% 37% 0% 

200 50 10 0.0010 0.0012 71% 41% 4% 

300 50 20 0.0033 0.0011 163% 43% 2% 

500 10 10 0.0054 0.0008 76% 40% 0% 

2 

100 20 10 0.0025 0.0027 48% 34% 15% 

200 20 10 0.0025 0.0017 46% 29% 10% 

300 20 20 0.0065 0.0021 87% 47% 0% 

500 10 20 0.0057 0.0015 38% 38% 0% 

3 

100 50 20 0.0204 0.0037 71% 48% 10% 

200 20 10 0.0129 0.0031 53% 41% 10% 

300 20 10 0.0130 0.0022 60% 39% 10% 

500 10 10 0.0197 0.0026 77% 40% 10% 

Table 12 shows that the functional fit, MSE f, for the MBCR-I estimators is lower for 

all scenarios, with MBCR-I NS having significantly better performance when the number of 

observations is small and both MBCR-I estimators perform similarly for the larger n 

scenarios. Reasons for MBCR-I’s good functional fit are the updating of prior assumptions 

about the inefficiency term and incorporating hyperplane-specific noise variances into the 

posterior distribution of the observation’s inefficiency term, ui. Moreover, MBCR-I’s mean 

inefficiency predictions are more accurate in 10 of the 12 scenarios. Conversely, StoNED’s 

𝜌𝑛𝑡𝑠
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predictions for the mean inefficiency level are highly biased (even for ρ
nts

=1); however, this 

bias becomes smaller for our alternative implementation used in scenarios with 500 

observations.  

Comparing MBCR-I’s results in Table 12 with MBCR-I’s results for the correctly 

specified DGP in Table 10 shows that the heteroscedastic inefficiency specification only has 

a significantly detrimental impact on MSE f  for 4 of the 12 scenarios.  Besides these, the 

MSE f results for the heteroscedastic inefficiency example are at most 20% larger, and in fact 

smaller in the majority of scenarios. For both StoNED and MBCR-I, the percentage of 

observations supported by non fully-dimensional hyperplanes is similar to Example 3. We 

conclude that even for moderate sample sizes and large noise-to-signal ratios, MBCR-I is 

relatively robust to mis-specification of the inefficiency term. Finally, the DGP mis-

specification impacts the variability of MBCR-I’s functional fit across replicates less than 

StoNED’s as measured by the Standard Deviation of MSE f column in Table 13. 
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Table 12 Results for Example 4: Trivariate Cobb-Douglas Frontier with Heteroscedastic 

Inefficiency Terms 

MSE f E(u̅)̂  -E(u̅)
% Non-Full 

Dimensional 

n 
Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-I 

NS 

MBCR-I 

S 

Sto 

NED 

MBCR-

I 

NS 

1 

100 0.0058 0.0046 0.0071 0.10 0.02 0.11 25% 6% 

200 0.0047 0.0025 0.0033 0.10 0.02 0.07 24% 4% 

300 0.0047 0.0033 0.0045 0.10 0.06 0.10 23% 1% 

500 

0.0499, 

0.0028 
0.0015 

0.0019 0.33, 

0.02 
0.04 

0.04 27% 1% 

2 

100 0.0507 0.0127 0.0194 0.28 0.12 0.22 

..0. 

45% 0% 

200 

0.0407, 

0.0158 
0.0064 

0.0126 0.27, 

0.08 
0.07 

0.16 35% 5% 

300 

0.0590, 

0.0191 
0.0042 

0.0052 0.33, 

0.12 
0.00 

0.06 31% 3% 

500 

0.1345, 

0.0084 
0.0020 

0.0023 0.47, 

0.05 
0.03 

0.03 12% 0% 

3 

100 0.1492 0.0107 0.0205 0.38, 

0.28
0.04 0.18 48% 0% 

200 

0.1955, 

0.1286 
0.0061 

0.0068 0.50, 

0.33 
0.03 

0.06 47% 4% 

300 

0.2446, 

0.1046 
0.0050 

0.0050 0.58, 

0.29 
0.00 

0.04 30% 

5% 
5% 

500 

0.2610, 

0.0061 
0.0034 

0.0038 0.63, 

-0.02 
0.04 

0.04 20% 5% 

Table 13 Estimator Robustness Analysis for Example 3: Trivariate Cobb-Douglas Frontier 

with Heteroscedastic Inefficiency Terms 

Replicates for 

MSE f 

convergence 

Standard Deviation 

of MSE f 

MSE f coefficient 

of variation 

% 

Negative 

Skew 

n 
Sto 

NED 
MBCR-I 

Sto  

NED 
MBCR-I StoNED MBCR-I StoNED 

1 

100 100 20 10 0.0041 0.0027 71% 55% 

200 200 20 10 0.0023 0.0011 48% 44% 

300 300 20 10 0.0028 0.0017 59% 51% 

500 500 10 10 
0.0314, 

0.0019 
0.0008 

63%, 

66% 
58% 

𝜌𝑛𝑡𝑠

𝜌𝑛𝑡𝑠
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Table 13 (continued)  

Replicates for 

MSE f 

convergence 

Standard Deviation 

of MSE f 

MSE f coefficient 

of variation 

% 

Negative 

Skew 

n 
Sto 

NED 
MBCR-I 

Sto  

NED 
MBCR-I StoNED MBCR-I StoNED 

2 

100 100 20 10 0.0405 0.0079 80% 62% 

200 200 20 10 
0.0233, 

0.0216 
0.0051 

57%, 

136% 
81% 

300 300 30 10 
0.0399, 

0.0173 
0.0032 

68%, 

131% 
75% 

500 500 10 20 
0.0826, 

0.0122 
0.0005 

61%, 

146% 
26% 

3 

100 100 50 20 
0.1277, 

0.1428 
0.0067 

86%, 

108% 
63% 

200 200 50 10 
0.0954, 

0.1088 
0.0018 

49%, 

85% 
30% 

300 300 40 10 
0.1298, 

0.1010 
0.0026 

53%, 

142% 
51% 

500 500 10 10 
0.0641, 

0.0028 
0.0011 

25%, 

46% 
33% 

III.2.2 Discussion of Simulation Results and Recommendations to Use MBCR-I

As Tables 6–13 show, MBCR-I is best for scenarios with relatively noisy data and/or 

when the inefficiency distribution is unknown.24 Relative to the benchmark method StoNED, 

MBCR-I is also competitive for lower noise-to-signal ratios in datasets where n≥300. Due to 

MBCR-I’s one-stage nature, the residuals from this estimator are correctly skewed even for 

24 An example of possible mis-specification of the inefficiency term appears in public sector applications where 

firms do not compete and efficient behavior does not result. Therefore, the distribution of inefficiency is 

unlikely to have a mode of zero and thus both an exponential or half-normal assumption regarding the 

inefficiency distributions is mis-specified.   

𝜌𝑛𝑡𝑠
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smaller datasets. Since the iteration-selection criterion is of no clear benefit for the sample 

sizes where MBCR-I is recommended, we choose the MBCR-I S estimator, because it 

eliminates the heuristic component of our algorithm. We also note that MBCR-I requires 

significantly higher computational times than CNLS for n<500, partly because it gives a full 

posterior distribution of results rather than a point estimate. Nevertheless, due to its adaptive 

regression nature, MBCR-I only fits regression parameters for subsets of the dataset and so 

computational time increases slowly in n. 25 At n=500, the computational time for both 

MBCR-I and Multiplicative-error StoNED is about 45 minutes.26 MBCR-I is the only 

feasible existing axiomatic concavity constrained frontier estimation method to fit datasets 

with 1000≤n≤6000 observations. Thus, we recommend MBCR-I S for most datasets with 

300≤n≤6000, or for smaller datasets when imposing the proper skewness on the residual 

distributions is needed. Oh et al. (2015) and Crispim Sarmento et al. (2015) analyze datasets 

where Multiplicative CNLS is not applicable due to dataset size, but both papers report 

successfully applying variants of MBCR-I.27  

We also recommend MBCR-I when inference on the frontier is needed. As a 

Bayesian method, MBCR-I produces credible intervals for MBCR-I S, our smoothed 

estimator, unlike CAP and StoNED, where it is computationally burdensome, even for 

moderate datasets, to obtain inference results by running the method repeatedly followed by 

bagging, smearing, or random partitioning (Hannah and Dunson, 2012). Finally, we 

25 MBCR-I’s computational time increased from ~10 min for 𝑛 = 100 to ~45 min for 𝑛 = 500, whereas it 

increased from ~0.03min for 𝑛 = 100 to ~45 min for 𝑛 = 500 for Multiplicative CNLS. 
26 The CNLS speed-up algorithm proposed by Lee et al. (2013) on an additive error setting did not show time 

savings in our multiplicative setting. 
27 While MBCR-I integrates inefficiency into MBCR, it also has computational differences, as described in 

Section 2.5. Some of these are exploited to allow the inclusions of z-variables as discussed in Section 4. 
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recommend MBCR-I when obtaining a higher rate of fully dimensional hyperplanes is an 

important property of the frontier to be estimated. 

III.3. Extensions 

We consider several extensions to MBCR-I to make the method useful for a larger set 

of applications. We note that more general models for each extension are possible and are 

avenues for future research. 

III.3.1 Flexible Time Trend

MBCR-I is attractive for use with Panel data because it can fit shape constrained 

production frontiers for moderate datasets. To model technical progress over time, we 

consider a vector of dummy time effects to act as frontier-shifting factors (Baltagi and 

Griffin, 1988). We estimate the following model, 

Yit=f(Xit)evite-uieγdit , i = 1,..,n;  t = 1,…T. (III.11) 

We let γ=(γ
2
,…,γ

T
) and dit is a row vector of dummy variables which has a 1 on the (t-1)th

entry (and is a zero vector for observations on the first time period) and zeros on all other 

entries. Recalling MBCR-I’s Gaussian mixture likelihood function, we know the hyperplane-

specific noise variances (σk
2)

k=1

K
 from the MBCR step of our algorithm (step 1). We let 

D=(d11,…,dnT)', collect the (σ[i]
2 )

i=1

n
 terms on diagonal matrix Σv and consider the 

Multivariate Normal prior γ~MVN(μ
γ0

,Σγ0) to obtain the conjugate posterior shown in (12).

Then, we add a step between steps 3 and 4 to draw γ(t). Specifically, 

γ|… ~MVN (μ
γ1

,Σγ1) ,     k=1,… , K, where (III.12) 
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μ
γ1

= (Σγ0
-1+D

'Σv
-1

D)
-1

(Σγ0
-1μ

γ0
+D

'Σv
-1

Dγ̂)

Σγ1= (Σγ0
-1+D

'Σv
-1

D)
-1

,

where γ̂ is the OLS estimator of ri=ln(Y
i
)-ln(f̂

i
)+ui using D as a predictor. Since drawing

from (III.12) is not computationally demanding, this estimator gives roughly the same 

computational performance as MBCR-I for nT observations, thus opening the possibility to 

fit nonparametric multiplicative production frontiers to Panel datasets up to a few thousand 

observations.  To adapt the MBCR-I algorithm to Panel data, we modify equations (III.9a) or 

(III.9b) to draw (u
i
)
i=1

n
 using information from the whole Panel rather than one observation.

In the exponential inefficiency prior case, we consider the posterior hyperparameters 

analogous to O’Donnell and Griffiths (2006), who also consider a Gaussian mixture 

likelihood. 

σui
2 =[∑ σ[it]

-2T
t=1 ]

-1
, μ

ui
= {∑ (σ

[it]

-2
)[ln(f̂i)+γdit- ln(Yi)]-θT

t=1 } ∑ σ[it]
-2T

t=1
(III.13) 

III.3.2 Contextual Variables 

Incorporating contextual variables allows MBCR-I to estimate production functions 

that are multiplicatively affected by factors beyond a firm’s control, or factors that are not 

inputs, but that the firm can control (see Johnson and Kuosmanen, 2011). We consider a 

parametric specification for the effect of contextual variables and fit the model 

Yi=f(Xi)evie-uieδzi, i=1,..,n (III.14) 

where zit=(z1it,…,zRit)' is the R-dimensional vector of z-variables for firm i at time t and 

δ=(δ1,…,δR) are the coefficients for each contextual variable. We note that (III.14) is the 

same as (III.11), with δ and zi playing the role of γ and dit, respectively. Thus, the posterior 
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simulation approach is the same as (III.12) with matrix Z=(z'
11,…,z'

nT)' in place of D and the

prior parameters (μ
δ0

,Σδ0) in place of (μ
γ0

,Σγ0). We can also include both contextual variables

and time effects with a common covariance matrix between their regression coefficients. 

III.4 Empirical Application

Japan’s recent plan for economic reforms, popularly termed “Abenomics”, is lead by 

Prime Minister Shinzo Abe. The Prime Minister has recommended increased activity in the 

construction sector as an important economic driver, yet many politicians and pundits argue 

that Japan’s construction industry is inefficient (“Japan and Abenomics”, 2013). Our 

empirical application investigates the efficiency of operations in the Japanese concrete 

industry, a critical component of the country’s construction industry.  

We construct a dataset using the Census of Manufacturers collected by Japan’s 

Ministry of Economy, Trade and Industry (METI) for concrete products. The data include all 

establishments in Japan with at least four workers.28 We define Capital and Labor as the 

input variables and Value Added as the output variable. Capital and Value Added are 

measured in tens of thousands of Yen and Labor is measured in number of Employees. We 

report results for Cross Sectional datasets for 2007 and 2010 and a balanced Panel dataset for 

2007-2010. See Appendix E for the Cross Sectional results for 2008 and 2009. We note even 

our smallest Cross Sectional dataset of 1,652 observations exceeds the capacity of existing 

28 The equation used to calculate value added is different for firms with more than 30 employees than for firms 

with less than 30 employees. Excluding the firms with more than 30 employees did not result in significant 

changes to our frontier estimates, thus we present results for the full dataset. 
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methods to fit a semi-nonparametric shape constrained production function. Table 14 

presents summary statistics. 

Table 14 Descriptive Statistics for Concrete Products Dataset 

Year 2007 2008 2009 2010 

Number of observations – 

Cross Sectional 

1,929 1,715 1,714 1,652 

Capital Mean 16,419 15,809 15,662 14,215 

Median 2,000 2,000 2,000 2,000 

Standard 

Deviation 

76,401 74,300 69,332 58,486 

Labor Mean 16.68 17.51 16.60 16.32 

Median 12 13 12 12 

Standard 

Deviation 

15.80 15.83 15.39 15.29 

Year 2007 2008 2009 2010 

Value 

Added 

Mean 19,004 18,481 18,393 16,520 

Median 11,515 11,391 11,092 10,587 

Standard 

Deviation 

26,221 21,619 20,842 17,407 

Year 2007 2008 2009 2010 

Number of observations – Panel 1,382 1,382 1,382 1,382 

Capital Mean 16,313 16,475 15,901 15,536 

Year 2007 2008 2009 2010 

Capital Median 2,000 2,000 2,000 2,000 

Standard 

Deviation 

77,269 77,426 70,606 63,081 

Labor Mean 18.44 18.25 17.72 17.09 

Median 14 14 14 13 

Standard 

Deviation 

16.38 16.20 15.91 15.75 

Year 2007 2008 2009 2010 

Value 

Added 

Mean 20,084 19,434 19,377 17,648 

Median 13,502 12,385 12,548 11,795 

Standard 

Deviation 

22,475 20,264 20,665 17,839 
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We specify prior values for the parameters K, (σ
k

2
)
k=1

K
, v0, w0,  θ,  γ,  δ.  To determine 

the prior for K, we run multiplicative-error MBCR (without modeling inefficiency), and 

hypothesize that this prior value of K is likely to be larger than the number of hyperplanes 

estimated by MBCR-I, because MBCR will capture more of the output variability with 

functional complexity, whereas MBCR-I can also use inefficiency. Unlike the K=1 

assumption, our MBCR-based prior on  K  implies that we have the prior belief that the 

frontier has curvature and is more complex than a linear function. See Appendix F for a 

detailed discussion.29 Additionally, we consider priors v0=1, w0=0.1 and θ=v0w0 for the

inefficiency-related parameters. Finally, we consider a wide-support, nearly uninformative 

prior IG(1,0.01) for each σk
2. In the Panel model, we consider γ and δ to have near-vague

MVN(0,M) prior distributions, where M=diag
T
(2000).

Due to our multiplicative error structure and the use of logarithms, we eliminate firms 

with negative Value Added (~1% of the initial observations). After an initial fit, 3% of the 

observations significantly deviate from our prediction. These observations correspond to the 

largest observations in terms of Capital, Value Added, or both, and thus we exclude these 

observations as outliers. Firm exclusion is consistent across all datasets. 

III.4.1 Posterior Estimated Frontier and Interpretation

Table 15 shows the fitting statistics for the two datasets. The number of hyperplanes 

needed by our Gaussian Mixture model is relatively small, which implies that firms operate 

29 This assumption did not have a significant impact on our parameter estimates compared to the 𝐾 = 1 

assumption, but helped MBCR-I to be more computationally efficient and resulted in the insights summarized 

in Appendix F. 
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in a few clusters with locally constant marginal productivity. We estimate a median 

inefficiency of 28-29% for the Cross Sectional and 45% for the Panel datasets, respectively. 

The percentage of output variability explained by the joint production function and 

inefficiency model is between 66-76% for the Cross Sectional and above 80% for the Panel 

datasets, respectively. The number of hyperplanes fitted for the Panel dataset is larger, due to 

both MBCR-I’s ability to produce finer estimates of the production function when more data 

is available, and to the lower noise level of the firms operating throughout the study period. 

We report the percentage of output variation explained by our model and the part that 

remains unexplained we report as noise in the columns labeled % Model and % Noise, 

respectively. 

 

Table 15 MBCR-I S Cross Sectional and Panel Production Frontier Fitting Statistics 

 

 
# Hyperplanes 

fitted 

Median 

Inefficiency 
% Model % Noise 

2007 2.11 29% 66% 34% 

2008 2.03 28% 75% 25% 

2009 2.60 29% 70% 30% 

2010 2.36 28% 76% 24% 

Panel 3.63 45% 81% 19% 

 

Tables 16, 17 and 18 show the economic quantities of interest for MBCR-I S, i.e., the 

marginal productivities of Capital and Labor, Capital to Labor Elasticity of Substitution and 

Technical Efficiency of the fitted production frontier models according to their minimum, 

maximum, and quartile-specific values across observations. Table 18 shows Technical 

Efficiencies on a firm-specific basis, rather than an observation-specific basis. While we 
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observe non-constant elasticities of substitution across the samples, Tables 16 and 17 show 

that a single component of their respective Gaussian mixtures support at least half of the 

observations, indicating that a majority group faces the same marginal productivity and 

Elasticity of Substitution. Regarding Technical Efficiency, in 2010 413 out of 1,652 

establishments (25%) operate below 53% efficiency. This level of inefficiency is consistent 

across all years and the Panel dataset analysis, indicating a large potential for improvement 

for this subset of establishments. The Cross Sectional results for 2007 and 2010 (and the 

2008 and 2009 results in Appendix E), are similar in most of the estimated frontier and 

efficiency characteristics, indicating firm’s consistency performance over time.  Table 18 

shows that the Panel data model gives a smoother, more detailed estimate of the frontier. 

Lastly, firm-specific technical efficiencies are lower at all quantiles for Cross Sectional 

versus the Panel data results. 

 

Table 16 MBCR-I S Cross Sectional Production Frontier Characterization for 2007 

 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0446 1,013 0.4278 0.060% 

25th 

percentile 1.0534 1,222 8.6449 50.89% 

Median 1.0534 1,222 8.6449 70.94% 

75th 

percentile 1.0534 1,222 8.6449 86.61% 

Max 3.7182 1,218 43.189 99.97% 

 



84 

Table 17 MBCR-I S Cross Sectional Production Frontier Characterization for 2010 

Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

Capital Labor Capital/Labor Firm-specific % 

Min 0.0289 803.1 0.3342 3.46% 

25th 

percentile 0.9880 1074 9.2108 52.98% 

Median 0.9880 1074 9.2108 72.80% 

75th 

percentile 0.9880 1074 9.2108 87.66% 

Max 6.7196 1074 98.7883 97.97% 

Table 18 MBCR-I Panel Production Frontier Characterization 

Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

Capital Labor Capital/Labor Firm-specific % 

Min 0.0299 988 0.2850 2.78% 

25th 

percentile 0.8758 1173 7.2168 36.53% 

Median 1.8886 1318 14.0175 55.40% 

75th 

percentile 3.0354 1417 21.4405 77.80% 

Max 3.7157 1971 26.3485 99.95% 

The lower Technical Efficiency levels for the Panel model are conservative estimates, 

because as Table 19 shows, the frontier contracts in each time period after 2007 are likely 

due to the global financial crisis. Given that 2007 is the base year for the Panel analysis and 

that our assumption about uniform yearly frontier shifts across firms is an approximation, we 

suggest that firm-specific inefficiency terms absorb some of the frontier shrinkage effect. 

Finally, we note that the frontier multiplier for year t is given by eγt , as defined in Section 
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III.4.1. Table 19 shows Maximum a Posteriori (MAP)30 and 90% credible interval values for 

the year-specific frontier shifts for the Panel model. Further, Table 19 also confirms that the 

global financial crisis of 2007 has a significant effect on the future output of establishments. 

 

Table 19 Time Dummy Variable Coefficients 

 

 2008 2009 2010 

MAP -0.0595 -0.0628 -0.1063 

Frontier 

Multiplier 

0.9422 0.9391 0.8992 

90% Credible 

Interval 

(0.9186, 0.9665) (0.9154, 0.9649) (0.8762, 0.9248) 

 

Table 20 shows the Most Productive Scale size results, conditional on Capital/Labor 

ratio distributions at the 10, 25, 50, 75, and 90 percentiles (see Appendix G for a full 

discussion). The Capital/Labor ratio distribution is similar for the Cross Sectional and Panel 

datasets. The MPSS results for the cross sectional datasets are similar at all percentiles of the 

Capital/Labor ratio distribution. Finally, the larger MPSS values for the Panel frontier reflect 

a higher probability of well-established firms with superior technologies to appear in all 

years of the census. These firms have a large weight in determining the frontier in the 

Balanced Panel and contribute to lower Technical Efficiency levels.  

 

                                                 

30 The MAP value is the highest density point of the simulated posterior distribution for the parameter of 

interest. 
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Table 20 Most Productive Scale Size for Selected Capital/Labor Ratios for Cross Sectional 

and Panel Production Frontiers 

Model 

Capital/Labor 

ratio 

percentile 

10% 25% 50% 75% 90% 

Cross 

Sectional 

2007 

Capital/Labor 37 75 166.7 400 1,500 

MPSS Capital 1,243 1,281 1,368 1,594 2,638 

MPSS Labor 32 17 8 4 2 

Cross 

Sectional 

2010 

Capital/Labor 37.5 80.0 166.7 416.7 1451.2 

MPSS Capital 1,102 1,140 1,224 1,446 2,477 

MPSS Labor 28 14 8 4 2 

Panel 

2007–2010 

Capital/Labor 38.9 76.9 162.2 389.9 1456.0 

MPSS Capital 1,490 1,596 1,827 2,438 5,278 

MPSS Labor 38 21 11 6 4 
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CHAPTER IV  

EVALUATING MONOTONIC AND CONCAVE PRODUCTION FUNCTION 

ESTIMATORS FOR USE ON MANUFACTURING SURVEY DATA 

 

In this chapter, we propose selecting an estimator based on a weighting of its in-

sample and predictive performance on actual application datasets rather than on learning 

Mean Squared Error performance in Monte Carlo simulations. The method provides insights 

to Census Bureaus regarding the survey sizes needed to reliably estimate industry population-

level production functions. We demonstrate this selection method for both parametric and 

shape-constrained nonparametric production function estimators. We compare Cobb Douglas 

functional assumptions, CNLS, CAP, and CAP-NLS. We find CAP-NLS has lower Mean 

Squared Error across learning set sizes compared to alternative nonparametric approaches 

when used to estimate a population production function for simulated data. For survey data, 

specifically the 2010 Chilean Annual National Industrial Survey and four regressors, we find 

that the best method depends on the specific dataset, but with CAP-NLS and additive-

residual Cobb-Douglas specification performing similarly for at all sample sizes, and CAP 

matching their performance at n>50. Further, we find that the additive-residual Cobb-

Douglas specification describes at least 90% as much variance as the best estimator in 

practically all considered cases. We construct simulation-based confidence intervals on the 

goodness-of-fit of a survey-fitted production function depending on its sample size, thus 

creating a survey size recommendation criterion for census bureaus. 

The chapter is organized as follows: In Section IV.1, we present Convex Adaptively 

Partitioned Nonparametric Least Squares (CAP-NLS), a method that integrates CAP and 
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CNLS using an adaptive partitioning strategy, but at the same time uses the Afriat (1967; 

1972) inequalities and global optimization.  In Section IV.2, we perform Monte Carlo 

simulation analysis to demonstrate CAP-NLS’s superior performance at estimating 

production functions relative to CAP and CNLS for both in-sample and learning set-to-

testing set scenarios. In Section IV.3, we fit production data for the five industries with the 

largest sample sizes in the 2010 Chilean Annual National Industrial Survey and evaluate the 

performance of CAP-NLS relative to CAP, CNLS and the Cobb-Douglas parametric models 

in terms of its ability to produce reliable industry-wide production function estimates from 

non-exhaustive survey datasets.  

 

IV.1 Convex Adaptively Partitioned Nonparametric Least Squares 

 

IV.1.1 Production Function Model 

We define the regression model for our nonparametric estimation procedure as 

                                                          Y=f(X)+ε                                                   (IV.1)                                                                

where Y represents observed output, f(X) denotes the attainable output level given a certain 

input mix X=(X
1
, …, Xd)', d is the dimensionality of the input vector and ε is a symmetric 

random term, which we call noise, assuming a mean 0. For our estimator, we use the 

establishment-specific equation (IV.2) to derive our objective function. 

Yi=f(X1i, …, Xdi)+εi,     i=1,…,n (IV.2) 

For notational simplicity, we let  fi=f(X1i, …, Xdi) and Xi=X
1i

, …, Xdi. We describe the 

decreasing marginal productivity (concavity) property in terms of  ∇f(X), i.e., the gradient of 

f with respect to X, 
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f(Xi)≤+ f(Xj)+ ∇f(Xj)
T(Xi-Xj) ∀i,j. (IV.3) 

Given that the constraints in (IV.3) hold, the additional constraint ∇f(Xi)>0 ∀i imposes

monotonicity. 

IV.1.2 Convex Adaptively Partitioned Nonparametric Least Squares

Throughout this chapter, we consider nonparametric approximation of f(X) with 

piecewise linear estimators. These estimators can consistently describe a general concave 

function allowing the concavity constraints in (IV.3) to be written as a system of linear 

inequalities. The CNLS estimator is a sieve estimator and the most flexible piecewise linear 

estimator consistent with the functional description in (IV.1)-(IV.3), Kuosmanen (2008). 

Nevertheless, this estimator imposes condition (IV.3) by a set of numerous pairwise 

constraints, which requires significant computational enhancements to be applied on 

moderate datasets (see Lee et al., 2013 and Mazumder et al., 2015). More importantly, CNLS 

results in a parameter-intensive representation of f(X), as it allows for potentially N distinct 

hyperplanes. This highly detailed sample-specific fit limits the estimator’s ability to predict 

the performance unobserved establishments from the same industry. Moreover, even if a full 

census is fitted with CNLS, researchers have ignored that the CNLS fit is specific to the 

particular vector of (unobserved) noise terms and thus descriptive ability on the observed 

dataset does not fully represent descriptive ability on the unobserved set of establishments. 

The extent to which CNLS over fits the data and the observed noise vector will be explored 

and illustrated in Sections IV.2 and IV.3. Furthermore, allowing for such a large number of 

distinct hyperplanes is an issue for production function estimation also from a purely 

economic point of view, because individual establishment observations can specify their own 
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vector of marginal products meaning they can place zero weight on some set of inputs 

excluding those inputs from that establishment’s production function. This implies that even 

if the establishment uses those inputs intensively, the establishment can ignore those inputs 

recorded in the data when evaluating the establishment’s performance. 

To address these computational and representational issues, we propose to partition 

the dataset into input-space defined subsets, which we will refer to as Basis Regions and 

estimate one hyperplane per basis region. We use the notation [i] to denote the index of the 

basis region to which observation i is assigned for a given input set partitioning proposal and 

let K be the number of basis regions. Then, we can approximate concave function f(X) at 

input vector Xi with estimator 

f̂K(Xi)= β
0[i]
*

+β
-0[i]
*T

Xi 

(β
0k

*
,β

-0k

* )
k=1

K
= argmin

(β0k,  β-0k)k=1
K

∑ (β
0[i]

+β
-0[i]

T
Xi-Yi)

2n
i=1

s.t.  β
0[i]

+β
-0[i]
T

Xi≤β
0k

+β
-0k

T
Xi  ∀ i=1,…N,k=1,…,K 

β
-0k

≥0 ∀k=1,…,K,

(IV.4) 

where the kth basis region is fitted by a hyperplane with parameters β
k
=(β

0k

*
,β

-0k

*
). Note that 

the total number of Afriat inequality constraints is NK, as opposed to the N(N-1) constraints 

implied by (IV.3). Further, note that (IV.4) estimates f(X) conditionally on an input-space 

partition. Thus, to obtain an unconditional estimator of f(X), we need to explore different 

input-space partitions. Consequently, we need to nest the solution to problem (IV.4) into an 

algorithm that proposes partitions resulting in a more parsimonious estimator of f(X) than 

the CNLS solution. 
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Hannah and Dunson (2013) propose a partitioning strategy, which both explores the 

input space adaptively and easily allows nesting. Firstly, their strategy greedily selects 

models with incrementally better fits as the number of hyperplanes grows. Secondly, they 

transition from simpler (initially linear) to more detailed models of the concave function and 

select a model that results in the best tradeoff between model fit and the number of 

parameters used. We estimate the function f̂(X) by iteratively solving (IV.4) inside of the 

partitioning proposal strategy. At each iteration, the strategy evaluates KML partition-

splitting proposals, where M, a tunable parameter, is the number of random input-space 

location proposals for a new knot at each iteration, L=d is the number of randomly proposed 

directions, given the current basis regions and a proposed new knot location, that will define 

the new dataset partition, and K is the current number of partitions at the current iteration.  

Our full estimation algorithm, which nests (IV.4) in the adaptive partitioning strategy, can be 

succinctly described by the following algorithm where tunable parameter n0 is bounded 

below by 2(d+1): 

 

Algorithm 1. CAP-NLS Estimator 

1. Start with K=1 and fit (IV.4). 

2. Consider splitting each of the current K hyperplanes at M random knot locations in L 

random directions. 

3. Fit (IV.4) for each for each of the (at most) KML partition proposals with at least n0/2 

observations on each basis region. 

4. Select the proposal that minimizes MSE and let K=K+1.  
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5. Check if each of the current partitions has at least n0 observations. If yes, stop; if not 

go to Step 2  

 

To ensure model parsimony, we select the smallest model (in terms of K) for which 

MSE is within a prespecified tolerance of the MSE of the largest Kconsidered by Algorithm 

131. Even though CAP and CAP-NLS use the same partitioning strategy, there are three main 

differences between CAP-NLS and CAP. Firstly, CAP-NLS imposes concavity via the Afriat 

Inequalities, rather than a minimum-of-hyperplanes construction. Secondly, CAP-NLS 

requires solving a global optimization problem rather than multiple localized optimization 

problems. As we will observe in our experiments on Sections IV.2 and IV.3, this additional 

structure results in increased rates of convergence and improved robustness against local 

monotonicity violations common in manufacturing survey data. Thirdly, CAP-NLS does not 

require a refitting step, as the observation-to-basis region correspondence is kept before and 

after fitting problem (IV.4). Furthermore, CAP-NLS is differentiated from CNLS not only in 

its one-to-many observation to hyperplane mapping and iterative nature, but also because 

CAP-NLS requires at least 2(d+1) observations per partition to fit each hyperplane. This 

property is the key for CAP-NLS’s superior performance on the learning-to-full sampling 

settings. 

 

                                                 

31 The tolerance is set to 1% in all of our examples. Initially we do not use the Generalized Cross Validation 

(GCV) score approximation used by Hannah and Dunson (2013) because they state GCV’s predictive results 

are only comparable with full cross validation strategies for problems with 𝑛 ≥ 5000, which are larger than the 

datasets we consider.  
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IV.1.3 CAP-NLS as a Series of Quadratic Programs 

Taking advantage of the linearly-constrained quadratic programming structure of 

CAP-NLS is essential to make it computationally feasible. We first need to write Problem 

(IV.4) in the standard form 

min
β

1

2
β

T
Hβ+β

T
g 

s.t.  Aβ≤0,   β≥l. 

(IV.5) 

Thus, starting with the objective function from (IV.4), we let  X̃=(1, X) and write  

min
(β0k,  β-0k)k=1

K
∑ (β

0[i]
+β

-0[i]
T

Xi-Yi)
2

n
i=1 = min

(βk)k=1
K

∑ (β[i]
T

X̃i-Yi)
2

n
i=1 =…  

= min
(βk)k=1

K
 

1

2
∑ (β[i]

T
X̃i)

2
n
i=1 - ∑ (β[i]

T
X̃iYi)

n
i=1   

(IV.6) 

where we have dropped constant ∑ Yi
2n

i=1  and multiplied times one half. To write the last 

expression in (IV.6) in standard form, we first write ∑ (β[i]
T

X̃i)
2

n
i=1 using matrix operations. 

We define observation-to-hyperplane n(d+1)×K(d+1)-dimensional mapping matrix P with 

elements P((i-1)*(d+1)+j,([i]-1)*(d+1)+i)=X̃ij,  i=1,…,n,  j=1,…d+1 and all other elements 

equal to zero. Similarly, we define n×n(d+1)-dimensional observation-specific vector 

product matrix S, with elements  S(i,(i-1)*(d+1)+l)=1 for l=1,..,3,  i=1,…,n,  j=1,…d+1 . 

We then concatenate vectors (β
k
)
k=1

K
 in K(d+1)×1-dimensional vector β. It follows that  

∑ (β[i]
T

X̃i)
2

n
i=1 =β

T
PT(S

T
S)Pβ    and    ∑ (β[i]

T
X̃iYi)

n
i=1 =β

T
PTS

T
Y, 

(IV.7) 

from which we can easily see that H=PT(S
T
S)P and  g=-PTS

T
Y. To write in the Afriat 

Inequality constraints as nK×K(d+1) - dimensional matrix A, we let elements 

A(K(i-1)+k,j+(d+1)([i]-1))= X̃ij,    i=1,…,n,  j=1,…d+1,  k=1,…,K and let all other 
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elements equal zero. Finally, we define K(d+1) – dimensional vector l to have elements 

l((k-1)(d+1)+1)=0, k=1,…,K and all other elements be equal to negative infinity. 

IV.2 Experiments on Simulated Data

We compare CAP-NLS to a correctly specified parametric estimator, a 

monotonically-constrained version of CAP, and CNLS via Monte Carlo-simulations. We 

consider Data Generation Processes (DGP) based on Cobb-Douglas functions and observe 

our estimates for the expected in-sample error of the production function estimators against 

the true DGP, E(ErrISf), where the expectation is taken against all possible learning sets. 

Contrastingly, we also estimate the following expected quantities: learning-to-testing set or 

predictive error against the true DGP, (Errf) , in-sample error against observed output, 

E(ErrISy) , and predictive error against observed output E(Erry) (Hastie, Tibshirani and 

Friedman, 2009 pp. 228-229). While performance against the true DGP is important to assess 

the functional estimator’s finite-sample bias, the functional estimator’s estimates compared 

to the observed output are the only performance metrics available to the researcher when 

considering a real dataset. On a real dataset, the estimate of in-sample error against observed 

output would be the most reliable fitting diagnostic when working with a census or full set of 

establishments. Conversely, the estimator’s estimate compared to an additional sample drawn 

from the same DGP, which defines the expected predictive error, is the primary diagnostic 

when assessing the fit of a functional estimator obtained from estimation on a learning set 

relative to a much larger population. Consequently, assessing the fit of a functional estimator 
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on a finite census from a non-exhaustive sample, would have to weight these two errors by 

the relative sizes of the sets of observed and unobserved establishments.  

Thus, we estimate the expected in-sample error against the true DGP for a learning 

set of size nLearn , E(ErrISf
nL ) , by E(ErrISf

nL )̂ = MSEISf
nL = ∑ ∑ (f̂vLi

nL
-fvLi)

2

/nV
nL

i=1
V
v=1

32 for each 

functional estimator, where f̂vL

nL
 is the production function estimate obtained with the vth 

learning set and learning set of size nL, fvLi is the ith observation of the vth learning set, nL is 

the size of the learning set and V is the number of different considered learning sets. 

Analogously, we estimate the expected predictive error against the true DGP for a learning 

set of size nLearn, E(Errf
nL), by computing the averaged Mean-Squared Error across the V 

learning-testing set combinations of the same DGP, E(Errf
nL)̂ = MSEf

nL= ∑ ∑ (f̂vLi

nL
-

nT

i=1
V
v=1

fvTi)
2

/nV, where we choose the size of the testing set, nT = 1000, and fvTi is the ith output 

observation of the vth testing set. When estimating E(ErrISy
nL ), unlike when estimating 

E(ErrISf
nL ) we need to vary the random component of each observation of each learning set in 

order to avoid over-optimism (Hastie, Tibshirani and Friedman, 2009 pp. 228). Thus, we 

generate W different sets of noise terms33 for each learning set and estimate E(ErrISy
nL )̂ = 

MSEyIS
nL = ∑ ∑ ∑ (f̂vLi- f(xvLi)+εwTi)

2
/nVW

nL

i=1
W
w=1

V
v=1 , where xvLi is the ith input vector of the 

                                                 

32 Note that the estimator “hat” character is over 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓
𝑛𝐿 ) rather than 𝐸𝑟𝑟𝐼𝑆𝑓

𝑛𝐿 , the in-sample error for the 

particular learning set with which the production function was fitted.  

 
33 Computing the in-sample error provides a more realistic estimate of the quality of the production function on 

a full set than the learning error 𝑀𝑆𝐸𝐿𝑦
𝑛𝐿 = ∑ ∑ (𝑓𝑣𝑖 − 𝑌𝑣𝑖)

2
/𝑛𝑣

𝑛𝐿
𝑖=1

𝑉
𝑣=1 , as it averages performance across many 

possible 𝜀𝑖 residual values for the learning set input vector. 
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vth learning set and εwTi is the ith residual of the wth testing set. Finally, we compute 

E(Erry
nL)̂ = MSEy

nL= ∑ ∑ (f̂vLi-YvTi)
2
/nV

nT

i=1
V
v=1  to estimate the predictive error against observed 

outputs, where YvTi is the ith output observation of the vth testing set. 

We consider results for two types of scenarios, the full-sample or census scenarios, 

and learning set-to-full set with finite full set scenarios. For the full-sample scenarios, we 

report E(ErrISf
n )̂  and E(ErrISy

n )̂ . For the learning set-to-full set scenarios, we compute an

estimator for the Full Set error 

E(ErrFS∙
nL )̂ =MSEFS

nL=(n
L
/n) E(ErrIS∙

nL)̂ +((nF-n
L
)/n) E(Err∙

nL)̂ (IV.8) 

,where FS stands for Full Set and this can be calculated for either f or y allowing f or y take 

the place of the dot operator. Note that E(ErrISy
nL )̂ , E(Erry

nL)̂  and E(ErrFSy
nL )̂  are also estimators

for the noise level σ2 of the DGP and thus we can use σ2 as a benchmark for their 

estimations. Further, without our corrections for over-optimism computing an estimator σ̂
2

would be complicated by the nonparametric nature of the regression methods used to fit the 

production functions.34 In our learning-to-testing scenarios, we compare the three methods’ 

performance on 100 learning-testing set pairs, V=100, using learning datasets of size nL= 30, 

50, 80, 100, 150, 200, 240 and 300. For our full-sample scenarios, we consider nLearn= 100, 

200, 300. For all scenarios, we consider 30 randomly drawn sets of noise testing vectors, W= 

30 to compute the in-sample portion of (IV.8). Additionally, we estimate the correctly-

specified parametric estimator for our DGP. The true parametric form is never known in an 

34 Specifically, if we intend to use the learning set’s residual sum of squares, calculation of an estimator 𝜎̂2

would require knowledge of the functional estimator’s effective number of parameters. However, effective 

parameters can be difficult to calculate for nonparametric and particularly sieve estimators.   
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application and thus the correctly-specified parametric estimator could not be selected as an 

estimator for a practitioner; however, these estimation results are best-case benchmarks. 

In what follows we present or our estimates of expected Full Set errors measured 

against the true DGP, MSEFSf
nL , and expected fraction of unexplained variance on the Full Set, 

MSEFSy
nL /var(YFS), respectively. Also, note that the expected Full Set error is equal to 

expected In-Sample error for the full-sample scenarios. Due to the extensive nature of our 

results, we present them in graphical form. Tables for all experiments can be found in 

Appendix H. We record and report other relevant performance indicators, such as the number 

of hyperplanes fitted and the estimation time. 

IV.2.1 Bivariate Input Cobb-Douglas DGP

We consider the DGP Yi=Xi1
0.4Xi2

0.5+εi, where εi~N(0,σ2) and

σ= 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings, which we split into low and high-

noise settings. Furthermore, we assume Xij~Unif(0.1,1) for j=1,2 and i=1,…,nL. Our first

observation from Figures 9 and 10 is that our estimated expected full set error results, on all 

learning-to-testing set scenarios for CNLS exceed the scale of the y-axes (due to very high 

predictive error values); thus we only present the full set error values for CNLS. The top set 

of graphs in Figure 9 demonstrates that CAP-NLS has similar to slightly better expected Full 

Set error values performance than both CAP and CNLS on full set scenarios, while CAP-

NLS clearly outperforms both methods on learning-to-testing set scenarios. However, we 

gain further insight by looking at the bottom panels of Figure 9, we see that for low-noise 

scenarios, σ=0.01, 0.05, 0.1, where the percentage of output variance due to noise is 0.3%, 
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6.5% and 22% respectively. We observe that the improvement of CAP-NLS against CAP 

rarely exceeds 2% of the variance of the full dataset. In other words, an r-squared 

measurement would differ by less than two percent. We observe that the difference between 

the correctly-specified parametric estimator and CAP-NLS is also within 2% on nearly all 

cases. 

Surprisingly, Figure 10 shows that for our large noise settings, σ=0.2, 0.3, 0.4, CAP-

NLS and the other nonparametric estimators are competitive with the correctly-specified 

parametric estimator for large sample size or large noise scenarios. This performance gap 

reduction against the correctly specified parametric estimator is at least in part due to the 

generally nonlinear objective function of the Least-Squares estimator of Cobb-Douglas with 

an additive error term (the correctly specified error structure for our DGP), which can 

potentially lead to multiple local optimal solutions.  We note that if we had instead 

considered a multiplicative error structure on the DGP, for which neither of the 

nonparametric estimators has a convex programming formulation, the Cobb-Douglas 

function would have been easy to estimate. Further, only CAP-NLS and the parametric 

estimator perform consistently regardless of the full set size on these higher noise settings 

and the performance gap between CAP-NLS and CAP increases to more significant levels, as 

the latter becomes unstable. From the lower panels of Figures 9 and 10, we see that all the 

estimators approach the true noise-to-total variance level (labeled True Variance Level on the 

graphs for notational ease) as the learning set size increases, regardless of the noise setting. 

Finally and as expected, we observe very high correlation between expected Full Set error 

measured against the true DGP and true noise-to-total variance level. 
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Figure 9 Bivariate input Cobb-Douglas DGP results for small noise settings 

Table 21 Number of Hyperplanes and Runtime for Bivariate Input Cobb-Douglas DGP 

CAP-NLS CAP CNLS 

σ n 100 200 300 100 200 300 100 200 300 

0.01 

K 9 12 12 2 2 2 93 164 242 

Time 

(s) 
4 15 27 1 0.56 0.78 1 8 22 
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Table 21 (continued) 

The number of hyperplanes fitted for the Full Sample scenarios are reported in Table 

21 for each of the three nonparametric estimators. Larger values indicate a more complex 

production function using more hyperplanes to characterize the curvature. While CNLS fits a 

much larger number of hyperplanes relative to CAP-NLS, CAP fits functions that are only 

slightly more complex than linear, by employing 2 hyperplanes in all estimates. Finally, 

although CAP-NLS’s runtimes are the highest, they are still small in absolute terms. 

CAP-NLS CAP CNLS 

0.05 

K 8 10 12 2 2 2 80 135 198 

Time 

(s) 
5 12 30 0.42 0.60 0.77 1 6 23 

0.1 

K 9 10 11 2 2 2 60 148 172 

Time 

(s) 
4 17 40 0.42 0.54 0.75 1 8 26 

0.2 

K 9 10 11 2 2 2 54 101 157 

Time 

(s) 
5 16 32 0.47 0.66 0.79 1 8 23 

0.3 

K 8 10 11 2 2 2 50 98 147 

Time 

(s) 
5 15 28 0.41 0.58 0.71 1 8 22 

0.4 

K 8 10 11 2 2 2 47 90 135 

Time 

(s) 
4 15 29 0.46 0.62 0.74 1 7 22 
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Figure 10 Bivariate input Cobb-Douglas DGP results for large noise settings 

IV.2.2 Trivariate Input Cobb-Douglas DGP

We consider the DGP Yi=Xi1
0.4Xi2

0.3Xi3
0.2+εi, where εi~N(0,σ2)

σ= 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings considering the same small and 

large noise split as the previous example  and Xij~Unif(0.1,1) for j=1,2,3, i=1,…,nL. We first

note that CNLS’s expected Full Set errors again exceed the displayed range for the learning-

to-full set scenarios for this trivariate input example regardless of the noise level. Again this 
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is a consequence of poor predictive error values, which is in part linked to the higher 

proportion of non-fully dimensional hyperplanes35 CNLS fits. The second key observation is 

that the higher dimensional form of the parametric estimator, as compared to Example 

IV.2.1, results in increased estimation complexity. This results in higher errors for the

parametric estimator, which exceed the very small scale of most panels in Figure 11. 

However, as the longer error scales of Figure 12 show, the errors given by the 

parametric estimator are not as high as those for CNLS in learning-to-full settings. 

Furthermore, we observe that CAP’s expected performance deteriorates relative to Example 

IV.2.1 and the performance gain obtained by employing CAP-NLS is relevant in an

increased number of settings. Like in Example IV.2.1, as the learning set grows, the expected 

Full Set errors gap between CAP-NLS and the correctly specified parametric estimator either 

favors CAP-NLS at every learning set size or becomes more favorable for CAP-NLS as the 

learning set size increases. Finally, we note from Figure 12 that CAP-NLS can accurately 

recover a production function even when noise composes nearly 85% of the variance, as in 

the σ=0.4 results. 

35 These are hyperplanes which have zero coefficients on some input dimensions, implying it is possible to 

obtain output without using the zero-coefficient inputs. Olesen and Petersen (1996) first explore the existence of 

these type of hyperplanes on a DEA context. 
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Figure 11 Trivariate input Cobb-Douglas DGP results for small noise settings 

In Table 22, we observe that all methods fit slightly more hyperplanes than for the 

Bivariate-input example. Increase in the number of hyperplanes with increased 

dimensionality is moderate for both CAP-NLS and CAP at all settings. For CNLS, while the 

number of hyperplanes does not significantly increase for n=100, it significantly increases for 

the two larger datasets. Furthermore, the runtimes for all methods are higher than in the 

previous example, with CAP-NLS’s times nearly doubling; however, CAP-NLS’s run times 

are below one minute for all scenarios. 
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Figure 12 Trivariate input Cobb-Douglas DGP results for large noise settings 

Table 22 Number of Hyperplanes and Runtime for Trivariate Input Cobb-Douglas DGP 

CAP-NLS CAP CNLS 

σ n 100 200 300 100 200 300 100 200 300 

0.01 

K 9 12 13 2 2 2 96 193 294 

Time 

(s) 
5 28 51 0.59 0.78 1 1 9 27 
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Table 22 (continued) 

IV.2.3 Four-variate Input Cobb-Douglas DGP

We consider the DGP Yi=Xi1
0.3Xi2

0.25Xi3
0.25Xi4

0.1+εi, where εi~N(0,σ2) and

σ=0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings and Xij~Unif(0.1,1) for j=1,2,3,4;

i=1,…,nL. We first observe that Table 23 shows that the number of hyperplanes needed to fit 

this four-variate input production function does not significantly increase from the trivariate-

input case of Example IV.2.2 for any of the methods. Contrastingly, CAP-NLS has 40-60% 

longer runtimes as compared to the trivariate-input case. However, this runtime increase with 

dimensionality is not a severe concern as input information to fit a production function (or 

CAP-NLS CAP CNLS 

σ n 100 200 300 100 200 300 100 200 300 

0.05 

K 10 11 12 2 2 3 80 169 235 

Time 

(s) 
5 28 45 0.53 0.83 1 1 9 28 

0.1 

K 8 12 14 2 2 3 75 136 199 

Time 

(s) 
6 24 54 0.54 1 1 1 10 24 

0.2 

K 8 11 12 2 3 2 61 126 193 

Time 

(s) 
8 23 50 0.52 0.93 1 1 9 28 

0.3 

K 8 11 12 2 3 3 57 123 184 

Time 

(s) 
5 23 49 0.53 0.92 1 1 9 28 

0.4 

K 8 11 12 2 3 3 54 115 179 

Time 

(s) 
5 25 49 0.52 0.92 1 1 9 29 
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output in case of a cost function) rarely exceeds four variables. Furthermore, the maximum 

recorded runtime for CAP-NLS was still short and thus is not large in absolute terms.  

Figures 13 and 14 show that for this higher dimensional example, the parametric 

estimator can only predict the true function up to a certain accuracy, namely MSEFSf
nL =0.015, 

and tends to plateau at this error level even as learning set size increases. Moreover, the 

benefits of CAP-NLS over the other nonparametric methods are similar the results in 

Example IV.2.2 for the small noise settings, and significantly larger for the large noise 

settings. Finally, the gap between CAP-NLS and all the other functional estimators, 

parametric or nonparametric, increases indicating CAP-NLS’s superior performance for all 

noise settings and learning set sizes in this higher-dimensional example. 

 

Table 23 Number of Hyperplanes and Runtime for Four-variate Input Cobb-Douglas DGP 

 

    CAP-NLS CAP CNLS 

 σ n 100 200 300 100 200 300 100 200 300 

0.01 
K 7 11 12 2 2 2 98 194 234 

Time (s) 5 29 70 0.42 1 2 1 8 24 

0.05 
K 7 12 13 2 2 2 87 170 215 

Time (s) 4 33 65 0.39 1 1 1 9 27 

0.1 
K 7 12 12 2 2 2 55 166 207 

Time (s) 4 30 62 0.60 1 2 1 10 32 

0.2 
K 7 12 13 2 2 2 63 132 192 

Time (s) 4 36 79 0.45 1 2 1 9 31 

0.3 
K 7 12 12 2 2 2 59 122 192 

Time (s) 4 36 74 0.46 1 2 1 10 32 

0.4 
K 7 12 12 2 2 2 57 122 186 

Time (s) 4 36 75 0.48 1 2 1 10 33 
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Figure 13 Four-variate input Cobb-Douglas DGP results for small noise settings 
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Figure 14  Four-variate input Cobb-Douglas DGP results for large noise settings 

 

IV.2.4 Insights and Implications from Examples IV.2.1 - IV.2.3 

Throughout our examples, we observed that CAP-NLS was the only functional 

estimator which performed robustly on a learning-to-full set basis across all dimensionalities 

and noise levels, while also being the nonparametric estimator with lowest in-sample error on 

nearly all the full set scenarios. CNLS’s overfitting of the learning set (as observed by the 

large number of hyperplanes it fitted in all examples) has a severe detrimental effect on the 
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expected Full Set error due to low predictive power (i.e., high expected predictive error). 

However, this overfitting issue did not heavily affect its in-sample performance, as observed 

through CNLS’s expected Full Set error in the full set scenarios and thus could still be robust 

and a candidate estimator for comparison on census datasets. CAP showed good performance 

on both full set and learning-to-full set scenarios for small noise settings at all 

dimensionalities, however, as the noise level increased, CAP’s learning-to-full set 

performance deteriorates.   

 Expected Full Set error is similar for all nonparametric methods, except for CAP in 

the high noise settings with 3 or 4 inputs, on which its performance deteriorates. CAP-NLS 

and CNLS perform similarly on the full set scenarios in all cases. Runtimes for CAP-NLS are 

the only ones to deteriorate significantly with dimensionality and are the largest of the three 

nonparametric methods in all cases. However, these times are still small in relative terms, not 

being larger than 2 minutes for any fitted dataset. Finally, while dimensionality of production 

functions is typically low and therefore CAP-NLS’s scalability in dimensionality would not 

be a concern, scalability in n could be an issue to fit large production datasets.36 The 

following subsection proposes a modification to CAP-NLS to address this potential issue.  

 

IV.2.5 Scalability of CAP-NLS to Larger Datasets 

To demonstrate the performance of CAP-NLS in large data sets, we revisit the DGP 

used Example IV.2.2, specifically, Yi=Xi1
0.4Xi2

0.3Xi3
0.2+εi, where εi~N(0,σ2) , σ=0.1 and 

                                                 

36 Oh et al. (2015) or Crispim Sarmento et al. (2015) discuss computational challenges for fitting existing 

nonparametric piecewise linear estimators in large application datasets. 
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Xij~Unif(0.1,1) for j=1,2,3, i=1,…,n and n=500, 1000, 2000, 3000, and 5000. The 

estimator’s performance is reported in Table 24.37 We first conduct standard CAP-NLS 

analysis and report learning errors, number of fitted hyperplanes and runtime results.  

Runtimes for datasets up to 2,000 observations are well below the one hour threshold; 

however, we see significant scalability challenges for datasets larger than 2000 observations. 

Thus, we apply the Fast CAP stopping criterion in Hannah and Dunson (2013), which 

measures the GCV score improvement by the addition of one more hyperplane and stops the 

algorithm if no improvement has been achieved in two consecutive additions, although 

unlike Fast CAP, we apply it directly to the learning error against observations. We denote 

the results for those runs with the CAP-NLSF superscript and observe that differences are 

minimal if compared to following our standard partitioning strategy. However, this 

alternative stopping rule results in a highly scalable algorithm which is able to fit datasets up 

to 5,000 observations in around 40 minutes.  

 

                                                 

37 Due to the increased computational burden of using larger datasets, we present results for a single replicate of 

the DGP for each sample size and only include learning set results. For this section we choose to report 𝑅𝑀𝑆𝐸 

results rather than 𝑀𝑆𝐸 ones, as the latter were very small and differences are indistinguishable across settings. 
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Table 24 Number of Hyperplanes and Runtime for Trivariate Input Cobb-Douglas DGP on 

Larger Datasets 

 

n 500 1000 2000 3000 5000 

RMSEfLearn
CAP-NLS

 0.025 0.022 0.025 0.025 0.024 

RMSEfLearn
CAP-NLSF

 0.023 0.025 0.026 0.027 0.028 

MSEy
Learn
CAP-NLS 0.009 0.010 0.011 0.011 0.011 

MSEy
Learn
CAP-NLSF 0.010 0.011 0.010 0.011 0.011 

KCAP-NLS 5 5 7 5 5 

KCAP-NLSF 4 4 5 4 4 

Time(min)CAP-NLS  3 8 43 114 367 

Time(min)CAP-NLSF  3 5 10 11 41 

 

IV.3 Chilean Annual National Industrial Survey 

 

IV.3.1 Dataset and Considerations 

The Chilean Annual Industrial Survey (ENIA, by its initials in Spanish) is a census of 

all industrial establishments with 10 or more employees which are located inside the Chilean 

territory.  The survey’s main goal is to characterize the manufacturing activity of the country 

in terms of input usage, manufactured products and means of production utilized in the 

diverse transformation processes. We focus on the 5 largest 4-digit industries in terms of 

sample size and removing only a very limited set of establishments. Specifically we only 

remove observations with non-positive value added or input values for any of the used input 

variables. Further, in this section we will refer to the learning sets as the survey subsamples 

and to the full sets as the survey full sample. 

We use this dataset to illustrate three points which have been largely overlooked in 

the production function estimation literature and that are key in working with national survey 

data on manufacturing. First, as real production data is highly clustered around a particular 
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scale size and input ratios, the data lacks the more complex curvature of data simulated from 

monotonic and concave DGPs. In view of this difference, the performance of estimators and 

their resulting rankings could vary significantly between Monte Carlo simulation 

experiments and the estimators’ performance on survey data. We investigate whether this is 

the case, by assessing the ability of the estimators used in Section IV.2 to fit industry-specific 

data from the Chilean manufacturing dataset on a subsample to full sample setting. Second, 

we illustrate the replicate-specific performance of the selected functional estimators. Third 

and lastly, we graphically explore the increase in explanatory capability of our fitted 

production functions as a function of the relative size of survey subsample to survey full 

sample and discuss practical survey sample size implications. 

 

IV.3.2 Methodology to Compare Functional Estimator Performance on Real Data 

We compare additive error formulations of CAP-NLS, CAP and CNLS. Further, we 

also consider the additive-error Cobb-Douglas formulation used in Example IV.2.3,  Y = 

X1
α1X2

α2X3
α3X4

4+ε, which we label CDA. As customary, we restrict all input powers to be 

nonnegative for the Cobb-Douglas functional estimator. In total, we compare 4 different 

functional estimators. We center our comparison on the estimated expected error on the full 

survey set of establishments given a survey subset size E(ErrFSy
nL )̂  , but report the scale-

invariant quantity RFS
2 =max(1- E(ErrFSy)̂ Var(y

FS
)⁄ ,0), where Var(y

FS
) is the sample 

variance of the output on the full industry dataset.  Note that the definition of RFS
2  implies that 

if the evaluated estimator fails to explain more variability than the mean value added on the 

survey full sample, we will use the mean value added as our estimator instead.  
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To compute E(ErrFSy
nL )̂  we rely, as in our simulated data section, in separate 

estimations of the expected predictive E(Erry
nL) and in-sample E(ErrISy

nL ) errors, which we 

later weight by the relative size of the observed and unobserved establishment sets. However, 

unlike in Section IV.2, we cannot generate more data from the same DGP as that of the 

observed dataset, let alone vectors of residuals with the same level of noise as the DGP and 

thus cannot compute error estimators MSEy
nL and MSEISy

nL . To circumvent these issues, we 

estimate E(Erry
nL) via a RLT procedure and we estimate E(ErrISy

nL ) by summing the learning 

error MSEyL
nL for a nL-sized learning set and a parametric bootstrap covariance penalty 

estimator E(ωnL)̂  for expected in-sample optimism E(ωnL) (Efron, 2004). For the RLT 

procedure, we consider 20%, 30%, 40% and 50% learning subsets and V=100 replicates to 

understand the predictive power of subsample-fitted functional estimators when inferring the 

industry-level production function as the subsample size increases.38 For the bootstrap 

procedure we consider B=500 parametric bootstrap replicates. 

We compute our expected predictive error estimate given by RLT, 

MSERLT
nL = ∑

nL
α

n

V
α=1 ∑ (f̂i

α
-Yi)

2
/i∉{α} nT

α , where {α} is the index set of the αth learning set, f̂i

α
 are 

the estimated functional values obtained from the αth learning set, and nT
α=n-nL

α , where nL
α  is 

the size of the αthlearning set. As we only aim to estimate expected predictive error for a set 

of the size of our learning set, our RLT estimator does not have the bias described by 

Burman (1989) when estimating the usual cross-validation objective, which is the expected 

                                                 

38 We reemphasize that unlike the usual goal of cross-validation procedures, of which the goal is to estimate 

𝐸(𝐸𝑟𝑟𝑦
𝑛), our goal is to estimate 𝐸(𝐸𝑟𝑟𝑦

𝑛𝐿) 
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predictive error for a set of the size of our full set. Furthermore, Burman (1989) shows that 

the variance of RLT can be partially controlled with the number of replicates V. Finally, we 

acknowledge that independently of V, the variance of our RLT expected predictive error 

estimate could increase with the learning set size, as the testing set size decreases, given our 

finite full survey. However, we do not observe an increase in variance in our estimates, as 

will be shown on Section IV.3.5. 

As mentioned before, to compute the estimator for expected39 in-sample error 

E(ErrISy
nL )̂ , we add the learning error MSEyL

nL and a covariance penalty term E(ω̂
nL

) to account 

for expected optimism E(ωnL). If a uniformly weighted squared loss function (i.e., g(Yî,Yi)= 

Yî-Yi in our notation) and an arbitrary estimator Yî are considered, Efron (2004) shows that  

E(ω̂
nL

)=
2

nL

∑ cov(
nL

i=1 Yî,Yi).  
(IV.9) 

We note that if the functional estimators being considered are all of the linear smoother form 

Ŷ=SY, this penalty term can be written in terms of the trace of the linear smoothing matrix S. 

However, not all the functional estimators we evaluate are of this form, as the Cobb-Douglas 

functional estimator is clearly not linear in parameters. Thus, and to accommodate a much 

larger class of functional estimators in our model evaluation framework, we use the 

parametric bootstrap algorithm by Efron (2004), which directly estimates cov(Yî,Yi). We 

leave the details about this algorithm for Appendix I. Thus, our full expression for E(ErrFSy
nL )̂  

for learning set sizes of size nL is 

                                                 

39 Again, expectations and averages over the error and optimism metrics discussed are done over all possible 

learning sets of a given size. 
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E(ErrFSy
nL )̂ = (n

T
/n)MSERLT

nL + (nL/n)(MSEyL
nL+ E(ω̂

nL
)) (IV.10) 

We clarify that by using a uniformly-weighted error measure, such as our E(ErrFSy
nL )̂   

estimator to evaluate the different functional estimators, we assume the data is truly 

homoscedastic40. Thus, if we intended to use multiplicative or other residual assumptions, 

our error estimators would need to reflect a similar residual-weighting scheme.  

To define the inputs and output for our production function, we follow the KLEMS 

framework by fitting the Value-Added production function  

VA=Y-M=f(KLES) (IV.11) 

where VA is value added, Y is output, M is intermediate goods, K is capital stock, L are labor 

man-hours, E is energy and S is service expenditures, respectively. All variables except for L 

are measured in thousands of Chilean pesos. These variables are readily found in the Chilean 

manufacturing dataset, except for Energy, for which we also add the fuel expenditures costs. 

From the high explanatory value of our models for all industries, we argue that use of K, L, E 

and S is sufficient to describe variability in VA.  

 

IV.3.3 Functional Estimator Comparison Results 

The Best Method field of Table 25 names the functional estimator with highest RFS
2  

for each subset size. Ties are defined as RFS
2  values within 2% of the best one in which case 

multiple functional estimators listed. Further, the table includes a field for KnL
CAPNLS, the 

average number of CAP-NLS hyperplanes fitted to either the learning sets in case of 20, 30, 

                                                 

40 Clearly a different assumption could be made within this same framework by introducing a weighting 

function on the individual residual terms, however we focus on the uniformly weighted error. 
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40 and 50 percent subset sizes, or the bootstrapped sets used to compute E(ω̂
nL

) in the case of 

the full set.  The average number of CAP-NLS hyperplanes fitted allows us to compare the 

complexity of the estimated production functions relative to those considered in Section IV.2. 

As expected due to the simpler curvature and more concentrated nature of real manufacturing 

survey data relative to Monte Carlo simulated data, the number of CAP-NLS hyperplanes 

fitted for data sets with 100 or 200 observations is generally smaller than those fitted to 

similar sample sizes in Example IV.2.3, in which the production function also has a four-

dimensional input space.  

Further exploring our results for Chilean manufacturing data, we observe both 

similarities and discrepancies regarding the insights obtained testing estimators via Monte 

Carlo simulations. The clearest similarity to all our low noise settings41, is that we observe 

multiple ties across functional estimators in terms of RFS
2 , which mean several estimators are 

able to describe the production function with the same accuracy. Thus, the model selection 

results are consistent with the small noise setting results for all of our small noise simulated 

data examples. Discrepancies include better CDA performance for larger datasets, regardless 

of the residual noise level, which are closer to the insights obtained with lower-dimensional 

example IV.2.1. Surprisingly, CDA’s performance is remarkably well especially if we 

consider that now the true DGP is unknown.42 Thus, in Table 26 we explore the capabilities 

                                                 

41 The maximum attainable (i.e., using the full set as the learning set) noise-to-total variance levels of our real 

datasets are very similar to those of our low noise settings. To see this, compare 1-𝑀𝑆𝐸𝐹𝑆𝑦
𝑛𝐿 /𝑣𝑎𝑟(𝑌𝐹𝑆) on our 

low noise settings against the 𝑅𝐹𝑆
2 results the 100% survey real datasets. 

42 Recall we use the Cobb-Douglas function with an additive error term. We stress that the necessity for a 

relationship between the Cobb-Douglas production function and the use of a multiplicative residual is primarily 

a historical carry-over. The Cobb-Douglas functional form was introduced in a time where by taking logs and 

estimating a linear in parameters estimator was the only computationally feasible way to estimate such a 

function. 
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of the CDA parametric estimator against the best estimate achieved for each subset size.  We 

observe that in general the CDA estimator describes nearly as much variance as the best 

estimator. Further, we include equivalent results to those of Table 26, but rather considering 

the classical multiplicative error assumption for Cobb-Douglas (labeled CDM) in Appendix 

J. The results in Appendix J show that a multiplicative error assumption when fitting the 

Cobb-Douglas model is a significantly better model for industry codes 2899 and 2010 (even 

if we compute its in-sample and predictive errors with the additive error assumption we have 

followed in our exposition) and a significantly worse model for industry code 1541. 

Table 27 indicates the best estimator in the Chilean manufacturing dataset is perhaps 

more closely related to the learning set size, regardless of the residual noise level. CAP-NLS 

is dominant for very small learning set sizes (less than 50 observations). Contrastingly, CAP-

NLS, CAP and CDA perform similarly for larger datasets. Thus, we observe that the 

additional structure of CAP-NLS relative to CAP seems to lose its benefits as the learning set 

size increases for our application datasets, which is a much more direct statement than we 

could make from extrapolating results across our 3 small noise settings of Example IV.2.3.  

Some insights obtained evaluating estimators on the actual application dataset were not 

observed on simulated data. For instance, our simulated data examples showed potential 

problems when fitting the CDA model at high dimensionalities or high noise settings. 

However, we see that for the application datasets considered, CDA is a reliable production 

function estimator at learning sets of all considered sizes. 
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Table 25 Method Comparison Across the 5 Largest Sampled Industries from the Chilean 

Annual National Industrial Survey 

 

 

 Industry Name and Code n Survey 

Size 
RFS

2  KnL
CAPNLS Best Method 

Other Metal Products (2899) 144 20% 50% 1 CAP-NLS, CDA 

30% 60% 2 CAP-NLS, CDA 

40% 64% 2 CAP-NLS, CDA 

50% 72% 3 CAP-NLS 

100% 88% 7 CAP-NLS 

Wood (2010) 150 20% 35% 1 CDA 

30% 40% 1 CAP-NLS, CDA 

40% 47% 2 CAP-NLS, CDA 

50% 52% 3 CAP-NLS, CDA 

100% 66% 6 CAP-NLS 

Structural Use Metal (2811) 161 20% 77% 1 CAP-NLS, CAP 

30% 82% 2 CAP-NLS 

40% 87% 3 CAP-NLS, CAP 

50% 90% 4 CAP-NLS 

100% 95% 9 CAP-NLS, CAP 

Plastics (2520) 249 20% 54% 2 CAP-NLS, CAP, CDA 

30% 57% 3 CDA 

40% 57% 5 CAP-NLS, CAP, CDA 

50% 60% 7 CAP-NLS, CAP, CDA 

100% 64%  11 CAP-NLS, CAP, CDA 

Bakeries (1541) 250 20% 72% 3 CAP 

30% 77% 3 CAP 

40% 78% 4 CAP, CDA 

50% 85% 4 CAP 

100% 99% 5 CAP-NLS, CAP, CDA 
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Table 26 Ratio of CDA to Best Model Performance 

 

 Industry Name and Code n Survey 

Size 
RFS

2  RCDA
2  Ratio vs. Best Method 

Other Metal Products (2899) 144 20% 50% 49% CDA ties for Best Method 

30% 60% 59% CDA ties for Best Method 

40% 64% 64% CDA ties for Best Method 

50% 72% 60% 0.83 vs. CAP-NLS 

100% 88% 79% 0.90 vs. CAP-NLS 

Wood (2010) 150 20% 35% 35% CDA ties for Best Method 

30% 40% 40% CDA ties for Best Method 

40% 47% 47% CDA ties for Best Method 

50% 52% 51% CDA ties for Best Method 

100% 66% 62% 0.94 vs. CAP-NLS 

Structural Use Metal (2811) 161 20% 77% 69% 0.90 vs. CAP-NLS 

30% 82% 76% 0.93 vs. CAP-NLS 

40% 87% 81% 0.93 vs. CAP-NLS 

50% 90% 87% 0.97 vs. CAP-NLS 

100% 95% 91% 0.96 vs. CAP-NLS 

Plastics (2520) 249 20% 54% 53% CDA ties for Best Method 

30% 57% 57% CDA ties for Best Method 

40% 57% 57% CDA ties for Best Method 

50% 60% 60% CDA ties for Best Method 

100% 64% 64% CDA ties for Best Method 

Bakeries (1541) 250 20% 72% 61% 0.85 vs. CAP 

30% 77% 71% 0.92 vs. CAP 

40% 78% 78% CDA ties for Best Method 

50% 85% 82% 0.96 vs. CAP 

100% 99% 99% CDA ties for Best Method 

 

Table 27 Most Frequently Selected Best Method for Different Sample Size Ranges 

 

 

 Learning Set Size 

Times selected as “Best Method” 29 - 50 51 - 80 81 - 149 150+ 

CAP-NLS 7 5 3 4 

CAP 3 3 4 3 

CDA 5 2 2 2 
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IV.3.4 Replicate-Specific Insights for Predictive Error 

In this subsection, we investigate in more detail the robustness of the estimators we 

evaluated for the Chilean manufacturing dataset. In order to do this, we display a learning 

subsample-by-learning subsample results of the predictive component of RFS
2 , namely the 

component associated with (n
T
/n)MSERLT

nL . For clarity of exposition and conciseness, we focus 

on the results for our three nonparametric estimators, CAP-NLS, CAP and CNLS at all non-

exhaustive subsample sizes43. Figure 15 gives a subset-by-subset analysis of RFS
2  for all folds 

considered in our analysis and across all the studied industries for 5 randomly selected 

replicates of the total 100 RLT replicates. We observe that while CAP-NLS and CAP’s 

results are similar identical for all industries.  Contrastingly, while CNLS performs similarly 

for many of the depicted subsamples, it exhibits higher variance. Moreover, this variance is 

large enough that a RFS
2 =0 result is not rate, which indicates lack of predictive power. Finally, 

although such scenarios are also observed for CAP and CAP-NLS, they are so with a rarer 

frequency. 

 

IV.3.5. Estimator Performance Measures as Function of Subsample Size and Surveying 

Implications 

We apply the results from our framework to make recommendations about the 

minimal size that a randomly-sampled production survey needs to have in order to represent 

a census. We compute simulation-based confidence intervals on RFS
2  across the replicates of 

                                                 

43 Analyses including parametric estimators and the full sample yield similar insights and thus are of limited 

added value. 
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our RLT results. As mentioned before, increased testing set variance as the learning set size 

increases did not seem to be large enough so as to affect the variance of our estimates across. 

We concentrate on describing this procedure for the best method for every industry (we 

consider CAP-NLS for all industries, except Bakeries, for which we consider the CAP 

results) at all the considered non-full survey learning set sizes. However, we note that this 

procedure to analyze subset RFS
2  performance for any other estimator or combination of 

estimators would be the same. Figure 16 shows the learning subset-specific results for the 

Best Method in terms of goodness-of-fit, RFS
2 , for different industries. If we compare to the 

insights on Figure 15, we can observe that the variance of RFS
2  and overall predictive power is 

significantly enhanced by inclusion of the in-sample component of the expected Full Set 

error. 
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Figure 15 Replicate-specific results on predictive component of R2
FS for varying degrees of 

CAP-NLS-related estimation improvement. 

 

We note that the mean goodness-of-fit is increasing for all industries with different 

degrees of diminishing returns to larger survey subsamples. Industry-dependent degrees of 

variance reduction are also observed. These results are of significant practical importance, as 

countries such as the United States and Mexico only conduct full economic censuses on a 

quinquennial basis, while taking surveys on the years in between. Although we acknowledge 

that the RFS
2  results we obtain are specific to the particular observed survey full set, we argue 
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they can still be of at least qualitative value for survey design on the years following the 

census. Specifically, to use the data from the Census year to inform the sample size needed in 

following years, the researcher would need to assume that both the set of establishments 

within an industry and the complexity of the production function have not changed 

significantly over this time period.  Under these conditions, this analysis could help guide the 

subset-size calculation strategy for each industry.  For example, if production functions with 

75% of the predictive power of a census-fitted production function are desired, the relative 

survey sample size would need to be approximately 40%, 45%, <20%, <20% and 25% for 

industry codes 2899, 2010, 2811, 2520 and 1541, respectively. 
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Figure 16 Best Method’s RFS
2  as function of relative subset size for selected industries. CAP-

NLS was chosen as Best Method for industry codes 2899, 2010, 2811 and 2520, while CDA 

was chosen for industry code 1541. 
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CHAPTER V* 

CONCLUSIONS 

We have constructed specific models, as well as a general framework that address 

model parsimony in the estimation of production functions and frontiers. In the process, we 

have shifted the state of the art in both one-stage and two-stage production frontier 

estimators. Concerning one-stage estimators, the specific Bayesian models built for state-

contingent and concave-constrained frontiers are an improvement in either flexibility, 

generality, scalability, or more than one of these attributes as compared to existing methods. 

Moreover, they both rely on different RJMCMC algorithms which control model complexity. 

Additionally, both models allow for flexible inefficiency distributions that significantly 

depart from prior assumptions due to their mixture modeling context. In the realm of two-

stage frontier estimation, we have laid out a general framework to evaluate production 

function estimators based on their weighted in-sample and predictive performance. 

Moreover, we have proposed an adaptively partitioned functional estimator which performs 

robustly under this evaluation metric. 

 

V.1 Conclusions Specific to Chapter II 

Chapter II describes a new BDMCMC algorithm that efficiently estimates the number 

of states in a state-contingent model. This approach improves upon the Bayesian estimation 

of state-contingent models, because the posterior distribution of this parameter can be 

                                                 

*  Section V.1 reprinted with permission from “A birth-death Markov Chain Monte Carlo Method to Estimate 

the Number of States in a State-Contingent Production Frontier Model” by Preciado Arreola, J.L. and A. L. 

Johnson, 2015. American Journal of Agricultural Economics, 1267-1285, Copyright by American Agricultural 

Economics Association. 
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visualized, thus providing more insights into the nature of the unobserved variables 

generating the states. Notably, after only one run of the model, there is enough information to 

weight the outputs obtained for models with different numbers of states in a straightforward 

manner. Computing a goodness of fit analysis for a state-contingent model of production 

allows determining whether the full posterior distribution of the number of states enhances 

the model significantly versus using only its mode, by assessing the difference in MSE of 

both scenarios. The experimental results derived from a case study of 44 rice farms in the 

Tarlac region of the Philippines shows an insignificant difference between using the mode of 

the posterior distribution versus using the complete distribution. Utilizing a state-independent 

dummy time trend, we estimate the differences in mean output levels across states to be 

smaller than O’Donnell and Griffiths (2006)’s estimates.  

Our finding that a state-contingent linear time trend could not explain the complex 

time-shifting effect of the frontier suggests that changing weather patterns from year to year 

have a non-linear effect on output. The similarity in the mean output levels of states in our 

dummy time trend model suggests that bad/good years affect the rice-producing region more 

uniformly than indicated by O’Donnell and Griffiths (2006). Nevertheless, evidence of state-

contingency can still be argued by the differences in labor elasticities we find for states 1 and 

3 as well as the slight differences in the state-contingent mean output. The unimodal 

posterior distribution on the number of states indicates that the interactions between 

unobserved variables are complex and probably interdependent. We suggest that the inability 

to impose a convexity constraint could be due to the limited flexibility of the parametric 

framework, distributional assumptions, or the presence of outliers in the dataset. A 

complementary or alternative explanation for the inability to impose convexity also could 

relate to the significant yearly shifts in the observed log-output, for example, in 1996; there is 

a distinct possibility that the group of farms as a whole was on a non-convex portion of a 
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classical s-shaped yield curve, since the mean log-output in 1996 was well below the average 

of the full timespan. Comparing the results of our two models shows that our efficiency 

rankings are roughly consistent with O’Donnell and Griffiths (2006), and that the main 

benefit of the O’Donnell and Griffiths (2006) model, the ability to avoid misinterpretation of 

state-contingency as inefficiency, is maintained. In terms of input elasticities, our Area and 

Labor elasticities are similar to O’Donnell and Griffiths (2006), although we estimate a 

positive fertilizer elasticity for our lowest output state whereas O’Donnell and Griffiths 

(2006) finds a negative effect of fertilizer. The difference is driven by the higher average 

yield estimates in state 1 we obtain as compared to O’Donnell and Griffiths (2006). Our 

positive fertilizer elasticities, given our estimated yield per unit area in that state, are 

consistent with the previous rice crop literature. Finally, our models give slightly larger yield 

estimates and exhibit a significantly lower MSE.  

Further work remains to be done regarding the estimation of state-contingent 

frontiers. A key limitation is the challenges regarding imposing a convexity constraint. This 

is likely an issue related to this data set. Also currently our model needs a prespecified lower 

bound on technical efficiency to be estimated. While we have performed sensitivity analysis 

on the related parameter, the approach in Mahendran et al. (2012) could be used to select this 

parameter optimally in terms of a specific criterion, such as the MSE. 

 

V.2 Conclusions Specific to Chapter III 

Chapter III described MBCR-I, a one-stage Bayesian semi non-parametric method to 

fit concave and monotonic stochastic frontiers using Reversible Jump Markov Chain Monte 

Carlo techniques.  We believe that this chapter discusses the first single-stage method that 

allows a shaped constrained production frontier to be estimated nonparametrically, relaxes 

the homoscedastic assumption on the inefficiency term and estimates the impact of 
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environmental variables for the analysis of cross sectional data. Further, the one-stage nature 

of MBCR-I revealed the tradeoffs between modeling the frontier and the inefficiency term, 

i.e., more flexible models of the inefficiency term lead to coarser estimates of the production 

frontier and vice versa. 

Computational modifications relative to MBCR allowed for both the presence of 

inefficiency and the multiplicative residuals structure of the standard SFA model. MBCR-I’s 

performance in the Monte Carlo simulation study showed increased accuracy in large noise-

to-signal ratio scenarios versus StoNED and for large sample sizes at any noise-to-signal 

ratio. MBCR-I handled datasets of a few thousand observations efficiently, which suggested 

its use for long panels of moderate samples and very large cross sections. MBCR-I was 

increasingly robust to mis-specification of the inefficiency model due to its ability to learn 

from data and to consider locally shrunk individual inefficiency posteriors.  

MBCR-I was empirically tested by using data on Japan’s concrete firms operating 

between 2007 and 2010. Computation of input productivities, elasticities of substitution, 

inefficiency distributions, frontier-shifting effects and most productive scale sizes were 

demonstrated. MBCR-I’s Bayesian framework made straightforward inference possible for 

the frontier-shifting effects. 

There was limited evidence for the criticism that important parts of the construction 

industry offered significant room for efficiency improvements. Between 2007–2010, 

efficiency levels were stable and relatively high. Japan was significantly affected by the 

global financial crisis (Fukao and Yuan, 2009) as shown by the value-added output steadily 

declined over the 2007-2010 time period. 



 

129 

 

Future research should consider a more extensive exploration of the tradeoffs that 

estimating both a shape-constrained nonparametric production frontier and a flexible 

inefficiency term imply. A second research path should consider developing contextual 

variable models that do not rely on parametric assumptions. While we obtained credible 

intervals for all estimated parameters, given our non-linear least squares step to draw the 

hyperplane-specific regression coefficients, our credible intervals on both the production 

frontier and contextual variables were conditional on the point estimates obtained in that step. 

Although this assumption is not unreasonable, because it considers the best hyperplane fits 

conditional on all other parameters, future research, should also extend MBCR-I to draw the 

regression coefficients with a more efficient Bayesian algorithm in order to obtain full 

posterior distributions (and credible intervals) for the estimated parameters. Compared with 

StoNED, MBCR-I fitted a very small number of hyperplanes on highly clustered datasets, 

especially for low-dimensional input vectors. Thus, future research on alternative strategies 

for proposing knots and directions when adding hyperplanes should lead to more detailed 

frontier estimations. 

 

V.3 Conclusions Specific to Chapter IV 

This chapter describes two main contributions to the production function estimation 

literature. Firstly, we introduced CAP-NLS, a nonparametric estimator, which imposes global 

optimization and does not require refitting in contrast to CAP, as well as additional 

smoothing relative to CNLS. We formulated a homoscedastic version of CAP-NLS as a 

series of quadratic programs, which allowed for its computational feasibility. We 

demonstrated that CAP-NLS’s additional structure relative to CAP and parsimonious 
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structure relative to CNLS translates into superior performance, smaller sensitivity against 

noise and input vector dimensionality,  increased robustness on learning-to-full dataset 

settings and a much faster empirical rate of convergence on simulated data when the noise 

level is high relative to the full variance of the output and has similar performance to CAP 

when the noise level is relatively low to the full variance of the output.  

Secondly and more importantly, we constructed a framework to test the adequateness 

of a production function estimator on real data. Specifically, we established a procedure 

based on repeated learning-testing and parametric bootstrapping that is able to assess the 

quality of subsample-fitted production functions to fit full survey (census) samples. Further, 

this procedure allows the relative quality of a subsample-fitted production function compared 

to full sample-fitted production function to be quantified. We demonstrated that unlike for 

simulated data, CAP-NLS, CAP and a Cobb-Douglas specification performed similarly for 

our application datasets. Our functional estimator selection procedure is not limited to CAP-

NLS, the other tested methods or even nonparametric functional estimators, and thus should 

be routinely used for model selection of econometrically-estimated production functions. 

Finally, we discovered that the commonly-used Cobb Douglas production function can lead 

to very competitive approximations on the Chilean manufacturing dataset at all learning set 

sizes if an additive residual assumption is considered. 

We locate the work done in this chapter within the production function estimation 

literature with the following assertion: Production function estimation had a “first 

generation” of estimators, which consisted of DEA and SFA. Later, “second generation” 

methods which overcame the clear shortcomings of DEA (its deterministic nature) and SFA 

(its parametric assumptions) arose in the production function literature. These methods, such 
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as CNLS and CWB, represented a first attempt to develop a nonparametric shape-constrained 

estimator with an explicit noise component in the model. However, this chapter demonstrates 

that such methods, which are based on optimization of specific observed datasets have 

important challenges when survey data is used to provide insights to an industry population. 

Thus, we conclude that a new generation of estimators which is able to overcome these 

challenges is needed. CAP and CAP-NLS, along other smoothed versions of Least Squares-

based estimators, such as the estimators in Yagi et al. (2015) and Mazumder et al. (2015), are 

members of this new generation. 

We have presented CAP-NLS emphasizing its practical benefits. However, open 

avenues of research such as proving consistency and setting bounds on CAP-NLS’ fast rate 

of convergence remain open. Incorporation of smoothing strategies, such as the one 

presented in Mazumder et al. (2015), also are outstanding future lines of work. Regarding our 

procedures to assess the descriptive power of non-parametric methods in real data, further 

work can be done in replicating the procedure across a broader array of datasets, as we have 

restricted this exposition to the largest industries in the Chilean manufacturing dataset. 
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APPENDIX A 

CONDITIONAL POSTERIOR HYPERPARAMETERS FOR CHAPTER II 

 

The following are the mathematical expressions for the posterior hyperparameters ξ̅ , 

κ̅, which partially define the restricted multivariate normal conditional posterior distribution of 

β. The posterior multinomial parameter dit, which describes a probability vector for states 1 to 

J  from which a multinomial draw dit is to be simulated. Finally, parameters μ
ui

 and σui
2  partially 

describe the truncated normal conditional posterior distribution of  ui, the inefficiency term 

associated to farm i. 

κ̅= ((κ ⨂  IJ)
-1

+ ∑ ∑ (d
'
it

T
t=1

N
i=1 h)zitzit

' )
-1

 ; 
(A.1) 

ξ̅= κ̅ ((κ ⨂ IJ)
-1

ξ+ ∑ ∑ (dit
'T

t=1
N
i=1 h)zityit

)
-1

; 
(A.2) 

 dit=[
π1fN(yit|β01+(xit⨂i1)

'
β-0, h1

-1
)

∑ πjfN(yit|β0j+(xit⨂ij)
'
β-0, hj

-1
)J

j=1

, …,  
πJfN(yit|β0J+(xit⨂iJ)

'
β-0, hJ

-1
)

∑ πjfN(yit|β0j+(xit⨂ij)
'
β-0, hj

-1
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]
'
 ; 

(A.3) 

μ
ui

= 
∑ (dit

'
h)(zit

' βT
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'

hT
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  and σui
2 = [∑ dit

'
hT

t=1 ]
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APPENDIX B 

TRACE PLOTS OF ESTIMATED PARAMETERS FOR CHAPTER II 

 

Trace plots for the main estimated parameters for both the linear and dummy time trend 

models are included in this appendix. All of them exhibit stationary behavior, indicating proper 

mixing.  

 
 

Figure B1 Trace plots for number of components in the mixture after burn-in for 

dummy time trend model. 
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Figure B2 Trace plots for precisions and state probabilites for dummy time trend 

model.  

 

 

 

Figure B3 Trace plots for intercepts and dummy variables for dummy time trend model 
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Figure B4 Trace plots for slopes for dummy trend model 
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Figure B5 Number of components for linear trend model and trace plot comparing 

their draws against the iteration number.
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Figure B6 Trace plots of intercepts and slopes for linear time trend model.  
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Figure B7 Trace plots of state probabilities for linear trend model 

 

 

Figure B8 Trace plots of precisions for linear trend model 
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APPENDIX C 

FULL SENSITIVITY ANALYSIS AND GOODNESS OF FIT RESULTS FOR CHAPTER 

II 

 

This section contains sensitivity analysis and goodness of fit results for both the linear 

time trend and dummy time trend models. Our first results, shown in table C1, show the 

posterior technical efficiency distribution for the dummy time trend model with different 

assumptions for the prior lower bound on technical inefficiency. 

 
Figure C1 Technical efficiency distribution under different assumptions for lower 

bound of TE for the dummy time trend model 

 

The reminder of this appendix focuses on results for the linear time trend model. As 

mentioned on this chapter, the efficiency rankings do not significantly change across the 
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considered range of prior values for ζ and  τ*.  Goodness of fit results exhibit similar behavior 

to those of the dummy trend model presented here.  

 

Table C1. Sensitivity Analysis on Hyperparameter λ, Prior Mean on the Number of States 

for the Linear Trend Model 

 

Prior 

lambda 

Posterior mode for 

J 

Posterior mean for 

J P(J=2|X) P(J=3|X) 

90% 

HPDa 

1 2 2.83 0.398 0.386 {2,3,4} 

2 3 2.87 0.381 0.384 {2,3,4} 

3 3 2.93 0.370 0.372 {2,3,4} 

4 3 2.95 0.357 0.375 {2,3,4} 

5 3 2.87 0.381 0.384 {2,3,4} 
a Highest Posterior Density set 

 

 

Figure C2 Technical efficiency distribution under different assumptions for lower 

bound of TE for the linear time trend model. 
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Figure C3 Rankings of the three alternative prior TE lower bound assumptions and 

O’Donnell and Griffiths (2006)’s monotonicity-constrained SC model against the base 

value of 0.7 for the linear model. 
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Figure C4 Technical Efficiency distribution for low (top panel), base (middle panel) and 

high (bottom panel) values of τ* for the linear time trend model. 
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Figure C5 Goodness of fit results for linear model. Full results for full posterior 

scenario(top left panel), 4% outliers removed for full posterior scenario (top right 

panel), full results for mode scenario(bottom left panel), 4% outliers removed for mode 

scenario (bottom right panel). 
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APPENDIX D 

FULLY BAYESIAN MBCR-I 

 

As mentioned in Section III.1.3, we solve mathematical program (III.7) instead of 

simulating (αk,β
k
)
k=1

K
 from its posterior distribution due to the difficulty of obtaining good 

proposal distributions. Computational feasibility of the original, additive error structure, 

MCBR algorithm depends on the availability of good proposal distributions for (αk,β
k
)
k=1

K
 

(Hannah and Dunson, 2011). While H-D take advantage of conjugacy to compute such 

proposal distributions, we are not able to do so due to the logarithm operator present in our 

likelihood function, ∏ N (ln(Yi)- ln (α[i]+β
[i]

T
Xi) +ui,σ[i]

2 )n
i=1 . Here, we propose a naïve way to 

obtain full conditional posterior distributions for (αk,β
k
)
k=1

K
. The algorithm to draw (αk,β

k
)  

for each basis region is as follows: 

1. Solve mathematical program (III.7) to obtain candidate distribution mean estimates 

(αk1,β
k1

) for the given basis region. 

2. Draw the candidate values (αkCand,β
kCand

) from a (d+1)-dimensional Multivariate Gaussian 

distribution N(d+1)((αk1,β
k1

),Σα,β), where Σα,β=η [

σαk

2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ σβdk

2
], where η>1 is a tunable 

parameter, and σαk
,…,σβdk

2  are the standard errors of αk1 and each component of β
k1

 obtained 

after solving (7). 

3. Draw σkCand
2  from (III.8), assuming (αkCand,β

kCand
). 

4. Compute the Metropolis-Hastings acceptance probability aProb for (αkCand,β
kCand

,σkCand
2 ) 

using (D1)-(D4): 



 

156 

 

 

 

D1. aProb=
p(αkCand,β

kCand
,σkCand

2 )Lk(αkCand,β
kCand

,σkCand
2 )

q(αkCand,β
kCand

,σkCand
2 |αkCurr,βkCurr

,σkCurr
2 )

p(αkCurr,βkCurr
,σkCurr

2 )Lk(αkCurr,βkCurr
,σkCurr

2 )

q(αkCurr,βkCurr
,σkCurr

2 |αkCand,β
kCand

,σkCand
2 )

⁄  

D2. p(α,β,σ2)~N(d+1)IG(0,MI,ã,b̃), where M is a large number and I is the identity 

matrix 

D3. Lk(α,β,σ2)= ∏ N(ln(Yi)- ln(α+β
T
Xi) +ui,σ

2)
nk

i=1    

D4. q(α2,β
2
,σ2

2|α1,β
1
,σ2

1)~N(d+1)IG(μ
1
,Σ1,a1,b1), where (μ

1
,Σ1,a1,b1) are the 

hyperparameters associated with (α
1
,β

1
,σ2

1). 

5. If aProb>Unif(0,1), accept draw (αkCand,β
kCand

,σkCand
2 ); otherwise, go back to step 2. 

6. After accepting a predefined number nbi of burn-in draws, accept the (nbi+1)th accepted 

draw as a valid draw from the posterior distribution of (αk,β
k
,σk

2). 
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APPENDIX E 

FRONTIER CHARACTERISTICS FOR 2008-2009 CROSS SECTIONAL DATASETS 

 

Tables E1 and E2 show that the Marginal Product and Technical Efficiency quantiles 

are similar to those of 2010 for almost all cases, which is also true for the Elasticity of 

Substitution between Capital and Labor, except for its maximum values. In the case of MPSS 

shown in Table E3, there are no significant departures from the values for 2007 and 2010.  

 

Table E1 MBCR-I S Cross Sectional Production Frontier Characterization for 2008 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0093 1,119 0.0767 1.26% 

25th 

percentile 1.1209 1,202 9.3052 51.90% 

Median 1.1209 1,206 9.3052 71.77% 

75th 

percentile 1.1209 1,206 9.3052 87.07% 

Max 1.4449 1,262 13.142 99.97% 
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Table E2 MBCR-I S Cross Sectional Production Frontier Characterization for 2009 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0662 910 0.5608 0.97% 

25th percentile 1.0010 1,191 8.4305 50.82% 

Median 1.0010 1,191 8.4305 71.04% 

75th percentile 1.0012 1,191 8.4328 86.72% 

Max 10.0217 1,220 134.53 99.97% 

 

Table E3 Most Productive Scale Size for Selected Capital/Labor Ratios for Cross Sectional 

Frontiers 2008-2009 

 

 

 

 

 

 

 

 

 

 

 

 

Model 

Capital/Labor 

ratio 

percentile 

10% 25% 50% 75% 90% 

Cross  

Sectional 

2008 

Capital/Labor 38 75 166.7 400 1,434 

MPSS Capital 1,226 1,266 1,356 1,573  2,445 

MPSS Labor 32 16 8 4 2 

Cross  

Sectional 

2009 

Capital/Labor 37.5 76.9 166.7 391.3 1,470 

MPSS Capital 1,217 1,254 1,334 1,546 2,510 

MPSS Labor 31 16 8 4 2 



 

159 

 

APPENDIX F 

THE FLEXIBILITY TRADEOFF BETWEEN PRODUCTION FUNCTION AND 

INEFFICIENCY DISTRIBUTION ASSUMPTIIONS 

 

The potential exists for a flexibility tradeoff between modeling the production 

function nonparametrically and modeling the unobserved inefficiency without distribution 

assumptions. Since our simulated datasets consist of well-distributed data along the input-

output space, we do not need an MBCR prior to obtain computationally efficient runs of 

MBCR-I. Nevertheless, the more clustered and uneven distribution of observations in our 

application datasets benefit computationally from a more informative prior on the curvature 

of the function given by MBCR. When we run MBCR on both datasets, the number of 

hyperplanes needed to describe the production frontier decreases when inefficiency is 

introduced. The results for MBCR-I in Table F1 and Table 15 are the same. 

 

Table F1 Fitting Statistics Comparison for MBCR and MBCR-I for the Japanese Concrete 

Industry Dataset.  

 

MBCR # Hyperplanes 

fitted 

Median 

Inefficiency 

% SS Model % SS Noise 

Cross Sectional 

2007 

2.22 0% 55% 45% 
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Table F1 (continued) Fitting Statistics Comparison for MBCR and MBCR-I for the 

Japanese Concrete Industry Dataset.  

Cross Sectional 

2008 

2.18 0% 55% 45% 

Cross Sectional 

2009 

3 0% 53% 47% 

Cross Sectional 

2010 

4 0% 55% 45% 

Panel 4 0% 56% 54% 

 

MBCR-I 

# Hyperplanes 

fitted 

Median 

Inefficiency 

% SS Model % SS Noise 

Cross Sectional 

2007 

2.11 29% 66% 34% 

Cross Sectional 

2008 

2.03 28% 75% 25% 

Cross Sectional 

2009 

2.60 29% 70% 30% 

Cross Sectional 

2010 

2.36 27% 76% 24% 

Panel 3.63 43% 81% 19% 
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Note that an omitted inefficiency model results in a more complex nonparametric 

shape-constrained frontier estimation, whereas the use of a moderately flexible inefficiency 

model results in frontier estimations with fewer hyperplanes. We believe very general 

inefficiency distribution specifications, especially non-parametric specifications considering 

non-monotonic or heteroscedastic behaviors, will result in coarser production frontier 

estimates. That is, if both the frontier specification and the estimated values are very flexible, 

we may encounter an identification problem. We emphasize that this insight is only possible 

due to the one-stage nature of MBCR-I.  

 

 

 

 

 

 

 

 

 

 

 



 

162 

 

APPENDIX G 

A COARSE GRID SEARCH ALGORITHM TO COMPUTE MPSS ON A 

MULTIVARIATE SETTING 

 

Calculate MPSS at a given Capital/Labor ratio as follows: 

1. Let ω=(ω1,…,ωL) be a uniform grid of L points across the Labor axis. 

2. Set R=Capital/Labor to a value of interest; for example, a percentile of the empirical 

Capital/Labor distribution. 

3. Evaluate the predicted frontier output value f̂l(R∙ωl,ωl) for each l∈{1,…L}. 

4. Compute distance Dl from (R∙ωl,ωl) to the origin for each l∈{1,…L}. 

5. Calculate MPSS
*
= max

l∈{1,…,L}
f̂(R∙ωl,ωl) /Dl. 
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APPENDIX H 

RESULTS FOR HOMOSCEDASTIC ADDITIVE ERROR SIMULATED DATASETS 

d = 2, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0025 0.0069 0.0030 0.0014 0.0020 0.0017 0.0012 0.0019 0.0015 

100% MSEFTesting 0.0028 0.0073 292.9882 0.0014 0.0020 93.3874 0.0012 0.0019 168.9078 

100% MSEFCensus 0.0025 0.0069 0.0030 0.0014 0.0020 0.0017 0.0012 0.0019 0.0015 

80% MSEFInSample 0.0045 0.0160 0.0054 0.0024 0.0053 0.0029 0.0019 0.0273 0.0023 

80% MSEFTesting 0.0047 0.0173 56.2393 0.0026 0.0055 414.9028 0.0019 0.0249 148.8055 

80% MSEFCensus 0.0046 0.0166 28.1224 0.0025 0.0054 207.4528 0.0019 0.0261 74.4039 

50% MSEFInSample 0.0066 0.0145 0.0081 0.0035 0.0085 0.0041 0.0026 0.0045 0.0031 

50% MSEFTesting 0.0076 0.0169 3.6138 0.0039 0.0090 76.2141 0.0026 0.0044 819.0860 

50% MSEFCensus 0.0073 0.0162 2.5321 0.0038 0.0089 53.3511 0.0026 0.0045 573.3612 

30% MSEFInSample 0.0093 0.0153 0.0117 0.0051 0.0081 0.0063 0.0041 0.0048 0.0047 

30% MSEFTesting 0.0112 0.0188 3.7562 0.0056 0.0087 50.9327 0.0044 0.0055 85.4171 

30% MSEFCensus 0.0108 0.0181 3.0073 0.0055 0.0086 40.7474 0.0043 0.0054 68.3346 

100% MSEYInSample 0.0426 0.0467 0.0422 0.0415 0.0418 0.0425 0.0415 0.0424 0.0412 

100% MSEYTesting 0.0428 0.0472 293.0517 0.0415 0.0420 93.4378 0.0415 0.0421 168.9763 

100% MSEYCensus 0.0426 0.0467 0.0422 0.0415 0.0418 0.0425 0.0415 0.0424 0.0412 

80% MSEYInSample 0.0449 0.0551 0.0447 0.0428 0.0451 0.0421 0.0418 0.0660 0.0421 

80% MSEYTesting 0.0448 0.0573 56.2969 0.0426 0.0455 414.9679 0.0420 0.0649 148.8733 

80% MSEYCensus 0.0449 0.0562 28.1708 0.0427 0.0453 207.5050 0.0419 0.0654 74.4577 

50% MSEYInSample 0.0470 0.0552 0.0494 0.0430 0.0484 0.0440 0.0418 0.0437 0.0440 

50% MSEYTesting 0.0478 0.0571 3.6587 0.0442 0.0492 76.2684 0.0429 0.0446 819.1599 

50% MSEYCensus 0.0476 0.0565 2.5759 0.0439 0.0490 53.4011 0.0426 0.0444 573.4251 

30% MSEYInSample 0.0509 0.0581 0.0519 0.0437 0.0467 0.0480 0.0436 0.0444 0.0446 

30% MSEYTesting 0.0514 0.0589 3.7986 0.0459 0.0490 50.9833 0.0447 0.0457 85.4786 

30% MSEYCensus 0.0513 0.0588 3.0493 0.0455 0.0486 40.7962 0.0445 0.0455 68.3918 

100% K (Full Census) 8.6 2.22 54.14 10.46 2.12 101.2 10.82 2.06 157.12 

100% Time (Full Census) 4.5916 0.4667 1.1398 15.9820 0.6556 7.6636 32.2248 0.7935 22.9329 

Table H1. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.2 
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d = 2, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0051 0.0061 0.0057 0.0027 0.0030 0.0033 0.0019 0.0029 0.0024 

100% MSEFTesting 0.0056 0.0067 308.9863 0.0028 0.0031 102.7481 0.0019 0.0029 198.8724 

100% MSEFCensus 0.0051 0.0061 0.0057 0.0027 0.0030 0.0033 0.0019 0.0029 0.0024 

80% MSEFInSample 0.0075 0.0122 0.0084 0.0048 0.0111 0.0057 0.0035 0.0150 0.0042 

80% MSEFTesting 0.0084 0.0144 10.9325 0.0052 0.0139 217.2453 0.0035 0.0150 116.0226 

80% MSEFCensus 0.0079 0.0133 5.4704 0.0050 0.0125 108.6255 0.0035 0.0150 58.0134 

50% MSEFInSample 0.0118 0.0264 0.0141 0.0067 0.0349 0.0077 0.0048 0.0153 0.0055 

50% MSEFTesting  0.0134 0.0305 10.6080 0.0069 0.0353 32.6064 0.0052 0.0158 186.1256 

50% MSEFCensus 0.0129 0.0293 7.4298 0.0069 0.0352 22.8268 0.0051 0.0156 130.2895 

30% MSEFInSample 0.0134 0.0215 0.0176 0.0100 0.1021 0.0116 0.0067 0.0410 0.0079 

30% MSEFTesting 0.0155 0.0273 3.4131 0.0110 0.1009 36.0041 0.0071 0.0442 51.8847 

30% MSEFCensus 0.0151 0.0261 2.7340 0.0108 0.1012 28.8056 0.0070 0.0436 41.5094 

100% MSEYInSample 0.0936 0.0960 0.0946 0.0938 0.0947 0.0941 0.0919 0.0925 0.0927 

100% MSEYTesting 0.0957 0.0967 309.1160 0.0930 0.0932 102.8571 0.0924 0.0934 199.0073 

100% MSEYCensus 0.0936 0.0960 0.0946 0.0938 0.0947 0.0941 0.0919 0.0925 0.0927 

80% MSEYInSample 0.1025 0.1018 0.0998 0.0937 0.1014 0.0955 0.0937 0.1023 0.0956 

80% MSEYTesting 0.0987 0.1045 11.0346 0.0953 0.1038 217.3697 0.0937 0.1050 116.1571 

80% MSEYCensus 0.1006 0.1032 5.5672 0.0945 0.1026 108.7326 0.0937 0.1036 58.1263 

50% MSEYInSample 0.1043 0.1174 0.1068 0.0982 0.1232 0.0943 0.0931 0.1049 0.0981 

50% MSEYTesting  0.1039 0.1209 10.7094 0.0976 0.1259 32.7146 0.0957 0.1063 186.2580 

50% MSEYCensus 0.1040 0.1199 7.5287 0.0978 0.1251 22.9285 0.0949 0.1058 130.4100 

30% MSEYInSample 0.1170 0.1185 0.1057 0.0966 0.1957 0.1048 0.0972 0.1292 0.0958 

30% MSEYTesting 0.1060 0.1177 3.5072 0.1018 0.1915 36.1073 0.0978 0.1348 51.9937 

30% MSEYCensus 0.1082 0.1179 2.8269 0.1008 0.1924 28.9068 0.0977 0.1337 41.6141 

100% K (Full Census) 8.84 2.16 49.78 9.84 2.12 94.96 10.7 2.26 143.94 

100% 

Time (Full 

Census) 4.6754 0.4517 1.1370 15.0989 0.6220 7.6569 30.8449 0.7676 22.5022 

Table H2. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.3 
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d = 2, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0076 0.0099 0.0087 0.0041 0.0059 0.0048 0.0027 0.1022 0.0033 

100% MSEFTesting 0.0081 0.0105 281.3251 0.0043 0.0064 198.6378 0.0027 0.1093 89.5596 

100% MSEFCensus 0.0076 0.0099 0.0087 0.0041 0.0059 0.0048 0.0027 0.1022 0.0033 

80% MSEFInSample 0.0124 0.0408 0.0136 0.0062 0.1578 0.0073 0.0054 0.0112 0.0063 

80% MSEFTesting 0.0125 0.0398 10.2707 0.0064 0.1723 118.2487 0.0055 0.0115 198.9407 

80% MSEFCensus 0.0125 0.0403 5.1422 0.0063 0.1650 59.1280 0.0054 0.0113 99.4735 

50% MSEFInSample 0.0177 0.1723 0.0200 0.0117 0.0647 0.0129 0.0074 0.0720 0.0085 

50% MSEFTesting  0.0193 0.2279 3.2368 0.0127 0.0584 147.9070 0.0080 0.0729 720.6396 

50% MSEFCensus 0.0188 0.2112 2.2717 0.0124 0.0603 103.5388 0.0078 0.0726 504.4503 

30% MSEFInSample 0.0232 0.0693 0.0265 0.0129 0.0381 0.0146 0.0105 0.0176 0.0118 

30% MSEFTesting 0.0262 0.0731 6.4528 0.0134 0.0435 15.3265 0.0114 0.0193 50.9989 

30% MSEFCensus 0.0256 0.0723 5.1675 0.0133 0.0424 12.2641 0.0112 0.0190 40.8015 

100% MSEYInSample 0.1648 0.1725 0.1669 0.1683 0.1672 0.1681 0.1633 0.2634 0.1660 

100% MSEYTesting 0.1681 0.1705 281.5458 0.1646 0.1666 198.8305 0.1636 0.2701 89.7579 

100% MSEYCensus 0.1648 0.1725 0.1669 0.1683 0.1672 0.1681 0.1633 0.2634 0.1660 

80% MSEYInSample 0.1816 0.2004 0.1754 0.1640 0.3209 0.1647 0.1654 0.1644 0.1697 

80% MSEYTesting 0.1731 0.2001 10.4477 0.1664 0.3323 118.4455 0.1656 0.1715 199.1661 

80% MSEYCensus 0.1774 0.2003 5.3116 0.1652 0.3266 59.3051 0.1655 0.1679 99.6679 

50% MSEYInSample 0.1890 0.3318 0.1760 0.1736 0.2192 0.1708 0.1646 0.2319 0.1741 

50% MSEYTesting  0.1801 0.3886 3.4051 0.1739 0.2193 148.1010 0.1690 0.2339 720.8490 

50% MSEYCensus 0.1828 0.3716 2.4364 0.1738 0.2193 103.7219 0.1677 0.2333 504.6465 

30% MSEYInSample 0.2091 0.2434 0.1826 0.1702 0.1975 0.1816 0.1739 0.1718 0.1687 

30% MSEYTesting 0.1870 0.2339 6.6162 0.1748 0.2048 15.4998 0.1725 0.1804 51.1890 

30% MSEYCensus 0.1914 0.2358 5.3295 0.1739 0.2034 12.4362 0.1728 0.1786 40.9849 

100% K (Full Census) 8.34 2.18 46.24 10.02 2.32 93.9 10.66 2.12 137.24 

100% 

Time (Full 

Census) 4.5859 0.4570 1.1464 15.6152 0.6628 7.4554 30.7520 0.7735 23.0779 

Table H3. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.4 
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d = 3, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0031 0.0173 0.0048 0.0019 0.0026 0.0031 0.0014 0.0042 0.0024 

100% MSEFTesting 0.0034 0.0205 591.2154 0.0020 0.0028 1240.05 0.0014 0.0045 1174.25 

100% MSEFCensus 0.0031 0.0173 0.0048 0.0019 0.0026 0.0031 0.0014 0.0042 0.0024 

80% MSEFInSample 0.0047 0.0099 0.0074 0.0033 0.0046 0.0050 0.0025 0.0038 0.0040 

80% MSEFTesting 0.0053 0.0114 53.6331 0.0035 0.0051 357.01 0.0027 0.0041 907.15 

80% MSEFCensus 0.0050 0.0106 26.8203 0.0034 0.0048 178.51 0.0026 0.0039 453.57 

50% MSEFInSample 0.0075 0.0088 0.0121 0.0048 0.0083 0.0070 0.0036 0.0083 0.0055 

50% MSEFTesting  0.0098 0.0116 4.6067 0.0055 0.0094 142.51 0.0039 0.0090 251.86 

50% MSEFCensus 0.0091 0.0107 3.2283 0.0053 0.0091 99.76 0.0038 0.0087 176.30 

30% MSEFInSample 0.0097 0.0106 0.0136 0.0060 0.0115 0.0089 0.0049 0.0090 0.0072 

30% MSEFTesting 0.0142 0.0154 21.3351 0.0073 0.0127 11.92 0.0054 0.0099 59.93 

30% MSEFCensus 0.0133 0.0145 17.0708 0.0070 0.0125 9.5384 0.0053 0.0097 47.9491 

100% MSEYInSample 0.0416 0.0574 0.0447 0.0415 0.0417 0.0433 0.0410 0.0433 0.0419 

100% MSEYTesting 0.0429 0.0599 591.2827 0.0416 0.0423 1240.13 0.0413 0.0444 1174.34 

100% MSEYCensus 0.0416 0.0574 0.0447 0.0415 0.0417 0.0433 0.0410 0.0433 0.0419 

80% MSEYInSample 0.0463 0.0496 0.0472 0.0416 0.0448 0.0446 0.0418 0.0428 0.0431 

80% MSEYTesting 0.0449 0.0510 53.6810 0.0431 0.0446 357.08 0.0422 0.0436 907.21 

80% MSEYCensus 0.0456 0.0503 26.8641 0.0423 0.0447 178.56 0.0420 0.0432 453.62 

50% MSEYInSample 0.0448 0.0496 0.0538 0.0437 0.0488 0.0477 0.0437 0.0495 0.0467 

50% MSEYTesting  0.0494 0.0512 4.6504 0.0452 0.0491 142.58 0.0438 0.0488 251.93 

50% MSEYCensus 0.0480 0.0507 3.2714 0.0448 0.0490 99.82 0.0437 0.0490 176.36 

30% MSEYInSample 0.0512 0.0491 0.0528 0.0461 0.0507 0.0505 0.0441 0.0499 0.0478 

30% MSEYTesting 0.0539 0.0551 21.3806 0.0469 0.0523 11.9685 0.0451 0.0496 59.9883 

30% MSEYCensus 0.0534 0.0539 17.1150 0.0467 0.0520 9.5849 0.0449 0.0496 48.0002 

100% K (Full Census) 8.46 2.42 60.88 11.46 2.64 125.88 12.42 2.46 193.14 

100% Time (Full Census) 5.0010 0.5231 1.2491 23.2401 0.9280 8.6596 49.3375 1.1707 28.3374 

Table H4. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.2 
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d = 3, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0052 0.0699 0.0078 0.0034 0.0094 0.0053 0.0026 0.0053 0.0044 

100% MSEFTesting 0.0057 0.0753 782.22 0.0035 0.0095 717.85 0.0026 0.0055 1235.09 

100% MSEFCensus 0.0052 0.0699 0.0078 0.0034 0.0094 0.0053 0.0026 0.0053 0.0044 

80% MSEFInSample 0.0095 0.0429 0.0144 0.0058 0.0303 0.0088 0.0041 0.1537 0.0064 

80% MSEFTesting 0.0104 0.0491 119.14 0.0064 0.0312 768.10 0.0043 0.1663 926.53 

80% MSEFCensus 0.0099 0.0460 59.5793 0.0061 0.0307 384.05 0.0042 0.1600 463.26 

50% MSEFInSample 0.0145 0.0218 0.0209 0.0090 0.0835 0.0129 0.0063 0.0146 0.0091 

50% MSEFTesting  0.0191 0.0323 56.0073 0.0096 0.0964 70.1889 0.0066 0.0165 271.27 

50% MSEFCensus 0.0178 0.0291 39.2114 0.0094 0.0925 49.1361 0.0065 0.0160 189.89 

30% MSEFInSample 0.0192 0.0240 0.0244 0.0124 0.0195 0.0176 0.0092 0.0619 0.0132 

30% MSEFTesting 0.0246 0.0365 13.3936 0.0142 0.0253 12.1662 0.0114 0.0651 163.46 

30% MSEFCensus 0.0235 0.0340 10.7197 0.0138 0.0242 9.7365 0.0110 0.0645 130.77 

100% MSEYInSample 0.0927 0.1595 0.0952 0.0920 0.0980 0.0957 0.0921 0.0941 0.0933 

100% MSEYTesting 0.0947 0.1642 782.36 0.0926 0.0985 717.97 0.0923 0.0952 1235.25 

100% MSEYCensus 0.0927 0.1595 0.0952 0.0920 0.0980 0.0957 0.0921 0.0941 0.0933 

80% MSEYInSample 0.0999 0.1336 0.1004 0.0934 0.1195 0.0964 0.0923 0.2408 0.0939 

80% MSEYTesting 0.0994 0.1381 119.24 0.0954 0.1200 768.22 0.0933 0.2553 926.66 

80% MSEYCensus 0.0996 0.1359 59.6733 0.0944 0.1198 384.15 0.0928 0.2480 463.38 

50% MSEYInSample 0.0985 0.1061 0.1168 0.0980 0.1770 0.1024 0.0974 0.1085 0.0994 

50% MSEYTesting  0.1082 0.1211 56.1061 0.0990 0.1857 70.3067 0.0962 0.1062 271.40 

50% MSEYCensus 0.1053 0.1166 39.3093 0.0987 0.1831 49.2454 0.0966 0.1069 190.01 

30% MSEYInSample 0.1180 0.1179 0.1075 0.1065 0.1062 0.1086 0.0983 0.1542 0.1028 

30% MSEYTesting 0.1137 0.1255 13.4911 0.1031 0.1144 12.2663 0.1009 0.1546 163.58 

30% MSEYCensus 0.1146 0.1240 10.8144 0.1038 0.1128 9.8348 0.1004 0.1545 130.89 

100% K (Full Census) 8.32 2.22 56.74 11.12 2.54 122.6 12.16 2.54 184.08 

100% Time (Full Census) 5.0325 0.5227 1.2846 23.2854 0.9178 8.6964 49.1229 1.1300 27.6230 

Table H5. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.3 
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d = 3, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn 

/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0096 0.3470 0.0126 0.0051 0.043 0.0078 0.0039 0.0836 0.0061 

100% MSEFTesting 0.0104 0.3180 940.716 0.0052 0.042 1025.041 0.0040 0.0848 1404.569 

100% MSEFCensus 0.0096 0.3470 0.0126 0.0051 0.043 0.0078 0.0039 0.0836 0.0061 

80% MSEFInSample 0.0154 0.0340 0.0195 0.0089 0.024 0.0138 0.0056 0.0240 0.0086 

80% MSEFTesting 0.0181 0.0397 75.3542 0.0092 0.025 669.2816 0.0061 0.0267 1050.675 

80% MSEFCensus 0.0168 0.0369 37.6869 0.0090 0.025 334.6477 0.0058 0.0253 525.3422 

50% MSEFInSample 0.0204 0.0294 0.0280 0.0125 0.032 0.0171 0.0105 0.0478 0.0142 

50% MSEFTesting  0.0261 0.0372 12.2046 0.0136 0.033 77.9379 0.0118 0.0544 287.5137 

50% MSEFCensus 0.0243 0.0349 8.5516 0.0132 0.032 54.5617 0.0114 0.0524 201.2638 

30% MSEFInSample 0.0389 0.0442 0.0405 0.0183 0.035 0.0226 0.0131 0.0948 0.0168 

30% MSEFTesting 0.0483 0.0601 0.6002 0.0197 0.039 30.7514 0.0144 0.0928 100.0441 

30% MSEFCensus 0.0464 0.0570 0.4882 0.0194 0.038 24.6056 0.0142 0.0932 80.0387 

100% MSEYInSample 0.1653 0.5069 0.1705 0.1639 0.202 0.1678 0.1626 0.2403 0.1637 

100% MSEYTesting 0.1687 0.4762 940.937 0.1635 0.201 1025.241 0.1634 0.2442 1404.848 

100% MSEYCensus 0.1653 0.5069 0.1705 0.1639 0.202 0.1678 0.1626 0.2403 0.1637 

80% MSEYInSample 0.1772 0.1952 0.1713 0.1656 0.181 0.1710 0.1626 0.1801 0.1636 

80% MSEYTesting 0.1765 0.1979 75.5363 0.1675 0.183 669.5001 0.1643 0.1847 1050.904 

80% MSEYCensus 0.1768 0.1965 37.8538 0.1666 0.182 334.8355 0.1634 0.1824 525.5342 

50% MSEYInSample 0.1583 0.1813 0.1859 0.1719 0.195 0.1742 0.1727 0.2134 0.1768 

50% MSEYTesting  0.1845 0.1956 12.3735 0.1724 0.191 78.1271 0.1713 0.2140 287.7428 

50% MSEYCensus 0.1766 0.1913 8.7172 0.1723 0.192 54.7413 0.1717 0.2138 201.4730 

30% MSEYInSample 0.2056 0.2143 0.1961 0.1845 0.194 0.1830 0.1726 0.2593 0.1743 

30% MSEYTesting 0.2070 0.2189 0.7630 0.1779 0.198 30.9247 0.1732 0.2513 100.2345 

30% MSEYCensus 0.2067 0.2180 0.6496 0.1792 0.197 24.7763 0.1730 0.2529 80.2225 

100% K (Full Census) 7.84 2.38 54.3 11.3 2.56 115.12 12.38 2.82 178.82 

100% Time (Full Census) 4.9215 0.5182 1.2876 24.9839 0.916 8.7400 49.3384 1.1136 28.9099 

Table H6. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.4 
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d = 4, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0038 0.0082 0.0072 0.0023 0.0031 0.0048 0.0017 0.0022 0.0040 

100% MSEFTesting 0.0041 0.0084 366.5847 0.0023 0.0034 1201.9533 0.0018 0.0023 2096.69 

100% MSEFCensus 0.0038 0.0082 0.0072 0.0023 0.0031 0.0048 0.0017 0.0022 0.0040 

80% MSEFInSample 0.0056 0.0101 0.0105 0.0036 0.0049 0.0071 0.0026 0.0055 0.0054 

80% MSEFTesting 0.0067 0.0120 13.2270 0.0038 0.0054 569.4433 0.0028 0.0063 1140.86 

80% MSEFCensus 0.0061 0.0110 6.6187 0.0037 0.0052 284.7252 0.0027 0.0059 570.4375 

50% MSEFInSample 0.0082 0.0109 0.0154 0.0058 0.0209 0.0105 0.0039 0.0113 0.0083 

50% MSEFTesting  0.0094 0.0157 10.0245 0.0069 0.0237 70.0020 0.0043 0.0107 268.51 

50% MSEFCensus 0.0090 0.0143 7.0218 0.0066 0.0229 49.0046 0.0042 0.0109 187.96 

30% MSEFInSample 0.0115 0.0117 0.0180 0.0073 0.0107 0.0130 0.0057 0.0073 0.0109 

30% MSEFTesting 0.0170 0.0175 0.6706 0.0094 0.0150 3.4263 0.0062 0.0088 43.73 

30% MSEFCensus 0.0159 0.0164 0.5401 0.0089 0.0141 2.7436 0.0061 0.0085 34.9876 

100% MSEYInSample 0.0443 0.0483 0.0471 0.0420 0.0428 0.0449 0.0415 0.0420 0.0441 

100% MSEYTesting 0.0438 0.0481 366.6145 0.0421 0.0432 1202.0056 0.0414 0.0419 2096.74 

100% MSEYCensus 0.0443 0.0483 0.0471 0.0420 0.0428 0.0449 0.0415 0.0420 0.0441 

80% MSEYInSample 0.0444 0.0496 0.0500 0.0436 0.0449 0.0467 0.0429 0.0454 0.0452 

80% MSEYTesting 0.0463 0.0517 13.2687 0.0435 0.0452 569.4794 0.0427 0.0462 1140.94 

80% MSEYCensus 0.0453 0.0506 6.6593 0.0436 0.0450 284.7631 0.0428 0.0458 570.49 

50% MSEYInSample 0.0472 0.0483 0.0510 0.0447 0.0602 0.0504 0.0441 0.0509 0.0477 

50% MSEYTesting  0.0490 0.0554 10.0640 0.0464 0.0633 70.0421 0.0440 0.0505 268.54 

50% MSEYCensus 0.0485 0.0533 7.0601 0.0459 0.0624 49.0446 0.0440 0.0506 187.99 

30% MSEYInSample 0.0544 0.0485 0.0557 0.0456 0.0489 0.0549 0.0446 0.0459 0.0510 

30% MSEYTesting 0.0567 0.0572 0.7107 0.0491 0.0547 3.4666 0.0457 0.0483 43.77 

30% MSEYCensus 0.0562 0.0555 0.5797 0.0484 0.0536 2.7843 0.0455 0.0478 35.02 

100% K (Full Census) 7.04 2.02 63.02 11.7 2.16 132.46 12.92 2.08 192.36 

100% 

Time (Full 

Census) 4.0210 0.4488 1.3800 35.6645 1.2499 9.3455 78.7762 1.6994 31.3752 

Table H7. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.2 
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d = 4, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0068 0.0138 0.0126 0.0042 0.0267 0.0084 0.0028 0.0042 0.0061 

100% MSEFTesting 0.0074 0.0157 330.2075 0.0043 0.0294 956.4055 0.0028 0.0043 2061.1434 

100% MSEFCensus 0.0068 0.0138 0.0126 0.0042 0.0267 0.0084 0.0028 0.0042 0.0061 

80% MSEFInSample 0.0113 0.0198 0.0199 0.0063 0.1558 0.0127 0.0051 0.0505 0.0098 

80% MSEFTesting 0.0123 0.0227 6.9686 0.0061 0.1795 231.3875 0.0054 0.0542 846.5812 

80% MSEFCensus 0.0118 0.0213 3.4943 0.0062 0.1677 115.7001 0.0053 0.0523 423.2955 

50% MSEFInSample 0.0156 0.0245 0.0255 0.0096 0.0188 0.0177 0.0066 0.0188 0.0122 

50% MSEFTesting  0.0196 0.0330 1.7114 0.0110 0.0222 126.0220 0.0070 0.0193 256.3481 

50% MSEFCensus 0.0184 0.0305 1.2056 0.0106 0.0212 88.2207 0.0069 0.0192 179.4474 

30% MSEFInSample 0.0245 0.0259 0.0350 0.0139 0.0176 0.0216 0.0100 0.0517 0.0178 

30% MSEFTesting 0.0364 0.0400 5.9935 0.0159 0.0229 1.7440 0.0110 0.0516 54.2180 

30% MSEFCensus 0.0340 0.0372 4.8018 0.0155 0.0218 1.3996 0.0108 0.0517 43.3780 

100% MSEYInSample 0.0974 0.1035 0.1023 0.0932 0.1164 0.0985 0.0921 0.0937 0.0959 

100% MSEYTesting 0.0968 0.1052 330.2890 0.0940 0.1190 956.5211 0.0920 0.0936 2061.2556 

100% MSEYCensus 0.0974 0.1035 0.1023 0.0932 0.1164 0.0985 0.0921 0.0937 0.0959 

80% MSEYInSample 0.0992 0.1081 0.1101 0.0964 0.2460 0.1022 0.0952 0.1406 0.0997 

80% MSEYTesting 0.1015 0.1120 7.0599 0.0955 0.2691 231.4696 0.0951 0.1440 846.7029 

80% MSEYCensus 0.1003 0.1101 3.5850 0.0959 0.2575 115.7859 0.0951 0.1423 423.4013 

50% MSEYInSample 0.1033 0.1076 0.1059 0.0977 0.1058 0.1086 0.0966 0.1075 0.1017 

50% MSEYTesting  0.1088 0.1223 1.8006 0.0999 0.1112 126.1123 0.0963 0.1088 256.4295 

50% MSEYCensus 0.1071 0.1178 1.2922 0.0993 0.1095 88.3111 0.0964 0.1084 179.5311 

30% MSEYInSample 0.1213 0.1096 0.1187 0.0994 0.1023 0.1145 0.0971 0.1408 0.1064 

30% MSEYTesting 0.1257 0.1293 6.0830 0.1053 0.1124 1.8337 0.0999 0.1407 54.3085 

30% MSEYCensus 0.1248 0.1254 4.8902 0.1041 0.1104 1.4899 0.0993 0.1407 43.4681 

100% K (Full Census) 6.94 2.26 59.42 11.94 2.22 122.16 12.4 2.18 192.14 

100% Time (Full Census) 3.8932 0.4635 1.3946 36.0235 1.2504 9.5493 73.5000 1.6338 31.5927 

Table H8. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.3. 
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d = 4, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0091 0.0333 0.0162 0.0061 0.0109 0.0120 0.0044 0.0151 0.0088 

100% MSEFTesting 0.0104 0.0336 269.5879 0.0063 0.0123 1809.4380 0.0044 0.0149 2638.1731 

100% MSEFCensus 0.0091 0.0333 0.0162 0.0061 0.0109 0.0120 0.0044 0.0151 0.0088 

80% MSEFInSample 0.0183 0.0637 0.0296 0.0110 0.0194 0.0177 0.0078 0.0270 0.0141 

80% MSEFTesting 0.0200 0.0755 14.6548 0.0120 0.0206 378.6360 0.0084 0.0279 671.0586 

80% MSEFCensus 0.0191 0.0696 7.3422 0.0115 0.0200 189.3269 0.0081 0.0274 335.5364 

50% MSEFInSample 0.0300 0.0387 0.0424 0.0160 0.0289 0.0272 0.0109 0.0369 0.0189 

50% MSEFTesting  0.0371 0.0489 3.0819 0.0170 0.0320 26.7000 0.0119 0.0383 403.4055 

50% MSEFCensus 0.0349 0.0459 2.1701 0.0167 0.0311 18.6981 0.0116 0.0379 282.3895 

30% MSEFInSample 0.0411 0.0441 0.0526 0.0225 0.0361 0.0367 0.0159 0.0257 0.0274 

30% MSEFTesting 0.0562 0.0620 1.6564 0.0258 0.0450 102.2316 0.0166 0.0291 32.9122 

30% MSEFCensus 0.0532 0.0585 1.3356 0.0251 0.0432 81.7926 0.0164 0.0284 26.3352 

100% MSEYInSample 0.1713 0.1918 0.1746 0.1652 0.1703 0.1732 0.1627 0.1745 0.1685 

100% MSEYTesting 0.1694 0.1928 269.7363 0.1657 0.1716 1809.6336 0.1630 0.1736 2638.4058 

100% MSEYCensus 0.1713 0.1918 0.1746 0.1652 0.1703 0.1732 0.1627 0.1745 0.1685 

80% MSEYInSample 0.1736 0.2194 0.1877 0.1728 0.1786 0.1773 0.1675 0.1868 0.1738 

80% MSEYTesting 0.1786 0.2344 14.8167 0.1710 0.1797 378.7881 0.1679 0.1874 671.2451 

80% MSEYCensus 0.1761 0.2269 7.5022 0.1719 0.1792 189.4827 0.1677 0.1871 335.7094 

50% MSEYInSample 0.1864 0.1869 0.1833 0.1722 0.1825 0.1876 0.1708 0.1946 0.1775 

50% MSEYTesting  0.1958 0.2078 3.2389 0.1751 0.1903 26.8610 0.1705 0.1973 403.5389 

50% MSEYCensus 0.1930 0.2015 2.3222 0.1742 0.1880 18.8590 0.1706 0.1965 282.5305 

30% MSEYInSample 0.2115 0.1926 0.2005 0.1761 0.1884 0.2024 0.1723 0.1813 0.1872 

30% MSEYTesting 0.2149 0.2207 1.8168 0.1847 0.2040 102.3966 0.1747 0.1874 33.0729 

30% MSEYCensus 0.2142 0.2151 1.4936 0.1830 0.2009 81.9577 0.1742 0.1861 26.4957 

100% K (Full Census) 6.94 2.02 56.82 11.8 2.38 122.26 12.22 2.1 185.84 

100% Time (Full Census) 3.8504 0.4765 1.4262 35.9447 1.2765 9.8326 75.0789 1.6454 32.8098 

Table H9. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.4 
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Table H10. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.01 

d = 2, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

100% MSEFTesting 0.0000 0.0003 87.91 0.0000 0.0003 76.24 0.0000 0.0003 55.36 

100% MSEFCensus 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

80% MSEFInSample 0.0001 0.0002 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

80% MSEFTesting 0.0001 0.0004 69.49 0.0000 0.0003 138.34 0.0000 0.0003 252.95 

80% MSEFCensus 0.0001 0.0003 34.74 0.0000 0.0003 69.1709 0.0000 0.0003 126.4761 

50% MSEFInSample 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 0.0003 0.0000 

50% MSEFTesting  0.0003 0.0004 34.57 0.0001 0.0004 251.85 0.0000 0.0003 74.69 

50% MSEFCensus 0.0002 0.0004 24.19 0.0001 0.0003 176.29 0.0000 0.0003 52.28 

30% MSEFInSample 0.0002 0.0002 0.0001 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 

30% MSEFTesting 0.0005 0.0005 1.54 0.0001 0.0004 38.20 0.0001 0.0003 132.17 

30% MSEFCensus 0.0005 0.0005 1.23 0.0001 0.0004 30.56 0.0001 0.0003 105.73 

100% MSEYInSample 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 

100% MSEYTesting 0.0001 0.0004 87.91 0.0001 0.0004 76.24 0.0001 0.0004 55.36 

100% MSEYCensus 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 

80% MSEYInSample 0.0002 0.0003 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 

80% MSEYTesting 0.0002 0.0005 69.49 0.0001 0.0004 138.34 0.0001 0.0004 252.95 

80% MSEYCensus 0.0002 0.0004 34.74 0.0001 0.0004 69.17 0.0001 0.0004 126.47 

50% MSEYInSample 0.0002 0.0003 0.0001 0.0001 0.0003 0.0001 0.0001 0.0003 0.0001 

50% MSEYTesting  0.0004 0.0005 34.57 0.0002 0.0005 251.85 0.0001 0.0004 74.69 

50% MSEYCensus 0.0003 0.0005 24.19 0.0002 0.0004 176.30 0.0001 0.0004 52.28 

30% MSEYInSample 0.0003 0.0003 0.0002 0.0002 0.0003 0.0001 0.0001 0.0003 0.0001 

30% MSEYTesting 0.0006 0.0006 1.5435 0.0002 0.0005 38.20 0.0002 0.0004 132.17 

30% MSEYCensus 0.0006 0.0006 1.2348 0.0002 0.0005 30.56 0.0002 0.0004 105.73 

100% K (Full Census) 9.1200 2.0000 89.66 11.1000 2.0000 159.20 12.0000 2.0600 221.32 

100% 

Time (Full 

Census) 5.0034 0.4731 1.0831 16.5378 0.6387 7.0558 32.8468 0.7533 21.8691 
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Table H11. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.05 

d = 2, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0003 0.0004 0.0004 0.0002 0.0004 0.0002 0.0001 0.0003 0.0002 

100% MSEFTesting 0.0003 0.0005 344.2265 0.0002 0.0004 104.3058 0.0001 0.0004 208.4270 

100% MSEFCensus 0.0003 0.0004 0.0004 0.0002 0.0004 0.0002 0.0001 0.0003 0.0002 

80% MSEFInSample 0.0004 0.0005 0.0005 0.0003 0.0005 0.0004 0.0002 0.0004 0.0002 

80% MSEFTesting 0.0006 0.0007 56.7960 0.0003 0.0005 163.3753 0.0002 0.0004 276.1076 

80% MSEFCensus 0.0005 0.0006 28.3982 0.0003 0.0005 81.6878 0.0002 0.0004 138.0539 

50% MSEFInSample 0.0006 0.0008 0.0008 0.0004 0.0005 0.0005 0.0003 0.0004 0.0003 

50% MSEFTesting  0.0009 0.0012 22.0658 0.0005 0.0007 237.7376 0.0004 0.0005 212.6012 

50% MSEFCensus 0.0008 0.0011 15.4463 0.0005 0.0006 166.4165 0.0003 0.0005 148.8209 

30% MSEFInSample 0.0008 0.0009 0.0010 0.0005 0.0006 0.0006 0.0004 0.0005 0.0005 

30% MSEFTesting 0.0012 0.0014 1.5623 0.0007 0.0007 34.0284 0.0005 0.0006 92.0718 

30% MSEFCensus 0.0011 0.0013 1.2501 0.0006 0.0007 27.2228 0.0005 0.0006 73.6575 

100% MSEYInSample 0.0027 0.0029 0.0028 0.0027 0.0029 0.0027 0.0026 0.0029 0.0027 

100% MSEYTesting 0.0028 0.0030 344.2366 0.0027 0.0029 104.3114 0.0026 0.0029 208.4361 

100% MSEYCensus 0.0027 0.0029 0.0028 0.0027 0.0029 0.0027 0.0026 0.0029 0.0027 

80% MSEYInSample 0.0029 0.0031 0.0030 0.0027 0.0029 0.0028 0.0027 0.0029 0.0027 

80% MSEYTesting 0.0031 0.0032 56.8033 0.0028 0.0030 163.3829 0.0027 0.0029 276.1184 

80% MSEYCensus 0.0030 0.0031 28.4031 0.0028 0.0029 81.6928 0.0027 0.0029 138.0605 

50% MSEYInSample 0.0032 0.0032 0.0033 0.0029 0.0031 0.0030 0.0029 0.0029 0.0028 

50% MSEYTesting  0.0034 0.0037 22.0713 0.0030 0.0032 237.7481 0.0029 0.0030 212.6125 

50% MSEYCensus 0.0033 0.0035 15.4509 0.0030 0.0032 166.4246 0.0029 0.0030 148.8296 

30% MSEYInSample 0.0034 0.0033 0.0036 0.0031 0.0030 0.0031 0.0029 0.0031 0.0029 

30% MSEYTesting 0.0037 0.0039 1.5654 0.0032 0.0032 34.0332 0.0030 0.0031 92.0791 

30% MSEYCensus 0.0036 0.0038 1.2530 0.0032 0.0032 27.2272 0.0030 0.0031 73.6638 

100% K (Full Census) 9.1600 2.0000 75.3400 10.7400 2.0600 133.4800 11.4400 2.0400 192.1800 

100% 

Time (Full 

Census) 4.9175 0.4587 1.1222 16.5608 0.6480 7.6042 32.8749 0.7590 23.0120 
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d = 2, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0008 0.0009 0.0010 0.0005 0.0006 0.0007 0.0003 0.0005 0.0004 

100% MSEFTesting 0.0009 0.0010 370.9240 0.0005 0.0007 218.0245 0.0003 0.0005 141.7350 

100% MSEFCensus 0.0008 0.0009 0.0010 0.0005 0.0006 0.0007 0.0003 0.0005 0.0004 

80% MSEFInSample 0.0015 0.0017 0.0018 0.0008 0.0010 0.0011 0.0006 0.0007 0.0007 

80% MSEFTesting 0.0017 0.0020 130.4580 0.0009 0.0011 219.5168 0.0007 0.0008 329.2754 

80% MSEFCensus 0.0016 0.0018 65.2299 0.0009 0.0011 109.7589 0.0006 0.0007 164.6381 

50% MSEFInSample 0.0020 0.0029 0.0027 0.0013 0.0013 0.0015 0.0009 0.0010 0.0011 

50% MSEFTesting  0.0025 0.0039 17.0756 0.0015 0.0014 170.5202 0.0010 0.0011 133.5198 

50% MSEFCensus 0.0024 0.0036 11.9537 0.0014 0.0014 119.3646 0.0010 0.0011 93.4642 

30% MSEFInSample 0.0023 0.0036 0.0032 0.0018 0.0485 0.0022 0.0013 0.0016 0.0016 

30% MSEFTesting 0.0029 0.0049 1266.1997 0.0021 0.0473 74.8704 0.0017 0.0018 195.1175 

30% MSEFCensus 0.0028 0.0047 1012.9604 0.0020 0.0475 59.8968 0.0017 0.0018 156.0943 

100% MSEYInSample 0.0107 0.0108 0.0108 0.0104 0.0108 0.0108 0.0103 0.0105 0.0105 

100% MSEYTesting 0.0109 0.0110 370.9495 0.0105 0.0107 218.0414 0.0104 0.0106 141.7571 

100% MSEYCensus 0.0107 0.0108 0.0108 0.0104 0.0108 0.0108 0.0103 0.0105 0.0105 

80% MSEYInSample 0.0115 0.0116 0.0119 0.0108 0.0109 0.0109 0.0105 0.0104 0.0107 

80% MSEYTesting 0.0117 0.0120 130.4817 0.0109 0.0111 219.5377 0.0107 0.0108 329.3072 

80% MSEYCensus 0.0116 0.0118 65.2468 0.0108 0.0110 109.7743 0.0106 0.0106 164.6590 

50% MSEYInSample 0.0124 0.0128 0.0127 0.0111 0.0114 0.0118 0.0108 0.0109 0.0114 

50% MSEYTesting  0.0126 0.0139 17.0899 0.0115 0.0115 170.5413 0.0111 0.0112 133.5433 

50% MSEYCensus 0.0125 0.0136 11.9667 0.0114 0.0114 119.3825 0.0110 0.0111 93.4837 

30% MSEYInSample 0.0124 0.0139 0.0130 0.0115 0.0589 0.0124 0.0112 0.0117 0.0119 

30% MSEYTesting 0.0130 0.0150 1266.2176 0.0122 0.0574 74.8874 0.0118 0.0119 195.1395 

30% MSEYCensus 0.0128 0.0148 1012.9767 0.0120 0.0577 59.9124 0.0117 0.0118 156.1140 

100% K (Full Census) 8.9200 2.1000 61.9200 10.6600 2.1200 120.6400 11.1800 2.1000 169.9800 

100% 

Time (Full 

Census) 4.8844 0.4632 1.1780 16.5917 0.6587 7.6625 33.8377 0.7826 23.3258 

Table H12. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=2, sigma = 0.1 
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Table H13. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.01 

d = 3, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0001 0.0006 0.0001 0.0002 0.0006 0.0000 0.0003 0.0007 0.0000 

100% MSEFTesting 0.0002 0.0008 413.5722 0.0002 0.0007 423.1706 0.0003 0.0007 714.7379 

100% MSEFCensus 0.0001 0.0006 0.0001 0.0002 0.0006 0.0000 0.0003 0.0007 0.0000 

80% MSEFInSample 0.0003 0.0005 0.0001 0.0001 0.0006 0.0001 0.0001 0.0006 0.0000 

80% MSEFTesting 0.0005 0.0009 32.9737 0.0002 0.0008 187.1054 0.0002 0.0007 429.8912 

80% MSEFCensus 0.0004 0.0007 16.4869 0.0002 0.0007 93.5527 0.0001 0.0007 214.9456 

50% MSEFInSample 0.0004 0.0004 0.0001 0.0002 0.0005 0.0001 0.0002 0.0006 0.0001 

50% MSEFTesting  0.0009 0.0010 4.2185 0.0004 0.0008 79.8074 0.0003 0.0008 325.6861 

50% MSEFCensus 0.0007 0.0008 2.9529 0.0004 0.0007 55.8652 0.0002 0.0007 227.9803 

30% MSEFInSample 0.0004 0.0004 0.0001 0.0003 0.0005 0.0001 0.0002 0.0005 0.0001 

30% MSEFTesting 0.0012 0.0012 0.3865 0.0007 0.0009 20.5994 0.0004 0.0008 80.4559 

30% MSEFCensus 0.0011 0.0011 0.3092 0.0006 0.0008 16.4795 0.0004 0.0008 64.3647 

100% MSEYInSample 0.0002 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0008 0.0001 

100% MSEYTesting 0.0003 0.0009 413.5735 0.0003 0.0008 423.1714 0.0004 0.0008 714.7400 

100% MSEYCensus 0.0002 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0008 0.0001 

80% MSEYInSample 0.0004 0.0006 0.0002 0.0002 0.0007 0.0001 0.0002 0.0007 0.0001 

80% MSEYTesting 0.0006 0.0010 32.9743 0.0003 0.0009 187.1063 0.0003 0.0008 429.8925 

80% MSEYCensus 0.0005 0.0008 16.4872 0.0003 0.0008 93.5532 0.0002 0.0008 214.9463 

50% MSEYInSample 0.0005 0.0005 0.0002 0.0003 0.0006 0.0002 0.0003 0.0007 0.0002 

50% MSEYTesting  0.0010 0.0011 4.2188 0.0005 0.0009 79.8086 0.0004 0.0009 325.6881 

50% MSEYCensus 0.0008 0.0009 2.9532 0.0005 0.0008 55.8661 0.0003 0.0008 227.9817 

30% MSEYInSample 0.0005 0.0005 0.0002 0.0004 0.0006 0.0002 0.0003 0.0006 0.0002 

30% MSEYTesting 0.0013 0.0013 0.3867 0.0008 0.0010 20.6000 0.0005 0.0009 80.4571 

30% MSEYCensus 0.0012 0.0012 0.3094 0.0007 0.0009 16.4800 0.0005 0.0009 64.3657 

100% K (Full Census) 8.5200 2.0000 94.7200 11.7800 2.1600 185.3600 12.5600 2.1600 272.9800 

100% Time (Full Census) 5.4161 0.5377 1.1190 25.9682 0.8869 7.8553 53.5792 1.1314 26.0566 
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Table H14. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.05 

d = 3, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/ 

nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0005 0.0012 0.0006 0.0003 0.0008 0.0004 0.0003 0.0007 0.0003 

100% MSEFTesting 0.0006 0.0014 762.8861 0.0004 0.0008 975.1576 0.0004 0.0008 823.8718 

100% MSEFCensus 0.0005 0.0012 0.0006 0.0003 0.0008 0.0004 0.0003 0.0007 0.0003 

80% MSEFInSample 0.0008 0.0010 0.0009 0.0004 0.0008 0.0006 0.0004 0.0009 0.0005 

80% MSEFTesting 0.0011 0.0013 144.0639 0.0005 0.0010 601.6849 0.0004 0.0010 608.9285 

80% MSEFCensus 0.0009 0.0012 72.0324 0.0005 0.0009 300.8427 0.0004 0.0010 304.4645 

50% MSEFInSample 0.0011 0.0011 0.0013 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 

50% MSEFTesting  0.0018 0.0018 12.5961 0.0009 0.0013 122.5333 0.0007 0.0011 627.3650 

50% MSEFCensus 0.0016 0.0016 8.8177 0.0008 0.0012 85.7736 0.0006 0.0010 439.1557 

30% MSEFInSample 0.0013 0.0014 0.0015 0.0008 0.0009 0.0010 0.0006 0.0009 0.0008 

30% MSEFTesting 0.0025 0.0027 4.1813 0.0012 0.0014 68.7782 0.0009 0.0013 236.6423 

30% MSEFCensus 0.0023 0.0024 3.3453 0.0011 0.0013 55.0228 0.0008 0.0012 189.3140 

100% MSEYInSample 0.0029 0.0037 0.0031 0.0028 0.0032 0.0029 0.0028 0.0032 0.0028 

100% MSEYTesting 0.0030 0.0038 762.8987 0.0029 0.0033 975.1682 0.0029 0.0033 823.8849 

100% MSEYCensus 0.0029 0.0037 0.0031 0.0028 0.0032 0.0029 0.0028 0.0032 0.0028 

80% MSEYInSample 0.0034 0.0037 0.0034 0.0029 0.0033 0.0030 0.0028 0.0034 0.0030 

80% MSEYTesting 0.0035 0.0038 144.0707 0.0030 0.0035 601.6945 0.0029 0.0035 608.9365 

80% MSEYCensus 0.0034 0.0037 72.0371 0.0030 0.0034 300.8487 0.0029 0.0034 304.4697 

50% MSEYInSample 0.0037 0.0038 0.0038 0.0032 0.0035 0.0034 0.0030 0.0034 0.0032 

50% MSEYTesting  0.0043 0.0043 12.5997 0.0034 0.0038 122.5413 0.0032 0.0035 627.3812 

50% MSEYCensus 0.0041 0.0041 8.8209 0.0033 0.0037 85.7799 0.0031 0.0035 439.1678 

30% MSEYInSample 0.0038 0.0042 0.0039 0.0033 0.0035 0.0034 0.0031 0.0034 0.0034 

30% MSEYTesting 0.0050 0.0052 4.1844 0.0037 0.0039 68.7844 0.0034 0.0038 236.6521 

30% MSEYCensus 0.0048 0.0050 3.3483 0.0036 0.0038 55.0282 0.0033 0.0037 189.3224 

100% K (Full Census) 8.7400 2.4600 80.1600 11.8400 2.3400 154.8200 12.6800 2.2200 229.7600 

100% Time (Full Census) 5.5555 0.5153 1.2451 25.9777 0.9054 8.4133 55.2034 1.1440 27.9051 
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Table H15. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=3, sigma = 0.1 

d = 3, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0012 0.0019 0.0018 0.0008 0.0018 0.0011 0.0006 0.0010 0.0008 

100% MSEFTesting 0.0014 0.0022 978.6187 0.0009 0.0019 1562.1317 0.0006 0.0010 1432.7275 

100% MSEFCensus 0.0012 0.0019 0.0018 0.0008 0.0018 0.0011 0.0006 0.0010 0.0008 

80% MSEFInSample 0.0019 0.0062 0.0027 0.0012 0.0021 0.0018 0.0010 0.0013 0.0014 

80% MSEFTesting 0.0026 0.0068 83.7592 0.0014 0.0023 545.8418 0.0011 0.0015 711.7752 

80% MSEFCensus 0.0023 0.0065 41.8809 0.0013 0.0022 272.9218 0.0010 0.0014 355.8883 

50% MSEFInSample 0.0028 0.0031 0.0040 0.0017 0.0035 0.0025 0.0013 0.0016 0.0019 

50% MSEFTesting  0.0038 0.0043 2.3712 0.0019 0.0038 128.7269 0.0015 0.0019 272.2648 

50% MSEFCensus 0.0035 0.0039 1.6611 0.0019 0.0037 90.1096 0.0015 0.0018 190.5859 

30% MSEFInSample 0.0031 0.0049 0.0047 0.0022 0.0049 0.0034 0.0017 0.0032 0.0025 

30% MSEFTesting 0.0050 0.0076 0.3994 0.0029 0.0058 32.1949 0.0020 0.0037 216.3175 

30% MSEFCensus 0.0047 0.0071 0.3205 0.0028 0.0056 25.7566 0.0019 0.0036 173.0545 

100% MSEYInSample 0.0110 0.0119 0.0118 0.0107 0.0117 0.0111 0.0104 0.0108 0.0107 

100% MSEYTesting 0.0113 0.0121 978.6446 0.0108 0.0118 1562.1564 0.0106 0.0110 1432.7618 

100% MSEYCensus 0.0110 0.0119 0.0118 0.0107 0.0117 0.0111 0.0104 0.0108 0.0107 

80% MSEYInSample 0.0116 0.0160 0.0126 0.0111 0.0120 0.0118 0.0109 0.0112 0.0112 

80% MSEYTesting 0.0125 0.0167 83.7772 0.0113 0.0122 545.8659 0.0109 0.0114 711.7959 

80% MSEYCensus 0.0121 0.0163 41.8949 0.0112 0.0121 272.9388 0.0109 0.0113 355.9035 

50% MSEYInSample 0.0130 0.0138 0.0133 0.0116 0.0130 0.0123 0.0115 0.0119 0.0119 

50% MSEYTesting  0.0137 0.0141 2.3829 0.0119 0.0138 128.7483 0.0115 0.0118 272.2914 

50% MSEYCensus 0.0135 0.0140 1.6720 0.0118 0.0135 90.1275 0.0115 0.0118 190.6075 

30% MSEYInSample 0.0125 0.0161 0.0137 0.0123 0.0155 0.0135 0.0116 0.0128 0.0125 

30% MSEYTesting 0.0149 0.0175 0.4102 0.0128 0.0156 32.2087 0.0119 0.0136 216.3393 

30% MSEYCensus 0.0145 0.0173 0.3309 0.0127 0.0156 25.7697 0.0119 0.0134 173.0739 

100% K (Full Census) 8.4200 2.5800 69.2400 11.6200 2.4400 140.6800 12.7000 2.3800 211.5800 

100% Time (Full Census) 5.3340 0.5241 1.2568 24.1476 0.9520 8.8607 53.7186 1.1511 29.1077 
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Table H16. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.01 

d = 4, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0007 0.0001 

100% MSEFTesting 0.0005 0.0010 161.6089 0.0003 0.0009 365.6785 0.0005 0.0008 584.3493 

100% MSEFCensus 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0007 0.0001 

80% MSEFInSample 0.0004 0.0005 0.0001 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 

80% MSEFTesting 0.0008 0.0011 8.6689 0.0005 0.0009 204.9950 0.0004 0.0009 263.8065 

80% MSEFCensus 0.0006 0.0008 4.3345 0.0004 0.0008 102.4976 0.0003 0.0008 131.9033 

50% MSEFInSample 0.0005 0.0005 0.0001 0.0004 0.0006 0.0001 0.0003 0.0006 0.0001 

50% MSEFTesting  0.0013 0.0014 1.2656 0.0007 0.0010 25.1762 0.0005 0.0009 91.1381 

50% MSEFCensus 0.0011 0.0011 0.8860 0.0006 0.0009 17.6233 0.0004 0.0008 63.7967 

30% MSEFInSample 0.0008 0.0006 0.0001 0.0005 0.0005 0.0001 0.0004 0.0006 0.0001 

30% MSEFTesting 0.0017 0.0016 0.1625 0.0010 0.0013 1.8949 0.0007 0.0010 22.4333 

30% MSEFCensus 0.0015 0.0014 0.1301 0.0009 0.0011 1.5159 0.0007 0.0009 17.9467 

100% MSEYInSample 0.0004 0.0008 0.0002 0.0004 0.0008 0.0002 0.0005 0.0008 0.0002 

100% MSEYTesting 0.0006 0.0011 161.6089 0.0004 0.0010 365.6792 0.0005 0.0009 584.3495 

100% MSEYCensus 0.0004 0.0008 0.0002 0.0004 0.0008 0.0002 0.0005 0.0008 0.0002 

80% MSEYInSample 0.0005 0.0006 0.0002 0.0004 0.0008 0.0002 0.0004 0.0008 0.0002 

80% MSEYTesting 0.0009 0.0012 8.6690 0.0006 0.0010 204.9950 0.0005 0.0010 263.8074 

80% MSEYCensus 0.0007 0.0009 4.3346 0.0005 0.0009 102.4976 0.0004 0.0009 131.9038 

50% MSEYInSample 0.0006 0.0006 0.0002 0.0005 0.0007 0.0002 0.0004 0.0007 0.0002 

50% MSEYTesting  0.0014 0.0014 1.2657 0.0008 0.0011 25.1763 0.0006 0.0010 91.1379 

50% MSEYCensus 0.0012 0.0012 0.8860 0.0007 0.0010 17.6235 0.0005 0.0009 63.7966 

30% MSEYInSample 0.0009 0.0007 0.0002 0.0006 0.0006 0.0002 0.0005 0.0007 0.0002 

30% MSEYTesting 0.0018 0.0017 0.1627 0.0011 0.0014 1.8950 0.0008 0.0011 22.4334 

30% MSEYCensus 0.0016 0.0015 0.1302 0.0010 0.0012 1.5160 0.0008 0.0010 17.9468 

100% K (Full Census) 7.2600 2.0000 96.1600 11.8800 2.0000 190.2800 12.5000 2.0600 276.8200 

100% Time (Full Census) 4.3435 0.4711 1.1840 37.5370 1.2684 8.2187 75.3199 1.6647 26.7982 
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Table H17. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.05 

d = 4, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 0.0005 0.0008 0.0005 

100% MSEFTesting 0.0009 0.0012 440.3271 0.0006 0.0010 1105.7870 0.0006 0.0009 630.5477 

100% MSEFCensus 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 0.0005 0.0008 0.0005 

80% MSEFInSample 0.0009 0.0024 0.0013 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 

80% MSEFTesting 0.0014 0.0029 20.5826 0.0009 0.0012 701.4585 0.0007 0.0011 1027.9976 

80% MSEFCensus 0.0011 0.0026 10.2919 0.0008 0.0011 350.7297 0.0006 0.0010 513.9992 

50% MSEFInSample 0.0012 0.0014 0.0016 0.0009 0.0011 0.0012 0.0007 0.0010 0.0009 

50% MSEFTesting  0.0021 0.0023 2.8493 0.0012 0.0015 43.0414 0.0010 0.0013 281.3078 

50% MSEFCensus 0.0018 0.0020 1.9949 0.0011 0.0013 30.1293 0.0009 0.0012 196.9158 

30% MSEFInSample 0.0015 0.0014 0.0020 0.0011 0.0014 0.0015 0.0008 0.0011 0.0012 

30% MSEFTesting 0.0025 0.0026 0.2964 0.0017 0.0020 3.9116 0.0013 0.0016 45.9066 

30% MSEFCensus 0.0023 0.0024 0.2375 0.0016 0.0019 3.1296 0.0012 0.0015 36.7255 

100% MSEYInSample 0.0032 0.0034 0.0034 0.0030 0.0034 0.0032 0.0030 0.0033 0.0030 

100% MSEYTesting 0.0034 0.0037 440.3277 0.0031 0.0035 1105.7959 0.0030 0.0034 630.5537 

100% MSEYCensus 0.0032 0.0034 0.0034 0.0030 0.0034 0.0032 0.0030 0.0033 0.0030 

80% MSEYInSample 0.0034 0.0048 0.0038 0.0032 0.0034 0.0034 0.0030 0.0034 0.0032 

80% MSEYTesting 0.0038 0.0053 20.5851 0.0034 0.0037 701.4593 0.0032 0.0036 1028.0035 

80% MSEYCensus 0.0036 0.0051 10.2944 0.0033 0.0036 350.7313 0.0031 0.0035 514.0033 

50% MSEYInSample 0.0037 0.0038 0.0038 0.0033 0.0035 0.0037 0.0032 0.0034 0.0033 

50% MSEYTesting  0.0046 0.0047 2.8517 0.0036 0.0039 43.0442 0.0035 0.0038 281.3081 

50% MSEYCensus 0.0043 0.0045 1.9974 0.0035 0.0038 30.1320 0.0034 0.0037 196.9167 

30% MSEYInSample 0.0042 0.0038 0.0043 0.0035 0.0038 0.0041 0.0033 0.0035 0.0036 

30% MSEYTesting 0.0050 0.0051 0.2989 0.0042 0.0045 3.9139 0.0038 0.0041 45.9092 

30% MSEYCensus 0.0049 0.0048 0.2400 0.0040 0.0043 3.1319 0.0037 0.0040 36.7281 

100% K (Full Census) 7.0800 2.0000 76.1800 11.8400 2.0600 154.8800 12.7800 2.0600 229.4800 

100% Time (Full Census) 4.1409 0.4665 1.3064 35.8179 1.2787 9.3666 77.7415 1.6637 29.6764 
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Table H18. MSEf, MSEISf, MSEFSf, MSEy, MSEISy, MSEFSy, time and K results for d=4, sigma = 0.1 

d = 4, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nLearn/nFull Metric CAPNLS CAP CNLS CAPNLS CAP CNLS CAPNLS CAP CNLS 

100% MSEFInSample 0.0015 0.0018 0.0025 0.0010 0.0013 0.0017 0.0008 0.0012 0.0014 

100% MSEFTesting 0.0017 0.0022 322.4462 0.0010 0.0015 1624.4689 0.0009 0.0013 2548.5803 

100% MSEFCensus 0.0015 0.0018 0.0025 0.0010 0.0013 0.0017 0.0008 0.0012 0.0014 

80% MSEFInSample 0.0025 0.0030 0.0043 0.0015 0.0017 0.0025 0.0012 0.0015 0.0019 

80% MSEFTesting 0.0031 0.0043 20.1828 0.0017 0.0020 398.8514 0.0013 0.0017 1202.0194 

80% MSEFCensus 0.0028 0.0036 10.0935 0.0016 0.0019 199.4270 0.0012 0.0016 601.0107 

50% MSEFInSample 0.0031 0.0060 0.0055 0.0021 0.0025 0.0035 0.0017 0.0030 0.0029 

50% MSEFTesting  0.0044 0.0073 0.4835 0.0026 0.0030 49.4704 0.0019 0.0033 372.3199 

50% MSEFCensus 0.0040 0.0069 0.3401 0.0024 0.0028 34.6304 0.0018 0.0032 260.6248 

30% MSEFInSample 0.0033 0.0034 0.0060 0.0023 0.0028 0.0041 0.0021 0.0022 0.0035 

30% MSEFTesting 0.0048 0.0047 0.5589 0.0030 0.0037 11.4710 0.0024 0.0027 96.0842 

30% MSEFCensus 0.0045 0.0045 0.4483 0.0029 0.0035 9.1776 0.0024 0.0026 76.8680 

100% MSEYInSample 0.0115 0.0117 0.0124 0.0109 0.0113 0.0117 0.0108 0.0111 0.0114 

100% MSEYTesting 0.0116 0.0121 322.4528 0.0110 0.0115 1624.4880 0.0108 0.0112 2548.6096 

100% MSEYCensus 0.0115 0.0117 0.0124 0.0109 0.0113 0.0117 0.0108 0.0111 0.0114 

80% MSEYInSample 0.0122 0.0126 0.0141 0.0115 0.0116 0.0125 0.0112 0.0115 0.0119 

80% MSEYTesting 0.0130 0.0142 20.1930 0.0117 0.0120 398.8582 0.0113 0.0117 1202.0398 

80% MSEYCensus 0.0126 0.0134 10.1035 0.0116 0.0118 199.4354 0.0112 0.0116 601.0258 

50% MSEYInSample 0.0129 0.0154 0.0145 0.0118 0.0124 0.0135 0.0117 0.0128 0.0129 

50% MSEYTesting  0.0143 0.0172 0.4933 0.0124 0.0129 49.4806 0.0118 0.0133 372.3238 

50% MSEYCensus 0.0139 0.0167 0.3497 0.0122 0.0127 34.6405 0.0118 0.0131 260.6305 

30% MSEYInSample 0.0139 0.0127 0.0152 0.0119 0.0123 0.0145 0.0118 0.0120 0.0135 

30% MSEYTesting 0.0147 0.0146 0.5691 0.0129 0.0136 11.4810 0.0123 0.0126 96.0948 

30% MSEYCensus 0.0145 0.0143 0.4583 0.0127 0.0133 9.1877 0.0122 0.0124 76.8785 

100% K (Full Census) 6.9800 2.0000 67.6400 11.9000 2.0400 142.6800 12.5400 2.0000 217.2600 

100% Time (Full Census) 4.0251 0.4753 1.3533 36.7225 1.2767 9.4859 75.9045 1.6847 30.9289 
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APPENDIX I 

PARAMETRIC BOOTSTRAP ALGORITHM TO CALCULATE EXPECTED OPTIMISM 

 

We apply the following algorithm from Efron (2004) to compute in-sample optimism. 

First, we assume a Gaussian density p(Y)=N(Ŷ, σ̂
2
I), where Ŷ is the vector of estimated 

output values of the estimator for which we are assessing the in-sample optimism. σ̂
2
 is 

obtained from the residuals of a “big” model presumed to have negligible bias. Given 

CNLS’s unbiasedness, high flexibility and use of a very complex description of the 

production function, we choose it as our “big” model. While obtaining an unbiased estimate 

for σ2 from CNLS’s residuals is complicated as there are no formal results regarding the 

effective number of parameters CNLS uses, using MSEyLearn
CNLS  as σ̂

2
 results in a downward 

biased estimator of σ2. This downward bias in fact results in improved efficiency for the 

parametric bootstrap algorithm and is an example of a “little” bootstrap (Breiman, 1992). 

Thus, we let σ̂ = MSEyLearn
CNLS . Efron (2004) then suggests to run a large number B of simulated 

observations Y*
 from p(Y), fit them to obtain estimates Y*̂ and estimate covi=cov(Yî,Yi) 

computing  

covî = ∑ Yi
*b̂

(Yi
 *b

-Yi
 *∙

) (B-1)⁄B
b=1  ;  Yi

 *∙= ∑ Yi
 *b B⁄B

b=1  (I.1) 

Finally, we select B = 500 for all our experiments based on observed convergence of the  

∑ covîn
i=1  quantity. 

Further, we note that if the researcher is not comfortable with the assumption made 

about the size of MSEyLearn
CNLS  relative to σ2, sensitivity analysis (by adding a multiplier c>1 , 

such that p(Y)=N(Ŷ, cσ̂
2
I)) can be performed to test against it. Finally, we note that other 
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distributions different than Gaussian can be considered to draw the bootstrapped Y*vectors. 

This is especially useful when considering inefficiency, as skewed distributions can be also 

included. 
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APPENDIX J 

COBB-DOUGLAS RESULTS WITH MULTIPLICATIVE RESIDUAL ASSUMPTION 

FOR CHILEAN MANUFACTURING DATA  

 

 Industry Name and Code n Survey 

Size 
RFS

2  RCDM
2  Ratio vs. Best Method 

Other Metal Products 

(2899) 

144 20% 50% 82% CDM is Best Method 

30% 60% 85% CDM is Best Method 

40% 64% 86% CDM is Best Method 

50% 72% 86% CDM is Best Method 

100% 88% 87% CDM ties for Best Method 

Wood (2010) 150 20% 35% 45% CDM is Best Method 

30% 40% 50% CDM is Best Method 

40% 47% 51% CDM is Best Method 

50% 52% 53% CDA ties for Best Method 

100% 66% 62% 0.94 vs. CAP-NLS 

Structural Use Metal 

(2811) 

161 20% 77% 79% CDM ties for Best Method 

30% 82% 81% CDM ties for Best Method 

40% 87% 84% 0.97 vs. CAP-NLS 

50% 90% 85% 0.94 vs. CAP-NLS 

100% 95% 92% 0.97 vs. CAP-NLS 

Plastics (2520) 249 20% 54% 56% CDM ties for Best Method 

30% 57% 56% CDM ties for Best Method 

40% 57% 57% CDM ties for Best Method 

50% 60% 57% CDM ties for Best Method 

100% 64% 60% 0.94 vs. CAP-NLS 

Bakeries (1541) 250 20% 72% 46% 0.64 vs. CAP 

30% 77% 50% 0.65 vs. CAP 

40% 78% 50% 0.64 vs. CAP 

50% 85% 51% 0.60 vs. CAP 

100% 99% 58% 0.59 vs. CAP 

 

Table J1. Ratio of CDM to Best Model Performance 

 




