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ABSTRACT

Laser Powder-Bed Fusion processes capable of processing metallic materials are a set of rel-

atively new and emerging Additive Manufacturing technologies that offer attractive potential and

capabilities (e.g., design freedom, part consolidation and reduced material waste). Although they

provide an exceptional advantage that cannot be matched by other traditional manufacturing pro-

cesses, the path to widespread use of these new technologies still include some obstacles due to

the limited understanding and intricate problems that the manufacturing process presents, such as

low repeatability and low part quality compared to their conventional manufacturing counterparts.

This dissertation presents one of the first applications of different formal tools and frameworks

from a combination of scientific fields including Uncertainty Quantification, Statistics, Probabil-

ity and Data Science, into different problems within Additive Manufacturing Laser Powder-Bed

Fusion processes. Specifically, modeling techniques such as Gaussian Processes and generalized

Polynomial Chaos Expansions are employed to optimize porosity in printed parts, calibrate and

validate different computer simulation models, and identify processing regions for satisfactory

manufacturing. Proper analysis of these techniques is undertaken and its validation is successfully

presented such that informed and knowledgeable perspectives about the manufacturing process are

gained to better understand it. In turn, these new insights and understanding translate into improve-

ment and advancement of Additive Manufacturing, and contribute towards its further growth and

consolidation as a competitive and qualified technology within the manufacturing industry.
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NOMENCLATURE

AM Additive Manufacturing

BLUP Best Linear Unbiased Predictor, otherwise known as Kriging

cov [·, ·] Covariance operator

CV Cross Validation

D4 Laser Beam Size

dof Degrees of Freedom

ET Eagar-Tsai model

E [·] Expectation operator

FEM Finite Element Method

FOV Field of View

Γ (·) Gamma function

gPCE Generalized Polynomial Chaos Expansions

GP Gaussian Process

GSA Global Sensitivity Analysis

hd Hatch Distance

ICME Integrated Computational Materials Engineering

i.i.d. Independent and Identically Distributed

Kν (·) Modified Bessel function of second kind of order ν
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LHS Latin Hypercube Sampling

LLNL Lawrence Livermore National Laboratory

LOO Leave-One-Out Cross Validation

L-PBF Laser Powder-Bed Fusion

MAPE Mean Absolute Predictive Error

MC Monte Carlo

MCMC Markov Chain Monte Carlo

M Model, in a general sense

MSPE Mean Squared Predictive Error

NiTi Nickel-Titanium alloy

pdf Probability Distribution Function

P Laser Power

QoI Quantity of Interest

SEM Scanning Electron Microscopy

SMA Shape-Memory alloy

td Layer Thickness

UP Uncertainty Propagation

UQ Uncertainty Quantification

v Scanning Speed

x Input vector to the process
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Y , Y Output(s) or QoI(s) of the process
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1. INTRODUCTION

1.1 Additive Manufacturing

Additive Manufacturing (AM) is a relative new field in the manufacturing industry that has in-

creasingly gained attention (especially over the last decade) by researchers, industrial stakeholders,

practitioners, public media and even national governments due to the complete paradigm change it

brings to the manufacturing industry. The ISO/TC261-ASTM/F42 joint group defines AM as the

“process of joining materials to make objects from 3D model data, usually layer upon

layer, as opposed to subtractive manufacturing technologies” [1].

First applications for AM were limited to creation of visualization models and prototypes in

order to accelerate the design and production cycle of components, hence the alias Rapid Prototyp-

ing or 3D Printing. Nowadays, there exists a number of AM processes implemented with different

manufacturing principles and technologies, which have been identified and standardized into seven

broad categories. Four of these categories are capable of producing metallic parts: Powder-Bed

Fusion (PBF), Binder Jetting, Sheet Lamination and Directed Energy Deposition (DED) [1, 2].

Specifically, AM technologies capable of processing advanced metallic materials and alloys

have been developed since the early 1990s, experienced a tremendous and exponential grow dur-

ing the 2000s, and have now become important manufacturing processes for end parts in several

industrial sectors such as toolmaking, dental, medical, automotive and aerospace [3].

There are many advantages that have driven attention and widespread adoption of AM pro-

cesses over traditional manufacturing (such as casting, machining, forming, etc.), with the follow-

ing list being a subset of some of the most important [4]:

• Production of arbitrarily complex geometries (e.g., interconnected cooling channels, lattices

or honeycomb structures). Figure 1.1a shows a Titanium heat exchanger with internal cool-

ing channels for enhanced fluid flow and heat transfer performance in aviation applications.
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The complicated internal features that this part presents cannot be built through any other

manufacturing process.

• Part consolidation, which translates to the ability of manufacturing one single complete part

as opposed to producing many several smaller parts which are to be joined together (ei-

ther by fastening, glue or welding). Figure 1.1b shows a GE LEAP jet engine fuel nozzle

which originally consisted of 20 different components that needed to be assembled together.

This same component is now being produced into a one single complete part through AM

techniques and is being successfully used in commercial airliners [5].

• Reduction in part weight and material waste through design and topology optimization. Fig-

ure 1.1c shows different redesign phases (left to right) of a GE aircraft engine bracket devel-

oped by Frustum Inc. and 3D Systems Inc. that reduced 70% of the bracket weight initially

manufactured via classic technologies while still meeting all functional and structural re-

quirements [6, 7].

• Production of parts without needs for expensive part-specific tooling. Figure 1.1d shows a

knee implant built through AM to fit the particular size and specification for a patient. If a

second patient requires a similar implant, a change on the computer model for the part needs

only to be performed, as opposed to having to create or purchase new sets of tools or casts

to produce it with traditional manufacturing processes.

1.2 Laser Powder-Bed Fusion Processes

In this dissertation, the focus will be placed specifically in the Laser Powder-Bed Fusion (L-

PBF) process, due to their broad range of applications, large selection of materials it can handle

(e.g., steels, titanium-based alloys, aluminum-based alloys and nickel-based alloys, among several

others), spatial resolution, dimensional accuracy and surface finish [10]. This technology is often-

times referred as Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Direct Metal

Production (DMP), or Direct Metal Laser Sintering (DMLS). It is worth to note that a similar PBF
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(a) (b)

(c) (d)

Figure 1.1: Advantages of Additive Manufacturing over traditional processes. (a) Complex ge-
ometries. (b) Part consolidation. Reprinted from [5]. (c) Reduced material waste. Reprinted
from [8]. (d) No need for part-specific tooling. Reprinted from [9].

process also exists called Electron Beam PBF (EB-PBF) or Electron Beam Melting (EBM), with

the main difference being the use of an electron beam as the source of energy as opposed to a laser

beam.

L-PBF processes employ a high-energy laser beam to selectively fuse fine metallic powder

particles in a layer-by-layer fashion [11]. The process starts by placing a thin layer of powder

particles (usually ranging between 20 µm to 100 µm) on top of a vertical piston denominated fabri-

cation piston. Powder is laid using a recoating roller, scraper or blade that moves the particles from

the powder delivery system to the fabrication piston. The high-energy laser is then fired through a

scanning system generally consisting of a set of motorized mirrors which reflect the beam onto the
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(a) (b)

Figure 1.2: Laser Powder-Bed Fusion process. (a) Schematic diagram of the L-PBF process.
Reprinted from [12]. (b) Laser being scanned on steel powder in a L-PBF system. Reprinted
from [13].

powder layer until the complete cross-section of the part has been scanned. Next, the fabrication

piston is moved down a length equivalent to one-layer thickness, and these steps are repeated again

and iterated until the part has been completely produced. A schematic diagram of a L-PBF system

and its components is presented in Figure 1.2a, and a real photograph from a L-PBF system is

shown in Figure 1.2b.

Even though the manufacturing mechanism in L-PBF is simple, it is also the root cause of

many technical challenges that impact negatively its advancement and adoption as a mainstream

industrial manufacturing process. In particular, the challenge lies in the several complex physical

phenomena involved during the manufacturing process. These include rapid melting, evaporation,

solidification, recoil, and re-heating upon successive passes of the laser beam within the same

layer or across successive layers. The combination of all of these makes the end part suscepti-

ble to defects like porosity, residual stress, and micro-cracks due to the extremely high thermal

gradients and cooling rates. In a quantitatively context, cooling rates for casting range between

10 ◦C/s to 102 ◦C/s [14], while in L-PBF they have been identified to magnitudes larger than to

105 ◦C/s [15].

These mentioned defects distress the mechanical properties of the end parts making them un-

suitable for several applications. Additionally, they become major barriers towards the improve-

ment of the current state of L-PBF since they amplify issues like low part quality and limited re-
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peatability, which along with the lack of material and process standardization, impede the L-PBF

technology to meet the stringent requirements for industrial sectors such as aerospace, automotive

or medical [3].

Many recently published research roadmaps agree that there exists the need for developing

modeling and simulation tools to foster our understanding of the process and ultimately serve as

predictive tools to improve and optimize the process while mitigating potential defects [16, 17].

An emerging field that branched out of computational materials science and aims towards solv-

ing the mentioned modeling problem is Integrated Computational Materials Engineering (ICME).

This field is a new approach that aims to integrate computational materials models to enable the

optimization of the materials, manufacturing processes, and component design long before com-

ponents are fabricated [18]. Additionally, ICME has been able to evolve in the last two decades

as a relevant field within materials science and engineering due to the great advances in modern

high-performance computational resources (i.e., both hardware and software development).

Several research efforts in L-PBF have been directed towards the development of computer

modeling and simulation tools following an ICME approach. These computer models involve the

solution of many complex mathematical equations derived from the physics and theories of the

process under investigation. Therefore, it is not uncommon that convergence to a solution would

usually take from several hours to the range of days (or even weeks), even in the presence of

state-of-the-art high-performance computational resources and facilities. Although these models

are still invaluable for understanding the physics of the process, their direct use in process opti-

mization is impractical and sometimes unfeasible [19]. Hence, the key challenge in using L-PBF

computer simulation models is to overcome the computational burden associated with running the

simulations.

An alternate approach to circumvent the barriers that hamper adoption of L-PBF is by ex-

perimental practices. In this sense, many research institutions and industrial companies invest in

high-technology and modern equipment and facilities to carry out experiments, tests, and exam-

inations in order to improve the understanding of the L-PBF process (e.g., by characterizing the
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mechanical behavior or microstructure of end parts). This experimental option is also challeng-

ing given that fact that the manufacturing process involves up to 30 processing parameters, with

each of them influencing (directly or indirectly) the quality and performance attained by the end

parts [20, 21]. Nevertheless, the most relevant L-PBF processing parameters have been identified

to be:

• Laser power (P): relates to the amount of energy delivered by the laser beam.

• Scanning speed (v): relates to the duration of time that the laser beam dwells over a specific

region on the powder bed.

• Laser beam size (D4): relates to the area where the energy from the laser source is trans-

ferred to. Throughout this dissertation, it is assumed that the laser beam has a Gaussian

profile and this value is taken as 4 times its standard deviation [22].

• Hatch distance (hd): distance between two consecutive laser scans.

• Layer thickness (td): thickness of the powder bed.

The majority of existing experimental efforts rely on extensive trial-and-error or round-robin

testing for selecting parameter combinations that optimize some quality or property in the printed

parts. However, the big drawback with this approach is that it incurs in high costs associated with

experiments and testing needed to achieve the desired results.

Several researchers have understood this issue and taken better approaches such as system-

atic and statistical Design of Experiments to experimentally study the L-PBF process resulting

in an improvement in both the amount of experiments needed to collect and the insights learned.

Nevertheless, there is still a gap in which both research approaches of the L-PBF process – compu-

tationally expensive simulations and costly experimental observations – can be efficiently used to

improve the understanding and optimize the process. This gap can be filled by formal application

of another emerging scientific field named Uncertainty Quantification (UQ).
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1.3 Uncertainty Quantification

There are several definitions for the word uncertainty, which typically depends on the context

where it is being described. A definition by Grebici et al. [23] in a general scientific context refers

to “the lack of [or presence of ambiguous] knowledge that may introduce risks to the outcome and

execution of a process” [23].

Since the origins of mankind, the desire to understand the uncertain has always been a central

part of the human brain. It closely relates to inquisitive thinking such as exploration, investigation

and learning, and has been a fundamental factor to the progress of humanity [24]. Over the past two

centuries, mathematicians, statisticians and scientists (notably physicists and chemists) directly and

indirectly formulated many concepts and theories that involved the analysis and quantification of

uncertainty in the different processes under their study (one of the most popular cases being when

in 1809 Carl Friedrich Gauss calculated the orbits of celestial bodies with what now is known as the

Least Squares method [25]). All these concepts have been generalized into more disciplines and

applications over time and, with the wake on computational technologies and the ever-increasing

complexity in systems1 of the modern world, have given birth to UQ.

The scientific field of UQ combines theory and knowledge from applied mathematics, classical

statistics, probability, computer science and machine learning, in order to characterize and reduce

uncertainties in applications for computational or real processes [26]. Applications of UQ span

over a wide range across several science, engineering, and social disciplines such as climate and

weather [27], nuclear engineering [28], computational fluid dynamics [29], medicine [30], and

econometrics [31].

Within the engineering domain, there is a growing need of predictive modeling and tools that

can help in the many fronts of engineering applications in industry, some of these being for in-

stance, part design for specified lifetimes, reliability assessments or safety factors. However, as

explained in the previous section, the classic approach requires reliance on validation experiments

which are subject to high costs and long times, especially for complex engineering systems with

1The word systems here refers to any context, e.g., engineering, social, biological, etc.
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tough operating conditions [32].

UQ is an attractive framework for the posed engineering problem mentioned above since its

methodologies are based on statistical and probabilistic predictive models that can be applied on

those instances when there is some to little available data. Therefore, UQ suits perfectly to L-PBF

research problems, given that it provides the tools and methodologies which can be integrated to

both fronts of L-PBF research (modeling and experimental) to characterize the sources and mag-

nitudes of uncertainty that affect the different physical phenomena undergoing during manufactur-

ing. For these reasons, UQ can be used as an alternative to reduce (or remove) the high burden

associated with computationally expensive simulation models or costly experimental observations.

Additionally, it is worth noting that computational materials science and ICME are fields in which

the application of UQ is highly desired [33, 34].

Research and investigation of UQ techniques have been employed in traditional manufacturing

applications throughout the years. Nonetheless, the literature of UQ research applied to AM,

and specifically to L-PBF, is quite small and limited, although it has been slowly increasing over

the years [35]. This dissertation presents several statistical UQ methodologies as well as their

implementation into different L-PBF applications that aim to:

• Improve the capabilities and state of knowledge of the process.

• Refine quality and performance of L-PBF end parts.

• Enhance the understanding of the phenomena that happens during manufacturing.

This is achieved by means of both: experimental work by characterization of several physi-

cal processes and mechanisms within L-PBF, and computational work by utilization of different

simulation models that recreate several physical phenomena that are present during the L-PBF

manufacturing process. Specifically, this dissertation will bridge the gaps in the L-PBF literature

and fulfill the objectives listed in the next sections.
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1.4 Research Gaps

There is a consensus within the manufacturing community, that L-PBF processes are still not

able to produce parts comparable to their counterparts manufactured through traditional processes,

in terms of quality and performance. This is attributed to the lack of understanding of the many

issues that take place during the L-PBF build process. Even though extensive investigation and

research has been directed towards the development of the knowledge and understanding of the

manufacturing process (specifically in the form of computational simulation models and a diversity

of substantial laboratory experiments), two gaps currently exist in the L-PBF literature:

1. Only a countable number of works (including this dissertation) have applied formal UQ tools

and practices in metal L-PBF processes and the majority of the works in the literature relied

on brute force experimental methods.

2. No studies were conducted to take this a step further and leverage the outcomes and insight

gained from these UQ methodologies towards understanding fundamental aspects of the

process and improving it (e.g., identifying sources of uncertainty across different phases of

the L-PBF process chain, and suggesting actions to mitigate them).

1.5 Dissertation Objectives

The main broad objective of this dissertation is to

apply formal tools of UQ to quantify and reduce uncertainties in the L-PBF process.

Both Sections 1.1 and 1.2 presented and established the context for how L-PBF AM processes are

a relative new set of technologies with attractive features that can’t be compared with traditional

methods, as well as the problems that they face towards widespread adoption in different sectors of

industry with stringent requirements (i.e., lower quality, repeatability and performance). Similarly,

Section 1.3 introduced a general overview of UQ, along with the need for its adoption into L-PBF

practices and the potential benefits that UQ methodologies can bring for AM.
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Therefore, the application of formal UQ methodologies to the study of different physical pro-

cesses that occur during the manufacturing of L-PBF parts is deemed of paramount importance.

Specifically, the aim is to identify the different sources of uncertainty that affect L-PBF processes,

characterize this uncertainty, and attempt to reduce it based on the insights and knowledge gained

after proper interpretation of results from the applied methodologies.

1.6 Organization of the Dissertation

The dissertation is organized in the following structure: Chapter 2 highlights the state-of-the-

art for both L-PBF technologies and UQ methodologies and applications. It surveys the relevant

literature in the field, as well as related literature coming from other fields of research that con-

tribute with knowledge and comprehension compatible to the different problems solved within this

dissertation.

Next in Chapter 3, different UQ tools and methodologies are introduced for the reader to famil-

iarize with the approaches and notations used throughout the dissertation. For each methodology,

its mathematical and theoretical foundations are presented as well as its potential applicability into

different problems.

Chapters 4 and 5 include the bulk content of the dissertation. These two chapters present

the application of the introduced UQ methodologies to different aspects, problems, and processes

within the L-PBF technology. The content of these chapters forms the bridge that fills in the gaps

and accomplishes the objectives defined in Sections 1.4 and 1.5.

The dissertation is finalized in Chapter 6 where implications, concluding remarks and potential

future extensions are outlined.
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2. STATE OF THE ART*

As introduced in Chapter 1, the present dissertation embraces the application of different for-

mal UQ methodologies into several problems within L-PBF processes. This chapter provides a

brief overview of many approaches and problems that the research community has identified as

important and has invested resources and time to solve.

We divide the chapter in two main sections, starting out with a summary of solutions for differ-

ent problems in L-PBF technologies in Section 2.1. Here, several aspects and factors in L-PBF that

contribute to the possible presence of defects and problems are considered, as well as the proposed

solutions from the community. Next, Section 2.2 introduces the different types of uncertainty along

with a categorization of UQ problems which will be constantly used throughout the dissertation.

2.1 State of the Art of Research in Laser Powder-Bed Fusion processes

Most of AM technologies initial development date back to the late 1980s, however it was not

until the late 1990s and the starting of the 21st century when AM research skyrocketed. The main

reasons for this surge in investigation and studies are the attractive, advanced and different features

that AM provides as alternative to old-fashioned traditional manufacturing processes, as well as

the expiration of several of the initial patents involving the technologies [4, 11]. L-PBF was no

exception to this breakthrough with innumerable academic and industrial researchers taking on the

quest to improve and refine the technology.

Many works focus towards improvement of L-PBF technologies at different stages of the pro-

cess where the common objective is to control and reduce the defects within end parts. Addition-

ally, most authors coincide on the high influence of some processing parameters to mechanical

properties and performance of end parts. As mentioned in Section 1.2, laser power, scanning

speed, laser beam size, hatch distance, and layer thickness have been flagged as the most influen-

*Parts of this section have been reprinted with permission from G. Tapia and A. Elwany, “A review on process
monitoring and control in metal-based additive manufacturing,” Journal of Manufacturing Science and Engineering,
vol. 136, no. 6, p. 060801, 2014. Copyright © 2014 by ASME.
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tial parameters in the process, and thus are the most researched processing parameters. This set

of parameters are identified as laser parameters since they relate to the characteristics at which

energy is transferred from the laser beam source onto the raw material. Nevertheless, there are

several other parameters which still affect the end results of the process, but in general do not

contribute as drastically as the laser parameters. These include [20, 21]:

• Scanning strategies or trajectories that the laser follows.

• Layering of powder, in terms of mechanical systems (e.g., use of blades, rollers, scrapers,

etc.).

• Atmospheric control of the manufacturing chamber (e.g., O2 level or choice of inert gas)

• Powder-bed temperature.

• Raw powder properties (e.g., particle size, morphology, atomization process, etc.).

A poor choice of these various processing parameters might result on the presence of several

defects. Before introducing the common defects in L-PBF, a term worthwhile introducing is the

melt pool. The melt pool is the region at the laser-powder interface at which metallic powder

particles fuse to form a pool of molten metal then solidify after the laser beam moves to another

location [19]. The depth of the melt pool has been of much interest in several prior studies since it

gives an indication of how well successive layers bond to one another, as well as a way to prevent

keyhole mode [36]. As a side note, keyhole melting is undesirable in L-PBF since it involves

evaporation of the material and results in deeper melt pool depths and trails of voids.

2.1.1 Manufacturing Defects

As described in Section 1.2, the L-PBF process is a thermal manufacturing process which relies

on the transport and delivery of heat from the laser source to the material in order to melt particles

together and create a solid bond. Because of the complexities that this process involves, parts are

highly prone to several defects that condition and constrain their performance. These defects will

be categorized as four different types: porosity, balling, cracks, and lack of fusion.
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(a) (b)

Figure 2.1: Porosity within L-PBF printed samples based on variation of processing parame-
ters. (a) High porosity sample. Reprinted with permission from [39]. (b) Low porosity sample.
Reprinted with permission from [39].

2.1.1.1 Porosity

Porosity is one of the most common defects found in L-PBF and involves the formation of

pores within the structure of the part. Several reasons can trigger the formation of pores, and this is

the reason why it is a common problem in L-PBF [37]. Pores can be caused by the combination of

localized melting, high cooling rates and gas entrapment. This occurs when there exists gas present

within the powder bed which is not able to exit the melt pool before the material solidifies [38].

The introduction of gas in the melt pool can be attributed to the following factors:

• A low packing density of the material particles on the powder bed [38].

• During the processing of bulk material into powder by gas atomization since this process

involves interaction of fine material particles inside an inert gas atmosphere [40].

• The highly localized temperatures happening inside the melt pool, which can induce evapo-

ration of alloy constituents with relative lower melting point [41].

Pores can also be formed by a poor laser-powder interaction which sometimes can be traced

back to inappropriate choices of laser parameters. There has been extensive research on optimiza-

tion and identification of process parameters that would yield fully dense parts [41–44]. Figure 2.1
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(a) (b)

Figure 2.2: Balling in L-PBF printed samples based on variation of processing parameters.
(a) Balling at lower hatch distance. Reprinted with permission from [45]. (b) Balling at larger
hatch distance. Reprinted with permission from [45].

present two micrographs of L-PBF samples presenting different grades of porosity printed with

different sets of process parameters. This figure ratifies and highlights the importance of proper

selection of process parameters on the overall presence of pores as well as on pore sizes.

2.1.1.2 Balling

Balling is another defect that is highly detrimental to L-PBF parts and has been commonly

studied as well [45–48]. Balling is most likely to form right after the laser beam has passed a

specific region of material particles and these particles are undergoing rapid solidification. Partic-

ularly, if the solidified material does not produce a flat layer but instead creates large spherical- or

ellipsoidal- shaped particles on the surface, then all these irregularities on the surface are denomi-

nated balling defects [45, 47]. This defect relates to combination of high cooling rates, shrinkage,

and surface tension acting together within the recently lasered material and deteriorates surface

roughness. Additionally, balling can be harmful to the L-PBF system since it causes high friction

between the surface of the printed layers and the mechanical layering system that can result on

uneven powder layers, increase the need of post processing due to rough surfaces, or even stop the

manufacturing system due to high friction.

Similarly to porosity, this defect also depends on proper selection of processing parameters as

shown in Figure 2.2.
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(a) (b)

Figure 2.3: Crack formation in L-PBF printed samples based on differences in pre-heating.
(a) Crack presence due to no pre-heating. Reprinted with permission from [51]. (b) No exter-
nal cracks present in the sample after pre-heating. Reprinted with permission from [51].

2.1.1.3 Cracks

Large residual thermal stresses are highly likely to develop in the solidified material given the

elevated localized temperatures that take place in and around the melt pool. These residual thermal

stresses in combination with large thermal spatial gradients provide a favorable situation for crack

initiators, which will tend to keep growing until all residual stresses are relieved [49].

The most used approach that can be taken to reduce the probability of crack initiation and pres-

ence of high residual thermal gradients is to pre-heat both the substrate plates and the powder and

to control the ambient temperature of the manufacturing system [38]. Figure 2.3 shows a printed

part resulting after pre-heating. A second technique that can diminish the presence of cracks,

while reducing the porosity of the parts, is called Hot Isostatic Pressing (HIP) [49]. This approach

subjects the printed part to elevated temperatures and isostatic gas pressures in order to collapse

internal pores and micro-cracks by elastic and plastic deformation and diffusion bonding [50].

2.1.1.4 Lack of Fusion

This defect in L-PBF processes refers to those instances when the laser beam does not provide

enough energy for the powder particles to fully melt, and bond to neighboring particles and to

previous layers. According to Zhang et al. [38], there exists two types of Lack-of-Fusion defects:
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1. Poor bonding defects due to insufficient molten metal during a solidification process.

2. Defects with unmelted metal powders.

Once this defect starts to take place, it gradually propagates as new layers are printed and

prevent layer-wise bonding since it is difficult to fully melt unmelted particles from previous lay-

ers [38, 52].

In general, all these defects are related to each other, and one can be the root cause for others

during manufacturing. Therefore, many research efforts have focused on understanding, optimiz-

ing and reducing defect presence in L-PBF parts. Next, several approaches taken by the community

like sensing and monitoring, computational modeling, and experimental efforts are presented.

2.1.2 Sensing and Monitoring

A vast majority of research on process monitoring and control in metal-based AM focuses on

temperature monitoring because the temperature field is an excellent proxy for part quality, since it

has a direct impact on the resulting microstructure, density, and mechanical properties of the part.

Effective monitoring and control to ensure a homogenous temperature field significantly aids in

improving part quality and reducing the probability of defect presence.

Sensor and monitoring technology for temperature measurement has greatly benefited thanks

to the advancements in the semiconductor industry within the last 50 years. These types of sensors

have facilitated and continue to facilitate collection of temperature data in L-PBF processes (as

well as many more manufacturing and engineering applications). The typical devices used for

monitoring by the L-PBF community are the following:

• Pyrometry: Defined as the non-contact measurement of temperature of a body based upon

its emitted thermal radiation. Pyrometer sensors typically can come as photodiodes (devices

used to detect radiation and convert it into an electrical signal) or digital cameras (large array

of photodiodes, called pixels, each of which detects light and converts it into an image after

appropriate signal processing). One of the key advantages in using pyrometry for tempera-

ture monitoring is the capability to measure and collect temperature data without the need
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for physical contact with the thermal body. This provides much freedom in monitoring hard-

to-access surfaces and features regardless of their location or orientation. The contact-free

monitoring also serves to minimize potential damage and degradation of the sensor. Simi-

larly, a second advantage is the capability of detecting radiation emitted by moving objects

within the focus boundaries. Both of the mentioned features make pyrometry particularly

attractive for applications involving fast moving lasers such as the L-PBF process.

• Thermocouples: It is a device that conducts contact measurement of temperature. Thermo-

couples belong to the class of thermoelectric thermometers [53] and consist of two dissimilar

wires connected together at one end with a voltage measurement device connected across the

free ends [54]. Thermocouples represent a considerably less inexpensive alternative to py-

rometers for monitoring similar temperature ranges. These devices are self-powered and do

not require an external power source. They are typically in the form of small-diameter wires

(up to 80 µm-diameter) making them relevant for limited space applications.

A number of researchers have employed these sensing technologies and built monitoring setups

to control the L-PBF process. Berumen et al. [55] use a digital camera to monitor the powder

coating step for each layer and develop algorithms to detect problems such as low or excessive

powder feed and coater problems. Kleszczynski et al. [56] present a system for error detection

using a high-resolution camera mounted outside the build chamber. With the aid of subsequent

image processing, the system is able to detect errors in process stability (e.g., insufficient powder,

poor supports, or coater damage) and part quality. Kruth et al. [57, 58] design and patent a feedback

control system to stabilize the temperature distribution in the melt pool using both a digital camera

and a photodiode coaxially to the laser beam. They perform experiments on parts with complex

features such as overhangs and test different combinations of scanning patterns.

Experimental setups based on a coaxial camera were also reported in several studies. Lott et al.

[59] mount a pyrometer camera with an additional illumination source to measure temperature

coaxially with the laser beam. The main advantage of this setup is that the images captured by the

camera followed the path of the laser. The authors then implement image-processing algorithms to
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test the system and demonstrate its ability to monitor the melt pool. Chivel and Smurov [60, 61, 62]

use a setup to monitor the maximum surface temperature, spatial temperature distribution in the

processing area, and the size of the melt pool, then use this information to control the evolution

of these temperatures. The setup consisted of a camera and a two-channel pyrometer, whereby

the former measures temperature distribution at the lasering zone, and the latter measures the

maximum surface temperature in the irradiation spot.

It is clear to see that several resources have been pointed towards the monitoring of the pro-

cess by means of temperature sensors. Nevertheless, this has not been the only approach taken

by researchers to improve the understanding of the L-PBF process, and computational modeling

techniques will be presented next.

2.1.3 Computational Modeling

Computational modeling and simulation are core components in modern research techniques in

any (if not all) fields of science. Computational modeling is a physical, mathematical, or otherwise

logical representation of a system, entity, phenomenon, or process through computer programs and

codes intended to enhance the ability to understand, predict, or control its behavior [63]. This area

of research has become particularly important due to the great advancements on computational

technology like high-performance hardware and software able to handle intricate complex tasks

and calculations. The L-PBF community is no exception and has also taken initiative and adjusted

their research paths to include computer models that describe the manufacturing process.

Specifically, numerical-based computer modeling and simulation methods are useful to better

understand the thermal histories that the material undergoes during L-PBF manufacturing. Many

groups have relied on Finite Element Method (FEM) since it is a versatile and accurate numeri-

cal approach for solving different engineering problems (e.g., heat transfer, solid mechanics, fluid

dynamics), regardless of geometry or domain complexity [64]. The vast majority of the literature

in FEM modeling for L-PBF processes have focused on investigating thermal history, thermal dis-

tributions and melt pool geometry on single-track experiments (see [65–68]) and on multi-track

situations (see [69, 70]). These computer models are often referred as continuum-scale approaches
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due to the fact that they assume a continuum block of matter with effective thermo-physical prop-

erties as the layer of powder particles.

A counter-approach is known as powder-scale L-PBF computer models which directly ac-

counts for more realistic approximations and physics of the process such as geometry, size and

distribution of the particles inside the powder bed. Additionally, these models normally account

for events such as evaporation, Marangoni convection, fluid flow, volume shrinkage, spatter and

particle ejection, etc. Nonetheless, this approach is generally more computationally expensive

(even in the presence of state-of-the-art computing resources) that turn it infeasible to use for full-

part simulations or processing parameter optimizations. Some cases that illustrate this approach

are presented in [71–76] while a comprehensive review by King et al. [77] describes some of these

modeling applications.

Regardless of the type of approach taken, L-PBF computer models are in general well received

in the ICME community since they enable understanding of fundamentals within the manufactur-

ing process. However, they are also costly in terms of computational resources with long run times

(spanning from hours to weeks), and hence, it results prohibitive to carry on studies based solely

on these models, especially when the problem is to optimize certain qualities of the process that

would involve a large number of simulations. Moreover, since these computer models represent

approximations to real physical processes, they need to be validated to real experimental data. This

task is sometimes difficult to achieve in L-PBF due to the complexity it involves: micro-localized

heating, high temperatures above boiling points, high cooling rates, high thermal gradients, etc.

Therefore, application of statistical and probabilistic frameworks through UQ is desired.

As a final approach to the L-PBF research, some experimental techniques implemented within

the community are presented.

2.1.4 Experimental Approaches

In this section, some of the experimental research approaches for L-PBF will be presented.

These include those aiming toward optimization of the process by identification and selection of

optimal process parameters and microstructure characterization of printed parts in order to identify
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different defects and track down their causes.

In the study presented by Thijs et al. [78], the authors investigate the presence of martensitic

phases in Ti-6Al-4V and relates the directions of grains to the process parameters. Additionally,

they characterize the presence of pores due to gas entrapment and lack of fusion. A similar ap-

proach was followed by Mumtaz et al. [79] to characterize the pore defects within the microstruc-

ture of printed parts by experimental optimization of processing parameters. Li et al. [45] studies

balling behavior in stainless steel and nickel alloys by analyzing Scanning Electron Microscopy

(SEM) images of different samples, starting from raw powder morphologies, single-track exper-

iments, cross hatches and full parts. They identify the layering phase and remelting of previous

layers as mechanisms under which balling is likely to happen. Similar approaches have been in-

vestigated by [47, 80]. Investigations of residual stress, thermal deformation and cracking has

also taken place (see [81–83]), where mechanical properties of printed samples are characterized

based on different scanning strategies. A comprehensive work detailing generation and propaga-

tion mechanisms of defects in L-PBF by [84] is referred to the interested reader.

There also exist statistical methodologies implemented to L-PBF processes which have concen-

trated on Design of Experiments approaches through full- or fractional-factorial designs to identify

processing parameters influential to specific properties or defects of the parts [85–87], and on an

innovative approach to analyze variability of properties in printed parts by identifying key mi-

crostructural characteristics in Shape-Memory alloys (SMA) [88]. Another interesting approach

is presented by Aboutaleb et al. [89] where determination of optimal manufacturing parameter

settings is performed by leveraging and using data and knowledge from prior studies. Different

research approaches towards better understanding of L-PBF processes have also been investigated

which includes applications into functional design and control of properties in printed parts by

localized variation of processing parameters during manufacturing with SMAs [90].

It is clear that a vast amount of research has been devoted towards L-PBF, demonstrated by

the enormous advancement of the technology up to the point that is now regarded as an industrial

manufacturing option. However, there is still many gaps, missing knowledge and drawbacks about
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the process that need to be addressed in order to for the technology to be a challenging rival for

classic manufacturing processes.

2.2 State of the Art of Research in Uncertainty Quantification

UQ is a field of increasing practical importance at the intersection of applied mathematics,

statistics, computation and numerous application areas in science and engineering. It deals with

the identification, characterization, quantification and reduction of uncertainties of a system (which

can take form of a computational model or real physical process) [91]. A familiar categorization

of uncertainty divides it into two categories [33]:

• Aleatoric uncertainty: This type of uncertainty arises from inherent randomness of the sys-

tem under study and can be described by a probability distribution. Characterization of this

distribution is helped by observation of data, but its variance (and hence its uncertainty)

cannot be reduced.

• Epistemic uncertainty: This type of uncertainty derives from limited knowledge and infor-

mation of the system and thus cannot be described by a probability distribution. However,

additional observation of data can help reduce this uncertainty.

Through UQ methodologies, certainty about different Quantities of Interest (QoIs) of a sys-

tem can be determined even under the presence of not fully known features (i.e., on the presence

of limited data). This attribute, in addition to the advances in computational infrastructure, has

paved the way for researchers to construct the foundations of UQ, and consequently, has increased

awareness of UQ as a valuable tool applicable into several scenarios and problems.

Either type of uncertainty (aleatoric, epistemic, or a combination of both) within a system can

appear under various settings, can be of different magnitudes, and can be traced back to different

sources. The following major sources of uncertainty have been identified [33, 92]:

• Parameter uncertainty comes from model parameters that are inputs to a computer model

but whose exact values are not known and cannot be directly measured.
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• Parametric uncertainty comes from the inherent variability present in input variables to a

system, which will then be propagated to the QoIs.

• Model inadequacy, or model discrepancy, comes from the lack of knowledge of the underly-

ing phenomena of a system (e.g., underlying physics in a thermal problem), which translates

to assumptions that take the model apart from the actual true system.

• Algorithmic uncertainty, or numerical uncertainty, comes from numerical errors and approx-

imations that occur during the implementation and execution of a computer model.

• Experimental uncertainty, or observation error, comes from the variability of experimental

measurements which is inevitable and can be characterized by replication of measurements

over same experimental settings.

• Interpolation and extrapolation uncertainty comes from lack of data for the system under

study, which in turn calls for interpolation or extrapolation calculations in order to predict

corresponding QoIs.

In general, problems in UQ and its corresponding methodologies can be subdivided into two

broad categories: Forward UQ or Uncertainty Propagation (UP) and Inverse UQ, also known as

Inverse Problem or Backward UQ.

2.2.1 Forward Uncertainty Quantification

This category of UQ focuses on the characterization and control of uncertainty of system QoIs

that results after propagation of the uncertainty introduced by the inputs within the system (i.e.,

parametric uncertainty). There exist several research efforts centered in UP approaches in differ-

ent fields of science and engineering. For instance, Lee and Chen [93] presents a comparative

study of different UP methods and employs them under different scenarios for reliability-based

design optimization. Putko et al. [94] incorporate UP within a robust optimization procedure for

high-fidelity computational fluid dynamics tools, while Mathelin et al. [95] use stochastic methods

and Monte Carlo samples to propagate uncertainty throughout a turbulent compressible fluid flow
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model. Other applications of UP include geophysical mass flows [96] and rainfall models [97].

Even though the field of UQ has been recently taken under serious consideration by practition-

ers, different tools had already been employed about 20 to 30 years ago but not formally referred

as UQ. Some of these cases can be found in [98–100] where Monte Carlo methods for UP were

used in applications such as oceanography, geochemistry, and risk assessment.

2.2.2 Inverse Uncertainty Quantification

In Inverse UQ, the focus is to obtain information about the system under study based on ob-

served data. It is called Inverse Problem because it starts with the results (i.e., data) and then

calculates or estimates the unknowns from the system. This category has drawn significant atten-

tion, especially from the engineering community because of the importance of modeling and data

observations that many complex engineering systems rely on.

Many of the sources of uncertainty listed previously can be handled through different Inverse

UQ methodologies. For instance, parameter uncertainty, model inadequacy and algorithmic un-

certainty can be treated under a framework denominated statistical calibration, which involves

parameter calibration and model bias correction [92, 101, 102]. This is one of the main topics that

will be discussed in the next chapters.

Another important strategy used with Inverse UQ are the construction of surrogate models,

also known as emulators, meta-models, or response surfaces. This methodology relates to the

approximation of mathematical functions to data with the objective of providing fast data-driven

modeling and prediction capabilities. This is a major application that helps those applications that

include resource-intensive computer models when extensive simulation is prohibitive, those with

physical processes where mathematical formulations are non-existent or have not been devised

yet, and those where substantial costly experimentation is unpractical. Based on these assertions,

L-PBF falls into this category and therefore, does require the formal application of Inverse UQ

methodologies.

Similarly as with UP, Inverse UQ has also been used for many years, with strong theoretical

foundations developed since the 1950s, although not formally referred as Inverse UQ. Applications
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ranged from mining, agriculture to forestry [103], and now have extended into other fields and

domains such as healthcare, social and environmental geography, oil and gas exploration, fisheries

and animal migration, socioeconomics and econometrics, among many more [104]. Literature

related to Inverse UQ also includes problems such as spatial modeling [105], computer model

emulation [106], image analysis [107], and supervised classification and prediction [108].

In manufacturing, there is a plethora of literature with formal applications of statistics used for

assessment of experimental observations (see for example [109–111]), however, formal practices

of UQ in AM, and particularly in L-PBF processes, are still scarce and limited. Nevertheless, it

seems highly likely that this will not be the case in the near future, especially with the large efforts

that ICME academics and researchers with a focus on AM are investing on. This can be seen in

new publications such as [33, 35, 112].

The focus of this dissertation is to present one among the first early efforts to conduct formal

systematic UQ in different physical processes that occur within the L-PBF process. The next

chapters introduce the UQ methodologies employed and the applications and results after formal

utilization of these UQ methodologies.
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3. METHODOLOGY

As previously mentioned, UQ is a relative new field that combines theory and knowledge from

many scientific fields such as math, statistics, computer science and data analytics, and has become

an important component for design, analysis and research of many engineering problems. The

approach taken in this dissertation is to investigate and improve the understanding of the L-PBF

AM process by making use of several UQ tools according to the problem and objective set to be

achieved.

This chapter presents the theoretical foundations (i.e., mathematical methods and theories,

statistical and probabilistic models, etc.) as well as experimental systems and procedures that will

be used throughout the dissertation. These formulations are given in a general context such that the

theory and models can be incorporated to any specific problem, as those presented in Chapters 4

and 5, and/or to any project the reader deems appropriate to employ them to. Therefore, the first

section in the chapter is devoted to introduce notation and definitions that most or all of the models

commonly share. The body of the chapter then presents all of the statistical models employed for

both Forward and Inverse UQ, and in the last section, the main experimental setup is described

given the fact that many of the applications presented in the dissertation have used this system up

to some degree.

3.1 Common Notation and Definitions

Researchers and academics are often interested on developing formal tools and procedures to

study different physical systems through observation of data. The nature of these investigations

is to identify different input settings that the system is influenced by, run several experiments at

several different combinations of these settings, and conduct inference over a specified QoI. Under

this framework, the researcher wants to study the behavior of quantity or measure Y given some

set of conditions or settings x respective to system or process2M.

2Throughout the dissertation, the words system, process, or model will be used interchangeably to refer toM.
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Throughout this dissertation, any mathematical symbol or letter with a standard font denotes a

scalar or a function depending the context, for instance:

x, Y, µ, σ2, ρ, k

while any mathematical symbol or letter with a bold font denotes a vector, matrix, or multi-

dimensional quantity, for instance:

x,Y,µ,Σ,Ψ

The set of conditions or settings to the process will be called model inputs and are defined as

x ∈ X ⊆ Rq

where x represents a q-dimensional vector of inputs with domain of definition denoted as X .

Similarly, the set of measures or QoIs will be called model outputs or responses and are defined

as

Y ∈ Y ⊆ Rd

where Y represents a d-dimensional vector of outputs with domain of definition denoted as Y .

Mathematically, processM can be executed or evaluated at inputs x to observe response quan-

tities Y as follows

Y =M (x) (3.1)

or if the problem is univariate, then it is written as

Y =M (x) (3.2)

Due to resources and time constraints, experiments or computer simulations cannot always be

collected, thus the problem is to identify important combinations of input settings and collect the

least amount of expensive data while learning the most knowledge possible from the process. The

26



collection of data at n cases will be denoted as the following input and output matrices:

X =



x⊤
1

x⊤
2

...

x⊤
n


n×q

, Y =M (X) =



Y1 =M (x1)

Y2 =M (x2)

...

Yn =M (xn)


n×d

(3.3)

Furthermore, in order to avoid confusion or subjectivity, the methodologies presented in this

chapter will be referred as statistical models, as a manner to distinguish them from the word model

that will normally refer toM (an exception is the term computer model which depending on the

context may or may not refer toM. This will be explicitly defined whenever it is needed).

Additionally, since UQ involves many statistical and probabilistic concepts, Appendix A pre-

sents the parameterization of probability distributions functions (pdf) for different random vari-

ables used across the dissertation. This appendix also provides an introductory definition about

Bayesian statistics given that both frequentist and Bayesian approaches are used for solving differ-

ent L-PBF problems. Moreover, Appendix B presents the definitions and formulations of differ-

ent Markov Chain Monte Carlo (MCMC) algorithms also frequently used in hand with Bayesian

statistics in the dissertation.

3.2 Forward Uncertainty Quantification

In this section, we introduce two UP methodologies that deal with representation and assess-

ment of the uncertainty of the response from a system when its inputs are random variables. In

other words, the problem setting is that given a set of uncertain inputs to a process, we want to

identify the stochastic behavior of the process’ response as a result from the propagation of un-

certainty. Additionally, we present a second methodology that is centered on the assessment and

identification of influential inputs to the model.
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3.2.1 Generalized Polynomial Chaos Expansions

3.2.1.1 Univariate Case

As already stated, this statistical model aims to understand and quantify how variability and

uncertainty is propagated throughout a model when its inputs are stochastic in nature. Following

the formulation by Blatman and Sudret [113], a probability space (Ω,F ,P) is defined with sample

space Ω, σ- algebra F and probability measure P .

The formulation is first presented in the univariate domain (d = 1) and then will be generalized

into a multi-output problem. Therefore, the deterministic model from Equation (3.2) is employed,

and in this case, input vector x = [x1, . . . , xq]
⊤ is a random vector defined by its joint pdf, pX (x),

with marginal pdfs, pXi (xi)∀i ∈ {1, . . . , q}.

In Functional Chaos Expansions, random vector x is represented in a Hilbert spaceL2 (Ω,F ,P)

of square-integrable functions with respect to pX (x), with the requirement that all input compo-

nents have finite second moments:

E
[
X2i
]
=

∫
Ω

X2i (ω) dP (ω)

=

∫
Xi

x2i pXi (xi) dxi

< +∞

and thus inner product is defined as

⟨xi, xj⟩L2
≡ E [Xi · Xj] =

∫
X
xixjpX (x) dx (3.4)

Additionally, it is also required that model response Y has finite variance, E [Y2] < +∞, so

that the model can be re-formulated in a functional chaos representation, or in other words, as a

converging series of known multivariate basis functions ψ (x),
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Y =M (x) =
∑
α∈Nq

aαψα (x) (3.5)

where aα ∈ R are unknown basis coefficients that are to be estimated and α is a q-dimensional

index set containing natural numbers N that will be introduced in the next paragraphs.

When the basis functions ψ (x) from Equation (3.5) are polynomial functions, the expansion

is referred as a Polynomial Chaos Expansion (PCE). Within PCE framework, polynomials ψ must

satisfy Definitions 1 and 2.

Definition 1. For some z ∈ Z ⊆ R, a pair of different polynomials P (z) and Q (z) such that

P,Q : Z → R are orthogonal to each other with respect to some weight function w (z) > 0 if and

only if,

⟨P (z) , Q (z)⟩L2
=

∫
Z
P (z)Q (z)w (z) dz = 0

Definition 2. A polynomial P is orthonormal with respect to some weight function w (z) > 0, if

it satisfies Definition 1 and its L2-norm is equal to 1:

∥P (z)∥L2
=

√
⟨P (z) , P (z)⟩L2

= 1

The original problem was formulated only for the case with independent and identically dis-

tributed (i.i.d.) standard Gaussian vector x and polynomials ψ of the Hermite sequence (or fam-

ily)3 [114]. However, the approach has been studied further and subsequently extended to ac-

commodate more probability distributions and polynomial families (i.e., Askey-scheme polyno-

mials [115]), resulting in generalized Polynomial Chaos Expansions (gPCE). Some of these or-

thonormal polynomial families include [116]:

• Legendre polynomials used with Uniform distributions between -1 and 1

• Hermite polynomials used with Standard Normal distributions

3In the context of orthonormal polynomials, the terms sequence or family imply the same meaning.
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• Laguerre polynomials used with Gamma distributions

• Jacobi polynomials used with Beta distributions

Each of these families of orthonormal polynomials share the following recurrence relation

relating any three consecutive terms in the sequence (within the same family),

πj (z) = (ajz + bj)πj−1 (z) + cjπj−2 (z)

where πj (z) is a polynomial function of degree j ∈ N (with initial cases π−1 (z) = 0, π0 (z) = 1)

and coefficients aj, bj, cj are uniquely defined for each family and for each polynomial degree

j [117].

In the context of the original model M, we define π(i)
j (xi) to be a polynomial function of

degree j, π(i)
j : Xi → R. This polynomial satisfies Definitions 1 and 2 with respect to the marginal

pdf of the ith input variable, pXi (xi). Consequently, for any two polynomials with degrees j and k

coming from the same family, it follows:

⟨
π
(i)
j (xi) , π

(i)
k (xi)

⟩
L2

= E
[
π
(i)
j (Xi) · π(i)

k (Xi)
]

=

∫
Xi

π
(i)
j (xi) π

(i)
k (xi) pXi (xi) dxi

= δj,k (3.6)

where δj,k is the Kronecker delta that is equal to 1 when j = k and 0 otherwise.

Multivariate polynomials ψ (x) are calculated by tensorizing all q univariate polynomials from

every component of x, thus

ψα (x) =

q∏
i=1

π(i)
αi

(xi) (3.7)

where index setα = {α1, . . . , αq} is the set of indices that indicates the degree for every univariate

polynomial π that belongs to ψ, and hence in gPCE context, ψ are called basis functions.

For simplicity, it will be assumed that input components xi are statistically independent from
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each other, pX (x) =
∏q

i=1 pXi (xi), and thus, it can easily be demonstrated that ψ (x) are also

orthonormal multivariate polynomials:

⟨ψβ (x) , ψκ (x)⟩L2
= E [ψβ (X) · ψκ (X)]

=

∫
X
ψβ (x)ψκ (x) pX (x) dx

= δβ,κ (3.8)

The case when dealing with statistically correlated inputs xi’s has also been demonstrated,

however additional mathematical development that is outside the scope of this dissertation needs

to be undertaken [113].

The objective is then to estimate the coefficients aα in Equation (3.5), which will be referred as

PC coefficients throughout the dissertation. Different approaches can be followed to achieve this,

and in this case, a non-intrusive regression method is used to build the gPCE model. The interested

reader is referred to the following works for more details regarding the theory and selection of other

different methods (such as projection techniques) [113, 116, 118].

In order to estimate the PC coefficients through the regression methodology, we collect datasets

X and Y as presented in Equation (3.3). Since the q columns of the matrix X typically have

different physical units, the elements of this matrix are normalized to the unit hypercube [0, 1]q.

Additionally, the series in Equation (3.5) is truncated to a default number t to enable computation.

This truncation number t describes the maximum polynomial order allowed within the expansion,

Y ≈
∑
|α|≤t

aαψα (x) (3.9)

with |α| =
∑q

i=1 αi. This truncation method implies that there will be exactly T =
(
t+q
t

)
different

basis functions ψ (x) in the summation term in Equation (3.9).

Finally, after accounting for the whole dataset and re-writing in matrix notation, the problem
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turns into a linear-regression type:

Ψ (X) a = Y

where a = [a0 . . . , aα, . . .]
⊤
|α|≤t is the T-dimensional vector of PC coefficients and Ψ (X) is a n×T

matrix of bases having the ith row equal to [ψ0 (xi) . . . , ψα (xi) , . . .]|α|≤t. Hence, estimation of

PC coefficients can be done following any method for linear regression.

It is worth noting that the null index set (when α = 0 = {0, . . . , 0}), corresponds to the basis

with all univariate polynomials with degree zero, thus

ψ0 (x) =

q∏
i=1

π
(i)
0 (xi) = 1 (3.10)

for any orthonormal family. Its corresponding PC coefficient is denoted as a0.

Given the linear model in Equation (3.9), the PC coefficients can be estimated following any

standard technique such as Least Squares, Ridge Regression, Lasso Regression, Least Angle Re-

gression, among many. Nevertheless, not all of these methods will work for all cases. For instance,

if the number of datapoints n is less than T (the total number of basis functions), then ill-posed

matrices will be present in the linear regression problem and techniques such as Least Squares or

Ridge Regression might fail.

A more recent approach is chosen: Elastic Nets regularization developed by Zou and Hastie

[119]. This technique involves a combination of Least Squares, Lasso and Ridge regression [120].

Consequently, the method uses both L1- and L2-norm to account for:

• Sparsity in the model by variable selection without any limits on the number of selected

variables (as opposed to Lasso).

• Strictly convex loss function with a unique minimum (with the inclusion of Ridge).

• Grouping of correlated variables (as opposed to Lasso that selects only one and ignore the

rest).
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The formulation for the Elastic Net regularization is as follows,

â = arg min
a∈RT

[
1

2n

n∑
i=1

(
Yi − a⊤ψ (xi)

)2
+ λ

(
1

2
(1− γ) ∥a−0∥2L2

+ γ ∥a−0∥L1

)]
(3.11)

where a−0 = a \ a0 is the set of all PC coefficients other than that one corresponding to the null

indexed basis; λ and γ are regularization hyperparameters that are to be set prior to minimization.

Additionally, norms in this context can be calculated following the general Lp-norm, ∥a−0∥Lp
=(∑

0<|α|≤t |apα|
)1/p

.

In order to best fit the Elastic Nets Regularization model to the collected data, a formal cross

validation procedure should be taken as presented in Appendix A.3. Either metric MSPE or MAPE

from Equations (A.9) and (A.10) can be used to fine tune the hyperparameter values by assessment

of the model performance.

After estimating coefficients a through Equation (3.11), the non-intrusive gPCE regression

method can be thought of as a fast data-driven surrogate for modelM based on the training data,

through simply approximating it with Equation (3.9). The last remaining step now is to quantify

uncertainty in the model response given uncertainty in model inputs.

It is important to note that this framework will not provide the pdf for the model output pY (Y )

in closed form, but will provide useful information about its statistical moments.

The first moment, E [Y], is calculated given the fact that ψ0 (x) = 1 from Equation (3.10), and

the inner product property for multivariate orthonormal polynomials from Equation (3.8), thus

E [Y] = E [Y · ψ0 (X)]

= ⟨Y, ψ0 (x)⟩L2

=

∫
X

∑
|α|≤t

âαψα (x)

ψ0 (x) pX (x) dx
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=
∑
|α|≤t

[
âα

∫
X
ψα (x)ψ0 (x) pX (x) dx

]
= â0 (3.12)

Similarly, for the second moment, it follows that

E
[
Y2
]
= E [Y · Y]

= ⟨Y, Y ⟩L2

=

∫
X

∑
|α|≤t

âαψα (x)

∑
|α|≤t

âαψα (x)

 pX (x) dx

=
∑
|α|≤t

â2α

and the variance of the output distribution equals to

var [Y] = E
[
Y2
]
− E [Y]2

=
∑
|α|≤t

â2α − â20

=
∑

0<|α|≤t

â2α (3.13)

Further moments can be calculated following similar procedures [113].

3.2.1.2 Multivariate Case

For the multivariate case, all the assumptions and requirements explained in the univariate case

still apply (e.g., finite second moments for inputs and outputs, inner products, orthogonality and

orthonormality, etc.). In the multivariate case, Equation (3.1) is employed, and its functional chaos

representation is:

Yj =Mj (x) =
∑
α∈Nq

aα,jψα (x) ∀j ∈ {1, . . . , d} (3.14)
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where aα,j ∈ R are PC coefficients and ψα (x) are known multivariate orthonormal polynomial

functions of degrees indexed byα. Similarly as in the univariate case, for computational purposes,

the series is truncated up to some value t. Additionally, given the result from Equation (3.10) and

for simplicity in the formulation, the PC coefficient for the null index is taken out of the series,

thus

Yj ≈ a0,j +
∑

0<|α|≤t

aα,jψα (x) ∀j ∈ {1, . . . , d} (3.15)

and in matrix notation:

Y = [A0,A]ψ (x)

where

Y =


Y1
...

Yd


d×1

,A0 =


a0,1

...

a0,d


d×1

,

A =


· · · aα,1 · · ·
...

...
...

· · · aα,d · · ·


d×(T−1)

∀0 < |α| ≤ t,

ψ (x) =



ψ0 (x)

...

ψα (x)

...


T×1

∀ |α| ≤ t

After collecting datasets of the form denoted in Equation (3.3), the problem results again into

a linear regression problem

Y = Ψ (X) [A0,A]⊤

and Elastic Nets Regularization is employed to estimate PC coefficients following the formulation
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for multi-task learning problems [121],

Â0, Â = arg min
A0,A∈RT,d

1

2n

n∑
i=1

∥Yi − [A0,A]ψ (xi)∥2F

+ λ

[
1

2
(1− γ) ∥A∥2F + γ

T−1∑
j=1

∥Aj∥L2

]
(3.16)

where notation ∥·∥F corresponds to the Frobenius norm, Aj is the jth column from matrix A and

∥·∥L2
is theL2-norm corresponding to a group-lasso penalty4 [122]. Hyperparameters are also fine-

tuned by formal cross validation using either MSPE or MAPE from Equations (A.9) and (A.10) as

metrics for model performance.

Lastly, once PC coefficients have been estimated, the output’s distribution, pY (Y), can be

inferred following same procedure as Equations (3.12) and (3.13), hence

E [Yj] = â0,j (3.17)

var [Yj] =
∑

0<|α|≤t

â2α,j (3.18)

for all j ∈ {1, . . . , d}.

3.2.2 Global Sensitivity Analysis

In general, Global Sensitivity Analysis (GSA) deals with identifying which inputs (or com-

bination of inputs) are influential to a process response, and what the corresponding magnitudes

of these influences are, relative to one another. The focus is specifically on variance-based GSA

methods (also known as Sobol indices) since they provide a powerful framework to decompose the

variance of the model output and attribute it to different inputs or sets of inputs [123].

Continuing with the original problem setup from Section 3.2.1, model M is defined in the

Hilbert space L2 (Ω,F ,P), components of input vector x are statistically independent from each

other and response of the model is univariate. Following formulations provided in Owen [123],

4Note that this regularization term is not squared.
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the complete set of input indices is denoted as Q = {1, . . . , q}, and a subset of Q is defined as

u =
{
j1, j2, . . . , j|u|

}
⊆ Q, with cardinality |u|and complement set denoted as −u ≡ Q \ u.

Hence, a subset of inputs can be written as xu =
{
xj1 , . . . , xj|u|

}
∈ Xu ⊆ X .

Variance-based GSA derives from Analysis of Variance (ANOVA) decomposition, where the

model under study is decomposed into several functions that depend only on different input subsets,

Y =M (x) =
∑
u⊆Q

Mu (x) (3.19)

where

Mu (x) =

∫
X−u

M (x) dx−u −
∑
v⊂u

Mv (x)

Under these settings, xu is a set of factors andMu is the corresponding effect in the model. If

|u| = 1 thenMu is called main effect for input xu. Otherwise, if |u| > 1, thenMu is known as

the interaction among all xj for all j ∈ u.

The complete ANOVA decomposition will have 2q − 1 differentMu, and yields the following

result:

σ2 = var [M (x)]

=
∑
u⊆Q

σ2
u

where σ2
u =

∫
Xu
Mu (x)

2 dxu is the single effect (or partial variance) for xu. For a more detailed

discussion, the reader is referred to [123].

Sobol indices are hence defined as

τ 2u =
∑

v∩u̸=∅

σ2
v (3.20)

τ 2u =
∑
v⊆u

σ2
v (3.21)

where τ 2u is called total sensitivity index, which counts every ANOVA component that includes
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at least one element of set xu, and τ 2u is called closed sensitivity index, which is the sum of the

variance components for set xu and all of its subsets. If τ 2u is large, then set xu is important, or

if τ 2u is small, then set xu is not important [123]. These indices satisfy τ 2u + τ 2−u = σ2, and are

usually presented as normalized quantities, τ2u/σ2 and τ2u/σ2.

An attractive feature in gPCE is that Sobol indices can be easily calculated as by-products

of the procedure, after some adaptation [124]. The gPCE-based ANOVA decomposition (with

truncation) is

Y ≈
∑
u⊆Q

∑
α∈αu

aαψα (x)

where αu = {α : αj > 0 ∀j ∈ u, αk = 0 ∀k /∈ u, and |α| ≤ t} which activates those bases that

depend only on the inputs indexed by set u.

Therefore, given the orthonormality property of polynomials ψ, Sobol indices are calculated as

follows:

• gPCE single effect index

σ2
PC,u =

∑
α∈αu

â2α (3.22)

• gPCE-based closed sensitivity index

τ 2PC,u =
∑
v⊆u

∑
α∈αv

â2α (3.23)

• gPCE-based total sensitivity index

τ 2PC,u =
∑
α∈αu

â2α (3.24)

with the difference that αu = {α : αj > 0 ∀j ∈ u and |α| ≤ t} in this case.

These sensitivity indices are computed at minimal additional cost, since they only depend on

PC coefficients that were already estimated by Equation (3.11), which is the step that represents

most of the computational cost. In fact, as the formulation suggests, these indices are calculated by
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simply adding coefficients after proper indexing and selection (actions that involve only elementary

mathematical and logical operations), thus not incurring additional computational burden.

The generalization of this formulation into the multivariate case is rather straightforward and

is analogous as how Equations (3.12) and (3.13) translated into their multivariate counterparts in

Equations (3.17) and (3.18).

3.3 Inverse Uncertainty Quantification

The objective of methodologies that fall under this umbrella is to create a mathematical repre-

sentation of a system by means of observations and data. This representation is called Surrogate

Model and is intended for analysis and examination of a system in a fast data-driven manner.

This framework can be generalized for any physical process or expensive computational model for

which assessment of their response behavior is needed and viable only by sampling few carefully

selected experiments or simulations.

3.3.1 Gaussian Processes

3.3.1.1 Univariate Case

Gaussian Process (GP) models are a popular type of statistical model in the area of spatial

statistics. A GP model is a non-parametric statistical model in which a stochastic process f (·)

is assumed to have all of its finite-dimensional distributions as multivariate normal [103]. In

other words, the joint pdf of the outputs from the stochastic process at any finite set of inputs

{x1, . . . ,xn} is modeled as an n-dimensional normal distribution:

p (f (x1) , . . . , f (xn)) ∼ Nn (µ,C) (3.25)

where the mean vector µ and the covariance function C are defined by a mean function µ (·) and

covariance function C (·, ·), respectively, with the following properties:

µ (xi) = µi = E [f (xi)]
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C (xi,xj) = Ci,j = cov [f (xi) , f (xj)]

A GP model will be denoted as f (·) ∼ GP (µ (·) , C (·, ·)). A further and detailed explanation

on this type of stochastic process is provided in references [103, 108].

The initial problem setting starts again from Equation (3.2), however in this case, model inputs

x are thought of as locations on the q-dimensional spaceX . The task is to find a stochastic function

f such that f : X → Y , which would correspond to a data-driven approximation for modelM.

The statistical model is defined as follows,

Y = f (x) + ϵ (x) (3.26)

where f (·) ∼ GP (µ (·) , C (·, ·)) that captures the correlations between different locations x, and

ϵ (·) is an error term that captures inherent noise associated with the model. The existence of the

error term depends on every situation and problem. If dealing with experimental measurements

of a physical process, then it is normally included to account for measurement noise. On the

other hand, if the model under study is a computer model with minimal to negligible error (be it

numerical or any other kind), then oftentimes this term is disregarded [125].

The choices of mean and covariance functions µ (·) and C (·, ·), respectively, are important

since they characterize the probability distribution on the outputs of the stochastic process f (·)

given in Equation (3.25). Guides for selection of these functions are outside of the scope of this

study, and the interested reader should refer to works like [103, 108, 126].

The role of the mean function is to characterize the average or expected value of Y at location

x ∈ X , while the role of the covariance function is to capture the spatial dependence between two

different locations xi,xj ∈ X . This implies that if datapoints xi and xj are spatially close to each

other, then the output results Yi and Yj will be highly correlated. Conversely, if those two points

are spatially distant from each other, then their responses will have minimal correlation.

In order to fit the GP model, data is collected as in Equation (3.3). Since the columns of matrix

X typically have different physical units, the elements of this matrix are normalized to the unit
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hypercube [0, 1]q. Within the definitions of mean function µ (·), covariance function C (·, ·) and

error term ϵ (·), there may exist the need to define some hyperparameters that these functions rely

on. The complete set of these hyperparameters will be denoted as Ω. Then, from the definition in

Equation (3.26) and after collection of the dataset, it can be shown that the pdf of the model output

vector, otherwise known as likelihood function (see Appendix A.2), is given by:

p (Y|X,Ω) ∼ Nn (µ,Σ) (3.27)

whereµ is a n-dimensional mean vector calculated by the mean function, Σ is the n×n covariance

matrix calculated for each pair of input locations.

A special characteristic of GP models is that prediction is easily achieved based on properties of

the multivariate normal distribution, which is usually referred as Kriging or Best Linear Unbiased

Predictor (BLUP),

p (Y0|Y,X,X0,Ω) ∼ Nn0 (µ0,Σ0) (3.28)

where X0 is a new set of unobserved input locations of size n0 where predictions are needed, and

µ0 = µ (X0) + C (X0,X)Σ−1 (Y− µ) (3.29)

Σ0 = C (X0,X0)− C (X0,X)Σ−1C (X,X0) (3.30)

It is important to note that all these definitions imply that hyperparameter set Ω is known.

Nevertheless, this is usually not the case, and therefore, throughout this dissertation, a Bayesian

approach will be carried out in order to estimate the values of hyperparameters from the data.

To achieve this, posterior distributions are formulated based on Appendix A.2 and estimated nu-

merically via MCMC algorithms (see Appendix B). Consequently, Equations (3.29) and (3.30)

can be then used with the resulting estimations of Ω, and a formal cross validation procedure is

taken to assess and quantify the performance of the model through metrics MSPE or MAPE from

Equations (A.9) and (A.10).
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A characteristic benefit of this methodology is that it provides bands of prediction confidence

through covariance matrix Σ0, which are helpful and valuable for modelers to analyze and assess

the results and take informed decisions.

3.3.1.2 Multivariate Case

Generalizing the univariate formulation of a GP and following formulations by Gelfand et al.

[103], the joint pdf from Equation (3.25) follows a matrix-variate normal distribution denoted as

p (f (x1) , . . . , f (xn)) ∼ Nn,d (µ,C) (3.31)

with mean matrix µ and cross-covariance matrix C. Furthermore, a multivariate GP will be de-

noted as f (·) ∼ GPd (µ (·) , C (·, ·)) where µ (·) is the mean function which is a matrix-valued

mapping µ : X → Rd, while C (·, ·) is a positive definite cross-covariance function accounting for

correlation for domains X and Y , that maps C : X × X → Rd,d following next equation form

C (·, ·) =


c1,1 (·, ·) · · · c1,d (·, ·)

... . . . ...

cd,1 (·, ·) · · · cd,d (·, ·)

 (3.32)

for some functions ci,j : X ×X → R that account for correlations between output response i and j.

Under these settings, the initial step starts with model from Equation (3.1), and again the task

is to find a stochastic function f such that f : X → Y , which would correspond to a data-driven

approximation for modelM, thus

Y = f (x) + ϵ (x) (3.33)

where f (·) ∼ GPd (µ (·) , C (·, ·)) that captures spatial relationships between both inputs and

outputs.

After data collection, the likelihood function under this multivariate model is given by

p (Y|X,Ω) ∼ Nn,d (µ,Σ) (3.34)
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where µ is the n × d mean matrix calculated by the mean function, Σ is the n · d × n · d cross-

covariance matrix resulting from the cross-covariance function.

A widely used specification is the separable model approach for the cross-covariance function,

which redefines it as

C (·, ·) = r (·, ·)Λ (3.35)

where r (·, ·) is a positive definite correlation function accounting for correlation in the input space

X and Λ ∈ Rd,d
+ is a positive definite matrix accounting for correlations between outputs [103].

Hence, the cross-covariance matrix is calculated as follows

Σ = R⊗Λ (3.36)

where⊗ is the Kronecker product, and R is the n×nmatrix calculated through correlation function

r at every pair of input locations.

In regards of predictive calculations, Gaussian properties are generalized for the predictive pdf

shown in Equation (3.28), and similarly, Kriging values (or BLUP) are calculated following the

same patterns as Equations (3.29) and (3.30) (after proper generalization to higher dimensions).

Additionally, since these definitions imply that hyperparameter set Ω is known, a Bayesian ap-

proach will be taken again to estimate the values of hyperparameters numerically via the MCMC

algorithms presented in Appendix B. Consequently, predictions can be calculated using the gen-

eralized versions of Equations (3.29) and (3.30) with the resulting estimations of Ω, and a for-

mal cross validation procedure can be taken to assess and quantify the performance of the model

through metrics MSPE or MAPE from Equations (A.9) and (A.10).

3.4 Experimental Setup

3.4.1 Laser Powder-Bed Fusion System

Throughout the dissertation, most experimental work (unless specifically noted) was carried

out using a ProX 100 DMP L-PBF system developed by 3D Systems Inc. and is shown on Fig-
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Figure 3.1: 3D Systems ProX 100 DMP L-PBF system. Reprinted with permission from [42].

ure 3.1. The system is equipped with a fiber laser beam having a Gaussian profile, wavelength of

1070 nm, beam diameter of approximately 70 µm to 100 µm, and a maximum laser beam power

of 50W. All printed samples under this manufacturing system are built under a protective inert

Argon atmosphere with less than 500 ppm O2-level.

Samples printed with this machine are fully defined by a CAD model specifying dimensions,

and a set of processing parameters that highly influence the mechanical properties for each sample.

Specifically, processing parameters that need to be set to the machine are:

• Laser power (P): it has a maximum limit of 50W and can only be set to integer values of W.

• Scanning speed (v): no maximum limit for this parameter but any value above 2500mm/s

is not recommended by the OEM since it can affect the accuracy of printed parts. This

parameter can only be set to integer values of mm/s.

• Hatch distance: no maximum limit for this parameter, and it can be varied to achieve differ-

ent degrees of porosity. This parameter can only be set to integer values of µm, and if not

44



Odd Layers

hatch dist.

90deg

Even Layers

h
a
tc

h
 d

is
t.

0deg

(a)

Odd Layers

h
a
tch

 d
ist.

45deg

Even Layers

h
a
tc

h
 d

is
t.

-45deg

(b)

Figure 3.2: Graphical description of scanning strategy settings specified by the rastering angle
relative to the build-plane coordinate axis. (a) Angle of 90° and 0°. (b) Angle of 45° and −45°.

specified, the default value is 100 µm. Furthermore, its value do not influence any outcome

when dealing with single-track experiments.

• Layer thickness: no maximum limit for this parameter but can only be set to integer values

of µm. If not specified, the default value is 30 µm.

• Scanning strategy: the scanning pattern can be selected as the rastering angle (relative to

the build-plane coordinate axis) which the laser follows parallel while scanning the part.

This angle can be differently set for both even and odd layers. Figure 3.2 shows a graphical

description of this parameter.

It has to be noted that although laser beam size (D4) is an important and influential L-PBF

processing parameter, hardware restrictions in the machine do not allow for variation of this pa-

rameter.

3.4.2 Thermal Monitoring System

The L-PBF system was custom integrated with a thermal imaging sensor to conduct in-situ

monitoring of melt pool temperature during fabrication (see Figures 3.3a and 3.3b). The sen-

sor is a two-wavelength imaging pyrometer, model ThermaVIZ and developed by Stratonics Inc.
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(a) (b)

(c)

Figure 3.3: Inside view of the build chamber and pyrometer integration. (a) Initial state of the
build chamber. Reprinted with permission from [42] (b) Final drawing for pyrometer integration.
(c) Pyrometer integrated into the build chamber for thermal measurements during L-PBF manu-
facturing.

Figure 3.3c presents the final integration within the manufacturing chamber, which consists of

two high resolution CMOS imaging detectors, both having a field of view (FOV) resolution of

1300 pixel× 1000 pixel mapped to a 30× 27mm2 area, which yields a resolution of 24 µm/pixel.

Technical calibration of the pyrometer was performed in-situ after installation using a tungsten

filament (halogen tungsten-lamp) for a range of temperatures between 1500 ◦C to 2500 ◦C. For

appropriate collection of thermal data, fabrication of parts has to be placed within the boundaries

of the FOV, with the pyrometer capable of taking thermal images of the melt pools at approximately

250Hz.

Additionally, a setting named exposure is a major parameter for the correct measurement of

temperature by the pyrometer. This term comes from photography and it relates to the amount of
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Pyrometer Image of a L-PBF Melt Pool
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Figure 3.4: Thermal image obtained by the pyrometer.

light per unit area reaching the electronic image sensor after a certain amount of time determined by

the shutter speed, lens aperture and scene luminance [127]. Appropriate adjustment for exposure

is needed in order to avoid incorrect measurements due to saturation of signal (i.e., light) received

by the sensor.

A sample thermal image is presented in Figure 3.4 where both coordinate axes are shown

pixel units, while the color scale represents temperature. The data from this plot can be used for

analysis of temperature behavior that may include metrics like peak temperatures, temperature

history, cooling rates and spatial temperature gradients. It is worth to note that the temperature

map will show value of zero for temperature below 1500 ◦C that fall outside the calibration range

of the pyrometer.

In the following chapters, different applications of the described methodologies will be pre-

sented along with results and validations demonstrating the value and benefit that UQ provides for

the L-PBF manufacturing field.
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4. FORWARD UNCERTAINTY QUANTIFICATION

In this chapter, three different approaches for UP will be applied to L-PBF problems. Sec-

tion 4.1 presents the use of a gPCE model in order to validate an analytic reduced-order thermal

model developed for L-PBF. Next in Section 4.2, GSA based on the gPCE model is shown in order

to identify the most influential inputs to the thermal model. Lastly, Section 4.3 provides a formal

assessment for validation metrics of L-PBF thermal models through multivariate gPCE modeling.

4.1 Formal Validation of an Analytic Thermal Model

Throughout this dissertation, the focus has been repeatedly pointed towards the paramount need

of computer modeling in the L-PBF process. In this problem, the model developed by Eagar and

Tsai [128] is employed to characterize its response uncertainty given variability on its inputs with

the purpose of experimentally validating it via a UP gPCE methodology presented in Section 3.2.1.

This model considers a traveling heat source with a Gaussian profile on a flat metallic plate and

calculates temperature distributions across the plate. For simplification, the model is referred as

the Eagar-Tsai (or ET) model hereafter.

This model has been the baseline model of choice in several important prior studies in the L-

PBF domain since it simulates the basic operation that takes place during the process (i.e., heat

source scanning on a plate. Note that no powder is accounted for nor simulated). It also provides

insight on the resulting thermal history which can be then used to extend further studies on the

full process with powder particles being accounted for. For instance, King et al. [129] uses the ET

model to understand how melt pool characteristics behave based on a fractional factorial design of

the inputs. Kamath [125] and King et al. [77] present a data-driven framework that employs the

ET model to construct a predictive surrogate model. They use several sampling techniques such as

Random and Best Candidate Sampling, along with Decision Trees surrogate models, to show how

these data-driven approaches can be used in lieu of the actual ET model. Lastly, Kamath et al. [130]

used the ET model simulations with simple single-track experiments to guide parameter selection
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L-PBF Melt Pool Temperature distribution
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Figure 4.1: Eagar-Tsai model simulation. Plane xy shown at level z = 0, and plane xz shown at
level y = 0.

for building high-density L-PBF parts. Examples of other research studies that utilized ET model

in domains other than AM include [131, 132].

The model takes two main groups of inputs:

• Heat Source parameters: net heat input per unit time P, travel speed v, and parameter D

describing the heat source profile.

• Material parameters: thermal conductivity k, specific heat capacity cp, density ρ, and absorp-

tivity A.

Since our interest is on L-PBF processes, the analogous heat source parameters are: laser

power P, scanning speed v, and gaussian-distributed laser beam size D4. An example of a solution

provided by the ET model is presented in Figure 4.1, in which a simulation was run with the

following laser parameters P = 200W, v = 2.5m/s, D4 = 100 µm, and 430F Stainless Steel as

the material system for the substrate plate.

The ET model is important and relevant to the L-PBF process since it is a starting point in

understanding the interaction between a moving heat source (the laser beam) onto a metal substrate

plate, and the corresponding thermal phenomena behavior. In other words, it is considered and

used in many previous research efforts as a first approximation of the basic operating principle of

L-PBF, despite the fact that it does not include melting of powder particles.
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The problem is posed as the following situation: in building a part using L-PBF, the machine

operator sets nominal values for the processing parameters (for example, set the laser power P to

200W). In many existing commercial L-PBF systems, the actual realized values of the processing

parameters might deviate from the nominal values set by the user. This has often been identified

as one possible candidate to explain some of the reasons for the low repeatability of L-PBF parts

(and metal AM parts in general). Currently, it is generally assumed that the actual values of the

processing parameters would exhibit some degree of variability around their nominal set values.

Therefore, we need to quantify the variability in the properties of the fabricated part influenced by

the variability in the actual values of the processing parameters.

Therefore, formal UP is demonstrated on the ET model for 430F Stainless Steel, since the ET

model will then be validated via experimental measurements produced with the 3D Systems ProX

100 DMP L-PBF system (Section 3.4) on a bare metallic substrate plate made of 430F Stainless

Steel. Process parameters are set to nominal values based on the recommendations of the L-PBF

system manufacturer in addition to the author’s domain knowledge from previous processing of

different stainless steel alloys (in particular 17-4 PH and 316L stainless steel alloys). Based on

this information, the following probability distributions are assumed for the input parameters of

the model:

• Laser power: nominal at 49W, assumed to follow a normal distribution with: P [W] ∼

N(49, 0.52).

• Scanning speed: nominal at 0.15m/s, assumed to follow a uniform distribution with: v [m/s] ∼

U(0.10, 0.20).

• Laser beam size: nominal at 70 µm to 100 µm, assumed to follow a uniform distribution

with: D4 [µm] ∼ U(70, 100).

The material properties for 430F Stainless Steel based on [133] are the following: k = 26.3W/m ·K,

cp = 0.46 J/g ·K, ρ = 7.8 g/cm3, A = 0.3, and a melting point of Tm = 1460K.
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The QoI for this model will be melt pool width, since it can be easily inferred from the tempera-

ture distributions calculated by the ET model (see Figure 4.1), and additionally it is straightforward

to experimentally measure through optical microscopy for single-track experiments.

In order to propagate the uncertainty through the ET model, a gPCE framework was employed

with a sparse and adaptive sampling methodology. This is an iterative methodology, where each

iteration involves sampling of a new batch of datapoints to fit the gPCE model until some target

performance metric is met. Specifically, a number of datapoints is sampled from their correspond-

ing distributions in each iteration, a non-intrusive regression-based gPCE model is fit with the

aggregated data, and formal cross validation is used to assess model performance. Finally, based

on a set value for cross validation error target (set by the user), either a new iteration is run if the

target was not met, or the procedure is successfully finished if the target has been met.

The methodology was first introduced by Blatman and Sudret [113], however in the present

work Elastic Nets Regularization is utilized for sparsity since it involves a variable selection step

as part of the procedure that identifies some of the bases from Equation (3.9) as insignificant and

set their corresponding PC coefficients at zero. Further, the adaptive sampling technique only adds

new information to the model when it has not met the cross validation target, in contrast to classical

samples procedures where a single dataset is employed with fixed number of design points set a

priori.

The whole procedure is presented in Algorithm 4.1 and is set as follows:

• Each iteration adds 10 new datapoints to the dataset sampled from a scrambled Sobol’s

quasi-random uniform sequence generator [134], and then convert it to the corresponding

probability distributions.

• Model performance is measured using 10-fold Cross Validation (CV) with MAPE as metric.

• Error target is set to 0.25 µm since we are using melt pool width as model metric, or until

convergence has been achieved.

• Polynomial truncation is set at t = 4 for Equation (3.9).
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Algorithm 4.1 Pseudocode for the sparse adaptive gPCE methodology.

1: Start with empty dataset X← ∅,Y← ∅
2: target← CV error target
3: error←∞ ▷Initialize error to infinity
4: while error > target do
5: Draw new samples from Xnew ∼ pX (x)
6: Ynew = ET (Xnew) ▷Evaluate only Xnew on the ET model
7: Append data X← X ∪ Xnew and Y← Y ∪ Ynew

8: Estimate coefficients a with Equation (3.11)
9: error← CV (X,Y, â) ▷Perform 10-fold CV with MAPE to gPCE model

10: end while
11: return â
12: Perform UP gPCE estimations based on â

The complete sparse adaptive methodology was executed and successfully finished after achiev-

ing the cross validation target error in the 7th iteration. The path of CV error is shown in Fig-

ure 4.2a, which implies that only 70 total simulations of the ET model (with execution time of less

than 1 hour) were required until the algorithm converged.

An extra validation step was further implemented, in which 25 new datapoints were sampled

and evaluated with the ET model. This set of 25 new datapoints represented a test dataset, and

was then compared to the predictions obtained using the gPCE model as shown in Figure 4.2b.

An error of MAPE = 0.2997 µm was achieved, corroborating the good performance of the model

over datapoints not previously used for training.

After first validations of the gPCE model through CV, a second validation approach is carried

out employing the propagated output distribution results from Equations (3.12) and (3.13) and

comparing them to a brute force Monte Carlo sampling benchmark. The implementation of this

benchmark involved sampling of 15,000 datapoints from the input distributions and their respective

evaluation using the ET model. The complete histogram of the MC dataset is shown in Figure 4.3.

Statistical moments based on gPCE and MC are presented in Table 4.1. It can be seen that

the gPCE model first moment (mean) and second moment (represented by the standard deviation)

are within 0.01% from the moments computed using brute force MC. However, the latter required
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Figure 4.2: Performance of the sparse gPCE adaptive sampling algorithm on the ET model. (a) CV
error history after 7 iterations showing convergence. (b) Performance of the gPCE model over the
test set.
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Figure 4.3: Monte Carlo benchmark samples for the ET model. Histogram (blue bins) with a
kernel density estimate (red line) after 15,000 ET simulations.
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Table 4.1: Statistical moments for the distributions of melt pool width based on gPCE and MC.

Method Mean [µm] Std. Dev. [µm] Number of datapoints

gPCE 109.3937 8.4744 70

MC 109.4061 8.5766 15,000
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Figure 4.4: Experimental measurements of single tracks for validation of ET model. (a) Optical
microscopy image of a single track. (b) Distribution of the experimental dataset.

more data samples than gPCE, with a factor of approximately 200. In other words, the gPCE

framework yielded similar results to MC, but with a small fraction of computational time. The

computational saving offered by gPCE will be even much more when an expensive computational

model is involved.

Once the gPCE model has been successfully validated, it is used to experimentally validate

the ET model with observations. In order to do this, several single tracks were printed on a solid

430F stainless steel substrate at laser settings P = 49W and v = 0.15m/s, and characterized under

an optical microscope by measuring their widths. An image of one of the samples is presented

in Figure 4.4a, while a representation of the experimental data distribution through a box plot is

illustrated in Figure 4.4b.
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Formal validation is conducted by a hypothesis testing method similar to the one previously

used in [135, 136]: for a given confidence interval 100 × (1− α)% at a specific statistical sig-

nificance level α, the physical experiments are compared to the simulation model predictions. If

experimental measurements fall within the distribution of the results obtained from the simulation

model, the null hypothesis that the simulation model is not consistent with experimental results is

rejected at level of significance α.

Figure 4.5 displays the results for this experimental validation. The blue histogram represents

the 15,000 ET simulations sampled from MC after Box-Cox transformation and standardization

(i.e., mean 0 and variance 1), and the red curve is a kernel density estimate of the histogram data.

Next, the gPCE results (first and second statistical moments) are approximated to a Normal dis-

tribution, which after standardization becomes the standard Normal pdf represented by the yellow

curve. It can be seen that the red and yellow curves closely approximate to each other, reiterating

the validity of the gPCE framework.

Additionally on Figure 4.5, the dashed vertical black lines represent the confidence interval at

significance level α = 5%, while the purple circles represent the experimental observations under

optical microscopy of the melt pool width after respective transformation and standardization (the

position of the experimental observations on the vertical axis is solely for visual comparison within

the histogram). It is clear that experiments are within the distribution of simulation results, and

therefore we reject the null hypothesis that the ET model is not consistent with experimental results

at 5% level of significance.

In the next section, a continuation of this problem will be presented where GSA for the ET

model is calculated based on the gPCE results.

4.2 Sensitivity Analysis of an Analytic Thermal Model

This section presents an assessment of how the uncertainty in the output of the ET model can

be apportioned to the different model inputs by employing the methodology and derivations from

Section 3.2.2 along with the gPCE results from the previous section.

Therefore, using the gPCE model for the ET model built in Section 4.1 along with Equa-
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Figure 4.5: Experimental validation of the ET model via UP gPCE.

tions (3.22) and (3.24), both gPCE-based normalized single effect Sobol indices and the total

sensitivity indices are computed and shown in both panes of Figure 4.6. As expected, both types of

indices yield very similar values given the fact that in the Elastic Nets Regularization step, many

bases were deemed as non-important and their corresponding PC coefficients were set to zero.

The remaining “active” bases were attributed with more influence over the model, and therefore

contributing with more variance over the output.

Additionally, the results indicate that the scanning speed is the most influential input in our

particular analysis, followed by laser beam size. An interesting, and somewhat unexpected, obser-

vation is that laser power is not recognized as very influential, with its significance being on par

with the interaction between the laser speed and laser beam size. A possible explanation is that the

laser power used in the study is comparatively low due to the maximum power limitation of the

commercial L-PBF system, which restricted the parameter to be set at low variability (represented

by a low value of the standard deviation: P [W] ∼ N(49, 0.52)). Nevertheless, this result may

confirm that some narrow variability of a few watts in laser power can be tolerated, while the same

is not true in the case of scanning speed or laser beam size.

The last section of this chapter will present a formal assessment for different L-PBF metrics

used to validate thermal models in a multivariate UP gPCE framework.
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Figure 4.6: GSA of the ET model calculated through gPCE-based Sobol indices. (a) Normalized
single effect and two-way interaction indices. (b) Normalized total sensitivity Sobol indices.

4.3 Assessment of Fundamental Metrics for Validation of Thermal Models

As presented in Section 2.1.3, there has been an increase in research and studies for computer

and simulation thermal modeling on L-PBF given the fact that the physics and principles are mostly

thermal in nature. Nevertheless, many of these models are being validated only through melt pool

characteristics, with no experimental understanding of other influential metrics within the process

such as cooling rates, spatial gradients, or peak temperatures. Although melt pool characteristics

are of paramount importance for the understanding of the L-PBF process, this section shows that

melt pool characteristics should not be solely used to validate and verify these thermal models, and

instead more metrics are to be used for a more complete and scientific validation.

In order to carry out this analysis, a multivariate UP approach through gPCE will be employed

by following the formulations presented in Section 3.2.1, as well as the adaptive iterative method-

ology from Section 4.1. The thermal model under consideration is continuum-scale FEM model

developed at NASA Langley Research Center using its proprietary code base named SIERRA,

hence this model will be referred as the SIERRA model hereafter.

The multivariate gPCE methodology is employed into the SIERRA model to assess the vari-
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ability of several metrics and descriptors to the L-PBF process. To start off with the methodology,

a preliminary study was undertaken for selection of the input variables. Candidates for the study

are all material properties since these quantities present the most uncertainty to modelers due to

the difficulties for physically measuring them, existence of different measuring techniques and

procedures, or simply different values reported to the community.

The preliminary study consisted in selecting a number of material properties (and one laser

parameter) and run the SIERRA model at different configurations varying each one of them at

a time based on some choices of probability distributions. Table 4.2 presents a summary of the

preliminary study, where an important field in this table is column Type, which denotes whether a

candidate parameter is constant or temperature-dependent within the implementation of the sim-

ulation model. In the case for constant parameters, their probability distributions were defined

around their nominal values (see for example Absorptivity), however, for temperature-dependent

parameters, uncertainty was introduced as a function of temperature following the next formula,

property (T ) = a (T ) + δ · b (T )

where a (T ) is the temperature-dependent value of the property, δ is the parameter introducing un-

certainty in the form of probability distribution pδ (δ), and b (T ) is a function in charge of coupling

the uncertainty of δ as a function of temperature to the property value. Under this structure, the

selected configuration for a and b yield the next equation:

property (T ) = nominal (T ) (1 + 0.1δ) (4.1)

where a (T ) = nominal (T ) or the nominal value of the property as a function of temperature,

and b (T ) = 0.1 × nominal (T ) or 10% of the nominal value. Since some material properties

increase two- or three-fold as temperature increases, this choice for b (T ) paired with δ ∼ N(0, 1)

makes Equation (4.1) to properly account to these changes in value and magnitude and adapt the

uncertainty input by δ. Nevertheless, this is an ad-hoc method to introduce functional uncertainty
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Table 4.2: Preliminary study for selection of relevant material properties to the SIERRA model.

Type Parameter Nominal PDF

Constant

Emmisivity [%] 0.7 U(0.5, 0.9)

Latent heat of fusion [J/kg] 0.286 N(0.286, 0.01)

Absorptivity [%] 0.7 U(0.5, 0.9)

Laser beam width [µm] 70 U(67.5, 72.5)

Melt range temperature [◦C] 46 U(30, 80)

Temperature-dependent

Thermal conductivity of the substrate - δ - N(0, 1)

Thermal conductivity of the powder - δ - N(0, 1)

Density of the substrate - δ - N(0, 1)

Density of the powder - δ - N(0, 1)

into the model with the benefit of only having to define one single random variable per property,

as opposed to change the variance of δ as a function of temperature (i.e., δ ∼ N(0, σ2 (T ))), that

would imply definition of infinite different random variables.

After proper analysis of the simulations given the distributions from Table 4.2, the final selec-

tion from the preliminary study was:

• Inputs to the gPCE model

– Absorptivity (A) with pdf p (A) ∼ U(0.5, 0.9).

– Delta for thermal conductivity of the substrate (δksub) with pdf δksub ∼ N(0, 1).

– Delta for thermal conductivity of the powder (δkpow) with pdf δkpow ∼ N(0, 1).

– Combined5 delta for density of both substrate and powder (δρ) with pdf δρ ∼ N(0, 1).

• Outputs to the gPCE model

– Melt pool width (w).

– Melt pool depth (d).
5In this case, each property will follow its own function given by Equation (4.1), but the same δρ will be used.
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– Peak temperature at the powder-substrate interface (Tp).

– Maximum cooling rate at the powder-substrate interface (C).

– Maximum spatial gradient (G).

Next, we initiate the gPCE framework by running the adaptive methodology. The following

criteria was implemented for simulations on the SIERRA model:

• Simulation variables

– Material system is Ti-6Al-4V for both substrate and powder.

– Layer thickness is 30 µm.

• Laser parameters

– Laser power is set constant at 50W.

– Scanning speed is set constant at 80mm/s.

• Adaptive gPCE parameters

– Each iteration adds 10 new datapoints to the dataset sampled from a scrambled Sobol’s

quasi-random uniform sequence generator [134].

– Polynomial truncation degree is t = 4.

– Cross validation metric is MAPEk from Equation (A.11).

– Error targets varies depending the subset of outputs selected, or the methodology fin-

ishes if convergence is achieved.

Three different gPCE models were trained based on different subsets of outputs:

1. gPCE1 = {G,C, d}

2. gPCE2 = {d, w}

3. gPCE3 = {Tp, C, d}
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The objective for selecting these subsets is to assess how the selected QoIs behave and correlate

with one another at different settings within the gPCE model. Specifically, model gPCE1 includes

melt pool dimensions (represented by depth), and derivatives of the simulated temperature field on

space (i.e., spatial gradient G) and time (i.e., cooling rate C). On the other hand, gPCE2 focuses on

modeling UP based on melt pool dimensions solely, and is used as a benchmark for comparison

with situations when more outputs besides melt pool dimensions are accounted to validate thermal

models. The last case, gPCE3, is similar to the first one with the only difference that spatial gradient

is replaced by peak temperature.

The adaptive iterative methodology explained in Section 4.1 was applied to all three subsets

of response outputs, with the results being shown on the three panes of Figure 4.7. These plots

represent the path for CV error throughout the iterations for each gPCE model by showing the

progression of the CV MAPE error calculated from Equation (A.11) for each QoI. It has to be

reminded that as a new iteration was executed, more data was included into the model, hence

the monotonic decreasing shape of the curves. Since each output response has its own scale and

magnitudes, the results from Figure 4.7 are presented in percentage ratios with respect to the initial

CV error at the first iteration.

It can be seen that for model gPCE1in Figure 4.7a, the errors start to converge at iteration 5,

however the magnitude of error for metric C is still relatively high. In terms of numerical values,

melt pool depth errors converge to a value around 0.24 µm, which is an extremely low error and

thus acceptable given the size and magnitude of the melt pools within the real process (which,

depending on laser beam sizes, are usually around or larger than 100 µm). Therefore, in terms of

CV error, the gPCE model would be validated given these results if the sole focus was directed

on melt pool depth. Nevertheless, it can also be seen that error for cooling rate C converges to a

value of 9200 K/s which is a significant large value that would restrict successful validation of the

thermal model. Spatial gradient G converges to a relative low value of 27.8 K/mm but this result

might be subjective in terms of the application of the thermal model. In other words, for phase

field microstructure modeling applications, uncertainty of 27.8K ·mm in temperature across a
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Figure 4.7: Results of the adaptive sparse multivariate gPCE methodology for three different
combination of L-PBF metrics. The number in parenthesis represents the value of the CV error
at the last iteration of the progression, with physical units being the ones presented on Page 59.
(a) Maximum spatial gradient, cooling rate and melt pool depth. (b) Melt pool depth and width.
(c) Peak temperature, cooling rate and melt pool depth.
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small length of material would not acceptable since even a change in the magnitude of 1K ·mm

is influential in planar and dendritic microstructure grow.

Regarding the second model gPCE2, it can be seen in Figure 4.7b that both outputs behave

almost similar, and numerically they converge to the values of 0.35 µm and 0.80 µm respectively

for melt pool depth and width. The results of this model proves good understanding by the sta-

tistical model on these QoIs, and would most likely imply successful validation of the SIERRA

model. The results for this second model ratify several conclusions observed on different works

that validated L-PBF simulation models by only focusing on melt pool characteristics (see for

instance [137–139]).

Lastly, results from model gPCE3 in Figure 4.7c present very similar behavior among peak

temperature Tp and melt pool depth that can be attributed to the fact that melt pool dimensions

are estimated based on a comparison of temperatures with respect to the melting point for the

material, and thus it is a metric derived from a direct measure of temperature (as opposed to cooling

rates which are derivatives of the simulated temperature with respect of time). Numerically, peak

temperature converges to 1.9K in CV error which is very low value in the context of temperature

for L-PBF, and thus relates to good performance of the model over this QoI. A similar behavior

as with model 1 is seen by the remaining metrics: high error of 9600 K/s for cooling rate and an

insignificant error of 0.20 µm for melt pool depth. Again, this confirms that melt pool dimensions

should not be solely considered when validating or assessing thermal model results, but instead

should be used along with other types of responses to account for all the physics and phenomena

happening during the manufacturing process.

A second approach used to confirm the hypothesis that additional metrics other than melt pool

dimensions must be employed when validating a L-PBF thermal model is to analyze the results for

output probability distributions realized by propagating the uncertainty throughout the SIERRA

model. In this case, Equations (3.17) and (3.18) are calculated for each of the three gPCE models

discussed, and the statistical moments for each metric considered is presented in Table 4.3.

The results of UP for model 1 show that even though the predicted variability of melt pool
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Table 4.3: Statistical moments for each model output calculated through multivariate gPCE.

Model Metric E [Yk]
√

var [Yk]

gPCE1

G [K/mm] 6.167× 103 9.816× 102

C [K/s] 4.477× 105 1.191× 105

d [µm] 105.874 13.339

gPCE2
d [µm] 105.787 13.194

w [µm] 232.027 25.454

gPCE3

Tp [K] 3.891× 103 275.736

C [K/s] 4.475× 105 1.191× 105

d [µm] 105.903 13.365

depth is particularly small (denoted by the standard deviation and calculated to be about 13 µm),

the respective results for spatial gradient and cooling rates are still high. This means that melt

pool depth is not very sensitive to fluctuations introduced by the material properties (as opposed to

thermal gradients and cooling rates), and therefore do not provide a complete notion of the thermal

process within L-PBF.

A similar conclusion as in the previous paragraphs is obtained for model gPCE2, where by

exclusively accounting for melt pool dimensions, variability of these is almost negligible and thus

wrongful interpretations of the model might happen. Results for model gPCE3 yield the same

conclusion in terms of melt pool depth (i.e., low variability) and cooling rate (i.e., significant

variability), however peak temperature results are subjective to the application being employed

for. One case where variability of 275K may be acceptable is for experimental cases when a

pyrometer sensor is used to measure melt pool temperatures. Variability for these devices, such

as the one presented in Section 2.1.4, range from 100K to 300K given the different factors and

difficulties that affect measurements through non-contact pyrometry.

Although melt pool characteristics are important components within L-PBF research that un-

questionably need to be studied, characterized and understood, the multivariate UP framework

has shown that these attributes tend not to vary drastically throughout the manufacturing process.
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Therefore, research focused solely on them may provide some misinformed decisions and conclu-

sions which do not resemble to the actual L-PBF process. Consequently, a beneficial and necessary

step towards expanding L-PBF in industries with stringent quality requirements is to better under-

stand and account for other different thermal metrics of the process during analysis and studies in

order to be capable of drawing improved informed conclusions, that eventually will help to lead the

path towards a necessary increase in repeatability of end parts which is one of the main drawbacks

for L-PBF.

This chapter has presented several applications of Forward UQ into L-PBF problem. Differ-

ent physics within the manufacturing process have been studied through the use of UP statistical

models in order to characterize and quantify their uncertainty. In the next chapter, several differ-

ent applications will be presented where Inverse UQ is employed to help analyze and solve those

problems.
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5. INVERSE UNCERTAINTY QUANTIFICATION*

In this chapter, different problems will be presented where the focus is to describe the behavior

of a system within L-PBF through a fast and data-driven mathematical representation defined by

a set of inputs and outputs, in order to rapidly and confidently gain knowledge of the system (a

physical process or a computational model), and then take actions or draw respective conclusions.

The chapter will follow the next structure: Section 5.1 deals with the characterization and

optimization of porosity in L-PBF printed parts based on fine tuning of the processing parameters.

Next in Section 5.2, a data-driven approach will be taken to identify windows of L-PBF processing

parameters that yield different conditions on the melt pool. This is done by creating surrogate

models for experimentally collected data and for a high-fidelity L-PBF computer model.

The last two sections of the chapter will present a framework to statistically calibrate different

computer models. Section 5.3 will describe a statistical calibration of a precipitation model used

for SMAs compatible and widely used in L-PBF manufacturing. Next, Section 5.4 extends the

methodology into a generalized multivariate statistical calibration and applies this framework to

calibrate a L-PBF FEM thermal model.

5.1 Prediction of Porosity in End Parts

As explained in Section 2.1.1, one of the most common defects identified in L-PBF processes

is porosity. Presence of pores in end-parts compromises mechanical properties and performance

of the part, since heavy concentration of them may reduce tensile strength, ductility and fatigue

properties. There have been identified multiple mechanisms that contribute to the creation of pores

*Parts of this section have been reprinted with permission from G. Tapia, A. Elwany, and H. Sang, “Prediction
of porosity in metal-based additive manufacturing using spatial gaussian process models,” Additive Manufacturing,
vol. 12, pp. 282–290, 2016. Copyright © 2016 by Elsevier B.V., and with permission from G. Tapia, S. Khairal-
lah, M. Matthews, W. E. King, and A. Elwany, “Gaussian process-based surrogate modeling framework for process
planning in laser powder-bed fusion additive manufacturing of 316L stainless steel,” The International Journal of Ad-
vanced Manufacturing Technology, vol. 94, no. 9, pp. 3591–3603, 2018. Copyright © 2017 by Springer-Verlag Lon-
don Ltd., and with permission from G. Tapia, L. Johnson, B. Franco, K. Karayagiz, J. Ma, R. Arroyave, I. Karaman,
and A. Elwany, “Bayesian calibration and uncertainty quantification for a physics-based precipitation model of nickel–
titanium shape-memory alloys,” Journal of Manufacturing Science and Engineering, vol. 139, no. 7, p. 071002, 2017.
Copyright © 2017 by ASME.
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Table 5.1: Chemical composition of 17-4 PH stainless steel powder produced by 3D Systems Inc.
Reprinted with permission from [42]

Element Fe Cr Ni HC Cu

Concentration [%] 70-80 10-25 1.0-10 1.0-10

within L-PBF parts structure like shrinkage, gas entrapment, recoil vapor pressure, adhesion of

partially molten particles to surfaces between layers, inadequate powder layering, and balling [11,

84].

It has been shown that selection of different L-PBF processing parameters has an impact in

part porosity [21] (specially laser power, scanning speed, hatch distance and layer thickness), con-

sequently, it is of paramount importance that porosity is eliminated, or at least minimized, from

L-PBF end parts through proper tuning of these parameters.

In order to accomplish this task, GP techniques are employed due to the complexity and in-

tricacies of the physics of pore formation that refrain us from using a physics-based approach.

Therefore, the starting step to use the GP methodology presented in Section 3.3.1 is to collect

the dataset that the statistical model will be trained on. Experimental work was carried out using

the 3D Systems ProX 100 DMP L-PBF system introduced in Section 3.4, and cubic samples of

size 10× 10× 10mm3 were printed with 17-4 PH stainless steel produced also 3D Systems Inc.

Some of these samples are shown in Figure 5.1a, and additionally, the chemical composition of

this material is presented in Table 5.1.

This problem was specifically focused on the effects of laser power (P) and scanning speed

(v) on the porosity of the parts, therefore q = 2. The domain of interest X was devised with the

following configuration:

• Laser power: P = 40W to 50W.

• Laser scanning speed: v = 0.275m/s to 0.4m/s.

These ranges where selected based on several points: the limitations of the L-PBF system to
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Figure 5.1: Printed samples made of 17-4 PH stainless steel for porosity optimization. (a) As-built
coupons. Reprinted with permission from [42]. (b) Spatial behavior of the observations across the
P-v space. Reprinted with permission from [42].

a maximum power of 50W, inclusion of OEM default values into the study region, and to ensure

bonding between layers of samples by avoiding extremely low powers or very fast speeds. Thus,

42 test samples were initially printed at different combinations of power and speed, which are

visually represented in Figure 5.1b. The first 30 points were chosen following a Latin Hypercube

Sampling (LHS) design, while the last 12 were manually chosen to fill in the blank spaces within

the P-v space.

After the samples were produced, the porosity (as well as the density) of each test part was

measured using the Archimedes’ principle according to ASTM B962 standard [141]. It is impor-

tant to note that this method is sensitive to some factors such as precision of the balance, buoyancy

of air, the relation between density and temperature of the liquid, surface tension of the liquid and

presence of bubbles. To account for these factors in the study, a balance with ±0.0001 g toler-

ance was used. Samples were put under vacuum to ensure no air bubbles are present when taking

measurements and a correction factor was used for the volume of the float.

Following the formulation from Section 3.3.1, the mean function is defined as a second order
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linear regression with interactions and an intercept,

µ (x) = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2

where x1 denotes the power P covariate, x2 is the speed v covariate, and β = {β0, . . . , β5} are

regression coefficients. Nevertheless, after preliminary testing, it was decided the mean function

should only account for first order terms since other parameters were almost canceled on initial

testing. Hence, the mean function was taken as

µ (x) = β0 + β1x1 + β2x2 (5.1)

A challenge was encountered for the covariance function, since most of these functions have

been developed in the literature on geostatistics and for applications in geographical spaces [103].

In this study, one of the most popular covariance functions in the literature named Matern covari-

ance function is used with a re-parameterization on the similarity metric between two points on

the input space (as opposed to traditional Euclidean distance used for geostatistics). Therefore, the

following formulation was used

C (xi,xj) = σ2Q
νKν (Q)

Γ (ν) 2ν−1
(5.2)

where σ2 represents the variance of the process, ν is the smoothness parameter of the function,

Kν (·) is the modified Bessel function of second kind of order ν, Γ (·) is the gamma function, and

Q represent mentioned reparameterized similarity metric between points xi,xj , which follows next

equation:

Q =

√√√√ q∑
k=1

(
xi,k − xj,k

λk

)2

(5.3)

where xi,k represents the kth component of input xi, and λk are length-scale parameters modeling

the strength of spatial dimension-wise correlation in the input space.
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Lastly, an error term is accounted within the framework given the stochasticity of experimental

measurements of porosity. This error term is defined to be i.i.d. Normal distributed with zero mean

and variance τ 2,

ϵ (x) ∼ N
(
0, τ 2

)
(5.4)

With these choices, the GP model from Equation (3.26) is completely defined with hyperpa-

rameter set Ω = {β, σ2, λ1, λ2, τ
2} where β = {β0, β1, β2}. Note that the smoothness parameter

for the Matern function is set constant at ν = 1
2
. Thus, after collection of datasets X,Y as defined

in Equation (3.3), the likelihood function is equal to

p (Y|X,Ω) ∼ Nn (µ,Σ) (5.5)

with

µ = µ (X)

Σ = C (X,X) + τ 2In

where In denotes an identity matrix of size n× n.

Consequently, the model is fitted by MCMC – specifically employing Metropolis-Hastings and

Gibbs sampler – with the following prior selections:

p (λ1) ∼ U(0, 10)

p (λ2) ∼ U(0, 125)

p (β) ∼ N3

(
0, 104I3

)
p
(
σ2
)
∼ IG (2, 1)

p
(
τ 2
)
∼ IG (2, 0.2)

where I3 is the identity matrix of size 3× 3. The reader should refer to Appendix A.1 for notation
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and parameterizations of the different pdfs used.

These prior distributions are non-informative since there exists no prior knowledge about the

hyperparameters. The inverse gamma distributions with shape parameter set equal to 2 corresponds

to an infinite variance distribution. Furthermore, they are conjugate priors for the Gaussian model

from Equation (3.27), and thus, it lets the data speak for itself. In a similar fashion, non-informative

priors are assigned to β, with a large-variance multivariate distribution, and flat uniform distribu-

tions to λi parameters between values based on the selected range for each process parameter (laser

power and scan speed).

The MCMC algorithm was executed for 50,000 iterations with a burn-in period equal to 25% of

them. Once the estimation process finished, predictions were calculated over the input domain fol-

lowing Equations (3.29) and (3.30). Figure 5.2a shows the prediction calculated by the GP model

for the domain of study, while Figure 5.2b presents the predictive standard error for the GP predic-

tions. This predictive standard error is calculated by taking the square root of Equation (3.30). The

white dots represent the original observed data points, and demonstrate consistency of the predic-

tive methodology since the error is expected to be small in locations that are closer to the observed

data and larger at unobserved locations.

Nevertheless, since there are some locations within Figure 5.2b that still present relatively high

predictive standard error, the model is improved by adding new observations at several locations

within the input space. These new observations were appended to the original data set, therefore the

new dataset size was increased to 82 data points. The final number of observations was based on the

number of regions with high predictive standard error, empty regions with almost no observations,

the range of the experiment space and the capabilities of the manufacturing system. These are

presented in Figure 5.3.

The complete framework was reapplied to the new increased dataset, and results are presented

in Figures 5.4a and 5.4b. It is worth to note that both figures are shown at the same color scale,

such that it is easier to assess that new observations significantly reduced the predictive standard

error. It can also be seen that the prediction results are physical and consistent with the familiar
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Figure 5.2: GP model trained with porosity data from L-PBF parts. (a) Predictions of porosity
at the domain of study. Reprinted with permission from [42]. (b) Predictive standard error for
GP predictions. White dots denote the position of the training points. Reprinted with permission
from [42].
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Figure 5.3: Increased experimental dataset of porosity measurements. Reprinted with permission
from [42].
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expression for energy density in L-PBF [37, 78] given by

E =
P

v × hd × td
(5.6)

since less porosity is expected when more energy is deposited into the material as laser power in-

creases and scanning speed decreases. This is corroborated by the results shown in the bottom right

region of the colormap from Figure 5.4a. On the other hand, as laser power decreases and scan-

ning speed increases, less energy will be transferred into the powder material, and hence porosity

is more prone to be present within parts. Similarly, this is confirmed in the plot on the top left side.

Performance of the GP model is visually presented in Figure 5.4c and numerically measured

through LOO CV and MAPE, with the resulting value equal to MAPE = 0.3892 in porosity

percentage. The calculated MAPE is a relatively low value for the generalizing error in the model,

being about 20% of the range of the original observations. This means that the model does capture

the process from the dataset and is able to explain and generalize it to untrained datapoints.

This GP methodology has shown a data-driven predictive approach for very intricate phenom-

ena within L-PBF processes. This type of modeling is very useful as it increases the understanding

of the process, and it is beneficial towards the end goal of stringent quality and performance control

within several industries (such as aerospace, automotive, healthcare). In the next section, a further

study is presented where GP models along with high-fidelity computationally-expensive physics-

based simulation models are employed to provide means for optimizing the L-PBF process through

identification of windows of optimal processing parameters.

5.2 Processing Windows based on Melt Pool Characteristics

It has been repeatedly mentioned throughout the dissertation that L-PBF processes involve sev-

eral physical phenomena during the manufacturing process, which make it prone to many defects

and flaws in parts. Due to these complexities, the majority of recent road-mapping efforts have

strongly emphasized the need for developing modeling and simulation tools to foster our under-

standing of the process and ultimately serve as predictive frameworks to optimize the process and
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Figure 5.4: Improved GP model trained with porosity data from L-PBF parts. (a) Predictions of
porosity at the domain of study. Reprinted with permission from [42]. (b) Predictive standard error
for GP predictions. White dots denote the position of the initial training points, while white stars
denote the new training points. Reprinted with permission from [42]. (c) Comparison of observed
versus predicted values of porosity via LOO CV. Reprinted with permission from [42].
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mitigate defects [16, 17, 142]. As explained in Section 2.1.3, many research groups have devoted

resources and focused on modeling and predictive simulation for L-PBF processes. Although these

models are still invaluable for understanding the physics of the process, their direct use in process

optimization is impractical and sometimes unfeasible in terms of the burden associated with run-

ning simulations.

In L-PBF, the melt pool is an important region for analysis and evaluation of the process, since

it provides an idea of how well powder particles are bonding together within the same layer and

to previous layers. Identification and analysis of melt pool characteristics help to generalize the

expected quality and performance of the part when it is completely printed. In this section, the

task is to identify windows of desired L-PBF processing such that defects in the part are avoided.

Specifically, the objective is to identify and prevent processing regions that yield keyhole mode

melting, since this mode is undesirable in L-PBF because it involves evaporation of the material

and results in deeper melt pool depths and trails of voids.

Optimal selection of processing parameters like laser power (P), scanning speed (v), and beam

size (D4) is needed to avoid keyhole mode regimes, which in turn prevents pore defects in fab-

ricated parts. Therefore, in order to be able to select the values for processing parameters, a GP

framework will be used as surrogate model to gain knowledge and understanding of the L-PBF

process by applying it to both a high-fidelity L-PBF simulation model and experimental data.

5.2.1 Surrogate Modeling of a High-Fidelity Simulation Model

Surrogate modeling is an effective tool for providing a computationally efficient and accurate

approximation of computer simulation models with high computational burden. Thus, in order to

solve this challenge for L-PBF computer models, a GP-based surrogate model will be constructed

for a high-fidelity simulation model developed by Khairallah et al. [72] at Lawrence Livermore Na-

tional Laboratory that studies the physics of complex melt flow in L-PBF processes. This computer

model will be called the LLNL model hereafter.

The first step towards building a GP-based surrogate model was to collect a dataset. In this

case, n = 26 simulations were executed on the LLNL model, each one at a different values for
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Figure 5.5: Melt pool depth data collected from simulations of a high-fidelity L-PBF model.
Reprinted with permission from [19].

laser power P and scanning speed v, constant laser beam size D4 = 52 µm and layer thickness of

50 µm, and with stainless steel 316L as material system. The selected metric of study is melt pool

depth and the complete simulation dataset is graphically depicted in Figure 5.5.

A response surface is fitted to this dataset following the same formulations and principles from

Section 3.3.1, however an improved approach on the parameterizations of the covariance function

is taken based on previous literature results by Higdon et al. [102, 143]. The inputs to the model

are laser power P and scanning speed v (hence, q = 2) while the output of the model corresponds

to the simulated melt pool depth (hence, univariate case).

First of all, the elements of input matrix X are normalized to the unit hypercube [0, 1]q such

that all covariates are in the same orders of magnitude. This is beneficial when inputs of a model

possess different physical units at different magnitudes. Specifically, this is the case in this problem

since one of the covariates is laser power which ranges between 150W to 400W, while scanning

speed ranges from 0.8m/s to 2.5m/s, and these encompass and define the input domain X .

The elements of response vector Y are standardized to have a vector with mean 0 and variance

1. This step provides mathematical convenience related to subsequent estimation of hyperparam-

eters [102]. In particular, with this step the statistical model is simplified by the specification of a
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constant mean function:

µ (x) = 0 (5.7)

The covariance function selected for this problem is a re-parametrization of the power expo-

nential covariance function given by

C (xi,xj) =
1

λ

q∏
k=1

δ
4(xi,k−xj,k)

2

k (5.8)

where λ is the precision (or inverse of the variance) of the process, δ = {δ1, . . . , δq} is a set of pa-

rameters that control the strength or relevance of each input, and xi,k represents the kth component

of input xi.

In this case, a measurement error term is not accounted for within the statistical model since

the data comes from a deterministic computer model, and hence ϵ (x) is not included in Equa-

tion (3.26). Consequently, the GP model from Equation (3.26) is completely defined with hyper-

parameter set Ω = {λ, δ}. Thus, after collection of datasets X,Y as defined in Equation (3.3), the

likelihood function is equal to

p (Y|X,Ω) ∼ Nn (µ,C) (5.9)

where µ = µ (X) and C = C (X,X).

Since a Bayesian approach is taken, the following prior selections are defined:

p (λ) ∼ Gamma (5, 5)

p (δi) ∼ Beta (1, 0.1)

and these choices present some features that improve the estimation process. First, the gamma fam-

ily of distributions is conjugate to the normal family in the likelihood function in Equation (3.27)

which provides computational advantages [103]. Second, the variance of the process is expected to

be close to 1 due to standardization of vector Y, hence the prior p (λ) ∼ Gamma (5, 5) probability

distribution gives more probability weight to values close to λ = 1.
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Furthermore, the covariance function in Equation (5.8) provides further information beyond

spatial dependence. In particular, if the ith covariate has no influence on output Y, then parameter

δi should be estimated to be equal to 1. Thus, under this parameterization, an extra step is added

that identifies inputs that really influence the process and those that do not (i.e., active versus

inactive inputs). For these reasons, a Beta (1, 0.1) is set for the prior distributions of δi such that

there is substantial prior mass near 1 [102].

The posterior distribution of the model parameters are estimated using the Metropolis-Hastings

MCMC algorithm (see Appendix B) with 25,000 iterations, burn-in period of 40%, and thinning

every 5th iteration. Specifically, an adaptive Metropolis-Hastings algorithm is used by improving

its capability of tuning up the parameters of the proposal distribution in order to improve mixing,

exploration of the parameters space, and convergence of the chain. After obtaining the posterior

distribution, predictions were made over the whole range of the L-PBF processing parameters

space X , and the standard predictive error was also calculated. Both results are depicted in Fig-

ures 5.6a and 5.6b.

As a final step to ensure the model is able to understand and generalize over unseen datapoints,

a 10-fold CV was calculated and is visually shown in Figure 5.6c. The results show good perfor-

mance of the model both visually and numerically with MAPEsim = 6.91 µm, hence this surrogate

model can be subsequently employed to make quick predictions, within a degree of confidence,

for process optimization purposes. This is an important step forward since it would take only mi-

croseconds to make predictions using the GP model as opposed to up to several hours (or days)

using the high-fidelity LLNL model even using high performance computing facilities.

Now that this framework has been proved successful when applied to computational simula-

tions, it is still of paramount importance to analyze its performance on experimental data, and thus,

this will be presented in the next subsection.

5.2.2 Surrogate Modeling of Experimental Data

This subsection presents an approach employing experimental data coming in from previous

studies as well as additional experiments collected, in order to construct a GP-based surrogate
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Figure 5.6: GP model trained with melt pool depth simulations from the LLNL model. (a) Predic-
tions of melt pool depths at the domain of study. (b) Predictive standard error for GP predictions.
White points denote the position of the training points. (c) Comparison of simulated versus pre-
dicted values of melt pool depth via 10-fold CV. Reprinted with permission from [19].
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Figure 5.7: Experimental measurements of L-PBF melt pool depth. (a) Optical micrograph and
characterization of a single track experiment. Reprinted with permission from [19]. (b) Spatial
behavior of the melt pool depth observations across the P-v space. Reprinted with permission
from [19].

model for quantifying uncertainty and building knowledge from the L-PBF process. The experi-

ments come from single-track runs of stainless steel 316L built under different process parameter

settings with a commercial Concept Laser M2 system.

For experimental characterization of melt pool, each of the single tracks is sectioned, polished,

etched, and examined under an optical microscope to measure melt pool depths and widths, as

shown in the sample micrograph in Figure 5.7a.

Melt pool depth data was also gathered from previous studies by King et al. [36], Kamath [125],

which brought the total count of experimental measurements to n = 139 measurements over a wide

range of values for laser power P and scanning speed v, at constant laser beam size D4 = 52 µm

and layer thickness of 50 µm. These measurements are described in Table 5.2 and displayed in the

2D colormap on Figure 5.7b, where each colored datapoint represents an experiment produced at

a specific combination of laser power and scanning speed.

Since some of these experiments were replicated at the same combination of parameter values,

a pre-processing step on the data is carried out to homogenize and sort out differences and outliers
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Table 5.2: Summary of the different experimental dataset for L-PBF melt pool depths.

Source n nunique Pmin Pmax vmin vmax D4 td

[36] 52 52 73 395 0.15 3.0 52 50

[125] 14 14 150 400 0.50 1.8 54 50

Measured 73 31 50 250 0.03 2.5 52 50

n: the number of data points in the dataset; nunique: the number of unique combinations of
laser power and speed in the set; P: laser power in W; v: scanning speed in m/s; D4: size in
µm of the laser beam with a Gaussian profile specified at 4 times its standard deviation; td: the
layer thickness in µm.

that occur when combining datasets from different sources. Thus, each data point in the aggregated

dataset was analyzed individually to remove obvious outliers. A point is flagged as outlier if

the melt pool depth does not decrease with increasing scanning speed for a given constant laser

power and beam size (denoted as Filter 1). Furthermore, within the same replication points are

flagged if they lie outside a symmetric 10% range centered around the mean melt pool depth of

that replication (denoted as Filter 2). It is important to point out that since the collective data for

this study is compiled from different studies, it was not feasible to revisit and examine the physical

samples in order to identify the root cause of these anomalies. Hence, these ad hoc filters were

devised based on domain knowledge of the process and expert judgment.

More specifically, Filters 1 and 2 imply that melt pool depth should decrease as scanning speed

is increased at a fixed power setting, given the fact that less energy is being input into the powder.

It remains true however that upon the availability of the physical samples, the reason for these

anomalies and outliers should be carefully studied and identified. The results after implementing

these two filters are visually depicted in Figure 5.8a.

A subsequent pre-processing step is to consider experimental data points with close values of

L-PBF processing parameters, which translates to those points that are within a circle with a pre-

specified threshold radius in the P-v parameter space. It is expected that these points have very

similar melt pool depths, or otherwise this flags an anomaly. To implement this filter, the P-v

axes are scaled down to the unit hypercube, and those points that are located within a 0.01-radius
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Figure 5.8: Pre-processing step for the aggregated experimental dataset of melt pool depth mea-
surements. (a) Graphical description of Filter 1 and Filter 2 at constant laser power P = 250W.
Reprinted with permission from [19]. (b) Clustering of points for close combinations of pro-
cessing parameters based on k-means algorithm. Different colors correspond to separate clusters.
Reprinted with permission from [19].

circle from one another are flagged. This area corresponds approximately to 7W and 0.06m/s.

The flagged data points are then clustered using a k-means unsupervised learning algorithm (see

Figure 5.8b), and finally after determining these clusters, if the standard deviation of the points

within a cluster is relatively low compared to its mean, then no change is needed. Otherwise: (1)

if the cluster contains only two data points, the whole cluster is discarded, or (2) if the cluster

contains more than two data points, we iteratively identify and remove outliers following the same

procedure previously explained for the replication case until low standard deviation is obtained or

the whole cluster is discarded.

After the pre-processing step has been executed, the final number of datapoints in the dataset

came down to n = 96. Next, a GP model is fitted following the formulations from Section 3.3.1

with a similar approach to the previous subsection. Specifically, inputs variables are laser power

and scanning speed and response QoI is melt pool depth (hence, q = 2 and univariate GP).

Similarly as the previous case, elements of input matrix X are normalized to the unit hypercube

[0, 1]q such that all covariates are in the same orders of magnitude, while elements of response
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vector Y are standardized to zero mean and variance 1. With this step, we again specify a constant

zero mean function and power exponential covariance function given by Equations (5.7) and (5.8)

respectively.

Nevertheless, as opposed to the previous case, a measurement error term ϵ (x) is now included

since the data will present some inherent measurement noise. This term is defined to be i.i.d. for

every experimental datapoint, with the following distribution

ϵ (x) ∼ N

(
0,

1

τ

)
(5.10)

where τ is precision of the distribution. Consequently, the GP model from Equation (3.26) is

completely defined with hyperparameter set Ω = {λ, δ, τ}.

Thus, again after proper collection of datasets X,Y as defined in Equation (3.3), the likelihood

function for this case is equal to

p (Y|X,Ω) ∼ Nn (µ,Σ) (5.11)

where

µ = µ (X)

Σ = C (X,X) +
1

τ
In

and the following the following prior selections are defined towards Bayesian estimation:

p (λ) ∼ Gamma (5, 5)

p (δi) ∼ Beta (1, 0.1)

p (τ) ∼ Gamma (1, 0.0001)

These choices of prior distributions are exactly the same as for the computer model surro-
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gate model approach, with the addition of the prior distribution for precision τ , which is a non-

informative choice of distribution giving more probability weight to large values, equivalent to

modeling low noise. An adaptive Metropolis-Hastings MCMC algorithm was again executed with

25,000 iterations, burn-in period of 40%, and thinning every 5th iteration, and predictions were

made over the whole range of the L-PBF processing parameters space, as well as the standard

predictive error. Both results are depicted in Figures 5.9a and 5.9b.

To ensure the model is able to understand and generalize over unseen experimental data, 10-

fold CV was calculated and is visually shown in Figure 5.9c. The results show good performance of

the model both visually and numerically, MAPEexp = 10.91 µm, and thus this surrogate model can

be subsequently employed to make quick predictions, within a degree of confidence, for process

optimization purposes based on real experimental data. This is an important step forward since

it reduces the requirements for large testing by trial-and-error techniques which simultaneously

produces savings in costs and time resources.

As a last step, the GP-based surrogate model trained with the LLNL model is combined with

the experimental observations to assess its performance on real L-PBF experiments. In other

words, the surrogate model constructed in the previous subsection is now validated against the

pre-processed experimental observations from this section, to quantify the agreement between its

predictions and the real process. This step is important since the surrogate model is to be used in

lieu of the high-fidelity simulation model.

Figure 5.10 shows the results of this assessment where the abscissa is the experimental mea-

surement and the ordinate is the GP surrogate model prediction at the corresponding combination

of L-PBF processing parameters. It should be noted that predictions were only calculated for ex-

perimental datapoints that lie within the bounds of domain of the simulations, in order to avoid ex-

trapolation error as a misleading indicator of inadequate performance. Numerically, the computed

MAPEsim,exp = 9.35 µm confirming that the simulations surrogate model is able to adequately

capture and generalize the L-PBF process, with the need of only a few high-fidelity simulations.

Since all these surrogate models have successfully demonstrated good performance, they are
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Figure 5.9: GP model trained with melt pool depth data from single track experiments. (a) Predic-
tions of melt pool depths at the domain of study. (b) Predictive standard error for GP predictions.
White points denote the position of the training points. (c) Comparison of observed versus pre-
dicted values of melt pool depth via 10-fold CV. Reprinted with permission from [19].

85



0 50 100 150

Observed Depth [ m]

0

50

100

150

G
P 

Pr
ed

ic
te

d 
D

ep
th

 [
m

]

Validation with Experimental Set

Figure 5.10: Validation of the GP surrogate model framework. Reprinted with permission
from [19].

employed on the task of identifying optimal windows (or regions) for processing parameters within

which keyhole laser melting or thermal conduction modes occur.

5.2.3 Identification of Processing Windows

Since one of the main objectives of the dissertation is to reduce the uncertainty in the L-PBF

process, the tools constructed presented in this section are employed to identify windows of pro-

cessing parameters where desired melting modes occur. Based on the works by King et al. [36, 77],

the depth of the molten pool is controlled by conduction of heat into the underlying solid material

and vapor recoil pressure that creates a small depression. However, under high energy deposition,

the mechanism of melting changes from conduction to keyhole laser melting, and in this mode,

the depth of the molten pool is controlled by evaporation of the metal and higher vapor recoil

pressures. Keyhole mode laser melting results in melt pool depths that can be much deeper than

observed in conduction mode, and thus, it is desired to avoid deep keyhole mode during L-PBF

fabrication in order to build parts with good quality.

There are two different criteria to identify keyhole mode in L-PBF [36]:

• When normalized enthalpy is greater than or equal to 30, ∆H
hs
≥ 30.

• When melt pool depth is equal or larger than half of the melt pool width, d ≥ w
2

or 2d
w
≥ 1.
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For the first bullet, the expression follows from a physics-based analysis derived from the

following equation
∆H

hs
=

AP

ρhsm

√
πTDv

(
D4
4

)3 (5.12)

where A is absorptivity of the laser into the material, ρ is the density, hsm is the enthalpy at melting

per unit of mass, TD is thermal diffusivity, and processing parameters: P is laser power, v is

scanning speed, and D4 is laser beam size. Since the material system chosen for this specific

application is 316L stainless steel, the following properties are used based on [36]: A = 0.4,

ρ = 7.98 kg/m3, hsm = 1.2× 106 J/kg, and TD = 5.38× 10−6 m2/s. The laser beam size value was

kept consistent at D4 = 52 µm.

In the second bullet, a GP-based surrogate model based on 2d
w

as a QoI can be constructed

and its predictions used to identify the combinations of laser power and scanning speed within

conduction or keyhole modes occur. This is done with the same experimental dataset presented

in the previous subsection, since in addition to melt pool depth, the experimental dataset also

consisted of melt pool width measurements (see Figure 5.7a).

Figures 5.11a and 5.11b provide processing windows of L-PBF manufacturing parameters that

will produce melt pools within a desired thermal mode based on both criteria. By comparing the

dashed line and the contour line at level 1 in Figure 5.11b, it is clear that conduction-mode regions

in both plots (2d
w
< 1 and ∆H

hs
< 30) are very similar for laser powers up to 225W. Therefore,

Figure 5.11b is defined as a data-sheet for appropriate L-PBF processing of 316L stainless steel

for combinations of laser power and scanning speed, at laser beam size D4 ≈ 52 µm and layer

thickness 50 µm.

In the next two sections, another application will be described where formal UQ is used to per-

form statistical calibration of different computer models used in L-PBF via GP models in univariate

and multivariate contexts.
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Figure 5.11: L-PBF process windows specifying conduction and keyhole mode behavior. (a) Nor-
malized enthalpy ∆H

hs
≥ 30 criterion. Reprinted with permission from [19]. (b) Melt pool dimen-

sions d ≥ w
2

criterion. The superimposed dashed line corresponds to ∆H
hs

= 30 in order to compare
both criteria. Reprinted with permission from [19].
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5.3 Statistical Calibration of a Computational Precipitation Model

The widely accepted caveat on using computer simulation models is that they may present

assumptions, misconceptions or errors that would not clearly recreate the real system they are rep-

resenting. These modeling problems include incomplete understanding of the model parameters,

incomplete knowledge of the physics and of the intrinsic stochastic behavior of the system being

simulated. Consequently, it is crucial to characterize and quantify the uncertainties associated with

these models toward leveraging their benefits and streamlining their applicability.

To propose a solution to this problem, GP models are employed to build a statistical calibration

framework that will provide estimates of unknown model parameters based on computer simu-

lations as well as experimental observations. This problem has been widely referred before as

calibration of computer models starting with the seminal work by Kennedy and O’Hagan [92].

Before the framework is presented, some definitions and notations are needed in order to avoid

subjectivities among distinct models. Any computational simulation models (for instance, a mate-

rials science simulation model) will be referred as a computer model, while the statistical frame-

work by which a computer model is calibrated will be named the statistical model.

Under this context, the calibration problem distinguishes between two groups of inputs [140,

144]:

• Control inputs (or design variables), denoted by the vector x, are variables that are set to

known values by the user. Examples of these inputs include temperature, pressure, force, or

any other quantities that are known and controlled by the user.

• Calibration parameters, denoted by the vector θ, represent physical parameters that can be

specified as inputs to the computer model, and whose values are unknown or not measurable.

Examples include properties of materials (such as conductivity or interfacial energy, among

many) which are not easily determined for materials models.

The common definition from Section 3.1 is maintained for control inputs x ∈ X ⊆ Rq, while

calibration parameters are defined as θ ∈ T ⊆ Rt, where T is a t-dimensional region within
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which it is believed that the true but unknown value for calibration parameters θ⋆ lies. Then,

the goal of the calibration problem is to estimate these parameters such that the computer model

simulations agree with the experimental observation of the real process being simulated. This is

mathematically formulated in the next equation,

Z (x) = Y (x,θ⋆) + δ (x) + ϵ (x) (5.13)

where Z (x) ∈ Z ⊆ R is an experimental observation at a given control input x, Y (x,θ) ∈ Y ⊆

R is a computer model simulation resulting from evaluation at control inputs x and calibration

parameters θ, δ (·) is a discrepancy or model inadequacy function whose role is to account for the

missing physics in the computer model, and ϵ (·) is the observation or measurement error.

Under this formulation, a collection of several simulations from the computer model is needed

in order to have enough information to solve the calibration problem. However, this becomes

unfeasible when the computer model is computationally expensive with simulations requiring vast

amount of computational resources and time. When this is the case, a surrogate model approach

will be thus used as presented in several previous sections in this dissertation.

Therefore, two different types of calibration approaches will be presented: a direct model

calibration where the computer model is not computationally expensive and it can be directly used

to conduct the calibration, and a surrogate model calibration where a surrogate model is put in place

of the computationally expensive computer model. The framework is applied in order to calibrate a

precipitation model for shape-memory alloys (specifically Nickel-Titanium, also known as nitinol,

and referred as NiTi).

Precipitation modeling is used to predict the nucleation and growth of a secondary phase

within the matrix of a primary phase in the microstructure of a material. These small precipitates

(secondary-phase particles dispersed throughout the material) are compositionally and/or struc-

turally different than the surrounding matrix phase, allowing their process-dependent morpholo-

gies to be tracked as they evolve in the presence of various environmental conditions. The sizes
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and shapes of these particles can drastically alter the properties of the overall material [145, 146].

In the context of this research, interest is pointed towards nickel composition of the matrix which is

calculated at any step in the process through stoichiometric considerations and mass-balance equa-

tions involving nickel in the precipitates and the initial nickel content of the material before thermal

processing. In turn, the composition of nickel in the matrix, the volume fraction of the precipitates

and their size distribution control the final shape-memory behavior in NiTi alloys [147].

Three terms (interfacial energy, diffusion correction prefactor and diffusion correction expo-

nential factor) significantly influence the kinetic behavior of the overall model. The interfacial

energy term influences the behavior of the nucleation portion of the model and the diffusion cor-

rection factors equally influence all three stages of precipitate evolution listed above by modifying

the substitutional diffusivity of the matrix phase. Values for interfacial energy are not completely

unknown, but they are not known with as much accuracy as they should be, especially when con-

sidering how sensitive the entire model is to this term. Therefore, they are considered to calibrate

the model through the present methodology.

Both types of inputs for this model are listed as follows:

• Control inputs x:

– Initial nickel content in the alloy [at. %].

– Aging (heat treatment) temperature [◦C].

– Aging (heat treatment) time [s].

• Calibration parameters θ:

– Interfacial energy [J/m2].

– Diffusion correction prefactor [dimensionless].

– Diffusion correction activation [J/mol].

• Output of the computer model Y (x,θ) and the process Z (x)

– Final nickel content of the surrounding matrix [at. %].
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5.3.1 Direct Model Calibration

For this case, the computer model is directly used on the calibration procedure, thus only the

last two terms from Equation (5.13) need to be statistically defined. The discrepancy function

is modeled as a GP, δ (·) ∼ GP (µδ, Cδ), following the definitions in Section 3.3.1, with mean

function

µδ (x) = Hδ (x)βδ (5.14)

where Hδ (x) =
[
1,x⊤], and a non-stationary anisotropic Matern covariance function

Cδ (xi,xj) = σ2 2
1−ν

Γ (ν)

(√
2νQ

)ν

Kν

(√
2νQ

)
(5.15)

where σ2 represents the variance of the real process (precipitation in this case), ν is the smoothness

parameter of the covariance function and is selected to be fixed at ν = 1
2
, Kν (·) is the modified

Bessel function of the second kind of order ν, Γ (·) is the gamma function, and

Q =

√√√√ q∑
k=1

(
xi,k − xj,k

ωk

)2

is the similarity measure between xi and xj known as the Mahalanobis distance, with length-scale

parameters ωk which control the relative influence of each input dimension to the process.

The error term is modeled as i.i.d. normal random variables,

ϵ (x) ∼ N
(
0, τ 2

)
(5.16)

and thus the statistical model from Equation (5.13) is also a GP model fully characterized by the

set of parameters

Ω =
{
θ,βδ, σ

2, ω1, . . . , ωq, τ
2
}

For the Direct Model calibration, the datasets collected as defined in Equation (3.3) will include
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experimental observations:

X =



x⊤
1

x⊤
2

...

x⊤
n


, Z =



Z (x1)

Z (x2)

...

Z (xn)


and the computer model will execute and gather a simulation dataset every time it is called within

the framework, which will be designated as

Y =



Y (x1,θ)

Y (x2,θ)

...

Y (xn,θ)


These datasets yield the next likelihood function based on definition of the model in Equa-

tion (5.13)

p (Z|X,Y,Ω) ∼ Nn (Y+Hδβδ,Σ) (5.17)

where Σ = Cδ + τ 2In, Cδ is the matrix calculated the pair-wise evaluation of input dataset in the

covariance function Cδ, In is the identity matrix of size n× n, and matrix Hδ = Hδ (X).

The parameters are estimated under a Bayesian procedure, and thus, prior distributions for the

hyperparameters are selected as:

p (θ1) ∼ U(0, 0.1)× 1{Y (x,θ)̸=x1} (θ1)

p (θ2) ∼ U(0, 100)× 1{Y (x,θ) ̸=x1} (θ2)

p (θ3) ∼ U(0, 1000)× 1{Y (x,θ) ̸=x1} (θ3)

p (βj) ∼ U(−∞,∞)

p
(
σ2
)
∼ IG (2, 1)
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p (ωj) ∼ U(0,∞)

p
(
τ 2
)
∼ IG (2, 0.2)

These priors follow the same reasoning as with previous sections by selecting non-informative

and conjugate distributions. A special note worth mentioning is regarding the selection for calibra-

tion parameters θ, where an indicator function 1{A} (x) has been used. This function is equal to

1 if x ∈ A and 0 otherwise, and it is used to reject values of θ1, θ2, θ3 for which the final (output)

and initial (input) content of nickel are equal, which indicates that precipitation did not occur. This

represents an anomaly that needs to be discarded.

The posterior distributions of hyperparameter set Ω can be calculated via MCMC algorithms,

and special importance is given to those posterior estimates for calibration parameters θ. Further-

more, the calibrated model can then be used in a prediction stage following the next equations,

which generalize onto the calibration framework based on original Equations (3.29) and (3.30):

p (Z0|Z,Y,X,X0,Ω) ∼ Nn0 (µ0,Σ0)

where

µ0 = Y (X0) + µ (X0) + Cδ (X0,X)Σ−1 (Z− Y−Hδβδ) (5.18)

Σ0 = Cδ (X0,X0)− Cδ (X0,X)Σ−1Cδ (X,X0) + τ 2In0 (5.19)

for an unseen input dataset X0.

The experimental data represents the final nickel content of the matrix [%at. Ni] corresponding

to a specific heat treatment regime (aging temperature and aging time) for a particular NiTi alloy

with initial composition. During the experiments, the samples were individually sealed into quartz

tubes under a high-purity argon atmosphere to avoid oxygen contamination. Heat treatments were

performed in a muffle furnace followed by subsequent water quenching. A technique called dif-

ferential scanning calorimetry (DSC) was first used to directly measure the resulting martensitic
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transformation temperature of each heat treated alloy.

The martensitic transformation temperature is a property of NiTi alloys that is highly sensitive

to the amount of nickel in the surrounding matrix. The formation of nickel-rich precipitates causes

a change in the composition of the alloy, which in turn reflects into a change in the martensitic

transformation temperatures. In other words, the martensitic transformation temperature deter-

mined through DSC can be used to indirectly measure the matrix composition.

The relationship between NiTi composition and the martensitic transformation temperatures

has been extensively studied in literature, such as [148–150]. In the current work, the DSC mea-

surements of the martensitic transformation temperatures were converted to nickel composition

[%at. Ni] using curve fitting to data presented in Frenzel et al. [151], and yielded a dataset of 36

experimental observations used henceforth. From this set, 31 observations randomly selected will

be used to calibrate (or train) the precipitation model (called Training set) and 5 will be used for

testing and validation to assess the predictive performance of the calibrated model (called Test set).

Consequently, the Direct Model calibration framework was executed with the observed dataset

to estimate the calibration parameters through MCMC using the training set with n = 31. Since

the precipitation model is being used online within the statistical framework, the whole procedure

was implemented over a 10-core computer node (with parallelization in some parts of the routine)

and run for 15,000 iterations, with a 25% burn-in period and thinning every fifth iteration. Re-

sults of the posterior distributions of the calibration parameters are shown in the three panes of

Figure 5.12, where each plot displays the histogram with 20 bins and their corresponding kernel

density estimate.

From the plots in Figure 5.12, it is clear to see that θ1 and θ2 have defined informative and

unimodal posterior distributions, with θ1 having a unique peak while θ2 being skewed to the right

in addition to having a unique peak. Parameter θ3 behaves in an opposed manner, with its pos-

terior distribution showing some uniformity, which implies that all the values across its domain

are equally likely to characterize the real process. Table 5.3 presents mean, mode (most frequent

value), and standard deviation of the posterior distribution for the calibration parameters.
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Figure 5.12: Histograms and kernel density estimates of the posterior distribution for calibra-
tion parameters in Direct Model calibration. (a) Intefacial energy. Reprinted with permission
from [140]. (b) Diffusion correction prefactor. Reprinted with permission from [140]. (c) Diffu-
sion correction activation. Reprinted with permission from [140].
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Table 5.3: Estimates for calibration parameters via Direct Model calibration. Reprinted with
permission from [140].

Parameter Mean Mode St. Dev.

Interfacial energy θ1 0.0498 0.0536 0.0079

Diffusion correction prefactor θ2 75.4143 73.7015 13.9599

Diffusion correction activation θ3 533.6609 587.1682 274.9424

The narrow nature of the distribution for θ1 can be explained by its appearance in the governing

equations for precipitate nucleation, since interfacial energy is so dominant in precipitation models

due to the following fact: relatively small values imply almost no barrier to nucleation, leading

to the precipitation of all the precipitates that can form in the material (ultimately limited by ther-

modynamics) right at the beginning of the precipitation process; on the other hand, slightly high

values for this parameter may result in a barrier to nucleation that effectively results in no precipi-

tation of secondary phases at all during reasonable heat treatment times. Thus, only a narrow range

of interfacial energy values can yield physically meaningful precipitation predictions. In fact, the

estimated mean and mode for θ1 are well within the range of values reported in the literature and

very close to the value calculated through parametric sweep-experimental data coupling.

Regarding the remaining calibration parameters, it is more difficult to ascertain their direct

significance since they represent corrections to the diffusivity values taken from the precipitation

computer model. These corrections are necessary as one does not really know the state of the

microstructure before the precipitation starts. Of particular effect is the presence, for example,

of grain boundaries, dislocations, and other defects that can catalyze (facilitate) the nucleation

of the second phase precipitate particles. The ranges for each parameter were selected such that

only physically realistic values would be calculated for these two parameters, and although they

represent correction factors and as such have no direct physical significance themselves, it can be

inferred that they are less influential (i.e., have broader distributions) for two main reasons: first,

they are not a largely influential parameter within the governing equations, and second, they are

97



50.6 50.65 50.7 50.75 50.8 50.85 50.9 50.95 51

Experimental Observations [%at. Ni]

50.5

50.6

50.7

50.8

50.9

51

51.1

51.2

C
al

ib
ra

te
d 

Pr
ed

ic
tio

ns
 [

%
at

. N
i]

Validation of Direct Model Calibration

Figure 5.13: Performance of the calibrated model on the test set via Direct Model calibration.
Reprinted with permission from [140].

implemented in a later stage of the precipitate evolution which reduces their influence with respect

to θ1.

To assess the performance of the calibrated model via Direct Model calibration, predictions on

the test set were calculated and are presented in Figure 5.13. Numerically, the average deviation is

MAPEdir = 0.0641%at.Ni, which is an acceptable result given all the experimental uncertainties

in these types of studies.

5.3.2 Surrogate Model Calibration

The Surrogate Model calibration approach is applied when executing large number of simula-

tions from the computer model result infeasible due to the burden on computational resources. In

this case, the computer model is replaced for a data-driven fast surrogate model which is modeled

as a GP in a similar manner as with Section 5.2.1.

The same definition of the statistical model from Equation (5.13) will be used, however the

computer model component is defined as a surrogate model η and the ith input tuple is denoted as

(x,θ)i = [xi,1, . . . , xi,q, θi,1, . . . , θi,t]
⊤. Hence, the definition yields the next GP,

Y (x,θ) ≡ η (x,θ) ∼ GP (µη, Cη)
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with linear regression mean function

µη = Hη (x,θ)βη (5.20)

where Hη (x,θ) =
[
1,x⊤], and anisotropic stationary squared exponential covariance function

Cη

(
(x,θ)i , (x,θ)j

)
= σ2

η exp (−Qη) (5.21)

where σ2
η is the variance parameter of the computer model and Qη is the spatial similarity map

Qη : X × T → R+ parameterized as

Qη =

q∑
k=1

(
xi,k − xj,k
ω1,k

)2

+
t∑

l=1

(
θi,l − θj,l
ω2,l

)2

with length-scale parameters ω1 = {ω1,1, . . . , ω1,q} and ω2 = {ω2,1, . . . , ω2,t}.

In order to first build the surrogate model, a simulation dataset of size N will be collected in

the form of

Xη =



(x1,θ)

(x2,θ)

...

(xN ,θ)


, Y =



Y (x1,θ)

Y (x2,θ)

...

Y (xN ,θ)


The discrepancy function from Equation (5.13) is defined similarly as with the Direct Model

case, δ (·) ∼ GP (µδ, Cδ), with

µδ (x) = Hδ (x)βδ (5.22)

where Hδ (x) =
[
1,x⊤], and Cδ is an anisotropic stationary squared exponential covariance func-

tion defined by

Cδ (xi,xj) = σ2
δ exp (−Qδ) (5.23)
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where σ2
δ is the variance parameter of the process and Qδ is the similarity metric

Qδ =

q∑
k=1

(
xi,k − xj,k
ω3,k

)2

with length-scale parameters ω3 = {ω3,1, . . . , ω3,q}.

The error term is again i.i.d. ϵ (x) ∼ N(0, τ 2), and consequently, the complete model is fully

defined by the set of hyperparameters

Ω =
{
θ,βη,βδ, σ

2
η, σ

2
δ ,ω1,ω2,ω3, τ

2
}

In order to fully define the statistical model, the experimental dataset of size n is defined (and

collected) as

X =



x⊤
1

x⊤
2

...

x⊤
n


, Z =



Z (x1)

Z (x2)

...

Z (xn)


and the complete data is aggregated and arranged as

D =

 Y

Z


and yield the likelihood function in the next equation:

p (D|Xη,X,Ω) ∼ NN+n (Hβ,Σ) (5.24)

where

β =

 β⊤
η

β⊤
δ


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H =

 Hη (Xη) 0

Hη (X,θ) Hδ (X)



Σ =

 Cη (Xη,Xη) Cη (Xη, (X,θ))

Cη ((X,θ) ,Xη) τ 2In + Cη ((X,θ) , (X,θ)) + Cδ (X,X)


The parameters are estimated under a Bayesian procedure, and thus, prior distributions for the

hyperparameters are selected as:

p (θ1) ∼ U(0, 0.1)

p (θ2) ∼ U(0, 100)

p (θ3) ∼ U(0, 1000)

p (βη,j) ∼ U(−∞,∞)

p (βδ,j) ∼ U(−∞,∞)

p
(
σ2
η

)
∼ IG (2, 1)

p
(
σ2
δ

)
∼ IG (2, 1)

p (ωi,j) ∼ U(0,∞)∀i ∈ {1, 2, 3}

p
(
τ 2
)
∼ IG (2, 0.2)

which follow same guidelines as with the previous case.

The posteriors distributions of hyperparameter set Ω can be calculated via MCMC algorithms,

and special importance is given to those posterior estimates for calibration parameters θ. Further-

more, the calibrated model can then be used in a prediction stage following the predictive posterior

distribution:

p (Z0|D,Xη,X,X0,Ω) ∼ Nn0 (µ0,Σ0)
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where

µ0 = h (X0,θ)
⊤ β̂ + c1 (X0,θ)

⊤Σ−1
(
D−Hβ̂

)
(5.25)

Σ0 = Cη ((X0,θ) , (X0,θ)) + Cδ (X0,X0)

− c1 (X0,θ)
⊤Σ−1c1 (X0,θ) + c2 (X0,θ)

⊤Wc2 (X0,θ) (5.26)

for unseen input dataset X0 where

h (X0,θ) =

[
Hη (X0,θ) Hδ (X0)

]⊤
c1 (X0,θ) =

[
Cη ((X0,θ) ,Xη) Cη ((X0,θ) , (X,θ)) + Ceta (X0,X)

]⊤
c2 (X0,θ) = h (X0,θ)−H⊤Σ−1c1 (X0,θ)

W =
(
H⊤Σ−1H

)−1

β̂ = WH⊤Σ−1D

Before the estimation phase, the simulation dataset Y was collected and consisted ofN = 3025

simulations was collected via a LHS design, while the experimental dataset was the same as in the

Direct Model calibration (n = 31 data points for training and n0 = 5 as test set).

MCMC was used for posterior distribution estimation and followed the same procedure as

for the previous case: 15,000 iterations with 25% burn-in period and thinning set to every fifth

iteration. The posterior distributions for the calibration parameters are shown in Figure 5.14 and

their values are presented in Table 5.4. By inspecting the obtained posterior distributions, we see

some differences from those obtained using Direct Model calibration. The distribution of θ1 is an

informative bimodal behavior with two distinctive peaks. The distribution of θ2 is skewed to the

left, in contrast to the direct calibration case, and the distribution of θ3 shows similar uninformative

behavior to the direct calibration case.

The bimodal nature of θ1 is most likely a result of the inability of the surrogate model to directly
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Figure 5.14: Histograms and kernel density estimates of the posterior distribution for calibra-
tion parameters in Surrogate Model calibration. (a) Intefacial energy. Reprinted with permission
from [140]. (b) Diffusion correction prefactor. Reprinted with permission from [140]. (c) Diffu-
sion correction activation. Reprinted with permission from [140].
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Table 5.4: Estimates for calibration parameters via Surrogate Model calibration. Reprinted with
permission from [140].

Parameter Mean Mode St. Dev.

Interfacial energy θ1 0.0401 0.0197 and 0.0544 0.0173

Diffusion correction prefactor θ2 44.9248 20.0463 27.4283

Diffusion correction activation θ3 512.0809 969.1429 294.1693

compare initial and final nickel content of the matrix, which is used as a sanity check in the direct

model. To elaborate on this, note that while the surrogate model is to replace the computer model,

it does not capture any physics, and thus does not recognize that cases where the initial and final

nickel content are identical should be discarded.

The explanation of θ2 and θ3 distributions remains essentially the same for the Surrogate Model

as it was for the Direct Model case. These two parameters are correction factors and as such have

no direct physical connection. All that can be said is that the mean and mode values seen in Fig-

ure 5.14 will result in physically realistic diffusion coefficient and activation energy values. Again,

these two distributions are broader because they influence later stages of the precipitate evolution

which have less of an impact on overall precipitate morphology than early stage parameters like θ1.

To analyze the performance of the Surrogate Model, we run a 10-fold CV procedure over the

3025 simulation datapoints and visually present in Figure 5.15a. It is easy to see that most blue

circles are over the ideal line, with some scattered points off of the red line. The average deviation

from the ideal line is MAPE10CV = 0.0661%at.Ni, which further confirms the results that the

surrogate model adequately captures the behavior of the computer model.

In regards to the calibrate model via Surrogate Model calibration, a performance analysis iden-

tical to the Direct Model case was also executed, where predictions on the test set were calculated

and compared to the actual observed values. These results are presented in Figure 5.15b, and nu-

merically, the average deviation is MAPEsur = 0.0456%at.Ni, which is an acceptable result given

all the experimental uncertainties in these types of studies.
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Figure 5.15: Performance of the calibrated model on the test set via Surrogate Model calibration.
(a) 10-fold CV of the Surrogate Model. Reprinted with permission from [140]. (b) Validation of
the calibrated model on test set. Reprinted with permission from [140].

The numerical results from both approaches are quite interesting given the fact that the Sur-

rogate Model calibration outperforms the Direct Model calibration when MAPE is used as per-

formance metric. If in turn, we use RMSPE (square root from Equation (A.9)), it results that

RMSPEdir = 0.0656%at.Ni and RMSPEsur = 0.0675%at.Ni, and in this case, the Direct Model

calibration outperforms the Surrogate Model calibration. This is due to the fact that MSPE penal-

izes more to large errors (i.e., large deviations from the ideal line), and this means that on average,

the Surrogate Model calculates predictions that are off the red line in a higher magnitude than

those from the Direct Model. Nevertheless, both errors show an acceptable result confirming the

validation of both calibration models.

In the next section, a generalization of this problem into a multivariate setting will be presented

to calibrate a thermal model.

5.4 Multivariate Statistical Calibration of a Finite Element Thermal Model

In this section, the objective is to statistically calibrate a three-dimensional FEM-based L-PBF

thermal model implemented to study melt pool characteristics, including geometry and thermal
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profiles, during the fabrication of single tracks printed on a thin layer of powder on top of a solid

substrate. In this model, the powder layer is assumed to be a continuum medium over thick sub-

strate, and hence, it corresponds to a continuum-scale model as explained in Section 2.1.3. The

model was developed in the Department of Materials Science and Engineering at Texas A&M

University, and consequently, it will be referred as the TAMU thermal model henceforth.

Specifically, the present model accounts for several heat transfer mechanisms that take place

during L-PBF like conduction, convection, radiation, phase transitions (namely, solid-to-liquid

and liquid-to-gas transitions), latent heat of melting/evaporation, temperature dependent material

properties, and the effective thermo-physical properties for the powder layer were considered.

Furthermore, heat loss due to evaporation was incorporated by employing a simple approach based

on the implementation of a heat sink on the powder surface. The laser beam was defined as a

two-dimensional Gaussian distributed moving heat source, and natural convection, radiation and

evaporation were employed as boundary conditions on the powder surface, while a symmetry

boundary condition was applied along the scanning path to reduce the computational cost.

Since the TAMU thermal model takes different physical mechanisms into account, there are

multiple materials parameters that influence the model results, and thus, the predictive capabilities

of the model. After preliminary simulation experiments, the following parameters were identified

as most significant on variability in model outputs: laser absorptivity, powder-bed porosity and

thermal conductivity of the liquid.

It is known that the laser absorptivity is a function of temperature and has different values for

powder, solid and liquid materials. There are several factors (e.g., beam intensity, wavelength,

temperature, oxidation, powder size and distribution) affecting the absorptivity of the material.

Therefore, it is difficult to experimentally measure it. Note that while low values of absorptivity

result in insufficient energy input and incomplete melting of the powder particles, very high values

lead to overheating of the particles, hence, over estimation of the melt pool size. Moreover, powder

porosity is used as an input to predict the effective thermo-physical properties (thermal conduc-

tivity, density, heat capacity) of the powder layer. Therefore, it has a significant influence on the
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predicted thermal distribution. Considering the aforementioned aspects, a need for the calibration

of these three parameters was realized.

The definitions from last section are maintained for control inputs x ∈ X ⊆ Rq and calibration

parameters θ ∈ T ⊆ Rt, however the calibration problem is now formulated to a multivariate

setting, and thus its mathematical formulation is

Z (x) = Y (x,θ⋆) + δ (x) + ϵ (x) (5.27)

where Z (x) ∈ Z ⊆ Rd is an experimental observation producing d different QoIs at a given

control input x, Y (x,θ) ∈ Y ⊆ Rd is a computer model simulation that returns d QoIs resulting

from evaluation at control inputs x and calibration parameters θ, δ (·) is a discrepancy or model

inadequacy function whose role is to account for the missing physics in the computer model, and

ϵ (·) is the observation or measurement error.

In terms of the TAMU thermal model, the corresponding inputs and outputs under investigation

are the following:

• Control Inputs x:

– Laser power [W].

– Scanning speed [mm/s].

• Calibration parameters θ:

– Powder-bed porosity [%].

– Laser absorptivity [%].

– Coefficient of thermal conductivity for liquid [W/m ·K].

• Outputs of the computer model Y (x,θ) and the process Z (x)

– Melt pool depth [µm].

– Melt pool width [µm].
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Figure 5.16: Simulation sample from the TAMU thermal model showing melt pool temperature
profiles.

– Melt pool peak temperature [◦C].

Furthermore, the model simulates the fabrication of 3mm single tracks, with powder layer

simulated as a 30 µm continuum medium over a 1mm thick substrate both made of Ti-6Al-4V

alloy. To ensure accurate analysis, a fine mesh element was used for the laser-powder interaction

zones, while a coarser element was employed for the rest of the simulation domain. Second-order

quadrilateral Lagrange elements were used for the entire domain, while the 30 µm fine elements

were found suitable for the powder-bed based on the mesh convergence analysis. Figure 5.16

shows a sample output of the model with melt pool temperature profiles.

Since the TAMU thermal model is computationally expensive, the multivariate statistical cali-

bration framework will only be presented for the Surrogate Model case. Furthermore, the frame-

work will be split into two subsections: first the construction of the multivariate surrogate model

will be explained, and then the calibration procedure will be presented.

5.4.1 Surrogate Model

Similar to Sections 5.2 and 5.3, the construction of the surrogate model will be based on GP

modeling techniques (generalized to a multivariate space in this case) presented on Section 3.3.1.

The modeling methodologies in this section are based on the work of Conti and O’Hagan [152].

Therefore, the computer model is replaced by a multivariate GP-based surrogate model in Equa-
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tion (5.27), using a separable model formulation:

Y (x,θ) ≡ η (x,θ) ∼ GPd (µη, rηΛη)

with Λη ∈ Rd,d
+ .

For the formulation of the GP functions, the ith tuple is denoted as (x,θ)i = [xi,1, . . . , xi,q, θi,1,

. . . , θi,t]
⊤ and the mean function is assumed as linear regression

µη = B⊤
ηHη (x,θ) (5.28)

where Hη : X × T → Rm is a function that maps the input spaces to m basis functions, and is

chosen to be Hη (x,θ) =
[
1,x⊤,θ⊤

]
. The matrix of coefficients is Bη =

[
β1, . . . ,βq

]
∈ Rm,d.

The correlation function is an anisotropic stationary squared exponential correlation function

rη

(
(x,θ)i , (x,θ)j

)
= exp

[
−
(
(x,θ)i − (x,θ)j

)⊤
Ψη

(
(x,θ)i − (x,θ)j

)]
(5.29)

where Ψη = diag
(
ψη

)
is a diagonal matrix of positive roughness parameters withψη = [ψ1, . . . , ψq,

ψq+1, . . . , ψq+t] ∈ Rq+t
+ . These roughness parameters are the inverse of length-scale parameters

used in Sections 5.2 and 5.3 and explain the smoothness of the GP model. Therefore, the complete

surrogate model is fully defined by the set of hyperparameters

Ωη = {Bη,Λη,Ψη}

In order to build the surrogate model, a simulation dataset of size N will be collected in the

form of

Xη =



(x1,θ)

(x2,θ)

...

(xN ,θ)


, Y =



Y (x1,θ)

Y (x2,θ)

...

Y (xN ,θ)


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and will yield the following likelihood function for the surrogate model:

p (Y|Xη,Ωη) ∼ NN,d (Mη,R⊗Λη) (5.30)

where

Mη = µη (Xη)

R = rη (Xη,Xη)

The hyperparameter set Ω can be then estimated through a Bayesian approach and MCMC

algorithms, however Conti and O’Hagan [152] showed that after integrating out hyperparameters

Bη and Λη from Equation (5.30), the conditional predictive posterior distribution of surrogate

model follows a N0 × d dimensional matrix-variate T distribution for some unseen dataset Xη,0

with N0 datapoints::

p (Y0|Y,Xη,Xη,0,Ψη) ∼ TN0,d

(
M⋆

η,R
⋆
η ⊗ Λ̂η, N −m

)
(5.31)

with N −m degrees of freedom (denotes as dof henceforth), and

M⋆
η = µ⋆

η (Xη,0) (5.32)

R⋆
η = r⋆η (Xη,0,Xη,0) (5.33)

Hη = Hη (Xη)

B̂η =
(
H⊤

η R
−1Hη

)−1
H⊤

η R
−1Y

Λ̂η = (N −m)−1
(
Y−HηB̂η

)⊤
R−1

(
Y−HηB̂η

)

where

µ⋆
η (x,θ) = B̂⊤

ηHη (x,θ) +
(
Y−HηB̂η

)⊤
R−1rη (Xη, (x,θ)) (5.34)
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r⋆η

(
(x,θ)i , (x,θ)j

)
= rη

(
(x,θ)i , (x,θ)j

)
− rη ((x,θ)i ,Xη)R

−1rη

(
Xη, (x,θ)j

)
+ [S (x,θ)i]

⊤ (
H⊤

η R
−1Hη

)−1
[
S (x,θ)j

]
(5.35)

S (x,θ) = Hη (x,θ)−H⊤
η R

−1rη (Xη, (x,θ)) (5.36)

Lastly, it only remains to estimate roughness parameters ψη in order to have a complete de-

fined T distribution from Equations (5.31) to (5.33) which can then be used as a fast multivariate

surrogate model for the TAMU thermal model. The estimation of these parameters is achieved by

Bayesian means, whose conditional posterior distribution after proper integration is given by [152]:

p
(
ψη

∣∣Y,Xη

)
∝ |R|−

d
2

∣∣H⊤
η R

−1Hη

∣∣− d
2
∣∣Y⊤GY

∣∣−N−m
2 p

(
ψη

)
(5.37)

with

G = R−1 −R−1Hη

(
H⊤

η R
−1Hη

)−1
H⊤

η R
−1

and i.i.d. ψi parameters with log-logistic prior distribution

p (ψi) ∼ Log Logistic (1, 1)∀i ∈ {1, . . . , q + t}

To build the surrogate model, a training dataset from the original TAMU thermal model is

sampled using a LHS strategy to uniformly select design points from the control input and cali-

bration parameters space. The lower and upper bounds for the control input space X was chosen

as Xmin = {30W, 80mm/s}, and Xmax = {500W, 400mm/s}. These bounds were determined

based on prior knowledge of the commercial metal L-PBF system specifications presented in

Section 3.4. The lower and upper bounds for the calibration parameter space were chosen as

Tmin = {20%, 40%, 1W/m ·K} and Tmax = {70%, 90%, 25W/m ·K}. These bounds were specified

by the AM researchers based on previous values reported in the literature to construct an initial

region within which the true values of θ are believed to lie.

A simulation data set of size N = 130 was acquired with simulations ranging from 30 minutes
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Table 5.5: Numerical results for validation of the multivariate Surrogate Model via 10-fold CV.

Melt pool QoI Simulation Range MAPE MAPE-Sim. Range ratio

Depth 51.3 µm 2.01 µm 4%

Width 147.8 µm 8.05 µm 5%

Peak Temperature 1284K 56.5K 4%

to 5 hours, and thus code parallelization was conducted on a 843-node high-performance super-

computer. Next, a MCMC Bayesian approach was used to estimate the roughness parameters ψη

on Equation (5.37) with 50,000 MCMC iterations, 25% burn-in period and thinning every fifth

sample. Figure 5.17 shows the histograms and kernel density estimates of the posterior distri-

butions for these hyperparameters. Since resulting posterior distributions are very informative,

their modes were used as the estimates for the roughness parameters on the surrogate model from

Equations (5.31) to (5.33).

Finally, 10-fold CV was performed to validate and assess the performance of the surrogate

model and the results are displayed in Figures 5.18a to 5.18c corresponding to the three model

outputs: melt pool depth, width, and peak temperature, respectively. In the plots, the horizontal

axes represent the outputs of the computer simulation model, while the vertical axes show the

predicted outputs using the surrogate model with the bars representing confidence intervals for

these predictions. In other words, the red line represents the ideal case with surrogate model

predictions being in full agreement with computer model simulations.

It can be visually seen that the predictive performance of the surrogate model is satisfactory.

For a quantitative assessment, the computed MAPE values for the three outputs are reported in Ta-

ble 5.5, also indicating satisfactory performance. Next, the validated surrogate model is employed

into the calibration framework from Equation (5.27).
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Figure 5.17: Histograms and kernel density estimates of the posterior distributions for roughness
parameters of Surrogate Model.
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Figure 5.18: Validation of the multivariate Surrogate Model trained with simulations from the
TAMU thermal model via 10-fold CV. (a) Validation of melt pool depth. (b) Validation of melt
pool width. (c) Validation of melt pool peak temperature.
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5.4.2 Calibration Model

Once the surrogate model has been adequately constructed, it can now be used in lieu of the the

original computer model in Equation (5.27) to generate sufficiently large number of simulations

needed to conduct calibration of parameters θ. Some of the steps in developing the following

calibration procedure follow the work of Bhat et al. [153].

The definitions for discrepancy function δ and error term ϵwill take similar approaches as with

their counterparts from last section generalized onto a multivariate stage. The discrepancy function

is a d-dimensional GP, δ (·) ∼ GPd (µδ, rδΛδ) with a constant mean function equal to

µδ (x) = 0 (5.38)

(note it returns a vector of d zeros) and anisotropic stationary squared exponential correlation

function

rδ (xi,xj) = exp
[
− (xi − xj)

⊤Φδ (xi − xj)
]

(5.39)

where Φδ = diag (ϕδ) is a diagonal matrix of positive roughness parameters with ϕδ = [ϕ1, . . . ,

ϕq] ∈ Rq
+, and Λδ = diag (σδ) is a diagonal matrix with positive variances σδ = [σ1, . . . , σd] ∈

Rd
+ denoting the correlation between model outputs.

The measurement error term is also modeled as a multivariate d-dimensional GP, ϵ (·) ∼

GPd (µϵ, rϵΛϵ), with mean function equal to

µϵ (x) = 0 (5.40)

and correlation function given by the Kronecker delta function

rϵ (xi,xj) =


1 if xi = xj

0 if xi ̸= xj

(5.41)
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Figure 5.19: Approximation of T probability distributions to a normal distribution by variation of
their degrees of freedom.

and noise matrix Λϵ = diag (τ ϵ) with positive noise variances τ ϵ = [τ1, . . . , τd] ∈ Rd
+.

Notice that up to this point, the definitions of the components in Equation (5.27) involve that

the model results from the summation of three multivariate random processes: a T Process from

the Surrogate Model, and two GPs from the discrepancy and the error functions. Thus, the mul-

tivariate T process is approximated to a GP, so that this mentioned summation in the RHS of

Equation (5.27) becomes another GP thanks to the property of addition of statistically independent

Gaussian random variables [154]. This approximation can be justified by using an analogous case

in a univariate setting as shown in Figure 5.19. The plot presents several univariate T distributions

with different dof, in addition to a standard Normal distribution, and it can be seen that as the value

of dof increases (values larger than 10), the T distributions approximate perfectly to the standard

Normal distribution. Therefore, if a T distribution is defined with dof equal to N −m with N > m

for some N,m ∈ N, then it can be approximated to a Normal distribution as long as the value

N − m is relatively large. This is the case specially in the current context where the size of the

training dataset for surrogate model N is relative larger than the dimension m from the mean func-

tion linear regression from Equation (5.28). Therefore, with this approximation, the calibration

model is fully defined by the set of hyperparameters Ω = {θ,ϕδ,σδ, τ ϵ}
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In order to build the calibration model, the experimental dataset of size n will be collected and

denoted as

X =



x⊤
1

x⊤
2

...

x⊤
n


, Z =



Z (x1)

Z (x2)

...

Z (xn)


However for implementation purposes, the datasets will be rearranged by stacking each vector

Z (xi) and forming a single column vector with length n·d, which result in the following likelihood

function given the definitions (and approximation) for the components in Equation (5.27):

p (Z|Y,Xη,X,Ω) ∼ Nn·d (M,Σ) (5.42)

where

Z = [Z1,1, . . . , Z1,d, Z2,1, . . . , Z2,d, . . . , Zn,1, . . . , Zn,d]
⊤ ∈ Rn·d

M =
[
µ⋆
η (X,θ)

]⊤ ∈ Rn·d

Σ = Rη ⊗ Λ̂η +Rδ ⊗Λδ +Rϵ ⊗Λϵ ∈ Rn·d,n·d
+

Rη = r⋆η ((X,θ) , (X,θ)) ∈ Rn,n
+

Rδ = rδ (X,X) ∈ Rn,n
+

Rϵ = rϵ (X,X) ∈ Rn,n
+

The parameters are estimated under a Bayesian procedure, and thus, prior distributions for the

hyperparameters are selected as:

p (θi) ∼ U(Tmin,i, Tmax,i)∀i ∈ {1, . . . , t}

p (ϕi) ∼ Log Logistic (1, 1)∀i ∈ {1, . . . , q}
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p (σi) ∼ IG (2, 1)∀i ∈ {1, . . . , d}

p (τi) ∼ IG (2, 1)∀i ∈ {1, . . . , d}

which follow same guidelines as with the previous case. Priors for the calibration parameters θi

are all uniform and hence non-informative to avoid bias in estimation, and since no information

beyond the suggested lower and upper bounds were available. For the roughness parameters ϕi,

log-logistic priors were used as recommended by [152]. For the variance parameters σi and τi,

inverse gamma priors are selected because they represent conjugate priors for the multivariate

normal likelihood function in Equation (5.42).

The posteriors distributions of hyperparameter set Ω can be calculated via MCMC algorithms,

and special importance is given to those posterior estimates for calibration parameters θ. Further-

more, the calibrated model can then be used in a prediction stage following the predictive posterior

distribution for unseen input dataset X0:

p (Z0|Z,Y,Xη,X,X0,Ωη,Ω) ∼ Nn0 (µ0,Σ0) (5.43)

where the mean vector is given by

µ0 = M0 +ΣpredΣ
−1 (Z−M) (5.44)

with

M0 =
[
µ⋆
η (X0, θ)

]⊤ ∈ Rn0·d

Σpred = Rη,0 ⊗ Λ̂η +Rδ,0 ⊗Λδ ∈ Rn0·d,n·d

Rη,0 =
[
r⋆η ((X0,θ) , (X,θ))

]
∈ Rn0,n

Rδ,0 = [rδ (X0,X)] ∈ Rn0,n
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and cross-covariance matrix

Σ0 = Σcal −ΣpredΣ
−1Σ⊤

pred (5.45)

where

Σcal = Rη,1 ⊗ Λ̂η +Rδ,1 ⊗Λδ +Rϵ,1 ⊗Λϵ ∈ Rn0·d,n0·d

Rη,1 =
[
r⋆η ((X0,θ) , (X0,θ))

]
∈ Rn0,n0

Rδ,1 = [rδ (X0,X0)] ∈ Rn0,n0

Rϵ,1 = [rϵ (X0,X0)] ∈ Rn0,n0

The final stage prior to fit the calibration model is the collection of the experimental dataset.

A total of n = 24 different configurations of x were determined following a LHS design. Single

tracks of length 20mm were fabricated on a 30 µm powder-bed using the L-PBF system explained

in Section 3.4. The raw Ti-6Al-4V powder was produced by LPW Technology and the single tracks

were printed on a substrate made of Ti-6Al-4V as well. The single tracks were subsequently cut

at 4 different points along their length with a Buehler precision saw and mounted for cross-section

analysis. Metallographic grinding was performed with silicon carbide papers (320 to 600 grit size)

followed by manual polishing with 1 µm diamond suspension and final precision polishing with

colloidal silica suspension. To make melt pool boundary lines more visible, chemical etching was

performed using a 3:1 volume mixture of HCl and HNO3 solution.

Melt pool depth and width were then measured using optical microscopy (Nikon Optiphot

- POL) and verified with scanning electron microscopy (FEG-SEM/FIB TESCAN LYRA3). A

sample SEM image used for measuring the melt pool depth and width is shown in Figure 5.20.

Micrographs were taken at all 4 cross sections for each single track, and their average is used in

dataset Z in order to fit the statistical calibration model.

Regarding peak temperature, experimental measurements for this QoI were taken using the

pyrometer that was customized and installed into the L-PBF system. Section 3.4 presents more

details about the pyrometer’s specifications, field of view, and data samples.
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Figure 5.20: SEM image of a L-PBF single-track cross section used to measure melt pool depth
and width.

Table 5.6: Estimates of the calibration parameters for the TAMU thermal model.

Calibration Parameter Mean Mode Std. Dev.

Powder-bed porosity, θ1 0.423 0.400 0.112

Laser absorptivity, θ2 0.782 0.782 0.066

Coefficient of thermal conductivity of the liquid, θ3 6.727 6.709 0.922

Similar to the Surrogate Model, a Bayesian procedure through MCMC was used to compute

the posterior distributions for the hyperparameter set Ω. Figure 5.21 shows the histograms and

kernel density estimates for these parameters after 100,000 MCMC iterations with 25% burn-in

period and thinning every fifth sample. In the plots, unimodal and well-informative posteriors are

observed for all of the calibration parameters with θ1 and θ3 showing symmetric density functions

and θ2 showing a density function skewed to the right. Table 5.6 reports the posterior mean, mode,

and standard deviation for the posterior distributions of the calibration parameters.

Porosity, θ1, is used to calculate the effective thermo-physical properties of the powder-bed

(i.e., thermal conductivity and density). It was observed during simulations that by changing the

porosity from 0.3 to 0.5 the thermal conductivity of the powder changes up to 2W/m ·K, which leads

to an insignificant change in the thermal history and only a few microns change in the melt pool

size. Thus, by considering the variability in experimental measurements for melt pool dimensions,
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Figure 5.21: Histograms and kernel density estimates of the posterior distribution for calibra-
tion parameters for the TAMU thermal model. (a) Powder-bed porosity. (b) Laser absorptivity.
(c) Thermal conductivity of the liquid.
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this change becomes negligible, and the wide nature of the posterior distribution for θ1 is physically

consistent. Furthermore, a posterior mean of 0.423% is reasonable since it agrees with the reported

range of porosity for similar powder sizes and layer thicknesses, see [139, 155].

The posterior distribution of absorptivity (θ2) shows a more informative posterior distribution

with mean of 0.782. This value demonstrates reasonable agreement with reported experimental

results in the literature [156, 157]. However, considering the difficulties associated with experi-

mentally measuring absorptivity due to its dependence on multiple parameters (i.e., wavelength,

temperature, oxidation, powder size, powder distribution, powder porosity), these experimental re-

sults might involve high uncertainty. Therefore, the estimated distribution for absorptivity is confi-

dently consistent with the underlying physical phenomena controlling the interactions between the

laser and the powder bed.

The narrow range of the posterior distribution of θ3 can be attributed to its significant effect

on the thermal profile and the melt pool size. A unit increase in the liquid thermal conductivity

coefficient might lead to a change on the order of 100K in the thermal history and in a change

between 5 µm to 10 µm in the melt pool size. Additionally, if extremely high values are used for

this parameter, the applied energy would be rapidly transferred to the surroundings and the energy

input will reduce, thus the melt pool peak temperature would decrease in an unrealistic manner.

Therefore, only a small region of this parameter results in physically meaningful simulations,

explaining the narrow posterior distribution.

Next, we use the predictive distribution from Equations (5.43) to (5.45) to assess the perfor-

mance of the calibrated model via a 6-fold cross validation. Figure 5.22 displays the results of the

6-fold cross validation for each of the three QoIs. In the plots, the horizontal axes represent exper-

imental measurements, while the vertical axes are the predicted outputs using the calibrated model

with the bars representing the confidence intervals for the predictions. In other words, each point

on the plots compares the experiment versus the calibrated model prediction, and the red straight

line is a reference line representing ideal predictions.

Upon visual inspection, the plots qualitatively show acceptable predictive performance for melt
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Figure 5.22: Validation of the calibration framework for the TAMU thermal model simulations
via 6-fold CV. (a) Validation of melt pool depth. (b) Validation of melt pool width. (c) Validation
of melt pool peak temperature.
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Table 5.7: Numerical results for validation of the calibrated TAMU thermal model via 6-fold CV.

Melt pool QoI MAPE MAPE-Sim. Range ratio

Depth 2.42 µm 5%

Width 4.93 µm 3%

Peak Temperature 159.5K 12%

pool depth and melt pool width, but less accurate for predictions of peak temperature, particularly

in the case with too low and too high values. Quantitatively, the error metric MAPE for each out-

put are reported in Table 5.7. Note that MAPE for melt pool depth and width are relatively low

compared to the full range of simulations: 5% and 3%, respectively. Hence, these results show

that the calibration model is effectively correcting the simulation model output when using Equa-

tion (5.43). However, the predictions for melt pool peak temperature show a higher value of MAPE

(12% of the simulation range) compared to the predictions for melt pool depth and width. This

might be due to the inherent high uncertainty associated with experimental temperature measure-

ments using contactless temperature measurement through pyrometry [158]. The uncertainty in the

temperature data can be measured by computing its standard deviation, which is equal to 3.03 µm,

8.14 µm, and 306.3 ◦C, respectively for melt pool depth, width and peak temperature. Therefore,

the relative high value for standard deviation for the data of peak temperature could likely be the

explanation for the high MAPE value associated with the predictions.

This concludes the main body of the dissertation which dealt with presenting different settings

where application of UQ methodologies into L-PBF problems improved the understanding, appli-

cability, usability, and qualifications of the process. In the last chapter, a summary of implications,

conclusions and future work remarks will be presented since UQ research in L-PBF processes is

of paramount importance for the technology to mature into a competitive stage.
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6. SUMMARY

6.1 Contributions of the Dissertation

At the culmination of this dissertation, new insights about the L-PBF process have been learned

through the application of formal UQ methodologies which help on the further development of this

manufacturing technology. In particular, the following contributions resulted as consequence of the

dissertation:

• Increase in the understanding about presence of porosity within printed parts as a function

of processing parameters. This will provide guidance and direction on how to avoid certain

processing parameters or design parts that are required to have a certain level of porosity

within their structure.

• Ability to implement and build surrogate models in order to replace computational resource-

intensive L-PBF simulation models. This will provide practical capabilities for accomplish-

ing high-level optimization of the L-PBF process while still make use of simulations and

insights that computational models provide.

• Increase in the understanding of L-PBF thermal behavior by identification of processing

windows for conduction mode and keyhole melting controlled regimes as functions of pro-

cessing parameters. These windows will provide guidance and direction on how to avoid

specific regimes during design and fabrication of parts as well as ensure better part quality.

• Enable utilization of ICME platforms by formal statistical calibration and validation of dif-

ferent L-PBF computer models. This will increase the applicability of these models as re-

sources for researchers and practitioners to be used during part design and fabrication.

• Quantification of the uncertainty initiated from different processing parameters and prop-

agated into several L-PBF QoIs. The characterization of this uncertain behavior will con-
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tribute to the researchers and practitioners towards understanding issues about repeatability

in L-PBF.

• Identification and quantification of the influence of different processing parameters in melt

pool characteristics. This will provide insights on how and what parameter (or combination

of parameters) to focus on at the design phase of the manufacturing process.

• The generalization of different UQ methodologies into multivariate cases will expand the

applicability of these types of methodologies to a more broad range of fields, even outside of

L-PBF or AM, since multivariate approaches increase the robustness of the analysis in any

application due to the inclusion of different statistical correlations between model outputs as

well as between model inputs.

6.2 Conclusions of the Dissertation

Despite the current poor understanding of different physical phenomena occurring during the

L-PBF AM processes and the low repeatability achieved by this technologies, researchers and

scientists have not directed their focus towards the existing research gap involving formal analysis

of uncertainty in these processes.

In this dissertation, a systematic application of UQ methodologies is proposed and successfully

implemented to different QoIs in order to improve understanding of the L-PBF manufacturing pro-

cess, assess and quantify uncertainty from different sources, and reduce them by taking educated

decisions based on the results from the application of these UQ tools.

A variety of methodologies and procedures are employed throughout this dissertation, which

derive from scientific fields comprising applied Mathematics, Statistics, Probability, Data Science

and Machine Learning. Specifically, popular statistical models are used to conduct several stud-

ies on different L-PBF QoIs, these include Gaussian Processes, generalized Polynomial Chaos

Expansions and Global Sensitivity Analysis, which have a history of proven success in previous

applications to several other fields of study.

Furthermore, applicability and usability of UQ approaches are clearly defined for both lines of
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research in L-PBF: computer models or experimental work. These UQ frameworks are formally

and successfully validated, and hence, the reader and the L-PBF community in general are recom-

mended to make use of these available tools for their respective research and work. In turn, this

will help L-PBF AM technologies to be seen more appealing and competitive when compared to

traditional methods and eventually be regarded as the main manufacturing solution for industry,

governments and academia.

6.3 Directions for Future Research

There are several opportunities and directions for future work involving L-PBF processes.

These new directions involve both application of UQ methodologies as well as new paths towards

increasing understanding and control of the process. One of the primary focus of future research

is a complete multi-model ICME platform of L-PBF by coupling different physics-based mod-

els. In layman’s terms, it is desired to understand the behavior across L-PBF, where the output

from one model represents the input to another model throughout the AM process chain. These

series of models will account different scales within the process, and the objective is to be able

to go from manufacturing processing parameters to microstructure evolution and mechanical per-

formance predictions while quantifying uncertainty in parallel. This type of analysis about uncer-

tainty through coupled physics-based models is a crucial topic towards accelerating qualification

and certification of AM-fabricated parts.

Furthermore, application of UQ methodologies for L-PBF will benefit from spatial-temporal

analysis in a multivariate framework since the L-PBF process is dynamic and constantly changing

due to the very rapid physics within its operating principle. Therefore, methodologies that in-

clude time series analysis along different scales of the process are attractive research paths for the

community. Additionally, adaptive sampling techniques to accelerate and improve the predictive

performance of the statistical models will also be beneficial in order to optimize the amount of data

(from expensive experiments or costly simulation runs) required to fit and validate these statistical

models.

Finally, since experimental measurements will always be necessary to formally validate the-
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ories and hypotheses, development on measurement instruments centered towards L-PBF appli-

cations are required to improve research techniques and capabilities, accuracy in validations and

predictions, or for smarter process control, automation, monitoring and quality control.
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APPENDIX A

STATISTICAL CONCEPTS

A.1 Probability Distributions Functions

This section presents the probability distributions of different random variables that were em-

ployed along this work to avoid subjectivities due to re-parameterizations frequently used by other

authors.

• Continuous Uniform distribution

– Notation: U(a, b), where a is the lower bound and b is the upper bound.

– Formula:

p (x) =


1

b−a
forx ∈ [a, b]

0 otherwise

(A.1)

where x ∈ [a, b], a ∈ R, b ∈ R, a < b.

• Univariate Normal distribution

– Notation: N(µ, σ2), where µ is the mean and σ2 is the variance.

– Formula:

p (x) =
1√
2πσ2

exp

[
− 1

2σ2
(x− µ)2

]
(A.2)

where x ∈ R, µ ∈ R, σ2 > 0.

• Multivariate Normal distribution

– Notation: Nq (µ,Σ), where µ is the mean vector, Σ is the covariance matrix and q is

the dimensionality of the distribution.

– Formula:

p (x) = |2πΣ|−
1
2 exp

[
−1

2
(x− µ)⊤Σ−1 (x− µ)

]
(A.3)
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where x ∈ Rq, µ ∈ Rq, Σ ∈ Rq,q
+ .

• Gamma distribution

– Notation: Gamma (α, β), where α is the shape parameter and β is the rate parameter.

– Formula:

p (x) =
βα

Γ (α)
xα−1 exp (−βx) (A.4)

where x ∈ (0,∞), α > 0, β > 0.

• Inverse Gamma distribution

– Notation: IG (α, β), where α is the shape parameter and β is the scale parameter.

– Formula:

p (x) =
βα

Γ (α)
x−α−1 exp

(
−β
x

)
(A.5)

where x ∈ (0,∞), α > 0, β > 0.

• Beta distribution

– Notation: Beta (α, β), where α and β are shape parameters.

– Formula:

p (x) =
Γ (α + β)

Γ (α) Γ (β)
xα−1 (1− x)β−1 (A.6)

where x ∈ [0, 1], α > 0, β > 0.

• Log Logistic distribution

– Notation: Log Logistic (α, β), where α is the scale parameter and β is the shape pa-

rameter.

– Formula:

p (x) =

(
β
α

) (
x
α

)β−1(
1 +

(
x
α

)β)2 (A.7)

where x ∈ [0,∞), α > 0, β > 0.
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A.2 Bayesian Statistics

The present dissertation relies heavily in a variety of frameworks and tools developed in aca-

demic disciplines like math, statistics, machine learning and data science/analytics. One of the key

fields employed throughout this dissertation is based on Bayesian methods, since these are tools

that provide the following [159]:

• Parameter estimates with good statistical properties

• Parsimonious descriptions of observed data

• Predictions for missing data and forecasts of future data

• Computational framework for model estimation, selection and validation

Bayesian inference is set around Bayes’ rule,

p (A|B) =
p (A,B)

p (B)

=
p (B|A) p (A)∫

A p (B|A) p (A) dA

∝ p (B|A) p (A) (A.8)

which measures the degree of belief of event A before and after accounting for evidence from

event B.

Under these settings, p (A), called the prior, is the initial belief or knowledge of event A prior

to any new evidence or observations. Next, p (B|A) is the likelihood function which represents the

probability of observing event B given that A is true. Finally, the posterior probability p (A|B) is

the degree of belief of event A after having accounted for evidence from B.

In our general problem context, we are interested on estimation or inference of general charac-

teristics of a population (parameters) based on a subset of members of that population (parameters

inferred from data) [159]. In this case, domain Y is the set of all possible datasets, from which
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a single dataset Y will result, and the parameter space Θ is the set of possible parameter values,

from which we want to identify the value θ that best represents the population [159].

Therefore, based on Equation (A.8), we want to update our beliefs about parameter θ after

having observed dataset Y in addition with some prior knowledge about them. Then, the posterior

distribution is

p (θ|Y) = p (Y|θ) p (θ)∫
Θ
p
(
Y
∣∣∣θ̃) p(θ̃) dθ̃

∝ p (Y|θ) p (θ)

which can be calculated in closed form if the integral in the denominator can be evaluated, or

numerically using MCMC algorithms (see Appendix B).

A.3 Cross Validation Procedures

Performance and predictive capabilities of a statistical (or machine learning) model may be

numerically assessed by different metrics along with a Cross Validation (CV) procedure. In this

procedure, datapoints used to estimate the parameters of the statistical model are denoted as train-

ing dataset. A frequent approach is to keep out of training a portion of the observed dataset, denote

this portion as test dataset, and use it to test the prediction accuracy of the statistical model by

comparing its predictions to the actual observed values.

The most common technique for cross validation is called k-fold cross validation, which is an

iterative procedure whereby the entire dataset is randomly partitioned into k disjoint subsets of

approximately the same size. The statistical model is then trained with all but one subset, which

is kept out as the test dataset. This process is then repeated until all k subsets have been left out

once, and then the resulting prediction errors are evaluated. A special case is when k = n, called

Leave-One-Out (LOO) CV, where the model is trained with all but one data point at each iteration.

Two metrics are popular measures of performance among the statistics/data analytics fields:

mean squared predictive error (MSPE) and mean absolute predictive error (MAPE):
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MSPE =
1

n

n∑
i=1

(
Y

(obs)
i − Y (pred)

i

)2

(A.9)

MAPE =
1

n

n∑
i=1

∣∣∣Y (obs)
i − Y (pred)

i

∣∣∣ (A.10)

where Y (obs)
i is the ith observation and Y (pred)

i is the corresponding ith prediction from the model

at the same set of inputs xi, and since they are usually applied along with CV, this calculations are

done when the ith datapoint was not included within the training set.

This approach is taken in order to fine tune hyperparameters or other design components that

are included within the statistical model formulation, in order to arrive a those settings that make

the statistical model perform the best in presence of the observed data.

If the problem setting is multivariate (Y ∈ Y ⊆ Rd with d > 1), validation metrics from

Equations (A.9) and (A.10) have to be generalized to account all different outputs. Two solutions

can be expanded from these equations, which will be presented for MAPE but can be translated as

well to MSPE:

• Single mean absolute predictive error (MAPEk) that measures the average prediction error

for each QoI,

MAPEk =
1

n

n∑
i=1

∣∣∣Y (obs)
i,k − Y (pred)

i,k

∣∣∣ ∀k ∈ {1, . . . , d} (A.11)

where Yi,k is the kth QoI from the ith observation.

• Aggregated mean absolute predictive error (MAPEL1) that measures the average prediction

error among all QoIs,

MAPEL1 =
1

n

n∑
i=1

∥∥∥Y(obs)
i −Y

(pred)
i

∥∥∥
L1

(A.12)

where the L1-norm for some d-dimensional vector Y is defined as
∑d

k=1 |Yk|.

It has to be noted that when using MAPEL1 , the observation vectors Y should be standardized to
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mean 0 and variance 1 in order to have all QoIs at the same numeric scale such that aggregations

between QoIs are relevant.
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APPENDIX B

MARKOV CHAIN MONTE CARLO ALGORITHMS

Monte Carlo methods are a broad class of computational algorithms that rely on repeated ran-

dom sampling to provide approximate solutions to a variety of problems (physical or mathematical

with or without any probabilistic structure) [160]. Several different algorithms have been devel-

oped to solve different problems, however in this dissertation we will only focus on those that are

needed for general numerical estimation and Bayesian statistical inference.

B.1 Monte Carlo Principle

The Monte Carlo (MC) principle is one of the most popular methods to numerically approxi-

mate probability distributions as well as integrals. The idea is based on the random drawing of N

independent and identically distributed (i.i.d.) samples from a target distribution p (x) defined on a

q-dimensional space X ∈ Rq. The empirical distribution of
{
x(1), . . . ,x(N)

}
is known as a Monte

Carlo approximation to p (x), with

pMC (x) =
1

N

N∑
i=1

1{x=x(i)}
(
x(i)

)
(B.1)

where 1{x=x(i)}
(
x(i)

)
is the indicator function that equals to 1 if x = x(i) and 0 otherwise [159,

161].

Additionally, MC can be used to approximate expectations (or integrals) with N i.i.d. random

samples, since the Law of Large Numbers describe that for (almost) any function g (x), we have

that

1

N

N∑
i=1

g
(
x(i)

) N→∞−→ E [g (x)]

N→∞−→
∫
X
g (x) p (x) dx
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Algorithm B.1 Gibbs Sampler
1: N ← number MCMC iterations
2: B ← Burn-in period
3: T ← Thinning
4: Start with arbitrary point x(0) =

{
x
(0)
1 , . . . , x

(0)
q

}
5: for i← 1 to N do ▷Number of MCMC iterations
6: for all x(i) ∈ x(i) do ▷Iterate over elements of vector x
7: Draw

x
(i)
j ∼ p

(
xj

∣∣∣x(i)1 , x
(i)
2 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
q−1 , x

(i−1)
q

)
8: end for
9: Concatenate sample x(i) ←

{
x
(i)
1 , . . . , x

(i)
q

}
10: end for
11: return

{
x(1), . . . ,x(N)

}
12: Do inference of p (x) with empirical distribution

{
x(B),x(B+T ),x(B+2T ), . . . ,x(N−T ),x(N)

}

since E [g (x)] =
∫
X g (x) p (x) dx, with p (x) known or estimated from Equation (B.1) [159, 161].

B.2 Gibbs Sampler

In this widely used algorithm, the objective is to approximate multivariate probability distri-

butions from which only the full conditional distributions for each element are known. In other

words, for a random vector x = {x1, . . . , xq}, the interest is to approximate its joint probability

distribution, p (x) = p (x1, . . . , xq), with only knowledge and ability to sample from full condi-

tional distributions of the form p (xk|x1, . . . , xk−1, xk+1, . . . , xq) ∀k ∈ {1, . . . , q} [159].

The pseudo-code is presented in Algorithm B.1 for a sequence of N iterations, and it is shown

that for the ith sample within the sequence, x(i) depends on
{
x(0), . . . ,x(i−1)

}
only through x(i−1).

This relationship is called Markov property and that is the reason why these sequences (and hence

the algorithms) are called Markov Chains MC (MCMC) [159].

B.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is the most popular MCMC method [161]. The

objective of this algorithm is to approximate a joint probability distribution p (x) = p (x1, . . . , xq)

by indirect random samples when direct sampling is not feasible (which is usually the case for
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Bayesian posterior distributions). The main idea is to propose samples from a another distribution

and then accept or reject them one element at a time.

Consequently, a proposal distribution needs to be defined for every component of the random

vector x. These proposal distributions can be symmetric distributions, full conditional distribu-

tions, or something else entirely. The interested reader can refer to [159, 161] for more detailed

explanations about this algorithm and the requirements that proposal distributions need to follow

in order to ensure sequence with Markov Chain properties.

Here, the proposal distribution for the jth element of vector x and at the ith MH iteration

is denoted as Jj
(
xj

∣∣∣x(i)1 , . . . , x
(i)
j−1, x

(i−1)
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
. The pseudo-code is presented in

Algorithm B.2.
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Algorithm B.2 Metropolis-Hastings Algorithm
1: N ← number MCMC iterations
2: B ← Burn-in period
3: T ← Thinning
4: Start with arbitrary point x(0) =

{
x
(0)
1 , . . . , x

(0)
q

}
5: for i← 1 to N do ▷Number of MCMC iterations
6: for all x(i) ∈ x(i) do ▷Iterate over elements of vector x
7: Draw

x⋆j ∼ Jj

(
xj

∣∣∣x(i)1 , . . . , x
(i)
j−1, x

(i−1)
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
8: Compute the acceptance ratio

r =
p
(
x
(i)
1 , . . . , x

(i)
j−1, x

⋆
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
p
(
x
(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
×
Jj

(
x
(i−1)
j

∣∣∣x(i)1 , . . . , x
(i)
j−1, x

⋆
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
Jj

(
x⋆j

∣∣∣x(i)1 , . . . , x
(i)
j−1, x

(i−1)
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
9: Draw u ∼ Uniform (0, 1)

10: if u < r then
11: x

(i)
j ← x⋆j

12: else
13: x

(i)
j ← x

(i−1)
j

14: end if
15: end for
16: Concatenate sample x(i) ←

{
x
(i)
1 , . . . , x

(i)
q

}
17: end for
18: return

{
x(1), . . . ,x(N)

}
19: Do inference of p (x) with empirical distribution

{
x(B),x(B+T ),x(B+2T ), . . . ,x(N−T ),x(N)

}
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