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ABSTRACT 

 

This thesis presents a lean resource scheduling algorithm which merges 

traditional machine scheduling problems with Lean Manufacturing concepts to 

determine the resource levels, such as employee headcount or number of machines 

used in production, and the corresponding schedule which minimize resource idle 

time while keeping scheduled makespan within a neighborhood around the takt-

time. The algorithm begins by solving a relaxed problem to find a satisfactory 

makespan via iterative local search, then solving a secondary problem to minimize 

the idle time subject to a makespan neighborhood constraint.  

Experiments were conducted on a randomly generated dataset with six 

different factors, and both the overall program run time and the amount of idle time 

reduction between the first feasible solution and final solution were measured. The 

algorithm executes in a relatively short time, even for moderately large problem 

instances, and the idle time reductions are promising at a grand average of twenty-

five percent reduction. 

The results of the algorithm are promising on the test sets, although the 

method has not been tested in a practical case study. Given the promising results, 

further study on the underlying model, algorithm performance, and testing in a 

practical application are recommended.  
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1. INTRODUCTION  

 

This thesis presents a methodology that aims to finds the resource levels and 

corresponding schedule that minimizes the total cost weighted idle time of the schedule, given 

that the schedules makespan is within a tolerable window about a target value. This work was 

motivated by the Lean Manufacturing principles and scheduling heuristic optimization solutions 

for sequencing and scheduling problems within the aerospace assembly environments. Solving a 

first-stage search to find a resource set with a corresponding feasible completion time and then 

performing a second search to minimize the idle time of the schedule within the feasible region 

strikes a balance between completing a planned scope of work within the allowable time while 

still minimizing the idle time. 

The Lean manufacturing paradigm was developed in the early 1940’s and made famous 

the Toyota Production System (TPS). Lean manufacturing can be broadly characterized by 

delivering what a customer values, while using the least amount of resources possible. The 

concept of lean manufacturing is well-presented by Womack and Jones’ [7] who identified five 

lean principles, Identify Value, Map the Value Stream, Create Flow, Establish Pull, and Seek 

Perfection. Lean Manufacturing drives manufacturers towards creating high value, in-demand 

products for their customers while using the least amount of effort, such as raw materials, labor, 

or capital, as possible. A central concept in lean manufacturing is the takt time, which is the time 

between a fully completed job. Work balancing, workstation capacity, and employee staffing 

levels are all adjusted in lean planning to ensure that jobs are completed near the takt time. 
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Implementation of lean manufacturing principles in industries with high product 

variability and low product volume, such as the aerospace industry, has had limited success [9]. 

Despite the limited success to date, Aerospace manufacturers are striving to be leaner since 

successful implementation of Lean Manufacturing principles can result in a large competitive 

advantage by increasing the overall production throughput and reducing setup and change-over 

times, which in turn allows greater schedule stability and lower rework costs [10].   

This methodology bridges the gap between traditional sequencing and scheduling works 

and Lean Manufacturing principles by minimizing the total idle time of resource over the takt 

time, instead of the completion time of the schedule. Extending the definition of idle time to 

penalize schedules that are completed before the takt-time ensures the methodology finds 

employee and machine resource levels that result in a makespan that is near the takt time with a 

minimum resource idle time. This methodology applies methodologies and techniques common 

in machine scheduling to Lean manufacturing scheduling.  
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2. MOTIVATION  

 

In modern manufacturing and service environments decision makers face conflicting 

pressures to complete the planned work within an allotted time while keeping the overall 

manufacturing costs as low as possible. Generally, these two objectives are in competition with 

each other, as employee staffing can have a significant impact on the rate of production or 

service. This work aims to address these conflicting objective functions by creating schedules 

that satisfy completion time objectives while minimizing the total idle time or costs of utilizing 

the resources needed during the schedule. These two objectives, completing work within on a 

consistent, planned time and minimizing the amount of resources aid in achieving Lean 

Manufacturing’s primary objective, using resources efficiently. This work is applicable to 

environments where the planned scope of work is consistent and stable across a longer, strategic 

planning horizon. 

In Aerospace assembly environments, the overall job variability is low, and orders are 

known well in advance and can be adequately planned for. In aerospace assembly, the full 

assembly of the airplane is broken up into different areas, with well-defined and appropriately 

scoped job content, where a specific set of tasks or operations are completed to finish a 

subassembly of the overall aircraft. In this environment, the decision maker can use the proposed 

methodology to make a strategic decision on what long term staffing levels and schedule 

combinations result in a minimized idle time or idle cost.  
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This methodology is not limited only to traditional manufacturing environments, as this 

methodology can be effectively applied in other fields where job variability is low, and the scope 

of work is large and well defined. Large-scale construction environments share many similarities 

with the aerospace manufacturing environment, low job variability, high number of distinct 

operations with various resource requirements, and this methodology can be applied to reduce 

the overall employee costs associated with completing a major construction project. 
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3. LITERATURE REVIEW 

 

The concept of Lean Manufacturing, made popular by the Toyota Production system, was 

developed and refined in Toyota’s in “Lean” supply and distribution base in the 1970’s and 

1980’s [8] and has developed into a central manufacturing ideology in the world’s automotive 

industries. Two central ideals in Lean Manufacturing are converting the manufacturing to single-

piece flow, where each job is processed sequentially with no build-up of work in progress (WIP) 

in-between manufacturing steps and completing jobs a steady and continuous rate. Successful 

implementation of single-piece flow and completing jobs on the takt-time has a large impact 

reducing excessive WIP within a system [11]. Companies that can successfully schedule work in 

accordance to the takt time and execute to the schedules can see significant reductions in WIP, 

both reducing the capital invested in in-work goods and improving the visibility of the 

manufacturing process. 

The field of machine scheduling has been well-studied and has been applied to many 

different industries and problems. A.H.G Rinnooy Kan’s ‘Machine Scheduling Problems: 

Classification, Complexity and Computations’ [4] provides an insightful overview of machine 

scheduling problems. French’s ‘Sequencing and Scheduling: An Introduction to the Mathematics 

of the Job-shop (Mathematics and its Applications) [1] provides a similar background in machine 

scheduling. The Job Shop Scheduling Problem (JSP) is traditionally formulated as a mixed-

integer program (MIP), known in the field of machine scheduling as an exact method, and 

modeled and solved with various models and commercial solvers. [5] provides an overview of 

the different modeling approaches, and the speeds of different commercial solvers. When 

modeled as an MIP, there are several restrictive assumptions that prohibit modeling realistic 
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manufacturing systems. Most MIP models have prohibitions against using more than one unit of 

resource capacity during a given operation and many models give an explicit 1:1 assignment 

between jobs and machines causing each operation to be assigned to one and exactly one 

machine.  

In contrast with the exact method, an approximate or heuristic method can model a more 

realistic production system where each operation may require more than one unit of a given 

resource type and require more than one resource type at a time. For example, a given operation 

may need two units of one resource type and three units of the second. To have a more robust 

solution methodology an approximate method was chosen. 

Iterative Local Search (ILS) a popular approximate method used to solve optimization 

problems that, due to problem size or restrictive constraints, cannot be reasonably solved using 

exact methods. Lourenco [12] provides an overview ILS methods and applications to a variety of 

problems. In machine scheduling, ILS is used in conjunction with heuristic scheduling methods 

to solve various machine scheduling problems. Panwalkar and Iskandar [6] provide a survey of 

the various scheduling rules or heuristics that may be applied to scheduling problems. 

Scheduling heuristics have been successfully applied by Leon and Balakrishnan [2], who 

combine scheduling heuristics with a special case of ILS known as problem-space based 

neighborhood search to efficiently solve the resource constrained scheduling problem in job shop 

environments. Additionally, Leon and Balakrishnan [3] have shown this procedure develops 

strong neighborhoods with strong computational results. 
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4. PROBLEM DESCRIPTION  

 

Consider a workstation with two different employee types that must complete two 

different jobs, where each job can be broken down into individual operations. Before work can 

begin on an operation, all the operations’ predecessors must be completed. For example, Job 1 

consists of four different operations. Before work can begin on Operation 2 and Operation 3, 

Operation 1 must be completed. Once Operation 2 has been completed, Operation 4 may be 

started. The job shop must process an additional job, Job 2, which consists of two operations, 

Operation 1 and Operation 2, which must be completed sequentially. Each combination of 

operation i and job j, represented as 𝑜𝑗
𝑖, has an associated processing time 𝑑(𝑜𝑗

𝑖) and requires 

𝑟1(𝑜𝑗
𝑖) employees of employee type 1 and 𝑟2(𝑜𝑗

𝑖) employees of employee type 2. Figure 1 shows 

a network representation of the jobs one and two.  

 

 

Figure 1: Network Representation of Job A and Job B 
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Since this workstation is part of a larger production facility with low product mix the 

planned work, the set of operations and operation parameters, in this workstation is stable for the 

foreseeable future. Given that this workstation is part of a larger assembly-line environment it is 

critical that both Job 1 and Job 2 are completed near a target completion time, T. Management 

would like to determine the staffing levels and associated job completion sequence that 

minimizes the total cost of idle time of the resources, while keeping the completion time of the 

planned work to the target makespan T, which represents the takt-time of the planned work  
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5. PROBLEM MODEL  

 

This section presents a generalization of the problem described above. Define a set of 

replenishable resources, R, where each resource m ∈ R has an integral resource capacity 𝑅𝑚 ∈

 𝑍+, ∀𝑚 ∈ 𝑅. All values are assumed to be known and deterministic. Given a set of jobs J, where 

each job has an associated sequence of operations 𝑂𝑗 consisting of least one operation 𝑜𝑗
𝑖 , ∀𝑗 ∈

𝐽, 1 ≤ 𝑖 ≤ 𝑛𝑗 , where 𝑜𝑗
𝑖 represents the ith operation of job j and 𝑛𝑗  represents the number of 

operations in job j.  There is a non-negative duration 𝑑(𝑜𝑗
𝑖) and start time 𝜎(𝑜𝑗

𝑖), a set of direct 

predecessors 𝑃(𝑜𝑗
𝑖), and a vector of replenishable resource requirements  𝒓(𝑜𝑗

𝑖) = [𝑟𝑚(𝑜𝑗
𝑖)] with 

𝑟𝑚(𝑜𝑗
𝑖) ∈ 𝑍+  associated with each operation. It is important to note that the operation 𝑜𝑗

𝑖  requires 

exactly  𝑟𝑚(𝑜𝑗
𝑖) units of m and requires exactly 𝑑(𝑜𝑗

𝑖) units of time to complete. Adding 

additional resources to the operations is prohibited and does not expedite jobs completion time.  

Define the makespan of the schedule 𝐶𝑚𝑎𝑥(𝑅𝑚) = max{ 𝜎(𝑜𝑗
𝑖)}  ∀ 𝑜𝑗

𝑖. Define the idle time of 

resource type m to be 𝐼𝑚 = 𝑅𝑚max {𝐶𝑚𝑎𝑥,T} −  ∑ ∑ 𝑑(𝑜𝑗
𝑖)𝑟𝑚(𝑜𝑗

𝑖)𝑖∈[1,𝑛𝑗]𝑗∈𝐽   and cost weighted 

sum of idle times to be 𝐼= ∑ 𝑐𝑚𝐼𝑚𝑚∈𝑅 , with 𝑐𝑚 representing the cost unit cost of resource m per 

unit time.  

The idle time formulation used in this problem differs from the traditional idle time show 

in [2,3] as the idle time is computed over the maximum of target completion time and the 

scheduled makespan. This change in formulation adds a penalty to schedules that complete work 

well before the target completion time, as the resources used in production will necessarily be 

idle during the time between schedule completion, 𝐶𝑀𝑎𝑥 and the target completion time 𝑇.  
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The scheduled start time of all operations must adhere to both technological and resource 

feasibility constraints. A schedule is technologically feasible if the start time of any given job is 

less than or equal to the start time of all its successors, 𝜎(𝑜𝑗
𝑖) + 𝑑(𝑜𝑗

𝑖) ≤ 𝜎(𝑜𝑗
𝑘) , ∀𝑘 ∈ 𝑃(𝑗), ∀𝑗 ∈

𝐽.  A schedule is said to be resource feasible, for any given time and resource type, the sum of 

resource requirements for all in-work tasks 𝑂𝑝(𝑡) = {𝑜𝑗
𝑖|𝑜𝑗

𝑖 ∶ 𝜎(𝑜𝑗
𝑖) ≤ 𝑡 ≤  𝜎(𝑜𝑗

𝑖) + 𝑑(𝑜𝑗
𝑖) is less 

than or equal to the resource capacity for all resources ∑ 𝑟𝑚(𝑜𝑗
𝑖)𝑜𝑗

𝑖∈𝑂𝑝(𝑡) ≤ 𝑅𝑚∀𝑚, ∀𝑡. 

The objective of the problem is to find the resource set R and associated sequence of 

operation start times that minimizes the cost-weighted idle time, while keeping the scheduled 

makespan 𝐶𝑀𝑎𝑥(𝑹) with in a neighborhood around the target makespan defined by two 

parameters 𝑇𝐿𝐵 = max{𝑇(1 −  𝛼), 0} and 𝑇𝑈𝐵 = 𝑇(1 + 𝛼).  
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6. PROBLEM FORMULATION 

 

The minimum weighed idle time problem can be defined as follows:  

min
𝑹

∑ 𝑐𝑚 (𝑅𝑚 max{max {𝜎(𝑜𝑗
𝑖) + 𝑑(𝑜𝑗

𝑖)}(𝑹), 𝑇} −  ∑ ∑ 𝑑(𝑜𝑗
𝑖)𝑟𝑚(𝑜𝑗

𝑖)

𝑖∈[1,𝑛𝑗]𝑗∈𝐽

)

∀𝑚

 

subject to: 

𝑇𝐿𝐵 = max {0, 𝑇(1 − 𝛼)}   (1) 

𝑇𝑈𝐵 = 𝑇(1 +  𝛼)    (2) 

𝑇𝐿𝐵 ≤ 𝐶𝑚𝑎𝑥 ≤ 𝑇𝑈𝐵    (3) 

𝛼 ∈ [0,1]     (4) 

𝑅𝑚 ∈ 𝑍+, ∀𝑚     (5) 

𝑟𝑚(𝑜𝑗
𝑖) ∈ 𝑍+, ∀𝑜𝑗

𝑖    (6) 

∑ 𝑟𝑚(𝑜𝑗
𝑖)𝑜𝑗

𝑖∈𝑂𝑝(𝑡) ≤ 𝑅𝑚 , ∀𝑚 , ∀𝑡  (7) 

𝑑(𝑜𝑗
𝑖) ≥ 0, ∀𝑜𝑗

𝑖    (8) 

 𝜎(𝑜𝑗
𝑖) + 𝑑(𝑜𝑗

𝑖) ≤ 𝜎(𝑜𝑗
𝑘) , ∀𝑘 ∈ 𝑃(𝑗), ∀𝑜𝑗

𝑖 (9) 

 

The objective function is an expansion of the more compact objective function,  

min (𝒄𝑻𝑰), where the vector c represents the cost, typically in dollars or other currency, of using 

one unit of a resource for one unit of time and I represents the vector of idle times for each 

resource type. For example, if 𝑐𝑚 = $3 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟, each and 𝐼𝑚 = 4 ℎ𝑜𝑢𝑟𝑠 the total cost of 

idleness for resource type m is $12. The vector c = 1 represents the unweighted idle time 
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minimization problem. The addition of an idle-time cost allows the modeler to specify critical, 

expensive resources, and more heavily penalize idle time on those resources. 

Constraints (1) and (2) define the makespan neighborhood sizes, while constraint (3) 

ensures all feasible solutions have a makespan within the target neighborhood. Constraint (4) 

bounds the neighborhood size parameter 𝛼. Constraints (5) and (6) restrict the resource 

capacities and resource requirements for all operations to the positive integers. Constraint (7) 

restricts all operation durations to the non-zero reals. Constraint (8) represents the technological 

precedence constraints addressed in the previous section. 
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7. SOLUTION APPROACH 

 

The problem is decomposed into two different problems. The first problem stage, referred 

to as the first-stage search, finds an initial feasible solution that satisfies the target makespan 

constraints. After an initial feasible solution has been found, a second-stage search is performed 

that minimizes the total cost of idle-time associated with a feasible schedule.  

The first-stage search begins with the smallest resource set R that results in an executable 

schedule. This resource set 𝑹𝑴𝒊𝒏 = max{𝑟𝑚(𝑜𝑗
𝑖)} ∀𝑚, ∀𝑜𝑗

𝑖  is set as the initial seed for the search, 

and the resource set neighborhood is searched for solutions with a smaller absolute difference 

between the resultant makespan 𝐶𝑀𝑎𝑥(𝑅) and the target makespan T. The search continues until 

a resultant makespan is found that satisfies the problem’s makespan constraints. Once found, this 

solution represents the first observed feasible solution and the algorithm continues to the second-

stage search.  

The initial feasible solution is set as the first seed and the neighborhood is searched for 

solutions with smaller idle cost values, 𝒄𝑻𝑰. If a resource set is found that has a smaller idle cost 

than the initial feasible solution, the seed is updated, and the neighborhood search continues. The 

search is executed until the total number of iterations have been completed, and the best-found 

solution is reported. Both the makespan in the first-stage search and the idle time in the second 

stage search are outputs of the solution generation heuristic, g(R,J,h), explained in the section 

below. 
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7.1 Schedule Generation Procedure 

A schedule generation heuristic g(R,J,h) receives a set of resources (R), a set of jobs (J),  

and a scheduling heuristic (h) and computes the start and finish time for every operation. The 

schedule generation heuristic used to solve this problem is very similar to the schedule 

generation procedure used by Leon, et. al [2], without the neighborhood search to minimize 

makespan. The search procedure used in [2] is omitted from this work and the construction 

heuristic is all that is used to generate schedules.  

The schedule generation procedure iteratively chooses an operation from the set of 

schedulable operations 𝑃𝑠(𝑡),  that is operations that have all their predecessors completed and 

enough resources available at the time of decision to schedule the operation. When there is more 

than one operation in consideration, a scheduling heuristic, h, is applied which assigns a priority 

to the competing operations. The operation with the highest priority is scheduled, and the start 

and finish times of the operation are updated, along with the schedules’ resource availability is 

updated. After scheduling an operation, 𝑃𝑠(𝑡) is updated to reflect the new resource availabilities. 

If there are more schedulable activities after the previous operation has been scheduled, the 

schedule generation heuristic is reapplied to the new set of schedulable activities. This procedure 

continues until the set of schedulable activities is empty, after which the algorithm moves next 

timestep t, where the procedure is applied again.  
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7.2 Schedule Generation Algorithm 

A critical operation in the schedule generation algorithm is determining the set of 

schedulable activities at a particular time. The DetermineSchedulable algorithm returns the 

schedulable operations, operations that satisfy both technological and resource feasibility The 

algorithm first resets the set of schedulable activities, then the algorithm compares each 

operations total number of predecessors,  𝑁𝑢𝑚𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑜𝑗
𝑖), and the number of completed 

predecessors at time t, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑜𝑗
𝑖). If the number of completed predecessors 

matches the total number of predecessors, and 𝑟𝑚(𝑜𝑗
𝑖) is less than the resource availability of 

resource m at time t, add 𝑜𝑗
𝑖 to the partial schedule.  

DetermineSchedulable(O,R(t))  

 Initialize: 𝑃𝑠(𝑡) = ∅ 

 For all 𝑜𝑗
𝑖 ∈ 𝑂: 

  If 𝑁𝑢𝑚𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑜𝑗
𝑖) == 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑜𝑗

𝑖): 

   If 𝑟𝑚(𝑜𝑗
𝑖) ≤ 𝑅𝑚(𝑡) ∀𝑚:  

    Add 𝑜𝑗
𝑖 to 𝑃𝑠(𝑡) 

   End if  

  End if  

The schedule generation algorithm described in this section is used to determine the start 

time for each operation in the planned work J. The algorithm is initialized with all operations in 

the set of operations, 𝑂 and two sets, the set activities that are schedulable at a given time 𝑃𝑠(𝑡),  

and the set of activities that have scheduled, 𝑆′. While the set of unscheduled operations is not 
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empty, apply the DetermineSchedulable procedure to determine which tasks are schedulable at 

the current simulation time. If there are no schedulable tasks, advance the time to the next finish 

time of a task and re-apply the DetermineSchedulable algorithm. If the set of schedulable 

activities is non-empty at time t apply the schedule heuristic h to the set of schedulable activities 

and choose the task with the highest priority. The chosen operation is then moved to the set of 

scheduled operations, and the operations start and finish time are updated along with the resource 

availability at time t. Once the updates are made the DetermineSchedulable procedure is applied 

again. After all the jobs have been scheduled, the algorithm terminates and the various schedule 

measures, such as makespan or idle time, can be calculated. 

 

GenerateSchedule(R,J,h) 

Initialize: 𝑂 = {𝑜𝑗
𝑖}, 𝑃𝑠(𝑡), =  ∅, 𝑆′ = ∅, 𝑡 = 0  

While 𝑂 ≠ ∅: 

DetermineSchedulable(O,R(t)) 

     While 𝑃𝑠(𝑡) ≠  ∅: 

       Apply h, and select operation with the highest priority (𝑜∗) 

𝜎(𝑜∗) = 𝑡, add 𝑜∗ to S, remove 𝑜∗ from O, update R(t) 

          DetermineSchedulable(O, R(t))  

     NextTime = min{𝜎(𝑜𝑗
𝑖) + 𝑑(𝑜𝑗

𝑖) ∶  𝜎(𝑜𝑗
𝑖) ≥ 𝑡} 

     t = NextTime 
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Upon conclusion of the algorithm, all activities will be scheduled. The 

DetermineSchedulable procedure ensures that all generated sequences are technologically 

feasible, since only operations with all completed successors may be in the set of schedulable 

activities. Additionally, all generated sequences will adhere to resource constraints, since any 

operation with resource requirements exceeding the resource availability at the time of the 

DetermineSchedulable process. Finally, the algorithm will necessarily terminate if the resource 

schedule resource capacities exceed the resource requirements for all operations. The guaranteed 

technological and resource feasibility, guaranteed convergence, and the algorithms worst-case 

complexity, O(𝑁2)[3], ensures the schedule generation procedure quickly creates feasible 

sequences with modest computational effort. See Appendix A1 for a process diagram describing 

the schedule generation algorithm.  

7.3 First Stage Search 

To find a feasible solution, the problem is solved with the makespan constraint relaxed. 

The search is initialized with the schedule generation procedure applied to 𝑅𝑀𝑖𝑛, the smallest 

resource set that results in a feasible solution to the relaxed problem. The resource set and 

corresponding makespan are used as the initial seed and makespan for a neighborhood search 

algorithm with the objective of minimizing the absolute difference between the schedules’ 

makespan and the schedules associated target makespan. Within the first neighborhood, a 

perturbation vector, p is added to  𝑅𝑀𝑖𝑛 where each element in p is drawn from a (0,1) uniform 

distribution. The stochastic vector is drawn from a uniform distribution between zero and one to 

eliminate searching infeasible solutions. The initial seed represents the smallest resource set that 

results in a feasible solution and reducing any resource value in 𝑅𝑀𝑖𝑛 will result in an infeasible 
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schedule when the schedule generation technique is applied. The stochastic is multiplied by a 

step-size 𝛿1 which creates the perturbation vector. This perturbation vector is added to the seed, 

and the schedule generation procedure is applied to the new test set. If the test set has a 

makespan that is closer to the schedules’ target makespan, the seed is updated, and a new 

perturbation vector is drawn from a (-1, 1) random uniform distribution.  This search procedure 

continues until finding a resource set with a makespan that satisfies the original problems’ 

makespan constraints. This resource set is then set as the initial seed for the second-stage search 

which minimizes the total idle cost of the feasible schedules. See Appendix A2 for a process 

diagram describing the first-stage search.  

7.4 Second Stage Search 

Once a feasible solution is found, a secondary search is conducted to find a resource set 

with the smallest idle cost among the feasible solutions. The first-stage search finds the first 

feasible solution, 𝑅0 with a corresponding idle cost 𝐼0. For each iteration of the search, a random 

perturbation vector is created with elements drawn from a (-1, 1) random uniform distribution 

and scaled by some parameter delta, resulting in a perturbation vector  𝑝 = 𝛿 ∗ 𝑈(−1,1), which 

is added to the initial seed. The schedule generation procedure is applied to the test set and the 

resulting idle cost is compared with the seed’s idle cost. Test set’s idle cost is less than the 

seed’s, the seed is updated, and the new neighborhood is searched. This procedure continues 

until the maximum number of search iterations is reached. See Appendix A3 for a process 

diagram describing the second-stage search.  
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8. PROBLEM GENERATOR & PARAMETERIZATION 

8.1 Problem Generator 

To test the idle time reduction algorithm experiments will be run on randomly generated 

problems that are created using a problem generator. The problem generator creates a specified 

number of operations, each with associated durations and resource requirements. Each operations 

duration is drawn from a continuous random uniform distribution  𝐷 ~ 𝑈𝐶𝑜𝑛𝑡.(𝑎, 𝑏) with interval 

width characterized by the coefficient of variation and expectation for the task duration 

(𝑏 − 𝑎) = (12𝐸[𝐷]𝐶[𝐷]).5. Given an interval width, the values of a and b are easily computed 

𝑎 = max{0, 𝐸[𝐷] −  .5(12𝐸[𝐷]𝐶[𝐷]).5} , 𝑏 = 𝐸[𝐷] +  .5(12𝐸[𝐷]𝐶[𝐷]).5.  

Similarly, the each operation’s resource requirements are generated from m independent 

samples from a discrete random uniform distribution 𝑅 ~ 𝑈𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑐, 𝑑) where the interval 

width is defined as above, with the lower-bound value a defined as the maximum of zero and 

floor of the expectation minus half the interval width,  𝑎 = max {0, ⌊𝐸[𝐷] −

 .5(12𝐸[𝑅]𝐶[𝑅]).5⌋},  and b defined as the ceiling of the expectation plus half the interval width 

𝑏 = ⌈𝐸[𝑅] + .5(12𝐸[𝑅]𝐶[𝑅]).5.  

During the creation of the operation, each operation is assigned a “TaskID” which is then 

used while building the successors for each operation. Once an operation is created the problem 

generator draws from a continuous standard uniform distribution, 𝑈 ~(0,1), for all operations 

with a strictly greater TaskID. If this random variate associated with TaskID j for j > i is greater 

than an input parameter, probability of connectedness, then j is assigned as a successor of i. The 

maximum number of successors of any node is controlled by an additional problem generation 

parameter, to decrease over-connectedness that tends to create serial predecessor networks. This 
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successor generation procedure ensures that a topological ordering exists within the set of 

operations, resulting in a production feasible sequence.  

After creating all operation level characteristics, the problem generator then finds the 

minimum resource capacity set, 𝑅𝑀𝑖𝑛 = max{𝑟𝑚(𝑜𝑗
𝑖)} ∀𝑜𝑗

𝑖 , ∀𝑚 that is needed to complete any 

operation. The schedule generation procedure is applied to this resource set to define an upper-

bound on the makespan 𝐶𝑀𝑎𝑥
𝑈𝐵 . The non-resource scarce schedule, also known as the critical path, 

is found and used to define a lower-bound on the makespan 𝐶𝑀𝑎𝑥
𝐿𝐵 . The target tightness, t, is used 

to define the target makespan 𝑇 = 𝐿 +   𝑡 ∗ (𝐶𝑀𝑎𝑥
𝑈𝐵 − 𝐶𝑀𝑎𝑥

𝐿𝐵 ). The target-neighborhood which 

defined the interval of feasible makespans is calculated, 𝑇𝐿𝐵 = 𝑇(1 − 𝛼), 𝑇𝑈𝐵 = 𝑇(1 −  𝛼).  

Table 1 shows a description of the different parameters used in schedule generation. 
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Table 1: Problem Generation Parameters 

Parameter Description 

Number of Operations The total number of operation created 

Duration Mean Expected value of the operations duration. 

Coef. Variation (Duration) The coefficient of variation for the duration  

𝐶𝐷 =
𝑉𝑎𝑟[𝐷]

𝐸[𝐷]
 

Number of Resources The number of resource types in use, 𝑚  

Resource Mean Expected value of 𝑟𝑚(𝑜𝑗
𝑖) 

 

 

Coef. Variation (Resource Req.) Coefficient of variation for resource requirements, 

 𝐶𝑅 =
𝑉𝑎𝑟 [𝑅]

𝐸[𝑅]
 

Probability of Connectedness The probability that Operation B is a successor to 

Operation B, B > A 

Connected Max The maximum number of successors for any operation 

Target Tightness (t): Defines the target makespan from Relative distance  

𝑇 = 𝐶𝑀𝑎𝑥
𝐿𝐵 + 𝑡(𝐶𝑀𝑎𝑥

𝑈𝐵 − 𝐶𝑀𝑎𝑥
𝐿𝐵 ) 

Alpha Size of the target neighborhood 
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8.2 Search Delta Parameterization 

A neighborhood search is defined by two main characteristics, the size of each individual 

neighborhood and the total number of iterations examined. To select a delta that provides good 

solutions an experimental study was performed to measure which delta minimizes the average of 

the scheduled idle time across ten replications. To more easily extend the results to a more 

general problem, the delta-levels tested were expressed as a percentage of the resource mean. 

The experimental problem parameterization is show in Table 2. 

 

Table 2: Parameter Values for Delta Experiments 

Parameter Value 

Number of Operations 50 

Duration Mean 30 

Coef. Variation (Duration) .25 

Number of Resources 4 

Coef. Variation (Resource Req.) .3 

Probability of Connectedness .5 

Connected Max 4 

Target Tightness: .5 

Alpha .15 
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Problem instances with the above parameterization and resource means of ten, twenty, 

and thirty were created. Five experimental delta values, 10%, 25%, 50%, 75%, 90% of the 

experimental mean, were tested to measure which delta values minimize the idle time. Ten 

replications were run for each combination of delta value and resource mean. Selecting a delta 

value of 50% of the resource mean resulted yielded consistently good results in this experimental 

study and was chosen as the rule for delta parameterization for further experiments. 
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8.3 Search Iteration Parameterization 

Prior to experimentation, a preliminary experiment was run to determine an appropriate 

number of iterations to perform in the second-stage idle time minimization search. The second 

stage search was run over multiple replications and allowed to run for eight-hundred iterations 

and the idle time and iteration number was recorded for any improvement. Figure 2 shows the 

relationship between idle time and iteration number for a fixed problem. Improvement in 

makespan is most significant in first 200 iterations with little to no improvement found in the 

subsequent six-hundred iterations and the maximum number of iterations evaluated in the second 

stage search is set at two-hundred iterations for subsequent experiments. 

 

 

Figure 2: Iteration Parameterization Results 
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9. EXPERIMENTAL DESIGN  

 

To measure the effectiveness of the algorithm two measures have been chosen. The first 

measure, solution improvement, represents the percent change between the initial feasible 

solution and the best solution found by the second-stage search. The second measure is the 

overall program runtime, which is defined by the total elapsed time between the start of the first-

stage search and the end of the second-stage search.  

 

 

 

Figure 3:  Network Representations of Connectedness Settings 

 

Six different factors with two levels are analyzed, resulting in a 26 factorial design. The 

first two factors, Resource Variation and Resource Mean, represent the different combinations of 

resource types, with high and low resource means and high and low resource variations. The 

third factor, duration variation, represents the amount of variance in duration time for the 
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operations. The fifth factor, target tightness, represents problems with target makespans close to 

the lower-bound and upper-bound for the respective high and low levels.  

The final two factors, Number of Operations and Connectedness, represent large and 

small sizes of the fundamental problem types, with the high connectedness representing jobs 

with stricter technological build precedencies, while low connectedness problems have more 

freedom in the build order. Figure 3 shows representative networks for the low (left) and high 

(right) connectedness settings and different factors and their corresponding aliases and levels are 

summarized in Table 3. 

  

Table 3: Experimental Design Factors 

Factors Alias Low Level High Level 

Resource Variation A .4 .75 

Resource Mean B 10 25 

Duration Variation C .4 .75 

Target Tightness D .25 .75 

Number of 

Operations 

E 50 150 

Connectedness F {p_connected = .4, 

connect_max = 4} 

{p_connected = .8, 

 connect_max = 5} 
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Five replications were performed for each experimental scenario. In preliminary 

experimentation, five replications resulted in a standard error for mean estimates of 

approximately 6%, which was deemed an acceptable level of uncertainty. If the first-stage 

feasibility search failed to find a feasible solution on a problem instance a new randomized 

problem was generated using identical parameters and searched again until the first-stage 

solution found a feasible solution. This approach was chosen to ensure that the solution 

improvement resulting from the second-stage search could be measured and was only used for 

experimentation purposes.  

Given that this work is intended to be performed on at a strategic level, if the first-stage 

search failed in a practical setting, additional search iterations should be performed to ensure that 

a feasible solution does not exist or cannot be practically found. If no solution exists, or no 

feasible solution can be practically found, the problem’s target makespan may be unrealistic or 

infeasible, and a new target makespan should be found or a redefinition of the job content may 

be needed.  
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10. EXPERIMENT: SOLUTION IMPROVEMENT  

 

During the analysis of results, only main effects and second order interaction effects were 

considered. Target Tightness (D), Connectedness (F), and Number of Operations (E), the two-

factor interaction between Resource Mean and Connectedness (BF) and the two-factor 

interactions between Resource Mean and Number of Operations (BE) were determined to have a 

significant effect at 95% confidence. Target Tightness and Connectedness and the two-factor 

interaction between Resource Mean and Connectedness are all are significant with a p-value of 

0.000, indicating that the effects are almost certainly significant. Other factors considered in 

experimentation did not have an impact on the solution improvement at 95% confidence. The 

significant factors are show in Figure 4. 

10.1 Main Effects 

The amount of improvement found by the secondary search is significantly higher on 

problems with low target tightness (D), that is problems where the targeted makespan is closer to 

the makespan upper-bound than problems where the target makespan is near the makespan lower 

bound. Across all experiments scenarios and replications, problems generated with low target 

tightness saw and average of 32.46% reduction in idle time when compared to the initial feasible 

solution. In in contrast high target tightness scenarios, the solution improvement was only 

16.02%. This result is consistent with the expectation, as the feasible makespan range is closer to 

the makespan lower-bound, reducing the number of feasible schedules that can be examined.  
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Figure 4: Pareto and Normal Plot for Solution Improvement 

 

The connectedness settings of the network also have a significant impact on the amount 

of improvement found by the second stage search. Across all experiment scenarios and 

replications, the Low connectedness settings found an average of 29% improvement from the 

initial feasible solution. Scenarios with High connectedness settings found an improvement of 

18.82% improvement. Schedules with higher connectedness settings have a smaller number of 

feasible schedules. Consider the extreme case, where the connectedness setting is 1 (e.g. an 

entirely serial build precedence consisting of n operations). There exists only one sequence 

which satisfies technological precedence. Contrast this extreme high connectedness scenario 

with the lowest possible connectedness of 0, where no operation has any technological 

predecessor, where n! feasible schedules exist. The connectedness setting has an enormous 

impact on the number of feasible sequences which are evaluated by the algorithm. Schedules 

with low connectedness settings have larger neighborhoods with more feasible solutions, 

resulting in better second-stage search results when compared to the high connectedness 

schedules.  
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The final significant main effect, Number of Operations, has a much smaller impact on 

the Solution Improvement than the previous two main effects. The second-stage search has a 

more significant improvement with the higher levels of number of operations, at a 26.14% 

improvement with 150 operations and a 22.56% improvement with 50 operations. Like the 

connectedness settings, the number of operations that are scheduled largely controls the number 

of feasible sequences, which has a similar effect on the second stage search.  

The main effects plot, shown in Figure 5 , shows that the average solution improvement 

is greatest when the duration variation and number of operations are high, while the target 

tightness and connectedness is low. In summary the method will produce the best results in 

larger networks that have more variance on the operation duration, a target makespan that is 

closer to the upper-bound on makespan, and low connectedness. The experimental results are 

consistent with the expectation, as the algorithm has more freedom in build order and has more 

opportunities for scheduling contemporaneous operations in networks with lower connectedness 

settings.  

 

 

Figure 5: Main Effects for Solution Improvement 
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10.2 Two-Factor Interactions 

Of the two-factor interactions, shown in Figure 6, three are significant at 95% Confidence 

Level. The interaction between Resource Mean and Connectedness (BF), with a p-value of 0.00, 

is almost certainly significant, while the interaction between Resource Mean and Number of 

Operations (BE), p-value 0.012, also has a strong degree of significance. The final interaction 

effect with significance, Resource Variability and Resource Mean (AB), p-value .043, is 

considered significant at an alpha level of .05, but it should be noted that the significance of the 

effect is much less pronounced than BF or BE.  

 

 

Figure 6: Two-Factor Interaction Effects for Solution Improvement 

 



 

32 

 

The BF interaction demonstrates that the method finds that connectedness has a major 

impact on the method performance when the resource means are large. Table 4 summarizes the 

average solution improvement results for all combinations of the BF Interaction. 

 

Table 4: Interaction Effect between Resource Mean and Connectedness 

Resource Mean Connectedness Avg. Solution Improvement 

10 Low 27.71% 

10 High 23.23% 

25 Low 31.61% 

25 High 14.41% 

 

The connectedness setting has a major impact on the methods’ efficacy in situations with 

high mean resource levels. Experimental results with low connectedness settings have an average 

solution improvement that is approximately 4% better than the high connectedness settings, 

while the connectedness difference with higher resource means is much more pronounced at 

approximately 15%. The interaction effect between connectedness and resource mean results 

from variance about the mean.  
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With low coefficient of variation on resource mean, the low Resource Mean scenario 

uniformly generates operations with resources requirements between six and fourteen units, 

while the high resource mean scenarios uniformly generates operations with resource 

requirements between nineteen and thirty units. The main effects results show idle time reduction 

is greatest in scenarios with low connectedness. Schedules with higher resource means have 

more variance in the operation’s resource requirements when compared to schedules with low 

resource means but the same coefficient of variation. The higher resource requirement variance 

creates larger differences in objective value between sequences, which magnifies the main effect 

of the connectedness setting. 
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The interaction between Resource Mean and Number of Operations (BE) has a 

significant interaction as well. Like the connectedness settings, the impact the number of 

operations has on the average solution improvement is strongly impacted by resource mean. 

Table 5 shows the average solution improvement for the interaction between resource mean and 

number of operations. 

 

Table 5: Interaction Effect between Resource Mean and Number of Operations 

Resource Mean Number of Operations Avg Solution Improvement 

10 50 25.58% 

10 150 25.36% 

25 50 19.55% 

25 150 26.47% 

 

The number of operations has almost no impact on the average solution improvement 

when the resource mean is at the low setting, while the solution improvement is approximately 

7% better on average for 150 operations while resource mean is at the high setting. The 

interaction between Number of Operations and Resource Mean has the same underlying cause as 

the interaction between Connectedness and Resource Mean. Like the interaction effect between 

connectedness settings and resource mean, the higher operation resource requirement variance 

increases the difference in objective value between sequences, which increases the impact of the 

Number of Operations main effect.  
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10.3 Experimental Conclusions 

The results of experimentation show that the if the second-stage search methodology was 

applied to a procedure that only finds a feasible solution within the target window there exists a 

significant opportunity for improvement in total idle cost while maintaining an acceptable 

makespan. The grand average of across all scenarios shows an idle time reduction of 24.24%. In 

the worst-case experimental scenarios, the procedure shows promising results and would result 

in significant savings of manpower and machine time which can have a significant impact on 

production cost.  
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11. EXPERIMENT: RUNTIME 

 

The following section presents the results from the runtime experimentation. This 

experiment was conducted in parallel with the solution improvement results to characterize the 

run time of the program and identify any factors other than number of operations and 

connectedness that have a significant impact on the program run time. 

11.1 Main Effects 

As expected, the Number of Operations (E) and the Connectedness (F) dominate the 

significant main effects for the algorithms’ run time. The most significant two-factor interactions 

are the interaction between Target Tightness and Connectedness (BF), and the interaction effect 

between Number of Operations and Connectedness (EF). Both main effects are clearly 

significant, with associated p-values of 0.00, indicating their significance is almost a certainty. 

There are a number of other effects that are significant at a 95% confidence level, but the 

experimental analysis has been focused on the most significant effects, due to their prominence. 

Figure 7 shows the Pareto Chart and Normal Plot for the Standardized Effects. 

 

 

Figure 7: Pareto and Normal Plot for Runtime 
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The previous section demonstrates which experimental factors have a significant impact 

on the algorithms’ runtime, while this section characterizes the impact each factor has. Figure 8 

shows the program runtime (seconds), for each of the main effects and level combinations. The 

results for the main effects analysis are consistent with the significance analysis, it’s clear that 

changing the levels of two parameters, namely the Number of Operations (E) and Connectedness 

(F) have the largest impact on the programs runtime.  

It is intuitive and expected that the program runtime is driven by the number of activties 

that are scheduled.  Additionally, program runtime is longer for networks with low connectiveity, 

since networks with low connectivity generally have more elements in the set of schedulable 

activities and the algorithm spends more time evaluating which operation to schedule when 

compared to networks with high connectedness. In the extreme case, where the network is 

entirely serial, there is only one technologically feasible operation per iteration of the algorithm, 

and little to no computational effort is expended comparing competing schedulable operations.  

 

 

Figure 8: Main Effects for Runtime 
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11.2 Two-Factor Interactions 

Two different two-factor interaction effects are considered in this work. The interactions 

between Target Tightness and Connectedness (BF), and the interaction effect between Number 

of Operations and Connectedness (EF). These effects, shown in Figure 9, have a less of on the 

program runtime when considered alongside the dominant main effects.  

 

 

Figure 9: Two-Factor Interaction Effects for Runtime 

 

The most significant two factor interaction is between Target Tightness and 

Connectedness (EF). Table 6 demonstrates that the network Connectedness has a much more 

pronounced impact on the program runtime while the Target Tightness is high than when the 

Target Tightness is low. There is approximately a 2 second difference in runtime between the 
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Low and High Connectedness settings while the Target Tightness is low, and a 6 six second 

difference in runtime while the Target Tightness is high. This difference is expected to be more 

pronounced in problems with larger number of operations. 

 

Table 6: Two-Factor Interaction Results (BE) 

Target Tightness Connectedness Runtime (Seconds) 

.25 Low 17.26 

.25 High 15.90 

.75 Low 19.75 

.75 High 13.39 

 

The second two-factor interaction between Target Tightness and Connectedness has a 

less pronounced, yet still significant impact on the program run time. While the Target Tightness 

is high, the impact of the connectedness setting has a much larger impact on the program 

runtime. Programs with Low Connectedness settings have longer run times on networks with 

higher number of operations than expected from the main effects alone. This difference, 

demonstrated in Table 7, shows the algorithm will be less effective, in terms of runtime, for 

problem instances with high target tightness and low connectedness settings. 
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Table 7: Two-Factor Interaction Results (EF) 

Target Tightness Connectedness Runtime (Seconds) 

.25 Low 17.26 

.25 High 15.90 

.75 Low 19.75 

.75 High 13.39 

 

11.3 Additional Testing 

To test the methods effectiveness on larger problem instances, an additional experiment 

was conducted to measure how the number of operations influences program runtime. The 

results show in Figure 10 are promising, demonstrating  that with appropriate search 

parameterization large problem instances can be quickly solved. The program runtime was tested 

on low connectedness problem sets from 100 operations up to 1200 operations. The runtime 

testing results demonstrate the algorithm runtime estimate is well fit by a second order 

polynomial. The results show that the algorithm can be effectively used on large problem sets, 

even with the pessimistic connectedness settings.  
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Figure 10: Algorithm Runtime Results 
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12. FUTURE WORK AND LIMITATIONS 

12.1 Future Work 

 The Lean Resource Scheduling algorithm proposed in this thesis has demonstrated that 

there may be opportunities for significant savings in resource usage if applied to appropriate 

problems. The first major opportunity for future work is testing the algorithms performance in a 

case study with real data, instead of randomly generated data sets.  

 This work only uses the schedule generation procedure described in section 7b to 

determine the resource utilization, idle time, and makespan of a schedule given a fixed resource 

level. Since the algorithm evaluates the schedule performance of a significant number of 

resource leave the schedule generation procedure only utilizes a construction heuristic and no 

local search phase. In general, a construction heuristic is not guaranteed or expected to find an 

optimal solution and there is an opportunity further reduce a schedules idle time by adding a 

local search phase once the proposed algorithm terminates.  

 Extending the model to assign different resource levels to specific jobs would improve 

the model fidelity in many situations. Currently, resources aren’t assigned to a specific job, and 

are able to work on any operation of any job, assuming they are available. In many practical 

environments resources are assigned to specific areas or teams and extending the modeling to 

account for individual team assignments will significantly increase the accuracy of the 

underlying model. 
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12.2 Limitations 

 One major theoretical and practical limitation of this work is all of the operation 

parameters, such as duration, resource requirements, and are assumed to be deterministic. This 

assumption limits a practical implantation of the methodology, as almost all real-world 

scheduling environments involve some degree of stochasticity. Additionally, a practical 

implementation of this methodology would require an extremely agile staffing plan, where 

employees are routines switching between different job, with a high degree of cross-training. 
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13. CONCLUSIONS 

 

The runtime experiment results show methodology can be applied to large problem sizes 

while still maintaining reasonable runtimes. The algorithms’ runtime performance was on 

problem sets with up to 1,200 individual operations and the runtime results are promising even 

for large problems. The relatively short runtimes, coupled with promising idle time reduction 

result, show implementation of a second-stage idle time minimizing search could produce 

significant savings in large operations.  
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APPENDIX A  

PROCESS FLOW DIAGRAMS 

Schedule Generation Process 

 

  

Start

Are all operations 
scheduled?

Update Schedulable 
Operations

No

Yes

Set of Schedulable 
Operations Empty?

Schedule Operation, 
update Resource 

Profile

No

Update time Yes

Calculate 
Performance 

Measures 
(Makespan, idle 

time, etc.)

Finish
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First Stage Search Process 

 

 

  

Start

Schedule 
Generation 
Procedure

Initial Seed

Perturb seed 

Initial Seed 
Schedule Makespan

Schedule 
Generation 
Procedure

Perturbed Resource Set

Pet. Makespan less than 
seed makespan? 

Perturbed
Makespan

No

Update Seed

Yes

Makespan within Target 
Neighborhood?

No

TerminateYes
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Second Stage Search Process 

 

Start

Schedule 
Generation 
Procedure

Initial Feasible Sol.

Perturb seed 

Initial Seed 
Initial Idle Time

Schedule 
Generation 
Procedure

Perturbed Resource Set

Test Makespan within 
Target Neighborhood? 

Test Idle
Time

No

Update Seed

Max # Iterations Reached?

No

TerminateYes

Test idle time less than 
seed idle time?

Yes

No


