
TENSOR LEARNING FOR RECOVERING MISSING INFORMATION:

ALGORITHMS AND APPLICATIONS ON SOCIAL MEDIA

A Dissertation

by

HANCHENG GE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James Caverlee
Committee Members, Frank M. Shipman

Xia Hu
Jianhua Huang

Head of Department, Dilma Da Silva

December 2017

Major Subject: Computer Engineering

Copyright 2017 Hancheng Ge



ABSTRACT

Real-time social systems like Facebook, Twitter, and Snapchat have been growing

rapidly, producing exabytes of data in different views or aspects. Coupled with more

and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valu-

able information regarding “who”, “where”, “when” and “what”, these real-time human

sensor data promise new research opportunities to uncover models of user behavior, mo-

bility, and information sharing. These real-time dynamics in social systems usually come

in multiple aspects, which are able to help better understand the social interactions of the

underlying network. However, these multi-aspect datasets are often raw and incomplete

owing to various unpredictable or unavoidable reasons; for instance, API limitations and

data sampling policies can lead to an incomplete (and often biased) perspective on these

multi-aspect datasets. This missing data could raise serious concerns such as biased esti-

mations on structural properties of the network and properties of information cascades in

social networks. In order to recover missing values or information in social systems, we

identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption

of rich side information that is able to describe the similarities of entities, generation of

robust models rather than limiting them on specific applications, and scalability of mod-

els to handle real large-scale datasets (billions of observed entries). With these challenges

in mind, this dissertation aims to develop scalable and interpretable tensor-based frame-

works, algorithms and methods for recovering missing information on social media. In

particular, this dissertation research makes four unique contributions:

• The first research contribution of this dissertation research is to propose a scalable

framework based on low-rank tensor learning in the presence of incomplete informa-

tion. Concretely, we formally define the problem of recovering the spatio-temporal
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dynamics of online memes and tackle this problem by proposing a novel tensor-

based factorization approach based on the alternative direction method of multipli-

ers (ADMM) with the integration of the latent relationships derived from contextual

information among locations, memes, and times.

• The second research contribution of this dissertation research is to evaluate the gen-

eralization of the proposed tensor learning framework and extend it to the recom-

mendation problem. In particular, we develop a novel tensor-based approach to

solve the personalized expert recommendation by integrating both the latent rela-

tionships between homogeneous entities (e.g., users and users, experts and experts)

and the relationships between heterogeneous entities (e.g., users and experts, topics

and experts) from the geo-spatial, topical, and social contexts.

• The third research contribution of this dissertation research is to extend the pro-

posed tensor learning framework to the user topical profiling problem. Specifically,

we propose a tensor-based contextual regularization model embedded into a matrix

factorization framework, which leverages the social, textual, and behavioral contexts

across users, in order to overcome identified challenges.

• The fourth research contribution of this dissertation research is to scale up the pro-

posed tensor learning framework to be capable of handling real large-scale datasets

that are too big to fit in the main memory of a single machine. Particularly, we

propose a novel distributed tensor completion algorithm with the trace-based regu-

larization of the auxiliary information based on ADMM under the proposed tensor

learning framework, which is designed to scale up to real large-scale tensors (e.g.,

billions of entries) by efficiently computing auxiliary variables, minimizing inter-

mediate data, and reducing the workload of updating new tensors.
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1. INTRODUCTION

1.1 Motivation

The Web and social media are data rich. With the prolific sharing of videos, images,

blogs, and tweets, and the enormous amount of transactional behaviors like retweets, re-

views, ratings, and purchase behavior, we increasingly have fine-grained access to the

“who”, “where”, “when” and “what” of real-time human dynamics. This unprecedented

data explosion promises new opportunities to uncover models and theories of user behav-

ior, mobility, and information sharing, as well as lead to new algorithms and frameworks.

1.1.1 Multi-Aspect Data

These dynamics usually come in multiple aspects. For instance, purchase behaviors

of users at online stores can be expressed in millions of user-item-date triplets, like Adam

bought headphones on Monday. In this case, the user, item and date are the three aspects

of the data. Together, these multiple aspects can help uncover important underlying phe-

nomena. For example, the triplets in this case can uncover which items may be popular at

different times, and which users are more likely to purchase which items. Similar multiple

aspect data can be found in social networks such as Twitter, Snapchat and Facebook: for

instance, we can model user-user-topic triplets to capture the kinds of posts that two users

tend to share with one another. Alternatively, two friends can chat on both Snapchat and

Facebook, and retweet each other on Twitter. All these multi-aspect datasets are able to

help better understand the social interactions of the underlying network.

Indeed, discovery, modeling and analyzing multi-aspect data can benefit many do-

mains beyond social media, including analysis of knowledge bases [1], chemometrics [2],

signal processing [3, 4], computer vision [5, 6], climate dynamics [7, 8], neurology [9, 10],

network traffic [11], Web graphs [12] and more. By gleaning hidden or latent features, the
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multi-aspect data in these various domains can lead to new insights into applications such

as anomaly detection [13, 14], recommender systems [15, 16] and correlation analysis

[17], among many others.

1.1.2 The Missing Data Problem

Nevertheless, the raw multi-aspect datasets are often incomplete owing to various un-

predictable or unavoidable reasons. The raw data revealing dynamics on social media

are often restricted to proprietary data warehouses (e.g., requiring privileged access to In-

stagram’s backend photo serving services), and so researchers and practitioners typically

must rely on sampling-based methods to build models and conduct analysis. Of course,

this sampling faces its own challenges – including API limitations and data sampling poli-

cies that can lead to an incomplete (and often biased) perspective on the underlying dy-

namics. Moreover, changes to data access policies can lead to additional challenges – as

demonstrated by Twitter’s closing of their Firehose API in April 2015. Additionally, even

a robust data sampling approach can still face errors due to missing data and errors in

the data collection process. This missing data raises serious concerns such as significant

bias on the estimation of structural properties of the network [18] and the properties of

information cascades in a social network [19].

Already, we have witnessed considerable compelling studies on filling the missing

or unobserved entries based upon partially observed data by adopting various techniques

including multivariate interpolation [20], spectrum analysis [21], fuzzy neural network

[22], and matrix factorization [23, 24]. For example, Candès at al. [25] recover a data

matrix from a sampling of its entries via the convex optimization and find the matrix

with minimum nuclear norm that fits the data. These methods have shown good success,

but typically assume a simple inter-dependence among variables of interest (e.g., user-

item, post-location), resulting in a challenge to handling correlations and complex inter-
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dependencies among these different factors.

1.1.3 Tensors and Tensor Learning

In contrast, tensors, as a generalization of multi-way arrays, provide a compelling way

to capture inter-dependencies among entities (i.e. more than two dimensions). Therefore,

it is natural to represent the multi-aspect datasets as tensors. Indeed, in recent years,

tensor factorization models have been widely studied and applied in many fields due to its

essential nature well-suited for multi-aspect data analysis. Tensor completion has been a

popular technique for estimating missing values or information in multi-aspect data with

the assumption that the data of interest follows a low-rank model, which is accomplished

by finding a low-rank tensor model for the observed data and leveraging such low-rank

model to estimate the unobserved data. As we can see, it has been extensively studied and

employed in applications such as tag recommendation [15], user group detection [26], link

prediction [27] and more. For instance, computational phenotyping in electronic health

records is further improved by tensor completion for discovering more meaningful and

distinct phenotypes [28]. The TFMAP [29] has shown how to leverage tensor completion

to boost the mobile app recommendation by treating the problem of predicting how a

user will rate an app under some context as the estimation of missing values in a tensor.

Researchers from Sandia National Laboratories [30] have tackled the missing data arisen

in computer network traffic via tensor completion in order to avoid situation that important

datasets are discarded or improperly analyzed due to missing data. Furthermore, some

researchers [31, 32] incorporate contextual information into the completion problem for

achieving better recovery accuracy instead of only utilizing the observed data. Some others

[33, 34] scale up the tensor completion algorithms to handle real large-scale datasets.
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1.2 Challenges

In the previous section, we described the problem of missing values or information in

the multi-aspect datasets on social media and how to tackle this problem with the state-

of-the-art methods. To satisfy the rapid growth of data in both its velocity and volume

in the real-world, there are significant research gaps towards effectively and efficiently

handling missing information in the large-scale multi-aspect datasets with rich contextual

information. We now identify “4S” research challenges including sparsity, similarity,

specificity and scalability, associated with recovering the missing information on social

media under the background of large-scale data analytics as follows:

• Sparsity. With the consistently increasing volume of the multi-aspect data, it may

have very large dimensions (e.g., over 1 million users on Netflix). As a result, prob-

lems with high dimensionality lead to the fact that limited observed data points be-

come extremely sparse as the dimensionality increase. In particular, users purchase

limited items and provide few feedback on them. The collected data would be very

sparse comparing with a large number of items online (over millions). The sparsity

is able to degrade the performance of models with considerable bias and mislead-

ing inference [35]. Given a very sparse multi-aspect data, how can we recover its

missing information while perpetuating the systematical performance of models?

• Similarity. Massive datasets on social media usually have multiple dimensions (as-

pects) with the high sparsity that leads to degrading performance of completion algo-

rithms, especially for those with the low-rank assumption. Besides of the relational

information among objects in the multi-aspect datasets, we usually have rich contex-

tual information for each dimension, e.g., profile information of customers at Ama-

zon and attributes of products purchased by customers, which are usually complex.

All these contextual information are able to describe the similarity of entities among

4



dimensions, and potentially exploited to improve the accuracy of recovering missing

information in the sparse large-scale datasets. How can we model these contextual

information? How can we incorporate them into the completion algorithms?

• Specificity. Most existing completion algorithms focus on recovering the miss-

ing information from one specific dataset or with specified contextual information,

which lack of generalization towards a variety of applications or different types of

side information, and limit their applicability to real-world big data problems. How

can we develop a generalized framework for the recovery of missing information

with the integration of all potential pairwise relations, which can be utilized in vari-

ous applications?

• Scalability. The scale of modern multi-aspect data poses the challenge for existing

completion algorithms, most of which become entirely infeasible for the Gigabyte

and Terabyte data sets that are fast becoming common and too large to fit in the main

memory of a single machine. The need for scalable completion algorithms is over

increasing, and there is a huge gap that needs to be filled. Can we handle the issue

of scalability in order to appropriately recover missing information in large-scale

datasets? How can we scale the completion algorithms to massive datasets while

pertaining their performance with respect to estimate missing information?

1.3 Contributions

This dissertation seeks to integrate and leverage rich contextual information from so-

cial networks to develop new scalable and interpretable algorithms for recovering missing

values in big multi-aspect data by bridging Tensor Completion and Data Science for real-

world applications. To combat identified challenges, we propose scalable tensor learning

algorithms for recovering missing spatio-temporal dynamics of online memes, expanding
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them to applications that are personalized expert recommendation and learning user topi-

cal profiles, and improving the scalability of tensor learning algorithms in social systems.

Concretely, this dissertation makes the following four unique contributions:

• Overcoming Missing Spatio-Temporal Dynamics: First, in order to tackle the

problem of missing spatio-temporal dynamics of online memes, this dissertation

proposes a scalable low-rank tensor learning framework in the presence of incom-

plete information. Concretely, we formally define the problem of recovering the

spatio-temporal dynamics of online memes and solve this problem by proposing a

novel tensor-based factorization approach based on the alternative direction method

of multipliers (ADMM) [36]. The core insight of the proposed method is to care-

fully take into account the latent relationships derived from contextual information

among locations, memes, and times. We evaluate the performance of our tensor-

based framework over both synthetic and Twitter datasets. Through extensive exper-

imental study, we find that our proposed framework achieves an significant improve-

ment on recovering missing spatio-temporal dynamics compared to state-of-the-art

alternatives, while achieving significantly greater efficiency.

• Recommending Personalized Experts: Second, this dissertation evaluates the gen-

eralization of the proposed tensor learning framework and applies it to the recom-

mendation problem that is one of typical missing information problems on social

media. Specifically, we present a novel tensor-based approach via the extension

of the proposed tensor learning framework to personalized expert recommendation

with the integration of both the latent relationships between homogeneous entities

(e.g., users and users, experts and experts) and the relationships between hetero-

geneous entities (e.g., users and experts, topics and experts) from the geo-spatial,

topical, and social contexts. Through an experimental study, we find that the pro-
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posed model can significantly improve the quality of the recommendation compared

to several state-of-the-art baseline methods.

• Learning User Topical Profiles: Third, this dissertation extends the proposed ten-

sor learning framework to the user topical profiling problem. Concretely, we propose

a tensor-based contextual regularization model embedded into a matrix factorization

framework, which leverages the social, textual, and behavioral context across users,

in order to overcome identified challenges. We model all contextual signals into one

tensor via calculating the user similarity in each of social, textual and behavioral

contexts. After applying the tensor decomposition, the latent representation of users

can be learned, which is further embedded into a matrix factorization framework in

order to learn unknown user topical profiles.

• A Distributed Scalable Approach to Tensor Learning: Fourth, this dissertation

enables the proposed tensor learning framework to handle real large-scale datasets

that are too big to fit in the main memory of a single machine. We propose a novel

distributed tensor completion algorithm with regularized trace of the auxiliary in-

formation based on ADMM under the proposed tensor learning framework, which

is designed to scale up to real large-scale tensors by efficiently computing auxiliary

variables, minimizing intermediate data, and reducing the workload of updating new

tensors. We successfully tackles the high computational costs and minimizes the in-

termediate data and find that the proposed distributed scalable algorithm is capable

of handling up to 100x larger tensors than existing methods with much faster con-

vergence rate, shows better linearity on the machine scalability, and achieves better

accuracy in the applications such as recommender systems and link prediction.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:
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• Section 2: Background. In this chapter, we provide a brief background on tensors

containing necessary tensor operations, basic definitions, and notation followed by

the tensor decomposition and completion problems throughout this dissertation.

• Section 3: Related Work. In this chapter, we discuss related work, specifically

tensor factorization, recovering missing information on social media over scenar-

ios such as estimating spatio-temporal dynamics of online memes, recommending

personal experts and learning user topical profiles, and scalable tensor algorithms.

• Section 4: Recovering Missing Dynamics: A Tensor-based Approach with Aux-

iliary Information. In this chapter, we propose AIRCP, a novel tensor learning

algorithm that leverages auxiliary information among locations, hashtags for recov-

ering the spatio-temporal dynamics of online memes in the presence of incomplete

information. Through experimental evaluation on both synthetic and real-world

Twitter hashtag data, we see that the proposed framework outperforms alternative

stateof-the-art methods with an average improvement of over 27%.

• Section 5: TAPER: A Contextual Tensor-Based Approach for Personalized Ex-

pert Recommendation. In this chapter, we extend the proposed tensor learning al-

gorithm to propose a tensor-based personalized expert recommendation framework

that integrates these factors for revealing latent connections between homogeneous

entities (e.g., users and users) and between heterogeneous entities (e.g., users and

experts). Through extensive experiments over geo-tagged Twitter data, we find that

the proposed framework can improve the quality of recommendation by over 30%

in both precision and recall compared to the state-of-the-art.

• Section 6: T-CRM: Learning User Topical Profiles. In this chapter, we develop a

tensor-based unified model for learning user topical profiles by simultaneously tak-
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ing into account pairwise relations among multiple contextual information. Through

extensive experiments, we find that the proposed model is capable of learning high-

quality user topical profiles, and leads to a 10∼15% improvement in precision and

mean average error versus a cross- triadic factorization state-of-the-art baseline.

• Section 7: DISTENC: A Distributed Scalable Tensor Completion Algorithm.

In this chapter, we propose DISTENC, a distributed large-scale tensor completion

algorithm with regularized trace of the auxiliary information based on ADMM run-

ning on the Spark framework. Through evaluating for both synthetic and real-world

large-scale datasets, experimental results demonstrate the superiority of DISTENC

with up to 10∼1000× larger scalability than existing methods, much faster conver-

gence rates, and better linearity on the machine scalability. Moreover, it achieves

up to an average improvement of 23.5% in the accuracy in terms of the applications

such as recommender systems and link prediction.

• Section 8: Conclusions and Future Directions We conclude our dissertation with

a summary of contributions, and discuss potential research extensions to the results

presented here.
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2. BACKGROUND

2.1 Introduction

In this chapter, we provide a brief background on tensors including tensor operations,

basic definitions, and notation. We follow this background with an introduction to the

tensor decomposition and completion problems at the core of this dissertation.* Recall

that tensors are generalizations of multi-array arrays and have proven to be a very powerful

tool in a variety of applications that inherently produce multi-dimensional (multi-aspect)

datasets. Table 2.1 lists the definition of symbols applied throughout the entire dissertation.

Note that we also introduce some specialized notation in some of the following chapters.

2.2 Tensor

Definition 2.1.1 (Tensor). A tensor is a multi-way array, whose dimension is called mode

or order. An N th-order tensor is an N -mode array, denoted as X ∈ RI1×I2×···×IN . The

number of non-zero elements of a tensor X is denoted as nnz(X).

Definition 2.1.2 (Kronecker Product). Given two matrices A ∈ RI×J and B ∈ RK×L,

their Kronecker product A⊗B generates a matrix of size IK × JL defined as:

A⊗B =


a11B a11B · · · a1JB

...
... . . . ...

aI1B a11B · · · aIJB

 , (2.1)

Definition 2.1.3 (Khatri-Rao Product). It is a column-wise Kronecker product, denoted

as A�B where both A ∈ RI×R and B ∈ RK×R have the same number of columns. Their
*Note that tensors introduced here are not the same as tensors in physics and engineering; those are

generally referred to as tensor fields in mathematics.
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Table 2.1: Symbols and Operations.

Symbols Definitions
R the set of real numbers
X tensor (Euler script letter)

X(n) n-mode matricization of a tensor XXX
X matrix (uppercase bold letter)
x column vector (lowercase bold letter)
x scalar (lowercase letter)
N order of a tensor (number of modes)
[[·]] Kruskal operator
⊗ Kronecker product
� Khatri-Rao product
∗ Hadamard product
◦ outer product

< ∗, ∗ > inner product of matrices
×n n-mode tensor-matrix product
X−1 inverse of a matrix X
X† Moore-Penrose pseudo-inverse of a matrix X
x(i) ith entry of a vector x

X( : , i) the entire ith column of a matrix X (same as tensor)
X(i, : ) the entire ith row of a matrix X (same as tensor)
‖X‖2F Frobenius norm of X
nnz(X) number of non-zero elements in X

Khatri-Rao product produces a matrix of size IK ×R defined as:

A�B = [a1 ⊗ b1, · · · , aR ⊗ bR]. (2.2)

Definition 2.1.4 (Hadamard Product). Given two matrices A and B with the same size
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I × J , their Hadamard product A×B is the element-wise matrix product, defined as:

A×B =


a11b11 a12b12 · · · a1Jb1J

...
... . . . ...

aI1bI1 aI2bI2 · · · aIJbIJ

 . (2.3)

Definition 2.1.5 (Tensor Matricization). Tensor matricization is to unfold a tensor into a

matrix format with a predefined sequence of mode order. The n-mode matricization of a

tensor X ∈ RI1×...×IN is denoted as X(n) ∈ RIn×(
∏

k 6=n Ik). The order of the other modes

except mode n can be arranged randomly to construct the column of X(n). For instance, we

matricize a 3-order tensor X ∈ RI×J×K in the following three ways that are X(1) of size

(I × JK), X(2) of size (J × IK) and X(3) of size (K × IJ). These tensor matricizations

are mapped in the following way:

X(i, j, k)→ X(1)(i, j + (k − 1)J) (2.4)

X(i, j, k)→ X(2)(j, i+ (k − 1)I) (2.5)

X(i, j, k)→ X(3)(k, i+ (j − 1)I) (2.6)

Definition 2.1.5 (n-mode Tensor-Matrix Product). Given an N th-order tensor X ∈

RI1×I2×...×IN and a matrix A ∈ RIn×J , their multiplication on its nth-mode is represented

as Y = XXX×n A and is of size I1 × . . . In−1 × J × In+1 . . .× IN . The element-wise result

is demonstrated as:

YYY(i1, . . . , in−1, j, in+1, . . . , iN) =
In∑
k=1

X(i1, . . . , in−1, k, in+1, . . . , iN)A(k, j). (2.7)
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2.3 Tensor Decomposition

Tensor decomposition has been widely used in tensor learning to discover latent rela-

tions in the multi-aspect data. There are two widely used low-rank decompositions of ten-

sors, the CANDECOMP/PARAFAC (CP) and the Tucker decompositions. The CP tensor

decomposition is the most popular tensor decomposition method, independently proposed

by [37, 38, 39]. Given an N -mode tensor X ∈ RI1×I2×IN , the CP tensor decomposition

method decomposes a tensor X into a sum of R� min(I1, . . . , IN) rank-one tensors as:

X ≈ [[A(1), . . . ,A(N)]] =
R∑
r=1

a(1)
r ◦ a(2)

r ◦ . . . ◦ a(N)
r , (2.8)

where a
(n)
r is the rth column of the factor matrix A(n) ∈ RIn×R at mode n, and R is the

rank of a tensor X. Each rank-one component in the CP tensor decomposition can be

interpreted as a latent “concept” (cluster) in the multi-aspect data, which can be treated

as an explanatory model. In addition, the CP tensor decomposition also holds very good

theoretical properties including uniqueness of solvers under very mild conditions. The

definition of CP tensor decomposition is given below.

Definition 2.1.5 (CP Tensor Decomposition). Given an N -mode tensor X ∈ RI1×I2×IN

and rank R, the CP tensor decomposition solves the optimization problem:

minimize
A(1),...,A(N),X

1

2
‖X−

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ‖2F ,

where A(n) ∈ R(In×R) is the factor matrix at mode-n of a tensor X.

2.4 Tensor Completion

Tensor completion is extensively applied in tensor mining to fill the missing ele-

ments with partially observed tensors. Low rank is often a necessary hypothesis to re-
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strict the degree of freedoms of the missing entries being intractable. Hence, we only

focus on low-rank tensor completion (LRTC) problem in this dissertation. We introduce

CANDECOMP/PARAFAC(CP)-based tensor completion. The CP tensor decomposition

proposed by Hitchcock [37] is one of the most used tensor factorization models, which

decomposes a tensor into a sum of rank-one tensors. It can be employed for the tensor

factorization to the tensor completion problem. Before being actively researched in recent

years, the LRTC problem is usually considered as a byproduct of the tensor decomposition

problem with missing values. Given an N th-order tensor X ∈ RI1×I2×···×IN with the rank

R� min(I1, . . . , IN), the CP-based tensor completion solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F +

λ

2

N∑
n=1

‖A(n)‖2F

subject to Ω ∗X = T,A(n) ≥ 0, n = 1, 2, 3.,

where T denotes the partial observations, A(n) ∈ RIn×R are the factor matrices, and Ω is

a non-negative weight tensor with the same size as X:

Ω(i1, . . . , in, . . . , iN) =


1 if X(i1, . . . , in, . . . , iN) is observed,

0 if X(i1, . . . , in, . . . , iN) is unobserved.

In practice, tensor completion is not only capable of recovering the missing information

occurred in the original multi-aspect data well, but also providing the interpretation of

latent factors. The CP-based tensor completion guarantees the uniqueness of latent factors

that generated the variations in the data.
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3. RELATED WORK

In this chapter, we summarize the state-of-the-art methods with respect to recovering

missing values on social media from tensor factorization, a variety of applications and

scalable tensor factorization algorithms.

3.1 Tensor Factorization

We begin in his section with a review of related work on tensor decomposition and

tensor completion, respectively.

3.1.1 Tensor Decomposition

Compared to matrix factorization methods – which focus on two-way data, not multi-

dimensional data – tensors, as a generalization of matrices, can naturally model higher-

order relationships among entities (i.e. more than two dimensions). Tensor factoriza-

tion models have been studied and applied in many fields due to their strong power on

multi-dimensional data analysis. There are two widely used low-rank decompositions of

tensors, the CANDECOMP/PARAFAC (CP) and the Tucker decompositions [40]. The

most common methods used to factorize tensors include alternating least square (ALS)

[6, 41, 42, 43], stochastic gradient descent (SGD) [44, 45] and coordinate descent (CDD)

[33, 46].

3.1.2 Tensor Completion

Tensor completion is used to estimate missing values in tensors based on their low-

rank approximations, which has been extensively studied and employed in applications

such as recommendations [16, 15], user group detection [26], and link prediction [27].

Most these methods only focus on the sampled data when performing tensor completion

without considering auxiliary information with which tensors usually come. These aux-

15



iliary information help us have a better performance in tensor completion [32]. Though

several researchers incorporate contextual (external) information into the matrix factor-

ization problem [31], few studies explore the tensor completion problem with auxiliary

information. Technically, it is challenging to embed auxiliary information into a factor-

ization model, especially with many heterogeneous contexts. Narita et al. [32] integrated

auxiliary information into tensor decomposition methods, resulting in better performance

compared with ordinary tensor decomposition methods. Nevertheless, they primarily fo-

cus on general tensor decomposition rather than tensor completion. However, these models

usually face some efficiency challenges since [32] requires solving the Sylvester equation

with a high cost several times in each of iterations, making them infeasible for large-scale

applications. Though several researchers incorporate auxiliary (external) information into

the matrix factorization problem [31, 47], few studies explore the tensor completion prob-

lem with auxiliary information. Technically, it is challenging to embed auxiliary infor-

mation into a factorization model, especially with many heterogeneous contexts. Narita

et al. [32] integrated side information into tensor decomposition methods, resulting in

better performance compared with ordinary tensor decomposition methods. Nevertheless,

they primarily focus on general tensor decomposition with auxiliary information, but not

tensor completion. In this dissertation, we integrate rich contextual information among

objects into a tensor completion framework and scale it up to be capable of handling real

large-scale datasets in a variety of applications.

3.2 Estimating Missing Spatio-Temporal Dynamics of Online Memes

In this section, we review related work on spatio-temporal dynamics of online memes

and corresponding methods on estimating their missing spatio-temporal dynamics.
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3.2.1 Spatio-Temporal Dynamics of Online Memes

The increasingly mobile aspects of social media services like Instagram, Facebook,

and Twitter have led to a number of studies on geo-spatial characteristics of users and in-

formation sharing. For example, researchers have built models of geo-spatial properties to

infer geographic information from tweets, such as spatial modeling to geolocate objects

[48] and predicting user locations [49]. Other researchers have analyzed the geo-spatial

properties of online memes on Facebook [50] and on YouTube based on propagation pat-

terns [51]. On the other hand, much effort has focused on the temporal properties of

online memes. Yang et al. [52] studied temporal patterns of online content including

Twitter hashtags and online phrases. Matsubara et al. [53] explored temporal patterns of

online information diffusion. Other researchers have focused on both spatial and temporal

properties of online memes, like [54].

3.2.2 Estimating Missing Spatio-Temporal Data

Toward recovering missing spatio-temporal data, there have been many proposed meth-

ods adopting techniques like multivariate interpolation [20], spectrum analysis [21], and

matrix factorization [23, 55]. These methods have shown good success, but typically as-

sume a simple inter-dependence among variables of interest (e.g., memes), space, and

time, resulting in a challenge to handling correlations (and complex inter-dependencies)

among these different factors. Recently, researchers employ tensor-based approaches to

tackle the problem of recovering missing spatio-temporal data. Bahadori et al. [56] pro-

posed a unified low-rank tensor learning framework on spatio-temporal data, under which

either spatial or temporal information can be modeled, respectively. Yet, how to leverage

both spatial and temporal information simultaneously was not investigated in their study.

Zhou et al. [57] developed a Tucker-based tensor model called the spatio-temporal tensor

completion to infer missing Internet traffic data by integrating spatio-temporal constraint
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information as within-mode regularization. However, these models usually face some ef-

ficiency challenges since [32] requires solving the Sylvester equation with a high cost

several times in each of iterations, and [57] strongly relies on solving large-scale least

square problems, making them infeasible for large-scale applications. In contrast, scalable

completion algorithms proposed in this dissertation seek to overcome these challenges by

developing an efficient tensor-based method that integrates rich contextual information

among objects simultaneously. In addition, the proposed approach not only inherits ad-

vantages of efficiency based on ADMM [58] and uniqueness of solutions enhancing the

robustness, but also leads to better recovery by incorporating this contextual information.

3.3 Recommendation on Experts

In this section, we review related work on recommending experts for users which can

be treated as estimating unobserved ratings of experts who have not been checked by users.

3.3.1 Finding Experts

Expert finding has been widely studied for many years. For instance, Weng et al. [59]

proposed a PageRank-based approach to identify topic experts by applying both topical

similarity between users and social link structure. Ghosh et al. [60] proposed the Cognos

system to find topic experts by relying on Twitter lists. Zhang et al. [61] identified top

experts in a Java forum by applying link analysis approaches such as PageRank and HITS.

Hu et al. [62] proposed a more personalized recommendation by considering network

semantic information, in addition to network topological measures for expert recommen-

dation. Of course, there are many other efforts, including [63, 64, 65].

3.3.2 Systems towards Recommending Experts

One promising approach for recommenders is to cast the problem as a matrix factor-

ization problem, in which user preferences may be projected into a lower dimensional
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embedding space [66, 67, 68, 69]. In recent years, tensor factorization models are be-

coming popular and successfully applied in the recommendation. Karatzoglou et al. [70]

studied multi-dimensional recommendations by leveraging contextual information to build

a User-Item-Context tensor model. Hidasi and Tikk [71] developed an Alternating Least

Squares (ALS) based tensor factorization approach for context-aware recommendations.

Bhargava et al. [72] applied a tensor factorization-based approach to provide collabo-

rative recommendations for points of interest (POI) involving multi-dimensions such as

locations, activities and time. Similarly, Lu et al. [67] introduced a matrix-factorization

approach for personalized expert recommendation, but restricted to two-dimensional data

(e.g., a user-expert matrix) and only considering user’s geo-spatial preferences on experts.

In contrast, the proposed method described in this dissertation is the first to investigate

tensor factorization for personalized expert recommendation by integrating user’s prefer-

ences on experts from geo-topical-social contexts as well as valuable relationships between

users, experts and topics, and to explore the impact of these contexts on such an approach.

3.4 Learning User Topical Profiles

In this section, we review related work on finding user interests and expertise, leverag-

ing contexts and factorization models.

3.4.1 Finding User Interests and Expertise

Finding user interests and expertise has numerous applications, and one of the most

popular tasks is personalized recommendation. Considerable research [73, 74, 75, 76, 77,

78, 79, 80] has assumed a user’s interests or expertise as implicit personal preferences for

building recommender systems in different domains, such as web search [77, 78], web

content [80], rating systems [81, 76], and social media [74, 82, 75, 79].

For social media research, the latent factor model is a state-of-the-art method for user

recommendation. Interpreting the latent factors as topics, approaches based on such a
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model usually avoid explicitly identifying user interests but instead integrate the factors

into a recommendation task. For example, Hong et al. applied matrix factorization on both

users and tweets and focused on recommending user’s retweeting behavior [82]. Similarly,

Jiang et al. presented a probabilistic matrix factorization method to recommend whether a

user adopts an item on a social network [75]. Zhong et al. collected user’s webpage views

to build a matrix factorization profile for web content recommendation [80].

3.4.2 Leveraging Contexts

A sequence of research has focused on using contexts to learn user interests. One of

the most traditional information is textual context, upon which many works have built

generative models like PLSA and LDA [83, 84, 59, 85]. Another popular context is social

information (often via friendships)[75, 86, 87], with the natural assumption that friends

tend to have similar profiles. In addition, behavioral context has become a newer factor; for

example, Guy et al. used user’s tagging behavior as evidence for content recommendation

in social media [73]. Lappas et al. considered user endorsement as the behavioral context

[88]. In [79], Zhao et al. focused on the behaviors of commenting, “+1”, and “like” on

Google+. Typically, these contexts have been treated separately. URL sharing behavior

for topical profiles has received some attention in social media research. Previous work

looked into why and what content people share via URLs on social media [89, 90]. Some

work has also mentioned the role of URL sharing in social spamming [91].

3.4.3 Factorization Models

Technically, it is challenging to embed context into a factorization model, especially

with many heterogeneous contexts. A handful of studies have adopted a regularization

model [92, 93, 76] for personalized recommendation, though typically focusing on only

one context. In [81], assuming contexts are not independent, latent spaces are learned

separately for each context. Tensor-based factorization methods [94, 95] have been used in
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many applications such as behavior modeling, healthcare, and urban planning [96, 28, 97].

A more comprehensive survey of tensor factorization and its applications can be found in

[40].

Several studies have focused on heterogeneous domains or entities, instead of con-

texts. Yu et al. put multiple types of entities into a heterogeneous network and used a

Bayesian ranking process to estimate user preferences [98]. Similarly, Hu et al. looked

into a traditional user-item recommendation problem, presenting a factorization model

across heterogeneous items. However, the network will quickly grow when users and

items increase. Singh and Gordon proposed a framework to learn different types of rela-

tions, where they iteratively do matrix factorization between all pairs of domains [99]. Hu

et al. [100] adopted the existing PARAFAC2 factorization algorithm on a tensor model,

which is obtained by combining user ratings of different merchandises like book, music,

and movie. Zhong et al. [80] directly applies a matrix factorization model on Web users

and their clicked content items.

In contrast, we focus on learning user topical profiles rather than rating recommenda-

tion, and we are interested in leveraging heterogeneous contexts. We propose a generalized

factorization model in which we simultaneously consider contexts via regularization. We

further take care of context-wise relations by integrating both tensor decomposition and

regularization together.

3.5 Scalable Tensor Algorithms

In this section, we review related works on scalable tensor algorithms, and distributed

computing frameworks.

3.5.1 Scalable Tensor Factorization

We witness considerable efforts on developing scalable algorithms for tensor factoriza-

tion, most of which focus on solving the intermediate data explosion problem. Concretely,
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pioneers Bader and Kolda [42] develop efficient algorithms for sparse tensor decomposi-

tion by avoiding the materialization of very large, unnecessary intermediate Khatri-Rao

products. Kolda and Sun [14] continuously work on the specific tensor decomposition

method Tucker for sparse data and solve the intermediate explosion problem by calculat-

ing the tensor-matrix multiplication one slice or fiber at a time. An alternative approach,

DBN, is introduced in [101] where the authors use Relational Algebra to break down the

tensor into smaller tensors, using relational decomposition, and thus achieving scalabil-

ity. Kang et al. [102] first propose a scalable distributed algorithm GigaTensor under the

MAPREDUCE framework for the specific tensor decomposition method PARAFAC by de-

coupling the Khatri-Rao product and calculate it distributively column by column. Jeon et

al. [103] improves on GigaTensor and propose HaTen2 that is a general, unified framework

for both Tucker and CP tensor decomposition. There has been other alternatives on solving

the intermediate data explosion problem of the pure tensor composition [33, 104, 105].

On the other hand, some researchers put their focus on developing scalable, distributed

algorithms for the tensor decomposition with additional side information that is usually

represented in a matrix, e.g., a similarity matrix between experts. Papalexakis et al. [45]

propose an efficient scalable framework to solve the coupled matrix-tensor factorization

problem by leveraging the biased sampling to split the original large data into samples,

running the common solver to samples and merging the results based on the common

parts in each sample. Beutel et al. [44] propose FLEXIFACT, a MAPREDUCE algorithm to

decompose matrix, tensor, and coupled matrix-tensor based on stochastic gradient descent.

Jeon et al. [106] propose SCouT for scalable coupled matrix-tensor factorization. Shin et

al. [46] propose two scalable tensor factorization algorithms SALS and CDTF based on

subset alternating least square and coordinate descent, respectively. Livas et al. [107]

develop a constrained tensor factorization framework based on ADMM. Smith et al. [34]

optimize and evaluate three distributed tensor factorization algorithms based on ALS, SGD
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and CDD, respectively, by extending SPLATT [108] that optimizes the memory usage.

3.5.2 Distributed Computing Frameworks

MAPREDUCE [109] is a distributed computing model for processing large-scale datasets

that cannot be handled in a single machine, running in a massively parallel manner. MAPRE-

DUCE has been the most popular distributed computing framework due to its advantages

including automatic data distribution, fault tolerance, replication, massive scalability, and

functional programming by which users only define two functions map and reduce.

HADOOP [110] is an open-source version of MAPREDUCE. Because of its excellent scal-

ability and ease of use, it has been successfully applied in many data mining applications

[102, 111, 112, 113]. However, HADOOP is inefficient to execute iterative algorithms due

to its intensive disk accesses [109]. Apache Spark [114] is an in-memory MAPREDUCE,

which provides a high-level interface for users to build applications with respect to large-

scale data computation. Spark allows to store intermediate data in memory and performs

efficient memory-based operations without requiring data to be spilled to disk (effectively

reducing the number of disk Input/Output operations). Therefore, Spark is capable of per-

forming iterative algorithms very efficiently. Due to these advantages, Spark has been used

in applications [104, 115, 116].
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4. AIRCP: A TENSOR-BASED APPROACH FOR RECOVERING MISSING

SPATIO-TEMPORAL DYNAMICS OF ONLINE MEMES*

In this chapter, we tackle the challenges of sparsity and similarity for the problem of

missing spatio-temporal dynamics of online memes. The raw data revealing the spatio-

temporal dynamics of online memes are often incomplete and error-prone due to many

reasons such as API limitations, data sampling policies, and necessary privilege accesses.

Thus, we propose and evaluate a scalable framework based on low-rank tensor learning to

recover these unobserved spatio-temporal dynamics of online memes. Our framework can

effectively and efficiently recover missing dynamics of online memes in the presence of

incomplete information. The core insight of the proposed method is to carefully take into

account the latent relationships among locations, memes, and times; these relationships

can then be embedded into a tensor completion framework for uncovering the approximate

complete data based only on partial sparse observations.

4.1 Introduction

Many large-scale mobile social media services have been growing rapidly, enabling

millions of users to generate and share location-associated content on a massive scale.

For instance, many mobile image sharing services such as Instagram allow users to at-

tach their latitude-longitude coordinates to shared photographs; location sharing services

such as Foursquare and Glimpse enable billions of “check-ins”; and Twitter users gener-

ate millions of geo-tagged tweets per day. In turn, these fine-grained spatio-temporal logs

of user activities promise new research opportunities to uncover models of user behavior,

*Reprinted with permission from “Uncovering the Spatio-Temporal Dynamics of Memes in the Pres-
ence of Incomplete Information” by Hancheng Ge, James Caverlee, Nan Zhang and Anna Squicciarini,
2016. Proceedings of the 25th ACM International Conference on Information and Knowledge Management.
Copyright 2016 by ACM. DOI: http://dx.doi.org/10.1145/2983323.2983782
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mobility, and information sharing. Already, there have been efforts to improve location-

based recommendations, targeted advertising, social media search, and event detection

[48, 49, 54, 117, 118].

However, the data revealing these dynamics are often raw and incomplete due to var-

ious unpredictable or unavoidable reasons such as restriction to proprietary data ware-

houses, mal-operations, missing at random and API limitations. Since researchers and

practitioners typically must rely on sampling-based methods to build spatio-temporal mod-

els of user behavior, these data sampling policies can lead to an biased perspective on the

underlying dynamics. For instance, Morstatter et al. [119] found significant differences

in the quality and composition of sampled Twitter data by comparing different sampling

policies over the streaming API and Twitter’s Firehose. Moreover, changes to data access

policies can lead to additional challenges – as demonstrated by Twitter’s closing of their

Firehose API in April 2015. Additionally, even a robust data sampling approach can still

face errors due to missing data and errors in the data collection process. This missing data

raises serious concerns. For example, Kossinets [18] found that missing data in a social

network can significantly impact the estimation of structural properties of the network.

Similarly, Sadikov et al. [19] pointed out that incomplete data may lead to critically dif-

ferent properties of information cascades in a social network. As a result, models based

on mobile social media traces may be of limited usefulness and generalizability in the

presence of incomplete data traces.

Hence, in this chapter we explore new scalable methods for recovering the spatio-

temporal dynamics of online memes – like shared images, hyperlinks, videos, or hash-

tags – in the presence of incomplete information. Concretely, we propose a novel tensor-

based factorization approach to recover the spatio-temporal dynamics of memes. The core

insight of the proposed method is to carefully take into account the latent relationships

among locations, memes, and times; these relationships can then be embedded into a ten-
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sor completion framework for uncovering the approximate complete data based only on

partial observations. We explore how to model and integrate this auxiliary information –

here, in the form of relationships among locations, memes, and times – and show how the

underlying tensor completion can be efficiently solved compared to existing methods.

Table 4.1: Comparison between AirCP and the state-of-the-art.

AIRCP TFAI[32] TNCP[26] LRCO[120]
Model
Tensor X X X X

Coupled Tensor-Matrix X X
Obj. Function

Tensor Completion X X X
CP X X X

Tucker X
Auxiliary Info.

Heterogeneous Info. X X
Regularization

Laplacian X X
Tikhonov X

Trace Norm X
Opt. Method

ADMM X X X
Alternating Least Square X

Through this proposed spatio-temporal dynamics framework – called AIRCP that

stands for Auxiliary Information Regularized CANDECOMP/PARAFAC completion. In

Table 4.1, we provide an overview of the state of the art. In short, AIRCP reigns, combin-

ing capability of leveraging heterogenous information as well as time efficiency, which is

more feasible towards “big data”. We explore research questions like: Based on an inher-

ently limited sample, can we recover the underlying distribution of memes at a particular

location? And at a particular time? What impact does the amount of sampled data have
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on the quality of this recovery? For example, can we build a high-quality model of meme

spread with access to only 20% of actual data? Towards tackling these and related ques-

tions, in this manuscript we formally define the problem of recovering the spatio-temporal

dynamics of online memes by leveraging the latent relationships among memes, locations,

and times, and develop approaches for modeling these latent relationships. Furthermore,

we propose a novel framework for recovering spatio-temporal dynamics by a CP-based

tensor completion model with regularized trace of the auxiliary information from memes,

locations, and times, as well as Tikhonov regularization, which is efficiently solved by an

efficient algorithm based on ADMM using less computation time than existing methods.

We empirically evaluate the proposed framework on both synthetic and real-world Twitter

hashtag datasets and find that the proposed method achieves an average over 27% improve-

ment in recovering missing hashtags versus state-of-the-art alternatives, while achieving

significantly greater efficiency.

4.2 Problem Statement

We assume that there exists a set of geo-temporal tagged online memes H . A meme

in this case could correspond to a shared image, a hyperlink, video, or hashtag, among

many other possibilities. Each meme h ∈ H can be expressed as a tuple (h, l, t) where

l is the location in which the meme is posted and t is the time at which the meme was

posted. Suppose we have N unique geo-temporal tagged memes, L locations, M different

timestamps and occurrences of memes O. Let ohlt ∈ O be the number of occurrences of a

meme h in a location l at a timestamp t. We view the spatio-temporal dynamics of geo-

temporal tagged memes as a tensor X ∈ RN×L×M , in which X(i, j, k) represents the count

of a meme hi in a location lj at a timestamp tk. Due to sampling errors, corrupted data, or

other external factors, we further assume that we only can observe parts of the complete

dynamics X; we denote this partially observed tensor as T ∈ RN×L×M , in which some
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elements are missing or unobservable.

4.2.1 Spatio-Temporal Dynamics Recovery Problem

Given a set of geo-temporal tagged memes H with only partial knowledge of their

dynamics – denoted as the tensor T – our goal is to learn a model to recover the missing

spatio-temporal dynamics of the unobserved memes. But what entries in the partial tensor

T are actually missing? We investigate three common situations:

• Scenario 1: Random Missing Observations. This first scenario captures the straight-

forward case of random corruption or random data sampling errors in the dataset.

We assume that some fraction of memes – that is, some of the meme, location, time

counts (hi, li, ti) – are missing, and so our task is to estimate these missing counts

based on the observations we do have.

• Scenario 2: Missing Entire Memes at Some Locations. The second scenario mod-

els the case when the data collected has some systematic errors; specifically, we

assume that rather than random missing observations (as the scenario 1), there are

some memes that are completely missing for some locations. For example, a data

sampling strategy may target the top-k online wmemes at a location, so some lo-

cations will be missing memes outside of this top-k. Can we recover the missing

counts for these lost memes?

• Scenario 3: Missing Entire Locations. The final scenario corresponds to the case of

total data loss for some locations. For example, a data sampling strategy may target

some locations exclusively, but miss others entirely. Can we recover what memes

did occur in those missing locations?
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Figure 4.1: The proposed spatio-temporal dynamics recovery framework.

4.2.2 Twitter Hashtags

We ground our discussion in the rest of the chapter with respect to Twitter hashtags.

A Twitter hashtag is a popular type of online meme that arises on Twitter, spreads from

person to person (and from place to place), resulting in a fine-grained spatio-temporal log

of information sharing dynamics. Note that the methods presented here may be applied to

any other dataset with meme, location, time characteristics.

4.3 AIRCP: Auxiliary Information Regularized CP Model

In this section, we propose new scalable methods for recovering the spatio-temporal

dynamics of online memes. Concretely, we propose to (i) model and exploit the latent

relationships among locations, memes and times; (ii) embed these latent relationships into

a tensor completion framework for uncovering the approximate complete data based only

on partial observations; and (iii) show how the underlying tensor factorization can be effi-

ciently solved compared to many existing methods. The high-level outline of the proposed

solution is presented in Figure 4.1. We model the observed data as a tensor (left), and seek

to recover the missing spatio-temporal dynamics (center) by integrating auxiliary informa-

tion like the relationships between locations, memes and times (right). A key aspect of the

29



proposed approach is an iterative method to overcome the problem of incomplete auxiliary

information. In the following, we introduce each part of the proposed solution in detail.

4.3.1 Modeling Recovery of Missing Data

We propose to model the recovery of missing hashtag data based on tensor models.

Since hashtags are usually adopted in a few locations within limited life-spans [54], result-

ing in X being super sparse and low-rank, this model is built on a CP tensor completion

model which can be represented by the following optimization problem:

minimize
U(n),X

1

2
‖X− [[U (1),U (2),U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F

subject to Ω ∗X = T,U (n) ≥ 0, n = 1, 2, 3.,

where recall that X denotes the complete spatio-temporal dynamics of hashtags, T de-

notes the observations we do have, U (1) ∈ RN×R, U (2) ∈ RL×R, and U (3) ∈ RM×R

are latent factor matrices for location, hashtag, and time dimensions, respectively, R �

min(N,L,M) is the number of latent factors as the rank of a tensor, λ
2

∑N
n=1 ‖U (n)‖2F is a

Tikhonov regularization term used to avoid overfitting and provide a unique solution, and

Ω is a non-negative weight tensor with the same size as X:

Ω(i, j, k) =


1 if X(i, j, k) is observed,

0 if X(i, j, k) is unobserved.

Our goal is to seek an estimated X for recovering the missing spatio-temporal dynam-

ics of hashtags based upon the partial data we do observe. However, as it is the case in

many linear-inverse problems, there may not be sufficient information to recover X only

depending on the observed data. We call these deficient linear-inverse problems. Appar-

ently, the case of recovering the spatio-temporal dynamics of hashtags with only observed
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data is a deficient linear-inverse problem, e.g., it is very difficult to estimate occurrences

for the hashtag #iphone in San Francisco even if we know the complete dynamics of hash-

tags in other cities such as New York, Austin, and Los Angeles. Hence, our intuition is to

leverage the spatio-hashtag-temporal relationships inherent in the observed data in order to

successfully recover the missing information. For instance, if knowing that people in San

Francisco tend to adopt similar hashtags to people in Austin, then perhaps we can estimate

the dynamics of the hashtag #iphone in San Francisco. Hence, we turn in the following

discussion to how we can model these latent relationships for integration into the overall

framework. We denote spatio-hashtag-temporal relationships as Θ in the chapter.

4.3.1.1 Modeling Spatial Relationships

We begin by considering the spatial relationships that connect different locations. Our

hope is that we may be able to use location similarity with respect to adopting hashtags

to infer propagations to unobserved locations. Concretely, we consider two approaches to

model the spatial relationships of hashtags:

Geographical Distance. A natural first step is to treat locations that are near each other

as similar in terms of the hashtags that will be adopted. Previous studies such as [54] have

shown that the closer two locations are, the most likely they are to adopt the same hashtags

due to factors like common language and shared culture, customs, and interests. Hence,

we can encode this intuition in a measure of location similarity. Motivated by radial basis

function (RBF) kernel [121] widely used as a similarity measure, we propose a unified

geographic distance similarity score ΘGD that captures the straightforward notion of geo-

similarity, approaching 1 when two locations are physically proximate. The geographical

similarity score ΘGD is defined as:

ΘGD(li, lj) = exp

(
−Dist(li, lj)

2

2α2

)
,
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where α is a dispersion constant setting as 25 miles in this study. The score ΘGD considers

the Haversine formula to calculate the geographic distance Dist(li, lj) between location li

and location lj (based on their GPS coordinates). Compared to a straightline distance, the

Haversine formula accounts for Earth’s spherical shape.

Adoption Similarity. An alternative approach is to measure the “idea” similarity between

two locations. That is, there may be locations that are not necessarily close in terms of

geographical distance, but that are close in terms of the hashtags they do adopt. In this

way, we can measure the adoption similarity between any two locations by considering

two factors (i) shared hashtags and (ii) deviation of their occurrences under certain prob-

abilities. We first apply the Jaccard coefficient to measure the degree of shared hashtags

ΘSH between two locations li and lj:

ΘSH(li, lj) =
|Hli

⋂
Hlj |

|Hli

⋃
Hlj |

,

where recall that Hl is the set of unique hashtags adopted in a location l, and |Hl| is the

number of unique hashtags adopted in a location l. Two locations sharing all hashtags in

common have a score of 1.0; those sharing no hashtags in common have a score of 0.0.

Then, inspired by the work [54], we define the probability of observing a hashtag h as:

Ph =

∑
li∈L o

h
li∑

h′∈H
∑

li∈L o
h′
li

,

where ohl is the number of occurrences for a hashtag h in a location l. Ph measures how

likely a hashtag h occurs. Locations that adopt a hashtag with similar probabilities are con-

sidered more similar than locations that observe a hashtag with a very different adoption

probabilities [54]. We continuously define the deviation of hashtag occurrences between
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two locations as:

ΘDL(li, lj) = exp

(
−
∑
h∈H′

(
ohli − o

h
lj

ohlmax

)2Ph

)
,

where H ′ = (Hli

⋂
Hlj) is denoted as the common hashtags for locations li and lj , ohlmax

represents the maximum number of occurrence for hashtag h across all locations, which

is used for normalization, and Ph yields the weighted average on the normalized squared

difference of hashtag occurrences between two locations. ΘDL, as a modified version of

RBF kernel, indicates that two locations should be considered as similar while they have

close distributions of occurrences as well as their real counts. Taking into account both of

these two factors, we finally define the adoption similarity ΘAS between two locations by

multiplying them together:

ΘAS(li, lj) = ΘSH(li, lj)ΘDL(li, lj),

where we assume that these two factors are independent and the values of ΘAS are in the

range [0, 1].

Fusion of Two Properties. Naturally, we can integrate both geographical distance simi-

larity and adoption similarity between two locations into a unified model. The intuition is

that we can take advantage of both geographical and “idea” similarities between locations.

We adopt a simple linear model to fuse these two properties:

ΘFS(li, lj) = τΘGD(li, lj) + (1− τ)ΘAS(li, lj),

where τ is a parameter used to control the contribution from the unified geographical

similarity score ΘGD and the adoption similarity ΘAS . In this study, τ is set to 0.3 via

cross-validation.
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4.3.1.2 Modeling Hashtag Relationships

Complementary to location relationships, we can also directly model the relationships

among different hashtags. Some hashtags are mainly local phenomena while others have

a global footprint. Hence, we can measure the spatial footprint of different hashtags and

compare them toward finding “similar” footprints by considering two factors (i) spatial

spread of hashtags and (ii) deviation of their occurrences across all locations. Inspired by

Tobler’s hypothesis [122], we first define the similarity of spatial spreading for a pair of

hashtags as:

ΘSP (hi, hj) = exp

(
−|

dhi − dhj
dmax − dmin

|
)
,

where dh is the average distance between all locations in which this hashtag h has been

adopted, |dhi − dhj | is used to measure the absolute difference of spatial spreading of

two hashtags, dmax = max({dh, h ∈ H}), dmin = min({dh, h ∈ H}), and the term

dmax − dmin is a weight factor used for normalization. We then define the probability that

a hashtag occurs in a location l as:

Pl =

∑
h∈H o

h
l∑

li∈L
∑

h∈H o
h
li

,

which represents how likely a hashtag is to be adopted in location l. Following a similar

fashion on modeling ΘDL, we define the deviation of occurrences for a pair of hashtags

across all locations adopting them as:

ΘDH(hi, hj) = exp

(
−
∑
l∈L

(
ohil − o

hj
l

ohmax
l

)2Pl

)
,

where ohmax
l denotes the maximum number of occurrence for all hashtags in location l,

which is used for normalization, and Pl yields the weighted average on the normalized
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squared difference of real counts between two hashtags across locations where they have

been adopted. Assuming that these two factors are independent, we finally model the

hashtag similarity ΘHS by multiplying them together as:

ΘHS(hi, hj) = ΘSP (hi, hj)ΘDH(hi, hj),

The values of ΘHS are in the range [0, 1], implying that two hashtags adopted in the same

locations with the same occurrences have a similarity score of 1; otherwise, they have a

similarity score approaching 0.

4.3.1.3 Modeling Temporal Relationships

Finally, we consider enhancing the tensor completion by considering temporal rela-

tionships across memes. For the temporal properties of hashtags, we posit that adoptions

of hashtags in consecutive timestamps may be similar. Hence, we can define the tempo-

ral similarity matrix ΘT , capturing the smoothness of the spatio-temporal dynamics of

hashtags by using the tri-diagonal matrix:

ΘT =



0 1 0 . . .

1 0 1 . . .

0 1 0 . . .

...
...

... . . .


where ΘT intuitively expresses the fact that X in consecutive timestamps are often similar,

which has been a common assumption in related efforts to recover missing data [57, 123].

4.3.1.4 Integrating Auxiliary Information

So far, we have proposed several models to capture the relationships between loca-

tions, hashtags, and times. In this section, we investigate how to take advantage of this
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auxiliary information into the basic CP tensor completion model. The basic idea is if two

objects are similar, e.g., two cities have similar behaviors on adopting hashtags, the latent

representations of these two cities should be similar. Therefore, we want to make the latent

representations of two similar objects (i.e. locations, hashtags, or timestamps) as close as

possible. We denote Θ as a similarity matrix encoding relationships between entities like

locations, hashtags, or times. The intuition above can be formulated as minimizing the

following:

F =
1

2

∑
i,j

Θ(i, j)‖U (n)
i −U

(n)
j ‖2

=
∑
i,j

U
(n)
i Θ(i, j)U

(n)
i

T
−
∑
i,j

U
(n)
i Θ(i, j)U

(n)
j

T

= tr(U (n)T (D −Θ)U (n))

= tr(U (n)TLU (n)),

where U (n)
i is the ith row of the factor matrix U (n) for the nth-mode of a tensor X, n ∈

{1, 2, 3}, tr(· ) is the matrix trace, D is a diagonal matrix with D(i, i) =
∑

j Θ(i, j),

and L = D −Θ is the graph Laplacian of the similarity matrix Θ which could be any of

ΘGD, ΘAS , ΘFS , ΘHS and ΘT introduced previously.

A straightforward way to integrate relationships between locations, hashtags, and times

into the basic tensor completion model is as regularization terms such that we are able to

regulate latent representations of two similar objects to make them as close as possible.

Hence, by integrating these auxiliary information among locations, hashtags and times,
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we can formulate the recovery of spatio-temporal dynamics as the objective function:

minimize
U (n),X

1

2
‖X− [[U (1),U (2),U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F

+
3∑

n=1

αntr(Z(n)TLnZ
(n))

subject to Ω ∗X = T,U (n) = Z(n) ≥ 0, n = 1, 2, 3,

(4.1)

where α is a parameter used to control the weight of auxiliary information between loca-

tions, hashtags, and times.

4.3.2 Optimization Algorithm

Since the objective function in Eq.(4.1) is not convex with respect to variablesZ(n) and

U (n) together, there is no closed-form solution for this optimization problem. Motivated

by methods [26, 32], we now develop an efficient algorithm to find optimal solutions for

the objective function above under the framework of ADMM that can be considered as an

approximation of the method of multipliers. The objective function can be firstly written

in the partial augmented Lagrangian function as follows:

Lη(U
(n),Z(n),Y (n))n=1,2,3 =

1

2
‖X− [[U (1),U (2),U (3)]]‖2F

+
λ

2

3∑
n=1

‖U (n)‖2F +
3∑

n=1

αn
2

tr(Z(n)TLnZ(n))

+
3∑

n=1

< Y (n),Z(n) −U (n) > +
3∑
i=1

η

2
‖Z(n) −U (n)‖2F ,

(4.2)

where Y (n) is the matrix of Lagrange multipliers for n = 1, 2, 3, η is a penalty parameter.

Updating Z(1),Z(2),Z(3). To update Z(1),Z(2),Z(3), we can re-write objective function
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in Eq.(7.2) as follows:

minimize
Z(n)

αn
2

tr(Z(n)TLnZ
(n)) +

ηt
2
‖Z(n) −U (n)

t +
Y

(n)
t

ηt
‖2F . (4.3)

Thus, Z(n) can be efficiently updated by solving the optimization problem in Eq. (4.3)

via:

Z
(n)
t+1 = (ηtI + αnLn)−1(ηtU

(n)
t − Y

(n)
t ),

where I is the identity matrix with the same size of Ln. By applying the eigen-decomposition

to Ln = VnΛnV
T
n , we can re-write the equation above as:

Z
(n)
t+1 = Vn(ηt + αnΛn)−1V T

n (ηtU
(n)
t − Y

(n)
t ), (4.4)

where ηt + αnΛn is a diagonal matrix. Since Ln is eigen-decomposed at the beginning of

the optimization, (ηtI + αnLn)−1 can be efficiently computed by only reversing entries

on the diagonal of ηt + αnΛn instead of calculating the inverse of the whole matrix.

Updating U (1),U (2),U (3). To update U (1),U (2),U (3), the objective function in Eq.(7.2)

can be re-written as follows:

minimize
U (n)

1

2
‖X t

(n) −U (n)B(n)‖2F +
λ

2
‖U (n)‖2F

+
ηt
2
‖Z(i)

t −U
(i)
t +

Y
(i)
t

ηt
‖2F ,

(4.5)

where B(n) = (U (N) � · · ·U (n+1) �U (n−1) � · · ·U (1))T |N=3, � is Khatri-Rao product,

andX(n) is the mode-n unfolding of the tensor X. Then this subproblem in terms of U (n)

is solved as follows:

U
(n)
t+1 = (X t

(n)B
(n)T + ηtZ

(n)
t+1 + Y

(n)
t )(B(n)B(n)T + λI + ηtI)−1. (4.6)
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Updating X. To update X, we can have that:

Xt+1 = T + Ωc ∗ [[U
(1)
t+1,U

(2)
t+1,U

(3)
t+1]],

where Ωc is the complement of Ω that is equal to 1−Ω.

Updating Y (n). To update Y (n), we can have that:

Y
(n)
t+1 = Y

(n)
t + ηt(Z

(n)
t+1 −U

(n)
t+1).

Updating η. We can accelerate the optimization algorithm by adaptively updating η. To

update η, we can have that:

ηt+1 = min(ρηt, ηmax),

where ρ is a constant that we empirically set to 1.1 via cross-validation.

4.3.3 Recovery with Auxiliary Information

So far we have successfully solved the equation (4.1) by the proposed optimization al-

gorithm based upon ADMM with leveraging auxiliary information. However, we are not

able to obtain complete auxiliary information which encode similarities between locations,

hashtags, and timestamps based on the sampled data. It is not reasonable to estimate miss-

ing spatio-temporal dynamics of hashtags by using auxiliary information derived from the

complete data, which becomes a “Chicken-and-Egg” problem. In order to address this

problem, we employ an iterative method. The initial similarity matrices derived from aux-

iliary information are computed based on the sampled data. And then similarity matrices

will be re-calculated based on recovered spatio-temporal dynamics of hashtags. This pro-

cedure will iteratively proceed until there is no significant difference between the current

and previous similarity matrices. This proposed auxiliary information regularized CP de-
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composition method (AIRCP) is summarized in Algorithm 1.

4.4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the proposed

AIRCP framework for recovering the spatio-temporal dynamics of hashtags. Concretely,

we aim to answer the following questions:

• How effective is the proposed method compared with alternative state-of-the-art

methods on recovering the missing spatio-temporal dynamics of hashtags?

• What are the effects of auxiliary information – here, in the form of relationships

among locations, memes, and times – on recovering the spatio-temporal dynamics

of hashtags? Are some relationships more informative than others?

• How dependent on the regularization parameters is the proposed method? That is,

do we need to give special care for tuning the approach, or is there a wide choice of

parameters that leads to robust recovery?

We begin by introducing the Twitter dataset and the evaluation and experimental setup.

Then, we compare the performance of different tensor completion methods on both syn-

thetic and real-word hashtag data sets. At last, the effects of the different auxiliary infor-

mation sources and their corresponding regularization parameters for the proposed method

are investigated.

4.4.1 Data

Our work here focuses on an initial sample of over 55 million geo-tagged tweets via

the Twitter Streaming API between February 1st and October 1st in 2013. Each tweet

is tagged with a latitude and longitude indicating a location where the user posted this

tweet. In this study, we first convert the GPS locations associated with tweets to corre-

sponding cities via reverse geo-coding, and then transfer the original timestamps accurate
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Algorithm 1: Solving AirCP via ADMM

Input: T,Ω,Θ(n)
0 , γ, λ, αn, ρ, η, ηmax, N

Output: X,U (n)

1 Algorithm AirCP()
2 Initialize U (n)

iter, γ, λ, αn, ρ, η0, ηmax, ε, N , iter = 0
3 while Not Converged and iter ≤ Imax do
4 Construct Laplacian matrices Ln for matrices Θ

(n)
iter

5 Optimization(T,Ω, U
(n)
iter,Ln, γ, λ, αn, ρ, η, ηmax, N)

6 Re-calculate similarity matrices Θ
(n)
iter+1 based on Xiter

7 Check the convergence: max{‖Θ(n)
iter+1 −Θ

(n)
iter‖F , n = 1, 2, . . . , N} < ε

8 iter = iter + 1

9 return Xiter, U
(n)
iter, n = 1, 2, . . . , N

10 Procedure Optimization(T,Ω,U (n)
0 ,Ln, γ, λ, αn, ρ, ηt, ηmax, N )

11 Initialize Z(n)
0 = Y

(n)
0 = 0, t = 0, tol

12 while Not Converged do
13 for n← 1 to N do
14 Update Z(n)

t+1 ← (ηtI + αnLn)−1(ηtU
(n)
t − Y

(n)
t )

15 CalculateB(n) ← (U (N) � · · ·U (n+1) �U (n−1) � · · ·U (1))T

16 Update
17 U

(n)
t+1 ← (X t

(n)B
(n)T + ηtZ

(n)
t+1 + Y

(n)
t )(B(n)B(n)T + λI + ηtI)−1

18 Update Xt+1 = T + Ωc ∗ [[U
(1)
t+1,U

(2)
t+1, . . . ,U

(N)
t+1 ]]

19 for n← 1 to N do
20 Update Y (n)

t+1 = Y
(n)
t + ηt(Z

(n)
t+1 −U

(n)
t+1)

21 Update ηt+1 =min(ρηt, ηmax)

22 Check the convergence: max{‖U (n)
t+1 −Z

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

23 t = t+ 1

24 return X, U (n), n = 1, 2, . . . , N
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(a) #iphone

(b) #fato

(c) #healthcare

Figure 4.2: Distributions of three hashtags.
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to the second to corresponding dates. Each geo-tagged tweet can be represented by a tuple

< hashtag, city, date >. To avoid very sparsely represented hashtags, we only consider

hashtags having at least 1,000 occurrences across all cities where at least 20 unique hash-

tags have been adopted during the period of our data collection. Since some hashtags

have appeared before the first day of the sample, we only keep those hashtags that first

appear after February 1st, 2013, resulting in 4,723 unique hashtags occurring in 2,415

cities. After randomly selecting 2,000 of 4,723 hashtags, the data set consists of 2,000

hashtags occurring in 1,278 cities in the world over a span of 242 days, which we model

as a tensor X ∈ R2000×1278×242. For the experiments, we view this sample as if it were the

true (complete) spatio-temporal dynamics of the 2,000 hashtags across these 242 days. To

illustrate, Figure 4.2 shows the global footprint of three different hashtags (#iphone, #fato,

and #healthcare) in the dataset.

4.4.2 Experimental Setup and Metrics

We evaluate the effectiveness of the proposed framework compared with alternative

methods by evaluating them over the three scenarios introduced in Section 4.2: Scenario

1, in which we have random missing observations; Scenario 2, in which some locations

are missing entire hashtags; and Scenario 3, in which we are missing entire locations. We

set the parameters in Eq.(4.2) through cross-validation with a separate validation dataset.

We empirically set λ = 0.1 and α1 = α2 = α3 = 0.1 for all following experiments.

To investigate the quality of the proposed framework, we adopt Relative Error, and

Accuracy@k as evaluation metrics. Relative Error is defined as:

RelativeError =
‖X − Y ‖F
‖Y ‖F

,

where X is the recovered tensor and Y is the ground-truth tensor. Accuracy@k represents

the percentage of correctly predicted popular hashtags out of the top-k popular hashtags.
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Formally, if we denote Sl as the real top-k popular hashtags at a location l and Ŝl as the

set of popular hashtags selected by a recovery method at a city l, we have:

Accuracy@k =
Ŝtl ∩ Stl
k

,

which is in the range [0,1]. In the following experiments, we evaluate k at 1, 5, and 10.

4.4.3 Baseline Methods

Previous research has shown that tensor-based completion methods outperform matrix-

based ones [6, 57, 120]. Hence, we focus our evaluation here on tensor-based state-of-the-

art baseline methods:

• Tensor Factorization with Auxiliary Information (TFAI): The first baseline is a tensor

analysis method introduced in [32] that integrates auxiliary information. We adopt

the within-mode auxiliary information method that performs better than the cross-

mode method according to the results.

• Trace Norm-based CP Decomposition (TNCP): The second baseline method regu-

larizes the trace norm in the CP tensor decomposition method based upon ADMM

[26]. We choose parameters λ = 10, and α = 0.33 that result in the best perfor-

mance for this method.

• Low-Rank Tensor via Convex Optimization (LRCO):The third baseline is a low-rank

tensor factorization method with a trace norm regularization [120]. We adopt the

“mixture” version, which models the tensor as a mixture of K sub-tensors. We set

the initial step-size η0 = 0.1 and λ = 0.

• Weighted Tucker Decomposition (WTucker): The fourth baseline we adopted is a

weighted Tucker decomposition [124] that is similar in spirit to PARAFAC [40]
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method fort recovering missing data.

• Fast Low-Rank Tensor Completion (FaLRTC): Finally, we consider the fast low-rank

tensor completion method [6] as one of our baselines, which estimates missing data

based on the smoothed trace norm.

4.4.4 Evaluating AIRCP over Synthetic Data

As a first step toward evaluating the effectiveness and efficiency of the AirCP method,

we first test over a synthetic dataset before moving on to the real hashtag data. We generate

a low-rank (10,10,10) tensor M ∈ R100×100×100 with correlated objects as the ground truth

data. The factor matrices U (1) ∈ 100× 10, U (2) ∈ 100× 10, and U (3) ∈ 100× 10 are

generated by the following linear formulae [32]:

U (1)(i, r) = iεr + ε′, i = 1, 2, . . . , 100, r = 1, 2, . . . , 10

U (2)(j, r) = jζr + ζ ′, j = 1, 2, . . . , 100, r = 1, 2, . . . , 10

U (3)(k, r) = kηr + η′, k = 1, 2, . . . , 100, r = 1, 2, . . . , 10

where {εr, ε′r, ζr, ζ ′r, ηr, η′r}r=1,2,...,10 are constants generated by the standard Gaussian dis-

tributionN(0, 1). Then the synthetic tensor M is calculated as M = J×1U
(1)×2U

(2)×3

U (3) where J ∈ R10×10×10 is a unit tensor with all of its super-diagonal elements being

1 and the other elements being 0 and ×i means the tensor-matrix operation for the ith

dimension of tensor. Since each factor matrix is generated by linear functions mentioned

above column by column, the consecutive rows are similar to each other. Therefore, we
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Figure 4.3: Comparison of recovery results over synthetic data.

generate the similar matrix for the ith mode as the following tri-diagonal matrix:

Θi =



0 1 0 . . .

1 0 1 . . .

0 1 0 . . .

...
...

... . . .


(4.7)

We randomly sample entries from M and recover the complete tensor by varying the

fraction of unobserved entries from 5% to 95%. We set the tolerance of error as 10−5 and

the maximal number of iteration as 1,000 for all methods we tested here.

We show in Figure 4.3 the relative error for all methods, averaged over 10 independent

runs. At a moderate fraction of missing data, most of the methods perform comparably,

with only WTucker and FaLRTC performing clearly worse. But in cases when there is

a large fraction of missing data (i.e. greater than 75%), we see that AIRCP and TFAI
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Table 4.2: Computation time (in seconds) over synthetic data as the fraction of missing
data (FM) varies.

FM AIRCP TFAI TNCP LRCO WTucker FaLRTC
20% 3.97 46.36 4.51 58.64 195.22 5.47
40% 4.27 49.87 3.94 49.61 186.13 5.62
60% 3.89 35.98 4.08 51.30 202.58 4.78
80% 4.76 43.75 4.16 60.04 183.98 4.46

achieve the lowest relative error in all cases and that this error is objectively low. This

result is encouraging since it indicates that the proposed framework for spatio-temporal

dynamics recovery can achieve robust recovery in realistic scenarios where only a small

fraction of data is available.

While AIRCP and TFAI achieve relatively lower error rates, what about their com-

parative efficiency? We present the average computation time (in seconds) of all tested

approaches in Table 4.2. We can observe that AIRCP is an order of magnitude faster than

TFAI and that it is on par with both TNCP and FaLRTC, which both demonstrate higher

relative errors (as shown in Figure 4.3). Hence, these experiments over synthetic data show

the potential of the proposed AIRCP method to achieve low error rates while also being

more appropriate for large-scale data.

4.4.5 Evaluating AIRCP over Hashtag Data

Given these encouraging results, we now turn to an examination of AIRCP over the real

hashtag data. We consider the three missing data scenarios introduced previously. For all

cases, we set the rank of the tensor to 10. For Scenario 1 (Random Missing Observations),

we randomly select a fraction of all hashtag-location-time counts and assume that these are

unobservable (that is, missing). We report results by varying the fraction from 25% to 55%

to 85%. For Scenario 2 (Missing Entire Memes at Some Locations), we randomly select

for each location some fraction of hashtags that are unobservable. Again, we report results
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Table 4.3: Relative errors for recovering missing hashtags as the fraction of missing data
varies from 25% to 55% to 85%. We observe that AIRCP is an order of magnitude faster
than TFAI.

Method Scenario 1 Scenario 2 Scenario 3 A.I.*
25% 55% 85% 25% 55% 85% 25% 55% 85%

AirCP(FS+HS+T) 0.1059 0.3330 0.5079 0.2032 0.4615 0.6017 0.2830 0.5772 0.7680 N/A
TFAI 0.0999 0.3565 0.5314 0.2282 0.4870 0.6336 0.2828 0.5863 0.7861 3.34%
TNCP 0.1829 0.4198 0.5762 0.2846 0.5937 0.7378 0.3674 0.5919 0.8272 19.62%
LRCO 0.2307 0.4753 0.6851 0.3245 0.6261 0.798 0.4097 0.6288 0.9026 28.02%
WTucker 0.4859 0.778 1.1602 0.7427 1.0155 1.3256 1.1852 1.3914 1.7383 62.65%
FaLRTC 0.2417 0.4543 0.6548 0.3156 0.5621 0.8069 0.3592 0.6243 0.8802 25.09%
A.I.*: Average improvement comparing with AIRCP.

for 25%, 55%, and 85%. Finally, for Scenario 3 (Missing Entire Locations), we randomly

select a fraction of the 1,278 locations and assume that these locations are completely

unobservable (missing) across the whole collection period. We evaluate all methods using

a fraction of missing locations of 25%, 55%, and 85%.

We present in Table 4.3 the relative error for all three scenarios across all approaches

for three levels of missing data (25%, 55%, and 85%). Reinforcing our observations from

the synthetic data experiment, we witness that AIRCP achieves better performance than

TFAI with an average improvement of 3.34% over real hashtag data. In practice, again,

TFAI still takes around an order of magnitude longer to calculate than the proposed AIRCP

method. We see that AIRCP gives an average improvement of 27.8% in terms of relative

error over other alternative methods. And as the sparser the observed tensor is (that is, the

smaller the number of actual observed hashtags), we see that AIRCP gives an even greater

improvement versus the alternatives. To illustrate, Figure 4.4 shows an example recovery

for the hashtag #mtvema for Scenario 1 when 85% of the data is missing. We can see that

the proposed method can successfully recover the sampled data based upon limited sample

data (15% of the complete data).

Returning to Table 4.3, for both Scenarios 2 and 3 in which either a portion of all
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(c) Recovered

Figure 4.4: An example recovery for the hashtag #mtvema when 85% of the data is missing
(Scenario 1).
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hashtags for a location are missing or the entire location is unobserved (which places great

burden on the recovery framework, since there are not even partial observations for those

hashtags in those locations as in Scenario 1), we see that integrating the latent relation-

ships among locations, hashtags, and time (e.g., distances between two cities, similarities

between hashtags, same hashtags adopted by two cities) can lead to a significant improve-

ment through the tensor factorization. These relationships can alleviate the problem of

sparsity to some extent and provide valuable information for the tensor factorization to

obtain more interpretable low-rank representations.

Moreover, after varying the rank of tensor from 5 to 20, we found that the proposed

method has a better consistency than other alternative state-of-the-art methods as the rank

of tensors increases, implying that the proposed method is more robust on predicting miss-

ing diffusion dynamics of hashtags. The details are omitted here due to the limited space.

4.4.6 Recovery Under Constraints

While the previous experiment examined whether we could recover the count of the

number of hashtags in a location at a particular time, we now turn to two more constrained

situations that could arise in practice.

Appearance of Hashtags. In the first situation, we consider the task of determining whether

or not a hashtag has appeared at a location at a particular timestamp. By considering only

this binary information (rather than count information), we can explore the quality of the

proposed approach at identifying rare hashtags, rather than emphasizing on hashtag counts

as in the previous experiments. In this way, we can determine how well the approaches

recover the appearance information of hashtags. For this experiment, for a hashtag h, the

corresponding cell X(h, l, t) will be set as 1 if that hashtag appears in a city l at a date t.

Otherwise, it will be assigned to 0. For the recovered tensor X, the cell X(h, l, t) will be

set as 1 if the value of that cell is larger or equal to a threshold; otherwise, it will be set to
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Table 4.4: Relative errors for recovering appearances of hashtags as the fraction of missing
data varies from 25% to 55% to 85%. We witness that AIRCP is an order of magnitude
faster than TFAI.

Method Scenario 1 Scenario 2 Scenario 3 A.I.*
25% 55% 85% 25% 55% 85% 25% 55% 85%

AirCP(FS+HS+T) 0.2032 0.4675 0.7017 0.2405 0.3653 0.4719 0.3083 0.5965 0.7451 N/A
TFAI 0.2082 0.4470 0.7236 0.2668 0.3976 0.4970 0.3246 0.6281 0.7900 4.40%
TNCP 0.2846 0.5937 0.7878 0.3148 0.4644 0.5799 0.4071 0.6599 0.8541 18.98%
LRCO 0.3245 0.6261 0.7980 0.6303 0.6142 0.6428 0.4380 0.6605 0.9315 29.23%
WTucker 0.7427 1.0155 1.3256 0.8484 0.8651 0.7403 1.2191 1.4297 1.7844 61.66%
FaLRTC 0.3156 0.5621 0.8069 0.4767 0.599 0.6313 0.4154 0.6660 0.9089 26.03%
A.I.*: Average improvement comparing with AIRCP.

0. The threshold is empirically set to 0.3 via cross-validation. In this experiment, we vary

the fraction of missing data in [25%, 55%, 85%] for all three scenarios, meaning that the

observations we randomly selected based on fractions of missing data can be considered

as training data, and the remainder as the test data. We empirically set the rank of tensor

to 10. The experimental results in terms of relative errors are illustrated in Table 4.4.

We can see that in general, the proposed AIRCP consistently outperforms other alter-

native methods including TFAI, TNCP, LRCO, WTucker, and FaLRTC in all three sce-

narios. Specifically, it gives an average improvement of 28.01% on the relative error over

other alternative methods. This indicates that auxiliary information among locations, hash-

tags, and times can help predict whether a hashtag has appeared in a location at a time or

not. Similar to the previous experiment, TFAI has comparable performance with the pro-

posed method, which performs worse in scenarios 1 and 2 and slightly better in scenario

3. However, as TFAI requires longer computation time, the proposed AIRCP method is

more efficient at this task.

Popularity of Hashtags. In the second situation, we consider the task of determining the

top-k hashtags at a location at a particular timestamp. In this way, we can explore the

quality of the proposed approach at identifying the popularity of hashtags. We evaluate
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the performance of the AIRCP method in the recovery of top-k popular hashtags in 1,278

cities by varying the value of k as the fraction of missing values varies. For a hashtag h,

the corresponding cell X(h, l, t) will be set as 1 if the total number of occurrences of that

hashtag is one of the top-k largest among all hashtags occurred in that city l after the date

t; otherwise, it will be assigned to 0. For this problem, only Scenario 3 is reasonable since

for Scenarios 1 and 2, we are not likely to accurately mark the top-k popular hashtags

in a city only depending on observed sampled data. It indicates that we cannot know

the top-k popular hashtags in a location l after a date t while only observing partial data.

For instance, we mark hashtags #cjbbq and #subway as two of top-3 popular hashtags

in Houston after the date t only based on observed sample data in the period of the data

collection. Nevertheless, once we can retrieve the whole diffusion data of hashtags in

Houston, the top-3 popular hashtags are #northgate, #rockets and #texian as we do not

observe or partially observe their diffusion data. Therefore, Scenarios 1 and 2 would never

happen on this problem. In the implementation of the proposed method, we empirically

set the rank of tensor to 10.

The performance comparison is presented in Figure 4.5. As we can see, overall, the

proposed AIRCP generally gives the best performance in terms of accuracy for different

k with a maximal accuracy of 77.7%. Since the distribution of hashtags at a location

usually follows a Zipfian distribution, it could be harder for the problem of predicting top-

k hashtags at a location at a date as the value of k decreases. This hypothesis is confirmed

in the performance of our method. We observe that all these compared methods as well as

the AIRCP method perform better with higher values of k. In addition, we can see that the

AIRCP method performs consistently when the fraction of missing data is less then 85%.

All these results illustrate that the proposed method can successfully predict top-k popular

hashtags for a city after a date with limited observations.
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25% 55% 85%
0

0.1

0.2

0.3

0.4

0.5

Fraction of Missing Data Rate

Ac
cu

ra
cy

@
5

 

 
AirCP
TFAI
TNCP
LRCO
Wtucker
FaLRTC

(b) Top-5 popular hashtags
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(c) Top-10 popular hashtags
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(d) Top-15 popular hashtags

Figure 4.5: Recovering hashtag popularity: Accuracy@1, 5, 10, and 15 as the fraction of
missing data varies from 25%, 55% to 85%. Though AIRCP only achieves slightly better
performance than TFAI, it has much better time efficiency for the computation with around
an order of magnitude faster speed.
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4.4.7 Effects of Auxiliary Information

We next turn to the relative impact of the different sources of auxiliary information.

Recall that we consider different relationships among locations, hashtags, and time. Here,

we are interested to explore whether some of these relationships are more informative than

others. To that end, we narrow our focus on the problem of recovering hashtag counts un-

der Scenario 1 (where a random fraction of hashtags are missing), and empirically fix the

rank of tensor to 10. We evaluate the proposed AIRCP method with different combina-

tions of auxiliary information. In Figure 4.6, we show how auxiliary information affects

the performance of the proposed method in terms of the relative error by varying the frac-

tions of missing data. We can see that, in general, the proposed AIRCP method integrating

all three types of auxiliary information (modeled in Section 4.3) achieves the best perfor-

mance than those only integrating part of the auxiliary information, indicating that the

proposed method successfully makes use of all useful information sources to perform ef-

fective recovery for the spatio-temporal diffusion dynamics of hashtags. For the spatial

information, we find that AIRCP with the fusion of geographical distance similarity (GD)

and adoption similarity (AS) performs better than ones with either GD or AS solely. This

result implies that the integration of these two types of information yields complemen-

tary evidence of hashtag adoption. We also observe that AIRCP with only the hashtag

similarity (HS) has comparable performance with one integrating GD and AS (denoted as

FS). In summary, the use of all three types of auxiliary information can help enhance the

performance of the proposed AIRCP.

4.4.8 Effects of Regularization Parameters

Finally, we explore the impact of the regularization parameters on the quality of hash-

tag recovery. Recall that these parameters control the contributions of the relationships

between locations, hashtags and time on the recovery framework. In order to better un-
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Figure 4.6: Relative errors for different combinations of auxiliary information.

derstand the effect of different choices of these parameters, we vary their values in the

range [0.001 0.01, 0.1, 1, 10], and then evaluate the AIRCP method for the scenario in

which some hashtags are missing (Scenario 1) with a fraction of missing data of 55%.

The rank of the tensor is set to 10 and other settings are the same as we set in Section

4.4.5. We observe in Figure 4.7 that the proposed AIRCP method achieves relatively sta-

ble performance when the parameters are in the range [0.01, 0.1, 1]. This result indicates

that the proposed framework is fairly robust to reasonable choices of these parameters.

Specifically, comparing all results for parameters, we find that setting α1(city) = 0.1,

α2(hashtag) = 0.1 and α3(date) = 0.1 achieves the best performance with a relative

error of 0.3330, and that parameter settings of α1(city) > 0.1, α2(hashtag) > 0.1 and

α3(date) > 0.1 lead to fairly stable relative errors. These results indicate the stability

of the proposed AIRCP to these regularization parameters. Similar results can be found

when we set the fraction of missing data to 25% and 85%.
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Figure 4.7: Relative errors for different parameter settings: α3(date) = 0.1 with 55% of
the fraction of missing data.

4.5 Conclusion

In this paper, we have tackled the critical problem of recovering spatio-temporal dy-

namics of memes. Concretely, we have proposed a tensor-based spatio-temporal dynamics

recovery framework that leverages auxiliary information among locations, hashtags, and

times with better time efficiency. Through experimental evaluation on both synthetic and

real-world Twitter hashtag data, we see that the proposed framework outperforms alter-

native state-of-the-art methods with an average improvement of over 27%, and find that

the integration of auxiliary information among locations, hashtags, and times are crucial

factors in the performance of the proposed framework.
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5. TAPER: A CONTEXTUAL TENOSR-BASED APPROACH FOR

PERSONALIZED EXPERT RECOMMENDATION*

In this chapter, we tackle the challenges of sparsity, similarity and specificity by ex-

tending the proposed tensor learning framework to recommendation. Recommendation is

a typical missing information problem on social media, where user feedback is often miss-

ing and so latent preferences must be inferred. Specifically, we focus on recommending

personalized experts to users, which can be treated as a tensor completion problem in or-

der to estimate unobserved expert preferences of individuals. Through careful modeling of

contextual factors like the geo-spatial, topical, and social preferences of users, we propose

a tensor-based personalized expert recommendation framework that integrates these fac-

tors for revealing latent connections between homogeneous entities (e.g., users and users)

and between heterogeneous entities (e.g., users and experts). Through extensive exper-

iments over geo-tagged Twitter data, we find that the proposed framework can improve

the quality of recommendation by over 30% in both precision and recall compared to the

state-of-the-art baseline methods.

5.1 Introduction

Recommender systems are a cornerstone of how we engage online – by impacting the

media we consume, the friends we connect with, and the products we purchase. A typical

assumption in many recommender systems is to focus on specific items like movies, songs,

or books as the basis of recommendation. In a separate direction, there are efforts to focus

on high-quality content producers rather than specific items [125, 126]. These content

*Reprinted with permission from “TAPER: A Contextual Tensor-Based Approach for Personal-
ized Expert Recommendation” by Hancheng Ge, James Caverlee, and Haokai Lu, 2016. Proceed-
ings of the 10th ACM Conference on Recommender Systems. Copyright 2016 by ACM. DOI:
http://dx.doi.org/10.1145/2959100.2959151
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producers – like creators of highly-rated Spotify playlists, Amazon’s top reviewers, or

media curators on platforms like Tumblr, Facebook, and Twitter – can potentially serve as

conduits to high-quality curated items. Indeed, previous research has shown that in some

cases item-based recommenders can be improved by biasing the underlying models toward

the opinions of these “experts” [127].

While some high-quality content producers are easily identifiable (say, by being “fa-

vorited” or starred many times), there is a long-tail of potential candidates for whom we

have little evidence. Hence, a natural question is whether we can identify these high-

quality content producers – whom we shall refer to as experts in the rest of this chapter –

and recommend them to the right people. Such personalized expert recommendation faces

a number of key challenges, though. First, many existing works have aimed at uncovering

expert users in online systems – e.g., [60, 59, 61, 128, 129] – but typically without an

emphasis on personalized recommendation. That is, these efforts have often attempted to

explore general topic experts with broad appeal, e.g., the best doctors in Seattle or the top

engineers in a certain field, rather than connecting users with personal experts. Second,

personalized expert recommendation faces extreme sparsity since few users provide feed-

back on the quality of content producers. Third, there are typically complex relationships

between users, candidate experts, and topics of interest.

Hence, we aim in this manuscript to tackle these challenges via a personalized expert

recommendation framework called TAPER – for Tensor-based Approach for Personalized

Expert Recommendation. This proposed approach inherits the advantages of traditional

recommender systems by making personalized recommendations based on the history of

actions by similar users. In this way, specific personal experts can be recommended to in-

dividuals, rather than relying on globally-recognized (and less personalized) ones. While

matrix factorization approaches have shown success in mitigating sparsity [66, 130], ulti-

mately they are restricted to two-dimensional data (e.g., a user-expert matrix). In contrast,
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Figure 5.1: Personalized expert recommendation with contextual factors: augmenting the
sparse tensor (left) with contextual factors (right) like the geo-spatial, topical, and social
relationships between homogeneous entities (e.g., users and users) and between heteroge-
neous entities (e.g., users and experts).

user preferences for experts may be impacted by many contextual factors including the

topic of interest, the location of the user (and possibly of the expert), as well as social con-

nections among users and experts, among many others. As illustrated in Figure 5.1, these

user-expert-topic preferences naturally suggest a tensor-based approach where these mul-

tiple and varied relationships may augment the sparse tensor (on the left) by considering

the relationships (on the right) between both homogeneous entities (e.g., users and users,

experts and experts) and the relationships between heterogeneous entities (e.g., users and

experts, topics and experts).

Through the TAPER framework, we explore questions like: What kinds of contextual

factors impact preferences for personalized experts? How can these contextual factors be

integrated into a tensor-based personalized expert recommender? Do these factors result in

higher quality recommendations than state-of-the-art methods? And are some contextual

factors more important than others?
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5.2 Problem Statement

Let L = {u1, u2, . . . , uN} be a set of users where N is the total number of users, and

E = {e1, e2, . . . , eM} be a set of experts where M is the total number of experts and E ∈

L. An expert ei may have expertise in multiple topics expressed as T = {t1, t2, . . . , tK}

where K is the total number of topics. A user may personally prefer some experts rather

than others based upon the user’s personal interest in their expertise. For example, Andy

may prefer Bella in the topic of “Python programming”, but have no opinion on Chris who

may be a better Python developer. We denote the personal preferences of users towards

experts in topics as a tensor X ∈ RN×M×K where element X(i, j, k) is binary, representing

whether a user ui prefers an expert ej in a topic tk.

We define the personalized expert recommendation problem as: Given a set of users L

with partially observed preferences denoted as a tensor T on experts E over topics T , our

goal is to recommend the top-k relevant experts to a user ui.

5.2.1 Basic Recommendation by Tensor Factorization

As a natural first step, we can tackle this problem with a basic recommendation frame-

work using tensor factorization. LetU (1) ∈ RN×R,U (2) ∈ RM×R andU (3) ∈ RK×R be la-

tent factor matrices for users, experts, and topics, respectively, whereR� min(N,M,K)

is the number of latent factors as the rank of a tensor. The basic tensor-based expert rec-

ommendation model can be defined as:

minimize
U (n),X

1

2
‖X− [[U (1),U (2),U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F ,

subject to Ψ ∗X = T,U (n) ≥ 0, n = 1, 2, 3

(5.1)

where X denotes the complete preferences of users towards experts across topics, T de-

notes the observed user’s preferences on experts, ‖U (n)‖2F is a Tikhonov regularization
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term used to avoid overfitting and provide a unique solution, ◦ is a Hadamard product op-

erator and Ψ is a non-negative weight tensor with the same size as X with Ψ(i, j, k) = 1

indicating that we observe the selection of user ui on expert ej in a topic tk, Ψ(i, j, k) = 0

otherwise. This basic model estimates X̂ that approximates the original (unknown) X via

learning optimal latent factor matrices {U (n), n = 1, 2, 3}. For each user and topic of

interest, this model can recommend a ranked list of personalized experts.

5.2.2 Research Challenges

While this basic tensor factorization framework provides a first step toward personal-

ized expert recommendation, it leaves open many critical questions:

• First, since the user-expert-topic tensor is necessarily sparse (meaning that even with

factorization the underlying latent factors may be of poor quality), can we augment

this basic approach with additional contextual preferences for experts by considering

the relationships among both homogeneous entities (e.g., users and users, experts

and experts) and heterogeneous entities (e.g., users and experts, topics and experts)?

• How can we integrate these contextual preferences into a tensor-based personalized

expert recommendation framework?

• How effective is the proposed tensor-based framework in comparison with other

state-of-the-art baselines? And which contextual preferences have the most signifi-

cant impact on the quality of personalized expert recommendations?

5.3 The TAPER Framework

We turn in this section toward constructing the contextual tensor factorization frame-

work, as illustrated in Figure 5.2.

61



U1
(3) U2

(3)

U1
(1) U2

(1) UR
(1)

UR
(3)

U1
(2) U2

(2) UR
(2)

Experts 

U
se

rs
 

To
pic

s 

Similarity  
bet. Experts 

Information bet. 
Experts and Topics 

Sim
ila

rity
  

be
t. T

op
ics

 
In

fo
rm

at
io

n 
be

t. 
U

se
rs

 a
nd

 T
op

ic
s 

S
im

ila
rit

y 
be

t. 
U

se
rs

 

Information bet. 
Users and Experts 

,

,
Similarity 

bet. Topics 
Information bet. 

 Experts and Topics 
Information bet.  

Users and Topics 

,
Information bet.  

Experts and Topics 
Similarity 

bet. Experts 
Information bet.  

Users and Experts 

Information bet.  
Users and Experts 

Information bet.  
Users and Topics 

Similarity 
bet. Users 

Tensor-based Personalized Expert Recommendation 
Geo-Topical-Social 
Context Information 

Figure 5.2: Overview of the proposed tensor-based personalized expert recommendation
framework.

5.3.1 Evidence of Geo-Topical-Social Impact

We begin our investigation by examining the impact of three factors – geo-spatial,

topical, and social context – on the observed preferences towards experts. Our goals in

this section are to assess whether and to what degree these factors do affect how users

select experts. Informed by these observations, we turn in the following to integrate them

into the tensor-based factorization framework.

5.3.1.1 Geo-Tagged Twitter Lists

We adopt geo-tagged Twitter lists as evidence of the revealed preferences of users for

other users. A Twitter list allows a user ui to label another user uj with an annotation

(e.g., news, food, technology). In isolation these lists support the curation of an indi-

vidual user’s information stream, but in the aggregate the list labels can encode what a

target user is “known-for”. Many efforts have demonstrated that these labels can provide

a crowdsourced expertise profile of the target user [60, 129, 131, 132]. Concretely, we

use a geo-tagged Twitter list dataset containing over 12 million crowd-generated lists and

14 million geo-tagged list relationships between list creators and members. We filter the
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Table 5.1: Dataset Summary

Data Type Total Number of Records
Twitter Lists 11,322
Users (list creators) 10,559
Experts (list members) 8,417
List Relationships 117,187
Sparsity 0.13%

lists to only keep US-based users in topics: news, music, technology, celebrities, sports,

business, politics, food, fashion, art, science, education, marketing, movie, photography,

and health. The dataset is summarized in Table 5.1. Both list creators and list members

are associated with GPS coordinates. For those without GPS coordinates, their locations

can be estimated with their tweets by an approach previously used for check-ins and geo-

tagged images [133]. In order to simplify our study, we only focus on users with GPS

coordinates. We shall refer to list creators as users and members in the lists as experts.

5.3.1.2 Geo-Spatial Context

We begin by investigating the impact of distance on the experts selected by users.

Figure 5.3(a) shows the cumulative distribution of the average distance between a user

and the experts they have labeled, aggregated for eight different cities. In general, we

see that users from different cities have different levels of locality. For example, users in

San Francisco are more likely to select experts from a wider geographical scope than users

based in Chicago. Specifically, almost 40% of users in Chicago have an average distance to

their experts within 100 miles. However, only 14% of users in SF have an average distance

within 100 miles. In a similar fashion, Figure 5.3(b) shows the cumulative distribution of

the average distance between users and the experts they have labeled for seven different

topics. For a fixed distance (e.g., 100 miles), the topic food has the largest probability.

This implies that users interested in food are closer to their chosen experts while users
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interested in a broad topic like celebrity instead select experts with a wider geographical

scope. Hence, we can conclude that the geo-spatial context of users, experts, and topics

does indeed affect the preference for experts, and that these factors are impacted to varying

degrees based on topic and on the particular locations of both users and experts.

5.3.1.3 Topical Context

As we observed in Figure 5.3(b), different topics have different levels of locality. Here,

we further investigate the impact of topical context on personalized preferences for experts.

We begin by viewing each user as a vector of the experts they have selected, in which the

element is 1 when the expert is listed by the user, otherwise 0. We then measure the

impact of the number of shared topics between users (e.g., if two users have used three of

the same topics in their lists, then we consider the number of shared topics between them

to be three) on how similar are the users with respect to the experts they have selected.

As we can see in Figure 5.4(a), users are more likely to select similar experts when they

share more common topics. In other words, common topical interest impacts the choice of

experts. In a similar fashion, we can view each expert as a vector of all users, in which the

element is 1 when the expert is listed by the user, otherwise 0. We then measure the impact

of the number of shared topics between experts (e.g., if two experts have been labeled by

four of the same topics, then we consider the number of shared topics between them to be

four) on how similar are the experts with respect to the users who have selected them. As

we can see in Figure 5.4(b), experts who share more topics are more likely to be preferred

by similar users. We conclude that topical context has a strong impact on user preferences

for experts.

5.3.1.4 Social Context

Finally, the social connections among users and experts can be a strong indicator of

shared topical interests, as well as an implicit signal that two users are more likely to be
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Figure 5.3: The impact of distance on expert preferences by location (a) and by topic (b).

65



0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9
Number of Shared Topics

C
os

in
e 

Si
m

ila
rit

y

(a) Users-Users

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Shared Topics

C
os

in
e 

Si
m

ila
rit

y

(b) Experts-Experts

Figure 5.4: The relationship between the number of shared topics and the similarity be-
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near each other. Researchers have found that social ties increase the likelihood of two

users being near each other [50]. Figure 5.5 shows the cumulative distributions of the

similarity of users and experts, respectively. Using the same approach introduced above,

each user is represented as a vector of all experts; each expert is represented as a vector

of all users. The cosine similarity is employed to calculate the similarity of users and

experts. We observe that users who follow the other generally have a larger similarity on

selecting experts. For experts, we can see a similar pattern that those who follow the other

are more likely to be selected by the same users. Through these observations, we can draw

the conclusion that social context strongly affects a user’s preferences for experts.

5.3.2 Integrating Contextual Preferences

Given this evidence of the significance of geo-topical-social context with respect to

preferences on experts, a natural approach is to integrate them into the basic tensor-based

expert recommendation framework as regularization terms. Intuitively, if two entities are

similar, e.g., two users have similar preferences in recognizing experts across topics, the

latent representations of these two entities should be similar. Hence, we can regulate latent

representations of two similar entities to make them as close as possible. We denote S as a

symmetric similarity matrix encoding contextual information between homogeneous enti-

ties (e.g., users and users, experts and experts), and then formally minimize the following

loss function:
Θ =

1

2

∑
i,j

S(i, j)‖U (n)
i −U

(n)
j ‖2

=
∑
i

U
(n)
i D(i, i)U

(n)
i

T
−
∑
i,j

U
(n)
i S(i, j)U

(n)
j

T

= tr(U (n)T (D − S)U (n))

= tr(U (n)TLU (n))
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where U (n)
i is the ith row of the factor matrix U (n) for the nth-mode of a tensor X, n ∈

{1, 2, 3}, tr(· ) is the matrix trace, D is a diagonal matrix with the element D(i, i) =∑
j S(i, j), and L = D − S is the graph Laplacian of the similarity matrix S. For the

contextual information between heterogeneous entities (e.g., users and experts, topics and

experts), we denote A,B,C as matrices encoding the contextual information between

users and experts, users and topics and experts and topics, respectively. We then regulate

them by directly adding regularization terms ‖A−U (1)U (2)T ‖2F , ‖B−U (1)U (3)T ‖2F , and

‖C − U (2)U (3)T ‖2F into the basic framework. In order to simplify the parameter tuning,

A,B and C are normalized to the same scale.

After integrating all regularization terms into Eq.(5.1), an open question is how can we

efficiently estimate the solution to this optimization problem since there is no closed form

solution? TAPER leverages ADMM to solve the following optimization problem:

minimize
U (n),X

1

2
‖X− [[U (1),U (2),U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F

+
γ

2

3∑
n=1

tr(Z(n)TLnZ
(n)) +

β

2
(‖A−U (1)U (2)T ‖2F

+ ‖B −U (1)U (3)T ‖2F + ‖C −U (2)U (3)T ‖2F ),

subject to Ψ ∗X = T,U (n) = Z(n) ≥ 0, n = 1, 2, 3

(5.2)

where γ controls the weight of the contextual information between homogeneous entities

(e.g., users and users, experts and experts), and β controls the weight of the contextual

information between heterogeneous entities (e.g., users and experts, topics and experts).

But how specifically should we model these contextual preferences for integration into the

tensor-based framework? In the following, we consider geo-spatial, topical, and social

preferences in turn.
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5.3.3 Modeling Geo-Spatial Preferences

We first aim to model geo-spatial context for integration into the tensor-based factor-

ization approach.

5.3.3.1 Relationships between Homogeneous Entities

Supported by the data-driven observations of the previous section and following To-

bler’s First Law of Geography [122] – which asserts that near things are more related than

distant things – we propose to model user preferences as a function of distance. Con-

cretely, we consider three graphs over homogeneous entities Guu
G , Gee

G and Gtt
G for users,

experts, and topics, respectively. For each graph, we treat “nearby” nodes as more alike if

they are geographically closer. In this way, preferences on experts may be propagated to

these nearby nodes in the tensor-based factorization approach.

To begin, consider the user-user graph Guu
G , where nodes are users and edges capture

the affinity between users. We can define the adjacency matrixHG ∈ RN×N as:

HG(ui, uj) = exp(−Dist(ui, uj)
2

2α2
),

where α is a decay constant (which we experimentally set to 20 miles) and Dist is to

measure the geographic distance between two users by using the Haversine formula. The

affinityHG(ui, uj) approaches one as two users are nearer each other.

Similarly, the expert-expert graph Gee
G can be constructed, where nodes are experts

and here edges represent the spatial similarity of pairs of experts. Rather than purely

measuring the geographic nearness of two experts (which does not take into account the

recognizability of experts in various locations), we consider how the users who have la-

beled those experts are distributed. The intuition is that experts who are preferred have

higher popularity in the location of a user. Let l(ui) ∈ L be a location of user ui and φl(ui)ei
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as the spatial popularity be the number of users selecting expert ei in the location of user

ui across topics. The adjacency matrix VG ∈ RM×M can be defined as:

VG(ei, ej) = exp(−Dist(l(ei), l(ej))
2

2α2
∗
∑
ui∈U

(φl(ui)ei
− φl(ui)ej

)2),

where the first part in the exponential is to calculate the deviation of geo-spatial preferences

between experts (so that experts who are nearby are considered “closer”), the second part

is to consider the difference of their spatial popularities over all locations of users (to

capture the nearness in terms of who is interested in them). In this case, we discretize the

continental U.S. surface with a 1◦ by 1◦ geodesic grid, so we can map the location of a

user (GPS coordinate) to a discrete region.

The third graph – the topic-topic graph Gtt
G – has topics as nodes and edges that rep-

resent the geo-spatial correlation between topics. Intuitively, selecting experts could be

impacted by the choice of topic. The spatial preference in the topic food is much more

local than the topic technology. We aim to capture the similarity of spatial preference be-

tween topics. Let dtiui be the average distance between user ui and a set of experts Eti
ui

he/she recognizes in a topic ti. The empirical distribution of spatial preference for a topic

ti can be obtained from calculations {dtiui , ui ∈ U}, which is denoted as Υti . We then

apply the Kullback-Leibler divergence DKL(·‖·) to measure the closeness of empirical

distributions between topics. Hence, we can define the adjacency matrixWG ∈ RK×K as:

WG(ti, tj) = 1−DKL(Υti‖Υtj),

where WG will approach to 1 if two topics have similar empirical distributions of spatial

preferences.
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5.3.3.2 Relationships between Heterogeneous Entities

In addition to the geo-spatial correlations between users, experts, and topics them-

selves, we can additionally consider the relationships across heterogeneous entities. Specif-

ically, we consider the relationships between users and experts, as well as between users

and topics.

First, we propose to leverage the geo-spatial preferences between users and experts

so that users are more likely to select experts who have a high popularity in the location

of this user. The intuition is that the local popularity of an expert can be considered as a

prior on what a user would prefer. For example, given a new user in Seattle with no expert

preferences, we can default to a locally popular expert like Jeff Bezos. Concretely, we

propose to improve the learning of latent matrices of users and experts as:

FAG
= ‖AG −U (1)U (2)T ‖2F ,

where AG is the adjacency matrix in which an element indicates the spatial popularity

of an expert in the location of a user. By minimizing FAG
, the recommender will prefer

locally popular experts.

Similarly, the geo-spatial preferences between users and topics can also be leveraged

so that a user is more likely to select experts on topics that have high popularity in the

location of this user. Formally, we have the latent matrices of users and topics as:

FBG
= ‖BG −U (1)U (3)T ‖2F ,

where BG is the adjacency matrix in which an element indicates the spatial popularity of

a topic in the location of a user. Again, by minimizing FBG
, the recommender will prefer

experts on topics that are more popular locally.
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5.3.4 Modeling Topical Preferences

Beyond geo-spatial preferences, we next turn to models of topical preference. As we

have observed in Section 5.3.1.3, the topical context can influence a user’s preference

for experts. Intuitively, users who have similar interests on topics tend to have similar

preferences on experts.

5.3.4.1 Relationships between Homogeneous Entities

We begin by considering two graphs – one for the user-user graph Guu
T and the other

for the expert-expert graph Gee
T in terms of topical preference.

In this case, the user-user graph Guu
T has nodes that represent users but now edges

represent the similarity between users in terms of topical preferences (rather than in terms

of distance as in the geo-spatial case in the previous section). Inspired by the work [72],

we define the adjacency matrixHT as:

HT (ui, uj) =
|Tui

⋂
Tuj |

|Tui
⋃
Tuj |

∗ exp(
∑
t∈T

(otui − o
t
uj

)Pt),

where Tui is the set of topics a user ui is interested in by labeling the lists with keywords

related to these topics, otui denotes the number of experts a user ui labeled in a topic t, and

Pt denotes the probability of being interested in a topic t, which is formally defined as:

Pt =

∑
u∈U o

t
u∑

t∈T
∑

u∈U o
t
u

. (5.3)

The first part in HT is used to measure how common two users share topics; the second

part is applied to quantitively evaluate the similarity of their interests across all topics.

For the second graph – the expert-expert graph Gee
T – we have nodes as experts and

edges representing the similarity of experts towards their expertise. The adjacency matrix

73



VT is defined as:

VT (ei, ej) =
|Tei

⋂
Tej |

|Tei
⋃
Tej |
∗ exp(

∑
t∈T

(δtei − δ
t
ej

)Pt),

where Tei is the set of topics in which an expert ei have expertise labeled by users, and δtei

is denoted as the number of times an expert ei labeled by users in a topic t. The first part

in VT is used to measure how common two experts have the same expertise; the second

part is applied to quantitively evaluate the similarity of their expertise across all topics.

5.3.4.2 Relationships between Heterogeneous Entities

In addition to the topical correlations between users and experts, themselves, we ad-

ditionally consider the relationships across users and topics, as well as across experts and

topics. Since each Twitter list is labeled with certain labels, the topic preferences of a user

can be revealed by aggregating all of the labels he/she applies in the lists. As a result, we

propose to leverage a user’s topical preferences to improve the learning of latent matrices

of users and topics as follows:

FBT
= ‖BT −U (1)U (3)T ‖2F ,

where BT is the affinity matrix where an element indicates whether a user is interested in

certain topic by applying keywords related to this topic in her lists. Our goal is to minimize

FBT
so that a user is more likely to select experts who have expertise on topics of interest

to this user.

Meanwhile, an expert’s expertise can be also found by aggregating all of the labels in

all the lists this expert appears. Therefore, we leverage the expert’s topic preferences to
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improve the learning of latent matrices of experts and topics as illustrated below:

FCT
= ‖CT −U (2)U (3)T ‖2F ,

whereCT is the affinity matrix in which the element indicates the number of times that an

expert has been recognized by users with respect to certain topics. Through minimizing

FCT
, an expert who has higher recognition in a topic is more likely to be selected by users

who are interested in this topic.

5.3.5 Modeling Social Preferences

Finally, we consider how to model the social preferences of users with respect to per-

sonalized expert preferences. Concretely, we consider the social connections among users

and experts:

5.3.5.1 Relationships between Homogeneous Entities

Similar to our previous efforts, we construct a graph Guu
S in which nodes represent

users and edges represent the pairwise similarity of users in terms of their social prefer-

ences, and a graph Gee
S in which nodes represent experts and edges represent the pairwise

similarity of experts with respect to their social connections. By applying the Jaccard

coefficient, the adjacency matrixHS for users is defined as:

HS(ui, uj) =
|Fui

⋂
Fuj |

|Fui
⋃
Fuj |

,

where Fui represents the set of users ui follows. As a similar fashion, we define the

adjacency matrix VS for experts as:

VS(ei, ej) =
|Fei

⋂
Fej |

|Fei
⋃
Fej |

,
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where Fei represents the set of users ei follows. The intuition behind HS and VS is that

users/experts who share more friends are more likely have similar behaviors on selecting

experts/being selected by users.

5.3.5.2 Relationships between Heterogeneous Entities

In order to take advantage of the social connections between different entities (e.g.,

user-expert) into the expert recommendation, we leverage the following social relation-

ships from a user to an expert to improve the learning of latent matrices of users and

experts, as shown below:

FAS
= ‖AS −U (1)U (2)T ‖2F , (5.4)

where AS is a matrix where the element indicates if a user follows an expert. In this way,

the recommender can prefer experts who are followed by this user through minimizing

FAS
. Note that this is a very strong signal, and unlikely to be present for most users.

5.3.6 Solving TAPER

Given these models of geo-spatial, topical and social preferences above, we now intro-

duce an efficient optimization algorithm to solve Eq. (5.2) under the framework of ADMM

that can be considered as an approximation of the method of multipliers with more effi-

ciency. The overall approach is summarized in Algorithm 2. Our objective function can

76



Algorithm 2: Optimization Algorithm of the Proposed Model via ADMM

Input: T,U (n)
0 ,Ψ,Ψc, γ, λ, ρ, η, ηmax, N

Output: X,U (n),Z(n),Y (n)

1 Initialize U (n)
0 ≥ 0, Z(n)

0 = Y
(n)
0 = 0, t = 0

2 while Not Converged do
3 for n← 1 to N do
4 Update Z(i)

t+1 ← (Y
(i)
t − ηtU

(i)
t )(ηtI + γLi)

−1

5 Calculate E(n) = (U (N) � · · ·U (n+1) �U (n−1) � · · ·U (1))T

6 Update U (1)
t+1 ← (X t

(1)E
(1)T + βAU (2) + βBU (3) + ηtZ

(1)
t+1 +

Y
(1)
t )(E(2)E(2)T + βU (1)TU (1) + βU (3)TU (3) + λI + ηtI)−1

7 Update U (2)
t+1 ← (X t

(2)E
(2)T + βATU (1) + βCU (3) + ηtZ

(2)
t+1 +

Y
(2)
t )(E(2)E(2)T + βU (1)TU (1) + βU (3)TU (3) + λI + ηtI)−1

8 Update U (3)
t+1 ← (X t

(3)E
(3)T + βBTU

(1) + βCTU (2) + ηtZ
(3)
t+1 +

Y
(3)
t )(E(3)E(3)T + βU (1)TU (1) + βU (2)TU (2) + λI + ηtI)−1

9 Update Xt+1 = T + Ψc ∗ [[U
(1)
t+1,U

(2)
t+1, . . . ,U

(N)
t+1 ]]

10 for n← 1 to N do
11 Update Y (n)

t+1 = Y
(n)
t + ηt(Z

(n)
t+1 −U

(n)
t+1)

12 Update ηt+1 =min(ρηt, ηmax)

13 Check the convergence: max{‖U (n)
t+1 −Z

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

14 t = t+ 1

15 return X, U (n), n = 1, 2, . . . , N

be firstly written in the partial augmented Lagrangian function as follows:

Lη(U
(n),Z(n),Y (n))n=1,2,3 =

1

2
‖X− [[U (1),U (2),U (3)]]‖2F

+
λ

2

3∑
i=1

‖U (i)‖2F +
γ

2

3∑
i=1

tr(Z(i)TLiZ
(i))

+
β

2
(‖A−U (1)U (2)T ‖2F + ‖B −U (1)U (3)T ‖2F + ‖C −U (2)U (3)T ‖2F )

+
3∑
i=1

< Y (i),Z(i) −U (i) > +
3∑
i=1

η

2
‖Z(i) −U (i)‖2F ,

(5.5)
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where Y (n) is the matrix of Lagrange multipliers for n = 1, 2, . . . , N and η is a penalty

parameter.

Updating Z(i). To update Z(i), we can rewrite the Eq. (5.5) as:

min
Z(i)

γ

2
tr(Z(i)TLiZ

(i)) +
ηt
2
‖Z(i) −U (i)

t +
Y

(i)
t

ηt
‖2F . (5.6)

Thus, Z(i) can be efficiently updated by solving the optimization problem in Eq. (5.6):

Z
(i)
t+1 = (Y

(i)
t − ηtU

(i)
t )(ηtI + γLi)

−1, (5.7)

where I is the identity matrix with the same size of Li.

Updating U (i). To update U (i), the Eq. (5.5) can be rewritten as:

min
U (i)

1

2
‖X t

(i) −U (i)E(i)‖2F +
λ

2
‖U (i)‖2F

+
β

2
(‖A−U (1)U (2)T ‖2F + ‖B −U (1)U (3)T ‖2F

+ ‖C −U (2)U (3)T ‖2F ) +
ηt
2
‖Zi −U (i)

t +
Y

(i)
t

ηt
‖2F ,

(5.8)

where E(i) = (U (N) � · · ·U (i+1) � U (i−1) � · · ·U (1))T |N=3, let X(n) be the mode-n

unfolding of the tensor X. Then this subproblem in terms of U (i) is solved as follows:

U
(1)
t+1 = (X t

(1)E
(1)T + βAU (2) + βBU (3) + ηtZ

(1)
t+1 + Y

(1)
t )

(E(1)E(1)T + βU (2)TU (2) + βU (3)TU (3) + λI + ηtI)−1, (5.9)

U
(2)
t+1 = (X t

(2)E
(2)T + βATU (1) + βCU (3) + ηtZ

(2)
t+1 + Y

(2)
t )

(E(2)E(2)T + βU (1)TU (1) + βU (3)TU (3) + λI + ηtI)−1, (5.10)
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U
(3)
t+1 = (X t

(3)E
(3)T + βBTU

(1) + βCTU (2) + ηtZ
(3)
t+1 + Y

(3)
t )

(E(3)E(3)T + βU (1)TU (1) + βU (2)TU (2) + λI + ηtI)−1. (5.11)

Updating X. To update X, we can have that:

Xt+1 = T + Ψc[[U
(1)
t+1,U

(2)
t+1,U

(3)
t+1]],

where Ψc is the complement of Ψ.

Updating Y (i). To update Y (i), we can have that:

Y
(i)
t+1 = Y

(i)
t + ηt(Z

(i)
t+1 −U

(i)
t+1).

Updating η. We can accelerate our optimization algorithm by adaptively updating η. To

update η, we can have that:

ηt+1 = min(ρηt, ηmax),

where ρ is a constant to control the step. In this study, we empirically set η0 = 1.1 and

ρ = 0.1 via cross-validation.

5.4 Experiments

In this section, we investigate (i) the effectiveness of TAPER versus alternatives; (ii)

the impact of specific contextual factors (e.g., geo-spatial, topical, and social); (iii) how in-

corporating evidence of experts for whom a user is not interested affects recommendation

quality; and (iv) the impact of the amount of training data.
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5.4.1 Experimental Setup

To evaluate the performance of the proposed framework, we randomly split experts

for a user into 50% for training and 50% for testing. For latent factor dimension, we

empirically choose 20 for all methods after testing various settings {5, 10, 20, 30, 40,

50, 100} for a tradeoff between accuracy and the computational cost. For the number of

experts that a user does not pick up in the Twitter lists, we empirically select 350 through

all experiments we conducted. The effects of this number will be further discussed in

Section 5.4.3.2. Three positive parameters are involved in the experiments: λ, γ and β

in Eq.(4.1). λ is the regularization parameter used to avoid overfitting. γ is to control

the contribution of contextual information between homogeneous entities. β is to control

the contribution of contextual information between heterogeneous entities. As a common

way, we employ the cross-validation to tune these parameters. We find that parameter

settings of γ < 1 and β < 0.1 lead to fairly stable precision and recall, indicating the

stability of TAPER to these regularization parameters. Concretely, we empirically set

λ = 0.1, γ = 0.1 and β = 0.01 for general experiments, respectively. Their effects on the

performance of the proposed framework is evaluated and discussed in the Section 5.4.4.

We adopt Precision@k and Recall@k as our evaluation metrics. Precision@k repre-

sents the percentage of correctly recommended experts out of the top-k recommendations;

Recall@k represents the percentage of experts emerging in the top-k recommendations.

Both of them have been widely used to evaluate the quality of recommendation. In our

experiments, we test for k at 5, 10, and 15.

5.4.2 Baselines

We consider seven baselines in addition to the proposed TAPER approach. The first

three baseline are classical recommender system approaches:

• Most Popular (MP): This baseline recommends the most listed experts in a topic to

80



all users.

• User-based Collaborative Filtering (UCF): We adopt a user-based recommendation

framework [134] to recommend personal experts, which discovers user’s implicit

preferences towards experts by aggregating similar users.

• Matrix Factorization (MF): This baseline computes a user’s preferences on experts

for each topic by a pair-wise latent matrix factorization model trained by stochastic

gradient descent [67].

The next four baselines are simplified variants of the proposed TAPER approach, all

building on tensor factorization:

• Tensor Factorization (TF): In analogy to matrix factorization, tensor factorization

computes each user’s preferences for experts by considering users, experts, and top-

ics simultaneously. This basic tensor factorization model corresponds to Eq. (5.1).

• Geo-based TAPER (G-TAPER): This model is a variant of the basic tensor factor-

ization model, but only integrates geo-spatial preferences: that is, HG, VG, WG,

AG andBG in Eq. (4.1).

• Topical-based TAPER (T-TAPER): This model only integrates topical preferences:

that is,HT , VT ,BT and CT in Eq. (4.1).

• Social-based TAPER (S-TAPER): This variant only considers social preferences:

that is,HS , VS andAS in Eq. (4.1).

Finally, we consider the proposed TAPER approach:

• Contextual Personalized Expert Recommendation (TAPER): This is the proposed

framework, incorporating all three types of contextual information among users,
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Figure 5.6: Precision@k: Comparing TAPER versus Alternative Methods.

experts, and topics in Eq. (4.1). Specifically, we let H = HG ∗HT ∗HS , V =

VG ∗ VT ∗ VS ,W = WG,A = AG +AS ,B = BG +BT and C = CT .

5.4.3 Results

We begin by investigating the quality of TAPER versus each of the baselines. We adopt

10-fold cross validation and report the average precision and recall over 10 test runs in Fig-

ure 5.6 and Figure 5.7. Overall, the proposed personal expert recommendation framework

TAPER performs the best among all alternative baseline methods in both precision and

recall. From Figures 5.6 and 5.7, we can observe that TAPER consistently outperforms

the baseline methods MP, UCF, MF, and TF with an average improvement of 42.2% over

the best of these four methods in precision and 33.5% in recall. Concretely, TAPER per-

forms better than TF with an average improvement of 14.1% in precision and 17.8% in

recall, indicating the superiority of a tensor factorization model integrating rich contextual

preferences. Moreover, TAPER has a better performance than MF with an average im-

provement of 26.6% in precision and 25.8% in recall, which is significantly higher than a
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Figure 5.7: Recall@k: Comparing TAPER versus Alternative Methods.

related matrix factorization approach in [67].

We observe that MP and UCF perform the worst among all approaches. We attribute

the poor performance of the UCF approach to sparseness – the low density of data can

lead to poor recommendations, whereas both MF and TF can leverage the low-rank ap-

proximation of user preferences towards experts. Overall, we observe that the best method

achieves a precision of around 0.3 and a recall of around 0.4 As Ye et al. [135] have

observed, the effectiveness of recommenders with sparse datasets is usually low.

We also observe that adding additional contextual factors improves the basic tensor fac-

torization (TF) approach. Concretely, G-TAPER gives an average improvement of 8.1% in

precision and 7.3% in recall over TF. This indicates that the geo-spatial preferences among

users, experts, and topics can help identify similar users and distinguish popular experts

according to their spatial popularity. T-TAPER performs slightly better than TF with an

average improvement of 5.2% in precision and 4.9% in recall, implying that the topical

preferences among users and experts can help improve the performance of personalized

83



Table 5.2: What Impact Does Contextual Preference Have on Each Approach? Here we
compare contextual preferences of heterogeneous entities versus homogeneous entities.

Metric Scenario G-TAPER-Het G-TAPER-Hom T-TAPER-Het T-TAPER-Hom

Precision

Top-5 0.271 0.282 0.262 0.274
Top-10 0.234 0.242 0.227 0.232
Top-15 0.204 0.208 0.192 0.199

Scenario S-TAPER-Het S-TAPER-Hom TAPER-Het TAPER-Hom
Top-5 0.289 0.278 0.296 0.306

Top-10 0.248 0.241 0.254 0.260
Top-15 0.214 0.201 0.219 0.229

Recall

Top-5 0.183 0.182 0.177 0.178
Top-10 0.286 0.297 0.289 0.304
Top-15 0.391 0.388 0.386 0.381

Scenario S-TAPER-Het S-TAPER-Hom TAPER-Het TAPER-Hom
Top-5 0.187 0.180 0.199 0.201

Top-10 0.310 0.304 0.313 0.329
Top-15 0.402 0.398 0.416 0.411

expert recommendation via tensor factorization. Furthermore, S-TAPER gives an average

improvement of 13.2% in precision and 10.6% in recall. This indicates that the social

ties of users and experts can help find users with similar behaviors on selecting experts,

which provide more significant contributions to the personal expert recommendation than

the geo-spatial and topical. Recall that social ties implicitly capture latent geo-spatial and

topical preferences.

5.4.3.1 The Impact of Contextual Preferences

We have seen that geo-spatial, topical, and social preferences can be integrated into

tensor factorization for improved personalized expert recommendation. In this section, we

aim to dig deeper into the impact of geo-spatial, topical, and social signals on the quality of

personalized recommendation. What impact do heterogeneous and homogeneous contex-

tual preferences have? Are these impacts equal across approaches? For this experiment,

we add the suffixes Het and Hom to indicate which variant of the proposed framework is
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at study. For instance, G-TAPER-Hom represents the model G-TAPER by only leveraging

the geo-spatial preferences between homogeneous entities including HG, VG, and WG.

Similarly, we consider variations of T-TAPER, S-TAPER, as well as the full TAPER.

As it can be seen in Table 5.2, TAPER-Hom outperforms TAPER-Het with an aver-

age improvement of 3.4% in precision and 1.6% in recall, indicating that in general, the

contextual preferences between homogeneous entities plays a more important role than

between heterogeneous entities since such information can help identify similar users and

further improve the quality of the recommendation. G-TAPER-Hom has a better perfor-

mance than G-TAPER-Het with an average improvement of 3.0% in precision and 1.6%

in recall. T-TAPER-Hom gives an average improvement of 3.5% in precision and 1.9%

in recall. These results indicate that the geo-spatial and topical preferences between ho-

mogeneous entities contribute more to the proposed framework. However, it is surprising

that S-TAPER-Het performs better than S-TAPER-Hom with an average improvement of

4.3% over S-TAPER-Hom in precision and 2.4% in recall. This implies that the following

relationships between users and experts are a strong signal, and confirms that if a user is

already following this expert, it is very likely that this user will include this expert on the

list [67]. In addition, we also observe that the social preferences are more significant in

contributing to the proposed framework than other factors.

5.4.3.2 The Impact of Negative Experts

We next turn to the impact of “negative experts”, that is, to incorporate evidence of

experts for whom a user is not interested. We seek to understand if these negative experts

can be used as evidence in addition to the positive relationships investigated so far (e.g.,

by exploiting the geo-spatial preferences of users for experts). For example, knowing

that a user is interested in a California Politics expert, but not interested in an expert on

US National Politics may convey strong information about the preferences for that user
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Figure 5.8: Effect of Number of Negative Experts.

on topics of regional (but not necessarily national) issues. To test the impact of these

negative experts, we run the following experiment: first, we take the task of recommending

the top-15 experts to users, and then we vary the number of negative experts. We vary

the number of negative experts from 50 to 3,000 for each user by randomly selecting

experts whom this user do not put in the Twitter list. Figure 5.8 demonstrates the impact

of an increasing number of negative experts on the precision and recall of personalized

expert recommendation. First, we observe that both precision and recall increase as the

number of negative experts increases. This indicates that this signal of not being interested

can provide some additional information beyond the positive relationships exploited so

far. Second, we observe that the precision and recall curves flatten once the number of

negative experts is larger than 350. Since there are nearly 9,000 experts in the dataset,

the probability of false negative samples is small when only selecting a tiny part of them.

However, this probability will increase as the number of negative experts grows, further

affecting the quality of recommendations.

86



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

0.3

Fraction of Training Data

Pr
ec

is
io

n@
10

 

 
TAPER
TF
MF

Figure 5.9: Precison@10 by varying the amount of training data.

5.4.3.3 Varying the Amount of Training Data

For the experiments so far, we have relied on cross-validation over a random split of

experts into a training half and a testing half. Here, we explore the impact of varying

the amount of training data on the task of personalized expert recommendation. Does the

proposed approach still perform better than alternatives even with low amounts of training

data? Do precision and recall plateau at some point? We vary the fraction of training

data from 10% to 90% and evaluate TAPER versus a baseline tensor factorization method

(TF) and a non-negative matrix factorization (MF) method on the task of personalized

recommendation of the top-10 experts to each user. As we can see in Figures 5.9 and 5.10,

the proposed framework TAPER consistently outperforms both MF and TF in precision

and recall, across all fractions of training data. We also observe that the precision curves

for all methods plateaus around 30%, indicating that good results may be achieved with

even less training data. Naturally, the recall of all methods consistently increases as the
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Figure 5.10: Recall@10 by varying the amount of training data.

training data increases, since recall is more sensitive to the number of testing samples.

5.4.4 Parameter Analysis

Two of the critical parameters for the proposed TAPER are γ and β. Recall that γ con-

trols the contribution of contextual information between homogeneous entities (e.g., users

and users, experts and experts, and topics and topics), whereas β controls the contribution

of contextual information between heterogenous entities (e.g., users and experts, users

and topics, and experts and topics). In order to better understand the impacts of these two

parameters, we next conduct experiments to compare TAPER across different parameter

settings. We vary values of these parameters in [0.001 0.01, 0.1, 1, 10] and present the ex-

perimental results of precision and recall in Figure 5.11 for the task of recommending the

top-10 experts for each user. From the figures, we observe that our proposed framework

TAPER achieves relatively consistent performance when choosing these regularization pa-

rameters across a wide range. Specifically, we find that the setting γ = 0.1, β = 0.01 gives
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the best performance, and that parameter settings of γ < 1 and β < 0.1 lead to fairly stable

precision and recall. These results indicate the stability of TAPER to these regularization

parameters.
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Figure 5.11: Impact of β (for heterogeneous entities) and γ (for homogeneous entities)

5.5 Conclusion

We have studied the problem of personalized expert recommendation through a tensor-

based exploration of geo-spatial, topical, and social context across users, experts and top-

ics. Through a Twitter dataset, we have seen that the proposed framework can improve

the quality of the recommendation by over 30% in both precision and recall compared to

state-of-the-art baselines.
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6. T-CRM: LEARNING USER TOPICAL PROFILES*

In this chapter, we address the challenges of sparsity, similarity and specificity on the

recovery of missing information on social media. Concretely, we extend the proposed ten-

sor learning algorithm to another missing information problem on social media — learning

user topical profiles. User interests and expertise are valuable but often hidden resources

on social media even though social networks (e.g., Twitter Lists and Linkedin’s Skill Tags)

may provide a partial perspective on what users are known for. Specifically, we tackle the

problem by developing a tensor-based contextual regularization model that simultaneously

considers multiple (possibly conflicting) contexts based on a user’s friends, interests, and

behaviors. We show how these contexts can be embedded in a generalized tensor-based

optimization framework that takes into account pairwise relations among all contexts for

robustly learning user profiles. Extensive experiments demonstrate the superiority of the

proposed model in terms of learning high-quality user topical profiles, and outperforms a

cross-triadic factorization state-of-the-art baseline.

6.1 Introduction

In social media systems, demographic profiles — often including name, age, gender,

and location — provide an important first step toward creating rich user models for in-

formation personalization. For example, a user’s location can be a signal to surface local

content in the Facebook newsfeed. Of course, these demographic profiles typically re-

veal very little about a user’s topical interests (what she likes) or expertise (what she is

known for). Hence, there is great effort toward building high-quality user topical profiles,

*Reprinted with permission from “What Are You Known For? Learning User Topical Profiles with
Implicit and Explicit Footprints” by Cheng Cao, Hancheng Ge, James Caverlee, Haokai Lu, and Xia Hu,
2017. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Copyright 2017 by ACM. DOI: hŁp://dx.doi.org/10.1145/3077136.3080820
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toward improving user experience and powering important applications like personalized

recommendation [78], expert mining [60], and community detection [85].

Indeed, there are two major approaches to build the topical profiles for social media

users. One thread of methods seeks to uncover latent factors that may be descriptive of a

user. For example, running Latent Dirichlet Allocation (LDA) over a user’s posts in social

media can reveal the topics of interest of the user [59, 77, 136]; similarly, matrix factor-

ization approaches have proven popular at capturing user factors, often for personalization

purposes [74, 75, 76, 78, 80, 82, 137]. Aside from such recommendation applications,

latent factor models have also been used to find influential users, mine communities, and

predict review quality [59, 85, 93]. Another thread of methods seeks to encourage social

media users to directly assess each other’s interests and expertise, providing a partial per-

spective on user topical profiles. For example, LinkedIn users can choose skill tags for

their own profiles and can endorse these tags on the profiles of others. Twitter Lists allow

users to organize others according to user-selected keywords, e.g., placing a group of pop-

ular chefs on the list “Top Chefs”. In this way, some list names can be viewed as a topical

tag for list members. In the aggregate, this crowd-contributed tagging knowledge can be

viewed as explicit evidence for capturing user interests and expertise [60, 131, 132].

Both approaches, however, face great challenges. Approaches that identify latent top-

ics (often, as a distribution over features in some lower dimensional space) are typically

trained only over content (ignoring other important footprints) and are difficult to directly

interpret. Methods that only use crowdsourced tags typically suffer from limited coverage;

that is, while the hand-curated tags may be of high-quality, very few users actually have

descriptive topical tags associated with them. For example, in a random sample of 3.5 mil-

lion Twitter users, we find that only 2% have been labeled with a topical tag (more details

in Section 6.4). Moreover, to better understand user topical interests and expertise, a more

comprehensive profiling framework is necessary. For instance, it is unclear what kind of
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evidence is useful for user topical profiling. And how can such potentially heterogeneous

evidence be modeled for user topical profiling?

In this chapter, we tackle the problem of learning user topical profiles on Twitter by ex-

ploiting heterogeneous footprints (e.g., tags, friends, interests, behavior). Based on a small

set of explicit user tags, our goal is to extend this known set to the wider space of users who

have no explicit tags. Toward bridging these two approaches, we propose to exploit het-

erogeneous contextual information for intelligently learning user topical profiles. The key

intuition is to identify “similar” users in terms of their topical profiles by exploiting their

similarity in a contextual space. For instance, Twitter users who post similar hashtags may

have similar interests, and YouTube users who upvote the same videos may have similar

preferences. Such evidence of homophily has been widely studied in the sociological liter-

ature [138] and repeatedly observed in online social media, e.g., [139, 140, 141, 142, 143].

But what contextual spaces are appropriate for finding this homophily? What impact do

they have on the discovery of user topical profiles? Which contexts are more effective? To-

ward answering these questions, we formulate the problem of learning user topical profiles

in social media, with a focus on leveraging heterogeneous contexts and demonstrate how

to model textual, social, and behavioral contexts under this framework, and we present

a unified factorization model in which we simultaneously consider all of these contexts

(called CRM). In addition, we extend this initial approach through a generalized model

that integrates the pairwise relations across all potential contexts via a tensor-based con-

textual model (called T-CRM), which provides a more robust framework for user profile

learning. Through extensive experiments, we find the proposed T-CRM model is capable

of learning high-quality user topical profiles with better performance than state-of-the-art

baselines, and find that behavioral context is the single strongest factor, but that intelligent

combination of all three contexts leads to the best overall performance.
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6.2 Learning User Topical Profiles

Let U = {u1, u2, . . . , uN} be a set of users where N is the number of users, and

T = {t1, t2, . . . , tM} is a set of M tags each of which is associated with a particular topic.

Suppose we have a subset of users S ⊂ U where each user ui ∈ S has been labeled with

a subset of T , typically based on the collective efforts of the crowd. Practical examples of

such tagging include LinkedIn Skill Tags and Twitter Lists, wherein users can provide a

crowdsourced summary of a user’s interests and expertise [131, 60, 132]. We denote these

crowdsourced user topical profiles as the user-tag matrix P ∈ R|S|×M in which element

P (i, j) represents the number of times ui is labeled by tj .

Learning User Topical Profiles. Given a set of users U , a set of tags T , and a subset of

users S ⊂ U for whom we know their user topical profiles P , the problem of Learning

User Topical Profiles is the task of inferring the unknown tags from T for users in U −S.

An Initial Attempt. A natural choice for attacking the challenge of learning user topical

profiles is the matrix completion approach, which has been adopted in many related works

[82, 99, 98, 80]. Under a matrix completion approach, we can extend P to a larger matrix

X ∈ RN×M by including all users of U . Then, we can formulate the learning user topical

profiles problem as a matrix completion problem:

min
U ,V

1

2
‖Ω� (X −UV T )‖2F ,

s. t. U ≥ 0,V ≥ 0,

(6.1)

where X is a user-tag matrix, and U ∈ RN×K and V ∈ RM×K are latent representations

of users and tags, respectively. K � min(N,M) is the number of latent dimensions.

Since the givenX is naturally non-negative, we add the same constraints for U and V so

that we can better interpret the values in them. Ω is a non-negative matrix with the same
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size ofX:

Ω(i, j) =


1 ifX(i, j) is observed,

0 ifX(i, j) is unobserved.

The basic matrix completion model above learns an optimal set of {U ,V } to approx-

imate the original matrix X , estimating for unobserved users through observed user-tag

pairs. However, as in many linear-inverse problems, there may not be sufficient infor-

mation to estimate the original matrix X based only on the partially observed data. The

problem of learning user topical profiles is one such case, since most of our target users

do not have any partially known topical profiles. Hence, with this challenge in mind, we

propose to exploit multiple heterogeneous contexts — social, textual, and behavioral —

to build a robust contextual factorization approach for learning unknown user topical pro-

files. The key intuition is to identify “similar” users in terms of their topical profiles by

exploiting their similarity in these contextual spaces.

6.3 A Generalized Contextual Regularization Model

We turn in this section to proposing a generalized contextual regularization model for

learning user topical profiles. We first identify multiple contexts and show how to model

them. We then introduce a matrix factorization based approach — called the Contextual

Regularization Model (CRM) — for learning user topical profiles, before extending this

version to a more general tensor-based approach — called the Tensor-based Contextual

Regularization Model (T-CRM).

6.3.1 Modeling Contexts

As discussed in Section 6.1, we aim to model three kinds of behavioral contexts for

learning user topic profiles: social, textual, and behavioral. The intuition is that these con-

textual spaces can connect related users, such that user topical profiles can be propagated
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from user to user. But how should we model these contexts? And how can we integrate

them into a matrix completion model?

6.3.1.1 Social Context

Social context — directly suggested by homophily — naturally indicates that con-

nected users may share common interests, and hence can be used for inferring user topical

profiles [73, 75, 86, 87]. For example, if Carol and David are friends on Twitter, then the

social context can assert that they will share common interests.

These social network connections between users can be naturally modeled as a matrix.

We denote the matrix asE ∈ RN×N in which the binary element E(i, j) represents if user

ui and user uj have a connection on a social network. We can model this social context as

a regularization term:

L1 =
1

2
‖E −UUT‖2F .

Our goal is to optimize the user latent matrix U in order to minimize L1, with the

intuition that friends are likely to have similar profiles. Of course, users may form rela-

tionships in social media for many diverse reasons, and so these relationships may not be

appropriate for inferring similar topical profiles. As one example, family members may be

“friends” in a social network but can have distinct topical profiles (e.g., sister vs brother,

grandson vs grandfather). Hence, we next consider additional contexts that may serve to

mitigate these challenges.

6.3.1.2 Textual Context

The second context we consider is textual context. Text posted by users can seman-

tically reflect related subjects associated with their interests or expertise. Thus, many

studies have directly applied LDA on posted texts, assuming the (latent) topics in user’s

posts are their topical profiles [59, 77, 136]. In Figure 6.1, Alice is a basketball fan and
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Bob

sports, basketball, game

sports-relevant tags

“NBA all-star game 2016! Vote Kobe!!”
“All-star 2016 @Toronto! Cant wait!!! Vote!”

This time it’s Kobe’s last NBA all-star game!
I’ll vote Curry for all-star 2016 starting PG!

Alice

Figure 6.1: Examples of Textual Context on Learning User Topical Profiles.

she has posted many tweets talking about the upcoming NBA all-star game. We find that

Bob’s tweets share many of the same words as Alice’s. Hence, their posted texts demon-

strate their shared interests in basketball, suggesting that Alice’s user topical profile may

be similar to Bob’s user topical profile.

We can model this context like so: let w = {w1, w2, . . . , wL} be the set of words,

where L denotes the number of words. A ∈ RN×L is a user-word matrix in whichA(i, j)

is the frequency of word wj appearing in user ui’s posts. Similarly, B ∈ RM×L is a tag-

word matrix where B(i, j) represents the frequency of word wj posted by all users who

have tag ti. We propose to leverage a user’s textual context as the following regularization

term:

L2 =
1

2
‖A−UW T‖2F +

1

2
‖B − VW T‖2F ,

whereW ∈ RL×K represents word’s latent topics. Our goal is to minimize L2 so that two

users who are “nearby” in the textual space tend to have similar topical profiles. Of course,
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politics, journalist, newsCarol

politics-relevant tags

“huffingtonpost.com/politicsDavid Brooks: I miss Barack Obama”
“Sanders could be the nominee? huffingtonpost.com/politics”

“Hillary Clinton lost New Hampshire huffingtonpost.com/politics”
“huffingtonpost.com/politics 10 reasons Rubio will win nomination”

David
Figure 6.2: Examples of Behavioral Context on Learning User Topical Profiles.

a user’s posts are often short (like on Twitter) and may contain many nonsense characters

or off-topic posts, which can interfere with clearly revealing user topical profiles. Hence,

we next turn to a third context for overcoming these challenges.

6.3.1.3 Behavioral Context

Finally, we propose to augment the social and textual contexts with behavioral context

[73, 79, 88]. According to the homophily evidence in the behavior dimension [138], for

instance, two YouTube users may have close tastes if they usually “like” or “dislike” the

same videos. A retweet on Twitter is a strong indication of personal endorsement, so two

users can have similar preferences if they often retweet the same tweets. Hence, these

behaviors may provide strong evidence beyond who users are connected to (social) and

what they post (textual).

Here we adopt URL sharing as a public, observable behavior that may serve as a first

step toward improving the learning of user topical profiles. Other behavioral contexts

are possible, and we anticipate revisiting these in our future work. Through URL shar-

ing, users can concisely express their viewpoints, interests, and professional expertise.
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For instance, a person who works in the IT industry may usually post URLs linking to

engadget.com. A user who likes sports may often share URLs of espn.com. In

Figure 6.2, Carol is a political journalist so she regularly posts some URLs linking to

huffingtonpost.com, and we see David also usually shares the same URLs. In this

case we may infer politics-relevant tags for David.

Concretely, let Z = {z1, z2, . . . , zP} be the set of URLs posted by users (in this case

on Twitter). Similar to textual context, we define C ∈ RN×P as a user-URL matrix where

C(i, j) is the frequency of URL zj posted by user ui. Also, D ∈ RM×P is a tag-URL

matrix with D(i, j) as the frequency of URL zj appearing in all posts from users having

tag ti. As a result, we leverage URL sharing via the following loss function:

L3 =
1

2
‖C −UGT‖2F +

1

2
‖D − V GT‖2F ,

where G ∈ RP×K represents URL’s latent topical spaces. Our goal is to minimize L3,

with the idea that users may have similar topical profiles if they behave similarly when

posting URLs.

6.3.2 CRM: A Contextual Regularization Model

Since evidence from these heterogeneous contexts may provide conflicting evidence,

potentially leading to lower quality user profiles than considering contexts in isolation,

we turn in this section to developing a unified model that can integrate all these heteroge-

neous contexts together into a matrix completion model. Since all contexts are modeled

as regularization terms in Section 6.3.1, intuitively we can linearly incorporate them into

the proposed Contextual Regularization Model (CRM).

Figure 6.3 gives an overview of CRM. We factorize each of the social, textual, and

behavioral matrices, and assume the objective user-tag matrix shares the same latent user

dimensions with them. This is the fundamental assumption in most factorization-based
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methods for solving matrix completion problems. Similarly, we collect each tag’s latent

representations, and multiply them with each user’s latent factors for estimating the objec-

tive matrix.

Specifically, we can formulated the following optimization problem:

min
U ,V ,W ,G

F =
1

2
‖Ω� (X −UV T )‖2F

+
λ

2
(‖A−UW T‖2F + ‖B − VW T‖2F )

+
γ

2
(‖C −UGT‖2F + ‖D − V GT‖2F )

+
δ

2
‖E −UUT‖2F

+
α

2
(‖U‖2F + ‖V ‖2F + ‖W ‖2F + ‖G‖2F )

s. t. U ≥ 0,V ≥ 0,W ≥ 0,G ≥ 0,

(6.2)

where λ, γ, δ and α are positive regularization parameters controlling the contributions of

different contexts. λ is introduced to control the weights of text associated with users and

tags, γ is a parameter to control the weights of behaviors from users as well as tags, and δ

is to control the weight of social contexts between users. ‖U‖2F , ‖V ‖2F , ‖W ‖2F and ‖G‖2F

are deployed to avoid overfitting. Similar to Equation 6.1, we insert the non-negative

constraints for U ,V ,W , andG.

Next, we introduce an algorithm to solve the optimization problem in Eq.(6.2). Since

there are multiple variables in the objective function, we propose an algorithm to alter-

natively learn optimal solutions for four variables U , V , W and G. The key idea is

to optimize the objective function with respect to one variable, while fixing others. The

algorithm will keep updating the variables until convergence or reaching the number of

maximum iterations.

The derivation of the objective function in Eq.(6.2) regarding four variablesU , V ,W
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andG are demonstrated as:

∂F
∂U

=−Ω�Ω� (X −UV T )V − λ(A−UW T )

− γ(C −UGT )− 2δ(E −UUT ) + αU ,

∂F
∂V

=−ΩT �ΩT � (XT − V UT )U − λ(B − VW T )

− γ(D − V GT ) + αV ,

∂F
∂W

=− λ(AT −WUT )U − λ(BT −WV T )V + αW ,

∂F
∂G

=− γ(CT −GUT )U − γ(DT −GV T )V + αG.

(6.3)

Based upon the derivations illustrated above, we then apply stochastic gradient descent

to iteratively update each variable by taking a step η along its gradient ascending. The

algorithm details are presented in Algorithm 3 in which learning steps ηu, ηv, ηw and ηg

are chosen based upon the Goldstein Conditions [144]. We implement the non-negative

constraints on U and V through forcing their negative values to 0 in each iteration. As

shown, this algorithm considers all three contexts together to estimate the topical profiles

for each user.

Though unifying all three heterogeneous contexts, this initial CRM approach has two

main drawbacks. First, it will become complex if we introduce additional contexts, as we

bring in more controlling parameters of new contexts to be tuned. In addition, CRM does

not take into account the relations between those heterogeneous contexts which could be

jointly explored in the latent space. Given these concerns, can we find a generalized model

that can jointly leverage all potential heterogeneous contexts? We turn in the following

section to answering this question.
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Algorithm 3: CRM Solver
Input: user-tag matrixX , user-word matrixA, tag-word matrixB, user-url matrix

C, tag-url matrixD, user friendship matrix E, observation indication
matrix Ω and parameters {λ, γ, δ, ρ, η}

Output: U ,V
1 Initialize U , V ,W andG randomly, t = 0
2 while Not Converged do
3 Compute ∂F

∂U
, ∂F
∂V

, ∂F
∂W

and ∂F
∂G

in Eq.(6.3)
4 Update Ut+1 ← max(Ut − ηu ∂F∂U , 0)
5 Update Vt+1 ← max(Vt − ηv ∂F∂U , 0)
6 UpdateWt+1 ← max(Wt − ηw ∂F

∂U
, 0)

7 UpdateGt+1 ← max(Gt − ηg ∂F∂U , 0)
8 t = t+ 1

9 return U and V

6.3.3 T-CRM: A Tensor-based Contextual Regularization Model

In this section, we augment CRM with a Tensor-based Contextual Regularization

Model (T-CRM) toward jointly exploring the relationships across contexts for more robust

user topical profile learning. First, to relieve the dramatic increase of parameters when

introducing more regularization terms, we need to replace the linear combination model

in CRM by a more compact factorization model. Second, such a compact factorization

model should consider all possible pairwise relations between all contexts. Therefore, we

adopt a tensor factorization model which explicitly takes into account the data’s multi-way

structure. Moreover, the factorization will only happen once even if we introduce more

heterogeneous contexts.

Figure 6.4 shows an overview of T-CRM. In general, we model all contexts in one

tensor via calculating the user similarity in each context. There can be many options for

measuring the user similarity in every context. We test many of them and report the one

providing the best performance in Section 6.4. Then, we factorize the tensor and obtain
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Figure 6.4: An Overview of T-CRM

a matrix of latent representations for all users, upon which we extract a user similarity

matrix to estimate the original user-tag matrix.

Concretely, we denote the tensor as C ∈ RN×N×R which is a multidimensional array

where R is the number of contexts and N is the size of the user set. We can factorize the

tensor C to two latent user matrices Q ∈ RN×K and S ∈ RN×K , and one latent context

matrix Y ∈ RR×K , where K is the number of latent dimensions. The tensor factorization

is to solve the optimization problem defined below:

min
Q,S,Y

1

2
‖C − [[Q,S,Y ]]‖2F +

α

2
(‖Q‖2F + ‖S‖2F + ‖Y ‖2F ), (6.4)
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where [[Q,S,Y ]] ∈ RN×N×R is given by

[[Q,S,Y ]] =
K∑
k=1

qk ◦ sk ◦ yk.

Here qk, sk and yk are the kth column vectors of Q, S and Y respectively. We adopt the

existing CPOPTR method [30] to solve Eq.(6.4). The latent context matrix Y represents

the contribution of each type of context to different latent dimensions. The latent matrices

Q and S are jointly calculated across the different contexts. Hence, each user can be

represented by latent features after combining Q and S. In this study, we employ Λ =

Q+ S as the latent features after column normalization.

The next natural question is how to leverage the new latent space Λ of all users. The

basic idea is that two users tend to have similar topical profiles if they have similar latent

representations derived by jointly considering all their contexts. Thus, we can see Λ as a

“new context” and formulate it as the new loss function:

Θ =
1

2

∑
i,j

Ψ(i, j)‖Ui −Uj‖2

=
∑
i,j

UiΨ(i, j)Ui
T −

∑
i,j

UiΨ(i, j)Uj
T

=
∑
i

UiD(i, i)Ui
T −

∑
i,j

UiΨ(i, j)Uj
T

= tr(UT (D −Ψ)U)

= tr(UTLU),

(6.5)

whereUi is the ith row of the user latent matrixU , tr(· ) denotes the matrix trace, and Ψ is

a user similarity matrix computed from latent features of users Λ by the cosine similarity.

D is a diagonal matrix in which D(i, i) =
∑

j Ψ(i, j), and L = D − Ψ is the graph

Laplacian of the user similarity matrix Ψ.
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Algorithm 4: T-CRM Solver
Input: user-tag matrixX , user-word matrixA, user-url matrix C, user friendship

matrix E, observation indication matrix Ω and parameters {α, β, ηu, ηv}
Output: U ,V

1 Calculate the tensor C fromA, C and E
2 Calculate [Q,S,Y ]← CPOPTR(C)
3 Calculate the latent features of users Λ = Q+ S
4 Calculate the user similarity matrix Ψ based on Λ
5 Construct the graph Laplacian matrix L for Ψ
6 Initialize U and V , randomly, t = 0
7 while Not Converged do
8 Compute ∂F

∂U
= −(Ω�Ω)(X −UV T ))V + βLU

9 Compute ∂F
∂V

= −(ΩT �ΩT )(XT − V UT ))U

10 Update Ut+1 ← max(Ut − ηu ∂F∂U , 0)
11 Update Vt+1 ← max(Vt − ηv ∂F∂U , 0)
12 t = t+ 1

13 return U and V

How can we utilize the new context Θ to learn user topical profiles? Similarly, we

are able to use Θ to regulate latent representations of two similar users to make them as

close as possible. Hence, we can build the T-CRM by solving the following optimization

problem:

min
U ,V

1

2
‖Ω� (X −UV T )‖2F +

β

2
tr(UTLU)

+
α

2
(‖U‖2F + ‖V ‖2F ),

s. t. U ≥ 0,V ≥ 0,

(6.6)

where β is the controlling parameter. This optimization problem can be solved similarly

as introduced in Section 6.3.2. The detailed solver is presented in Algorithm 4.

In summary, we first present a context-based factorization model (called CRM) in

which each of three heterogeneous contexts is modeled as regularization terms. We pro-

vide Algorithm 3 to solve the optimization problem in Equation 6.2. Then we extend CRM
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to a compact tensor-based contextual model (called T-CRM). Based on a tensor decom-

position method, T-CRM can jointly handle relationships across multiple contexts without

introducing new parameters. The complete overview of T-CRM is shown in Figure 6.4,

and we propose Algorithm 4 to solve Equation 6.6.

6.4 Experiments

In this section, we conduct a series of experiments to answer the following questions:

(i) How well do the proposed CRM and T-CRM models work? (ii) Which contexts are

most effective? (iii) How does T-CRM compare with other alternatives? Does it really

improve upon the simpler CRM approach? (iv) How do the proposed approaches compare

to other variants?; and (v) What impact do the model parameters have on the ultimate

performance? We begin by introducing the experimental setup including dataset collection

and evaluation method.

6.4.1 Experiment Setup

6.4.1.1 Twitter Lists

We adopt Twitter Lists, a large publicly-accessible collection of crowd-contributed

tagging knowledge for social media users. Recall that these lists allow one user to annotate

another with a list name (or tag), e.g., politics, music, art. We randomly sample a set of

3.468 million Twitter users, and crawl the list membership information for each of them

via the public Twitter API. We identify 977,000 users who have ever been included in

some list, but we find a huge amount of noise. For instance, nonsense tags (like numbers,

unicode characters, single letters) take up a major proportion. Many tags (e.g., “friend”,

“love”, and “amigo”) are not reflective of topical profiles. Also, there exist many near-

synonyms and variants such as “writer-author” and “news-noticia”. To obtain a set of

candidate tags for our problem, we rank all tags by the number of labeled users, and

manually curate the top-500 tags through merging variants and filtering noise.

106



6.4.1.2 Context

For the textual context, we aggregate all terms each user has posted and adopt the stan-

dard LDA topic model after filtering stopwords and stemming. We further measure user

similarity in the textual context by calculating the pairwise Jensen-Shannon divergence.

For the social context, we crawl the friendship connection information for each user. Fol-

lowing a user can be quite casual on Twitter, so we focus on mutual followings as the basis

of user similarity in the social context. For the behavioral context, we aggregate all URLs

a user has posted in her tweets and obtain the posting counts. We resolve all crawled URLs

(most are shortened) to take care of URL variants, and focus on the URL domain name

which conceptually represents a website. For quantifying similar URL sharing patterns,

we test a set of measurements (e.g., intersection, cosine, jaccard) and find the one in [145]

works best. We exclude those users who just occasionally share URLs, i.e., less than 10

postings.

6.4.1.3 Users

We collect a set of 72,096 users who have all three types of contextual information and

have been labeled by at least one of the candidate tags. Since many of them have sparse

tagging information, we rank all users by the number of tags they have and focus on the

top 10,000.

In our proposed models, we end up with scores of all candidate tags for each user.

Since we should take those most associated tags as user topical profiles, we rank them in

descending order and focus on the top-k ranked tags. Our evaluation is based on ten-fold

cross validation.
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6.4.1.4 Metrics

We pick several metrics which can cover different evaluation aspects. On the one side,

we would like to see the ratio of correct inferences for learning user topical profiles. And

on the other side, we want to measure the prediction error. Thus, we adopt precision@k

which measures the percentage of correctly estimated top-k tags, and Mean Absolute Error

(MAE) which quantifies the prediction quality in terms of errors. Note that a lower MAE

means a better performance.

Furthermore, besides the absolute measurement in accuracy, the relative ranking order

is another important perspective, especially in some recommendation scenarios. The rank

correlation coefficients of both Kendall’s τ and Spearman’s ρ are two prevalent metrics

for measuring rank-based agreement across two lists. We use them both to measure the

number of pairs of tags that are correctly ordered from our results. Their values both range

from -1 to 1, with the higher the more relevant.

6.4.1.5 Baselines

We select three baselines as alternatives to the proposed T-CRM approach. To be fair,

we incorporate all three proposed contexts and maintain the same experimental setup for

all the following approaches:

• Nearest Neighborhood (NN). An intuitive solution is based on the traditional nearest

neighborhood model. For each target user, we separately find a set of closest seed users

in each context, and pick the intersected neighbors from whom we propagate their tags

and scores and take the average for each tag.

• Cross-domain Triadic Factorization (CTF) [100]. This state-of-the-art approach di-

rectly combines user ratings of different merchandise (e.g., book, music, movie) into

one tensor model, in which all the values are user ratings. Then, it adopts the exist-
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ing PARAFAC2 algorithm to factorize the tensor and use the resulting latent factors for

predicting user ratings.

• Contextual Regularization Model (CRM). Introduced in Section 6.3.2, this model is

a basic version that considers each context as a regularization term and linearly adds

them together.

6.4.1.6 Parameter Settings

To determine the number of latent dimensions in both CRM and T-CRM, we experi-

ment with a sequence of settings {5, 10, 20, 30, 40, 50, 100} and empirically select 20 for

both CRM and T-CRM, as a trade-off between accuracy and efficiency. In Algorithm 3,

there are five parameters λ, γ, δ, α, and η. The first four parameters are used to control

the contributions of various contexts. The last one is a step along its gradient ascending.

As is commonly done, we iteratively employ cross-validation to tune these parameters.

Specifically, we empirically set λ = 0.02, γ = 0.7, β = 0.1, α = 0.4 and η = 0.05 for

general experiments, respectively. In T-CRM, we choose 10 for the number of latent di-

mension in tensor factorization. In addition, two positive parameters α and β in Eq. (6.6)

are involved in the experiments. Concretely, we empirically set α = 0.3 and β = 0.02 via

the cross-validation. The step size η in T-CRM is set to 0.05.

6.4.2 The Impact of Contexts

In general, as mentioned in Section 6.1, textual, social, and behavioral contexts have

different emphases on user topical profiles. Hence, which contexts work better (or best) is

one of the most compelling questions to answer. Hence, we compare different combina-

tions of all contexts in both NN and CRM. The reason we do not test them in T-CRM is

that the multi-way manner of T-CRM may not clearly tell which context contributes more.

We show the results in Table 6.1 in which T is for textual, S is for social, and B is for
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Table 6.1: The Impact of Different Contexts for Learning User Topical Profiles

Method Precision MAE
Top 5 Top 10 Top 15 Top 5 Top 10 Top 15

NN-T 0.2113 0.2356 0.2673 0.2914 0.2692 0.2432
NN-S 0.1920 0.2153 0.2330 0.3048 0.2791 0.2642
NN-B 0.2423 0.2629 0.3155 0.2650 0.2342 0.2110

CRM-T 0.3438 0.3791 0.4668 0.2264 0.2069 0.1897
CRM-S 0.3390 0.3837 0.4561 0.2298 0.2093 0.1887
CRM-B 0.3556 0.3980 0.4733 0.2275 0.1982 0.1699

CRM-T+S 0.3494 0.3847 0.4657 0.2300 0.2107 0.1872
CRM-T+B 0.3587 0.4132 0.4758 0.2193 0.1894 0.1909
CRM-S+B 0.3544 0.4069 0.4729 0.2238 0.1930 0.1852

CRM-T+S+B 0.3616 0.4189 0.4931 0.2137 0.1861 0.1772

Method Kendall’s τ Spearman’s ρ
Top 5 Top 10 Top 15 Top 5 Top 10 Top 15

NN-T 0.2460 0.1687 0.1531 0.3054 0.2262 0.1784
NN-S 0.2110 0.1420 0.1289 0.2670 0.1852 0.1682
NN-B 0.2826 0.2044 0.1834 0.3314 0.2429 0.2106

CRM-T 0.3221 0.2464 0.2031 0.4163 0.2987 0.2409
CRM-S 0.3172 0.2421 0.2003 0.4135 0.2916 0.2341
CRM-B 0.3286 0.2557 0.2067 0.4302 0.3015 0.2426

CRM-T+S 0.3205 0.2516 0.2085 0.4189 0.2970 0.2378
CRM-T+B 0.3329 0.2606 0.2197 0.4348 0.3071 0.2535
CRM-S+B 0.3272 0.2588 0.2185 0.4322 0.3054 0.2561

CRM-T+S+B 0.3403 0.2746 0.2267 0.4414 0.3104 0.2682

behavioral.

When individually using each context, we find that the behavioral context (URL shar-

ing) always performs the best in any setting. Moreover, combining it with other contexts

can always bring the biggest improvement. For instance, within the NN method, URL

sharing context has up to 24% larger Spearman correlation than social context. In CRM,

the MAE@10 decreases by 8% when URL sharing context is added with textual context.

These results indicate the importance of capturing actual user behaviors as a critical step

for identifying user topical profiles (in contrast, to relying purely on social connections
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or on the content of what users post). These results support the intuition that social con-

text may capture spurious user similarities (e.g., linking two very different users) and that

textual context may insert noise into learning user topical profiles. In contrast, behavioral

cues provide a clearer perspective on user’s interests and expertise.

What if behavioral data is scarce? URL sharing is one of the few publicly-available

sources of behavioral information, but sometimes it can still be a scarce resource because

not all users will share many URLs on social media. In contrast, social and textual con-

texts are typically more universally available. We see in Table 6.1 that textual and social

contexts can still work well even without behavioral context. For example, in CRM, tex-

tual context is only 5% behind behavioral context in precision@10, and social context has

just 1% larger MAE@5 than behavioral context. These observations show that our model

can still get a good performance even when we have scarce behavioral evidence. But that

together, the three contexts can complement each other, leading to even better user topical

profiles.

6.4.3 Evaluating CRM and T-CRM

Given the evidence of the importance of different contexts, we now turn to evaluating

the two proposed models — CRM and T-CRM — versus alternatives. As we can see in

Figure 6.5, both CRM and T-CRM perform better than the Nearest Neighbor (NN) and the

Cross-domain Triadic Factorization (CTF) across all four evaluation metrics. For preci-

sion@5, T-CRM is 36% and 13% better than NN and CTF, respectively. For MAE@10,

T-CRM outperforms NN by 20% and CTF by 11.8%. The gaps become even larger for

the two ranking correlation coefficients, as we can see in Figure 6.5 (c) and 6.5 (d). These

results suggest that the proposed contextual regularization models can better leverage all

contexts together than either the neighborhood-based propagation or the immediate tensor

decomposition. Note that the CTF method is fundamentally different from our problem
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Figure 6.5: Comparisons Between Proposed Models and Alternative Baselines.

setting where we cannot simply put together all heterogeneous contextual information. In

contrast, we exploit latent factors to build a user similar matrix and find its graph Laplacian

as a new regularization term. We show the effectiveness of this step in Section 6.4.4.

Recall that we introduced T-CRM as an extension to CRM to provide a more compact

factorization and to jointly handle relationships across multiple contexts. In Figure 6.5

we find T-CRM surpasses CRM in all settings. T-CRM has an improvement of 4.2% in

precision@10, 3% in MAE@5, 5.9% in Kendall correlation@10, and 3.8% in Spearman

correlation@5. These findings indicate that T-CRM can better exploit the joint correlations

between all heterogeneous contexts for improved learning of user topical profiles.
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6.4.4 Considering Other Variants

Why We Need Regularization? A natural question is why we need a regularization

model. Why not just put all contexts into one large matrix and directly apply state-of-the-

art matrix factorization methods? To investigate this question, we put them into one matrix

upon which we adopt the standard factorization technique, and we call such a method MF.

We do normalization for the data of each context since their values can have distinct scales.

We follow the same evaluation methodology and show the comparisons in Figure 6.6. All

results are measured at the top 10. We clearly see our CRM results in better performances

than the MF in every metric. These results tell that we should take better care of the het-

erogeneous contexts and the regularization-based CRM is a good solution in comparison.

Why We Do Regularization After Tensor Factorization? In T-CRM, after having the

latent factors of users from tensor factorization, we build a user similar matrix and find

its graph Laplacian as the new regularization term. Why not just directly replace the
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user’s latent matrix U in X after factorizing the tensor? We call such a scheme Tensor

Factorization-based Matrix Factorization (TFMF), and we show the comparison results

in Figure 6.7 for all metrics at top 10. Our T-CRM outperforms TFMF in all settings

(e.g., 68% precison, 38% MAE, 45% Kendall correlation). These outcomes show that

regularization after tensor factorization can significantly improve the performance.

Impact of Parameters. Finally, two critical parameters in T-CRM are α and β. Recall

that α is used to avoid overfitting; the parameter β is used to control the contribution of

similarity information between users derived from three types of contextual evidence. In

order to better understand the impacts of these two parameters, we evaluate the perfor-

mance of T-CRM across various parameter settings. We vary values of these parameters

in [0.001 0.01, 0.1, 1, 10] and present the experimental results of precision and Kendall’s

τ in Figure 6.8 for learning top-10 topical profile tags of users. As we can see, T-CRM

achieves relatively consistent performance when choosing these regularization parameters
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Figure 6.8: Comparisons Between Proposed Models and Alternative Baselines.

across a wide range. Particularly, we find that the setting α = 0.1 and β = 0.01 gives the

best performance. These results indicate the stability of T-CRM to these parameters.

6.5 Conclusion

Mining user’s topical profiles (e.g., user interests and expertise) has important appli-

cations in diverse domains such as personalized recommendation and expert detection. In

this manuscript, we tackled the problem of learning user topical profiles on Twitter. In

particular, we investigated how to leverage user-generated information in heterogeneous

contexts. Concretely, we proposed T-CRM — a tensor-based contextual regularization

model that integrates textual, social, and behavioral contexts and can be generalized to

other potential contexts. By takeing into account pairwise relations among all contexts,

the proposed T-CRM intelligently combines all potential benefits of each context to find

the best evidence across contexts for learning high-quality user profiles. And indeed, ex-

tensive experiments demonstrate the effectiveness of T-CRM. For instance, it surpasses

other alternatives up to 36% in precision@5 and 20% in MAE@10. URL sharing, as
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one type of publicly-accessible user behavior, brings better results than other contexts in

every evaluation setting. Moreover, compared with other variants in terms of modeling,

our model also has the best performances, e.g., up to 68% for precision@10 and Kendall

correlation@10.
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7. DISTENC: A DISTRIBUTED SCALABLE TENSOR COMPLETION

ALGORITHM

In this chapter, we tackle the challenges of sparsity and scalability in order to enable

the proposed tensor learning framework to handle very large-scale datasets. In order to

efficiently recover missing values in large-scale datasets that cannot fit into the memory

of a single machine, we propose DISTENC, a distributed large-scale tensor completion

algorithm with regularized trace of the auxiliary information based on ADMM running on

the Spark framework. By efficiently handling trace-based regularization terms, updating

factor matrices with caching, and optimizing the update of new tensor, DISTENC success-

fully tackles the high computational costs and minimizes the intermediate data. We find

that DISTENC outperforms the state-of-the-art methods in many aspects including data

scalability, convergence rate, machine scalability and recovering accuracy in the applica-

tions such as recommender systems and link prediction.

7.1 Introduction

With the rapid growth of data in both its velocity and volume in the real world, we

are stepping into the era of Big Data. Extremely large and sparse multi-dimensional

data arise in numerous important applications such as location-based recommendations,

targeted advertising, social media search, and event detection [8, 15, 79]. Tensors – or

multi-dimensional arrays – are commonly used to capture this multi-dimensionality. For

instance, a movie rating from a user can be modeled as a tensor where each element is an

interaction between a movie, a user, and the context in which this user rates the movie (e.g.,

genre, date of the rating, etc.). A multi-dimensional social network such as the DBLP net-

work can be represented as a tensor with 4-tuples, e.g., author-paper-term-venue. Analyt-

ics over such large, diverse, and multi-dimensional datasets can provide valuable insights
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with respect to the underlying relationships between different entities.

However, in practice, many types of multidimensional data may be noisy or incom-

plete, limiting the effectiveness of such analytics. For example, data may be restricted

due to data sampling policies, partial access to legacy data warehouses, sparse feedback

from users (e.g., ratings in a recommender system), data missing at random, and so on

[119, 146]. Traditional methods like matrix completion methods have shown good suc-

cess in recovering two-dimensional data, but may not be suitable for handling missing data

in these large multi-dimensional cases. Analogous to matrix completion, tensor comple-

tion aims to recover a low-rank tensor that best approximates partially observed data and

further predict the unobserved data using this low-rank tensor.

While recovering the missing values by tensor completion is attractive, it is challenging

to efficiently handle large-scale tensors (e.g., ones containing billions of observations in

each mode) due to the high computational costs and space requirements. Tensor comple-

tion in these scenarios faces challenges such as: (i) the intermediate data explosion prob-

lem where in updating factor matrices, the amount of intermediate data of an operation

exceeds the capacity of a single machine or even a cluster [14, 46, 102, 108]; (ii) the large

regularization problem where the regularization term can affect the scalability and paral-

lelism of tensor completion [44, 45]; and (iii) since architectures on modern computing

facilities have lower ratios of memory bandwidth to compute capabilities, computations

on tensors that usually have unstructured access patterns are usually degraded. While there

has been research addressing these challenges of scalability separately, most focus on ten-

sor factorization, which are not suitable for tensor completion that needs to estimate all

missing values in a tensor at each iteration. There is a need to fill a gap between tensor

completion and applications with real large-scale datasets.

With these challenges in mind, we propose to fill this gap through DISTENC (Dis-

tributed Tensor Completion), a new distributed large-scale tensor completion algorithm
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running on Apache Spark. Our intuition is to tackle the challenges of large-scale tensor

completion through three key insights: (i) by designing an efficient algorithm for handling

the trace-based regularization term; (ii) by updating factor matrices with caching; and (iii)

by optimizing the update of the new tensor at each iteration, while minimizing the gener-

ation and shuffling of intermediate data. We analyze the proposed DISTENC that shows

up to 10∼1000× better scalability, performs a better linearity on machine scalability, and

converges much faster than other state-of-the-art methods. We also investigate the pro-

posed DISTENC with respect to time complexity, memory requirement and the amount of

shuffled data, and find that DISTENC leads to high efficiency compared with state-of-the-

art methods, while delivering similar (and in many cases improved) accuracy.

7.2 Preliminaries

In this section, we provide a brief recap on the proposed tensor learning framework

based on CP-based tensor completion with auxiliary information.

7.2.1 Tensor Completion with Auxiliary Information

With the increasing ratio of missing entries, the tensor completion may perform un-

satisfactory imputation with degrading accuracy due to its assumptions on low-rank and

uniformly sampling. In real-world data-driven applications, besides the target tensor ob-

ject, variety additional side information such as spacial and temporal similarities among

objects or auxiliary coupled matrices/tensors may also exist and have potential help for

improving completion quality. An example of Twitter List tensor is illustrated in Figure

7.1. Given an N th-order tensor X ∈ RI1×I2×···×IN with the rank R � min(I1, . . . , IN)

and similarity matrices B(n), n = 1, . . . , N of size I1 × I1, . . ., and IN × IN , the tensor
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Figure 7.1: A 3-order Twitter List tensor with user-expert-topic triples and three similarity
matrices generated from auxiliary information of users, experts and topics, respectively.

decomposition with auxiliary information solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F +

λ

2

N∑
n=1

‖A(n)‖2F

+
N∑
n=1

αntr(B(n)TLnB
(n))

subject to Ω ∗X = T,A(n) = B(n) ≥ 0, n = 1, 2, . . . , N.,

(7.1)

where Ln ∈ RIn×In is the graph Laplacian of the similarity matrix Sn for the mode n,

B(n), n = 1, 2, . . . , N are introduced as auxiliary variables, tr(· ) is denoted as the matrix

trace and αn is to control the weight of auxiliary information in the mode n. Figure 7.2

shows the rank-R CP tensor completion of a 3-order tensor with auxiliary information.

The tensor X is decomposed into three factor matrices A, B and C by taking into account

auxiliary information, and recovered based on factor matrices.
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Figure 7.2: Rank-R CP tensor completion of a 3-order tensor with auxiliary information.

7.2.2 Optimization Algorithm

Since the objective function in Eq.(7.1) is not convex with respect to variables A(n)

and B(n) together, there is no closed-form solution for this optimization problem. Mo-

tivated by methods [26, 32], an algorithm under the framework of ADMM is employed

to find optimal solutions for the objective function above. ADMM [36] has illustrated its

superiority over alternating least square (ALS) in terms of both reconstruction efficiency

and accuracy [107]. In order to apply ADMM, the objective function Eq. (7.1) can be

firstly written in the partial augmented Lagrangian functions as follow:

Lη(A
(n),B(n),Y(n))n=1,2,...,N =

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F

+
λ

2

N∑
n=1

‖A(n)‖2F +
N∑
n=1

αn
2

tr(B(n)TLnB
(n))

+
N∑
n=1

< Y(n),B(n) −A(n) > +
N∑
i=1

η

2
‖B(n) −A(n)‖2F ,

(7.2)

where Y(n) is the matrix of Lagrange multipliers for n = 1, 2, . . . , N , η is a penalty

parameter. The variables A(n),B(n),Y(n), n = 1, 2, . . . , N can be iteratively updated by

121



Algorithm 5: CP-based Tensor Completion via ADMM

Input: T,A(n)
0 ,Ω,Ωc, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 Initialize A
(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

2 while Not Converged do
3 for n← 1 to N do
4 Update B

(i)
t+1 ← (ηtI + αnLn)−1(ηtA

(n)
t −Y

(n)
t )

5 Calculate U
(n)
t ←

6 (A
(N)
t � · · · �A

(n+1)
t �A

(n−1)
t � · · · �A

(1)
t )

7 Update A
(n)
t+1 ←

8 (Xt
(n)U

(n)
t + ηtB

(n)
t+1 + Y

(n)
t )(U

(n)
t

T
U(n)t + λI + ηtI)−1

9 Update Xt+1 = T + Ωc ∗ [[A
(1)
t+1,A

(2)
t+1, . . . ,A

(N)
t+1]]

10 for n← 1 to N do
11 Update Y

(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

12 Update ηt+1 =min(ρηt, ηmax)

13 Check the convergence: max{‖A(n)
t+1 −B

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

14 t = t+ 1

15 return X, A(n), n = 1, 2, . . . , N

calculating the partial derivatives with fixing other variables, as shown in Algorithm 5

detailed in [146]. There are many ways to check for convergence. The stopping criterion

for Algorithm 5 is either one of the following: i) the maximal difference between factor

matrices of consecutive iterations is smaller than a threshold; ii) the maximum number of

iterations is exceeded.

7.3 Proposed Method

In this section, we present our proposed method DISTENC which is a distributed al-

gorithm for scalable tensor completion on Spark.
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7.3.1 Overview

DISTENC provides an efficient distributed algorithm for the CP-based tensor comple-

tion with auxiliary information on Spark. The Algorithm 5 contains three challenging

operations: (i) updating auxiliary variables B(n) (line 4); (ii) updating factor matrices A(n)

(lines 7 and 8); and (iii) updating tensor X (line 9). In the following subsections, we ad-

dress the above challenges with the following main ideas that efficiently update auxiliary

variables, factor matrices and tensors in distributed systems, while reducing floating point

operations (FLOPs).

• (Section 7.3.2) Eigen-decomposing a graph Laplacian matrix and carefully ordering

of computation to decrease FLOPs in updating auxiliary variables.

• (Section 7.3.3) Carefully partitioning of the workload and distributing intermediate

generation to remove redundant data generation and reducing the amount of inter-

mediate data transfer in updating factor matrices.

• (Section 7.3.4) Utilizing the residual tensor to avoid the explicit computation of the

dense tensor and reuse intermediate data to decrease FLOPs in updating tensor.

7.3.2 Calculating Inverse of Graph Laplacian Matrices

Since the update rules for auxiliary variables B(n), n = 1, 2, . . . , N are similar, we

focus on updating the variable B(n) where n could be an arbitrary one from {1, 2, . . . , N}.

The operation in line 4 of Algorithm 5 requires us to compute the pseudo-inverse of the

summation of a matrix αnLn and a diagonal matrix ηtI where I is an identity matrix with

the same size of Ln. Since such summation will change with the penalty parameter ηt

that will be updated at every iteration, the question is how to efficiently calculate such a

pseudo-inverse instead of computing it at every iteration due to its high computational cost

with complexity O(I3n).
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As a graph Laplacian matrix Ln derived from the similarity matrix Sn is symmet-

ric and predefined without any change in Algorithm 5, we apply an efficient truncated

eigen-decomposition method proposed by Bientinest et al. [147] with the time complex-

ity O(KIn) and the space complexity O(In) to it and get its truncated decomposition as

Ln = VnΛnV
T
n where Vn ∈ RIn×K and Λn ∈ RK×K . Hence, line 4 of Algorithm 5 can

be re-written as follow:

B
(n)
t+1 ← Vn(ηt + αnΛn)−1VT

n (ηtA
(n)
t −Y

(n)
t ). (7.3)

Since (ηt + αnΛn) is a diagonal matrix whose inverse, its inverse can be efficiently com-

puted by only computing reciprocal of entries on the diagonal instead of calculating the

inverse of the whole matrix (ηtI+αnLn). Furthermore, Eq.(7.3) performs the matrix mul-

tiplication of the four matrices Vn, (ηt+αnΛn)−1, VT
n and (ηtA

(n)
t −Y

(n)
t ). Its computing

order may significantly affect the efficiency of calculation for updating B(n). In order to

reduce FLOPs, we compute it by firstly multiplying the last two matrices that result in a

relatively small matrix with the size K × R, and broadcasting the result with the second

one to the first matrix:

B
(n)
t+1 ← Vn(ηt + αnΛn)−1(VT

n (ηtA
(n)
t −Y

(n)
t )). (7.4)

By this way, it is able to perform the update of an auxiliary variable B(n) in O(InR +

InKR + InK
2R) time.
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7.3.3 Reducing Intermediate Data

As shown in lines 7 and 8 in Algorithm 5, we focus on the updating rule for an arbi-

trary A(n) as follow:

A(n) ← (X(n)U
(n) + ηB(n) + Y(n))(U(n)TU(n) + λI + ηI)−1. (7.5)

where U(n) = (A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1)) with size (
∏

k 6=n Ik) × R,

which entails three matrix-matrix multiplications as:

H1 = X(n)U
(n),

H2 = (U(n)TU(n) + λI + ηI)−1,

H3 = (H1 + ηB(n) + Y(n))H2.

(7.6)
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We denote H1 = X(n)U
(n) as the matricized tensor times Khatri-Rao product (MTTKRP)

that will lead to the intermediate data explosion problem in the tensor completion when

tensor X is very large. Explicitly calculating U(n) and performing the matrix multiplica-

tion with X(n) requires more memory than what a common cluster can afford as computing

U(n) is prohibitively expensive with the size (
∏

k 6=n Ik)× R. Though the matricized X(n)

is very sparse, U(n) is very large and dense. Hence, inspired by the work [108], we per-

form MTTKRP in place by exploiting the block structure of the Khatri-Rao product. For

a better illustration, we assume that X ∈ RI1×I2×I3 is a 3-order sparse tensor whose entry

H1(i1, r) can be represented as:

H1(i1, r) =
∑

Xi1, : , :

Xi1,i2,i3A
(3)
i3,r

A
(2)
i2,r

(7.7)

As shown in Eq.(7.7), we observe two important properties of MTTKRP: i) non-zeros

in Xi1, : , : are only associated with the computation of H1(i1, : ); ii) the row indices i2

and i3 in A(2) and A(3), respectively, will be accessed based upon which appear in non-

zeros in Xi1, : , : when calculating H1(in, r). Thus, our idea is to compartmentalize the

sparse tensor X and factor matrices A(1),A(2), · · · ,A(N) into blocks in order to make the

computation of MTTKRP fit into the memory. Taking a 3-order tensor as an example, we

divide rows of A(1), A(2) and A(3) into P ,Q, andK blocks, respectively. Correspondingly,

the tensor X ∈ RI1×I2×I3 can be further divided into P ×Q×K blocks. A block of tensor

is denoted as X(p, q, k) with corresponding blocks of factor matrices A
(1)
(p), A

(2)
(q) and A

(3)
(k).

Each process only works on a block of a factor matrix with entries in the tensor with which

this block is associated, and aggregate partial results computed by other processors for this

block.
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Algorithm 6: DISTENC-Greedy Algorithm for Load Balance
Input: observed tensor T, number of partitions at n-mode Pn, number of modes N
Output: wn, n = 1, · · · , N

1 for n = 1, · · · , N do
2 δ = nnz(T)/Pn ← Calculate the chunk size for n-mode;
3 sum = 0 and εpre = δ;
4 θ(n) ← Calculate nnz for each slice at n-mode;
5 for i = 1, · · · , In do
6 sum← sum+ θ

(n)
i ;

7 ε← Calculate the difference between sum and δ;
8 if sum ≥ δ then
9 wn ← add i if ε < εpre; otherwise, add i− 1;

10 εpre = ε;

7.3.3.1 Load Balancing

Since the tensor X is very sparse, randomly dividing it into P × Q ×K blocks could

result in load imbalance [148]. A block is defined as a unit of workload distributed across

machines, which determines the level of parallelism and the amount of shuffled data. The

questions is how to identify the block boundaries. In order to fully utilize the computing

resources, a greedy algorithm is proposed to generate blocks for balancing the workload.

For instance, we split a mode into P partitions. Each partition will be generated by contin-

uously adding indices until the number of non-zeros in this partition is equal to or larger

than nnz(X)/P that is considered as the target partition size. Once adding a slice makes a

partition over the target size, we compare the number of non-zeros in this partition before

and after adding it and pick whichever is closer to the target size. Other modes would

follow the same routine to identify boundaries for Q partitions and K partitions. The al-

gorithm for balancing the load for DISTENC is demonstrated in Algorithm 6, which will

take O(Nnnz(X)).
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7.3.3.2 Computing MTTKRP

After compartmentalizing the tensor and factor matrices into blocks, each process

holds the tensor non-zeros with necessary blocks of factor matrices (non-local factor ma-

trix rows will be transfered to this process from others), and performs MTTKRP as shown

in Eq.(7.7). Specifically, we parallelize such computation based on the efficient fiber-based

data structure [108] in local, indicating that we directly calculate the row of H1 as follow:

H1(i1, : ) =
∑

Xi1, : , :

Xi1,i2,i3(A
(3)
i3, :
∗A

(2)
i2, :

). (7.8)

Since such calculation can be done at the granularity of factor matrix rows, it only requires

O(R) intermediate memory per thread in parallelism. By this way, H1 are row-wise

computed and distributed among all processes. We only need to broadcast relatively small

factor matrices along with corresponding indices in the non-zero elements of a sparse

tensor for each machine instead of having to compute and materialize the entire Khatri-

Rao product.

7.3.3.3 Calculating U(n)TU(n)

Based upon the property of Khatri-Rao product, we can re-write U(1)TU(1) as follow:

U(1)TU(1) = A(3)TA(3) ∗A(2)TA(2). (7.9)

By this way, it avoids explicitly computing the large intermediate matrix U(1) with the

size I2I3×R by calculating the self-products A(2)TA(2) and A(3)TA(3) of factor matrices

A(2) and A(3). With applying the block matrix form, the computation of A(1)TA(1) can be
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represented in a distributed fashion as:

A(1)TA(1) =
P∑
p=1

A
(1)
(p)

T
A

(1)
(p). (7.10)

Each process calculates a local A
(1)
(p)

T
A

(1)
(p) in the thread-level parallelism. By aggregating

all computations across processes, the final matrix A(1)TA(1) will be generated and dis-

tributed among all processes. Since it is a matrix of size R × R that can easily fit into the

memory of each process. Thus, it can be seen that (H2 + λI + ηI)−1 can be efficiently

calculated in O(R3) time in a single machine.

7.3.4 Computing the Updated Tensor

Unlike the tensor factorization/decomposition in which the input tensor is fixed, tensor

completion requires to update the tensor X by filling out unobserved elements in each

iteration as shown in line 9 in Algorithm 5. Once completing updates of A(1), · · · ,A(N)

in a iteration, unobserved elements in a sparse tensor will be filled out by estimated values.

Thus, it turns out to be a dense tensor that leads to a significant increase in the computation

of updating factor matrices in lines 7 and 8 in Algorithm 5. The question is how to avoid

such problem and keep the computation in the level of O(nnz(X)) time. First of all, we

define the residual tensor as:

E = Ω ∗ (T − [[A(1), . . . ,A(N)]]), (7.11)

which is sparse with the same size of the observed sparse tensor T. Based upon the defi-

nition of tensor matricizied, its n-mode matricized form can be expressed as:

X(n) ≈ A(n)(A(N) � · · ·A(n+1) �A(n+1) � · · ·A(1))T . (7.12)
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For the brevity, we take a 3-order tensor as an example as demonstrated in the previous

section. By leveraging the residual tensor and the 1-mode matricized form of a tensor, we

can re-write Ht+1
1 shown in the Eq.(7.6) as:

Ht+1
1 = Xt

(1)U
(1)
t

= ([[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1) + Et(1))U

(1)
t

= [[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1)U

(1)
t + Et(1)U

(1)
t

= A
(1)
t (A

(3)
t �A

(2)
t )T (A

(3)
t �A

(2)
t ) + Et(1)U

(1)
t

= A
(1)
t (U

(1)
t

T
U

(1)
t ) + Et(1)U

(1)
t

(7.13)

It can be seen that Ht+1
1 consists of two parts that are able to reduce the time complexity to

O(nnz(X)). Concretely, the first part A
(1)
t (U

(1)
t

T
U

(1)
t ) takesO((I1+I2+I3)R

2) FLOPs as

shown in the computation of H2 of the section 7.3.3; the second part Et(1)U
(1)
t is performed

by the method illustrated in the section 7.3.3 with the complexity O(nnz(X)) since it is

only related to the residual tensor E instead of using a updated dense tensor. Fortunately,

each U
(1)
t

T
U

(1)
t is computed during the iteration and the results can be cached and reused

in only O(R2) space.

7.3.5 Complexity Analysis

We now analyze the proposed DISTENC algorithm with respect to time complexity,

memory requirement and data communication. Its cost is bounded by MTTKRP and its

associated communications. For the sake of simplicity, we take a N -order tensor X ∈

RI×···×I as the input tensor. We denote M as the number of machines, p as the number of

partitions for one mode, P = p × p × p as the number of blocks in a tensor and K as the

number of components in the eigen-decomposition of a graph Laplacian matrix L.

Lemma 1. The time complexity of DISTENC is O(nnz(X) +NI +NIR+Rnnz(X) +
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Algorithm 7: DisTenC Algorithm

Input: T,A(n)
0 ,Ω, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 for n← 1 to N do
2 wn ← GreedyAlgorithm(X) introduced in Algorithm 6

3 Partition X based upon wn, n = 1, · · · , N
4 Initialize A

(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

5 Calculate the residual tensor E0 = Ω ∗ (T − [[A
(1)
0 , . . . ,A

(N)
0 ]])

6 for t← 0 to T do
7 for n← 1 to N do
8 Update B

(i)
t+1 ← (ηtI + αnLn)−1(ηtA

(n)
t −Y

(n)
t )

9 Calculate and cache Ft
n = U

(n)
t

T
U

(n)
t

10 Calculate Ht
n = MTTKRP (Et(n)U

(n)
t )

11 Update and cache A
(n)
t+1 ←

(A
(n)
t Ft

n + Ht
n + ηtB

(n)
t+1 + Y

(n)
t )(Ft

n + λI + ηtI)−1

12 Update and cache Y
(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

13 Calculate and cache the residual tensor Et+1 = Ω ∗ (T − [[A
(1)
t , . . . ,A

(N)
t ]])

14 Update ηt+1 =min(ρηt, ηmax)

15 Check the convergence: max{‖A(n)
t+1 −A

(n)
t ‖2F} < tol

16 if converged then
17 break out of for loop

18 return X, A(n), n = 1, 2, . . . , N

N(IR + IKR + IK2R) +N(IR2 + dnnz(X)/IeR + 3IR +R3) +NIR).

Proof. In the beginning, the tensor X is split into P blocks by applying Algorithm 6.

For each mode, computing the number of non-zero elements in slices takes O(nnz(X))

time via incremental computations that employ prior summation results. Identifying the

partition boundaries for each mode takes O(I) time. Since a non-zero element is de-

termined and mapped to a machine in a constant time based on identified boundaries,

decentralizing all non-zero elements in X to blocks in machines takes O(nnz(X)). In

total, partitioning the sparse tensor takes O(nnz(X) + NI). After splitting the tensor
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into blocks and mapping all non-zero elements to blocks, the factor matrices are randomly

initialized and distributed among machines based upon block boundaries identified dur-

ing the split of the tensor. This process takes O(NIR) time. The residual tensor E is

sparse with the same number of non-zero elements as the input sparse tensor X. Bounded

by the non-negative weight tensor Ω, calculating the residual tensor takes O(Rnnz(X))

time as an entry of [[A(1), . . . ,A(N)]] can be obtained in O(R) time. Pre-computing the

truncated eigen-decomposition of a graph Laplacian matrix Ln for n-mode takes O(KI)

time. The error between a factor matrix A(n) and a matrix of Lagrange multipliers Y(n)

can be computed in O(RI) time. Based upon the order of updating B(n) introduced in

the section 7.3.2, computing the multiplication of last two matrices VT
n (ηtA

(n)
t − Y

(n)
t )

takesO(IKR). Due to the relatively small size (K×R) of the result, we broadcast it with

(ηt + αnΛn)−1 of size K × K to the first matrix Vn and compute their multiplication in

O(IK2R) time. In total, updating an auxiliary variable takesO(IR+IKR+IK2R) time,

andO(N(IR+IKR+IK2R)) time for all modes. The update of a factor matrix contains

three steps. The self-product A(n)TA(n) for n-mode requires to be performed in O(IR2)

time. Through all N modes in the tensor, it takes O(NIR2) time. In each mode, comput-

ing MTTKRP of the residual tensor and factor matrices as shown in line 7 of Algorithm

7 by the proposed row-wise method takes O(dnnz(X)/IeR). As illustrated in line 8 of

Algorithm 7, updating a factor matrix performs a multiplication of two matrices. The first

one can be obtained inO(IR2+3IR) time. For the second one, it takesO(R3) to calculate

the inverse of the matrix (Ft
n + λI + ηtI). The multiplication of these two matrices takes

O(IR2). Thus, updating a factor matrix takes O(IR2 + dnnz(X)/IeR + 3IR + R3). In

total, it takesO(N(IR2 + dnnz(X)/IeR+ 3IR+R3)). Updating the matrix of Lagrange

Multiplier Y(n) takes O(IR) time. Checking the convergence criterion requires O(NIR)

to be performed.

132



Lemma 2. The amount of memory required by DISTENC isO(nnz(X)+3NIR+NIK+

NK +MNR2).

Proof. During the computation, DISTENC needs to store data in memory at each iteration

as follows: the observed tensor X, the residual tensor E, factor matrices A(1), A(2), and

A(3), auxiliary variables B(1), B(2), and B(3), Lagrange multiplier matrices Y(1), Y(2), and

Y(3), eigen-decomposed graph Laplacian matrix Ln = VnΛnV
T
n , and the self-product

A(n)TA(n) for n-mode. Since the residual tensor E is calculated only for those non-zero

elements in the observed tensor X, both of them are kept in the memory at each iteration

with a distributed fashion, which require O(nnz(X)) memory. For each mode, its factor

matrix A(n) has the same size as its auxiliary variable B(n) and Lagrange multiplier matrix

Y(n). Thus, the total amount of memory used for storing them for all modes isO(3NIR).

The Laplacian matrix Ln for n-mode is eigen-decomposed into an eigenvector matrix Vn

and a diagonal matrix Λn that is stored as a vector in the machine. By considering all

modes in a tensor, the memory is required to hold O(NIK + NK) space. The self-

product A(n)TA(n) for n-mode only takes O(R2) memory. Since we will broadcast it to

all M machines, the amount of memory for storing these self-products for all modes is

O(MNR2).

Lemma 3. The amount of shuffled data caused by DISTENC isO(nnz(X) +TNMIR+

TNMR2)

Proof. DISTENC initially employed the greedy algorithm to identify the partition bound-

aries for each mode, and partitions the observed tensor X into defined groups. In this pro-

cess, the whole input tensor is shuffled and cached across all machines. Thus, the amount

of shuffled data in the partition of the observed tensor is O(nnz(X)). In each iteration,

DISTENC requires to send rows of factor matrices, auxiliary variables and Lagrange mul-

tiplier matrices to corresponding partitions in which each tensor entry is updated by rows
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associated with its index in all modes, which takes O(NMIR) space in total. Moreover,

the self-product A(n)TA(n) for n-mode is calculated by aggregating all matrices of size

R × R across machines, and then broadcast back to all machines. In this process, it takes

O(NMR2) by considering all modes in the tensor. Similarly, updating the residual tensor

E needs to copy associated rows of factor matrices into machines, which takesO(NMIR)

space in sum. Therefore, by considering all cases above, the amount of shuffled data for

DISTENC after T iterations is O(nnz(X) + TNMIR + TNMR2).

7.3.6 Implementation on Spark

In this section, we explore practical issues in terms of implementations of DisTenC

on Spark. Our implementation is carefully designed to obtain best speed-up and scala-

bility. Since the input tensor is sparse, all entries are stored in a list with the coordinate

format (COO). The input sparse tensor is loaded as RDDS. First of all, we apply func-

tions functions map and reduceByKey to calculate the number of non-zero elements

for all indices in a mode with the key that is the index in that mode. These count results

are then used to generate partition boundaries for that mode and persisted in mem-

ory. After that, we apply functions map and aggregateByKey to partition the tensor

into blocks: map transforms an entry of the sparse tensor into an element in the RDD

whose key is a block ID; aggregateByKey groups these non-zero elements by block

IDs. Partitioned tensor RDDs are then persisted in memory. In order to speed-up the

following computation, for each mode, we transform a tensor to a pair RDD whose key is

an index in that mode and value is all block IDs with which entries associated with this

index appear in blocks by employing RDD’s functions flatMap and reduceByKey,

and persist them in memory. Factor matrices are initialized with random numbers,

which are stored as RDDs and distributed based upon partition boundaries identified pre-

viously. Following the same fashion, matrices of Lagrange multipliers are initialized with
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zeros as RDDs. After applying the efficient truncated eigen-decomposition method, a

graph Laplacian matrix is decomposed into eigenvalues and eigenvectors. As shown in

the section 7.3.2, a diagonal matrix of eigenvalues is stored as a Array and broadcast

to all machines in the cluster; eigenvectors are stored as RDDs where the key is the in-

dex and the value is the associated eigenvector with the same partition as factor matrices.

The self-product of a factor matrix is transformed from a factor matrix RDD by utiliz-

ing functions flatMap and reduceByKey and broadcast to all machines. We update

factor matrices as well as auxiliary variables and by using RDD’s functions flatMap,

join and reductByKey. Since the operation join will shuffle the data and expo-

nentially increase the computational time, we keep the same partitions when applying

join to two RDDs. In the implementation, we also replace operations groupByKey by

reduceByKey and combineByKey that combines pairs with the same key on the same

machine for efficiency. We also limit the number of combineByKey operations so that

edges of the same element are available at the same physical location, minimizing data

shuffling. As it can be seen, we cache reused RDD in memory in order to minimize disk

accesses between consecutive iterations, which would not be possible if using a system

like Hadoop to distribute the computation.

7.4 Experiments

To evaluate the proposed DISTENC, we experimentally perform experiments to answer

the following questions:

Q1: Data Scalability. How well do DISTENC and other baseline methods scale up with

the input tensor in terms of factors such as the number of non-zeros, dimension, mode

length, and rank?

Q2: Machine Scalability. How well does DISTENC scale up in terms of th number of

machines?
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Q3: Discovery. How accurately do DISTENC and other baseline methods perform given

the real-world tensor data?

7.4.1 Experimental Setup

7.4.1.1 Cluster/Machines

DISTENC is implemented on a 10-node Spark cluster in which each node has a quad-

core Intel Xeon E5410 2.33GHz CPU, 16GB RAM and 4 Terabytes disk. The cluster runs

Spark v2.0.0 and consists of one driver node and 9 worker nodes. In the experiments, we

employ 9 executors, each of which uses 8 cores. The amount of memory for the driver and

each executor process is set to 8GB and 12GB, respectively.

7.4.1.2 Datasets

Both synthetic and real-world data are used to evaluate the proposed method. In order

to evaluate the proposed method, we generate two synthetic datasets, one for testing the

scalability and the other for testing the reconstruction error. For the scalability tests, we

generate random tensors of size I×J×K by randomly setting a data point at (i, j, k). For

the sake of simplification, we assume that their similarity matrices are identity matrices for

all modes. For the reconstruction error tests, we first generate randomly factor matrices

A(1), A(2) and A(3) with the specific rank R = 20 by the following linear formula [32]:

A(1)(i, r) = iεr + ε′, i = 1, 2, . . . , I1, r = 1, 2, · · · , R

A(2)(j, r) = jζr + ζ ′, j = 1, 2, . . . , I2, r = 1, 2, · · · , R

A(3)(k, r) = kηr + η′, k = 1, 2, . . . , I3, r = 1, 2, · · · , R

where {εr, ε′r, ζr, ζ ′r, ηr, η′r}r=1,2,...,R are constants generated by the standard Gaussian dis-

tribution N(0, 1). Since each factor matrix is generated by linear functions mentioned

above column by column, the consecutive rows are similar to each other. Therefore, we
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Table 7.1: Summary of the real-world and synthetic datasets used. K: thousand, M: mil-
lion, B: billion.

Datasets I J K Non-zeros
Netflix 480K 18K 2K 100M
Facebook 60K 60K 5 1.55M
DBLP 317K 317K 629K 1.04M
Twitter 640K 640K 16 1133M
Synthetic-scalability 1K∼1B 1K∼1B 1K∼1B 10K ∼10B
Synthetic-error 10K 10K 10K 10M

generate the similar matrix for the ith mode as the following tri-diagonal matrix:

Si =



0 1 0 . . .

1 0 1 . . .

0 1 0 . . .

...
...

... . . .


(7.14)

We then randomly select tensor data points (i, j, k) as our observation and calculate its

value via A(1)(i, : ) ◦A(2)(j, : ) ◦A(3)(k, : ). This process is performed until we have the

desired number of observed data points. We vary the dimensionality of the synthetic data

as well as the rank in order to test the scalability and the reconstruction error, respectively.

For real-world datasets, we use Netflix, Facebook, DBLP, and Twitter summarized in

Table 7.1 with the following details:

• Netflix: Movie rating data employed in Netflix prize. It forms a user-movie-time

tensor data by considering the time at which a user rated a movie. The rating is

scaled from 1 to 5.

• Facebook: Temporal relationships between users from the Facebook New Orleans

networks [149]. We convert them into a 3-order tensor in which the third mode

137



correspond to the date when one anonymized user adds the other user in the first

user’s friend list.

• DBLP: A record of DBLP (a computer science bibliography) publications including

authors, papers, conferences, etc. We convert the dataset into a a co-authorship

network with author-author-paper elements, and conduct a author-author similarity

based on whether they come from the same affiliation.

• Twitter: Geo-tagged Twitter lists data. A Twitter list allows a user (creator) to

label another user (expert) with an annotation (e.g., news, food, technology). Since

there are a large number of annotations, we transfer them into 16 general topics

like news, music, technology, sports, etc. We convert relationships between list

creators and experts into a 3-dimensional tensor by adding the topics of lists as the

third mode, and produce a creator-expert similarity matrix based on their following

relationships.

7.4.1.3 Baseline Methods

We compare DISTENC with three tensor completion methods, ALS [34] that is a dis-

tributed tensor completion method based upon the alternating least square (ALS) with MPI

and OpenMP, and TFAI [32] that is a single-machine tensor completion method with the

integration of auxiliary information. We use the original implementation of ALS. Since

the other completion method CCD++ based upon the circle coordinate descent [34] has

a similar performance with ALS, we only consider ALS as one of our baseline methods

here. In addition, we also compare with the state-of-the-art distributed matrix-tensor fac-

torization methods SCOUT [106] and FLEXIFACT [44] implemented on MAPREDUCE.

We integrate the similarity matrices of all modes as coupled matrices into SCOUT and

FLEXIFACT, respectively.
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Figure 7.4: Data Scalability: Dimensionality

7.4.2 Data Scalability

We employ synthetic tensors to evaluate the scalability of DISTENC comparing with

other baseline methods in terms of three aspects: dimensionality, the number of non-zeros

and rank. For the sake of simplification, we set the similarity matrices of all modes to the

identity matrices in the scalability tests. All experiments are allowed to run 8 hours. If

methods cannot conduct any result within 8 hours, they will be marked as Out-Of-Time.

7.4.2.1 Dimensionality

We increase the tensor size I = J = K from 103 to 109 while fixing the rank to

20 and the number of non-zero elements to 107. As shown in Figure 7.4, DISTENC and

SCOUT outperform other baseline methods by successfully performing tensor completion

on tensors of size I = J = K = 109. On the other hand, both ALS and FLEXIFACT

run with the out-of-memory (O.O.M.) error when I = J = K ≥ 107; TFAI causes the

O.O.M. error when I = J = K ≥ 106. FLEXIFACT does not scale up for very large
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Figure 7.5: Data Scalability: Number of Non-zeros

datasets due to its high communication cost with an exponential increase. ALS requires

each communication of entire factor matrices per epoch in the worst case as a coarse-

grained decomposition. TFAI is bounded by the memory of a single machine.

7.4.2.2 Number of Non-Zeros

We increase the number of non-zero elements (density) from 106 to 109 while fixing

the dimensionality of the input tensor to I = J = K = 105 and the rank to 10. As demon-

strated in Figure 7.5, only TFAI runs out of memory due to the bound of a single machine

while other methods including the proposed DISTENC, ALS, SCOUT and FLEXIFACT

are able to scale up to 109 non-zero elements. DISTENC takes more running time than

ALS with shrinked differences as the number of non-zero elements increases. But DIS-

TENC outperforms both SCOUT and FLEXIFACT due to the advantages of Spark that is

more fit for running the iterative algorithms with less disk accesses.
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Figure 7.6: Data Scalability: Rank

7.4.2.3 Rank

We increase the rank of a tensor from 10 to 500 while fixing the dimensionality to

I = J = K = 106 and the number of non-zero elements to 107. As shown in Figure

7.6, all methods except of TFAI are capable of scaling up to rank 200. The running time

of ALS rapidly increases when the rank becomes large due to its cubically increasing

computational cost. DISTENC has a relatively flat curve as the increase of rank due to its

optimization on calculating the inverse of a symmetric matrix.

7.4.3 Machine Scalability

We measure the machine scalability of the proposed DISTENC by increasing the num-

ber of machines from 1 to 8. The synthetic dataset of size I = J = K = 105 with

107 non-zero elements is applied and its rank is set to 10. In Figure 7.7, we report the

ratio T1/TM where TM is the running time using M machines. Since TFAI is a single-

machine tensor completion method and FLEXIFACT has a worse scalability on machines
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Figure 7.7: Machine scalability of DISTENC compared with ALS and SCOUT. The pro-
posed DISTENC has the best performance in terms of machine scalability with 4.9×
speed-up, which also achieves a better linearity on the scalability with respect to the num-
ber of machines.

than SCOUT [106], we only compare ALS, SCOUT and the proposed DISTENC. It can

be seen that DISTENC obtains 4.9× speed-up as increasing the number of machines from

1 to 8 and achieves a better linearity in terms of machine scalability, which SCOUT slows

down due to the intensive hard disk accesses and high communication cost.

7.4.4 Reconstruction Error

In order to evaluate the accuracy of the proposed DISTENC with respect to the recon-

struction error, we use the synthetic dataset of size I = J = K = 104 with 107 non-zero

elements and set its rank to 10, and adopt adopt Relative Error as our evaluation metric.

Relative Error is defined as

RelativeError =
‖X− Y‖F
‖Y‖F

, (7.15)
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Figure 7.8: Reconstruction error on the synthetic data.

where X is the recovered tensor and Y is the ground-truth tensor. We randomly sample the

non-zero elements based upon the missing rate as the testing data to calculate the relative

error; the rest is used as the training data. We report results in Figure 7.8 by varying the

missing rate from 30%, 50% and 70%. All results are averaged by running 5 times in order

to reduce the dependency of randomness. Overall, we witness that DISTENC achieves

comparable performance with TFAI, but better than ALS, and SCOUT. We see that the

integrated auxiliary information (similarity matrix) lead to such significant improvement

through the tensor completion. These relationships can alleviate the problem of sparsity to

some extent and provide valuable information for the tensor factorization to obtain more

interpretable low-rank representations.

7.4.5 Recommender System

In this section, we apply DISTENC to perform recommendation on large scale real-

world datasets and present our findings. We are mostly interested in illustrating the power
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Figure 7.9: Results on recommender system with respect to RMSE.

of our approach rather than systemically comparing with all other state-of-the-art meth-

ods. Since SCOUT has a better scalability than FLEXIFACT and TFAI cannot handle such

large-scale datasets, we only compare out proposed DISTENC with other two baseline

methods ALS and SCOUT. The root-mean-square error (RMSE) is adopted as our eval-

uation metric, which represents the sample standard deviation of the differences between

observed tensor T and predicted tensor X as follows.

RMSE =

√
‖Ω ∗ (T −X)‖2F

nnz(T)
. (7.16)

It has been commonly used in the evaluation of recommender systems. We randomly use

50% of the observation for training, and the rest for testing. All results are reported by

running 5 times and computing the average performance.
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Figure 7.10: Convergence rate for all methods on the Netflix data.

7.4.5.1 Netflix

We conduct the recommendation on Netflix dataset which contains a user-movie-time

tensor and a movie-movie similarity matrix generated based on the movie title. As shown

in Figure 7.9, we observe that the proposed DISTENC obtains the best performance in the

precision of recommendation an average improvement of 14.9% over other baseline meth-

ods. In addition, by introducing the auxiliary information, both DISTENC and SCOUT

outperform ALS. On the other hand, Figure 7.10 shows that the proposed DISTENC con-

verges the fastest to the best solution by taking advantage of ADMM [36, 107]. SCOUT

takes much longer time on the convergence by employing the MAPREDUCE framework

that requires intensive disk I/Os.
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7.4.5.2 Twitter

Using DISTENC, we also perform the expert recommendation on Twitter List dataset

which consists of a creator-expert-topic tensor as well as creator-creator and expert-expert

similarity matrices calculated based on whether they are located in the same location

(cities). As demonstrated in Figure 7.9, DISTENC performs the best among all alternative

baseline methods with an average improvement of 21.4% in the precision. Concretely,

DISTENC outperforms ALS with an improvement of 32.6% in precision, indicating the

the superiority of a tensor completion model integrating auxiliary information. With re-

spect to the convergence, DISTENC has similar performance as one on the Netflix dataset

shown in Figure 7.10. Due to the limited space, we omit its details.

7.4.6 Link Prediction

As one of the most applications for tensor completion, link prediction aims to recover

unobserved links between nodes in a low-rank tensor (the matrix is a special case). Using

DISTENC, we perform link prediction on Facebook dataset that includes a user-user-time

tensor and a similarity matrix user-user generated based on the similarities between their

wall posts. As a similar fashion in the previous section, we randomly select 50% of ob-

servations for training, and the rest for testing. We also adopt RMSE as the evaluation

metric in this experiment. To reduce statistical variability, experimental results are av-

eraged by running 5 times. Figure 7.11 illustrates the testing accuracy and the training

convergence. As we can see, both DISTENC and SCOUT have comparable performance

and are better than ALS in precision. Specifically, DISTENC outperforms ALS with an

average improvement of 27.4%; SCOUT has a better performance than ALS with an av-

erage improvement of 19.5%. In terms of convergence, DISTENC converges faster to the

best solution.
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Figure 7.11: Results on link prediction in terms of RMSE.
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Figure 7.12: Convergence rate for all methods on link prediction.
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Table 7.2: Example of concept discovery results on DBLP dataset.

Concept Authors Conferences

Datebase
Surajit Chaudhuri, Michael J. Carey, SIGMOD

David J. DeWitt, Rajeev Rastogi, VLDB
Dan Suciu, Ming-Syan Chen, ICDE

Data Mining
Jiawei Han, Philip S. Yu, KDD

George Karypis, Christos Faloutsos, ICDM
Shusaku Tsumoto, Rakesh Agrawal. PKDD

Info. Retrieval
W. Bruce Croft, Mark Sanderson, SIGIR

Iadh Ounis, ChengXiang Zhai, ECIR
Gerard Salton, Clement T. Yu. WWW

7.4.7 Discovery

Since tensor completion perform both imputation and factorization meanwhile, we

apply DISTENC on DBLP dataset that contains a author-paper-venue tensor with a sim-

ilarity matrix author-author. We randomly select 50% of observations for training the

model. After that, we pick top-k highest valued elements from each factor after filtering

too general elements. We show 3 notable concepts we found in Table 7.2. It can be seen

that all conferences within a concept are correlated and all famous researchers in each

concept are discovered.

7.5 Conclusion

In this paper, we propose DISTENC, a distributed algorithm for tensor completion

with the integration of auxiliary information based on ADMM, which is capable of scal-

ing up to billion size tensors and achieving good performance across many applications.

By efficiently handling trace-based regularization term, updating factor matrices with

caching, and optimizing the update of new tensor, DISTENC successfully addresses the

high computational cost, and minimizes the generation and shuffling of the intermediate

data. Through extensive experiments, DISTENC shows up to 10∼1000× larger scalabil-
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ity than existing methods, and converges much faster than state-of-the-art methods. In

addition, DISTENC obtains an average improvement of 18.2% on a recommender system

scenario and 23.5% on link prediction.
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8. CONCLUSIONS AND FUTURE RESEARCH OPPORTUNITIES

With the increasing ubiquity of large-scale data rapidly growing in both volume and

velocity in the real-world, missing information spanning a wide variety of real world appli-

cations need to be effectively and efficiently handled by leveraging rich side information.

Accomplishing this will require new methods and new systems that are capable of han-

dling real-large datasets as well as their dynamics over time. We have outlined some of

the challenges facing this opportunity and highlighted four of our related efforts toward

informing this emerging research area.

8.1 Conclusions

Concretely, in this dissertation, we focus on recovering missing information in large-

scale multi-aspect datasets by exploiting rich side information on a variety of applications

including estimation of missing spatio-temporal dynamics of online memes, personalized

expert recommendation and learning user topical profiles. The primary tool used to recover

missing information in this dissertation is tensor completion. While tensor completion for

large-scale datasets could benefit many domains, there is a significant gap towards han-

dling missing information with rich side information for both effectiveness and efficiency.

Therefore, this dissertation made three unique contributions:

First, to tackle the challenges sparsity and similarity, we present the design of a novel

tensor learning framework to recover the spatio-temporal dynamics of memes by exploit-

ing auxiliary information among locations, hashtags, and times. Concretely, we formally

define the problem of recovering the spatial-temporal dynamics of online memes and pro-

pose a novel tensor-based factorization approach. The core insight of the proposed method

is to carefully take into account the latent relationships derived from contextual informa-

tion among locations, memes, and times; these relationships can then be embedded into
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a tensor completion framework for uncovering the incomplete dynamics based on partial

observations. We explore how to model and integrate these side information – here, in the

form of relationships among locations, memes, and times – and show how the underlying

tensor factorization can be efficiently solved with an efficient algorithm based on ADMM.

We evaluate the performance of our tensor-based framework over Twitter datasets and

through extensive experimental study, we find that our framework achieves a significant

improvement in recovery compared to state-of-the-art alternatives, while achieving signif-

icantly greater efficiency.

Second, to address the challenge specificity, we investigate the proposed tensor learn-

ing framework over two key scenarios in social media that are characterized by extreme

sparsity and complex relationships: (i) recommending high-quality content producers to

users; and (ii) learning user topical profiles. For the first scenario, our goal is to recom-

mend personalized experts to users. Specifically, we extend the proposed tensor learning

algorithm to develop a tensor-based completion model TAPER by incorporating both the

latent relationships between homogeneous entities (e.g., users and users, experts and ex-

perts) and the relationships between heterogeneous entities (e.g., users and experts, topics

and experts) from the geo-spatial, topical, and social contexts into the tensor completion

framework. Our empirical evaluation over Twitter Lists has demonstrated the superiority

of the proposed TAPER to improve the quality of the recommendation in both precision

and recall over state-of-the-art baselines. For the second scenario, we tackle the prob-

lem of learning user topical problem and also investigate how to leverage user-generated

information in heterogeneous and diverse footprints. In particular, we propose a gener-

alized tensor-based contextual regularization model embedded into a matrix factorization

framework with integrating pairwise relations among social, textual, and behavioral con-

texts. We model all contextual signals into one tensor via calculating the user similarity in

each of social, textual and behavioral contexts. After applying the tensor decomposition,
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the latent representation of users can be learned, which is further embedded into a matrix

factorization framework in order to learn unknown user topical profiles. We.evaluate the

performance of our proposed model over Twitter datasets and find it to be significantly

effective while pertaining high accuracy on learning user topical profiles.

Third, to handle the challenge scalability, we enables the proposed tensor learning

framework to handle real large-scale datasets that are too big to fit in the main mem-

ory of a single machine. Specifically, we propose DISTENC, a novel distributed scalable

tensor completion algorithm with incorporating auxiliary information, which is running

on the modern parallel computing architecture Spark. By efficiently computing auxiliary

variables, minimizing intermediate data, and reducing the workload of updating new ten-

sors. We successfully tackles the high computational costs and minimizes the intermediate

data and find that the proposed distributed scalable algorithm is capable of handling up to

10∼1000× larger tensors than existing methods with much faster convergence rate, shows

better linearity on the machine scalability, and achieves up to an average improvement of

23.5% in the applications such as recommender systems and link prediction.

8.2 Future Research Opportunities

Though we have seen the success that tensor completion has experienced in data min-

ing in recent years, there are still many challenges and open problems that have not been

appropriately addressed. With respect to future work, we are quite interesting in the fol-

lowing directions:

• Tackling Rapidly Evolving Multi-aspect Datasets. In this dissertation, we pro-

pose scalable tensor learning algorithms to recover the missing information across

a variety of applications in which the datasets are mostly static. With the rapid

growth of datasets in both volume and velocity, real-world applications are often

imbued with high velocity streaming data beyond traditional static setting. For in-
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stance, Facebook users update almost 700,000 messages per minute; Twitter users

generate over 100,000 tweets every single minute. Motivated by such fast-evloving

data, dynamic tensor completion algorithms need to be developed to fill missing in-

formation timely and incorporate newly emerging patterns. Recently, Qingquan et

al. [150] propose a Multi-Aspect Streaming Tensor completion framework (MAST)

to track the subspace of general incremental tensors for completion by effectively

capturing its low-rank structure. A nature follow up for both ours and Qingquan’s

work is to scale up dynamic tensor completion algorithms to be capable of handling

real large-scale datasets that usually have billions of entries. Interesting questions to

study include: How can we develop a scalable dynamic tensor completion algorithm

that can be deployed in the modern distributed computing architecture like Hadoop

and Spark? Can we incorporate side information into the dynamic tensor completion

algorithms to improve the complete model reconstruction in a distributed fashion?

• Exploiting Heterogeneous Information Networks. As we can see, there are con-

siderable existing work on Heterogeneous Information Networks (HINs) that are

graphs between different types of nodes with different types of edges. In this dis-

sertation, we integrate rich side information into tensor completion algorithms to

improve performance of recovering missing information based upon the assumption

that there exist some statistical regularities under the intertwined facts stored in the

multi-aspect datasets. From a different point of view, HINs can be represented as

tensors (e.g., multi-aspect social network). Similar nodes or communities can be

explored by techniques like Meta-Path [151] that traverses multiple types of nodes

with a similar fashion of random walk. We are interested in connecting between

HINs and tensor completion towards unifying different data mining approaches as

well as better exploiting rich side information.
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• Connecting with Neural Network. Deep learning is becoming popular due to the

expressive power of neural networks through depth, which has been successfully

applied in many fields such as computer vision, data mining, nature language pro-

cessing, bioinformatics, etc. In this dissertation, we mainly focus on tensor com-

pletion methods through factorizing the tensor data and recovering missing infor-

mation based upon factor matrices. Recently, Socher et al. [152] propose Neural

Tensor Networks (NTNs) for knowledge base completion, which allows mediated

interaction of entity vectors via a tensor. We are interested in connecting between

deep learning and tensor completion with adaptability of scaling slices and applying

to applications such as recommendation, attribute embedding, and link prediction.

154



REFERENCES

[1] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M.

Mitchell, “Toward an architecture for never-ending language learning,” in AAAI,

vol. 5, p. 3, 2010.

[2] C. J. Appellof and E. R. Davidson, “Strategies for analyzing data from video flu-

orometric monitoring of liquid chromatographic effluents,” Analytical Chemistry,

vol. 53, no. 13, pp. 2053–2056, 1981.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.

Phan, “Tensor decompositions for signal processing applications: From two-way to

multiway component analysis,” IEEE Signal Processing Magazine, vol. 32, no. 2,

pp. 145–163, 2015.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos, “Tensor decomposition for signal processing and machine learning,”

IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[5] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles:

Tensorfaces,” in European Conference on Computer Vision, pp. 447–460, Springer,

2002.

[6] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing

values in visual data,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 35, no. 1, pp. 208–220, 2013.

[7] K. Hasselmann, “Multi-pattern fingerprint method for detection and attribution of

climate change,” Climate Dynamics, vol. 13, no. 9, pp. 601–611, 1997.

155



[8] R. Yu and Y. Liu, “Learning from multiway data: Simple and efficient tensor re-

gression,” in International Conference on Machine Learning, pp. 373–381, 2016.

[9] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway analysis of

epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–i18, 2007.

[10] E. E. Papalexakis, A. Fyshe, N. D. Sidiropoulos, P. P. Talukdar, T. M. Mitchell, and

C. Faloutsos, “Good-enough brain model: Challenges, algorithms, and discoveries

in multisubject experiments,” Big Data, vol. 2, no. 4, pp. 216–229, 2014.

[11] K. Maruhashi, F. Guo, and C. Faloutsos, “Multiaspectforensics: Pattern mining on

large-scale heterogeneous networks with tensor analysis,” in IEEE International

Conference on Advances in Social Networks Analysis and Mining (ASONAM),

pp. 203–210, IEEE, 2011.

[12] T. Kolda and B. Bader, “The tophits model for higher-order web link analysis,” in

Workshop on Link Analysis, Counterterrorism and Security, vol. 7, pp. 26–29, 2006.

[13] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An interdisciplinary

survey,” Knowledge-Based Systems, vol. 98, pp. 130–147, 2016.

[14] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data min-

ing,” in Proceedings of the 8th IEEE International Conference on Data Mining,

pp. 363–372, IEEE, 2008.

[15] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization for

personalized tag recommendation,” in Proceedings of the 3rd ACM International

Conference on Web Search and Data Mining, pp. 81–90, ACM, 2010.

[16] H. Ge, J. Caverlee, and H. Lu, “Taper: A contextual tensor-based approach for

personalized expert recommendation.,” in Proceedings of the 10th ACM Conference

on Recommender Systems, pp. 261–268, 2016.

156



[17] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental tensor

analysis: Theory and applications,” ACM Transactions on Knowledge Discovery

from Data (TKDD), vol. 2, no. 3, p. 11, 2008.

[18] G. Kossinets, “Effects of missing data in social networks,” Social Networks, vol. 28,

no. 3, pp. 247–268, 2006.

[19] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina, “Correcting for miss-

ing data in information cascades,” in Proceedings of the 4th ACM international

Conference on Web Search and Data Mining, pp. 55–64, ACM, 2011.

[20] M. Scheuerer, R. Schaback, and M. Schlather, “Interpolation of spatial data–a

stochastic or a deterministic problem?,” European Journal of Applied Mathemat-

ics, vol. 24, no. 4, pp. 601–629, 2013.

[21] D. Kondrashov and M. Ghil, “Spatio-temporal filling of missing points in geophys-

ical data sets,” Nonlinear Processes in Geophysics, vol. 13, no. 2, pp. 151–159,

2006.

[22] Y. Li and L. E. Parker, “A spatial-temporal imputation technique for classification

with missing data in a wireless sensor network,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 3272–3279, IEEE, 2008.

[23] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for

matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982,

2010.

[24] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal compressive

sensing and internet traffic matrices,” in ACM SIGCOMM Computer Communica-

tion Review, vol. 39, pp. 267–278, ACM, 2009.

157



[25] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Foundations of Computational Mathematics, vol. 9, no. 6, p. 717, 2009.

[26] Y. Liu, F. Shang, L. Jiao, J. Cheng, and H. Cheng, “Trace norm regularized cande-

comp/parafac decomposition with missing data,” IEEE Transactions on Cybernet-

ics, vol. 45, no. 11, pp. 2437–2448, 2015.

[27] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using matrix

and tensor factorizations,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 5, no. 2, p. 10, 2011.

[28] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen, B. A. Malin, and

J. Sun, “Rubik: Knowledge guided tensor factorization and completion for health

data analytics,” in Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 1265–1274, ACM, 2015.

[29] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver,

“Tfmap: optimizing map for top-n context-aware recommendation,” in Proceedings

of the 35th international ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 155–164, ACM, 2012.

[30] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor factorizations

with missing data,” in Proceedings of the 2010 SIAM International Conference on

Data Mining, pp. 701–712, SIAM, 2010.

[31] R. Forsati, M. Mahdavi, M. Shamsfard, and M. Sarwat, “Matrix factorization with

explicit trust and distrust side information for improved social recommendation,”

ACM Transactions on Information Systems (TOIS), vol. 32, no. 4, p. 17, 2014.

[32] A. Narita, K. Hayashi, R. Tomioka, and H. Kashima, “Tensor factorization using

auxiliary information,” Data Mining and Knowledge Discovery, vol. 25, no. 2,

158



pp. 298–324, 2012.

[33] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for tensor com-

pletion in the cp format,” Parallel Computing, vol. 57, pp. 222–234, 2016.

[34] S. Smith, J. Park, and G. Karypis, “An exploration of optimization algorithms for

high performance tensor completion,” in International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pp. 359–371, IEEE, 2016.

[35] S. Greenland, J. A. Schwartzbaum, and W. D. Finkle, “Problems due to small sam-

ples and sparse data in conditional logistic regression analysis,” American Journal

of Epidemiology, vol. 151, no. 5, pp. 531–539, 2000.

[36] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Founda-

tions and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[37] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”

Studies in Applied Mathematics, vol. 6, no. 1-4, pp. 164–189, 1927.

[38] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimen-

sional scaling via an n-way generalization of âĂIJeckart-youngâĂİ decomposition,”
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