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ABSTRACT 

 

In this work, the initiation of the first failure event in unidirectional polymer 

composites subjected to different loading conditions is studied. Two energy based point 

failure criteria – critical dilatational and critical distortional energy densities – are considered. 

Local stress fields are calculated by finite element models using micromechanical simulations 

to evaluate damage initiation in the matrix by a brittle failure mechanism (cavitation) and by 

an inelastic (yielding) process.  

The disorder in the fiber distribution induced by manufacturing is quantified by 

defining the degree of nonuniformity (NU) of fiber distribution in the composite cross section. 

An algorithm to create simulations of the nonuniform distribution of fibers at different overall 

fiber volume fractions (FVFs) and different degrees of nonuniformity is developed. 

Representative volume elements (RVEs), with their minimum size determined on the basis 

of statistical analysis of interfiber distances are established for different fiber volume 

fractions.  

Under tension applied normal to the fibers, brittle cavitation is found to occur before 

yielding in the matrix. This first failure event is assumed to induce local debonding of the 

fiber/matrix interface. Effects of variables such as the degree of nonuniformity and the fiber 

volume fraction, as well as the ratio of matrix to fiber stiffness modulus, on the initiation of 

brittle cavitation are studied.  

Combined loading consisting of transverse tension and axial shear applied to 

unidirectional composites is studied next. It is found that under certain axial shear/transverse 
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tensile stress ratios brittle cavitation requirements are fulfilled. When only axial shear is 

imposed, cavitation requirements are not satisfied. Instead, matrix yielding is found to occur.  

A parametric study of the matrix/fiber stiffness ratio shows that the mechanical strain 

to onset of cavitation under transverse tension increases as this ratio increases and approaches 

a constant value at high ratios under given fiber volume fractions and degree of 

nonuniformity. Also, under these conditions and under axial shear, the mechanical strain at 

which yielding initiates is found to increase with increasing the matrix/fiber stiffness ratio. 

A limited study of the effects of matrix voids was also conducted and the preliminary 

results showed that the presence of voids affects the initiation of brittle cavitation by altering 

the local stress fields near the fiber/matrix interfaces. 
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NOMENCLATURE 

 

FRP Fiber reinforced polymer 

UD Unidirectional 

FE Finite element 

GFRP Glass fiber reinforced polymer 

LM Liquid molding 

RTM Resin transfer molding 

VARI Vacuum-assisted resin infusion 

NU Nonuniformity 

FVF Fiber volume fraction 

VF Volume fraction 

Xt Longitudinal tensile strength 

Yt Transverse tensile strength 

Xc Longitudinal compressive strength 

Yc Transverse compressive strength 

τ12(ult) Ultimate shear strength 

ε11 (ult) Ultimate longitudinal strain 

ε22 (ult) Ultimate transverse strain 

γ12(ult) Ultimate shear strain 

T' Transverse shear strength 

T Axial shear strength 

FEA Finite element analysis 
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RVE Representative volume element 

K(r) Ripley’s K function 

A Observable area 

r Radial distance from a selected fiber center 

Ik(r) Number of fiber centers within the circle of radius r 

wk Correction factor 

g(r) Pair distribution function 

x The normal distance between the fiber surfaces 

D Fiber diameter 

L RVE side length 

Uv Dilatational strain energy density 

Ud Distortional strain energy density 

ΔT Thermal cooldown 

Em Elastic modulus for matrix 

Ef Elastic modulus for fibers 

νm Poisson’s ratio for matrix 

νf Poisson’s ratio for fibers 

αm Thermal expansion coefficient for matrix 

αf Thermal expansion coefficient for fibers 

u Applied displacement 

 

  

Octahedral shear stress at yielding 

 

Octahedral shear stress at yielding in pure shear 

μ Coefficient of internal friction 
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p Hydrostatic tensile stress 

PBCs Periodic boundary conditions 

δx Displacement applied in x direction 

δz Displacement applied in z direction 

δy 

Ux 

Uxz 

Displacement applied in y direction 

Tensile displacement 

Shear displacement 
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1. INTRODUCTION 

 

The end of the first few decades of the 20th century experienced very wide and mature 

steps in the development of composites industry. Composites are categorized as new 

materials and materials of the future, although they were introduced in the early man’s 

civilization stages. In fact, they have been present since the beginning of time. The general 

definition of composite material is that it is a material that is composed of at least one 

discontinuous phase (reinforcement) in a continuous one (the binder or matrix). This 

definition is observed in many objects surrounding us, e.g., wood, plants, birds and animals 

and even human beings.  

Maybe man recognized these properties in composite materials surrounding him and 

with his needy potentials, managed to produce his manmade composite structures. Back at 

6000 B.C. ancient Egyptians were the first to create composite structures based on the main 

reinforcement-binder concept by mixing different components together. They were the first 

to produce mud bricks composites in which straws were embedded -as a fibrous reinforcing 

material - in mud to increase its strength [1]. These bricks are still in use in Egypt’s 

countryside.   

Ancient Egyptians are also the first to be known in the production of papyrus writing 

papers. In their production, layers of papyrus plant are placed on top of each other where 

one layer is at a right angle to the other, which is known nowadays as a cross ply laminate. 

Papyrus papers were an advance in such civilization by which information managed to be 

inherited to subsequent generations [1]. 
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Another form of a composite material showed incredible significance in the field of 

construction is concrete [2]. Concrete is known to be the main structural material in the 

Roman Empire. Concrete alone -as a mixture of cement, aggregates (gravel, crushed stones) 

and sand-  can withstand compressive loading only. To increase its resistance against tension, 

it is reinforced by embedding steel rods. At first it was suggested that steel rods are added to 

increase the cohesion of concrete not to increase its tensile strength [3]. Today, concrete is 

considered an economic and pioneering architectural building material.  

Despite the continues improvement over the centuries, the past fifty years has 

experienced a tremendous increase in the development of composite materials.  

Developments took place either in the type of reinforcement and/or matrix materials or in 

their manufacturing techniques.  

Composites, in general, can be classified based on the type of matrix to: polymer 

matrix, metallic matrix and ceramic matrix composites or based on the geometry of the 

reinforcing component to fiber, particulate and whisker/flakes reinforced composites.  

Glass fibers are the most common of all reinforcing fibers for their relatively low 

cost and high strength. They are produced as continuous/long fibers or discontinuous/short 

fibers.  Continuous glass fibers are very popular. The first known attempt to produce glass 

fibers was by the ancient Egyptians, although they were coarse in diameter. Centuries and 

generations went by till the year 1939, when the first mass production of glass fibers took 

place by “Owens-Corning Fiberglass Corporation” [4]. Soon after, fiber glass gained an 

extensive experience in different fields especially the aerospace industry for both civilian 

and military products particularly in polymeric matrix composites. For example, E-Glass 

laminates has been used in aerospace industry for many years starting with the Boeing 707 
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in the 1950s. Now fiber glass becomes a superior in other non-aerospace applications, for 

example; automotive, bridges and wind energy because of their tensile strength, temperature 

resistance and dimensional stability. 

Fiber reinforced polymeric (FRP) matrix composites are being used in different 

fields, among them are aerospace, automotive and wind energy applications. They are 

exceedingly replacing traditional structural components. The composite materials are 

selected to fulfil the application requirements which is usually a high strength to weight ratio. 

Polymer matrices act as binders to the fibers and transfer the loads to them.  

The polymer material is selected providing that it fulfils required physical and 

mechanical properties. They can be classified into thermoplastics and thermosettings, based 

on their structure. Thermoplastics consist of linear or branched hydrocarbon chains that can 

be melted when heated and thus can be reformed. Examples include polyethylene, nylons 

and polyether imide. Thermosetting polymers have cross-linked or network structures with 

an irreversible bonding when formed. Once solidified they cannot melt when heated, instead 

they will decompose. Common examples of thermosets are epoxy and polyester that are 

extensively used in different engineering applications with high performance reinforcing 

fibers such as glass fibers [5].  In the meanwhile, there is a tendency to use thermoplastic 

polymers because of their ability for recycling [6,7]. 

Despite that the aerospace industry was the first to benefit from glass FRP matrix 

composites, wind turbine structural components are fastest growing application. There is a 

universal interest nowadays to alternate from a fossil fuel to a renewable energy source. 

Wind energy is one of the most important renewable energy resources. By the year 2022, 

the Egyptian government is determined to produce 20% of the generated electricity from 



 

4 

renewable energy. This includes a 12% contribution from wind energy, translating about 

7200 MW grid-connected wind farms [8]. In 2016, wind turbines in the United States were 

the source of nearly 6% of total electricity generated. The US government aims to increase 

the wind power supplies to be 10% of the nation’s electrical demand in 2020, 20% in 2030, 

and 35% in 2050 [9]. 

 Composite components are usually affected by a complex multi-axial loading, both 

mechanically and thermally. Ensuring high reliability becomes an essential issue especially 

when it comes to large sizes composites such as wind turbine blades that work against high 

wind and gravitational loads for 20-25 years. Thus, failure studies of such materials are 

essential to ensure its long service life. 

The composite microstructure is a primary parameter in the field of damage and 

failure.  

Enhancing the properties will be achieved by controlling the microstructure and the 

properties in the micro and nano scales [10,11]. The microstructure includes details 

concerning the composite structure as well as all existing defects. The choice of a 

manufacturing process for a polymeric matrix composite strongly influences its 

microstructure. There are different types of manufacturing processes in the field of 

unidirectional polymeric composites. Depending on the application, the nature of matrix 

material, and the shape and form of the reinforcement added, the manufacturing process is 

selected. 

For thermosetting polymer matrix composites, fabrication processes can be broadly 

classified into wet -forming processes and processes using prepregs. Wet-forming processes 

include hand lay-up, resin transfer molding, filament winding and pultrusion [12]. Prepregs 
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are usually partially cured sheets of fibers or woven. Processes use prepregs include bulk 

molding compounds and sheet molding compounds. Fibers distribution are more uniform in 

processes using prepregs compared to wet-forming processes. They also allow maintaining 

high fiber volume fractions for high quality composite structures which are high in cost, 

typical for aerospace industry.  

Composite applications, particularly in non-aerospace fields, can be further 

increased, if the performance requirements can be met at reduced cost. Reducing cost leads 

to less-controlled manufacturing and thus, different defects such as voids, resin rich areas, 

fiber nonuniform distribution, and fiber misalignments are created.  

To what extent would these defects affect the composite performance? It is known 

that defects can be considered the main source of damage initiation. For example, in metallic 

materials the presence of microcracks, inclusions or even sharp-edged phases will act as 

stress raisers. These stress concentration sites might lead to the initiation and propagation of 

cracks that cause final failure.  

A reliable and consistent performance assessment strategy must therefore account 

for such defects and their consequences on failure. Currently, the industry does not have 

adequate tools to evaluate the effects of these defects on composite performance. The 

common approach is to conduct tests, and based on these they design with factors of safety. 

This approach adds cost and does not allow using the data if the manufacturing process 

changes. Besides, it is just a difficult task to experimentally study local stress and local strain 

distributions at the scale of a conventional specimen size [13].  

Not only does the microstructural details affect the damage and failure of composites, 

but also the type of loading imposed at such anisotropic materials affects the type of damage 
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mechanism that could be encountered. Because of the anisotropic nature of 

unidirectional/continuous fiber composites, more than one damage mechanism could be 

observed. The type as well as the direction of loading will determine the damage mechanism. 

In general, damage mechanisms could be classified to fiber dominated and matrix 

dominated. However, matrix dominated damage mechanisms are observed to be the first to 

take place. 

Prediction of the damage and failure mechanisms in composite structures and the use 

of developed numerical and/or analytical technologies are worldwide interests. Those 

researches manage to lower the dependency on experimental work.  

The evolution in the micromechanical analysis manages to consider the effect of the 

constituents of the composite on the contrary to the macro or homogenized techniques. 

Properties such as thermal expansion coefficient can be accounted for each component. 

Thus, in the micromechanical analysis, thermal residual stresses can be implemented which 

proved to be important when damage or failure are studied.  

The question now is that: Shall we deal with the whole structure of a real component 

under investigation in the micro-scale? The answer is NO. It will take a lot of effort and time 

to study damage of the whole structure in the micro-scale. Instead, a representative volume 

element of the whole structure is adopted. 
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The work presented here is aimed at studying damage initiation by conducting a 

systematic study of the effect of nonuniform fiber distribution, as a manufacturing defect, 

on damage initiation under different loading conditions in unidirectional composites. The 

focus here is to find the lowest applied loading condition that initiates damage. In many 

applications, this can provide a good basis for design, particularly when no damage is 

allowed.   If causes of damage initiation are addressed properly, then higher service life of 

components could be achieved. 
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2. DAMAGE IN UNIDIRECTIONAL FRP COMPOSITES  

 

A great effort is being made to establish a complete understanding of the damage and 

failure mechanisms encountered in FRP composites. The complex nature of such materials 

increases the difficulty in this subject. A reliable way to do so is to study their damage and 

failure mechanisms under different length scales. Experimentally, this is not an easy subject 

especially when dealing with small length scales such as micro or nano scales. Micro-

mechanical analysis is taking very wide steps in the field. But before giving details of such 

analysis, an overview of the possible damage mechanisms encountered in FRP composites 

should be presented. In this chapter, different damage mechanisms of unidirectional FRP 

composites are given. From this, one can find out how damage mechanisms of such materials 

depend on the type of loading and on the loading direction with respect to the fiber axis. In 

addition to that, the manufacturing induced defects such as voids and the nonuniform 

distribution of fibers will be surveyed along with their contribution to damage.   

2.1. Damage in unidirectional FRP composites 

Damage is defined as an irreversible reaction that results in properties degradation. 

Because of the complex structure of the unidirectional/continuous (UD) fiber composites, 

damage initiation mechanism depends on several factors. In fibrous composites, fibers are 

aligned in certain direction. The type as well as the direction of loading will determine the 

damage mechanism. In general, damage could be fibers dominated or non-fibers dominated 

(either in the matrix or in the fiber-matrix interface) [14]. A transverse loading is referred to 

the loading taken place at a normal direction to fibers’ axis. On the other hand, an on-axis 

loading refers to that loading that is within the same direction as the fibers’ axis. The first 



 

9 

form of damage that is observed, however, is the initiation of microcracks in the matrix [15]. 

These microcracks, usually named transverse micro cracks, are transverse to the loading 

direction. When they form they lead to degradation in both strength and stiffness which 

reduces the efficiency of the composite component. Below is a brief illustration of different 

failure mechanisms observed in a unidirectional composite.  

2.1.1. Fiber dominated damage mechanisms  

2.1.1.1. On-axis tensile loading 

It is observed that when either quasi static or tension-tension fatigue loading are 

applied to fiber composite along fiber axis, fiber breakage is taken place when the tensile 

load is sufficiently high. Stochastic fiber failure follows the Weibull distribution when a 

monotonic loading of a UD fiber composites is applied [16]. When under on-axis tensile 

loading, failure is developed by two features: (1) the Weibull distribution of fiber strength 

and (2) the stress redistribution around a broken fiber [17]. 

It is believed that when a fiber breaks, it will lose its ability to transfer load which 

will be concentrated to adjacent fibers [18,19]. The probability of failure of the adjacent 

fibers increases and at certain applied load, fiber clusters will fail [20]. The clusters grow in 

size with increasing strain. Final failure of the composite occurs when one of the developed 

clusters reaches a critical size.  

Fibers fracture within certain steps before the catastrophic failure of the whole 

composite [21]. This was in-situ observed in [21] using a composite with DGEBA epoxy as 

a matrix and quartz fibers as the reinforcement. Few fibers where initially broken and 

because of their low number, it was called singlets fracture followed by doublets, triplets, 
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etc., till N number of fibers are failed, just before the complete failure of the composite, 

Figure 1. 

The stress redistributions around single fiber breaks have been investigated 

extensively either theoretically e.g., by shear-lag analysis [22,23,24] or numerically using 

the finite element (FE) method [25-31]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. X-ray radiograph sequence of damage evolution by fibers breakage under increasing load. Reprinted from 

[21]. 

 

 

 

2.1.1.2. On-axis compressive loading 

It is unusual to observe a pure compressive loading applied to composite structures 

along the fibers axis. However, compressive stresses could be established from multiaxial 
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loading, bending and impact loadings. In general, when applying compressive load 

components, having high length/cross sectional area aspect ratios, buckling occurs. This 

concept is the basis of models and analysis concerning UD fiber composites. Previous 

intensive studies of compressive failure have been carried out [32-45]. 

Compressive failure has been studied using different theoretical and numerical 

models. The first models used elasticity theories in analysis e.g.; Rosen [32, 46] and 

Schuerch [47]. They were then followed by models taking into consideration the inelastic 

behavior of matrix materials e.g.; Argon [35] and Budiansky [48] including initial fiber 

misalignments as an initial defect. Other defects were studied such as fibers waviness [49]. 

It was pointed out in [50] that in case of fibers aligned in the direction of loading, 

four mechanisms of failure have been identified, elastic micro buckling, matrix failure, 

plastic micro buckling and fiber crushing or splitting, Figure 2. 

Models carried out by Kyriakides et al [51] followed by those of Hsu et al [52], 

confirmed that composite kink bands are formed after microbuckling, Figure 3. 

It is proved that the presence of fibers imperfections such as misalignments, affects 

the compressive strength of a composite [43], as well as facilitate the kink band formation. 

Although some numerical models [41, 53] have shown that kink bands are to be formed even 

if we are dealing with perfect aligned fibers or straight fibers.  
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Figure 2. Damage of glass fiber composite by fiber splitting. Reprinted from [37]. 

 

 

 

  

  

 

 

 

 

 

 

 

 

Figure 3. Damage of carbon fiber composite by the formation of kink band. Reprinted from [37]. 
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2.1.2. Non- Fiber dominated damage mechanisms  

2.1.2.1. Transverse/off axis compressive loading 

The initiation of compressive damage usually occurs through the formation of 

transverse cracks [54]. There have been many extensive studies to determine the crack angle 

under uniaxial compressive loading. This angle was found to be in the range 50-60o for UD 

composites [44,55-58] although this angle in neat epoxies shows several degrees lower than 

that when epoxies are being the matrices [59-61]. 

Zhou et al [62] conducted both experimental and computational microscale studies 

in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis 

compressive loading. Mechanisms of damage initiation and propagation were studied under 

scanning electron microscope at various off axis angles including 90o (transverse loading). 

It was concluded that shear cracking is the main failure mechanism when the angle between 

fibers axis and the loading axis is relatively high. 

2.1.2.2. Transverse tensile loading 

Numerous observations, e.g. [63-68], have shown that fiber-matrix debonding is the 

most likely first mechanism of failure under transverse tensile loading with a subsequent 

transverse ply cracking, while matrix yielding leading to shear band and subsequent crack 

formation are also possible mechanisms.  

Jun Koyanagi et al [69] studied the damage mechanism of carbon/epoxy composite 

under transverse loading with different strain rates and different temperatures. Based on their 

observations, it was concluded that the damage mechanism under transverse tension can take 

place either within the matrix or at the fiber/matrix interface depending on the strain rate. It 
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was found that at high strain rates damage is dominant at the fiber/matrix interface, while 

matrix damage is observed when lower strain rates are applied. 

In [70] two composites with two types of carbon fibers with different composite 

layups were investigated under three-point bending tests. Scanning electron microscope was 

used for the in-situ observation of the onset of microscopic composite failure. It was found 

that the tensile stress acting on the 90o ply resulted in transverse ply cracking which was 

initiated by fiber/matrix debonding, Figure 4.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Initiation of damage in HTA/RTM6 [902/07/902]. Reprinted from [70]. 

 

 

 

In [64] a cross-ply laminate with a [0, 90]s layup composed of glass fibers and vinyl-

ester resin were tested under fatigue loading. To observe the mechanism behind the 

formation of transverse cracks, static tensile test was performed. An in-situ observation for 

the onset of damage was taken place in transverse plies. It was suggested that debonds 
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occurred first, then by increasing the load, these debonds coalesced forming a macroscopic 

transverse crack, Figure 5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. a) Fiber-matrix debonds and b) debonds coalescence forming transverse cracks in glass fibers and vinyl-

ester. Reprinted from [64]. 
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2.1.2.3. Inclined loading 

Plumtree et al [71] studied the damage mechanisms in a unidirectional carbon fiber 

reinforced epoxy matrix composite under off-axis cyclic loading. From microstructure 

examination, they found matrix shear fracture in the form of inclined matrix cracks between 

the fibers. These cracks were observed in the resin rich areas. Gamstedt et al [72] also 

observed inclined matrix cracks under an applied axial shear stress, Figure 6. It is suggested 

in [73] that the inclined cracks are the result of the tensile component of the local stress in 

the matrix. 

 

 

 

 

 

 

 

 

Figure 6. Inclined matrix cracking under axial shear loading. Reprinted from [72]. 

 

 

 

The strain to failure in polymer matrix composites under transverse tension is lower 

than the strain to failure of pure polymers. A triaxial stress state is highly suggested to be 

established in the matrix in the vicinity of fibers/matrix interface. This triaxial stress state is 

due to the fiber-fiber interaction and thus it depends on the inter-fiber distances. 

Asp et al. [74,75,76] analyzed damage initiation either by cavitation or by yielding 

in glassy polymers reinforced by stiff fibers. In those studies, experiments were established 

under different stress states, e.g., uniaxial tension, uniaxial compression, biaxial tension, 

biaxial compression and triaxial tension. They accounted for the fact that the local stress 
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state in the matrix between fibers is triaxial even when a uniaxial transverse tension is 

applied to the composite. They then studied the failure modes in glassy polymers under 

triaxial stress states and identified cavitation in the polymer matrix as a brittle failure 

mechanism when the stress state is hydrostatic tension, i.e. with equal tensile principal 

stresses. The energy required to form cavitation was determined by an independent test, 

known as the poker-chip test [75] on four different epoxy materials.  

The specimen in the poker-chip test is in the form of a poker-chip and it is placed 

under an equiaxial stress state, Figure 7. The specimen is held between two rigid bodies and 

a triaxial tensile stress state is maintained to account for that established in the composite 

when under tensile loading. It was observed that failure occurred in these materials by the 

formation of a cavity, Figure 8. Thus, it was suggested that within the composite, the matrix 

between the fibers will be under a triaxial stress state that will lead to the formation of a 

cavity within the matrix near the fiber/matrix interface.  
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Figure 7. The poker-chip test set-up. Reprinted from [75] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Damage initiation by cavity formation from a poker chip test. Reprinted from [76]. 
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2.2. Manufacturing induced defects 

It is seldom or nearly impossible to produce a material that is free of defects. Defects 

are introduced either because of the lack of the structural design or because of uncontrollable 

manufacturing tools. There are different manufacturing tools used in the production of 

unidirectional FRP composites. Manufacturing tools such as pressure, curing temperature, 

viscosity, permeability, fiber volume fraction (FVF), and resin filling time, all will affect the 

final composite microstructure and the type and amount of existing material defects [77]. 

There are different manufacturing processes that are used in the production of unidirectional 

FRP composites. Each can create manufacturing induced defects in the fibers, matrix and 

the fiber/matrix interface. For more information about manufacturing processes, one can 

refer to [78]. 

Autoclaving process is a common manufacturing technique for thermosetting 

polymeric composites especially for aerospace applications. Autoclave process either using 

prepregs or wet lay-ups gives a very high composite quality and are known to be high in 

cost. Unfortunately, one cannot use it when it comes to the production of very large 

structures. e.g. wind turbine blades that can reach lengths to up to 134 meters. In addition, 

because of its high accuracy, there will be a tradeoff between quality and cost. It is found 

also that any insufficient pressure or vacuum might lead to the creation of defects, such as 

voids, fiber misalignment and resin rich areas. Thermoset prepregs were developed to obtain 

composite parts with high fiber volume fractions (~65%) with less than 2% of voids content 

[79]. 

Liquid molding (LM) processes, on the other hand, is considered one of the widely 

used techniques in the production of such composites. The resin is forced to infuse into a dry 
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preform in which the resin is cured. The driving force to infuse the resin comes from the 

pressure gradient established between both the inlet and the outlet of the mold [80,81]. LM 

processes can be classified to closed molding techniques, such as resin transfer molding 

(RTM), and open molding ones, such as vacuum-assisted resin infusion (VARI). Both, are 

adopted in many other non-aerospace applications. Examples of those applications are 

automotive and wind energy in which higher production rates with an adequate part quality 

at low cost are now all manufacturers interests. However, the low-cost liquid molding, using 

open mold techniques, are usually adopted for large composite structures. Unfortunately, 

lowering the cost of manufacturing often leads to less control of the manufacturing process, 

which in turn induces material defects. Different defects are observed that are introduced 

within the infusion step. The most encountered defects are dry zones, voids, fibers’ 

misalignment and fibers’ nonuniform distribution.   

It is a worldwide challenge to produce polymeric composites free of defects or at 

least to reduce those uncontrollable defects. It is worth mentioning that today different 

techniques are used which are based on automation, although they are still limited to certain 

manufacturing processes such as Filament winding (FW), Automated tape layup (ATL) and 

Automated fiber placement (AFP). A lot of research is conducted to expand composites 

manufacturing automation. The main aim is to increase the speed of production and at the 

same time, increase manufacturing accuracy. This procedure is in higher priority for 

aerospace applications [82,83,84]. Automation will also decrease the cost of production and 

lead to limiting manual layups dependence [82]. It is recommended to review such novel 

manufacturing techniques in reference [79]. 
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Defects within a single ply could be in the matrix (e.g; voids, porosity, resin-rich 

areas, inclusions (e.g. dust)), in the fiber (e.g; fiber breakage, waviness, fibers cluster and 

fibers’ nonuniform distribution) or at the fiber matrix interface (e.g; unbonded fiber/matrix 

interface) [14, 66,67,85-90]. These defects can affect the mechanism of damage initiation 

and subsequent damage propagation.  

2.3. The interaction between manufacturing defects and damage 

Voids are one of the most common defects in nearly all manufacturing techniques. 

The presence of voids and air entrapped are known to reduce the materials’ mechanical 

properties. These defects are established from two main origins 1) the gas entrapped during 

lay-ups or during resin infusion and 2) the volatiles and moisture forming during curing step. 

Other sources such as incomplete filling due to processing disturbances, differences in the 

fiber volume fraction or due to changes in the textile architecture are also possible.  

Because of the applied pressure in the autoclave molding process, the formation of 

volatiles and gas bubbles from the moisture are suppressed to a large extent. For LCM 

processes and because there is no such application of high pressure, more gas and volatiles 

are created that act as origins of voids. That is why such processes usually yield much higher 

void content than the autoclave molding. Experimental results have shown that void 

formation depends on the ratio between viscous and capillary forces [91]. 

The presence of voids might lead to the formation of cracks that contribute to the 

damage and final failure of the composite. In [92], experimental tests were carried out to 

study the influence of voids on damage initiation. It was found that voids affected the 

damage initiation and the formation of edge cracks through influencing the strain for crack 

to be initiated, Figure 9. 
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Figure 9. Secondary cracks and fiber bridging due to the presence of voids. Reprinted from [92]. 

 

 

 

The nonuniform distribution of fibers is considered another common defect in all 

processes, especially using liquid resin infusion, Figures 10 and 11. The nonuniformity (NU) 

comes from the influence of resin flow that manages to alter the willing uniform fibers 

positions. This nonuniformity will create regions having high fiber volume fractions and 

resin rich areas. Real composites always have such defect, although the degree of 

nonuniform fiber distribution might alter form a process type to the other.  
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Figure 10. Nonuniform distribution of glass fibers in epoxy matrix. Reprinted from [90]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Nonuniform distribution of carbon fibers in epoxy matrix composites. Reprinted from [93]. 

 

 

 

On the level of lab work, only few studies were reported to create a uniform or, better 

to say, a well-controlled fiber distribution within the composite. For example, Vejen, N. and 

Pyrz Ryszard [94] managed to create a fiber glass epoxy composite with a uniform 

distribution of fibers. The fibers with a diameter of 50 μm were aligned in a way that 

preserved a nearly uniform distribution. The fiber alignments were carried out using a device 
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that was established for the purpose. Quasi-static transverse tensile tests were carried out till 

fracture and the crack path was studied, as shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The back and front of a nearly uniform glass fiber distribution in epoxy matrix with a transverse crack 

after a transverse tensile quasi-static test. Reprinted from [94] 

 

 

 

The presence of nonuniform distribution of fibers and resin rich areas might enhance 

the formation of matrix cracks in the resin rich areas [14] as shown in the figure 13.  

The fibers’ nonuniform distribution has a great influence on the damage initiation in 

composite materials. Even only after curing stage and the formation of thermal residual 

stresses, variation in interfiber distances affects the magnitude as well as the type of stresses 

between the fibers. Sørensen and Talreja [95] extensively studied the effects of 

nonuniformity of fiber distribution on thermally induced residual stresses in ceramic matrix 

composites. They found that compressive stress sites are established between the closest 
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fibers at the point of contact. Stress distribution and maximum stresses were found to be 

dependent on the fibers configuration including fiber clustering and resin rich areas. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Damage initiation at a resin-rich area. Reprinted from [14]. 

 

 

 

2.4. Thermal residual stresses 

In the manufacturing of FRP composites, a high temperature curing procedure is 

carried out. The curing process is mainly for the polymer matrix. It consists of two main 

steps, 1-Polymerization, in which the polymer is cured and subsequently shrinks due to the 

polymerization chemical reaction at a relatively high temperature with no changes in the 

fibers but with polymer density increase. 2- Cooling procedure; in this step and due to the 

different thermal expansion coefficients of both the fiber and matrix materials, both materials 

shrink in different amount. This results in the creation of thermal residual stresses at the 

Matrix cracking 

Resin rich area 
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fiber-matrix interface, in the matrix and inside the fibers. Thermal residual stresses in cured 

polymeric composites are mostly unavoidable because of different properties between 

matrix and reinforcements. The major residual stresses are because of the fiber/matrix 

properties mismatch [96,97,98]. In general, the thermal expansion coefficient of the epoxy 

matrix is much higher than that of the glass fibers. Thus, tensile stress appears in the matrix 

and compressive in the fibers [97,99]. 

Thermal stresses have a significant effect on the mechanical behaviors of composites 

[100], and on the interfacial properties between the matrix and the fiber [101,102]. It has 

been a researchers’ concern to evaluate the thermal stresses either experimentally or 

theoretically. A good review about thermal residual stresses is given by Favre [97]. The 

review covers thermal residual stresses, their origin, influences and their predicted values.  

There are different experimental techniques that have been, or are used, to evaluate 

thermal residual stresses. Residual stresses can be determined with one of the following 

experimental methods 1- destructive, 2 non-destructive methods. Destructive methods, such 

as Sectioning/cutting [103], hole drilling [104,105,106], and first ply failure [107]. In these 

methods, the material fails and cannot be used in further in-situ investigations. Non-

destructive tests, such as the measurement of warpage and established curvature [108], using 

sensors, such as strain gauges and fiber optics, using x-rays or neutron diffraction analysis 

[109,110,111], and using Raman spectroscopy [112,113,114].  

Measuring the chemical shrinkage in polymers is a difficult task. The prediction of 

chemical shrinkage due to curing in polymeric materials can be carried out with the aid of 

molecular dynamics [115,116]. In [115] the molecular dynamics is done in several steps: 1) 

Pre-crosslinking, 2) Crosslinking: in which the system is cured through necessary chemical 
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reactions, and 3) Annealing: in which the system is cooled to the room temperature. Various 

degrees of curing were established from which different properties were predicted. 

Different parameters affect the thermal residual stresses in both their sign and their 

magnitude. These parameters include; local fiber volume fraction or fiber distribution 

[93,98,99,117-122] curing temperature [123], cooling rate [124,125].  

The work by Asp et al [74], showed that thermal residual stresses depend on the fiber 

volume fraction including the position and fiber distribution. It was shown that these residual 

stresses will affect the transverse strength of the composite. 

In the work by Bulsara et al [120], they are highly suggesting that the fibers spatial 

distribution cannot be neglected when thermal induced failure is considered.  

Yang et al [99] studied the effect of fibers distribution as well as interfiber distances 

on the created thermal residual stresses using cohesive zone model. It was concluded that 

interfiber distances and thermal residual stress affect the transverse failure behavior of 

composites. 

In [118], Fletcher and Oakeshott studied the influence of fiber distribution on the 

thermal residual stresses in a unidirectional carbon fiber epoxy composite. They found that 

the maximum stress is affected by the interfiber distances. In addition, the stress field created 

is critical when dealing with an irregular fiber array. 

In [121] it was concluded that thermal residual stresses are dependent on the fibers 

distribution within the composite especially under higher fiber volume fraction. The 

composite was subjected to a cooling process (-100oC). Volume fractions from 10% to 60% 

were examined. Normal, shear and tangential stresses were monitored in polar coordinates. 
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3. FAILURE THEORIES AT DIFFERENT SCALES  

 

Because of the complex nature of composite materials, different damage mechanisms 

are observed. In service, structural composite materials suffer from complex mechanical and 

thermal loadings, static and dynamic.  

Damage and failure of composites have attracted numerous researchers over the last 

decades. There are many failure theories that were constructed for failure and damage of 

composites at different scales [73,126,127,128], all will give complementary knowledge 

about different damage mechanisms that could take place.  

A brief survey is given in this chapter about the most encountered failure theories 

used in industry and in related researches.  

Because microscale analysis is our main concern, the methodology in using this scale 

in the field of damage of composite, especially with finite element analysis FEA, will be 

pointed out. The methodology usually includes the construction of a representative volume 

element (RVE) of fibers embedded in the matrix, the RVE minimum/optimum size and its 

statistical description that gives insight on the way the fibers are distributed.  

3.1. Failure theories for unidirectional FRP composites 

 Damage initiation usually occurs in a lamina that, when propagated, might led to a 

catastrophic failure. It is our concern to know more about damage initiation. Suppressing the 

sources where damage starts might help in avoiding catastrophic failures. 

For heterogeneous materials, failure theories can be either at the macro or micro 

scale. An intermediate scale is usually added which is called a mesoscale to represent the 
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analysis of a single ply or lamina. In this scale, the ply is considered as a homogeneous 

structure. Sometimes ply analysis is considered as macro-scale analysis. 

The macro scale represents the whole composite laminates as a homogeneous 

continuum structure. Thus, theories based on macro scale analysis assume a homogeneous 

material out of an anisotropic and heterogeneous one. In microscale models, on the contrary, 

details about the fibers and matrix are given, also the presence of defects could be 

considered. 

3.1.1. Macro-scale  

The whole structure with all its details, is considered a homogeneous one. Theories 

based on a macro-scale analysis look at the damage or failure as to be in its last steps. Macro-

scaled theories will not capture the damage initiation mechanisms within the fiber and matrix 

level. Besides, factors that could affect the damage evolution are difficult to be considered.  

In addition, individual properties for composite constituents, such as the thermal expansion 

coefficients, cannot be applied and hence their effects, including thermal residual stresses, 

will not be considered. 

Attempts were made to construct a failure theory for a single lamina/ply in the macro-

scale, and most of them are strength based. Failure theories proposed could be divided into 

two main groups: a) Failure criteria not associated with physical failure mechanisms e.g., 

Tsai-Hill, Azzi & Tsai, Tsai & Wu, and b) Failure criteria associated with physical failure 

mechanisms, e.g., Hashin and Puck. Those criteria are widely used despite their 

shortcomings mainly because their simplicity and their easiness to be implemented in 

analysis [128,129,130]. A brief discussion about those failure theories is given below.  

 



 

30 

3.1.1.1. Failure criteria not associated with physical failure mechanisms 

Maximum stress theory 

Failure is predicted in a lamina if any of the stress components in the local axes of a 

lamina is equal to or exceeds the corresponding threshold value. It is similar to theories 

applied to isotropic materials. It is a non-interactive theory. This means that it assumes that 

any failure mechanism is independent of any other failure mode taking place simultaneously 

under the same or under different loading directions [131]. 

Tensile stress 

σ11 < Xt 

(1) 

σ22 < Yt 

Compressive stress 

|σ11| < |Xc| 

|σ22| < |Yc| 

Shear stress |τ12| < τ12(ult) 

Maximum strain theory 

Similar to the maximum stress theory, the maximum strain theory is a non-interacting 

theory, but it is about strains not stresses. Thus, the material fails if one of the strain 

components reaches its threshold value. 

Tensile strain 

ε11 < ε11(ult) 

(2)                

ε22 < ε22(ult) 

Compressive strain 

|ε11| < |ε11(ult)| 

|ε22| < |ε22(ult)| 

Shear strain |γ12| < γ12(ult) 
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Polynomial strength criteria (e.g. Norris criterion) were first applied to anisotropic 

materials, such as wood and fibrous composites. They require a lot of tests using uniaxial 

and biaxial loading conditions. Parameters of the polynomial equation are determined 

according to the test results. 

The quadratic forms of the tensorial equation are widely used. Among them are what 

have been known as Tsai-Hill [132], and Tsai-Wu [133]. In the following section, the mostly 

known criteria will be briefly pointed out. 

Tsai-Hill  

Tsai- Hill failure criterion is a quadratic interactive theory that considers the multi-

axial stress state [132]. 

The quadratic equation (3) is mainly based on Hill’s anisotropic plasticity theory that 

is based on the von Mises’ distortional energy yield criterion to anisotropic materials.  

 

(
σL

X
)
2

+ (
σT

Y
)
2

−
σLσT

X2
+ (

τLT

T
)
2

= 1 (3)  

where, σL= σ11  and σT   = σ22. 

The Tsai- Hill theory does not give the mode of failure like the maximum stress and 

maximum strain failure theories. It does not distinguish between the compressive and tensile 

strengths. Thus, X and Y can either be in tension or compression. But it takes into account 

the interaction between different stress components necessary for failure to initiate. 

Tsai-Wu 

Tsai-Wu theory assumes interactive modes of failure which is proposed in a 

polynomial equation through the interaction between different components of the stress 

tensor [131,133]. 

The general formula is given by: 
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Fij σi σj + Fi σi = 1 (4) 

where, Fi and Fij are strength coefficients. One drawback of this theory is that the 

interaction terms Fij for i ≠ j requires difficult biaxial loading tests to determine their values.  

Despite the simplicity of the polynomial equation, recognizing different damage 

mechanisms is not yet possible. 

Those criteria were then followed by others that considered damage mechanisms. 

Argon [35], for example, considered the kink band formation as a mode of failure under 

compressive loading in the fibers’ direction [73]. 

Hoffman 

Hoffman’s failure criterion is non-interactive. Although it does not consider the 

different modes of failure in the composite, it accounts the different tensile and compressive 

strengths unlike Tsai-Wu criterion [134]. 

3.1.1.2. Failure criteria associated with physical failure mechanisms 

Hashin 

Hashin critically analyzed quadratic formulations and stated that they are 

mathematically based and they only rely on curve fitting consideration without any physical 

reflection [135]. For his criterion, he suggested different modes of failure under tension and 

compression in fibers axis and normal to it. Four distinct failure modes are considered 

separately. His criterion is deemed as piecewise smooth. He proposed separate failure 

criteria for tensile fiber mode, compressive fiber mode, tensile matrix mode and compressive 

matrix mode. 
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Fiber modes 

- Tensile fiber mode; 𝜎11 > 0 

- Compressive fiber mode; 𝜎11 < 0. 

σ11

Xc
= 1 (6) 

Matrix modes 

The main idea is based on Columb- Mohr failure theory of soil. 

- Tensile matrix mode; 𝜎22 > 0 

(
σ22

Y
)
2

+ (
σ12

T
)
2

= 1 (7) 

- Compressive matrix mode; 𝜎22 < 0 

(
σ22

2T′
)
2

+ [(
Yc

2T′
)
2

− 1]
σ22

Y′
+ (

σ12

T
)
2

= 1 
(8) 

 

Yc  is the transverse compressive strength, T′ is the transverse shear strength and T is 

the axial shear strength. Till now, Hashin’s criterion does not fit all experimental results 

especially when it comes to fiber and matrix failures under compressive stresses [136]. 

Limitation in Hashin’s failure criterion comes when dealing with matrix failure as the plane 

of failure in the matrix is difficult to recognize. 

Puck 

Puck and Schürmann [137] modified Hashin’s criterion and distinguished between 

the inter-fiber-failure (IFF) and fiber failure (FF). In the former, failure is suggested to occur 

by matrix cracking and fiber/matrix debonding. Puck also managed to modify the matrix 

failure criterion proposed by Hashin. The shear strength in the matrix under transverse 

(
σ11

XT
)
2

+ (
σ12

T
)
2

= 1 (5)            
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compression is enhanced by a component that is proportional to the normal stress acting on 

the matrix fracture plane, Figure 14. Puck pointed out that under in-plane shear, the matrix 

fracture plane is parallel to the fiber axis. But when under transverse compression the plane 

angle reaches 40o and can reach approximately a value of 53o. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Fracture plane of a unidirectional lamina. The resolved normal stress σn and shear stresses τnl and τnt 

acting on the plane. Reprinted from [137]. 

 

 

 

Most of the existing failure theories are formulated in stresses (or strains). This is 

best valid for metallic materials, and dislocation dynamics [73,138,139]. The main criticism 

is given in strength measurements. It is known that strength is the load carrying capacity. 

The stress strain curve for composite materials usually gives a nonlinear relation that is 

related to the damage progression from different damage modes. Talreja [73] points out that 

to give a better failure assessment for such materials, several approaches should be 

developed and be considered as remedies for the classical formulations of composite failure 

theories. These remedies are: 1) Multi-scale analysis of failure, 2) Analysis of constrained 
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failure, and 3) Analysis of manufacturing defects. First and third remedies could be seen as 

single ply remedies as they involve a micro-scale analysis. But the second remedy requires 

dealing with composite laminates where each ply has its own fiber directionality. In the first 

remedy, the multi-scale analysis of failure helps to capture failure initiation in the composite. 

A microscale analysis facilitates recognizing the initiation of damage in either the matrix, 

fibers and/or at the fiber/matrix interface. 

Available failure theories proposed in the literature do not consider simultaneously 

all parameters that lead to failure or damage. Heterogeneity, anisotropy and type and 

direction of loading all will contribute to one or more of the failure modes that might be 

established. 

3.1.2. Micro-scale  

The micromechanical scale is that scale at which the composite components can be 

distinguished. When failure analysis is performed at the micro-scale level, damage initiation 

mechanisms can be predicted as well as their sites. Damage initiation sites, whether in the 

matrix, fibers and fiber/matrix interface, could be captured. In addition, irregularities, such 

as fibers’ nonuniform distribution and various manufacturing defects, such as voids and 

fibers misalignments, could be considered.  

Recently, it has been found that micromechanical analysis has made a remarkable 

contribution in the field of damage and failure of composite materials using finite element 

analysis (FEA). The micro scale level attracted researchers to deal with more relevant 

microstructural details. Fibers distribution is found to be one of the most important 

microstructural details that affects, to a large extent, damage initiation and propagation.  

Most encountered manufacturing defects will be addressed briefly in the next section. 
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It is still a challenge, however, to make a direct and clear observation of the 

mechanical behavior of polymers. In the meanwhile, various molecular theories have 

been established, for example; 1) Transition state theories (e.g., Eyring), 2) Free volume 

theories, 3) Conformational change theories, 4) Dislocation/disclination theories, 5) 

Segmental motion theories (e.g., Yannas) and 6) Continuum theories [140] that cover 

the field of mechanical behavior of polymers and their yielding phenomenon.  

Molecular dynamics are now becoming a vital tool in studying polymers 

behavior at atomistic levels [141-151]. Recently, a study was conducted by Neogi et al. 

[152] that studies the damage behavior of epoxy resin (EPON-862+DETDA) taking into 

consideration cavitation as a plausible failure mechanism. The study was conducted by 

applying uniaxial, equi-biaxial and triaxial tension on a crosslinked simulation cell 

made of epoxy at different strain rates and at different temperatures. Results have shown 

that voids volume fraction depends on the stress state and that about 50% volume 

fraction of voids has been created under equi-triaxial tension. This finding supports what 

was suggested by Asp et al, in previous studies [74,75,76]. 

3.2. Periodic versus random distribution 

Micromechanical models were first applied to periodic/uniform fiber distributions. 

This might be due to the sake of simplicity or because of the obscurity of the significance of 

fibers’ nonuniformity on stress and failure analysis. The uniform distribution is mostly taken 

as a square or hexagonal array. Because of this assumption, a unit cell with a single fiber 

surrounded by the matrix material was usually adopted e.g. [153]. But it was shown later 

that the effect of fibers’ nonuniform distribution cannot be ignored. Numerically, it was 

found that regular/uniform fiber arrangement could lead to inaccurate mechanical behavior 
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predictions and can give an underestimation of damage initiation and propagation 

[63,154,155]. For example, Beicha et al [156] compared effective transverse elastic 

properties between a hexagonal array and a random one for different fiber volume fractions. 

Stresses created in this study had higher values within a random distribution than in the 

periodic one of the same fiber volume fraction. Trias et al [155] compared stress and strain 

distributions between a periodic and a random fiber distribution in carbon fiber reinforced 

composites. They found that periodic models underestimated damage initiation and crack 

propagation. Their conclusion relied on the analysis of failure related variables, such as 

effective strain, von Mises stress and the dilatational energy density. They also concluded 

that periodic distribution can be used when effective properties needed to be evaluated, but 

for statistical failure analysis random distributions should be considered. Also in [157] 

results within an embedded hexagonal cell placed in the center of an RVE, surrounded by a 

detailed region of randomly distributed fibers, were compared to a complete random 

distribution. It was concluded that periodic models could predict the global effective elastic 

properties, but they could not predict accurately the local behavior and hence local damage 

and failure. This is due to the presence of higher local stresses caused by closer interfiber 

distances in randomly distributed fibers. 

Fibers’ nonuniformity is usually captured in a representative volume element (RVE). 

The RVE should contain the heterogeneities and irregularities that are assumed to be 

responsible for damage to be initiated. 

3.3. Representative volume element (RVE) 

Numerical investigations are taking very wide steps in the field of micromechanics 

of composites. Computer power and technology nowadays help researchers to use larger 
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RVEs with larger number of inclusions and irregularities than old times. Within the RVE, 

both matrix and reinforcements can be implemented individually. Usually, in the micro 

scale, each component is assumed as a homogeneous material. In addition, thermal history 

effects, such as thermal residual stresses, can be accounted for. Individual properties, such 

as thermal expansion coefficients, elastic moduli and Poison’s ratio, for matrix and fibers, 

can be implemented independently. The micro-stress and strain distribution created from the 

interaction between the matrix and fibers under external loads can be monitored. Hence, 

damage initiation can be well analyzed and/or predicted locally at a scale of a size of a 

reinforcement.  

Taking into consideration all microstructural details is a very difficult task. It is 

impractical to use a large RVE with a size equals to or nearly equals to the size of the whole 

structure and contains a very large number of heterogeneities (such as a very large number 

of fibers). On the other hand, a very small RVE might not be enough to include sufficient 

number of heterogeneities -microstructural details- that are responsible for damage to 

initiate, for example when an RVE includes only one fiber surrounded by a matrix. In this 

case, results will be strongly dependent on the fiber/matrix volume ratio, besides the 

influence of interfiber distances resulting from the nonuniform fiber distribution, will be 

ignored. 

It is of interest to develop an RVE that is large enough to include sufficient number 

of microstructural heterogeneities. 
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3.3.1. RVE minimum size 

When it comes to a heterogeneous material, microstructural irregular details should 

be accounted for even in the definition of an RVE. The problem of the minimum size of 

RVE was first treated by Hill [158] who was the first to define an RVE as: 

“(a) structurally representative of the mixture of constituents on average, and (b) contain a 

sufficient number of inclusions for the apparent overall moduli to be effectively independent 

of the surface values of traction and displacement, as long as these are macroscopically 

uniform”. 

Drugan and Willis [159] defined the RVE to be: 

“the smallest material volume element of the composite for which the usual spatially 

constant “overall modulus” macroscopic constitutive representation is a sufficiently accurate 

model to represent mean constitutive response”. 

These definitions work effectively if only the overall properties are of one’s concern. 

But when it comes to study damage initiation with intensive analysis of micro-stress and 

micro-strain distributions, the concept of an RVE might be altered.  

The composite microstructure is full of irregularities that comes from the fibers as 

well as the matrix and their manufacturing defects. Reinforcements, in general, could have 

several forms of irregularities, such as size distribution, fibers breakage, warpage, 

misalignments and fibers’ nonuniform distribution. 

The nonuniform distribution of fibers have been studied in several works. In these 

studies, the significance of fibers distribution within the composite in determining damage 

initiation sites was pointed out. Not only that, but also to predict the damage initiation 

mechanism that can be encountered under specific loading condition. 
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Nonuniformity comes from the uncontrolled tools that govern the production 

technique of the composite. As the distribution becomes more nonuniform, the RVE size 

should include an adequate representation of this nonuniformity. In another word; if for a 

well-controlled manufacturing procedure, a highly uniform microstructure will be created. 

Thus, a single fiber surrounded by matrix maintaining a certain volume fraction is enough 

to be presented in the RVE if low fibers volume fraction is considered. At higher fiber 

volume fractions, the interactions between the fibers are higher due to the small values of 

inter-fiber distances. On the other hand, if uniformity is highly uncontrollable then a 

sufficient number of nonuniform fibers should be included within the RVE.   

The minimum RVE size has been addressed in several studies in the literature. For 

instance, 30 fibers were used in the cross section of a unidirectional composite to construct 

a two-dimensional RVE for failure analysis under transverse compression [44] and under 

transverse compression and out-of-plane shear [160]. In both cases, the authors found that 

their results did not change significantly when compared to RVEs with 70 fibers.  

Bulsara et al [120] adopted the pair correlation function as a statistical descriptor of 

a real (observed) microstructure. In their work, several RVE sizes with different number of 

fibers were investigated for one fiber volume fraction. Under transverse loading condition, 

a square RVE of side length 142 μm with 27 fibers was found to have the least scatter in the 

damage statistics, which were based on the radial matrix cracking and interface debonding 

damage modes.  

Trias et al. [161] conducted an extensive study of the minimum RVE based on 

different criteria ranging from the Hill condition [158] to statistical variation of the local 

stress and strain fields to the mutual fiber distances. In their analysis, different mechanical 
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and statistical variables were used to determine the minimum size possible to construct an 

RVE containing nonuniform carbon fibers in epoxy. For instance, Effective properties and 

distance distributions. They performed a finite element based analysis on RVEs generated 

with the fiber volume fraction of 0.5. Comparing the minimum RVE size with respect to 

different criteria, they concluded, for the composite they studied, that the RVE side length 

should be a minimum of 50 times the fiber radius. This size was adopted by other 

investigators, e.g. [162,163].  

Romanov et al [63] suggested 40 to 50 fibers to be enough for establishing an RVE 

based on the number of realizations investigated. In their work, simulated microstructures 

were compared to the real ones. Comparison of fiber positions and the stress fields were 

conducted using statistical descriptors.  

Depending on the fiber diameter, Riaño et al [164] created a random distribution of 

fibers in an RVE to simulate mechanical behavior of the glass/polymer composite under 

periodic and symmetrical boundary conditions. They suggested that the RVE size/fiber size 

ratio should be ≥ 8.   

In [165] several microstructure models were constructed from the composite material 

using a moving window technique. In that approach, it was found that the RVE size depends 

on the volume fraction of the inclusion as well as the constituents’ stiffness ratio. Others 

used number of fibers as large as 484 [154]. 

3.3.2. RVE construction methodology 

How fibers are distributed within an RVE is another essential consideration. 

Different techniques for distributing fibers have been proposed.  
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3.3.2.1. Real image techniques 

Approaches based on real images have been introduced in different studies, e.g. 

[63,93,162,165]. Other studies create simulated nonuniform distributions by algorithms 

using interfiber distances as the main parameter. For example, in [162] the actual 

experimental distribution of a high strength carbon fiber was analyzed by digital image 

processing and an equivalent random microstructure using the 1st and 2nd nearest neighbor 

distance functions was created. From image analysis, some researchers determined the fiber 

diameter distribution [90,166]. However, Gusev et al. [90] found that this variation does not 

have a significant effect for the RVE transverse elastic properties. The main drawback of 

image based approaches is that they require highly sophisticated software and are costly and 

time consuming. Moreover, they require available experimental data that deal only with 

certain fiber volume fraction and specific microstructure [63,154,167,168].  

3.3.2.2. Hardcore model 

In the hardcore model for generating fiber distributions [66,169], one places fibers 

randomly within the RVE keeping a minimum distance between any two fibers. This 

procedure gives limitation in the fiber volume fraction that can be achieved. This limitation 

is called “the Jamming effect” [170]. Attempts to overcome this limitation have been 

addressed in several studies. Melro et al [163] built an algorithm where the original hardcore 

model is applied followed by stirring the fibers to create resin rich areas. This allowed more 

fibers to be added, increasing the final fiber volume fraction. Yang et al. [168] modified the 

hardcore model by adjusting the interfiber distances, creating different fiber volume 

fractions. 
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3.3.2.3. Stirring/shaking technique 

Another approach to generate nonuniform fiber distributions from an initially 

uniform one is based on a so-called “shaking process”, which displaces the initial positions 

of fiber by a prespecified method [154,166,167,171]. In [154] fibers are perturbed from their 

periodic positions to random ones by giving each fiber a unit velocity with a random 

direction. If two fibers overlap, then a collision algorithm is implemented to change the 

velocities. In [166,167] a collision algorithm was applied to generate random fiber 

distributions for fibers of a constant diameter [166] and of varying diameters [167]. Wongsto 

and Li [171] proposed a method that used an initial hexagonal fiber pattern to generate a 

random fiber distribution by a shaking process. Using a sub-domain of the total region placed 

sufficiently away from the boundaries, they constructed a random distribution of fibers with 

a two-step process for shift of each fiber (disc). First, a random angle between 0 and 360o is 

selected and then a random shift in this direction is assigned to the fiber. Recently, Pathan et 

al. [172] developed an algorithm that used a constrained optimization formulation for a given 

fiber volume fraction, RVE size and fiber size distribution. Using the input variables, an 

initial guess for filling the RVE domain with fibers is generated. This configuration is 

iteratively improved under the constraints that the fibers do not overlap or intersect the RVE 

boundary. 

3.4. Statistical description 

To characterize the type of distribution of fibers, statistical descriptors, e.g. the 

second order intensity function and the pair distribution function, are utilized. Below is an 

illustration of different descriptors usually adopted to describe fibers distribution. 
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3.4.1. Ripley’s K function  

Known also as (Second Order Intensity Function). Pyrz [66] illustrated the use of the 

second order intensity function originally proposed by Ripley [173]. The function is given 

by  

K(r) =
A

N2 
∑wk

−1Ik 

N

k−1

(r)  (9) 

Where N is the number of fibers in the observation area A, Figure 15. The variable r is the 

radial distance from a selected fiber center and Ik(r) is the number of other fiber centers 

within the circle of radius r. The correction factor wk is introduced to account for the fibers 

that intersect the edges of the observation area. It is defined as the ratio of the circumference 

of the circle of radius r that is contained within the area A to the complete circumference. 

Thus, wk acts as a weight function that is equals to 1 if that circle of radius r is completely 

within the observation area A.  The weight function wk diminishes as radius r increases. Pyrz 

suggested that this radius r should be within the range 0-0.3 with a square observation area 

A.  

Ripley’s K function manages to discriminate between different patterns given within 

an RVE. When drawn with the circle radius r, different curves shapes might result. If the 

fibers (or points) are in a uniform pattern, then Ripley’s K functions shows a stair shaped 

curve. The curve gets smoother as the fibers distribution are deviated from uniformity. 

Figure 16 describes different K functions for different points pattern. As can be observed, a 

uniform distribution gives a saw shaped curve, while a Poisson’s distribution gives a smooth 

Ripley’s Function. 
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Figure 15. Estimation of Ripley’s K function (K(r)) with edge effects in an observable area A. Reprinted from [66]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Different point patterns and the corresponding Ripley’s K function (K(r)). Reprinted from [169]. 

 

 

 

3.4.2. Pair distribution function  

Also known as (Radial Distribution Function). For describing local interaction 

between fibers, the pair distribution function, proposed by Pyrz [169], is useful. It is given 

by,  

g(r) =
A

2πrN
 
dK(r)

dr
 (10) 
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Although, mathematically, it is related to the second order intensity function K(r), it 

gives a totally different information. This function provides information on the inter-fiber 

distances and their intensity, and is therefore relevant to the local stress field between fibers. 

Below is a plot of the g function for different points patterns, Figure 17. For a Poisson’s 

distribution, as suggested to be a complete random distribution, the g function g(r) =1. As 

the distribution is shifted towards regularity, the g function shows sharp peaks, indicating 

the increased frequency of the interfiber distances maintained.  

 

 

 

 

 

 

 

 

 

 

Figure 17. The pair distribution function for different points pattern. Reprinted from [169]. 

 

 

 

3.4.3. Nearest neighbor orientation 

The distribution of the fibers orientation is usually given in a cumulative distribution 

function, as given in [163,168]. This function gives information about the number of nearest 

fibers that are oriented within the same direction.  A perfect or complete randomness -as 

defined in the literature-in the RVE is established when the cumulative function is a straight 

line (as a diagonal of a square). If the fibers are in a regular distribution, then there will be a 

preferred orientation for the fibers and the cumulative function shows a stair type curve. 
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3.4.4. Nearest neighbor distances 

The nearest neighbor function can be given as a probability density function. It 

provides information about the nearest distances between each fibers pair. If this distance is 

between a fiber and its first nearest neighbor, this is called the first nearest neighbor function. 

If the probability density is determined for the second nearest fibers, this is called the second 

nearest neighbor distance function and so on. Usually it is enough to determine the first three 

density functions to give a comprehensive description about the fibers distribution and the 

minimum distances established. 

3.4.5. Voronoi tessellation 

Voronoi tessellation gives information about the zone of influence of each fiber. A 

polygon around each fiber center is constructed by connecting the mid-perpendiculars to the 

segments joining the center of this fiber with its neighbors’ centers. If there is a regular 

distribution, then the area or the Voronoi tessellation will be the same, and each fiber will 

provide the same influence. When dealing with a nonuniform distribution then each fiber 

will show different influence and subsequently different zone area [169]. From this 

tessellation, the standard deviation is determined, which indicates the deviation from the 

average polygon area [174,175]. 

3.5. The aim of this work 

The aim of this work is to study the damage initiation in UD polymer composites 

subjected to different loading conditions, and to quantify the disorder in the fiber 

arrangement that results from a manufacturing process by what we define as the “degree of 

nonuniformity” (NU). For this purpose, we develop an algorithm to construct a 

representative volume element RVE and generate realizations for different degrees of 
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nonuniform fibers’ distribution each for different fiber volume fractions (FVFs). For each 

case, a statistical analysis of the fiber distribution is conducted and represented by 

appropriate functions expressing the interfiber distance characteristics. Local stress fields 

are calculated by finite element models using a finite element simulation software 

(ABAQUS) to evaluate damage initiation under each loading condition by a brittle failure 

process (cavitation) and by an inelastic (yielding) process. This is performed using 

appropriate criteria in terms of dilatational and distortional components of the strain energy 

density. Parametric studies are also conducted to study the effects of matrix/fiber stiffness 

ratio. 
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4. RVE CONSTRUCTION 1 

 

Nearly all algorithms for constructing RVEs proposed in the literature are capable of 

creating nonuniform fiber distributions [120,154,161,163,166,167,171]. If the 

manufacturing process is a well-controlled one, then fibers should be distributed more likely 

in a uniform pattern. But because the uncontrolled parameters during manufacturing 

especially when it involves the infusion of polymers, then fibers will experience deviation 

from their expected uniform positions. The degree of this deviation depends on the degree 

of manufacturing accuracy. Thus, in this work we propose an algorithm that generates RVEs 

with a specified measure of the degree of nonuniformity. 

4.1. Algorithm for RVE generation 

The concept behind our proposed quantification of nonuniformity (NU) is a measure 

based on how much a fiber deviates from its expected position in a uniform pattern. To do 

this, we consider the distance available between surfaces of adjacent fibers in a uniform 

(square) pattern. This distance depends on the fiber diameter and the fiber volume fraction 

and sets the limit to the deviation of a fiber center from its uniform pattern position. We 

construct a linear measure, where zero degree of NU refers to the uniform array and a 100 

degree of NU corresponds to the maximum possible deviation each fiber can move. The 100 

% of NU ranges from the zero position (uniform position) to the possible maximum 

                                                 

1 Reprinted with a permission from “Damage initiation in unidirectional fiber composites with different 

degrees of nonuniform fiber distribution”, by Sarah A. Elnekhaily, Ramesh Talreja, (2018) Composites 

Science and Technology, 155, 22-32. https://doi.org/10.1016/j.compscitech.2017.11.017. Copyright 2018 by 

Elsevier. 

 

https://doi.org/10.1016/j.compscitech.2017.11.017
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deviation (the distance available between surfaces of adjacent fibers in the uniform (square) 

pattern).  

To illustrate the construction of an RVE, consider nine neighboring fibers in a square 

array with 50% fiber volume fraction, as shown in Figure 18. The normal distance between 

the fiber surfaces is denoted by ‘x’. From the center of a given fiber (top-right in Figure 18), 

we draw a circle of radius x. For the degree of NU of 100%, we assume that the fiber can 

move during manufacturing such that its center takes any position within this circle (The red 

circle for fiber A), Figure 19. We adopt a linear measure and assume that for any degree of 

NU less than 100%, the radius of the circle will be proportionately smaller. Obviously, for 

0% of NU, the circle shrinks to the fiber center, giving no deviation from the uniform pattern.  

We construct first a square RVE containing fibers of equal diameter arranged in a 

square pattern with a predefined fiber volume fraction (e.g. 40, 50, 54 and 60%). For the 

sake of illustrating the failure analysis here, we take three different degrees of NU (30, 60 

or 100%). The algorithm to generate an RVE of a selected degree of NU is as follows. Each 

fiber center is given a random position within the circle of radius equals to the distance x 

(described above) times the degree of NU. This circle is divided into concentric subcircles 

with the radius ranging from zero to the maximum in increments of 0.1% of the largest circle. 

A circle is then randomly selected from these subcircles and the center of the displaced fiber 

is placed on this circle by a random selection of the angular position between zero and 2π 

measured from a reference axis. The algorithm then checks if there is any overlapping, i.e., 

if the distance between any two adjacent fiber centers is less than D, the fiber diameter, and 

if any fiber is totally or partially outside the RVE region. If so, then this fiber is given a new 

random position starting again from its initial uniform one. If not, then a new position is 
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given to the next fiber, as explained above, and so on. For better illustration, two possible 

new positions of fiber M are shown in Figure 20 for a 100% NU. This procedure does not 

change the fiber volume fraction from the initial one in the uniform distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Illustration of the maximum deviation from the initial fiber center position in a uniform square pattern 

for 50% fiber volume fraction. 
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Figure 19. Illustration of the subcircle with 100% NU for 50% fiber volume fraction  
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Figure 20. Examples of two possible new positions of fiber M for 100% NU for 50% fiber volume fraction 

 

 

 

The maximum deviation a fiber can move from its original uniform position will 

depend on the fiber volume fraction attained. Consider for example a uniform array with 

40% fiber volume fraction with the same fiber diameter 8 μm as shown in Figure 21. The 

maximum deviation for 100% NU is ~ 3.21 μm, instead of ~2 μm for 50% fiber volume 

fraction. That is why at low fiber volume fractions the impact of the NU is higher. Also, the 

degree of NU will affect the final distribution. In Figure 22 sub-regions of RVEs 

corresponding to three different degrees of NU for 40% and 30% fiber volume fractions are 

displayed. These visual images show that as expected, the fibers deviate increasingly from 
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their initial square distribution as the degree of NU increases. A flow chart to illustrate the 

procedure of RVE construction is given in Figure 23.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Illustration of the maximum deviation from the initial fiber center position in a uniform square pattern 

for 40% fiber volume fraction. 

 

 

 

It is important to note that the nonuniformity of fiber distribution generated by the 

algorithm proposed here is subjected to constraints imposed by a fixed fiber volume fraction, 

a constant fiber diameter and a required minimum distance between two neighboring fibers 

to allow mesh discretization for stress analysis. The impact of having a constant fiber 

diameter is likely to be insignificant, as suggested by Gusev et al [90]. However, the 

maximum nonuniformity generated by the algorithm is strongly dependent on the fiber 
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volume fraction. Consider, for instance, that all fibers in the initial square pattern are in 

contact with neighbors. At this fiber volume fraction for the given fiber diameter, there is no 

fiber mobility and hence no nonuniformity. Thus, at high fiber volume fraction there will be 

less nonuniformity compared to the low fiber volume fraction for the same fiber diameter. 

More on this will be described below.  

It is noted that in generating the RVE realizations, a minimum distance between fiber 

surfaces of 0.07 times the fiber radius has been kept having adequate discretization when 

finite element meshes are placed in the numerical analysis [63,176]. 
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Figure 22. (a) The RVEs of the 40% fiber volume fraction, (b) The RVEs of the 30% fiber volume fraction with 

100%, 60% and 30% of NU. 
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Figure 23. Flowchart of the algorithm for constructing an RVE realization. 
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4.2. Statistical characterization 

A MATLAB code is constructed to calculate Ripley’s K function and the pair 

distribution function for the constructed RVEs to statistically describe them. Also, the first, 

second and third nearest neighbor functions are analyzed as well as the cumulative 

orientation function for the RVEs of different FVFs and different degrees of NU. 

4.2.1. Second order intensity function 

Figure 24 shows Ripley's K function for the generated fiber distributions for four 

different fiber volume fractions at 100% NU. All four curves resemble the characteristic 

features shown by Pyrz [66] for the Poisson point process. This process corresponds to the 

random positions occupied by the fiber centers independently of each other. The curves in 

Figure 24 are not completely smooth because of the constraint imposed by the fiber diameter 

to the random positions of the fiber centers. Thus, there is some mutual dependence of the 

fiber positions on each other. While the K-curve for a Poisson pattern is a smooth, 

exponentially rising curve, it is a staircase-like curve for a uniform pattern [66]. In Figure 

25, K-curves are plotted for three degrees of NU at 40% fiber volume fraction along with 

zero NU for the same volume fraction. In the expanded view of a part of the curve in the 

figure, it can be seen that the staircase shape of the curve becomes increasingly smooth as 

the degree of NU increases.  
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Figure 24. Ripley’s K function for three different fiber volume fractions (40%, 50%, 54% and 60%) for 100 % of 

NU. 

 

 

 

 

 

 

 

Figure 25. Ripley’s K function for the generated fiber distributions with 100%, 60%, and 30% of NU as well as a 

square uniform distribution for 40% fiber volume fraction. 
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4.2.2. Pair distribution function (g-function) 

The pair distribution functions g(r) of the generated RVEs for different degrees of 

nonuniformity and 40% fiber volume fraction are shown in Figure 26. A characteristic 

feature of the g-curves for nonuniform fiber distributions is an initial peak at a low r-value, 

followed by decreasing peaks as the r-value increases, until eventually reaching a fluctuation 

of the g-function about g = 1. For the 100% NU, these features are distinct, while as the 

degree of nonuniformity decreases, the g-curve approaches that for the uniform pattern, also 

shown in the figure. The g-curves calculated by 50 and 60% fiber volume fractions show 

similar trend Figures 27 and 28 respectively although the impact of nonuniformity becomes 

less for the 60% FVF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 26. The pair distribution function (g) for the generated distributions with 100%, 60%, and 30% of NU as 

well as a square uniform distribution for 40% fiber volume fraction. 
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Figure 27. The pair distribution function (g) for the generated distributions with 100%, 60%, and 30% of NU as 

well as a square uniform distribution for 50% fiber volume fraction. 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. The pair distribution function (g) for the generated distributions with 100%, 60%, and 30% of NU as 

well as a square uniform distribution for 50% fiber volume fraction. 
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4.2.3. Nearest neighbor orientation function 

Using our algorithm, the cumulative distribution function is given for a two different 

fiber volume fractions, 30 and 50%, Figures 29 and 30 respectively. In the first figure, the 

cumulative distribution function shows a stair shaped curve for the uniform pattern, and the 

curve is getting smoother and nearly looks like a straight line when the degree of 

nonuniformity is increased reaching 100%. For higher fiber volume fraction for example 

50%, figure 30, a straight diagonal line is not established although it is smoother and 

completely different than that of the uniform distribution. As defined in the literature, when 

a square straight-line diagonal is established, the distribution is considered as completely 

random. In present algorithm, each fiber is given the possibility of not changing its uniform 

position. Each fiber can deviate with any distance from zero to the maximum possible 

deviation depending on the degree of nonuniformity given. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Nearest neighbor orientation function for a 30% fiber volume fraction and different degrees of NU. 
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Figure 30. Nearest neighbor orientation function for a 50% fiber volume fraction and 100 % NU and uniform 

pattern. 

 

 

 

4.2.4. Nearest neighbor distance function 

The first, second and third nearest neighbor distances are analyzed for the RVE 

constructed with 40, 50 and 60%fiber volume fractions and 30,60 and 100% NU as well as 

in the uniform distribution. The analysis is described in the following section, when 

determining the minimum RVE size. 

4.3. Determination of the RVE size 

An RVE should be large enough to contain representation of the fiber distribution 

irregularities that are expected to affect damage initiation. As fibers get closer together than 

their interfiber distance in the uniform distribution pattern, the mutual stress field 
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the first, second and third nearest neighbors in a RVE realization and calculate the frequency 

of their center-to-center distances. We performed these calculations for 16, 49, 100, 196, 

256, 400 and 484 fibers giving different RVE sizes to determine the minimum RVE size 

needed for capturing the fiber interactions adequately. Results are shown for 16, 100, 400 

and 484 fibers for better illustration. 

4.3.1. Interfiber distances analysis 

At least five realizations were generated for each RVE size corresponding to three 

different volume fractions (40, 50 and 60 %) and three degrees of NU (100, 60 and 30%) in 

addition to the 0 degree of NU (uniform distribution) with 8μm fiber diameter. 

The frequencies of occurrence of the interfiber center-to-center distances between 

fibers (called the nearest neighbors) are plotted at 100, 60 and 30% NU for 40, 50 and 60% 

FVFs. Results for 50% fiber volume fraction are shown in this chapter. The nearest neighbor 

functions for the 40 and 60% fiber volume fractions are presented in APPENDIX A.  As 

seen in Figure 31, the frequency peaks for the first nearest neighbor are fewer for the smallest 

RVE size (16 fibers), while these are more numerous and distributed more evenly over the 

interfiber distances as the number of fibers increases. In Figure 31(a), the interfiber distance 

for the uniform distribution (frequency of 1.0) is marked. The frequencies were also 

calculated for the second and third nearest neighbor cases (Figures 32 and 33) and the trends 

also here were found to be largely the same.  
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As noted above, at least five realizations were constructed for each RVE size. From 

the frequency peaks, such as those shown in Figures (31-33), the maximum, mean and 

minimum frequencies are averaged over all nearest neighbor distances (first, second and 

third) and these are plotted against the number of fibers in an RVE (RVE size) in Figures 

(34 -36) for 100%, 60% and 30% degrees of nonuniformity for illustration. The same trend 

in the variation of the frequencies as those seen in Figures (34-36) also holds for all other 

volume fractions and degrees of nonuniformity. The trend suggests that beyond a certain 

RVE size, the statistical content of the RVE does not change, at least as far as the interfiber 

distances are concerned. It would suffice then to use the first nearest neighbor case for 

consideration of the RVE size. 
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Figure 31. Frequency of occurrence of the first nearest neighbor distance (from center to center) in μm within the 

RVE realizations for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 400, 

100 and 16 fibers in an RVE. 
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Figure 32. Frequency of occurrence of the second nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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Figure 33. Frequency of occurrence of the third nearest neighbor distance (from center to center) in μm within the 

RVE realizations for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 400, 

100 and 16 fibers in an RVE. 
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Figure 34. The maximum, mean and minimum frequencies of occurrence of the first nearest neighbor distances 

averaged over all distances plotted for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 

30% NU for different RVE sizes. 
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Figure 35. The maximum, mean and minimum frequencies of occurrence of the second nearest neighbor distances 

averaged over all distances plotted for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 

30% NU for different RVE sizes. 
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Figure 36. The maximum, mean and minimum frequencies of occurrence of the third nearest neighbor distances 

averaged over all distances plotted for 50% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 

30% NU for different RVE sizes. 
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4.3.2. von Mises and mean stress analysis 

As described above, the minimum RVE size can be determined based on the 

interfiber distance statistics. Implicit in this procedure is the assumption that the local stress 

field in the matrix between the fibers depends on the interfiber distance. In fact, Pyrz [169] 

showed that the local stress field is correlated with the interfiber distance. To gain more 

confidence in this correlation, we examine the averages of two stress invariants: the von 

Mises equivalent stress and the mean stress. These two quantities are calculated for different 

RVE sizes (25, 81, 225 and 400 fibers), and their RVE-averaged values are plotted against 

the RVE size for two loading conditions, under transverse tension and under axial shear 

loadings. 

4.3.2.1. Under transverse tension 

The von Mises equivalent stress and the mean stress are calculated for different RVE 

sizes (25, 81, 225 and 400 fibers) and their RVE-averaged values are plotted against the 

RVE size under transverse tension, as shown in Figure 37, for one case of 40% fiber volume 

fraction and 100% NU, as an example. As can be seen in the figure, these averages 

essentially do not change for RVE size > 200 fibers. Similar results are found for other fiber 

volume fractions (50% and 60%). Figure 38 shows the results for 50% fiber volume fraction.   

For the failure analysis under transverse tension, the dilatational strain energy density 

(Uv) is the relevant local quantity. In Figure 39, the contours of this quantity are displayed 

for different RVE sizes (5x5, 10x10, and 20x20 fibers) for 40% fiber volume fraction and 

100% NU. As can be seen in these images, higher values of the dilatational energy density 

occur for shorter interfiber distances. The probability of finding a location where the critical 
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value of the dilatational energy density occurs increases with the RVE size. The procedure 

for determining the critical conditions for failure will be described in more detail.  

 

  

Figure 37. (a) The average von Mises stress and (b) the average mean stress for 40% fiber volume fraction and 

100% NU for different RVE sizes at 0.4% transverse tensile strain. 

 

 

  

Figure 38. (a) The average von Mises stress and (b) the average mean stress for 50% fiber volume fraction and 

100% NU for different RVE sizes at 0.3% transverse tensile strain.  

 

20

21

22

23

24

25

26

27

28

29

30

0 100 200 300 400 500

A
v
er

a
g

e 
v
o
n

 M
is

es
 S

tr
es

s,
 M

P
a

Number of fibers (RVE size)

(a)

3

3.5

4

4.5

5

5.5

6

0 100 200 300 400 500

A
v
er

a
g

e 
M

ea
n

 S
tr

es
s,

 M
p

a

Number of Fibers (RVE size)

(b)

0

1

2

3

4

5

6

7

0 200 400 600

A
v
er

a
g

e 
M

ea
n

 S
tr

es
s,

 M
p

a

Number of Fibers (RVE size)

15

17

19

21

23

25

27

29

31

33

0 200 400 600

A
v
er

a
g

e 
v
o
n

 M
is

es
 S

tr
es

s,
 M

p
a

Number of Fibers (RVE size)

(a) (b) 



 

73 

   

       5x5 inner window 

(a) 

       10x10 inner window 

(b) 

      20x20 inner window 

(c) 

Figure 39. The dilatational strain energy density in MPa for different RVE sizes (a) 5x5 inner window, (b) 10x10 

inner window and (c) 20x20 inner window for 40% fiber volume fraction and 100% NU at 0.4% mechanical strain 

 

 

 

4.3.2.2. Under axial shear 

A minimum RVE size should be determined in the case of applying axial shear 

loading. Besides the first, second and third inter-fiber distances, we examined the averages 

of two stress invariants: the von Mises equivalent stress and the average shear stress S13. A 

three-dimensional RVE is used when an axial shear loading is imposed. The boundary 

condition as well as the 3D RVE used are discussed in detail in chapter 6. The von Mises 

equivalent stress and the average shear stress are plotted in figure 40. These two quantities 

are calculated for different RVE sizes (25, 100,196 and 225 fibers) for five different 

realizations. Figures 40 (a) and 40 (b) show these two quantities for 40% fiber volume 
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fraction and 100 % NU for the considered RVEs. From the figures- as well as the interfiber 

distances functions- it can be suggested that ~ 200 fibers are suffice for constructing an RVE 

under axial shear stress. Similar findings are found for the 50 and 60 fiber volume fractions. 

 

 

  

Figure 40. (a) The average von Mises stress and (b) the average shear stress S13 for 40% fiber volume fraction and 

100% NU for different RVE sizes at axial shear stress of 0.285 MPa.  

 

 

 

It is noted that in generating the RVE realizations, a minimum distance between fiber 

surfaces of 0.07 times the fiber radius has been kept for having adequate discretization when 

finite element meshes are placed in the numerical analysis [63,176]. 

4.4. Summary and conclusion 

In this chapter, a new algorithm is developed to construct a representative volume 

element which is able to quantify the disorder in the fiber arrangement resulting from a 

manufacturing process by what we define as the “degree of nonuniformity”. For this purpose, 

we develop an algorithm to create realizations of the RVE and implement it for different 

degrees of nonuniformity each for different fiber volume fractions. The degree of 

nonuniformity has been quantified by a linear measure of the displacements of fibers from 
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their expected positions in a uniform square pattern. For each case, a statistical analysis of 

the fiber distribution is maintained provided by appropriate functions describing the 

interfiber distance characteristics and the nearest neighbor orientation function. The 

following conclusion can be drawn: 

• Assuming that the interfiber distances govern the local stress fields and therefore the 

initiation of failure, the statistics of nearest fiber distances within an RVE provide a 

reliable way to determine the minimum RVE size needed for failure analysis. The 

first nearest neighbor distances have been found to suffice for this purpose, as no 

significant change in the minimum RVE size was found when the second and third 

nearest neighbor distances are considered.  

• For all fiber volume fractions considered (40, 50 and 60%), the minimum RVE size 

for 100% degree of nonuniformity was found to be adequately given by 200 fibers 

under transverse tension and under axial shear loadings. 

• The statistical analysis of the RVEs generated for different degrees of nonuniformity 

using the second order intensity function and the pair distribution function show clear 

tendency in the statistics going from the uniform distribution to Poisson’s point 

process as the degree of nonuniformity increases. 
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5. DAMAGE INITIATION UNDER TRANSVERSE TENSILE LOADING 1,2 

 

On transverse loading, distortions at the RVE edges occur due to the presence of 

fibers near the edges. To eliminate this problem, several studies have applied periodic 

boundary conditions [44,154,160,162,177-181]. Other micromodels are based on the 

embedded cell approach [176,161] to minimize the effects of the finite boundaries. In these 

approaches, the volume element is embedded in a frame of a homogenized composites 

having the same average properties as the composite embedded in that homogeneous 

medium. Trias et al [161] used the homogenized frame size to be equal to twice the number 

of fibers in the domain multiplied by the fibers radius. 

Wongsto and Li [171] performed an extensive numerical study of the effects of the 

boundary distortion on the stress fields within the RVE. Based on their results, they 

recommended to consider the stress fields in a sub-domain within the RVE away from the 

external boundaries by at least a couple of average inter-fiber distances.  

In the present work, a MATLAB code is constructed to create the RVE to be used in 

the analysis. The code is established so that parameters, such as fiber volume fraction, degree 

of NU and the numbers of fibers, are to be implemented. 2D square RVEs with 24 x 24 fibers 

are constructed with different fiber volume fractions (40%, 50%, and 60 %) and with 

                                                 

1 Reprinted with a permission from “Damage initiation in unidirectional fiber composites with different 

degrees of nonuniform fiber distribution”, by Sarah A. Elnekhaily, Ramesh Talreja, (2018), Composites 

Science and Technology, 155, 22-32. https://doi.org/10.1016/j.compscitech.2017.11.017 Copyright 2018 by 

Elsevier. 
2 Reprinted with a permission from “Damage Initiation in Unidirectional Fiber Reinforced Polymeric 

Composites Under Transverse and Shear Loading”, Sarah A. Elnekhaily, Ramesh Talreja. Proceedings of the 

American Society for Composites: Thirty-second Technical Conference, 2017. Lancaster, PA: DEStech 

Publications, Inc.. 
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different degrees of NU (30%, 60%, and 100%). At least five different realizations are 

created for each condition. The RVEs are then implemented in the software ABAQUS for 

meshing and subsequent finite element stress analysis.  

Following Wongsto and Li [171], the local stress fields are examined within the RVE 

in an inner window of 20 x 20 fibers, as indicated in Figure 41. The size of the inner window 

satisfied the minimum RVE according to the discussion above. 

 

 

 

 

 

 

 

 

 

 

Figure 41. RVE construction with total 24x24 fibers and an inner window of 20x20 fibers. 

 

 

 

5.1. Finite element analysis 

In numerical studies, mesh convergence is a necessary step. Because of the relatively 

large RVE size and the nonuniform nature of the stress fields, a trade-off should be struck 

between the computation time and accuracy. Mesh convergence in this study is obtained 
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with the condition that a minimum of two elements between any neighboring pair of fiber 

surfaces is maintained. 

Mesh convergence is analyzed using two techniques 1- overall mesh convergence, 

2- Local mesh convergence.  

 

5.1.1. Overall/global mesh convergence  

Both maximum Mises stress and maximum dilatational energy density were determined 

within the RVE with different mesh sizes and hence different number of linear generalized 

plane-strain elements. Figure 42 shows the RVE-averaged von Mises stress against the 

number of linear elements for 50% fiber volume fraction and 100% NU under 0.3% 

transverse tensile strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. RVE-averaged von Mises stress against the number of elements for 50% fiber volume fraction and 100% 

NU. 
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5.1.2. Local mesh convergence  

Because the matrix between the closest fibers are difficult to mesh, proper mesh 

should be constructed in these areas. To reassure that the mesh discretization is adequate at 

those areas, mesh convergence is analyzed within the matrix for both maximum Mises stress 

and maximum dilatational energy density through local convergence. Local mesh 

convergence is examined by constructing sub models, enclosing the area having the 

maximum Mises stress and maximum dilatational strain energy density values with mesh 

sizes smaller and larger than used previously in the overall mesh convergence, taken it as 

mesh index 4, as shown in Figure 43. Local maximum Mises stress and maximum 

dilatational strain energy density values are compared for different mesh sizes. For example, 

in Figure 44 results are shown when 0.3% transverse tensile strain is applied. As shown in 

the figure 44 (a), by increasing the mesh index (decreasing the local mesh size) the maximum 

Mises stress becomes nearly constant. Also, the dilatational strain energy density (Uv) for 

each local mesh size is plotted, Figure 44 (b). Nearly the same Uv values are obtained for 

mesh indices 2,3,4 and 5. But for the coarse mesh size (index 1), Uv shows lower values 

especially at high applied strains > 0.4%. From both figures 44 (a & b), it can be suggested 

that the mesh size of a mech index 4 is an adequate size for subsequent finite element 

analyses.  

Linear elements are compared with quadratic elements at different applied strains 

and similar results are found. Figure 45 shows the Mises stress distribution for the sub 

models described above with linear and quadratic elements at 0.3% transverse strain, and 

Figure 46 shows the results at 0.5% transverse strain. Very similar results are found when 

using either linear or quadratic elements at both applied strains. In addition to this finding,  
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and for the sake of conserving the time of the analysis, the finite element analysis is 

conducted with approximately 1,300,000 linear quadrilateral generalized plane-strain 

elements of type CPEG4 and approximately 60000 linear triangular generalized plane-strain  

elements of type CPEG3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Different mesh sizes for local mesh convergence analysis. 
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(a) 

(b) 

Figure 44. (a) The maximum von Mises stress (MPa) and (b) the maximum dilatational energy density (MPa) for 

40% fiber volume fraction and 100% NU for different RVE sizes at 0.3% transverse tensile strain.  

 

 

40

41

42

43

44

45

46

47

0 1 2 3 4 5 6

M
a

x
im

u
m

 M
is

es
 S

tr
es

s,
 M

P
a

Mesh Index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
a

x
im

u
m

 D
il

a
ta

ti
o

n
 S

tr
a

in
 E

n
er

g
y

 

D
en

si
ty

, 
M

P
a

Strain %

mesh index1

mesh index2

mesh index3

mesh index4

mesh index5



 

82 

Figure 45. Mises stress distribution in MPa (a) with linear elements, (b) with quadratic elements for the sub model 

shown in Figure 43 at 0.3% transverse tensile strain 

 

 

 

Figure 46. Mises stress distribution in MPa (a) with linear elements, (b) with quadratic elements for the sub model 

shown in Figure 43 at 0.5% transverse tensile strain. 

 

 

 

In micromechanical models, constituent material properties are utilized. Besides that, 

some researchers use the fiber/matrix interface characteristics [181], which are difficult to 

measure experimentally although many efforts are given to accurately measure them. 

Interfacial toughness, are mostly based on a single fiber tests, such as fiber pull out 

[182,183]. Other tests are conducted to determine the interfacial shear stress, such as 

fragmentation tests [184,185], micro-indentation tests [186] and microdroplet shear tests 
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[185]. Results of such tests show large discrepancy [187,188,189]. A good description about 

such tests is given in [190]. 

In the present work, matrix and fibers are assumed to be linear elastic and isotropic 

with a perfect bonding between them at the interface. The materials properties used in this 

analysis are presented in table 1. The epoxy system has a yield strength of 140 MPa which 

is typical for the case of MTM57 epoxy system [191].  

 

 

 

Table 1. Materials properties for transverse tensile loading 

 Young’s modulus 

(E) GPa 
Poisson’s ratio (ν) 

Thermal expansion 

coefficient (α) 

Fiber glass 72 0.2 5x10-6 

Epoxy matrix 3.35 0.35 66x10-6 

 

 

 

The local stress fields are determined under thermal cooldown ΔT= -82oC, which is 

typical of glass-epoxy composites, followed by a transverse displacement (Figure 47) in 

which the RVE sides are free from constraints. 

 

 

 

 

 

 

 

 

 

Figure 47. Uniaxial transverse displacement boundary condition on a RVE realization. 

u RVE 
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5.1.3. Displacement versus traction boundary conditions 

According to Hill [158], the size of an RVE should be such that the overall properties 

are independent of the applied boundary conditions, whether traction or displacement. In 

present work, local stress and strain fields of the constructed RVEs are compared when under 

traction versus under displacement boundary conditions.  For example, the same RVE for 

40% fiber volume fraction and 100% NU, was under traction boundary condition in one 

analysis, and under displacement boundary condition in another analysis. Figure 48 shows 

the distortional and dilatational strain energy densities and the principal stress ratios curves 

for both cases (their significance in failure analysis will be discussed later). As can be 

observed, they both give similar results. Figures 49 and 50, show the comparison between 

the two boundary conditions for the 50% and the 60% fiber volume fraction and 100% NU, 

respectively. Results indicate that the size of the RVE is adequate as suggested by Hill [158]. 

Throughout this work, displacement boundary condition is applied. 
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(a) Displacement boundary condition (b) Traction boundary condition 

 

 

  

Figure 48. The maximum values of dilatational energy density Uv and distortional energy density Ud as well as the 

principal stress ratios attained within RVEs versus applied transverse tensile strain with (a) Displacement boundary 

conditions and (b) Traction boundary conditions, for 40% fiber volume fraction and 100% degree of nonuniformity. 
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(a) Displacement boundary condition (b) Traction boundary condition 

 

 

 

 

Figure 49. The maximum values of dilatational energy density Uv and distortional energy density Ud as well as the 

principal stress ratios attained within RVEs versus applied transverse tensile strain with (a) Displacement boundary 

conditions and (b) Traction boundary conditions, for 50% fiber volume fraction and 100% degree of nonuniformity. 
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 (a) Displacement boundary condition (b) Traction boundary condition 

  

  

Figure 50. The maximum values of dilatational energy density Uv and distortional energy density Ud as well as the 

principal stress ratios attained within RVEs versus applied transverse tensile strain with (a) Displacement boundary 

conditions and (b) Traction boundary conditions, for 60% fiber volume fraction and 100% degree of nonuniformity. 
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earlier, Asp et al [76] suggested a criterion for a failure mechanism prior to debonding which 

they named “Cavitation”. The threshold for such mechanism is given as a material property 

as dilatational energy density value. This value is in a range of 0.13-0.2 MPa, which was 

determined from the Poker-chip test conducted on three different polymers. Requirements 

for cavity formation besides reaching the threshold value is to have equal or nearly equal 

principal stresses. On the other hand, for yielding to occur in the matrix, the distortional 

energy density should reach the threshold value required for the matrix to yield. Cavitation 

is suggested in [76] to take place in the matrix close to the fiber/matrix interface, but yielding 

is to occur in the resin rich areas, Figure 51.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Local positions where both dilatational and distortional energy densities may reach their threshold 

values. Reprinted from [76]. 
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The two thresholds are material properties given by critical values of dilatational 

energy density for cavitation and of distortional energy density for yielding. Both are point-

failure criteria, and therefore the failure analysis requires determining at which points within 

the RVE the two criteria are met.  

 For initiation of yielding (inelastic deformation) in polymers, the von Mises 

distortional energy density for metals is modified to include the effect of hydrostatic stress 

in polymers as follows: 

where 𝛕𝐲
𝐨𝐜𝐭 is the octahedral shear stress at yielding, τ𝐲𝐨

𝐨𝐜𝐭 is the octahedral shear stress at 

yielding in pure shear, μ is the coefficient of internal friction, and p is the hydrostatic tensile 

stress, which is equal to (σ1 + σ2 + σ3)/3. The coefficient of internal friction has values in the 

range 0.157-0.21 [192,193]. In present work, based on stress analysis, results are compared 

using μ=0.157, 0.175 and 0.21 as well as with no modification, i.e., μ=0. Figure 52 shows 

the maximum distortional energy density for a 54% fiber volume fraction and 100% 

nonuniformity for μ= 0, 0.175 and 0.21. Since the differences in the results are small, the 

value of μ is taken as 0.175 throughout this work. 

 

 

 

 

 

 

𝛕𝐲
𝐨𝐜𝐭 = τ𝐲𝐨

𝐨𝐜𝐭 − μp (11) 
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Figure 52. The maximum values of distortional energy density Ud attained within RVEs versus applied axial shear 

strain for 54% fiber volume fraction and 100% degree of nonuniformity.  

 

 

 

Uv for a linear elastic solid is given by,  

Uv =  
1 − 2ν

6E
 (σ1 + σ2 + σ3)

2 (12) 

where σ1, σ2 and σ3 are the principal stresses, E is the Young’s modulus and ν is the Poisson’s 

ratio. As was argued in [76], although the dilatational energy density criterion can be 

expressed in terms of the mean stress, it would generally imply that the critical mean stress 

is temperature dependent, which was shown not to be the case. In subsequent studies [74, 

76] it was found that under a transversely applied tension on a unidirectional composite, the 

maximum dilatational energy density occurs close to the fiber-matrix interface and has lower 

values compared to the maximum distortional energy density, which tends to occur in resin 

rich areas. This result was also found in another study by Bulsara [194], reported in [73], 

where RVEs with nonuniform spatial distribution of fibers were considered. Thus, two 
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possible mechanisms can occur under transverse tension in unidirectional composites, and 

formation of a transverse crack would then depend on the fiber distribution and the critical 

values of the two energy densities for a given polymer. 

Since the dilatational energy density criterion applies strictly when the three principal 

stresses are tensile and equal, we must find a point where this condition is met, and at the 

same time, the dilatational energy density at that point equals or exceeds the critical value 

for cavitation. Because of the randomness in the local stress field, it was found necessary to 

relax the stress equality condition to capture the points of cavitation of high probability of 

occurrence. Thus, we adopt an approximation allowing the three principal stresses to be 

within a narrow band of 20% deviation from equality, i.e., the ratios of the principal stresses 

to be     

0.8 ≤
σi

σj
 ≤ 1.2 (13) 

where i and j take values 1, 2 and 3. With this restriction, a realization of a given RVE is 

searched to find the required location of the point. This is done with each increment of 0.1% 

of the applied mechanical strain.  

5.3. Results and discussion 

The local stress states are analyzed for each constructed realization for 40%, 50% 

and 60% fiber volume fractions and 0%, 30%, 60% and 100% of nonuniformity. An 

ABAQUS subroutine is built to calculate the dilatational and distortional energy densities at 

every node within the RVE at each applied strain for all combinations of fiber volume 

fractions and the preselected degree of nonuniformity. The maximum dilatational energy 

density is determined as well as its node, providing that the three principal stresses are 

tensile. At this node, the principal stress ratios are determined along with the ratio between 
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the maximum to the mean principal stresses. The maximum dilatational energy density value 

will then represent a point in a corresponding curve of maximum dilatational energy density 

against applied strain. Also, at each node in the RVE, the distortional energy density is 

determined and the maximum value represents a point in the distortional energy density-

strain curve without any restrictions. For example, in the RVE for 50% fiber volume fraction 

and 100% nonuniformity, shown in Figure 53, both the nodes at which maximum dilatational 

and maximum distortional energy densities are determined. The principal stress ratios along 

with the ratio between the maximum to the mean principal stresses are plotted for the nodes 

having the maximum Uv, Figure 54. From the figure, one can determine the transverse tensile 

strain at which the three principal stresses are equal or nearly equal with a tolerance of 20% 

difference as mentioned before for a cavity to form. For example, the principal stresses are 

within the 20% difference at ~ 0.3%. At this strain, we can see that the dilatational strain 

energy density exceeds the threshold value given in [76] giving a value of about 0.3 MPa as 

shown in Figure 55. At the same strain, the distortional energy is below its threshold for 

yielding for this epoxy which is ~ 2.62 MPa. For this epoxy, yielding will occur at a higher 

transverse strain value than that required for cavitation. Thus, it can be suggested that 

cavitation at this node is the first event of failure when comparing the two mechanisms.  

The nodes of maximum dilatational and maximum distortional energy densities are 

changed/shifted from one node to another until reaching higher applied strain. In table 2, it 

can be observed that the nodes of maximum dilatation and distortion energy densities are 

changed till a strain of 0.5% for dilatational energy and 0.3% for distortional are reached. 

Also, when analyzing these nodes, it was found the following; 1- the node at which 

maximum distortion is maintained is within the matrix between the closest fibers pairs, 2- 
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the node at which maximum dilatational energy density is determined - providing that the 

requirements for cavitation as mentioned earlier are fulfilled- is observed to be near or at the 

fiber/matrix interface between two fibers lying parallel to the loading direction. This is also 

found in all RVEs of different fiber volume fractions and different degree of nonuniformity.  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. An RVE with 50% fiber volume fraction and 100 % nonuniformity, showing the position of maximum 

dilatational and distortional energy densities under transverse tensile loading. 
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Figure 54. The principal stress ratios and the ratio of maximum/mean principal stress versus applied strain for RVE 

shown in Figure 53. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 55. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs versus applied strain for RVE shown in Figure 53. 
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Table 2. Nodes with maximum dilatational and distortional energy densities for the RVE shown in Figure 53. 

Strain % Max dilatation 

node number 

Max distortion 

node number 

0 45673 1059625 

0.1 45670 41781 

0.2 44757 41781 

0.3 375 1057725 

0.4 375 1057725 

0.5 27908 1057725 

0.6 27908 1057725 

0.7 27908 1057725 

0.8 27908 1057725 

0.9 27908 1057725 

1 27908 1057725 

 

 

 

At least five realizations for each combination of fiber volume fraction (40%, 50%, 

and 60%) and percentage of nonuniformity (30%, 60% and 100%) are established. The 

RVEs as well as the position of maximum dilatational and distortional energy densities are 

shown in APPENDIX B. The same procedures in determining the first event of failure are 

conducted.  

For all realizations, cavitation is highly suggested as the first event of failure under 

transverse tension. The strain required for cavitation is lower than that required for yielding 

providing that the principal stresses at the position of maximum Uv are equal or nearly equal, 

Figures (56-58). It was found that the strain at which cavitation is suggested depends on the 

fiber volume fraction and the percentage of NU. This will be illustrated below. 
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Figure 56. The maximum values of dilatational Uv and distortional Ud energy densities attained within different 

RVEs versus applied strain for 40% fiber volume fraction and (a) 100%, (b) 60% and (c) 30% NU. Solid lines 

represent distortional energy density and dotted lines represent dilatational energy density. 
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Figure 57. The maximum values of dilatational Uv and distortional Ud energy densities attained within different 

RVEs versus applied strain for 50% fiber volume fraction and (a) 100%, (b) 60% and (c) 30% NU. Solid lines 

represent distortional energy density and dotted lines represent dilatational energy density. 
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Figure 58. The maximum values of dilatational Uv and distortional Ud energy densities attained within different 

RVEs versus applied strain for 60% fiber volume fraction and (a) 100%, (b) 60% and (c) 30% NU. Solid lines 

represent distortional energy density and dotted lines represent dilatational energy density. 
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5.3.1. Effect of fiber volume fraction 

At the same degree of nonuniformity, by increasing the fiber volume fraction, the 

strain for cavity formation is decreased. This is best illustrated when different fiber volume 

fractions are compared with RVEs of uniform distributions. In the figures below, Figure 59, 

a uniform distribution of 40% fiber volume fraction fulfils cavitation requirements at strain 

~ 0.52%. But for higher fiber volume fraction, such as 60% the cavitation is fulfilled at strain 

~ 0.33%. Another example is given in figure (60) for 40% and 50% fiber VF and 100% 

nonuniformity. For the 40% fiber volume fraction, cavitation is to take place at ~ 0.45% 

strain, but for the 50% VF, it is to occur at ~0.36% strain. 

5.3.2. Effect of degree of nonuniformity 

The applied strain at which cavitation occurs is reduced when the fiber distribution 

is nonuniform versus when it is uniform. This effect can be attributed to the higher 

probability of finding fibers close enough to induce sufficiently high principal stresses to 

reach the condition for cavitation. For example, the figures above for the 40% FVF and 

uniform distribution (Figure 59 (a)) and 100% nonuniformity (Figure 60 (a)) show that for 

the uniform distribution cavitation is to occur at strain ~0.52, but when a 100% NU is 

created, this strain is lowered to be ~0.45%. The cavitation threshold is reached at ~0.28% 

strain.  

Also, when compared to the uniform distribution, it can be observed that the 

distortional strain energy gives lower values in the uniform distribution than that given under 

any degree of nonuniformity even the 30%. This could be due to the smaller inter-fiber 

distances when given a degree of nonuniformity other than the uniform pattern.  
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For the 60% VF, because of the high density, the strain for cavitation does not change 

much at any degree of nonuniformity. This could be due to the closeness of fibers that makes 

it more difficult to apply large values of nonuniformities.   

 

 

 
(a) 40 % FVF & Uniform pattern (b) 60 % FVF & Uniform pattern 

  

 

 

Figure 59. Effect of FVF on the cavitation strain for (a) 40% FVF and (b) 60% FVF with uniform fiber distribution. 
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(a) 40 % FVF & 100% NU (b) 50 % FVF & 100% NU  

  

  

Figure 60. Effect of FVF on the cavitation strain for (a) 40% FVF and (b) 50% FVF with 100% nonuniformity. 

 

 

 

Figure 61 summarizes the effect of fiber distribution nonuniformity in terms of the 

applied mechanical strain at which cavitation initiates for all three fiber volume fraction 

cases studied. As the plot shows, the effect of nonuniformity of fiber distribution is 

consistent at all three fiber volume fractions. Also, note that the strains for cavitation also 

reduce as the fiber volume fraction increases. 
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Figure 61. The average mechanical strain at onset of cavitation versus the percent degree of nonuniformity for 40%, 

50%, and 60 % fiber volume fraction in addition to maximum and minimum values. 

 

 

 

5.3.3. Effect of matrix/fiber stiffness ratio 

Figure 62 shows the applied strain averaged over at least five RVE realizations at 

which the cavitation criterion is satisfied for different matrix/fiber stiffness ratios (Em/Ef) 

plotted for the 50% fiber volume fraction and the 100% degree of nonuniformity. It can be 

observed that this strain increases with increasing Em/Ef ratio and approaches a plateau when 

this ratio is higher than 0.04. This trend is in agreement with a recent numerical study [156], 

which found that the microstructure of unidirectional composites strongly affects effective 

properties at high fiber volume fractions and high contrasts of constituent properties. 
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Figure 62.The effect of matrix/fiber stiffness ratio on the average mechanical strain at cavitation for 50% fiber 

volume fraction and 100% nonuniformity. 

  

 

 

5.4. The effect of the presence of voids 

Preliminary tests are conducted using 2D RVEs under transverse tension with the 

presence of a void. Its effect on damage initiation mechanism is studied. The void is taken 
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position of the maximum dilatational energy density is pointed out. At this position, a cavity 

is suggested to be formed at ~0.3% transverse tensile strain. A void is then added near this 
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above. 
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the maximum Uv, Figure 63 (b). The maximum energy densities are plotted in figure 63 (c). 

When the void is added, the position of maximum dilatational energy density is not changed. 

Besides, the principal stresses are nearly equal at strain ~0.3%. At this strain the dilatational 

energy density reaches the critical value for cavitation. This finding which is similar to the 

case without voids. The void is now added, in a position far away from the initial cavity 

position, Figure 64 (a). It is also found that cavitation requirements are fulfilled at nearly the 

same transverse strain as shown in figures 64(a) and (b). 

 

 

 

 

 

 

Figure 63. The effect of the presence of circular void on cavitation near the initial cavity site, (a) part of the original 

RVE showing the void and the position of cavitation without voids, (b) The principal stress ratios and the ratio of 

maximum/mean principal stress versus applied strain and (c) The maximum values of dilatational energy density 

Uv and distortional energy density Ud attained within RVEs versus applied strain. 
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Figure 64. The effect of the presence of circular void on cavitation away from the initial cavity site, (a) part of the 

original RVE showing the void and the position of cavitation without voids, (b) The principal stress ratios and the 

ratio of maximum/mean principal stress versus applied strain and (c) The maximum values of dilatational energy 

density Uv and distortional energy density Ud attained within RVEs versus applied strain. 
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When the elliptical void is placed vertically, as shown in Figure 66, the node at which 

cavitation occurs is changed.  

 

 

 

 

 

 

 

 

 

 

Figure 65. The effect of the presence of elliptical void on cavitation placed horizontally with loading direction, (a) 

part of the original RVE showing the void and the position of cavitation without voids, (b) The principal stress ratios 

and the ratio of maximum/mean principal stress versus applied strain and (c) The maximum values of dilatational 

energy density Uv and distortional energy density Ud attained within RVEs versus applied strain. 
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Figure 66. The effect of the presence of elliptical void on cavitation placed vertically with loading direction, (a) part 

of the original RVE showing the void and the position of cavitation with and without void, (b) The principal stress 

ratios and the ratio of maximum/mean principal stress versus applied strain and (c) The maximum values of 

dilatational energy density Uv and distortional energy density Ud attained within RVEs versus applied strain. 

 

 

 

In Figure 67, it can be observed that when the aspect ratio of the void is relatively 

high, the cavitation requirements in establishing a hydrostatic stress state is not achieved at 

all applied transverse strains. The maximum distortional energy density is obtained at the tip 

of the void and thus yielding is suggested to initiate at this site. 
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Figure 67. The effect of the presence of elliptical void with high aspect ratio on cavitation placed vertically with 

loading direction, (a) part of the original RVE showing the void and the position of cavitation with and without void, 

(b) The principal stress ratios and the ratio of maximum/mean principal stress versus applied strain and (c) The 

maximum values of dilatational energy density Uv and distortional energy density Ud attained within RVEs versus 

applied strain. 
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5.5. Summary and conclusion 

This chapter examined the effects of manufacturing induced disorder in fiber 

distribution within composites on the initiation of first failure event under transversely 

applied tension. By constructing RVE realizations using the proposed algorithm, and 

analyzing those in a finite element model, the local stress fields have been calculated. 

Relevant point-failure criteria have been applied for brittle cavitation and yielding to predict 

initiation of the first failure event. Following specific conclusions can be drawn. 

• Stress and failure analysis of RVE realizations for all cases conducted indicate that 

brittle cavitation is the earliest failure event under transverse tension of unidirectional 

composites. The earliest yielding occurs at locations where the fibers are very close 

and the matrix develops compressive stresses. 

• The mechanical strain at the onset of cavitation decreases as the degree of 

nonuniformity increases. This occurred at all three fiber volume fractions considered 

in this study. The constituent properties used in the study were typical of a 

glass/epoxy composite. The mechanical strain to onset of cavitation is affected 

significantly at low matrix/fiber stiffness ratios. It increases as this ratio increases 

and approaches a constant value at high ratios. 

• From preliminary results, it is found that the presence of voids seems to either alter 

the cavitation position or prevent a hydrostatic stress state from being created at all 

applied strains. Voids shape, position and size could be considered parameters in 

studying the effect of voids on damage initiation by cavitation. Further research 

should be conducted to make a better assessment on the subject. 
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6. DAMAGE INITIATION UNDER AXIAL SHEAR LOADING 1 

 

As mentioned before, matrix cracking can be observed when inclined loading or 

shear loading is applied. Studying damage initiation using RVEs under axial shear loading 

cannot be done in a 2-Dimensional model; instead, three dimensional RVEs should be 

constructed. When the axial shear loading is applied using the same inner window concept 

as illustrated in the previous chapter, it was found that local stress and strain fields are 

influenced by the edge effects. To avoid these edge effects, periodic boundary conditions 

(PBCs) are imposed. 

In what follows, application of the PBC is illustrated. The local stress and strain fields 

resulting from conducted FEA under axial shear load are monitored. The finite element 

results are obtained for established RVEs with different FVFs and degrees of NU, using our 

algorithm described in chapter 4. Failure analysis is then conducted 

6.1. Periodic boundary conditions 

PBCs are expressed as coupling constraint equations applied on the relative 

displacement of opposite faces of the RVE. The degree of freedom as well as the far field 

strain are considered variables. The periodic boundary equations are applied to opposite 

nodes in the RVE. The RVE mesh is generated in a way ensuring equal number of nodes for 

any two opposite faces. Following the procedure in [195], consider an RVE with a square 

                                                 

1 Reprinted with a permission from “Damage Initiation in Unidirectional Fiber Reinforced Polymeric 

Composites Under Transverse and Shear Loading”, by Sarah A. Elnekhaily, Ramesh Talreja, 2017, 

Proceedings of the American Society for Composites: Thirty-second Technical Conference, 2017. Lancaster, 

PA: DEStech Publications, Inc. 
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cross section with side length L and thickness t that has its sides coincide with the xyz 

coordinate system. The constraint equations are: 

Uz = u(x, y, t) − u(x, y, 0) (14) 

Uy = u(x, L/2, z) − u(x, −L/2, z) (15) 

Ux = u(L/2, y, z) − u(−L/2, y, z) (16) 

For axial (parallel shear) loading mode, Ux = (0, 0, δs) where δs is the applied 

displacement.  

PBCs are imposed on two opposite faces. It is essential that the number of nodes at 

each face is equal to that of the opposite face. The nodes at the edges and at the corners are 

over-constrained because they are shared between two and three different faces respectively. 

The equations are implemented in the software ABAQUS using proper keywords in a python 

script, according to ABAQUS documentation [196] for the implementation of multi-point 

constraints.  

Consider a 3D RVE as shown in Figure 68. To constrain each pair of faces together, 

the nodes in one face will be considered as master nodes, while the nodes in the opposite 

face will be considered as slave nodes. Reference nodes are specified through which loads 

will be applied. Reference node 0 (RN0) is node 20, Reference node x (RNx) is node 26, 

Reference node y (RNy) is node1 and Reference node z (RNz) is node 22.  

Master faces are taken as those in the positive axes directions, and slave faces are in 

the opposite direction. For example, along the x axis, the master face will include nodes 

(7,8,9,17,18,19, 26, 27 and 28). 
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Figure 68. Nodes numbering of RVE for application of PBCs. 

 

 

 

The slave face will include (1,2,3,11,12,13,20,21 and 22). The same will be applied 

to the faces along the y and z axes. 

Along the x axis for the left and right faces, the PB equations are implemented as 

follows: 

u⃗ 26 − u⃗ 20 = u⃗ 26 − u⃗ 20  

(17) 

u⃗ 7 − u⃗ 1 = u⃗ 26 − u⃗ 20  

u⃗ 8 − u⃗ 2 = u⃗ 26 − u⃗ 20  

u⃗ 9 − u⃗ 3 = u⃗ 26 − u⃗ 20  

u⃗ 17 − u⃗ 11 = u⃗ 26 − u⃗ 20  

u⃗ 18 − u⃗ 12 = u⃗ 26 − u⃗ 20  

u⃗ 19 − u⃗ 13 = u⃗ 26 − u⃗ 20  

u⃗ 27 − u⃗ 21 = u⃗ 26 − u⃗ 20  

u⃗ 28 − u⃗ 22 = u⃗ 26 − u⃗ 20  
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The first constraint relation in (17) will be ignored as it is an identity. 

The same procedure will be applied to the three-other face pairs. Along the y axis, the 

following equations are implemented. 

u⃗ 1 − u⃗ 20 = u⃗ 1 − u⃗ 20  

(18) 

u⃗ 2 − u⃗ 21 = u⃗ 1 − u⃗ 20  

u⃗ 3 − u⃗ 22 = u⃗ 1 − u⃗ 20  

u⃗ 4 − u⃗ 23 = u⃗ 1 − u⃗ 20  

u⃗ 5 − u⃗ 24 = u⃗ 1 − u⃗ 20  

u⃗ 6 − u⃗ 25 = u⃗ 1 − u⃗ 20  

u⃗ 7 − u⃗ 26 = u⃗ 1 − u⃗ 20  

u⃗ 8 − u⃗ 27 = u⃗ 1 − u⃗ 20  

u⃗ 9 − u⃗ 28 = u⃗ 1 − u⃗ 20  

The first relation in (26) is also an identity; that is why it will be ignored. There is a 

condition in implementing the constraint equations in the finite element software ABAQUS. 

This condition requires that any node that was already implemented in any constraint 

equation should not be used again in another equation. That is why the last three equations 

in (18) are discarded. The master nodes in these equations were already implemented 

previously in equations (17). 

Again, for the front and back faces (along the z axis), constraint equations below are 

implemented. 

u⃗ 22 − u⃗ 20 = u⃗ 22 − u⃗ 20  

(19) 

u⃗ 13 − u⃗ 11 = u⃗ 22 − u⃗ 20  

u⃗ 16 − u⃗ 14 = u⃗ 22 − u⃗ 20  

u⃗ 25 − u⃗ 23 = u⃗ 22 − u⃗ 20  

u⃗ 3 − u⃗ 1 = u⃗ 22 − u⃗ 20  

u⃗ 6 − u⃗ 4 = u⃗ 22 − u⃗ 20  

u⃗ 9 − u⃗ 7 = u⃗ 22 − u⃗ 20  

u⃗ 28 − u⃗ 26 = u⃗ 22 − u⃗ 20  

u⃗ 19 − u⃗ 17 = u⃗ 22 − u⃗ 20  

Here too, the first constraint relation in (19) is an identity. The last five equations 

should be ignored because the master nodes were implemented in other constraint equations 

as shown above. 
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 A summary of the constraint conditions implemented for the 3D RVEs is given in 

equations (20): 

u⃗ 7 − u⃗ 1 = u⃗ 26 − u⃗ 20  

(20) 

u⃗ 8 − u⃗ 2 = u⃗ 26 − u⃗ 20  

u⃗ 9 − u⃗ 3 = u⃗ 26 − u⃗ 20  

u⃗ 17 − u⃗ 11 = u⃗ 26 − u⃗ 20  

u⃗ 18 − u⃗ 12 = u⃗ 26 − u⃗ 20  

u⃗ 19 − u⃗ 13 = u⃗ 26 − u⃗ 20  

u⃗ 27 − u⃗ 21 = u⃗ 26 − u⃗ 20  

u⃗ 28 − u⃗ 22 = u⃗ 26 − u⃗ 20  

u⃗ 2 − u⃗ 21 = u⃗ 1 − u⃗ 20  

u⃗ 3 − u⃗ 22 = u⃗ 1 − u⃗ 20  

u⃗ 4 − u⃗ 23 = u⃗ 1 − u⃗ 20  

u⃗ 5 − u⃗ 24 = u⃗ 1 − u⃗ 20  

u⃗ 6 − u⃗ 25 = u⃗ 1 − u⃗ 20  

u⃗ 13 − u⃗ 11 = u⃗ 22 − u⃗ 20  

u⃗ 16 − u⃗ 14 = u⃗ 22 − u⃗ 20  

u⃗ 22 − u⃗ 20 = u⃗ 22 − u⃗ 20  

u⃗ 25 − u⃗ 23 = u⃗ 22 − u⃗ 20  

 

Transverse load and axial shear load can be applied to the reference node RNx 

through displacements and the constraint conditions are as follows: 

 

 

 

Table 3. Applications of different load types using PBCs 

Load type RN0 (ux,uy,uz) RNx (ux,uy,uz) RNy (ux,uy,uz) RNz (ux,uy,uz) 

Axial Shear (0,0,0) (ε, 0, δz) (0, ε, 0) (0, 0, ε) 

Combined transverse 

tension and axial shear 
(0,0,0) (δx, 0, δz) (0, ε, 0) (0, 0, ε) 

Uniaxial tension (0,0,0) (δx, 0, 0) (0, ε, 0) (0, 0, ε) 

 

 

 

δx and δz are the displacements applied at RNx in the x and z directions, respectively, 

and ε indicates an unconstrained condition. 
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Five realizations of 3D RVE, with 14 x 14 fibers and square cross section with 

~200,000 linear hexahedral elements of type C3D8R, are generated. The RVE thickness is 

at least an element size as shown in figure 69. The maximum dilatational and distortional 

energy densities are determined at each applied shear strain applied after a thermal 

cooldown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69. 3D RVE construction with total 14x14 fibers. 

 

 

 

Results of dilatational and distortional energy densities as well as principal stress 

ratios, were compared when PBCs are applied versus ordinary boundary conditions, as in 

chapter 5 for transverse tensile displacements. Similar results were found in both cases for 

different values of fiber volume fraction and degree of nonuniformity. For example, figure 
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70 (a & b) shows the maximum dilatational and distortional energy densities when 

determined at each applied transverse tensile strain after thermal cooldown for an RVE 

having 40% FVF and 100% NU, with ordinary BCs and PBCs, respectively. Also, the 

principal stress ratio curves in figure 71 (a & b) for the same conditions, shows that cavitation 

has higher probability at around 0.4% strain for the two boundary conditions. This indicates 

that the size of the RVE with 14x14 fibers is adequate for local failure analysis of a 

unidirectional composite. Also, this gives us confidence about the periodic boundary 

equations that are implemented. 

 

 

 

(a) Ordinary BCs- 40% FVF & 100% NU (b) PBCs- 40% FVF & 100% NU 

  

Figure 70. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs versus applied transverse tensile strain with (a) Ordinary boundary conditions and (b) Periodic boundary 

conditions (PBCs) for 40% fiber volume fraction and 100% degree of nonuniformity. 
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 (a) Ordinary BCs- 40% FVF & 100% NU  (b) PBCs- 40% FVF & 100% NU 

  

Figure 71. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

tensile strain with (a) Ordinary boundary conditions and (b) Periodic boundary conditions (PBCs) for 40% fiber 

volume fraction and 100% degree of nonuniformity. 

 

 

 

6.2. Failure analysis 

For three fiber volume fractions (40 %, 54 % and 60 %), the maximum dilatational 

energy density is nearly constant with shear loading, and its value is relatively small 

compared to the distortional energy density. For example, in figure 72, both the maximum 

dilatational and distortional energy densities are plotted for 54% fiber volume fraction and 

100% nonuniformity. The dilatational energy density has a nearly constant value at all 

applied shear strains. This value is ~ 0.043 MPa, which is significantly lower than the critical 

value or brittle cavitation. In the meanwhile, the distortional energy density is increasing 

with applied shear strain.  Also, for the same RVE, the condition of the equality of principal 

stress ratios for cavitation to occur is not fulfilled throughout the virtual test as shown in 

figure 73. Similar Observations were found for the other fiber volume fractions and other 

degrees of nonuniformity, e.g., Figures 74 and 75.  
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For all considered fiber volume fractions and different degrees of fiber 

nonuniformity, the strain at which the maximum distortional energy density reaches its 

critical value is found to decrease with increasing the degree of NU, and the maximum 

distortional energy density occurs in the matrix between closest fibers throughout the 

thickness. This could be due to the decrease in the inter-fiber distance when the fiber 

nonuniformity is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs versus applied axial shear strain for 54% fiber volume fraction and 100% degree of nonuniformity. A nearly 

constant value of Uv =0.043 MPa is maintained at all applied shear strain values. 
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Figure 73. The principal stress ratios and the ratio of maximum/mean principal stress versus applied axial shear 

strain for 54% fiber volume fraction and 100% degree of nonuniformity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs versus applied axial shear strain for 54% fiber volume fraction and 60% degree of nonuniformity. A nearly 

constant value of Uv =0.066 MPa is maintained at all applied shear strain values. 
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Figure 75. The maximum values of dilatational energy density Uv and distortional energy density Ud attained 

within RVEs versus applied axial shear strain for 60% fiber volume fraction and 100% degree of nonuniformity. 

A nearly constant value of Uv =0.056 MPa is maintained at all applied shear strain values. 

 

 

 

6.3. Results and discussion 

6.3.1. Effect of degree of nonuniformity 

For a given fiber volume fraction, the strain at which the maximum distortional 

energy density meets the yielding criterion is found to decrease as the degree of 

nonuniformity increases. This is likely due to the decrease of interfiber distances with 

increasing degree of nonuniformity. Figures (76 – 78) show the effect of the degree of 

nonuniformity on the average value of the maximum distortional energy density for the 40%, 

54% and 60% fiber volume fractions. The matrix stiffness value for this case is 2.07 GPa, 

and the critical distortional energy density equals 1.564 MPa. As seen in the figures (76-78), 

the applied shear strain at which yielding occurs reduces significantly when fibers are 

distributed nonuniformly. However, the sensitivity of this strain to the degree of 

nonuniformity is small in the range of 30-100% for the 40% and 54% fiber volume fractions. 
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Figure 76. The mean of the maximum values of distortional energy density Ud attained within RVEs versus 

applied axial shear strain for 40% fiber volume fraction and different degree of nonuniformity. The values plotted 

are averages of multiple RVE realizations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 77. The mean of the maximum values of distortional energy density Ud attained within RVEs versus applied 

axial shear strain for 54% fiber volume fraction and different degree of nonuniformity. The values plotted are 

averages of multiple RVE realizations with maximum and minimum values. 
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Figure 78. The mean of the maximum values of distortional energy density Ud attained within RVEs versus applied 

axial shear strain for 60% fiber volume fraction and different degree of nonuniformity. The values plotted are 

averages of multiple RVE realizations with maximum and minimum values. 

 

 

 

6.3.2. Effect of fiber volume fraction 

For higher fiber volume fractions, with the same degree of nonuniformity, the strain 

at which the maximum distortional energy density reaches the threshold is found to decrease. 

In Figure 79, the maximum values of distortional energy density Ud attained within the RVEs 

are plotted versus the applied axial shear strain for 40%, 54% and 60% fiber volume fractions 

and 100% nonuniformity. It can be observed that by increasing the fiber volume fraction 

from 40% to 60%, the strain at which yielding occurs is decreased. Also, the distortional 

energy band is narrower for higher fiber volume fractions. Similar results are observed in 

the other degrees of nonuniformities, e.g., Figure 80 for zero degree of nonuniformity. 
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Figure 79. The maximum values of distortional energy density Ud attained within RVEs versus applied axial shear 

strain for 40%, 54% and 60% fiber volume fraction and 100 % of nonuniformity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80. The maximum values of distortional energy density Ud attained within RVEs versus applied axial shear 

strain for 40%, 54% and 60% fiber volume fraction and 0% of NU (uniform distribution). 
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6.3.3. Effect of matrix stiffness 

Two matrix stiffness values (2.07 GPa and 3.35 GPa) are compared with respect to 

the stain at which yielding will occur. For the three fiber volume fractions (40%, 54% and 

60%) with different degrees of nonuniformity, it is found that the applied shear strain at 

which yielding initiates is increased as the matrix stiffness is increased. In Figure 81 the 

results for 54% fiber volume fraction and 60% nonuniformity are shown. The yield strength 

of 85 MPa is taken for a matrix of Young’s modulus 2.07 GPa, which is typical for 

DGEBA/DETA epoxy [76], and the value 140 MPa is used for the other case of MTM57 

epoxy system [191]. In Figure 81, the values of the distortional energy density are plotted 

corresponding to these yield strength values. The mechanical strain for yielding to initiate is 

found to be ~ 0.008 for the 3.35 GPa matrix stiffness and ~ 0.007 for the 2.07 GPa matrix 

stiffness. Similar results are observed for the other volume fractions and degrees of 

nonuniformity. e.g., Figure 82 for 40% fiber volume fraction and uniform distribution are 

shown. 
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Figure 81. The maximum values of distortional energy density Ud attained within RVEs versus applied axial shear 

strain for 54% fiber volume fraction and 60% nonuniformity for two matrix stiffness values; 2.07 and 3.35 GPa. 

 

 

 

 

 

 

 

 

 

 

 

Figure 82. The maximum values of distortional energy density Ud attained within RVEs versus applied axial shear 

strain for 40% fiber volume fraction and 0% nonuniformity for two matrix stiffness values; 2.07 and 3.35 GPa. 
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6.4. Summary and conclusion 

In this chapter, the first event of failure has been examined under axial shear loading 

of unidirectional glass/epoxy composites. The random fiber distributions resulting from 

manufacturing have been quantified in terms of degrees of nonuniformity. For a selected 

degree of nonuniformity, the fiber distributions have been generated in representative 

volume elements by an algorithm established for the purpose. With finite element analysis, 

parametric studies have been conducted to investigate the effects of the degree of 

nonuniformity, fiber volume fraction and matrix stiffness on damage initiation. Periodic 

boundary condition is applied to be able to impose the axial shear load. The PBC gives 

similar results to ordinary boundary condition when transverse tension is applied to the 

RVEs. Below are some conclusions that can be addressed: 

• Under axial shear loading, the earliest yielding occurs at locations where the fibers 

take very close spacing and throughout the RVE thickness.  

• The mechanical strain at the onset of yielding decreases as the degree of 

nonuniformity increases for the investigated fiber volume fractions (40%, 54% and 

60%).  

• The mechanical strain at which yielding initiates is decreased by increasing the fiber 

volume fraction for the same degree of nonuniformity. 

• By increasing the matrix stiffness, the mechanical strain at which yielding initiates 

is increased for the same fiber volume fraction and same degree of nonuniformity. 
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 7. DAMAGE INITIATION UNDER BIAXIAL LOADING 

 

While in service, various composites suffer from complex loading conditions either 

static or dynamic, e.g. the wing of an airplane as it is subjected to both bending and torsional 

type of loadings. This multiaxial loading affects composites in a way that leads to a 

progressive degradation of the material stiffness due to the evolution of off-axis matrix 

cracks [197-211]. A biaxial loading is known to be the simplest case of a multiaxial loading. 

Many researches have studied the effect of biaxial loading on composites by combining two 

different loading types. Certain specimen shapes are found to be suitable for such tests. 

These are tubular, cruciform and off-axis flat specimens as shown in Figure 83. 

 

 

 

 

 

 

Figure 83. A schematic illustration of commonly used biaxial fatigue specimens: a) Tubular, b) Cruciform and c) 

Off-axis flat. Reprinted from [212] 

 

 

 

The most encountered types of biaxial loadings are as follows [211-223]: 

1) longitudinal loading and internal pressure on tubular specimens [213-216];  

2) longitudinal loading along with torsion on tubular specimens [217,218] 

3) biaxial tension and/or compression applied to flat cruciform specimens [219,220] and  

4) flat specimens under biaxial bending. 
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Other methods also include off-axis loading applied to a unidirectional composite 

coupon [221,222,223]. 

In [224], it was found that the failure and damage behavior will mainly depend on 

the local stress state achieved inside the materials regardless of the shape and the type of 

external applied loads. This conclusion was affirmed through a comparison between flat 

specimens and tubular ones made from the same material -E-glass/epoxy pre-preg. Uniaxial 

fatigue tests were conducted on flat coupons with a pre-selected off-axis angle θ and ply 

thickness. The local stress state is meant to be created such that it is similar to that in the 

tubular specimens during tension-torsion test. 

Complex stress states are difficult to be studied experimentally, but they can be 

simulated. Studying the effect of biaxial loading using virtual tests has been of interest to 

many researches in the past two decades [160,180,225-233].  

In this chapter, two cases of biaxial loadings will be applied to relevant RVEs with 

different FVF and different degree of NU: 1) Equi-biaxial transverse tension and 2) 

combined axial shear and transverse tension. Appropriate boundary conditions are applied 

for each loading case. 

7.1. Equi-biaxial tensile load 

7.1.1. Applied boundary condition 

An equi-biaxial tensile load is applied to the 2D RVEs. As with the uniaxial loading 

case, the RVEs were first subjected to a thermal cooldown from a stress-free state. 

Displacements were then applied to the RVE boundaries as shown in Figure 84.  
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Figure 84. Boundary conditions for an equi-biaxial displacement load. 

 

 

 

7.1.2. Failure analysis 

Consider an RVE with 50% FVF and 100% NU.  Both the maximum strain energy 

densities (distortional and dilatational) are monitored at all applied strains. The principal 

stress ratios are plotted for the site of maximum dilatational energy density at each applied 

strain, given in Figure 85. The principal stresses are nearly equal at ~0.35% strain for the 

two loading cases. Also, at this strain, the maximum dilatational energy density reaches its 

threshold value (a maximum of ~0.13-0.2 MPa as suggested in [76]). Thus, cavitation is 

suggested to be the first event of damage. Under biaxial load, the distortional energy density 

has higher values, compared to the dilatational energy density, at low applied strains. When 

u 

u RVE 
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the applied biaxial strain is increased, the distortional energy is decreased. This finding is 

similar to what obtained in [194] when an equi-biaxial tensile load was applied to a RVE 

constructed using a methodology provided by the researcher. 

When an equi-biaxial load is applied, it is found that the hydrostatic stress state is 

generated in the matrix between two fibers that are aligned with respect to either of the 

applied loads. On the other hand, yielding locations are present between the closest fiber 

pairs. 

 

 

 

(a) 
 (b) 

Figure 85. (a)The maximum values of dilatational energy density Uv and distortional energy density Ud and (b) 

Principal stress ratios and the ratio of maximum/mean principal stress, attained within RVEs versus applied 

strain under equi-biaxial tensile loads. 

 

 

 

7.2. Axial shear and transverse tensile load 

A commonly used parameter in many investigations in the field of biaxial loading on 

composite materials is the biaxiality ratio λ (shear / axial or transverse normal loads). Many 

studies have concluded the importance of such parameter on the damage and failure behavior 

and fatigue life of FRP composites [213,214,217,225,226]. 
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Capela et al. [225], studied the fatigue behavior of tubular specimens made from 

carbon fiber composite. The fatigue test was conducted under different torsion-bending 

biaxial load ratios. They concluded that the fatigue strength is decreased when increasing 

the shear component. 

Wang et al. [213] concluded that increasing the shear component in the biaxial 

tension/torsion fatigue test reduced the fatigue life appreciably. Similar results were obtained 

in [227] when conducting a tension/torsion fatigue test on graphite FRP-tube composite. 

Quaresimin et al. [218, 226] conducted tension-torsion fatigue tests on several 

configurations of glass/epoxy prepregs. They found that by increasing the load ratio, the 

crack initiation life is reduced. 

Based on available data in the literature, Quaresimin et al. [212] concluded that the 

local biaxial stress ratio established in the material affects to a great extent its fatigue and 

failure behavior. 

It can thus be concluded that a multiaxial loading or even the simplified biaxial 

loading affect the failure behavior of the composite. From all different biaxial loading 

conditions, the presence of axial shear is of great interest when dealing with the matrix-

dominated damage behavior [218]. 

Two different mechanisms are expected to occur under transverse tension and axial 

shear. In chapter 5, it was found that cavitation is likely under transverse tension for all fiber 

volume fractions and studied degrees of nonuniformity at relevant applied strain values. 

When only axial shear is applied, cavitation requirements are not fulfilled and thus, yielding 

is likely as the first event of damage. 



 

132 

In this section, the effect of the simultaneous axial shear and transverse tensile loads 

through a biaxiality stress ratio (λ) (axial shear /transverse tensile stress) on cavitation will 

be investigated. The effect of fiber volume fractions and degrees of nonuniformity will also 

be studied. Applying different loads is established through applying different biaxiality 

ratios on 14x14 three dimensional RVEs. The RVEs are constructed with the algorithm 

discussed in chapter 4 and the loads are applied under periodic boundary conditions 

following the same procedure as in the previous chapter.  

7.2.1. Boundary condition 

To avoid edge effects when applying axial shear stresses, periodic boundary 

conditions are imposed to 3D RVEs as illustrated in chapter 6. The Young’s modulus, 

Poisson’s ratio and thermal expansion coefficient of the fibers are Ef = 72 GPa, υf = 0.2 and 

αf =5x10-6, respectively, and the corresponding values for the matrix are Em = 2.07 GPa, υm 

= 0.345 and αm = 66x10-6, Table 4. Finite element analyses are conducted using the software 

ABAQUS to RVEs with different FVFs (40%, 54% and 60%) and different degree of NU 

(0%, 60% and 100 %). The simultaneous axial shear and transverse tensile loads are imposed 

on the RVE boundaries as indicated in table 3. 

 

 

 

Table 4. Materials properties for combined axial shear and transverse tension 

 Young’s modulus 

(GPa) 
Poisson’s ratio 

Thermal expansion 

Coefficient (10
-6

/ 
o

C) 

Fiber 72 0.2 5 

Epoxy 2.07 0.345 66 
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7.2.2. Failure analysis 

Different axial shear to transverse tensile stress ratios are imposed on the RVEs; 

ratios such as 1/1, 1/2, 1/4,1/8, …. and 1/100 as well as λ = 0 (for transverse tension only) 

with transverse tensile stresses up to 90 MPa.  

At each biaxiality stress ratio, local stress and strain fields from conducted FEA are 

monitored. The maximum distortional and dilatational strain energy densities are determined 

as well as their positions. Both the principal stress ratios and the maximum distortional and 

dilatational strain energy densities are plotted from which requirements for cavity formation 

are checked. These requirements include; 1) The dilatational energy density equals or 

exceeds the critical value for cavitation and 2) the principal stress ratios are within 20% 

difference to maintain a hydrostatic stress state. The transverse tensile strain (stress) required 

for cavitation could then be determined. For each value of λ, the transverse tensile stress is 

incrementally increased and the axial shear stress is changed accordingly. Finally, in a single 

diagram, all applied ratios are presented and those at which cavitation is likely as a first 

failure event are distinguished from when yielding occurs. 

To discuss it in more detail, consider a realization of 54% fiber volume fraction and 

100% nonuniformity as shown in figure 86. Under transverse tensile load, the principal stress 

ratios and the ratio of maximum/mean principal stress versus applied transverse stress are 

plotted, Figure 87. The principal stress ratios are nearly equal at a tensile stress of ~23 MPa. 

Also, the maximum values of dilatational energy density Uv and distortional energy density 

Ud versus the applied transverse stress are given for the same realization, Figure 88. At this 

stress, the dilatational energy density exceeds the threshold value (~0.2 MPa [76]). On the 

other hand, the distortional energy density at this stress has a value of ~0.2 MPa which is 
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lower than the threshold value required for yielding (~1.56 MPa). A cavity can thus be 

suggested to form at this stress value which is expected to take place as discussed in chapter 

5.  

By examining the positions of both maximum dilatational and distortional energy 

densities, it is found that the maximum dilatational is within the matrix between two adjacent 

fibers positioned horizontally to the transverse tension, while the maximum distortional 

energy density is established in the matrix in the midpoint between the closest pair of fibers 

throughout the RVE thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86. A realization of 54% fiber volume fraction and 100 % nonuniformity. 
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Figure 87. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

tensile stress for the realization shown in figure 86. 

 

 

 

 

 

 

 

 

 

 

 

Figure 88. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs versus applied transverse stress for the realization shown in figure 86. 
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The effect of axial shear stress σxz on cavity formation is then investigated through 

conducting several finite element analyses with different biaxial stress ratios. When only 

axial shear stress is applied, Uv has very low value that remains nearly constant with 

increasing the applied stress, as shown in the previous chapter. But when the axial shear 

stress is imposed along with transverse tension, the dilatational energy density has an 

appreciable value that is increased by increasing the applied stress as shown in the following 

figures. For example, at a biaxial ratio of 1/1 the principal stress ratios and maximum values 

of dilatational energy density Uv and distortional energy density Ud versus applied stress are 

constructed, Figures 89 and 90. It can be observed that cavitation requirement at achieving 

a hydrostatic tension is not fulfilled for all applied transverse stresses although the 

dilatational energy density reaches the critical value at transverse tensile stress ~ 19 MPa. It 

is worth mentioning that increasing the shear component (increasing λ) gives similar results 

and cavitation requirements are not fulfilled. In that case damage initiation through yielding 

is highly suggested. From this preliminary result, and to continue investigating the effect of 

the biaxial ratio λ on cavity formation, stress ratios less than 1 are selected. 
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Figure 89. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

stress attained within RVEs at axial shear stress/ transverse tensile stress ratio of 1/1 for the realization shown in 

figure 86. 

 

 

 

 

 

 

 

 

 

 

 

Figure 90. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs at axial shear stress/ transverse tensile stress ratio of 1/1 for the realization shown in figure 86. 
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The same procedure is performed but with lower values of λ (1/8, 1/12, 1/20 and 

1/100) as shown in the following figures (91-98). It is found that at stress ratios > 1/8, the 

cavitation requirements are not fulfilled. For example, at a biaxial ratio of 1/8 a hydrostatic 

stress state is not established at all applied transverse stress as observed from corresponding 

figures (91 and 92). When λ ~ 1/12, cavitation requirements comprising reaching the 

threshold value and having a hydrostatic stress state are maintained at a transverse tensile 

stress of ~ 23 MPa. This is observed at λ=1/12 and lower, as shown in figures (93-98) with 

λ=1/12, 1/20 and 1/100. This indicates that within certain stress ratios and under certain 

applied axial shear stress, cavitation is still a possible damage initiation mechanism. But, 

when the axial shear stress is relatively a large value, these requirements are hard to be 

maintained, instead, yielding as a damage initiation mechanism is to occur providing that Ud 

reaches its threshold value for yielding.  

The tensile stress required for yielding depends on λ. By increasing the biaxial ratio 

λ to be λ = 1/1, the tensile stress required for yielding is ~27 MPa as shown in Figure 90. 

Decreasing λ increases the transverse tensile stress necessary for yielding. For example, 

when λ=1/20 the tensile stress equals ~57 MPa as shown in (Figure 96) but when λ=1/100 it 

reaches ~78 MPa (Figure 98). 

It is worth mentioning that similar observation was found for RVEs with FVF of 

40% and 60% with different percentage of NU. In some cases, cavitation was found to occur 

at biaxial stress ratios λ <=1/7. 
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Figure 91. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

stress attained within RVEs at axial shear stress/ transverse tensile stress ratio of 1/8 for the realization shown in 

figure 86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs at axial shear stress/ transverse tensile stress ratio of 1/8 for the realization shown in figure 86. 
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Figure 93. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

stress attained within RVEs at axial shear stress/ transverse tensile stress ratio of 1/12 for the realization shown in 

figure 86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 94. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs at axial shear stress/ transverse tensile stress ratio of 1/12 for the realization shown in figure 86. 
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Figure 95. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

stress attained within RVEs at axial shear stress/ transverse tensile stress ratio of 1/20 for the realization shown in 

figure 86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 96. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs at axial shear stress/ transverse tensile stress ratio of 1/20 for the realization shown in figure 86. 
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Figure 97. The principal stress ratios and the ratio of maximum/mean principal stress versus applied transverse 

stress attained within RVEs at axial shear stress/ transverse tensile stress ratio of 1/100 for the realization shown in 

figure 86. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 98. The maximum values of dilatational energy density Uv and distortional energy density Ud attained within 

RVEs at axial shear stress/ transverse tensile stress ratio of 1/100 for the realization shown in figure 86. 
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To summarize the whole results, biaxial stress ratios at which cavitation is likely 

are plotted in one diagram, figure 99. A band of these ratios is drawn, in which the solid 

line represents the ratios at which the difference of the three principal stresses is minimum 

and the maximum and minimum dashed lines represent ratios of cavitation where the three 

principal stresses' values are within the ±20% difference. Outside this band, cavitation 

requirements are not fulfilled, and thus, cavitation will not occur.  

It seems obvious that cavity formation can take place only under certain λ values at 

certain shear and tensile stresses. For the realization shown in figure 86, a transverse tensile 

stress in the range (~20 ~ 30MPa) along with relatively small values of axial shear 

component up to ~3 MPa are required to form a cavity. This transverse tensile stress range 

is decreased by increasing the applied shear stress. Away from this range, cavitation 

requirements are not fulfilled.  

 

 

 

 

 

 

 

 

 

 

 

Figure 99. Axial shear stress versus transverse tensile stress in MPa, for the realization shown in figure 86. Solid 

line represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference 

where cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation 

mechanism can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Below are examples of the results obtained for different RVEs under different 

combinations of fiber volume fraction (40% ,54%, and 60%) and degree of nonuniformity 

(0%, 60% and 100%), Figures (100-108). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 100. Axial shear stress versus transverse tensile stress in MPa for 40% fiber volume fraction and 0% 

nonuniformity. Solid line represents the axial shear stress/ transverse tensile stress ratios with minimum principal 

stresses difference where cavitation requirements are fulfilled. The short-dashed lines describe the range in which 

the cavitation mechanism can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 101. Axial shear stress versus transverse tensile stress in MPa for 40% fiber volume fraction and 60% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 102. Axial shear stress versus transverse tensile stress in MPa for 40% fiber volume fraction and 100% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 103. Axial shear stress versus transverse tensile stress in MPa for 54% fiber volume fraction and 0% 

nonuniformity. Solid line represents the axial shear stress/ transverse tensile stress ratios with minimum principal 

stresses difference where cavitation requirements are fulfilled. The short-dashed lines describe the range in which 

the cavitation mechanism can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 104. Axial shear stress versus transverse tensile stress in MPa for 54% fiber volume fraction and 60% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 105. Axial shear stress versus transverse tensile stress in MPa for 54% fiber volume fraction and 100% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 106. Axial shear stress versus transverse tensile stress in MPa for 60% fiber volume fraction and 0% 

nonuniformity. Solid line represents the axial shear stress/ transverse tensile stress ratios with minimum principal 

stresses difference where cavitation requirements are fulfilled. The short-dashed lines describe the range in which 

the cavitation mechanism can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 107. Axial shear stress versus transverse tensile stress in MPa for 60% fiber volume fraction and 60% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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Figure 108. Axial shear stress versus transverse tensile stress in MPa for 60% fiber volume fraction and 100% 

nonuniformity for three different realizations, a) realization 1, b) realization 2 and c) realization 3. Solid line 

represents the axial shear stress/ transverse tensile stress ratios with minimum principal stresses difference where 

cavitation requirements are fulfilled. The short-dashed lines describe the range in which the cavitation mechanism 

can occur because of the tolerance of 20% given to the attainment of hydrostatic tension. 
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For each FVF and degree of NU, cavitation is suggested to be created at certain 

biaxiality stress ratios (λ) providing that the transverse stress is within certain values. The 

transverse stress is slightly changed with the applied shear stress. For example, for an RVE 

of 40% FVF and 100% NU in figure 102 (a), under tensile stress only the transverse stress 

values at which cavitation might occur in the range of ~ (19-24 MPa). This range becomes 

smaller by increasing the applied shear stress component to be ~ (21-23 MPa) at shear stress 

~ 1.5 MPa. At all biaxiality ratios, within the drawn band, a cavity is possible to be formed. 

At very low and very large values of λ, cavitation requirements are not fulfilled. 

7.2.3. Summary and conclusion 

Two conditions of biaxial loading are applied to the constructed RVEs with different 

volume fractions and degree of nonuniformity. The first type is equi-biaxial transverse 

tensile load. This is performed to 2D RVEs with (40, 50 and 60 %) FVF and with (0,30, 60 

and 100%) NU. The second type of biaxial load is combined axial shear and transverse 

tension. This is imposed to 3D RVEs with 40, 54 and 60 % FVF and with different % of NU 

(0, 60 and 100) under PBCs. Several conclusions could be addressed for both biaxial loading 

conditions. 

7.2.3.1. Under equi-biaxial transverse tension 

• Cavitation is suggested to be the first event of failure. The strain at which 

cavitation forms is similar to that obtained under uniaxial transverse tension.  

• The maximum distortional energy density shows lower values at all applied 

strains compared to the values obtained under uniaxial tensile load. Thus, the 

critical distortional energy density required for yielding will be maintained at 

larger strain values.   
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7.2.3.2. Under combined axial shear and transverse tension 

• A hydrostatic stress state is found to be established under certain values of λ, 

with specific values of transverse tensile stress and with relatively low values of 

the axial shear stress component. Under either very low or very large values of 

transverse tensile stress this hydrostatic stress state is eliminated. This effect is 

also found when large shear stresses are applied. These findings are observed 

for all FVFs and studied degrees of NU.  

• The maximum biaxial stress ratio below which cavitation requirements are 

fulfilled equals to ~1/7.  

• When cavitation becomes difficult to take place, the second possible damage 

mechanism (yielding), becomes feasible providing that the distortional energy 

density reaches its threshold value.  

• By increasing the shear stress component, the transverse stress at which yielding 

might occur is increased. 
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8. CONCLUSION 

 

This study has mainly examined the effects of manufacturing induced disorder in 

fiber distribution within fiber glass/epoxy composites on the initiation of first failure event 

under different loading conditions such as uniaxial transverse tension, equi-biaxial 

transverse tension, axial shear and a simultaneous axial shear and transverse tension.  

Two energy based point failure criteria for the polymer matrix – critical dilatational 

energy density (Uv) and critical distortional energy density (Ud) – are considered. The critical 

(Uv) is taken from the literature [76] which is in the range ~0.13-0.2 MPa for the materials 

studied. This critical Uv is assumed to be responsible for a brittle failure (cavitation) to take 

place at the onset of damage. The critical Ud, on the other hand, is believed to be responsible 

for yielding to occur when reached.  

The degree of fibers’ nonuniformity has been quantified by a linear measure of the 

displacements of fibers from their expected positions in a uniform square pattern. An 

algorithm is developed to construct a RVE that can establish different degrees of 

nonuniformity (e.g.; 0%, 30%, 60%, and 100%) and different FVFs (e.g.; 40%, 50%, 55% 

and 60%). RVEs are constructed using the “shaking model” in which the fibers are deviated 

from their uniform positions depending on the applied degree of nonuniformity. At least five 

different RVE realizations are created for each combination of FVF and the degree of NU, 

except for the 0 degree of NU (uniform distribution), where only one realization is possible. 

For each case, a statistical analysis of the fiber distribution is performed and represented by 

appropriate functions describing the interfiber distance characteristics such as Ripley’s K 
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function and the pair distribution function as well as the nearest neighbor (First, second and 

third) and the nearest neighbor orientation functions. 

The study of the damage initiation is carried out using micromechanical simulation 

of composites. The micromechanical study is conducted through finite element analysis on 

the constructed RVEs. The RVEs are subjected to a thermal cool down = - 82o, then the 

mechanical load is applied using appropriate boundary conditions.  

8.1. Conclusion 

Based on the statistical and failure analyses one can conclude that: 

• The algorithm proposed in this study is capable of creating different degrees of 

nonuniform distribution of fibers. Increasing the NU from 0% to 100% changes the 

fibers distribution from a uniform pattern to a more like Poisson’s distribution. This 

is observed from statistical functions such as K(r) and g(r) functions for all examined 

FVFs and degrees of NU. However, the impact of nonuniformity is lowered when 

high FVFs are considered e.g.; 60%. 

• An RVE should be large enough to contain all possible irregularities that might 

initiate damage. Based on that, and considering that interfiber distances are essential 

in the distribution of the local stress and strain fields, the nearest neighbor functions 

are utilized in determining the minimum RVE size. In fact, the first nearest neighbor 

function is found to be adequate for the purpose. 

• Based on the nearest neighbor functions and the local stress fields in the form of 

Mises stress and dilatational energy density under transverse tension and axial shear 

loads, it was found that a minimum RVE size, containing ~200 fibers, is adequate 
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for all fiber volume fractions considered (40%, 50%, 54% and 60%) and all degrees 

of NU. 

• Damage initiation through cavitation as a brittle damage behavior in polymers is 

likely as the first failure event when a transverse tension exists. Cavitation occurs 

when a hydrostatic stress state is established in the matrix between two close pair of 

fibers that lie in parallel to the transverse load direction. For the FVFs considered 

(40, 50 and 60%) and degrees of NU (0%, 30%, 60%, and 100%), the strain required 

for cavitation to occur has a lower value compared to that required for yielding. The 

maximum distortional strain energy occurs between the two fibers that have the 

minimum interfiber distance within the RVE. 

• The mechanical strain at the onset of cavitation decreases as the degree of 

nonuniformity increases. This occurred at all FVFs considered in this study. The 

constituent properties used in the study were typical of a glass/epoxy composite. 

• On conducting FEA under combined axial shear with transverse tension for different 

FVFs (40%, 54% and 60%) and different % of NU (0%, 60% and 100%) reveals that 

cavitation is observed to initiate damage only at certain biaxial stress ratios λ within 

a specific transverse tensile stresses. The maximum biaxial stress ratio below which 

cavitation requirements are fulfilled equals to ~1/7. Away from these ratios, yielding 

is suggested as the first failure event providing that the maximum distortional energy 

density reaches the threshold value. 

• Under axial shear loading only, the earliest matrix yielding occurs at locations of the 

minimum interfiber distance throughout the 3D RVE thickness. The mechanical 

strain at the onset of yielding decreases as the degree of nonuniformity increases for 
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the investigated FVFs (40%, 54% and 60%). Under the same NU, this strain is 

decreased by increasing the RVE fiber volume fraction. 

• The matrix stiffness or the matrix/ fiber stiffness ratio found to be an important 

parameter that cannot be ignored. Under transverse tension, the mechanical strain to 

onset of cavitation is affected significantly at low matrix/fiber stiffness ratios. It 

increases as this ratio increases and approaches a constant value at high ratios. Also, 

when an axial shear is applied, the mechanical strain at which yielding initiates is 

found to increase by increasing the matrix stiffness for the same FVF and same 

degree of NU. 

• Preliminary results from virtual tests, conducted under transverse tension with the 

presence of voids, revealed that voids shape, position and size could be considered 

parameters that affect the damage initiation mechanism. Further research should be 

conducted to make a better assessment on the subject. 

8.2. Recommended future work 

1- Voids, in the UD composite matrix, are known to be one of the most common 

manufacturing defects. In present work, it has been shown that the presence of a void, 

alters the local stress field. In addition, parameters, such as the shape, size, and position 

of such voids, could affect the damage initiation mechanism that takes place. Studying 

the effect of voids on damage initiation should be performed experimentally as well as 

theoretically and/or numerically.  

2- More effort should be made to determine the interface properties, especially those that are 

related to fracture and damage, such as fracture toughness.  



 

159 

3- Damage propagation should be studied with the presence of different manufacturing 

defects, including different degrees of fibers’ distribution nonuniformity.  

4- The validity of proposed algorithm to create the composites RVEs, should be examined 

under different uniaxial/ multiaxial loading conditions, such as compression loading and 

transverse shear loading. 
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APPENDIX A  

NEAREST NEIGHBOR FUNCTIONS FOR DIFFERENT RVE REALIZATIONS 

 

In this appendix, the first, second and third nearest neighbor functions are plotted 

for different RVE sizes having (16, 100,400 and 484 fibers) with 40% and 60% FVFs and 

with different degrees of NU (100%, 60% and 30%). The smallest RVEs, containing 16 

fibers, show fewer frequency peaks compared to the larger RVE sizes, containing 400 and 

484 fibers, for the three nearest functions considered. The large RVE sizes > 400 fibers, 

show a frequency distribution that is more uniform than smaller ones.  
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Figure 109. Frequency of occurrence of the first nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 40% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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Figure 110. Frequency of occurrence of the second nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 40% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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Figure 111. Frequency of occurrence of the third nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 40% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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Figure 112. Frequency of occurrence of the first nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 60% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 

For uniform 

distribution 

with 

frequency=1 



 

193 

 

 

 

 

  

 

 

Figure 113. Frequency of occurrence of the second nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 60% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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Figure 114. Frequency of occurrence of the third nearest neighbor distance (from center to center) in μm within 

the RVE realizations for 60% fiber volume fraction and degrees of NU of (a)100%, (b) 60% and (c) 30% for 484, 

400, 100 and 16 fibers in an RVE. 
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APPENDIX B  

DAMAGE INITIATION SITES  

 

In this Appendix, different realizations are shown with different FVFs and different 

degrees of NU. The realizations also show the positions of maximum dilatational and 

maximum distortional energy densities, where cavitation is likely in the former, while 

yielding is likely in the latter. It can be observed that the maximum dilatational energy 

density occurs between two fibers aligned with the direction of the applied transverse 

tension, the x direction. 
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Figure 115. Different RVEs (a-e) with 40% fiber volume fraction and 100% nonuniformity, showing the position 

of maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 116. Different RVEs (a-e) with 40% fiber volume fraction and 60% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 117. Different RVEs (a-e) with 40% fiber volume fraction and 30% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 118. Different RVEs (a-e) with 50% fiber volume fraction and 100% nonuniformity, showing the position 

of maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 119. Different RVEs (a-e) with 50% fiber volume fraction and 60% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 120. Different RVEs (a-e) with 50% fiber volume fraction and 30% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 121. Different RVEs (a-e) with 60% fiber volume fraction and 100% nonuniformity, showing the position 

of maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 122. Different RVEs (a-e) with 60% fiber volume fraction and 60% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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Figure 123. Different RVEs (a-e) with 60% fiber volume fraction and 30% nonuniformity, showing the position of 

maximum dilatational Uv and maximum distortional Ud energy densities under transverse loading. 
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