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ABSTRACT 

 

Accurate modeling and analysis approaches have long been important concerns 

for designers of rotating machinery. This work is focused on the improvement of high-

fidelity finite element (FE) modeling approaches and software algorithms for analysis of 

a rotor dynamic system that is comprised of rotors, bearings, and support structures. 

First, improved formulations for the axisymmetric solid harmonic FE method are 

developed, which account for the centrifugal stress-stiffening effects and spin-softening 

effects. A thorough comparison of beam-type FE and axisymmetric solid FE is 

conducted based on various non-dimensional rotor topologies. In addition to the 

simulation of rotors, an improved modeling approach is developed to simulate coupled 

rotor-support systems. This modeling approach utilizes multiple-input and multiple-

output (MIMO) transfer functions (TFs) to represent a flexible support structure. The 

TFs are derived by curve-fitting the frequency response functions of the support model 

at bearing locations, and then transform into a state-space model to perform general rotor 

dynamic analyses. Moreover, improvements are made in modeling a rotor system that 

undergoes large support motion. The shaft continuum is discretized with beam FEs and 

connected to the support structure via hydrodynamic journal bearings. The bearing 

forces acting on the rotor are determined by solving the Reynold’s equation for lubricant 

film pressure utilizing a two-dimensional (2D) FE fluid film model. The influences of 

the time-varying parameters and unloaded bearings on the dynamic behavior of the rotor 

system are investigated. 
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This work also contributes to the development of novel centralized impact and 

torsional dampers for suppression of lateral and torsional stick-slip vibrations of 

drillstrings. The rotor model of the drillstring utilizes the beam FEs that account for the 

gravity and axial loading effects on the transverse string stiffness and includes the radial 

and tangential contact forces that occur when the impactors contact the drill collar or 

sub. An improved contact force model containing nonlinear Hertzian contact restoring 

forces and nonlinear, viscous contact damping force is developed, in place of the 

conventional coefficient of restitution (COR) model that cannot provide the required 

normal and tangential contact forces. 
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NOMENCLATURE 

 

𝐴1, 𝐴2 Attachment nodes of bearing 1 and 2 

𝐴𝑒 Element area (𝑚2) 

𝐴𝑠 Area of a shaft segment (𝑚2) 

[𝐵RB], [𝐵RU] Matrices transforming bearing force and unbalanced force acted

 on the rotor from Cartesian coordinates into polar coordinates,  

 respectively 

BHA Bottom Hole Assembly 

BRSSM Beam FE rotor with a solid FE support model 

BW Backward whirl 

[𝐶] Damping matrix 

[𝐶𝑅] Resultant damping matrix of the rotor system 

[𝐶𝑉] Structural damping matrix 

COR Coefficient of Restitution 

CSRSM Complete Solid FE Rotor-Support Model 

𝑐 Damping coefficient (𝑁 ⋅ 𝑠/𝑚) 

𝐷𝑜𝑙, 𝐷𝑜𝑟 Outer diameter of the left and right ends of a step-like shaft, 

respectively 

DA Drilling-Ahead 

DB Drill Bit 

DC Drill Collar 
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DOF Degree of Freedom 

DP Drill Pipe 

𝐸 Modulus of elasticity (𝑁/𝑚) 

𝑒 Base of natural logarithm 

𝑒𝐶𝑂𝑅 Coefficient of restitution 

𝐹 External force (𝑁) 

𝐹̃ Deformation gradient 

𝐹𝐵𝑌, 𝐹𝐵𝑍 Bearing forces in Y  and Z  direction, respectively (𝑁) 

𝐹𝑐 Contact force acting on the drill collar (𝑁) 

𝐹𝑟
𝑦

, 𝐹𝑟
𝑧 Components in Y, Z directions of the radial bearing forces 

translated from the cylindrical coordinates to Cartesian 

coordinates, respectively (𝑁) 

𝐹𝑉 Force per unit volume (𝑁) 

𝐹𝑦, 𝐹𝑧 Bearing forces in Y, Z directions in the Cartesian coordinate 

system, respectively (𝑁) 

𝐹𝑧
+, 𝐹𝑧

− Bearing forces in the circumferential direction and the opposite 

direction in the cylindrical coordinate system, respectively (𝑁) 

FE Finite element 

FEM Finite element method 

FRF Frequency response function 

FW Forward whirl 

{𝑓} External load vector (𝑁) 
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{𝑓𝐵} Bearing force vector (𝑁) 

{𝑓𝑅} External force vector of the rotor 

{𝑓𝑈} Unbalanced force vector (𝑁) 

[𝐺] Gyroscopics matrix 

𝐺𝐴𝑖𝐵𝑗 Frequency response function corresponding to the force acted on 

bearing 𝑗 in 𝐵 direction and the response at bearing 𝑖 in 𝐴 

direction 

[𝐺𝑅] Gyroscopics matrix of the rotor system 

[𝐺(𝑠)] MIMO transfer function matrix 

ℎ Fluid film thickness 

I Second moment of inertia 

𝐼𝑝𝑑 Polar moment of inertia of a disk 

𝐼𝑝𝑠 Polar moment of inertia of a shaft segment 

𝐼𝑡𝑑 Second moment of inertia of a disk 

𝐼𝑡𝑠 Second moment of inertia of a shaft segment 

ID Inner diameter 

𝑖𝑡ℎ/𝑗𝑡ℎ 𝑖𝑡ℎ-order numerator divided by 𝑗𝑡ℎ-order denominator 

𝑗 Imaginary component 

𝐾 Stiffness (𝑁/𝑚) 

[𝐾] Stiffness matrix 

[𝐾𝑅] Resultant stiffness matrix of the rotor system 

[𝐾𝑆] Structural stiffness matrix of the rotor 
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[𝐾𝜎] Centrifugal stress-stiffening matrix of the rotor 

[𝐾𝛺] Spin-softening matrix of the rotor 

𝐿 Shape function of the three-node triangular finite element 

𝑀 Mass (𝑘𝑔 ) 

[𝑀] Mass matrix 

[𝑀𝑅] Resultant mass matrix of the rotor system 

MIMO Multi-input and multi-output 

𝑚 Harmonics number 

𝑚𝑑 Mass of the disk 

[𝑁] Shape function matrix 

𝑁𝑒 Number of nodes within an element 

𝑁𝑚,𝑗 Shape functions 

OD Outer diameter 

PDC Polycrystalline diamond compact 

𝑝 Pressure 

p-p Peak-to-peak 

𝑄𝑉 External load per unit volume 

𝑞 Node displacement/DOF or state variable 

{𝑞} Displacement/DOF vector 

{𝑞𝜎} Displacement/DOF vector due to initial stress (including the stress 

 induced by centrifugal forces) 

𝑅𝐹 Reference frame with respect to the foundation/support structure 



 

 xi 

  

𝑅𝐺  Reference frame with respect to the ground 

𝑅𝑜𝑢𝑡𝑒𝑟, 𝑅𝑖𝑛𝑛𝑒𝑟 Outer and inner radius of the rotor, respectively 

𝑅𝑅 Reference frame with respect to the shaft segment or disk 

RAM Random-Access Memory 

ROB Rotating-Off-Bottom 

RSSM Reduced State-Space Model 

𝑟 Radius 

rpm  Revolutions per minute 

SISO Single-input and single-output 

SRSSM Solid FE rotor with a super-element support model 

𝑠 Complex variable 

TF Transfer Function 

TOB Torque-On-Bit 

TRC Turbomachinery Research Consortium 

𝑈 Strain energy 

𝑈𝐴 Antisymmetric component of displacement 

{𝑈𝑅} Displacement vector of the rotor 

𝑈𝑆 Symmetric component of displacement 

𝑢 Displacement 

𝑢𝑚𝑟 Radial displacement when the harmonics are 𝑚 

𝑢𝑚𝑧 Axial displacement when the harmonics are 𝑚 

𝑢𝑚𝜃 Circumferential displacement when the harmonics are 𝑚 
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𝑢𝑟 Radial displacement (𝑚) 

𝑢𝑧 Axial displacement (𝑚) 

𝑢𝜃 Circumferential displacement (𝑚) 

𝑢0 Displacement in X direction 

𝑉 Volume 

𝑉𝑒 Element volume 

𝑣𝑖 Input impact velocity 

𝑣0 Displacement in Y direction 

WOB Weight-On-Bit 

𝑤0 Displacement in Z direction 

X, Y, Z Cartesian coordinates 

XLTRC2 Rotor dynamics software developed by the Turbomachinery Lab  

 of Texax A&M University  

𝑥𝐹, 𝑦𝐹, 𝑧𝐹 Displacements of the support structure in 𝑥, 𝑦, and 𝑧 directions 

 with respect to 𝑅𝐺  and projected in 𝑅𝐹 

𝑥𝑅, 𝑦𝑅, 𝑧𝑅 displacements of the disk in 𝑥, 𝑦, and 𝑧 directions with respect  

 to 𝑅𝐹 and projected in 𝑅𝐹 

𝑥𝑆, 𝑦𝑆, 𝑧𝑆 displacements of the shaft segment in 𝑥, 𝑦, and 𝑧 directions 

 with respect to 𝑅𝐹 and projected in 𝑅𝐹 

{𝑦} Displacement vector in the Cartesian coordinates (𝑚) 

𝛼 Coefficient for the input impact velocity 
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𝛼𝐹, 𝛽𝐹, 𝛾𝐹 Rotation angle of the support structure about 𝑥, 𝑦, and 𝑧 axes  

 with respect to 𝑅𝐺  and projected in 𝑅𝐹 

𝛼𝑅, 𝛽𝑅, 𝛾𝑅 Rotation angle of the disk about 𝑥, 𝑦, and 𝑧 axes with respect 

 to 𝑅𝐹 and projected in 𝑅𝐹 

𝛼𝑆, 𝛽𝑆, 𝛾𝑆 Rotation angle of the shaft segment about 𝑥, 𝑦, and 𝑧 axes with  

 respect to 𝑅𝐹 and projected in 𝑅𝐹 

𝛿 Interference in impact 

𝛿𝑖𝑗 Kronecker delta 

𝜀̃ Tensor-based strain 

𝜀2 Second order strain 

𝜃 Circumferential angle 

𝜐 Poisson’s ratio 

𝜌 Mass density (𝑘𝑔/𝑚3) 

𝜌𝑠 Mass density of a shaft (𝑘𝑔/𝑚3) 

𝜎0 Initial stress such as centrifugal forces induced stress 

𝜙 Rotational angle 

𝛺 Spin speed of the rotor (𝑟𝑎𝑑/𝑠) 

𝜔 Rotating speed or excitation frequency of the unbalanced force 

(𝑟𝑎𝑑/𝑠) 

𝜔𝐹𝑥, 𝜔𝐹𝑦, 𝜔𝐹𝑧 Rotation speed of the support structure about 𝑥, 𝑦, and 𝑧 axes  

 with respect to 𝑅𝐺  and projected in 𝑅𝐹 
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𝜔𝑅𝑥, 𝜔𝑅𝑦, 𝜔𝑅𝑧 Rotation speed of the disk about 𝑥, 𝑦, and 𝑧 axes with respect 

 to 𝑅𝐹 and projected in 𝑅𝐹 

𝜔𝑆𝑥, 𝜔𝑆𝑦, 𝜔𝑆𝑧 Rotation speed of the shaft segment about 𝑥, 𝑦, and 𝑧 axes with  

 respect to 𝑅𝐹 and projected in 𝑅𝐹 

1D One-Dimensional 

2D Two-Dimensional 

3D Three-Dimensional 

Subscripts 

𝐴 Torsional damper 

𝐵 Bearing 

𝐵1, 𝐵2 Bearing 1 and 2 

𝑒 Eccentricity 

𝐼, 𝐷 Impactor and DC, respectively 

𝑖 Node 𝑖 of an axisymmetric element 

𝑚 Harmonic number 

𝑚𝑆, 𝑚𝐴 Symmetric and anti-symmetric components in 𝑚th harmonics, 

respectively 

𝑃, 𝑄 Contact point of the impactor and DC, respectively 

𝑅 Rotor 

𝑅, 𝐶 Retained and condensed DOFs, respectively 

𝑟, 𝑧, 𝜃 Radial, axial and circumferential directions, respectively 

𝑆 Support structure 
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𝑆, 𝐴 Symmetric and antisymmetric components, respectively 

𝑇 The entire state-space model of the rotor-support system 

𝑡 Tangential direction 

𝑈 Unbalance 

𝑉 Volume 

𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑍𝑌 Refer to 𝑌𝑍 

𝑋, 𝑌, 𝑍 X, Y and Z directions in the Cartesian coordinates, respectively 

𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑧𝑦 Refer to 𝑦𝑧 

𝑌𝑍 Force in Y direction due to the displacement in Z direction in the 

Cartesian coordinates 

𝑦, 𝑧, 𝜑 Y, Z, and torsional directions, respectively 

𝑦𝑧 Force in Y direction due to the displacement in Z direction in the 

Cartesian coordinates 

𝜎 Stress stiffness matrix 

Superscripts 

𝐴1, 𝐴2, 𝐵 Nodes 𝐴1, 𝐴2 and 𝐵 on the rotor, respectively 

𝑒 Elemental matrix/vector/variable 

𝑃 Surface node P in the journal section mesh 

⋅ Derivative of time 

^ In the complex form 

 Vector 
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1. INTRODUCTION 

 

1.1. Background 

Rotor dynamics is a specialized subject dealing with the machinery that has 

rotating structures. These machines are known as rotating machinery. The rotating 

components are defined as rotors, and the stationary parts are referred to as stators. 

Physical dynamic systems like rotating machines are continuous both spatially and 

temporally. The closed-form solutions to the dynamic problems in relation to continuous 

systems are not feasible in many practical applications. Therefore, modeling of the 

dynamic systems like rotating machinery requires good approximations, such as 

discretization in space or transformation from time domain to frequency domain. 

The finite element method (FEM) is a good numerical modeling technique that is 

widely used in many dynamics modeling and analysis areas. But general-purpose FEM 

programs are not adequate for rotor dynamic analysis because the rotor rotates with 

significant angular momentum and complex interactions between the shaft and bearing. 

In order to resolve this problem, a variety of specialized finite element (FE) models are 

developed and applied in the dedicated dynamics software for modeling and analysis of 

various rotating machines. 

The expensive cost of manufacture and maintenance for the high-speed rotating 

machines like gas turbines makes it essential that early-stage designs function as 

intended. This requires the FE models to be more accurate not only in the rotor modeling 

but also in the whole machine system modeling. In recent years, this requirement is 
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becoming feasible owing to the rapid advance in computer techniques and software 

algorithms and continuously improved FE modeling approaches for rotor systems. 

1.1.1. Rotating Machinery 

Rotating machinery is a general term that describes the machines with rotating 

components. In this work, they are referred to as turbomachines that transfer energy 

between fluid and rotor and drillstrings (which will be introduced in Section 1.1.2). The 

applications of turbomachines include steam turbines and compressors in the oil and gas 

industry, gas turbines in the aerospace industry, turbochargers in automobiles, 

centrifuges in medical equipment, etc. 

Modern turbomachines that were manufactured in significant numbers dates back 

to the late nineteenth century. The basic structure of turbomachines consists of shafts, 

disks, blades, bearings, seals, and bearing housing support structures (or foundations). 

Generally speaking, a shaft with disks and blades (also called blisks) is considered to be 

a rotor and is supported by the bearings that are mounted in the support structures or 

foundations. In regard to turbines, the fluids like pressurized gas or steam move through 

the blades and drive the shaft to rotate, transforming thermal energy into mechanical 

energy. As for compressors, the shaft rotates and pressurizes the fluids. 

The clearance between the rotor and fluid film bearing is extremely small (on a 

scale of several mils) for achieving high bearing capacity. The gaps between the blade 

tip or impeller edge and the casing are also small compared to the dimensions of the 

shaft. Hence, large vibrations are one of the major causes for machine failure. To avoid 

the human injury caused by the failure and enormous cost on the machine repair, 
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engineers should design rotating machinery based on an in-depth understanding of rotor 

dynamics and better use software to model and analyze the dynamic behaviors of the 

machines. The modeling approaches for rotating machinery are being improved 

concurrently with the enhancement of computer performance. The latest improvements 

of rotor dynamic modeling and analysis are presented in this work. 

1.1.2. Drillstring 

As mentioned in Section 1.1.1, drillstrings can be categorized as low-speed 

rotating machines. As shown in Figure 1, a conventional drillstring is basically a long 

rotating pipe hoisted by a vertical drilling rig. The drillstring is usually composed of a 

drill bit (DB), and several drill pipes (DPs) and drill collars (DCs). The DB normally 

consists of a steel body and three rotating parts with steel or carbide inserts teeth that can 

break up rocks. Some new types of DBs like the one with polycrystalline diamond 

compact (PDC) bits do not have the rotating components but are more capable of 

crushing rocks by using artificial diamond cutters. The DPs are basically slender tubes 

with joints at the end to connect two tubular sections. The DCs are made up of the steel 

tubes of larger thickness than the DP, in order to apply more weight on the DB for 

achieving a higher rate of penetration (ROP). The bottom hole assembly (BHA), which 

consists of the DCs including subs like stabilizers, DB, motors and some measurement 

equipment, is the lowest part of the drillstring in a well and helps to control the drilling 

direction and borehole shape. 
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Figure 1. Drilling rig. Adapted from Ref. [1]. 

 

Although many dynamic characteristics of drillstrings are different from those of 

turbomachines, many principles and analysis approaches in rotor dynamics can be used 

to study drillstring vibrations. Violent drillstring vibrations in a well, including torsional 

stick slip and lateral whirl vibrations, may cause premature failure of tubulars and DBs 

and damage to the borehole wall. In addition, these vibrations may result in an 

inefficient drilling process with excessive trips to replace worn DBs.  

Some approaches that utilize an elastomer and viscous fluid-based damper have 

been applied to mitigate lateral vibrations. However, typical fluid dampers vary viscosity 
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radically with working temperature, which may lead to inefficient damping in higher 

temperatures (>120°C). But this is not the primary concern in industry since there are 

very few high-temperature wells currently being drilled. In the harsh deep well 

environment exposed to oil and water (or moisture), the combined effects of oxidization, 

swelling and degradation due to age and chemical reactants on the elastomer may result 

in the premature ineffectiveness of the elastomer damper. Therefore, novel centralized 

impact dampers and torsional vibration dampers, which will function well in the harsh 

environment in the well due to their all-metal construction, are developed for 

suppression of lateral and torsional stick-slip vibrations. 

1.2. Literature Review 

1.2.1. Rotor modeling 

Accurate prediction of resonant critical speeds in rotating machinery has long 

been an important concern for designers of turbomachinery. Historically, multi-station 

rotors were originally modeled with transfer matric methods [2, 3]. This approach has 

been for the most part replaced with the use of the FEM due to the increased speed of 

computers and development of highly efficient algorithms for solving FE equations. FE 

modelling approaches for rotor dynamic response have used both Euler-Bernoulli and 

Timoshenko beam elements. 

McVaugh and Nelson [4] have developed a general cylindrical rotating shaft 

model using beam elements and including gyroscopic effects, rotary inertia and axial 

loads. This was subsequently extended by Nelson [5] to include the shear deformation 

and torque effects. Thomas, et al. [6] considered conical shaft sections and utilized two 
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additional coordinates at the element ends to improve the modelling of shear 

deformation. On the basis of their work, Rouch and Kao [7] developed linearly tapered 

beam elements by applying numerical integration to derive element matrices. In order to 

use closed form expressions rather than numerical integration, Greenhill et al. [8] 

employed the kinematic representation of Thomas, et al. [6] and derived closed form 

polynomial expressions for element matrices. A shear deflection factor is employed in 

their work to assess the effect of cross-section shape on shear deformation. 

The basic beam assumption that plane sections remain plane after deformation is 

made for any beam element formulation. The deformations that violate this assumption 

are considered as non-beam deformations. In most cases, shafts have small bending 

displacements compared to the length, and the plane sections after deformation may be 

approximated to be plane. Hence, it has been generally believed that the aforementioned 

beam FE models are sophisticated and are able to yield acceptable results. However, a 

rising number of shafts with complex shapes are designed for modern turbomachinery, 

and as such, the beam assumption may be violated at sections with large diameter 

changes, which has been verified by Stephenson et al. [9]. Besides, a shaft that is 

composed of hollow conical segments may not be precisely modeled with beam 

elements due to distortions occurring at the hollow conical sections. Vest and Darlow 

[10] came up with correction factors to include the effect of distortions on the beam 

stiffness. However, this approach is limited to certain cases and is unable to precisely 

predict a wide range of natural frequencies. 
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An alternative approach, which differs from applying various correction factors 

to beam FE formulations, has been developed by Stephenson et al. [11]. They utilized 

solid harmonic elements to model axisymmetric shafts and extended the formulations to 

include gyroscopic effects based on the work of Cook [12] and Geradin and Kill [13]. 

Greenhill and Lease [14] investigated the influences of disk flexibility and locations on 

the rotor system by using axisymmetric solid harmonic elements, but they did not 

consider the centrifugal stress-stiffening and spin-softening effects. With regard to 

support boundary conditions, Stephenson et al. [11] mentioned that it is reasonable to 

apply bearing stiffness and damping to the outer surface node of a shaft, but they neither 

specified how to include these coefficients in the shaft matrices nor validated this point 

of view. 

As disks in modern design of some high-speed turbomachines are becoming 

thinner and more flexible, additional attention may be required for both centrifugal 

stress-stiffening and spin-softening effects. Cook et al. [12] derived equations in the 

Cartesian coordinate system to interpret initial stress phenomena. However, their method 

cannot be directly applied in the axisymmetric FE rotor model on account of rotor 

rotation and the different definition of the Cartesian and cylindrical coordinate systems. 

The centrifugal stress-stiffening and spin-softening effects have not been adequately 

addressed in the rotor dynamics literature. Combescure and Lazarus [15] provided an 

axisymmetric FE model in the rotating frame to study the centrifugal stress-stiffening 

effects. Although they presented a general equation of motion including the centrifugal 

stress-stiffening and spin-softening effects, they did not provide detailed FE matrices 
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and a procedure to implement their formulation. In addition, their axisymmetric FE 

model is in the rotating frame, which has limited applications. 

A solid FE model may produce thousands more of DOFs than a beam FE model, 

and it is thus required that the matrices should be reduced for the purpose of saving 

computational resources. Stephenson et al. [11] have successfully applied the Guyan 

reduction method [16] to the shaft axisymmetric FE model, but they mentioned that it 

was up to the analyst how to select master DOFs. Three-dimensional (3D) solid FE 

models have been presented in [17-19]. However, either the rotor was modeled with 

respect to the rotating reference frame or the bearing stiffness and damping coefficients 

was treated as symmetric in horizontal and vertical directions. An automatic master 

DOFs selection algorithm that utilizes main diagonal terms of stiffness and mass 

matrices to retain DOFs was provided in [20]. 

1.2.2. Support structure modeling 

In addition to shafts and disks, support structures may be flexible as well due to 

lightweight design of rotating machinery. The effect of the flexible support on the rotor 

system may be significant per the investigation results reported in Refs. [21-24]. Except 

for the beam frame structures that can be modeled with 3D beam FEs, most flexible 

support structures are modeled with 3D solid elements. Although it is viable to use a 

complete solid FE model including the rotor and support structures to perform rotor 

dynamic analysis, especially at the design stage, it may require a large amount of 

computational resources and simulation time. A remedy for this is to model the support 

structures with super-elements, which condenses the internal degrees of freedom (DOFs) 
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but retains the DOFs of the attachment nodes that connect the rotor and support 

substructures through the bearings [12, 25]. 

In comparison with the solid FE and super-element models, an experimental 

approach is to obtain the frequency-dependent stiffness and damping of the support 

structure by measuring the frequency response functions (FRFs) at the bearings, and then 

include this equivalent physical model of the support structure in the analysis of the rotor 

system [26]. Vázquez and Barrett [27], and Vázquez et al. [28, 29] extracted a series of 

rational TFs from the measured FRFs of the support structure by using identification 

techniques. Both unbalance response and stability analyses of the rotor and support 

structure were accomplished with the TFs in the s-plane. Moore, et al. [30] applied the 

1D beam FE and 3D solid FE in modeling the rotor and housing of a large industrial 

turbocompressor, respectively, and developed point TFs to investigate the effects of the 

housing on the rotor system. In the work by De Santiago and Abraham [31], the power 

turbine that is commonly used in the oil and gas industries as a mechanical driver is 

modeled with solid elements, and the comparison with the complete rotor-support FE 

model shows that the simplified structure model utilizing the support TFs is applicable in 

the rotor dynamic analysis. 

1.2.3. Support motion 

In the conventional rotor dynamic analysis, the foundation or support structure is 

normally assumed to be fixed to the ground. However, turbomachines like compressors 

and gas turbines may be installed in maneuvering aircrafts and ships encountering rough 

seas. In these scenarios, the on-board rotor is subject to large time-varying motions of its 
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support structure. A few researchers [32-36] studied the influences of support motions 

on the rotor system by using the simplified flexible rotor models similar to the Föppl-

Jeffcott rotor model [37, 38]. To provide more accurate modeling approaches, some 

researchers [39-43] presented beam FE based rotor models that account for support 

motion. However, none of these models utilize hydrodynamic fluid film bearing models 

to simulate the interaction between the rotor and the support structure. 

In the aforementioned models that account for support motion, the rotor is either 

assumed to be rigidly connected to the support or connected to the support via a short 

journal bearing model. The former assumption indicates there is no relative motion 

between the rotor and the support. The latter utilizes the short length bearing solutions 

[44, 45] to simulate the bearing forces acting on the rotor. However, the short journal 

bearing model is not accurate in many cases [37, 46, 47]. Most of the hydrodynamic 

fluid film bearings that are widely used in the rotating machinery are fixed-pad and 

tilting-pad journal bearings. Regarding the fixed-pad bearings, a simplified model with 

an extremely thin fluid film between two plane journal segments [37, 48] was utilized to 

apply the Reynolds equation. A specific fluid film 2D FE modeling approach was 

presented in [49]. 

1.2.4. Drillstring vibrations 

Torsional and lateral drillstring vibrations have been investigated by many 

researchers. They borrowed ideas from the fundamentals of the rotor dynamics in order 

to explain the vibration phenomena of the slender beam-like drillstring. As far as 

torsional vibration is concerned, a viable way to avoid deep well environment problems 
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was reported by Jansen and van den Steen [50]. They proposed an active damping 

system above the rotary table and reduced the threshold value for stick-slip by using 

feedback control. Sowers et al. [51] found that a violent whirl occurring at the bit or in 

the BHA may result in large side forces at stabilizers, thereby generating high friction 

torques that lead to stick-slip vibrations. In such situations, they replaced the stabilizers 

with roller reamers to reduce the frictional drag acting at the BHA and eventually 

mitigate the bit whirl. 

Kyllingstad and Halsey [52] used a pendulum model with a single degree-of-

freedom (DOF), in which the drillstring is assumed to be suspended at the hoist/rotary 

table, and applied a constant Coulomb friction torque to the DB during rotation-off-

bottom (ROB) or drilling-ahead (DA) to analyze its stick-slip motion. Jansen and van 

den Steen [50] employed a static-sliding torque model, which is similar to the Coulomb 

friction torque model, and divided the torque-on-bit (TOB) into static and sliding torque 

by assuming that the DB never rotates backwards (i.e., no rolling occurs), and that the 

DP does not come to a complete standstill. Their assumptions are helpful to 

understanding how the stick-slip vibration occurs though the observations in the drilling 

field demonstrate three different types of stick-slip vibrations, i.e., simple speed 

oscillation, full stick, and backward rotation. More comprehensive drillstring models that 

account for multiple types of stick-slip vibrations were investigated in Refs. [53] and 

[54]. 

Although the classic Coulomb (static-sliding) torque model has provided a good 

estimation of torsional vibrations in many cases, Dawson et al. [55] came up with a 
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hypothesis that the torque acting on the DB undergoes a continuous and mild reduction 

with an increasing spin speed. Brett [56] proved by experiment that the PDC bit has the 

characteristic described in Dawson’s et al. hypothesis [55] and is thereby prone to 

causing torsional vibrations. Moreover, the lab measurements presented in his work 

indicated that other types of bits may have the same characteristic (torque reduction with 

an increase in spin speed) as the PDC bit. This velocity-dependent friction torque is 

analogous to the Stribeck friction model in physics. Leine et al. [57] utilized a similar 

torque model, in which the dry friction torque drops with a rising rotary speed, to 

investigate the coupled stick-slip and whirl vibrations. In accordance with Ref. [56], the 

Stribeck torque model is sensitive to the type of DB, the weight-on-bit (WOB), the 

drilling condition, and even the wear of the bit. 

With regard to the lateral whirl of a drillstring, a simplified 2DOFs lateral 

dynamic model of a drillstring has been presented by Jansen [58]. As stated in his paper, 

the lower part of a drillstring (i.e. the DC) is essential for the analysis of whirl motion, 

and the DC section between two stabilizers is analogous to a rotor supported by two 

bearings. Bailey et al. [59] used the transfer function matrices based on the Euler-

Bernoulli beam bending equations to model the DC span (DC section between two 

nearby stabilizers). The boundary conditions were defined in two ways. One is that the 

DC span is pinned at both ends (stabilizers), and the other is that the span has one end 

built-in and the other end free. The same lateral dynamic model of a drillstring and 

boundary conditions was applied in Ref. [60], and the region of parameters for a DC 
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span that contains common spin speeds, span lengths and natural frequencies was also 

provided. The DC used in this work is modeled based on this region of parameters. 

1.2.5. Impact damper 

Impact dampers have long been used to dampen out structural vibrations in 

traffic light poles, turbomachinery blades, machine tools, etc. Moore et al. [61] 

employed a single-DOF impacting model characterized by the COR to simulate the 

collision between an impact damper and an impact housing and then utilized a high 

speed cryogenic rotor-bearing test rig with a multiple-impactor set that consists of 

impact dampers and housings to verify the simulation result that the lateral vibration was 

suppressed by impact dampers. McElhaney et al. [62] presented the mitigation effects of 

cylindrical impact dampers on lateral vibrations at resonances of a rotating shaft. The 

cylindrical impactor was assumed to have planar motions and impact with the housing 

that was connected to the shaft, but the tangential friction between the impactor and 

housing was neglected. The rotating shaft was modeled with multi-DOF (multiple nodes 

with six DOFs per node) beam FEs. The dissipated kinetic energy was characterized by 

the COR. 

The COR is defined as the ratio of relative translational speeds of two bodies 

after and before an impact. According to the earlier measured data that has been 

published in Refs. [63] and [64], the COR of inelastic impact is mainly dependent upon 

the conditions like collision velocity, mass ratio, material properties, and geometry of the 

impactors. In order to account for the velocity-dependent characteristic of inelastic 
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impact, Hunt and Crossley [65] developed a nonlinear damping model based on the 

Kelvin-Voigt viscoelastic model to interpret the COR in vibro-impact. 

1.3. Statement of the Problem 

As discussed in Section 1.1, modern designs of high-speed rotating machinery 

require more accurate models and less simulation time. In regard to a drillstring, which 

is a low-speed rotating machine, innovative solutions are demanded for suppressing 

vibrations in a harsh environment like a deep well. In summary, the problems to resolve 

in the present work are stated below. 

(a) High-fidelity rotor dynamic modeling and analysis approaches are in demand for 

accurate prediction of resonance and critical speed, rotor instability, and unbalanced 

force response of a flexible, spinning rotor with thin-walled shafts or flexible disks. 

When modeling such a rotor, limitations of the commonly used beam FE models 

must be identified in order to avoid significant errors. 

(b) For maneuvering aircrafts and ships, the on-board rotors are subject to large time-

varying support structure motions. Such motions may have a great impact on the 

performance of the hydrodynamic journal bearings, such as inducing large rotor 

vibrations or invoking rotor instability. 

(c) The computation speed of the simulation needs to be enhanced as a high-fidelity 

model requires much more computational resources to solve large matrices than a 

beam FE model. 
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(d) New vibration control devices are needed to suppress drillstring vibrations in deep-

well drilling, in place of the fluid and elastomer dampers that might become 

ineffective due to a harsh deep-well environment. 

1.4. Contributions 

The contributions of this work aim to:  

(a) Develop an enhanced axisymmetric FE formulation of the centrifugal stress-

stiffening and spin-softening effects and integrate the formulation into the 

axisymmetric solid FE modeling of a flexible, spinning rotor. Then compare beam 

FE and axisymmetric FE natural frequencies, mode shapes and critical speeds and 

identify rotor geometries where the beam model yields significant error. Finally, 

provide limitations of beam FE models and guidance for utilizing axisymmetric solid 

FE models in rotor dynamic simulations.  

(b) Improve the accuracy of the beam FE model of a rotor undergoing large support 

structure motions by integrating a high-fidelity hydrodynamic journal bearing FE 

model, and then provide analysis and solutions for the instability problem of an on-

board rotor system. 

(c) Develop a MIMO transfer-function modeling approach for simulating a complete 

rotor-bearing-support system with a lower cost of computational resources (less 

computation time, RAM, and overall simulation time). 

(d) Develop novel centralized impact dampers and torsional dampers for suppressing 

drillstring vibrations, and provide modeling approaches and design guidelines. 
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In addition to the theoretical formulation and analysis, a stand-alone rotor 

dynamics software, in which the unique formulations and software algorithms developed 

in the work are built in, is developed for research and industry applications.  

The contributions summarized above are further explained below. 

1.4.1. Improved axisymmetric FE modeling of flexible rotor 

The axisymmetric solid harmonic FE formulation of a flexible, spinning rotor 

with thin-walled shafts or flexible disks is improved by including both centrifugal stress-

stiffening and spin-softening effects. Furthermore, a new way of bearing attachment is 

developed especially for a thin-walled shaft FE model, which is more accurate than the 

conventional way in the regard of resonance prediction. This is the first time that 

detailed FE matrices of the centrifugal stress-stiffening and spin-softening effects and 

novel bearing attachment fit for a thin-walled shaft are presented. The development of 

rotor dynamics software for academic research and industry applications can greatly 

benefit from the formulations and matrices. The influences of thin-walled shafts and 

flexible disks on the rotor system are investigated. The conclusions drawn from 

numerous simulation results and analyses provide designers and engineers with 

guidelines on when and how to use an axisymmetric FE model instead of a beam FE 

model for rotor dynamic analysis. 

1.4.2. Improved modeling of rotor undergoing support motion 

An improved modeling approach utilizing the Timoshenko beam FE is developed 

to simulate a rotor system with flexible shafts on hydrodynamic journal bearings 

undergoing large support motion. This is the first time that a hydrodynamic fluid film 
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journal bearing 2D FE model, instead of a short journal bearing model or linear bearing 

coefficients, has been integrated into a flexible rotor system under large support motion. 

The influences of support motions on the rotor stability are studied. The conclusions 

based on numerous nonlinear transient analyses not only address the rotor instability 

problem but also provide remedies for the on-board rotor instability caused by support 

motions. 

1.4.3. Improved MIMO transfer-function modeling of support structure 

An alternative modeling approach for a complete rotor-support system is 

developed. The approach takes advantage of both axisymmetric solid FE rotor model 

(accurate prediction of the dynamics of a rotor with complex shapes) and simplified 

support structure model utilizing the MIMO support TFs (reduction of the computation 

time and requirement for computational resources). The shaft with multiple flexible 

disks is modeled using the improved axisymmetric solid harmonic FE method. The 

flexible support structure, including the bearing housing and foundation is represented 

by the MIMO TFs. The TF matrix is further transformed into a state-space support 

model that connects the rotor FE model via bearing forces. Guidance is provided for 

selecting an adequate polynomial degree of the TFs. 

The previous work completed by other researchers did not include the state-space 

form that represents the complete rotor-bearing-support system. They either did not 

conduct stability analysis [27] or utilized the s-plane to perform stability analysis. 

However, none of them provided detailed approaches to calculate the real components of 

the complex eigenvalues of the rotor system [27-29]. 
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To validate the proposed approach, a comprehensive comparison between the 

complete solid FE rotor-support model (CSRSM) and the reduced state-space model 

(RSSM) is presented. Additionally, the modes up to 100,000 cpm are compared among 

the super-element, beam element, and RSSM. 

1.4.4. Development of impact and torsional dampers for drillstrings 

In addition to the improved FE modeling of rotating machinery, the novelty of 

this work includes the development of the centralized impact dampers and torsional 

dampers. These dampers, when properly designed and installed, are able to attenuate 

lateral vibration of the drillstring that operates close to the bending critical speeds and 

the stick-slip torsional vibration within the operating speed range.  

A Timoshenko beam FE model, which accounts for gyroscopics, rotary inertia 

and shear deformations, is employed, though the shear deformations may be negligible 

due to a large ratio of beam length to diameter. Additionally, the stress-stiffening effects 

are included to account for the influences of gravity and axial loading on transverse 

string stiffness. As previously stated, stick-slip is too complex to perfectly describe by 

using a single model, and thereby, both Coulomb and Stribeck torque models are 

employed to validate the mitigation effects of the impact and torsional dampers. The 

vibro-impact model developed in Ref. [65] is employed to simulate the translational 

collision between the DC and impactor, and the tangential friction in between is also 

taken into account. In order to provide guidance for acquiring stronger suppression 

effects on the drillstring vibration, various design parameters of the impactors and 

torsional damper are analyzed and compared. 
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1.5. Dissertation Outline 

Chapter 2 presents various FE modeling approaches that are applicable in the 

rotating machinery modeling, including the beam FE, axisymmetric solid FE, 3D solid 

FE, and fluid film 2D FE methods. A specific formulation of both centrifugal stress-

stiffening and spin-softening effects and noval bearing attachment approach are 

developed, in order to enhance the accuracy of the axisymmetric FE method for flexible 

rotors with thin-walled shafts and flexible disks. The chapter also clarifies how to use 

these FE methods to model hydrodynamic journal bearings and flexible support 

structures. Moreover, a new modeling approach that utilizes the MIMO TFs and state 

space to represent flexible support structures are developed. In regard to support motion, 

a systematic modeling approach based on the Timoshenko beam element is presented. 

Chapter 3 shows the beam FE modeling of a rotating drillstring with the 

centralized impact dampers and torsional dampers that are installed in the DC. Nonlinear 

Hertzian contact restoring forces and nonlinear, viscous contact damping force are 

included in the impact model, and both Coulomb torque and Stribeck torque models are 

considered. 

In Chapter 4, the modeling approach proposed in Chapter 2, i.e. utilizing MIMO 

TFs and state space to represent the support structure, is validated by a comprehensive 

comparison with the complete solid FE rotor system. Comparisons are made between 

critical speeds, logarithmic decrements, unbalanced responses, computation speeds, and 

high-frequency modes. 
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Chapter 5 conducts parametric studies using the axisymmetric solid harmonic FE 

modeling approach proposed in Chapter 2, and investigates not only the individual 

influences of either thin-walled shafts or flexible disks but also the combined influences 

of both shafts and disks on the rotor system. A discussion and guidance are provided on 

proper attachment of the bearing stiffness and damping to a thin-walled shaft mode. 

Various combinations of thin-walled shafts and flexible disks are modeled, and the 

influences of the flexibility of the shaft and disk on the accuracy of the resonance 

prediction are investigated. 

Chapter 6 is focused on the nonlinear dynamic analysis of rotor-bearing systems 

under large support motion. The beam FE modeling approach presented in Chapter 2 is 

utilized to model a flexible rotor on hydrodynamic journal bearings and a moving 

support structure. Pitch motions of a support structure with different types of 

hydrodynamic journal bearings are studied. The impact of the support pitch on rotor 

stability and relavant remedies for rotor instability induced by the support motion are 

studied. 

Chapter 7 presents a dynamic model of a drillstring with the centralized impact 

dampers and torsional dampers that are developed in Chapter 3. A thorough 

investigation of the suppression effects of these dampers on lateral and stick-slip 

vibrations of the drillstring is conducted in both ROB and DA conditions. 

Chapter 8 firstly summarizes the modeling approaches that are developed or 

improved in this work, then draws conclusions from numerous simulations and analyses, 
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and finally proposes future work for the continuous development of the FE modeling 

approaches for rotating machinery. 

The specific matrices and equations that are derived to improve the rotating 

machinery modeling are provided in the appendices. 
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2. IMPROVED FINITE ELEMENT MODELING OF ROTATING MACHINERY 

 

In this chapter, a few FE methods that are widely used for rotating machinery 

modeling are presented. Improvements on those FE methods are proposed. 

 Beam Element Modeling of Rotors 

The Timoshenko beam element model developed by Nelson [5] is specialized for 

slender beam-like shafts. The specialty of the rotor dynamic beam model that differs 

from the general beam model in structural dynamics lies in that the gyroscopic effects 

are included. However, Nelson’s model [5] only contains eight DOFs for each element, 

namely 𝑢𝑦1, 𝑢𝑧1, 𝜃𝑦1, 𝜃𝑧1, 𝑢𝑦2, 𝑢𝑧2, 𝜃𝑦2, and 𝜃𝑧2. To extend that model, two rotational 

and two axial DOFs are added, with the final DOF vector {𝑢} written as, 

{𝑢} = [𝑢𝑥1,  𝑢𝑦1,  𝑢𝑧1,  𝜃𝑥1, 𝜃𝑦1,  𝜃𝑧1,  𝑢𝑥2,  𝑢𝑦2, 𝑢𝑧2,  𝜃𝑥2,  𝜃𝑦2, 𝜃𝑧2]
𝑇  (1) 

where 𝑢 and 𝜃 represent the translational and rotational displacements, respectively, and 

the subscripts  𝑥, 𝑦, 𝑧 indicate the X, Y, and Z directions, respectively. Figure 2 shows 

the beam element model employed in this work. 

 

 

 

 

___________________________________________________________________ 

* Part of this chapter is reprinted with permission from “Solid Element Rotordynamic Modeling 

of a Rotor on a Flexible Support Structure Utilizing Multiple-Input and Multiple-Output Support 

Transfer Functions” by Hu, L., and Palazzolo, A., 2016, Journal of Engineering for Gas Turbines 

and Power, 139(1), 012503, Copyright 2016 by ASME. 
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Figure 2. Timoshenko beam element model. 

 

The kinetic energy including torsional and axial motions may be expressed as, 

𝑇𝑒 =
1

2
∫ (𝜌𝐴𝑒(𝑢̇𝑥

2 + 𝑢̇𝑦
2 + 𝑢̇𝑧

2) + 𝐼𝑡(𝜃̇𝑦
2 + 𝜃̇𝑧

2))
𝐿𝑒

0
𝑑𝑥 −

1

2
∫ (𝐼𝑝(𝜔 + 𝜃̇𝑥)(𝜃𝑦𝜃̇𝑧 −
𝐿𝑒

0

𝜃𝑧𝜃̇𝑦) − 𝐼𝑝(𝜔 + 𝜃̇𝑥)
2
)𝑑𝑥       (2) 

where 𝐿𝑒, 𝐴𝑒, 𝐼𝑡, 𝐼𝑝, 𝑢 and 𝜃 represent the length, cross-section area, moment of inertia, 

polar moment of inertia, translational displacements and rotational displacements per 

unit length of an element, respectively. 
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The elastic potential energy including torsional and axial displacements may be 

written as, 

𝑈𝑒 =
1

2
∫ 𝐸𝐼 ((

∂𝜃𝑦

∂𝑥
)
2

+ (
∂𝜃𝑧

∂𝑥
)
2

)
𝐿𝑒

0
𝑑𝑥 +

1

2
∫ 𝐸𝐴𝑒
𝐿𝑒

0
(
∂𝑢𝑥

∂𝑥
) 𝑑𝑥 +

1

2
∫ 𝜅𝐺𝐴𝑒 ((

∂𝑢𝑦

∂𝑥
− 𝜃𝑧)

2

+
𝐿𝑒

0

(
∂𝑢𝑧
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+ 𝜃𝑦)

2

) 𝑑𝑥 +
1

2
∫ 𝐺𝐼𝑝
𝐿𝑒

0
(
∂𝜃𝑥

∂𝑥
)
2

𝑑𝑥        (3) 

where 𝐸 is the elastic modulus, 𝐼 the area moment of inertia, 𝐺 the shear modulus, and 𝜅 

the shear form factor. 

In order to derive the equation of motion for the shaft element, the Lagrange’s 

equation is applied to 𝑇𝑒 and 𝑈𝑒. Specific matrices for the Timoshenko bean element 

can be found in [5, 66]. 

 Axisymmetric Solid Element Modeling of Rotors 

Extreme performance and efficiency requirements demand modern rotor designs 

to be lighter-weight and operate at increasingly higher speeds. This may require shafts to 

have complex thin-wall and thin-disk designs and to operate through more resonant 

speeds. Active magnetic bearing mounted machinery is also increasing, which requires 

careful design of modes well above the operating speed to maintain stable levitation 

control. Those evolving requirements may not be adequately met by beam FE models 

and instead require more general solid FE models. The axisymmetric solid harmonic FE 

model is a good replacement of beam FE models. Generally speaking, the axisymmetric 

element is one type of the solid elements that can fill a 3D space. The only limitation is 

that the 3D space must be axisymmetric. Shaft warping and flexural disk modes, which 

cannot be modeled with beam elements due to violation of the beam assumption, can be 
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modeled using axisymmetric elements. This yields higher accuracy for rotor dynamic 

response prediction. The present paper provides theoretical development and numerical 

examples for an extended axisymmetric solid harmonic element especially useful for 

high-fidelity modeling of flexible rotors with shafts, disks, and general bearings. 

2.2.1. Theory and basic formulation 

As pointed out in [12, 67, 68], a 3D axisymmetric structure can be formed by 

rotating the longitudinal semi-section plane about the axis of symmetry. Furthermore, 

the rotor displacements of the longitudinal semi-section plane can be expanded 

circumferentially using the Fourier series in the angle taken about the axis of symmetry. 

That being said, a 2D plane mesh filled with axisymmetric elements can represent a 3D 

rotor. More details are given in [12, 67]. 

In the present work, the longitudinal semi-section region of a rotor is filled with 

linear triangle elements in order to cover irregularly shaped areas. Just to clarify, the 

methodology of the axisymmetric FE formulation presented here is applicable not only 

to the triangle element type but also to other axisymmetric element types. As is shown in 

Figure 3, the shaded area with nodes 1, 2 and 3 represents the three-node triangular 

element. The displacements of each element are attained through the superposition of 

both symmetric and antisymmetric components at all harmonics, which may be 

expressed as, 

{𝑈𝑅
𝑒} = [

𝑢𝑟
𝑢𝑧
𝑢𝜃
] = [

∑ (𝑈𝑚𝑟𝑆 𝑐𝑜𝑠(𝑚𝜃) + 𝑈𝑚𝑟𝐴 𝑠𝑖𝑛(𝑚𝜃))
∞
𝑚=0

∑ (𝑈𝑚𝑧𝑆 𝑐𝑜𝑠(𝑚𝜃) + 𝑈𝑚𝑧𝐴 𝑠𝑖𝑛(𝑚𝜃))
∞
𝑚=0

∑ (𝑈𝑚𝜃𝑆 𝑠𝑖𝑛(𝑚𝜃) − 𝑈𝑚𝜃𝐴 𝑐𝑜𝑠(𝑚𝜃))
∞
𝑚=0

]    (4) 
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where 𝑢𝑟, 𝑢𝑧 and 𝑢𝜃 represent the radial, axial and circumferential displacements, 

respectively. 𝑈𝑚𝑖𝑗 with 𝑖= 𝑟, 𝑧, 𝜃 representing the radial, axial, or circumferential 

displacement component and 𝑗= 𝑆, 𝐴 representing the symmetric or antisymmetric 

displacement component is the node degree-of-freedom (DOF) of an element for the 𝑚th 

harmonics.  

 

 

Figure 3. Solid of revolution based on three-node triangular axisymmetric 

elements. Reprinted from Ref. [69]. 

 

Then element displacements {𝑈𝑅
𝑒} can be further approximated by, 

{𝑈𝑅
𝑒} = [𝑁]{𝑞𝑒}       (5) 

where the node DOF vector of the element, {𝑞𝑒}, and the corresponding shape function, 

[𝑁], can be found in [11, 14]. 

The harmonics of interest in this work are 𝑚=0, 1, 2. The zeroth order harmonics 

contribute to a radial expansion 𝑢0, an axial displacement 𝑣0, and a torsional rotation 𝑤0. 

Both first and second order harmonics describe the displacements in the 𝑌𝑍 plane and 
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the rotations about the 𝑋. axis of the finite element. Below are the two reasons to set 

𝑚=0, 1, 2. Firstly, extensive numerical tests have shown that including higher 

harmonics, above 2, significantly increases computation time, but yields little in terms of 

increased accuracy of rotor dynamic analysis [9, 12, 25]. Secondly, although the first 

order harmonics are the only harmonics of interest for a shaft in purely lateral bending 

scenarios [9, 14], this may be insufficient in the case of thin-walled shafts as thin-walled 

structures are prone to warping. A flexible disk may have local flexural modes below the 

critical speeds, which requires an axisymmetric FE model with higher harmonics. 

Therefore, the second order harmonics representing the local modes that are uncoupled 

from the lateral modes of the shaft are employed. In addition, the zeroth order harmonics 

are included in order to account for the centrifugal stress-stiffening effects. 

The axisymmetric FE rotor model can be obtained by assembling the equations 

of motion of all elements. The equation of motion for an individual axisymmetric 

element may be expressed as, 

[𝑀𝑅
𝑒]{𝑈̈𝑅

𝑒} + [𝐶𝑅
𝑒]{𝑈̇𝑅

𝑒} + [𝐾𝑅
𝑒]{𝑈𝑅

𝑒} = {𝑓𝑅
𝑒}      (6) 

where [𝑀𝑅
𝑒], [𝐶𝑅

𝑒] and [𝐾𝑅
𝑒] represent the total mass, damping and stiffness matrices of 

the rotor element, respectively. {𝑓𝑅
𝑒} is the external force vector. {𝑈𝑅

𝑒} is obtained by 

assembling the displacements at all harmonics. 

In regard to Eq. (6), the total damping matrix [𝐶𝑅
𝑒] contains gyroscopic matrix 

and viscous structural damping matrix (neglectable for most rotors). The total stiffness 

matrix [𝐾𝑅
𝑒] contains the elastic stiffness, centrifugal stress-stiffening, and spin-softening 

matrices. {𝑓𝑅
𝑒} contains unbalanced forces and bearing forces. The damping and stiffness 



 

 28 

  

matrices derived from bearing forces will be integrated into [𝐶𝑅
𝑒] and [𝐾𝑅

𝑒], respectively. 

The formulations of the mass, gyroscopic and elastic stiffness matrices have been 

provided in [9, 14]. However, other important contributions to the rotating system 

element matrices were not included in those references, such as bearing forces, 

centrifugal stress-stiffening, and spin-softening. These matrices will be derived and 

presented in this work. 

2.2.2. Mesh generation tools 

In regard to the axisymmetric element model, an appropriate mesh model is 

desirable. Mesh2D [70] is a good mesh generation tool, which is able to tune the mesh 

size and generate an 2D triangle mesh. The well-established Delaunay triangulation and 

refinement algorithms are implemented in the Mesh2D code. High-quality constrained 

triangulations are automatically generated. 

In addition, SolidWorks is capable of generating both 2D triangular element 

mesh and 3D tetrahedral element mesh. The mesh models of the rotor or support 

structures can be exported as TXT files and extracted by our in-house rotor dynamics 

software. 

2.2.3. Bearing attachment 

One of the key factors that affect the prediction of critical speeds is the approach 

of attaching linear force coefficients of transient bearing forces to the shaft model. 

Bearing coefficients or forces are connected at a node corresponding to the bearing 

centerline in a shaft beam FE model, regardless of whether the shaft is solid or hollow. 

In contrast, there are many nodes at the bearing centerline position in an axisymmetric 
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FE model, but none on the shaft axis if the shaft is hollow. One approach is to connect 

the bearing coefficients or force to a single surface node of the journal. However, this 

may be inadequate for a thin-walled shaft that may distort locally or a bearing with a 

large longitudinal length. Therefore, an improved approach is presented in Figure 4. 

 

 

Figure 4. Mesh model of a hollow shaft supported by two bearings: green triangles 

represent the surface nodes to which the bearing forces are distributed, and red 

circles denote the nodes of the stiffened elements. Reprinted from Ref. [69]. 

 

The damping and stiffness dynamic force coefficients of fluid film bearings and 

seals are generally measured or obtained by numerically solving Reynold’s equation for 

pressure and integrating to obtain force. The Y and Z reaction forces exerted by the 

bearing on the journal are represented by the general linearized forces, 

  𝐹𝑦  =  −𝐾𝑦𝑦𝑤𝑦 − 𝐾𝑦𝑧𝑤𝑧 − 𝐶𝑦𝑦𝑤̇𝑦 − 𝐶𝑦𝑧𝑤̇𝑧 

𝐹𝑧  =  −𝐾𝑧𝑦𝑤𝑦 − 𝐾𝑧𝑧𝑤𝑧 − 𝐶𝑧𝑦𝑤̇𝑦 − 𝐶𝑧𝑧𝑤̇𝑧           (7) 
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where 𝑤𝑦, 𝑤𝑧, 𝑤̇𝑦 and 𝑤̇𝑧 represent the Y and Z transverse displacements, and Y and Z 

velocities at the bearing centerline and at the center of the shaft, respectively. The 

challenge is how to “distribute“ the dynamic coefficients, 𝐾𝑦𝑦, 𝐾𝑦𝑧, 𝐾𝑧𝑦, 𝐾𝑧𝑧 (also called 

linear stiffness coefficients) and 𝐶𝑦𝑦, 𝐶𝑦𝑧, 𝐶𝑧𝑦, 𝐶𝑧𝑧 (also called linear damping 

coefficients) over the axisymmetric FE journal surface nodes in a manner that yields the 

same forces as defined in Eq. (7). The following procedure and analysis are employed to 

fit the dynamic coefficients of a bearing in the rotor axisymmetric FE model. 

As can be seen from Figure 5, the bearing forces 𝐹𝑦 and 𝐹𝑧, which act on node 𝑃, 

translate from the cylindrical coordinates to the Cartesian coordinates as, 

       𝑤𝑦
𝑃 = 𝑢𝑟

𝑃 𝑐𝑜𝑠(𝜃) − 𝑢𝜃
𝑃 𝑠𝑖𝑛(𝜃) 

𝑤𝑧
𝑃 = 𝑢𝑟

𝑃 𝑠𝑖𝑛(𝜃) + 𝑢𝜃
𝑃 𝑐𝑜𝑠(𝜃)                   (8) 

where the superscript represents node 𝑃. 𝑢𝑟
𝑃 and 𝑢𝜃

𝑃 are scalar displacements of node 𝑃 

corresponding to the unit vectors 𝑒𝑟 and 𝑒𝜃 in the cylindrical coordinates, respectively. 

𝑢𝑟
𝑃 and 𝑢𝜃

𝑃 can be decomposed into different harmonics by using Fourier series, which is 

similar to Eq. (4).  
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Figure 5. Bearing forces on the node of an axisymmetric element. Reprinted from 

Ref. [69]. 

 

Before applying stiffness and damping coefficients of a linear bearing model to 

an axisymmetric FE rotor, three prerequisites are clarified as follows. First of all, bearing 

forces act on the outer circumferential surface of a journal. Secondly, most rotating 

machines operate far below the critical speed for the local journal deformation modes. 

This factor leads to a practically appropriate assumption that the node circumferential 

circle at P  may be assumed a rigid node circle moving with a constant displacement for 

all the nodes on the circle (also called rigid node circle). Finally, the expansion or shrink 

of the journal is generally negligible in comparison with lateral displacements caused by 

shaft bending. However, there are a few thermal expansion cases in which the expanding 

journal may have an impact on the rotor stability [71, 72]. Accordingly, an asymmetric 

journal model and probably transient analysis are required to investigate those minority 

cases. Based on the above three prerequisites, the first order harmonics, which contribute 
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to the lateral displacement, are used to approximate the total displacement of node 𝑃 in 

the cylindrical coordinates, 𝑢𝑟
𝑃 and 𝑢𝜃

𝑃, as, 

       𝑢𝑟
𝑃 = 𝑈1𝑟𝑆

𝑃 𝑐𝑜𝑠(𝜃) + 𝑈1𝑟𝐴
𝑃 𝑠𝑖𝑛(𝜃) 

𝑢𝜃
𝑃 = 𝑈1𝜃𝑆

𝑃 𝑠𝑖𝑛(𝜃) − 𝑈1𝜃𝐴
𝑃 𝑐𝑜𝑠(𝜃)       (9) 

Substituting Eq. (9) into Eq. (8) yields, 

    𝑤𝑦
𝑃 = 𝑈1𝑟𝑆

𝑃 𝑐𝑜𝑠2(𝜃) − 𝑈1𝜃𝑆
𝑃 𝑠𝑖𝑛2(𝜃) + (𝑈1𝑟𝐴

𝑃 + 𝑈1𝜃𝐴
𝑃 ) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 

𝑤𝑧
𝑃 = 𝑈1𝑟𝐴

𝑃 𝑠𝑖𝑛2(𝜃) − 𝑈1𝜃𝐴
𝑃 𝑐𝑜𝑠2(𝜃) + (𝑈1𝑟𝑆

𝑃 + 𝑈1𝜃𝑆
𝑃 ) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)               (10) 

Per the rigid node circle assumption, the lateral displacements 𝑤𝑦 and 𝑤𝑧 are constant 

for all nodes (i.e. all 𝜃) on the rigid circle. This implies that 𝑤𝑦 and 𝑤𝑧 shown in Eq. (10) 

are constant regardless of 𝜃. As a result, the relationship between displacement 

components can be obtained as, 

    𝑈1𝜃𝑆
𝑃 = −𝑈1𝑟𝑆

𝑃  

𝑈1𝜃𝐴
𝑃 = −𝑈1𝑟𝐴

𝑃           (11) 

The bearing force acting on node 𝑃 is expressed as, 

    𝑑𝐹𝑦
𝑃 =

𝐾𝑦𝑦𝑤𝑦
𝑃 + 𝐾𝑦𝑧𝑤𝑧

𝑃

2𝜋
𝑑𝜃 

𝑑𝐹𝑧
𝑃 =

𝐾𝑧𝑦𝑤𝑦
𝑃+𝐾𝑧𝑧𝑤𝑧

𝑃

2𝜋
𝑑𝜃         (12) 

As shown in Figure 5, the bearing forces, 𝐹𝑦 and 𝐹𝑧 translate from Cartesian 

coordinates to the cylindrical coordinates. Then applying the forces circumferentially to 

the rigid circle yields, 

𝑄𝑗
𝑃 = ∫ 𝑑𝐹𝑟

𝑃2𝜋

0
𝑒𝑟 ⋅

∂𝑢𝑟
𝑃

∂𝑞𝑗
𝑒𝑟 + ∫ 𝑑𝐹𝜃

𝑃2𝜋

0
𝑒𝜃 ⋅

∂𝑢𝜃
𝑃

∂𝑞𝑗
𝑒𝜃     (13) 
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 where 𝑒𝑟 and 𝑒𝜃 (equivalent to bold 𝒆𝒓 and 𝒆𝜽 shown in Figure 5) represent unit vectors 

in the radial and tangential directions, respectively. The generalized bearing force 𝑄𝑗
𝑃, 

which corresponds to the 𝑗th DOF 𝑞𝑗, contains bearing stiffness coefficients and 

displacement DOF terms. Substituting Eqs. (4), (10), (11) and (12) in Eq. (13) yields 𝑄𝑗
𝑃, 

the formulation of which is provided in Appendix A. By adding 𝑄𝑗
𝑃 into {𝑓𝑅

𝑒} of Eq. (6) 

and rearranging the DOF related terms, the bearing stiffness coefficients are integrated 

into [𝐾𝑅
𝑒]. The damping coefficients of the bearing can be obtained by simply replacing 

the stiffness coefficients 𝐾 with 𝐶 as the derivation for the damping coefficients follows 

the same path as the stiffness coefficients. 

  

 

Figure 6. Add stiffness and damping coefficients of a bearing to the nodes in the 

longitudinal semi-section of a shaft: green triangles and red circles represent the 

surface nodes and the stiffened element nodes, respectively. Reprinted from Ref. 

[69]. 
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As depicted by Figure 6, the stiffness coefficients, 𝐾𝑦𝑦, 𝐾𝑦𝑧, 𝐾𝑧𝑦, 𝐾𝑧𝑧 and the 

damping coefficients, 𝐶𝑦𝑦, 𝐶𝑦𝑧, 𝐶𝑧𝑦, 𝐶𝑧𝑧 of a bearing are equally divided by five, which 

equals the number of surface nodes, and are added to each surface node on the journal. 

Bearing lubricant induced forces occur on the longitudinal length of the shaft inside the 

bearing, which is also called the journal. The bearing forces are assumed to be equally 

distributed (the distribution proportion is adjustable) on the surface nodes of the journal 

in the axisymmetric element model. A thin-walled journal model may also be artificially 

stiffened for certain types of bearings. The degree of artificial stiffening (an increase in 

modulus of elasticity) can be varied by the analyst to balance excessive journal 

deformation vs. the increased numerical integration time that may result from artificial 

stiffening [25] (Book section 4.8.17). 

The bearing forces are applied to the journal in a distributed manner because 

applying the forces or linearized force coefficients (stiffness, damping, and inertia) at a 

single node may result in excessive local deformation at the point of application 

especially when the journal is thin-walled and the bearing forces or dynamic coefficients 

are large. The simulation results presented in Section 5.2 will illustrate this by an 

example. 

 Centrifugal Stress-Stiffening 

In this section, the prior axisymmetric solid harmonic FE formulation of a 

flexible rotor [11, 14, 73] is improved by including the centrifugal stress-stiffening 

effects. 
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2.3.1. Phenomenon and problem overview 

Centrifugal stress-stiffening may have a significant effect on rotor dynamic 

response especially at high spin rates and for highly flexible disks and shafts. Consider 

the rotating shaft-disk system shown in Figure 7. The disk bends with an axial 

displacement 𝑢. The radial displacement 𝛥𝑟 and the displacement along the resultant  

deformation direction L  are related by, 

Δ𝐿 = Δ𝑟√1 + (
∂𝑢

∂𝑟
)
2

≃ Δ𝑟 (1 +
1

2
(
∂𝑢

∂𝑟
)
2

)      (14) 

The disk is radially under tensile load due to the centrifugal forces, which creates 

a restoring force for axial deflection and hence raises the disk’s bending stiffness and 

natural frequencies for disk flexural and axial modes. As the tensile load causes radial 

strain expansion, only the component of the zeroth order harmonics is associated with 

the centrifugal stress-stiffening. 

 

 

Figure 7. Disk stress-stiffening effect caused by centrifugal forces. 
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2.3.2. Strain energy due to centrifugal forces 

To include the centrifugal stress-stiffening effects, an improved formulation of 

the axisymmetric FE rotor model in the cylindrical coordinate system is presented in this 

section, as an extension to Cook et al.’s work [12]. The centrifugal forces cause the 

initial strain 𝜀0 and the initial stress 𝜎0 prior to the bending of the rotor, as is shown in 

Figure 8. 

 

 

Figure 8. Strain energy due to centrifugal forces. Reprinted from Ref. [69]. 

 

As the rotor has further deformations on the basis of the initial strain, the strain 

energy 𝑈 that excludes the elastic potential energy caused by centrifugal forces prior to 

rotor bending consists of two parts: one caused by centrifugal forces (represented by the 

shaded area in Figure 8), and the other resulting from rotor displacement (represented by 

the blank area in Figure 8). The strain energy of the spinning rotor when bending, 𝑈, 

may be expressed as, 

𝑈 =
1

2
∫ {𝜀}
𝑉

𝑇
{𝜎}𝑑𝑉 + ∫ {𝜀}

𝑉

𝑇
{𝜎0}𝑑𝑉       (15) 
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where the first and second components represent the two parts of the elastic potential 

energy shown in Figure 8, respectively. {𝜎} and {𝜀} are stress and strain vectors that 

exclude the initial stress and strain prior to rotor bending, respectively. {𝜎0} are the 

initial stress induced by centrifugal forces. 

The linear small strain (also called infinitesimal strain) model that is widely used 

in engineering (including rotor dynamics) may not be an appropriate model for rotors 

with highly flexible disks or blades. This is because the small rotation assumption for the 

small strain model may be violated when the amount of rotation (such as for bending of 

a flexible disk) becomes large. A remedy is to employ the Green strain model in 

mechanics. 

Consider the deformation gradient 𝐹̃ in the cylindrical coordinate system. 𝐹̃can 

be separated into rigid body translations and rotations from deformations and may be 

expressed as, 

𝐹̃𝑖𝑗 = 𝛿𝑖𝑗 + 𝑢̃𝑖,𝑗          (16) 

where 𝛿𝑖𝑗 is Kronecker delta, 𝑖,  𝑗=𝑟, 𝑧, or 𝜃, and 𝑢̃𝑖,𝑗 is the derivative of each 

component of the displacement 𝑢̃𝑖 after deformation with respect to each component of 

the cylindrical coordinates vector 𝑗. The corresponding matrix form may be written as, 

[𝐹̃] = [𝐼] + [𝛻𝑢̃] =

[
 
 
 
 (1 +

𝜕𝑢𝑟

𝜕𝑟
)

𝜕𝑢𝑟

𝜕𝑧
(
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
−
𝑢𝜃

𝑟
)

𝜕𝑢𝑧

𝜕𝑟
(1 +

𝜕𝑢𝑧

𝜕𝑧
)

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
𝜕𝑢𝜃

𝜕𝑟

𝜕𝑢𝜃

𝜕𝑧
(1 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+
𝑢𝑟

𝑟
)]
 
 
 
 

   (17) 

where [𝐼] and [𝛻𝑢̃] are the matrix form of 𝛿𝑖𝑗 and 𝑢̃𝑖,𝑗, respectively. The strain matrix of 

the Green strain model is defined as, 
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[𝜀̃] =
1

2
([𝐹̃]𝑇[𝐹̃] − [𝐼])        (18) 

Substituting Eq. (17) in Eq. (18) yields, 

[ε̃] = [
𝜀𝑟̃𝑟 𝜀𝑟̃𝑧 𝜀𝑟̃𝜃
𝜀𝑧̃𝑟 𝜀𝑧̃𝑧 𝜀𝑧̃𝜃
𝜀𝜃̃𝑟 𝜀𝜃̃𝑧 𝜀𝜃̃𝜃

]        (19) 

where the components of the tensor strain 𝜀𝑖̃𝑗 represent the deformation in 𝑖 direction 

with respect to the coordinates vector 𝑗. The tensor-based strain 𝜀𝑖̃𝑗 are expanded for 

clarification of first and second order strain components as, 

 𝜀𝑟̃𝑟 =
∂𝑢𝑟
∂𝑟

+
1

2
[(
∂𝑢𝑟
∂𝑟
)
2

+ (
∂𝑢𝑧
∂𝑟
)
2

+ (
∂𝑢𝜃
∂𝑟
)
2

] 

 𝜀𝑧̃𝑧 =
∂𝑢𝑧
∂𝑧

+
1

2
[(
∂𝑢𝑟
∂𝑧
)
2

+ (
∂𝑢𝑧
∂𝑧
)
2

+ (
∂𝑢𝜃
∂𝑧
)
2

] 

𝜀𝜃̃𝜃 =
𝑢𝑟

𝑟
+
1

𝑟

∂𝑢𝜃

∂𝜃
+

1

2𝑟2
[(𝑢𝑟 +

∂𝑢𝜃

∂𝜃
)
2

+ (𝑢𝜃 −
∂𝑢𝑟

∂𝜃
)
2

+ (
∂𝑢𝑧

∂𝜃
)
2

]       (20) 

 𝜀𝑟̃𝑧 =
1

2
(
∂𝑢𝑟
∂𝑧

+
∂𝑢𝑧
∂𝑟
) +

1

2
(
∂𝑢𝑟
∂𝑟

∂𝑢𝑟
∂𝑧

+
∂𝑢𝑧
∂𝑟

∂𝑢𝑧
∂𝑧

+
∂𝑢𝜃
∂𝑟

∂𝑢𝜃
∂𝑧
) 

 𝜀𝑧̃𝜃 =
1

2
(
1

𝑟

∂𝑢𝑧
∂𝜃

+
∂𝑢𝜃
∂𝑧
) +

1

2𝑟
[
∂𝑢𝜃
∂𝑧

(𝑢𝑟 +
∂𝑢𝜃
∂𝜃
) +

∂𝑢𝑟
∂𝑧

(−𝑢𝜃 +
∂𝑢𝑟
∂𝜃
) +

∂𝑢𝑧
∂𝑧

∂𝑢𝑧
∂𝜃
] 

 𝜀𝑟̃𝜃 =
1

2
(
1

𝑟

∂𝑢𝑟

∂𝜃
−
𝑢𝜃

𝑟
+
∂𝑢𝜃

∂𝑟
) +

1

2𝑟
[
∂𝑢𝜃

∂𝑟
(𝑢𝑟 +

∂𝑢𝜃

∂𝜃
) +

∂𝑢𝑟

∂𝑟
(−𝑢𝜃 +

∂𝑢𝑟

∂𝜃
) +

∂𝑢𝑧

∂𝑟

∂𝑢𝑧

∂𝜃
]     (21) 

The tensor-based shear terms in Eq. (21) may be replaced by engineering shear strains 

by doubling the strains. Only the second order terms of 𝜀̃ are related to the centrifugal 

forces induced strains in rotor bending [12]. Replacing tensor-based shear terms in 𝜀̃ 

with engineering shear strains yields the second order strains as, 

 𝜀2𝑟 =
1

2
[(
∂𝑢𝑟
∂𝑟
)
2

+ (
∂𝑢𝑧
∂𝑟
)
2

+ (
∂𝑢𝜃
∂𝑟
)
2

] 
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 𝜀2𝑧 =
1

2
[(
∂𝑢𝑟
∂𝑧
)
2

+ (
∂𝑢𝑧
∂𝑧
)
2

+ (
∂𝑢𝜃
∂𝑧
)
2

] 

 𝜀2𝜃 =
1

2𝑟2
[(𝑢𝑟 +

∂𝑢𝜃
∂𝜃
)
2

+ (𝑢𝜃 −
∂𝑢𝑟
∂𝜃
)
2

+ (
∂𝑢𝑧
∂𝜃
)
2

] 

𝛾2𝑟𝑧 =
∂𝑢𝑟
∂𝑟

∂𝑢𝑟
∂𝑧

+
∂𝑢𝑧
∂𝑟

∂𝑢𝑧
∂𝑧

+
∂𝑢𝜃
∂𝑟

∂𝑢𝜃
∂𝑧

 

𝛾2𝑧𝜃 =
1

𝑟
[
∂𝑢𝜃
∂𝑧

(𝑢𝑟 +
∂𝑢𝜃
∂𝜃
) +

∂𝑢𝑟
∂𝑧
(−𝑢𝜃 +

∂𝑢𝑟
∂𝜃
) +

∂𝑢𝑧
∂𝑧

∂𝑢𝑧
∂𝜃
] 

𝛾2𝑟𝜃 =
1

𝑟
[
∂𝑢𝜃

∂𝑟
(𝑢𝑟 +

∂𝑢𝜃

∂𝜃
) +

∂𝑢𝑟

∂𝑟
(−𝑢𝜃 +

∂𝑢𝑟

∂𝜃
) +

∂𝑢𝑧

∂𝑟

∂𝑢𝑧

∂𝜃
]          (22) 

where the subscript 2 represents the second order strain. 𝜀2𝑟, 𝜀2𝑧 and 𝜀2𝜃 correspond to 

the second order normal strain terms 𝜀𝑟̃𝑟, 𝜀𝑧̃𝑧 and 𝜀𝜃̃𝜃, respectively. 𝛾2𝑟𝑧, 𝛾2𝑧𝜃 and 𝛾2𝑟𝜃 

correspond to the second order shear strain terms 𝜀𝑟̃𝑧, 𝜀𝑧̃𝜃 and 𝜀𝑟̃𝜃, respectively. 

The strain energy due to the bending of the rotor that undergoes centrifugal 

forces may be expressed as, 

𝑈𝜎
𝑒 = ∫ {ε2

e}
𝑉𝑒

𝑇
{σ0
e}𝑑𝑉        (23) 

where 𝑉 is the bounded volume region, and the superscript 𝑒 represents the element. The 

strain vector {𝜀2} and stress vector {𝜎0} for isotropic homogeneous elastic materials are 

of the following vector form, 

     {ε2
e} = [𝜀2𝑟 , 𝜀2𝑧 , 𝜀2𝜃, 𝛾2𝑟𝑧, 𝛾2𝑧𝜃, 𝛾2𝑟𝜃]

𝑇 

{σ0
e} = [𝜎0𝑟 , 𝜎0𝑧 , 𝜎0𝜃,  𝜏0𝑟𝑧 , 𝜏0𝑧𝜃,  𝜏0𝑟𝜃]

𝑇      (24) 

The elastic potential energy shown in Eq. (23) is derived from Eq. (15) by excluding the 

first order strain terms. 
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2.3.3. Formulation of stress-stiffening effects 

The strain energy due to the centrifugal stress-stiffening effects will ultimately 

lead to the stress-stiffening stiffness matrix that differs from the structural stiffness 

matrix in the equation of motion for the rotor. The way to derive this stiffness matrix is 

presented below. Although the derivation is based on the axisymmetric harmonic 

element, the approach can be applied to other solid element methods. 

The centrifugal forces corresponding to the 𝑗th node DOF may be expressed as,  

𝑄𝑉𝑗
𝑒 = ∫ (𝑑𝐹𝑉𝑟𝑒𝑟 ⋅

∂𝑢𝑟
∂𝑞𝑗

𝑒 𝑒𝑟)
𝑉𝑒

 

   = ∫ ∫ 𝜌Ω
2𝑟 ∑ (

∂𝑈𝑚𝑟𝑆

∂𝑞𝑗
𝑒 𝑐𝑜𝑠(𝑚𝜃) +

∂𝑈𝑚𝑟𝐴

∂𝑞𝑗
𝑒 𝑠𝑖𝑛(𝑚𝜃))𝑑𝐴𝑑𝜃𝑁

𝑚=0𝐴𝑒
2𝜋

0
   (25) 

where 𝑑𝐹𝑉𝑟 is centrifugal forces per unit volume and can be expressed as 𝑑𝐹𝑉𝑟 = 𝜌𝛺
2𝑟. 

𝑞𝑗
𝑒 is the 𝑗th node DOF of the element. 𝑈𝑚𝑟𝑆 and 𝑈𝑚𝑟𝐴 are defined in Eq. (4). It can be 

seen from Eq. (25) that the integral over the circumferential angle 𝜃 = 0~2𝜋 eliminates 

the first and second order harmonics. That said, only the zeroth harmonics contribute to 

the initial stress and strain caused by centrifugal forces. 

Applying the Lagrange’s equations to the strain energy caused by centrifugal 

forces yields, 

∂𝑈0
𝑒

∂𝑞𝑗
𝑒 = 𝑄𝑉𝑗

𝑒  with 𝑈0
𝑒 =

1

2
∫ {ε0

e}
𝑉𝑒

𝑇
{σ0
e}𝑑𝑉      (26) 

where 𝑈0
𝑒 represents the elastic strain energy of the element caused by centrifugal forces 

prior to the bending of the rotor. 𝜎0
𝑒 and 𝜀0

𝑒 are initial stress and strain caused by 

centrifugal forces, respectively. The node displacements induced by centrifugal forces, 
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{𝑈𝑅
𝑒}, can be solved for based on Eq. (26). For isotropic homogeneous elastic materials, 

the initial stress, {𝜎0
𝑒}, can be obtained from, 

{𝜎0
𝑒} = [𝐷][𝜕]{𝑈𝑅

𝑒}         (27) 

where the linear stress-strain constitutive matrix [𝐷]and partial derivative matrix [𝜕] are 

provided in Appendix A. 

Substituting Eqs. (22), (24) and (27) in Eq. (23) yields the strain energy due to 

centrifugal forces, 𝑈𝜎
𝑒, as, 

𝑈𝜎
𝑒 =

1

2
∫ {𝛿𝜎

𝑒}𝑇[𝑆𝜎
𝑒]{𝛿𝜎

𝑒}𝑑𝑉
𝑉𝑒

       (28) 

where [𝑆𝜎
𝑒] represents the centrifugal stress matrix. {𝛿𝜎

𝑒} is the expanded strain vector 

derived from Eq. (22) by re-arranging the second order strain terms. Both are specified 

in Appendix A. {𝛿𝜎
𝑒} can be decomposed into, 

{𝛿𝜎
𝑒} = [∂𝜎]{𝑈𝑅

𝑒} = [∂σ](∑ [𝑁𝑚]{𝑞𝑚
𝑒 }𝑁

𝑚=0 )      (29) 

By using the shape functions and node DOF shown in Eq. (5), 𝑈𝜎
𝑒 can be further 

re-arranged as, 

𝑈𝜎
𝑒 = ∑

1

2
{𝑞𝑚
𝑒 }𝑇(∫ [𝐺𝜎𝑚

𝑒 ]𝑇[𝑆𝜎
𝑒][𝐺𝜎𝑚

𝑒 ]𝑑𝑉
𝑉𝑒

){𝑞𝑚
𝑒 }𝑁

𝑚=0      (30) 

The final form of 𝑈𝜎
𝑒 shows that different harmonics are not coupled. This is expected 

from the statement made by [12] that different harmonics are uncoupled. From a 

mathematic perspective, the orthogonality of the harmonic contributions may be 

explained by, 

    𝑞𝑚𝑞𝑛∫ 𝑐𝑜𝑠(𝑚𝜃)
2𝜋

0

𝑐𝑜𝑠(𝑛𝜃) 𝑑𝜃 = 0 
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    𝑞𝑚𝑞𝑛∫ 𝑐𝑜𝑠(𝑚𝜃)
2𝜋

0

𝑠𝑖𝑛(𝑛𝜃) 𝑑𝜃 = 0 

𝑞𝑚𝑞𝑛 ∫ 𝑠𝑖𝑛(𝑚𝜃)
2𝜋

0
𝑠𝑖𝑛(𝑛𝜃) 𝑑𝜃 = 0       (31) 

where the harmonics numbers 𝑚 ≠ 𝑛. By expanding 𝑈𝜎
𝑒, it can be found that every 

coupling term containing 𝑞𝑚𝑞𝑛 comes with the trigonometrical series as shown in Eq. 

(31). That being said, the coupling terms 𝑞𝑚𝑞𝑛 eventually become zero, implying that 

the harmonics are uncoupled. 

Applying Lagrange’s equations to Eq. (30) yields the elemental centrifugal 

stress-stiffening matrix for the m th harmonics, [𝐾𝜎𝑚
𝑒 ], as, 

𝜕𝑈𝜎
𝑒

𝜕{𝑞𝑚
𝑒 }
= [𝐾𝜎𝑚

𝑒 ] = ∫ [𝐺𝜎𝑚
𝑒 ]𝑇[𝑆𝜎0

𝑒 ][𝐺𝜎𝑚
𝑒 ]𝑑𝑉

𝑉𝑒
      (32) 

where {𝑞𝑚
𝑒 } represents the DOF vector for the m th harmonics. The total DOFs 𝑞𝑗

𝑒 

contain the DOF for all harmonics and thereby include {𝑞𝑚
𝑒 }. [𝐾𝜎𝑚

𝑒 ] is given in 

Appendix A. Although only the zeroth modes contribute to the initial centrifugal stress, 

the strain energy due to centrifugal forces for the bending rotor is contributed by all 

harmonics. [𝐾𝜎𝑚
𝑒 ] is the final centrifugal stress-stiffening matrix that will be used in the 

equation of motion for the axisymmetric solid element model. 

 Spin-Softening Effects 

In addition to the stress-stiffening effects, rotor spin induces so called spin-

softening effects. The effects are most pronounced for flexible disks or large-diameter, 

thin-walled shafts.  
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2.4.1. Phenomenon and problem overview 

For sake of illustration consider the simplified shaft-disk-mass system shown in 

Figure 9, which includes a concentrated mass at the tip of the disk and a massless-disk 

body oriented radially with respect to the axis of rotation. 

The deflection of the disk, 𝑢 may be expressed as, 

(𝐾0 − 𝛺
2𝑀)⏟        

𝐾1

𝑢 = 𝛺2𝑀𝑟        (33) 

where 𝐾1 is the equivalent disk stiffness in the radial direction at the spin speed of 𝛺 =

0 𝑟𝑝𝑚. It can be seen from Eq. (33) that the equivalent disk stiffness changes from 𝐾0 to 

𝐾1, implying a decrease in the effective stiffness of the attachment point of the mass, 

with increasing spin rate.   

 

 

Figure 9. Rotating mass-spring system. 

 

In this work, the spin-softening effects are formulated for the axisymmetric 

harmonic element. The modeling details will be presented in the next section. 
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2.4.2. Formulation of spin-softening effects 

Prior publications [12, 15] provided qualitative discussions of this phenomenon, 

but did not develop a formal FE treatment for the spin-softening effects utilizing 

axisymmetric elements. 

The additional body force 𝛥𝐹𝑟 results from the extension of the element beyond 

the initial element radius (distance between the element and the center line of the rotor), 

which is caused by centrifugal forces. However, unlike the centrifugal forces discussed 

in Eq. (25), 𝛥𝐹𝑟 is independent of the element radius 𝑟. This can be explained by, 

𝐹𝑟 = Ω
2
∫ 𝜌(𝑟 + 𝑢𝑟)𝑑𝑉𝑉𝑒

⇒ Δ𝐹𝑟 = Ω
2
∫ 𝜌𝑢𝑟𝑑𝑉𝑉𝑒

     (34) 

where 𝑢𝑟 are radial displacement of the element with respect to the axis of symmetry. 

Then the generalized external load 𝑄𝑆
𝑒 may be written as, 

𝑄𝑆𝑗
𝑒 = ∫ 𝑑(Δ𝐹𝑟)𝑒𝑟 ⋅

∂𝑢𝑟

∂𝑞𝑗
𝑒 𝑒𝑟𝑉𝑒

= ∫ ∫ 𝜌Ω
2𝑢𝑟

∂𝑢𝑟

∂𝑞𝑗
𝑒 𝑑𝐴𝑑𝜃𝐴𝑒

2𝜋

0
    (35) 

where the subscript 𝑗 indicates 𝑗th node DOF of the element. 

Transforming Eq. (35) to the following matrix form, 

{𝑄𝑆
𝑒}

18×1
= ∫ ∫ [𝑁]

3×18

𝑇 [
𝜌𝛺2 0 0
0 0 0
0 0 0

]
𝐴𝑒

{𝑈𝑅
𝑒}

3×1
𝑑𝐴𝑑𝜃

2𝜋

0
      (36) 

where [𝑁] is a shape function. {𝑈𝑅
𝑒} is defined in Eq. (5) as the displacement DOF of a 

rotor element. In regard to the Lagrange’s equations, {𝑄𝑆
𝑒} shown in Eq. (36) may be 

included as external load, leading to the elemental spin-softening matrix for the 𝑚th 

harmonics, [𝐾𝛺𝑚
𝑒 ], as, 
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[𝐾𝛺𝑚
𝑒 ] =

𝜕{𝑄𝑆
𝑒}

𝜕{𝑞𝑚
𝑒 }
= ∫ [𝑁𝑚]

𝑇
𝑉𝑒

[
𝜌𝛺2 0 0
0 0 0
0 0 0

] [𝑁𝑚]𝑑𝑉     (37) 

Extra attention needs be given to the zeroth harmonics, which have a different 

formulation. [𝐾𝛺𝑚
𝑒 ] is given in Appendix A. 

By utilizting the improved axisymmetric FE model, a specialized rotor dynamic 

software program is developed. Various rotor systems that are comprised of thin-walled 

shafts and flexible disks will be investigated in Chapter 5. The conclusions drawn from 

the simulation results should provide designers with guidelines for when and how to use 

a solid FE rotor model instead of a beam FE rotor mode. 

 Hydrodynamic Fluid Film Bearings 

Hydrodynamic fluid film bearings, such as fixed-pad and tilting-pad bearings, are 

widely used on heavy duty rotating machines. 

In linear rotor dynamics, a hydrodynamic fluid film bearing is greatly simplified 

to be an eight-coefficient bearing model [37], which includes four stiffness coefficients, 

𝐾𝑌𝑌, 𝐾𝑌𝑍, 𝐾𝑍𝑌, and 𝐾𝑍𝑍, and four damping coefficients, 𝐶𝑌𝑌, 𝐶𝑌𝑍, 𝐶𝑍𝑌, and 𝐶𝑍𝑍. The 

eight coefficients are added to the stiffness and damping matrices corresponding to the 

node in the rotor FE mesh that the bearing is attached to. 

Although the eight coefficients vary in a linear manner with the spin speed of the 

rotor, bearing forces are nonlinear in nature and may have strong nonlinearity in the 

special situations such as under large support structure motion. A short bearing 

approximation [74] was used to approximate bearing nonlinearity. However, the 

approximation only applies for bearings having the ratio of length vs. diameter < 0.5 
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[37] or even less than 0.25 [47] and an eccentricity ratio < 0.7 [37]. In fact, a ratio of 

bearing length vs. diameter larger than 0.25 or even 0.5 is commonly seen in industry. 

A nonlinear hydrodynamic journal bearing FE model, as a remedy for the eight-

coefficient bearing model and short bearing approximation, will be introduced in this 

section. 

2.5.1. Introduction to lubrication theory 

As shown in Figure 10, the principle of the hydrodynamic lubrication can be 

characterized in brief as lubrication fluids flowing into a wedge-shaped narrow gap 

between the upper surface (journal surface) and lower surface (bearing pad surface). The 

gap (also called pad clearance) is extremely small in comparison with the bearing 

diameter. More details can be found in [75, 76]. 

 

 

Figure 10. Lubrication between two surfaces. 
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The fluid (lubricant) film with high pressure supports the rotor and lubricates the 

rotating journal. The pressure of the fluid film can be derived from the Reynolds 

equations with the following assumptions: 

(a) iso-viscous Newtonian fluid, 

(b) ignoring inertial forces, 

(c) incompressible lubricant, 

(d) viscosity independent of fluid film height (𝑧 direction),  

(e) spatially independent slider velocities in 𝑥 and 𝑦 directions.  

The Reynold’s equation applied in rotor dynamics may be written as, 

∂

∂𝑦
(

ℎ
3

12𝜇
⋅
∂𝑝

∂𝑦
) +

∂

∂𝑥
(

ℎ
3

12𝜇
⋅
∂𝑝

∂𝑥
) = 𝑣̄𝑦

∂ℎ

∂𝑦
+ 𝑣̄𝑥

∂ℎ

∂𝑥
+
∂ℎ

∂𝑡
     (38) 

where 𝑝 is lubricant pressure, ℎ the fluid film thickness, 𝜇 the absolute/dynamic 

viscosity. 𝑣̄𝑥 and 𝑣̄𝑦 are the mean values of the velocities of the upper and lower surfaces 

and can be expressed as, 

𝑣̄𝑥 =
𝑣𝑥1+𝑣𝑥2

2
          (39) 

𝑣̄𝑦 =
𝑣𝑦1+𝑣𝑦2

2
          (40) 

where 𝑣𝑥1, 𝑣𝑥2, 𝑣𝑦1 and 𝑣𝑦2 are the velocities of the surfaces shown in Figure 10.  

2.5.2. Finite element modeling of hydrodynamic journal bearing 

A brief introduction to a nonlinear FE fluid film model is given in this section. 

More details are provided in [77]. As is shown in Figure 11, the beginning angle 𝜃𝐵𝑖 and 

the ending angle 𝜃𝐸𝑖 for pad 𝑖 indicate the circumferential region of the lubricant film. 
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Figure 11. Beginning and ending angles of pad i. 

 

The lubricant film thickness ℎ𝐵 is correlated with the pad clearance 𝐶𝑃, the 

preload factor 𝑀𝑃, the axial position 𝑥𝐵, the circumferential position 𝑦𝐵 (position in Y 

direction after unfolding the fluid film circumferentially), and the fluid element 

circumferential angle 𝜃. ℎ𝐵 may be expressed as, 

ℎ𝐵 = 𝐶𝑃 − 𝑥𝐵 𝑐𝑜𝑠(𝜃) − 𝑦𝐵 𝑠𝑖𝑛(𝜃) − 𝐶𝑃𝑀𝑃 𝑐𝑜𝑠(𝜃 − 𝜃𝐶)    (41) 

where 

𝑀𝑝 = 1 −
𝐶𝐵

𝐶𝑃
          (42) 

𝐶𝐵 is the bearing clearance. 𝜃𝐶  is the center angle of the fluid film on the pad. If there is 

zero offset, 𝜃𝐶  is equal to the mean value of 𝜃𝐵𝑖 and 𝜃𝐸𝑖. 
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Figure 12. Three-node triangle element for fluid pressure interpolation. 

 

For a linear 2D three-node triangle element shown in Figure 12, the governing 

equation of the bearing FE model is given as, 

[𝐾𝑏
𝑒]{𝑝𝑏

𝑒} = {𝐵𝑏
𝑒} + {𝑆𝑏

𝑒} + {𝐿𝑏
𝑒 }       (43) 

where  

[𝐾𝑏
𝑒] =

ℎ𝑒
3

12𝜇𝑒
∫ (

∂[𝑁]𝑇

∂𝑥

∂[𝑁]

∂𝑥
+
∂[𝑁]𝑇

∂𝑦

∂[𝑁]

∂𝑦
)

Ω𝑒
𝑑𝑥𝑑𝑦     (44) 

wedge effect:   {𝐵𝑏
𝑒} = ℎ𝑒 ∫ (𝑢̄

∂[𝑁]

∂𝑥
+ 𝑣̄

∂[𝑁]

∂𝑦
)

Ω𝑒
𝑑𝑥𝑑𝑦   (45) 

squeeze effect:  {𝑆𝑏
𝑒} = −

∂ℎ𝑒

∂𝑡
∫ [𝑁]

Ω𝑒
𝑑𝑥𝑑𝑦     (46) 

imposed boundary flow effect:   {𝐿𝑏
𝑒 } = −∫ 𝑞𝑛[𝑁]Γ𝑒

𝑑Γ𝑞   (47) 

shape function:  [𝑁] = [𝑁1 𝑁2 𝑁3]      (48) 

where 𝑝𝑏
𝑒 represents the bearing pressure within the element. The viscosity 𝜇𝑒 is 

assumed constant within the element 𝑒. ℎ𝑒 denotes the film thickness. 𝛺𝑒 is the lubricant 

domain. 𝑞𝑛 is the volumetric flow rate per unit length along the boundry 𝛤𝑒. 

Integrating the pressure of the fluid film yields the lubricant forces acting on the 

journal in Y  and Z  directions as, 
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𝐹𝑏𝑦 = −2∑ ∑
1

3

𝑁𝑒𝑖
𝑒=1

𝑁𝑝𝑎𝑑
𝑖=1

(𝑝1𝑒𝑖 + 𝑝2𝑒𝑖 + 𝑝3𝑒𝑖)Ω𝑒𝑖 ⋅ 𝑐𝑜𝑠 (𝜃𝐵𝑖 +
𝑌𝑒𝑖

𝑅𝑗
)   (49) 

𝐹𝑏𝑧 = −2∑ ∑
1

3

𝑁𝑒𝑖
𝑒=1

𝑁𝑝𝑎𝑑
𝑖=1

(𝑝1𝑒𝑖 + 𝑝2𝑒𝑖 + 𝑝3𝑒𝑖)Ω𝑒𝑖 ⋅ 𝑠𝑖𝑛 (𝜃𝐵𝑖 +
𝑌𝑒𝑖

𝑅𝑗
)   (50) 

where 𝑌𝑒𝑖  represent 𝑌 coordinate of the centroid of element 𝑒 in pad 𝑖. 𝑁𝑝𝑎𝑑 is the 

number of pads. 𝑁𝑒𝑖 is the number of elements in pad 𝑖. 𝑝1𝑒𝑖, 𝑝2𝑒𝑖 and 𝑝3𝑒𝑖 represent the 

3 nodal pressures of element 𝑒 in pad 𝑖. 𝛺𝑒𝑖 is the area of element 𝑒 in pad 𝑖. 

Eqs. (49) and (50) can be used to calculate lubricant forces for a single pad. The 

total bearing forces are a sum of the lubricant forces of all pads. Note that the pressure of 

the fluid film is a nonlinear function of journal displacements though the pressure itself 

is linear in Reynolds equation. This can be explained by substituting Eq. (38) in Eq. (41) 

(substituting ℎ𝐵 for ℎ). The fluid film thickness ℎ is a nonlinear function of journal 

displacements 𝑥 and 𝑦. 

 Support Structure 

As a part of a rotating system, support structures such as a casing, foundation and 

base are usually considered as rigid bodies and fixed to the ground. However, the 

skyrocketing amount of light-weight structure applications raises the concern of the rotor 

dynamics community. The influences of flexible support structures on the dynamic 

behavior of a rotor system can be investigated by using special support structure 

modeling approaches. This section will present two support structure models, namely 3D 

solid element model and MIMO transfer function model. 
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2.6.1. 3D solid element model 

Most support structures of rotating machines have complex geometries, for 

which a solid element model will be a good fit. In this work, linear tetrahedral elements 

shown in Figure 13 are employed to model support structures. Just to be clear, there are 

a few other solid elements that are superior to tetrahedral elements in terms of mesh size. 

For the same support structure, the tetrahedral element model generally requires more 

elements than the other solid element models such as the hexahedral element model. 

However, tetrahedral elements are friendly to most automatic mesh generation software 

algorithms in comparison with the hexahedral elements. 

 

 

Figure 13. Linear tetrahedral element for support structure model. 

 

The finite-element equation of motion is derived based on [67, 78, 79]. 

As shown in Figure 13, the four-node solid tetrahedron element is employed to fill 3D 

volume of the stator. For simplicity, the equation of motion for the support structure 

model is provided as, 

[𝑀𝑆]{𝑞̈} + [𝐶𝑆]{𝑞̇} + [𝐾𝑆]{𝑞} = {𝑓}       (51) 
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where the DOFs of each element are given as, 

{𝑞𝑒} = {𝑢𝑥1,  𝑢𝑦1,  𝑢𝑧1,  𝑢𝑥2,  𝑢𝑦2, 𝑢𝑧2,  𝑢𝑥3,  𝑢𝑦3,  𝑢𝑧3,  𝑢𝑥4,  𝑢𝑦4,  𝑢𝑧4}
𝑇

  (52) 

The detailed matrices can be found in [67, 78, 79]. 

 

 

Figure 14. Solid tetrahedron element mesh model of the support structure with two 

fictitious nodes. Reprinted from Ref. [80]. 

 

The support structure including the bearing pedestal is first modeled with solid 

tetrahedron elements. Then, the fictitious node, which corresponds to the attachment 

point of each bearing, is created to connect the rotor and support structure. As can be 

seen from Figure 14, each fictitious node is connected by the rigid and massless beams 

(a fictitious beam web) with the nodes that are circumferentially around the bearing 

center. In calculation, these rigid beams can be treated as the ones with the stiffness 

coefficients that are much higher than the modulus of elasticity of the support structure. 

The governing equation of the support FE model may be written as, 
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[𝑀𝑆]{𝑈̈𝑆} + [𝐶𝑆]{𝑈̇𝑆} + [𝐾𝑆]{𝑈𝑆} = {𝑓𝑆}      (53) 

where [𝐶𝑆] denotes the proportional damping matrix of the support structure. 

2.6.2. MIMO transfer function model 

This section presents an alternative modeling approach for support structures. 

The support structure is simplified by utilizing the multi-input and multi-output (MIMO) 

support TFs (reduction of the computation time and requirement for computational 

resources).  

Concerning the type of solid elements, the model with the hexahedron elements 

normally has a smaller size than that with the tetrahedron elements, thereby requiring 

less computation time. However, this may not be true if the shape of support structure is 

complex or the time for meshing is counted in the total simulation time, in which case it 

usually takes more time to generate the hexahedral mesh than the tetrahedral mesh, 

particularly at the boundaries. Hence, the influences of the solid element types are not 

quantified in the present work. 

The FRFs are obtained by using the support FE model instead of experimental 

measurement. First of all, we apply a virtual point force (in a sinusoidal form) at one 

fictitious node, which is representative of the bearing center. Then Eq. (6) is solved for 

forced responses at all bearing locations and in all directions. Take the support model 

shown in Figure 14, for instance. One point force, 𝐹, is acted at one bearing location in 

one direction (indicated by the subscript 𝑌 or 𝑍)  and yields four responses, 𝑈𝑌1 , 𝑈𝑍1, 

𝑈𝑌2, and 𝑈𝑍2 (one response for one bearing location and one direction). The responses 

can be finally correlated with the forces by the following equation, 
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[

𝑈𝑌1
𝑈𝑍1
𝑈𝑌2
𝑈𝑍2

] = [

𝐺𝑌1𝑌1 𝐺𝑌1𝑍1 𝐺𝑌1𝑌2 𝐺𝑌1𝑍2
𝐺𝑍1𝑌1 𝐺𝑍1𝑍1 𝐺𝑍1𝑌2 𝐺𝑍1𝑍2
𝐺𝑌2𝑌1 𝐺𝑌2𝑍1 𝐺𝑌2𝑌2 𝐺𝑌2𝑍2
𝐺𝑍2𝑌1 𝐺𝑍2𝑍1 𝐺𝑍2𝑌2 𝐺𝑍2𝑍2

] ⋅ [

𝐹𝑌1
𝐹𝑍1
𝐹𝑌2
𝐹𝑍2

]     (54) 

where 𝐺 is the FRF, and the subscripts 1  and 2  represent the first (left) and second 

(right) bearing locations shown in Figure 14, respectively. 

By utilizing the complex curve-fitting algorithm [81], we are able to obtain from 

the FRFs the rational TF that corresponds to the location and direction of each force-

response pair. The optimal polynomial coefficients of the TF are obtained by minimizing 

the weighted sum of the squares of the amplitude errors between the frequency-

dependent functions and polynomial ratios. The minimization of the errors depends on 

both sampling quality and polynomial degree of the TF. Two guidelines for acquiring an 

effective set of sampling frequencies are provided. The first is that the number of 

excitation frequencies should be sufficient to retain the dynamic information (amplitudes 

and phases) of the response in the neighborhood of the frequencies with a dramatic 

amplitude or phase change. Second, the final frequency sample should be the union of 

the frequencies of all the sixteen FRFs. A general rule for the selection of the polynomial 

degree is to ensure that the curve fit retains the peaks and shifts of the TF amplitude or 

phase while avoiding a higher polynomial degree than needed. This is because high-

degree polynomials can be highly oscillatory, which may include undesired information, 

such as noises in modal testing. The derived TFs in the s-plane may be expressed as, 

𝐺𝐴𝑖𝐵𝑗(𝑠) =
𝑏1𝑠

𝑚+𝑏2𝑠
𝑚−1+⋯+𝑏𝑚+1

𝑠𝑛+𝑎1𝑠𝑛−1+⋯+𝑎𝑛
       (55) 
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where the subscripts 𝐴, 𝐵 indicate 𝑌 or 𝑍, and 𝑖, 𝑗 =1 or 2. For simplicity, the TF matrix 

in Eq. (54) is written as [𝐺(𝑠)]. 

It can be clearly seen that [𝐺(𝑠)] is a MIMO system. We may derive each single-

input and single-output (SISO) state space from the individual TF, 𝐺𝐴𝑖𝐵𝑗(𝑠), and stack 

the state-space matrix into the corresponding block of the MIMO state space. There is 

the possibility that the final MIMO system is not a minimal state-space realization, 

leading to extra states and eigen-solutions. Several theoretical approaches [82-84] may 

help to resolve this problem. A practical approach is to identify repeated modes by 

inspection of the mode shapes and frequencies. The final state-space support model can 

be expressed as, 

{𝑞̇𝑆} = [𝐴𝑆]{𝑞𝑆} + [𝐵𝑆]{𝑓𝑆}        (56) 

{𝑦𝑆} = [𝐶𝑆]{𝑞𝑆}         (57) 

where {𝑓𝑆} is the bearing force vector, {𝑦𝑆} are the displacements of the support at the 

bearing attachment points. [𝐴𝑆], [𝐵𝑆] and [𝐶𝑆] represent the system matrix, input matrix 

and output matrix, respectively, and these three matrices can be obtained by 

transforming [𝐺(𝑠)] into a state-space form. The detailed composition of these matrices 

is given in the appendix. {𝑞𝑆} is the state variable vector that consists of purely 

mathematical variables without physical meanings. It can be seen from the Eqs. (56) and 

(57) that the support model is substantially reduced by utilizing the TFs and state-space 

model as the number of state variables is considerably smaller than the DOF number of 

the support structure. 
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 Rotor-Bearing System on Stationary Support Structure 

The rotor-bearing system used in the linear rotor dynamics is commonly 

comprised of beam FE rotor model and eight-coefficient bearing model. In this section, 

however, more options are presented to assemble the rotor, bearing, and support 

structure. Beam elements, axisymmetric elements, and 3D solid elements are employed 

in the rotor system modeling and assembling. 

2.7.1. Beam element rotor and solid element support structure 

Beam element rotor is associated with the support structure by adding the 

stiffness and damping coefficients of the linear bearing model to the nodes of the rotor to 

which the bearing is attached. The special attachment method presented in Section 2.2.3 

is not applicable for the 1D beam element model. 

 

 

Figure 15. First bending mode of a beam element rotor and solid element support 

model. 
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The support structure is first modeled with solid tetrahedron elements. Then, the 

fictitious node, which corresponds to the attachment point of each bearing, is created to 

connect the rotor and support. Each fictitious node is connected by the rigid and 

massless beams with the nodes that are circumferentially around the bearing center. The 

linear bearing model is attached to the node of the rotor beam element. An example is 

shown in Figure 15. The 1D beam element rotor has no radial dimensions. 

2.7.2. Axisymmetric element rotor and solid element support structure 

Similar to the assembling method for beam element rotor and solid element 

support models, linear bearing models are attached to fictitious node of the massless 

beam web. Figure 16 shows the basic idea how to assemble the rotor, bearing, and 

support structure. The difference lies in that the bearing coefficients are associated with 

the surface nodes of the axisymmetric element rotor in a special way. It has been 

introduced in Section 2.2.3 how to connect bearings with the axisymmetric element 

rotor. 
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Figure 16. Connection of axisymmetric element rotor and solid element support by 

linear bearing model. 
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Table 1. Nomenclature for Figure 16. 

Notation Unit Description 

𝑋, 𝑌, 𝑍 𝑚 

The horizontal, vertical and Z direction for rotor and 

stator in Cartesian coordinate system 

𝑈𝑟 , 𝑈𝜃, 𝑈𝑧 𝑚 

The radial, circumferential and axial direction for 

axisymmetric rotor in Polar coordinate system 

𝑢, 𝑣, 𝑤 𝑚 

The horizontal, vertical and Z direction for stator in 

Cartesian coordinate system 

𝑈𝑟𝑆 𝑚 

Symmetric direction in axisymmetric element 

approach 

𝑈𝑟𝐴 𝑚 

Anti-symmetric direction in axisymmetric element 

approach 

𝐹rΓ
𝑋  𝑁 

External force in Y direction at the stator inner surface 

node 𝑃 

𝐹rΓ
𝑌  𝑁 

External force in Z direction at the stator inner surface 

node 𝑄 

𝐹Γ
𝑍 𝑁 

External force in X direction at the stator inner surface 

node 𝑃 

𝑂 − Origin point 

𝐴 − Axisymmetric rotor surface node 

𝑃 − Stator inner surface node in Y direction 

𝑄 − Stator inner surface node in Z direction 
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Table 1. Continued. 

Notation Unit Description 

𝐾𝐵,𝑥𝑥 𝑁/𝑚 

Direct bearing stiffness coefficients (force acted in Y 

direction at a distance in Y direction) 

𝐾𝐵,𝑦𝑦 𝑁/𝑚 

Direct bearing stiffness coefficients (force acted in Z 

direction at a distance in Z direction) 

𝐾𝐵,𝑥𝑦 𝑁/𝑚 

Cross-coupled bearing stiffness coefficients (force 

acted in Y direction at a distance in Z direction) 

𝐾𝐵,𝑦𝑥 𝑁/𝑚 

Cross-coupled bearing stiffness coefficients (force 

acted in Z direction at a distance in Y direction) 

𝐶𝐵,𝑥𝑥 𝑁 ⋅ 𝑠/𝑚 

Direct bearing damping coefficients (force acted in Y 

direction at a velocity in Y direction) 

𝐶𝐵,𝑦𝑦 𝑁 ⋅ 𝑠/𝑚 

Direct bearing damping coefficients (force acted in Z 

direction at a velocity in Z direction) 

𝐶𝐵,𝑥𝑦 𝑁 ⋅ 𝑠/𝑚 

Cross-coupled damping stiffness coefficients (force 

acted in Y direction at a velocity in Z direction) 

𝐶𝐵,𝑦𝑥 𝑁 ⋅ 𝑠/𝑚 

Cross-coupled damping stiffness coefficients (force 

acted in Z direction at a velocity in Y direction) 

𝑞𝑗 𝑚 Axisymmetric element DOF 𝑗 

𝑄𝑗
𝐴 𝑁 𝑜𝑟 𝑁 ⋅ 𝑚 

External load at the rotor node 𝐴 for axisymmetric 

element DOF 𝑗 
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Table 1. Continued. 

Notation Unit Description 

𝑈𝑖𝑟𝑆
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

symmetric radial direction for 𝑖th harmonics in Polar 

coordinate system 

𝑈𝑖𝑟𝐴
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

anti-symmetric radial direction for 𝑖th harmonics in 

Polar coordinate system 

𝑈𝑖𝜃𝑆
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

symmetric circumferential direction for 𝑖th harmonics 

in Polar coordinate system 

𝑈𝑖𝜃𝐴
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

anti-symmetric circumferential direction for 𝑖th 

harmonics in Polar coordinate system 

𝑈𝑖𝑧𝑆
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

symmetric axial direction for 𝑖th harmonics in Polar 

coordinate system 

𝑈𝑖𝑧𝐴
𝐴  𝑚 

Displacement of axisymmetric element node 𝐴 in the 

anti-symmetric axial direction for 𝑖th harmonics in 

Polar coordinate system 
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Table 1. Continued. 

Notation Unit Description 

𝑋, 𝑌, 𝑍 𝑚 

The horizontal, vertical and Z direction for rotor and 

stator in Cartesian coordinate system 

𝑈𝑟 , 𝑈𝜃, 𝑈𝑧 𝑚 

The radial, circumferential and axial direction for 

axisymmetric rotor in Polar coordinate system 

𝑢, 𝑣, 𝑤 𝑚 

The horizontal, vertical and Z direction for stator in 

Cartesian coordinate system 

𝑈𝑟𝑆 𝑚 

Symmetric direction in axisymmetric element 

approach 

𝑈𝑟𝐴 𝑚 

Anti-symmetric direction in axisymmetric element 

approach 

𝐹rΓ
𝑋  𝑁 

External force in Y direction at the stator inner surface 

node 𝑃 

𝐹rΓ
𝑌  𝑁 

External force in Z direction at the stator inner surface 

node 𝑄 

𝐹Γ
𝑍 𝑁 

External force in X direction at the stator inner surface 

node 𝑃 

 

2.7.3. Axisymmetric element rotor and MIMO support TF 

This section presents an improved modeling approach for a complete rotor-

bearing-support system, which takes advantage of both axisymmetric solid FE rotor 
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model (accurate prediction of the dynamics of a rotor with complex shapes) and 

simplified support structure model utilizing the MIMO support TFs (reduction of the 

computation time and requirement for computational resources).  

A thin-walled shaft with multiple flexible disks is modeled using the 

axisymmetric solid harmonic FE method. The flexible structure supporting the rotor is 

first modeled with solid elements, and then the bearing location FRFs are determined by 

calculating the corresponding receptances over the frequency range of interest. 

Subsequently, the corresponding FRFs of the support structure are obtained by using the 

curve-fitting technique [81]. Guidance is provided for selecting an adequate polynomial  

degree of the TFs of the support structure. The TFs representing the support structure are 

rearranged to constitute a TF matrix, which contains the necessary information for 

unbalance response and stability analysis of the entire rotor system. The TF matrix is 

further transformed into a state-space form. In general, however, the support TF model is 

MIMO, implying that the way of transforming the TF into the state-space form for a 

SISO system [85] needs modifications. Finally, the state-space support model is 

connected with the rotor FE model by bearing forces. 

The rotor model described by Eq. (6) in Section 2.2 is employed and combined 

with MIMO support TF model to be a complete rotor system. The Guyan reduction 

method [16] is used to reduce the rotor FE model and enhance the computational speed. 

Regarding the selection of retained DOFs for the Guyan reduction, a general rule is to 

retain the DOFs with large inertia, damping, or external load. The dynamic model 

described by Eq. (6) can then be rearranged to yield the following state-space form, 
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{𝑞̇𝑅} = [𝐴𝑅]{𝑞𝑅} + [𝐵RB]{𝑓𝐵} + [𝐵RU]{𝑓𝑈}      (58) 

{𝑦𝑅} = [𝐶𝑅]{𝑞𝑅}         (59) 

where {𝑓𝐵} and {𝑓𝑈} represent the bearing force vector and unbalanced force vector (any 

external load including unbalanced force), respectively. {𝑞𝑅} is the state variable vector, 

and {𝑦𝑅} are the displacements of the rotor at the bearing attachment points. All matrices 

and vectors in Eqs. (58) and (59) are given in the appendix. 

The state-space support model has been given in Section 2.6.2. The rotor and 

support structure are connected by bearings, or more precisely, by bearing forces. The 

different forms of bearing forces that are written in Eqs. (56) and (58) can be correlated 

by, 

{𝑓𝑆} = −{𝑓𝐵}          (60) 

With regard to most of the fluid film bearings, the bearing forces at a certain 

rotating speed may be applied to the rotor in the form of 

𝐹𝐵 = 𝑐𝐵 ⋅ 𝑈̇𝐵 + 𝑘𝐵 ⋅ 𝑈𝐵        (61) 

where 𝑈𝐵 are the relative displacements between the rotor and support structure. 

Therefore, the general bearing forces can be derived from 

{𝑓𝐵} = −[𝐶𝐵]({𝑦̇𝑅} − {𝑦̇𝑆}) − [𝐾𝐵]({𝑦𝑅} − {𝑦𝑆})     (62) 

Substituting Eqs. (60) and (62) into Eqs. (58), (59), (56) and (57) yields, 

[𝐴𝑇]{𝑞̇} = [𝐵𝑇]{𝑞} + [𝐵UT]{𝑓𝑈}       (63) 

With the benefit of this state-space form, controllers, actuators and AMBs may be 

integrated in the rotor system. The detailed matrices for the state-space form are 

provided in Appendix B. 
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With Eq. (63) representing the entire state-space model of the rotor-support 

system, stability analysis of the system can be conducted by using the characteristic 

equation, 

𝜙(𝑠) = |𝑠[𝐼] − [𝐴𝑇]| = 0        (64) 

If there are positive real eigenvalues or negative log dec, the rotor system is 

unstable. Additionally, unbalance response of the rotor can be obtained by substituting 

{𝑓𝑈}𝑒
𝑗𝜔𝑡 for {𝑓𝑈} into Eq. (63), which yields, 

(𝑗𝜔[𝐴𝑇] − [𝐵𝑇]){𝑞̂} = [𝐵UT]{𝑓𝑈}       (65) 

where {𝑞̂} represents the complex state vector in the state-space model, {𝑓𝑈} is the 

complex unbalanced force vector, and 𝜔 is the frequency of the unbalanced force. 

A specific example will be provided in Chapter 4. 

 Rotor-Bearing System on Moving Support Structure 

Generally, rotor dynamic modeling and analysis assume that the rotor support 

structure is fixed to the ground in industrial applications. However, rotating machines 

like compressors and gas turbines may be installed in maneuvering aircrafts and ships 

encountering rough seas. In these scenarios, the on-board rotor is subject to large time-

varying motions of its support structure, during which the support fixed frame direction 

of the gravity force on the rotor varies with the moving support structure, causing 

considerable change in bearing load components. Such changes may have a great impact 

on the performance of the hydrodynamic journal bearings that are widely used in 

rotating machinery, such as inducing large rotor vibrations or invoking rotor instability.  
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A few beam element rotor models with the eight-coefficient bearing attachment 

[39, 40] have been developed to investigate the dynamics of a rotor under support 

motion or base excitation. Some reseachers replaced the eight-coefficient bearing model 

with a nonlinear short bearing approximation [35, 36, 42]. This section corrects the 

erroneous Timoshenko beam element formulation presented in [39] and provides an 

improved systematic modeling approach for a rotor system by including hydrodynamic 

journal bearings, Timoshenko beam element shaft model and a moving support structure 

with arbitrary motions, such as heave, sway, surge, roll, pitch and yaw. 

The shaft continuum is discretized with Timoshenko beam finite elements that 

account for gyroscopic moments, shear deformation and rotary inertia and is connected 

to the support structure via hydrodynamic journal bearings. The disk is added to the shaft 

as a rigid body with concentrated mass and moments of inertia. The bearing forces 

acting on the rotor, are determined by solving the Reynold’s equation for lubricant film 

pressure utilizing a fluid film 2D FE model shown in Section 2.5. Finally, the equations 

of motion of the flexible rotor with hydrodynamic journal bearings and a moving support 

structure are derived by using the Lagrange’s equation and expressed with respect to a 

non-inertial reference frame representing the moving support structure.  

The rigid support model containing three translational and three rotational 

motions introduces time-varying parameters into the rotor system. Due to these time-

varying parametric terms, the rotor may become unstable within the operating speed 

range. Therefore, the influences of the support pitch motion on the dynamic behavior of 

the rotor system are investigated using the derived rotor system model. In addition, 



 

 67 

  

fixed-pad and tilting-pad bearings, the two types of hydrodynamic journal bearings that 

are commonly used in rotating machinery, are separately included as bearings in the 

rotor system. The influences of these two types of bearings on the rotor vibration are 

studied and compared in terms of general rotor dynamic characteristics, such as rotor 

orbit, unbalanced response, and stability. 

2.8.1. Kinetic energy of a disk 

The disk on the rotor is assumed rigid body. Hence, no strain energy is 

considered.  

The relative motion of the rotor with respect to the support structure is essential 

to rotor dynamic analysis. The first step is to derive the transformation relationships 

among the rotor reference frame, support reference frame, and the ground reference 

frame (also called the absolute reference frame). These three reference frames are 

defined as, 

(a) 𝑅𝐺  represents the reference frame with respect to the ground (fixed to the center of 

mass of the support before moving), i.e. 𝑂𝐺𝑋𝐺𝑌𝐺𝑍𝐺  in Figure 17; 

(b) 𝑅𝐹represents the reference frame with respect to the foundation/support structure 

(fixed to the journal center of the left bearing pedestal), i.e. 𝑂𝐹𝑋𝐹𝑌𝐹𝑍𝐹 in Figure 17; 

(c) 𝑅𝑅 represents the reference frame with respect to the shaft segment or disk (fixed to 

the center of mass of the shaft segment), i.e. 𝑂𝑅𝑋𝑅𝑌𝑅𝑍𝑅 in Figure 17. 
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Figure 17. Maneuvering rotor-bearing-support system with three reference frames 

(ground frame 𝑶𝑮𝑿𝑮𝒀𝑮𝒁𝑮, support frame 𝑶𝑭𝑿𝑭𝒀𝑭𝒁𝑭, and rotor frame 

𝑶𝑹𝑿𝑹𝒀𝑹𝒁𝑹). 

 

The relationship between the vectors 𝑟 that is expressed in the reference frame 

𝑅𝐹 and in the reference frame 𝑅𝑅 may be described by, 

𝑟|𝑅𝑅 = [𝑇𝑅𝐹→𝑅𝑅] ⋅ 𝑟|𝑅𝐹        (66) 

where |𝑅𝑅 indicates that the vector is expressed or projected in the reference frame 𝑅𝑅. 

[𝑇] represents the transformation matrix. The subscript 𝑅𝐹 → 𝑅𝑅 indicates that the 

reference frame where the vector is projected transforms from 𝑅𝐹 to 𝑅𝑅. The 

transformation matrix [𝑇𝑅𝐹→𝑅𝑅] can be obtained by following the way shown in Eqs. 

(67) to (70). 

Transform the vector projected in the frame 𝑅𝐹 into the one projected in the 

frame 𝑅𝑅 by means of Euler angles. The transformation matrix may be expressed as, 

[𝑇𝑅𝐹→𝑅𝑅] = [𝑇𝑅𝑥][𝑇𝑅𝑦][𝑇𝑅𝑧]        (67) 
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where  

[𝑇𝑅𝑥] = [

1 0 0
0 𝑐𝑜𝑠(𝛼𝑅) 𝑠𝑖𝑛(𝛼𝑅)

0 − 𝑠𝑖𝑛(𝛼𝑅) 𝑐𝑜𝑠(𝛼𝑅)
]       (68) 

[𝑇𝑅𝑦] = [
𝑐𝑜𝑠(𝛽𝑅) 0 − 𝑠𝑖𝑛(𝛽𝑅)
0 1 0

𝑠𝑖𝑛(𝛽𝑅) 0 𝑐𝑜𝑠(𝛽𝑅)
]       (69) 

[𝑇𝑅𝑧] = [
𝑐𝑜𝑠(𝛾𝑅) 𝑠𝑖𝑛(𝛾𝑅) 0

− 𝑠𝑖𝑛(𝛾𝑅) 𝑐𝑜𝑠(𝛾𝑅) 0
0 0 1

]       (70) 

The vectors representing the rotational angle and angular velocity can transform 

in the following way (Figure 18). 

 

 

Figure 18. Coordinate system rotation for an angular vector. 

 

First, rotate 𝜃𝑧 about z  axis, which generates the coordinate system 𝑜𝑥′𝑦′𝑧′. 

Then, rotate 𝜃𝑦′ about 𝑦′ axis, generating the coordinate system 𝑜𝑥′′𝑦′′𝑧′′. Finally, rotate 
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𝜃𝑥′′ about 𝑥′′ axis, leading to the coordinate system 𝑜𝑥′′′𝑦′′′𝑧′′′. The angular velocity 

vector may be written as, 

𝜔⃑⃑⃑𝑟 = 𝜃̇𝑧𝑒𝑧 + 𝜃̇𝑦′𝑒𝑦′ + 𝜃̇𝑥′′𝑒𝑥′′        (71) 

where 𝑒𝑧, 𝑒𝑦′ and 𝑒𝑥′′ represent the unit vector in 𝑧 direction of the coordinate systems 

𝑜𝑥𝑦𝑧, the one in 𝑦′ direction of 𝑜𝑥′𝑦′𝑧′ and the one in 𝑧′′ direction of 𝑜𝑥′′𝑦′′𝑧′′, 

respectively. 

𝜔⃑⃑⃑𝑟 can be obtained by using a similar Euler angle transformation to Eqs. (67) to 

(70). As the rotor rotation angles 𝜃𝑧 and 𝜃𝑦′ are very small (because the deformation due 

to bending is small), the rotor rotations are approximately collinear with 𝑦 and 𝑧 axes. In 

regard to the rotor with respect to the reference frame 𝑅𝐹, this approximation yields, 

𝜔⃑⃑⃑𝑅𝑅/𝑅𝐹|𝑅𝑅
= [

𝛼̇𝑅 − 𝛾̇𝑅 𝑠𝑖𝑛(𝛽𝑅)

𝛽̇𝑅 𝑐𝑜𝑠(𝛼𝑅) − 𝛾̇𝑅 𝑠𝑖𝑛(𝛼𝑅) 𝑐𝑜𝑠(𝛽𝑅)

−𝛽̇𝑅 𝑠𝑖𝑛(𝛼𝑅) + 𝛾̇𝑅 𝑐𝑜𝑠(𝛼𝑅) 𝑐𝑜𝑠(𝛽𝑅)

]

𝑅𝑅

    (72) 

where 𝜔⃑⃑⃑𝑅𝑅 represents the angular velocity vector of the reference frame 𝑅𝑅, and the 

subscript /𝑅𝐹 denotes a vector with respect to the reference frame 𝑅𝐹. Both 
RR

 and [

]𝑅𝑅 indicate that the vector is expressed or projected in the reference frame 𝑅𝑅. 

Additionally, 𝛼𝑅, 𝛽𝑅 and 𝛾𝑅 represent the rotation angles of the shaft segment or disk 

about 𝑥, 𝑦, and 𝑧 axes with respect to 𝑅𝐹 and prejected in 𝑅𝐹, respectively. The 

remaining of the chapter will use the same naming rules for formulation of support 

motion. The assumption that 𝛽𝑅 and 𝛾𝑅 are very small for small bending deformations of 

the rotor is made for simplifying the kinetic energy of the rotor or disk. 
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Similar to Eq. (72), the angular velocity vector of the frame 𝑅𝐹 with respect to 

𝑅𝐺  may be written as, 

𝜔⃑⃑⃑𝑅𝐹/𝑅𝐺|𝑅𝐹
= [

𝛼̇𝐹 − 𝛾̇𝐹 𝑠𝑖𝑛(𝛽𝐹)

𝛽̇𝐹 𝑐𝑜𝑠(𝛼𝐹) − 𝛾̇𝐹 𝑠𝑖𝑛(𝛼𝐹) 𝑐𝑜𝑠(𝛽𝐹)

−𝛽̇𝐹 𝑠𝑖𝑛(𝛼𝐹) + 𝛾̇𝐹 𝑐𝑜𝑠(𝛼𝐹) 𝑐𝑜𝑠(𝛽𝐹)

]

𝑅𝐹

    (73) 

where 𝛼𝐹, 𝛽𝐹 and 𝛾𝐹 represent the rotation angles of the support structure about 𝑥, 𝑦, 

and 𝑧 axes with respect to 𝑅𝐺  and prejected in 𝑅𝐺 , respectively. Note that 𝛼𝐹, 𝛽𝐹 and 𝛾𝐹 

are arbitrary angles, unlike the previous assumption that 𝛽𝑅 and 𝛾𝑅 are very small. 

Then the angular velocity vector of the shaft segment or disk with respect to 𝑅𝐺  

and projected in 𝑅𝑅 is expressed as, 

𝜔⃑⃑⃑𝑅𝑅/𝑅𝐺|𝑅𝑅
= 𝜔⃑⃑⃑𝑅𝑅/𝑅𝐹|𝑅𝑅

+ [𝑇𝑅𝐹→𝑅𝑅] ⋅ 𝜔⃑⃑⃑𝑅𝐹/𝑅𝐺|𝑅𝐹
     (74) 

Therefore, the rotational kinetic energy of the disk can be written as, 

𝑇𝑟𝑜𝑡 =
1

2
(𝜔⃑⃑⃑𝑅𝑅/𝑅𝐺|𝑅𝑅

)
𝑇
[𝐼𝑑] (𝜔⃑⃑⃑𝑅𝑅/𝑅𝐺|𝑅𝑅

)      (75) 

where [𝐼𝑑] denotes the matrix representing the moment of inertia of the disk and may be 

written as, 

[𝐼𝑑] = [

𝐼𝑝𝑑 0 0

0 𝐼𝑡𝑑 0
0 0 𝐼𝑡𝑑

]        (76) 

where 𝐼𝑝𝑑 and 𝐼𝑡𝑑 represent the moment of inertia of the disk about the axial axis (𝑥 axis) 

and non-axial axis (𝑦 or 𝑧 axis), respectively. 

After obtaining the rotational kinetic energy, we start deriving the translational 

kinetic energy of the disk.  The absolute position vector of the origin 𝑂𝐹 of the reference 
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frame 𝑅𝐹, which is expressed or projected in the frame 𝑅𝐺 , is defined as 𝑂𝐺𝑂𝐹⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |
𝑅𝐺

. 
GR

 

indicates that the vector is projected in the frame 𝑅𝐺 . By using Euler angles, the position 

vector projected in the frame 𝑅𝐺  is transformed into the one projected in the frame 𝑅𝐹, 

which yields, 

𝑂𝐺𝑂𝐹⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |
𝑅𝐹
= [𝑇𝑅𝐺→𝑅𝐹] ⋅ 𝑂𝐺𝑂𝐹

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |
𝑅𝐺
= [

𝑥𝐹
𝑦𝐹
𝑧𝐹
]

𝑅𝐹

      (77) 

where 

[𝑇𝑅𝐺→𝑅𝐹] = [𝑇𝐹𝑥][𝑇𝐹𝑦][𝑇𝐹𝑧]        (78) 

[𝑇𝐹𝑥] = [

1 0 0
0 𝑐𝑜𝑠(𝛼𝐹) 𝑠𝑖𝑛(𝛼𝐹)

0 − 𝑠𝑖𝑛(𝛼𝐹) 𝑐𝑜𝑠(𝛼𝐹)
]       (79) 

[𝑇𝐹𝑦] = [
𝑐𝑜𝑠(𝛽𝐹) 0 − 𝑠𝑖𝑛(𝛽𝐹)
0 1 0

𝑠𝑖𝑛(𝛽𝐹) 0 𝑐𝑜𝑠(𝛽𝐹)
]       (80) 

[𝑇𝐹𝑧] = [
𝑐𝑜𝑠(𝛾𝐹) 𝑠𝑖𝑛(𝛾𝐹) 0

− 𝑠𝑖𝑛(𝛾𝐹) 𝑐𝑜𝑠(𝛾𝐹) 0
0 0 1

]       (81) 

The position vector of the center of mass of the shaft segment or disk with 

respect to the frame 𝑅𝐹 and projected in the frame 𝑅𝐹 is expressed as, 

𝑂𝐹𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |
𝑅𝐹
= [

𝑥𝑅
𝑦𝑅
𝑧𝑅
]

𝑅𝐹

         (82) 

where 𝑥𝑅, 𝑦𝑅, and 𝑧𝑅 represent the displacement of the disk in 𝑥, 𝑦, and 𝑧 directions with 

respect to 𝑅𝐹 and projected in 𝑅𝐹 as well, respectively. 
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The absolute position vector of the mass center of the shaft segment or disk with 

respect to the frame 𝑅𝐺  and projected in the frame 𝑅𝐹 is given by, 

𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|
𝑅𝐹
= 𝑂𝐺𝑂𝐹⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

𝑅𝐹
+𝑂𝐹𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

𝑅𝐹
= [

𝑥𝐹 + 𝑥𝑅
𝑦𝐹 + 𝑦𝑅
𝑧𝐹 + 𝑧𝑅

]

𝑅𝐹

     (83) 

where 𝑥𝐹, 𝑦𝐹, and 𝑧𝐹 represent the displacement of the rigid support in 𝑥, 𝑦, and 𝑧 

directions with respect to 𝑅𝐺  and projected in 𝑅𝐹, respectively. 

Applying the transport theorem, which relates the time derivative of the position 

vector 𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ measured from the frame 𝑅𝐺  to that of the same vector but measured from 

the moving frame 𝑅𝐹, yields, 

𝑣⃑𝑅𝑅/𝑅𝐺|𝑅𝐹
=
𝑑𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑑𝑡
|
𝑅𝐹

𝑅𝐺

=
𝑑𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑑𝑡
|
𝑅𝐹

𝑅𝐹

+ 𝜔⃑⃑⃑𝑅𝐹/𝑅𝐺|𝑅𝐹
× 𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|

𝑅𝐹
 

             = [
𝑥̇𝐹 + 𝑥̇𝑅
𝑦̇𝐹 + 𝑦̇𝑅
𝑧̇𝐹 + 𝑧̇𝑅

] + [

𝜔𝐹𝑥
𝜔𝐹𝑦
𝜔𝐹𝑧

] × [

𝑥𝐹 + 𝑥𝑅
𝑦𝐹 + 𝑦𝑅
𝑧𝐹 + 𝑧𝑅

]    (84) 

where G

F

R

R
 indicates that the vector is projected in the frame 𝑅𝐹 and the time derivative 

operation is sensed in the frame 𝑅𝐺 . 𝜔𝐹𝑥, 𝜔𝐹𝑦 and 𝜔𝐹𝑧 represent the components of the 

angular velocity vector of the support with respect to the ground 𝑅𝐺  and projected in the 

frame 𝑅𝐹, i.e. 𝜔⃑⃑⃑𝑅𝐹/𝑅𝐺|𝑅𝐹
, which correspond to 𝑥, 𝑦 and 𝑧 directions, respectively. 

The translational kinetic energy of the disk may be expressed as, 

𝑇𝑡𝑟𝑠 =
1

2
(𝑣⃑𝑅𝑅/𝑅𝐺|𝑅𝐹

)
𝑇
[𝑀𝑑] (𝑣⃑𝑅𝑅/𝑅𝐺|𝑅𝐹

)      (85) 

where [𝑀𝑑] denotes the matrix representing the mass of the disk and is written as, 
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[𝑀𝑑] = [

𝑚𝑑 0 0
0 𝑚𝑑 0
0 0 𝑚𝑑

]        (86) 

where 𝑚𝑑 represents the mass of the disk. 

The total kinetic energy of a disk 𝑇𝑑 consists of the rotational energy shown in 

Eq. (75) and the translational kinetic energy shown in Eq. (85) and may be expressed as, 

𝑇𝑑 = 𝑇𝑟𝑜𝑡 + 𝑇𝑡𝑟𝑠         (87) 

2.8.2. Kinetic energy of a shaft segment 

The derivation of the kinetic energy of the shaft is the same as that of the disk 

except that the integral operations are applied through the length of the shaft or shaft 

segment. We define, 

𝜔⃑⃑⃑𝑅𝑅/𝑅𝐺|𝑅𝑅
= [

𝛼̇𝑅𝑅/𝑅𝐺
𝛽̇𝑅𝑅/𝑅𝐺
𝛾̇𝑅𝑅/𝑅𝐺

]

𝑅𝑅

        (88) 

𝑣⃑𝑅𝑅/𝑅𝐺|𝑅𝐹
= [

𝑥̇𝑅𝑅/𝑅𝐺
𝑦̇𝑅𝑅/𝑅𝐺
𝑧̇𝑅𝑅/𝑅𝐺

]

𝑅𝐹

        (89) 

The expanded formulation of 𝛼̇𝑅𝑅/𝑅𝐺, 𝛽̇𝑅𝑅/𝑅𝐺, 𝛾̇𝑅𝑅/𝑅𝐺, 𝑥̇𝑅𝑅/𝑅𝐺, 𝑦̇𝑅𝑅/𝑅𝐺 and 𝑧̇𝑅𝑅/𝑅𝐺 can be 

obtained by following the same approach as shown from Eqs. (72) to (84) except that 𝑥𝑅, 

𝑦𝑅, 𝑧𝑅, 𝑥̇𝑅, 𝑦̇𝑅, 𝑧̇𝑅, 𝛼𝑅, 𝛽𝑅, 𝛾𝑅, 𝛼̇𝑅, 𝛽̇𝑅 and 𝛾̇𝑅 are replaced with 𝑥𝑆, 𝑦𝑆, 𝑧𝑆, 𝑥̇𝑆, 𝑦̇𝑆, 𝑧̇𝑆, 𝛼𝑆, 

𝛽𝑆, 𝛾𝑆, 𝛼̇𝑆, 𝛽̇𝑆 and 𝛾̇𝑆, respectively. 

Thus, the kinetic energy of the shaft segment may be expressed as, 

𝑇𝑠 =
1

2
𝜌𝑠𝐴𝑠∫ (𝑥̇𝑅𝑅/𝑅𝐺

2 + 𝑦̇𝑅𝑅/𝑅𝐺
2 + 𝑧̇𝑅𝑅/𝑅𝐺

2 )𝑑𝑥
𝑥2

𝑥1
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    +
1

2
(𝐼𝑝𝑠 ∫ 𝛼̇𝑅𝑅/𝑅𝐺

2 𝑑𝑥 + 𝐼𝑡𝑠 ∫ 𝛽̇𝑅𝑅/𝑅𝐺
2 𝑑𝑥 + 𝐼𝑡𝑠 ∫ 𝛾̇𝑅𝑅/𝑅𝐺

2 𝑑𝑥
𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1
)   (90) 

where 𝜌𝑠 is the density of the shaft. 𝐴𝑠 is the area of the shaft cross-section. 𝐼𝑝𝑠 is the 

moment of inertia of the shaft about the axial axis (𝑥 axis). 𝐼𝑡𝑠 is the moment of inertia of 

the shaft about the non-axial axis (𝑦 or 𝑧 axis). 𝑥1 is the beginning position of the axial 

length of the shaft segment. 𝑥2 is the ending position of the axial length of the shaft 

segment. 

2.8.3. Strain energy of a shaft segment 

A Timoshenko element model for a rotor with a rigid support structure fixed to 

the ground has been developed in [5]. The formulation of the elastic strain energy for a 

rotor with a support fixed to the ground is the same as for a rotor under support motion 

except that the displacements are replaced with the ones with respect to the support 

reference frame. For simplicity, only the final formulation of elastic strain energy is 

given as, 

𝑈𝑠 =
1

2
𝐸𝐼 ∫ ((

∂𝛽𝑟

∂𝑥
)
2

+ (
∂𝛾𝑟

∂𝑥
)
2

) 𝑑𝑥
𝑥2

𝑥1
+
1

2
𝐺𝜅𝐴𝑠 ∫ ((

∂𝑦𝑟

∂𝑥
− 𝛾𝑟)

2

+ (
∂𝑧𝑟

∂𝑥
+ 𝛽𝑟)

2

) 𝑑𝑥
𝑥2

𝑥1
   (91) 

where 𝐸 is the elastic modulus of the shaft. 𝐼 is the second moment of inertia of the 

shaft. 𝐺 is the shear modulus of the shaft. 𝜅 is the shear form factor of the shaft. 𝐴𝑠 is the 

cross-section area of the shaft. 

2.8.4. Gravitational potential energy 

Since the fluid film bearing in the rotor-bearing-support system is modeled as 

nonlinear forces acted on the journal, the assumption that the gravity of the rotor is 

balanced at the equilibrium position in the steady-state analysis is invalid. As a result, 



 

 76 

  

the potential energy due to gravity of the rotor (shaft and disk) should be taken into 

consideration. 

The position vector with respect to the frame 𝑅𝐺  and projected in the frame 𝑅𝐺  

can be written as, 

𝑂𝐺𝑂𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|
𝑅𝐺
= [𝑇𝑅𝐹→𝑅𝐺] ⋅ 𝑂𝐺𝑂𝑅

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|
𝑅𝐹
= [

𝑥𝐺
𝑦𝐺
𝑧𝐺
]

𝑅𝐺

      (92) 

where [𝑇𝑅𝐹→𝑅𝐺] is the inverse matrix of [𝑇𝑅𝐺→𝑅𝐹]. 

The vertical distance relative to the datum of the ground, i.e. 𝑧𝐺 leads to the 

potential energy due to gravity of the disk, which can be written as, 

𝑃𝑑 = 𝑚𝑑 ⋅ 𝑔 ⋅ 𝑧𝐺         (93) 

where 𝑔 is the coefficient representing the gravity of earth and 𝑚𝑑 is the mass of the 

disk. 

The potential energy due to gravity of the shaft segment may be expressed as, 

𝑃𝑠 = 𝜌𝑠 ⋅ 𝐴𝑠 ⋅ 𝑔 ⋅ ∫ 𝑧𝐺𝑑𝑥
𝑥2

𝑥1
        (94) 

2.8.5. Mass imbalance 

As shown in Figure 19, we place a concentrated mass 𝑚𝑢 at point 𝑃𝑢 with a 

distance 𝑟𝑢 from the geometric center of the cross-section of the rotor segment (shaft 

segment or disk). The initial angle about the 𝑂𝐹𝑋𝐹⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   axis of the frame 𝑅𝐹 at rest is set as 

𝜑𝑢. When the rotor rotates, the angle becomes 𝜃𝑢. 𝜃𝑢may be correlated with 𝜑𝑢, rotor 

spin speed 𝛺 and time 𝑡 by， 

𝜃𝑢 = Ω𝑡 + 𝜑𝑢          (95) 
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Figure 19. Mass unbalance of the rotor segment. 

 

The absolute position vector of the mass unbalance is defined as 𝑂𝐺𝑃𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, which 

may be obtained from, 

𝑂𝐺𝑃𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|
𝑅𝐹
= 𝑂𝐺𝑂𝐹⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

𝑅𝐹
+ 𝑂𝐹𝑂𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

𝑅𝐹
+ 𝑂𝑢𝑃𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|

𝑅𝐹
= [

𝑥𝐹
𝑦𝐹
𝑧𝐹
] + [

𝑥𝑢
𝑦𝑢
𝑧𝑢
] + [

0
𝑟𝑢 𝑐𝑜𝑠(𝜃𝑢)

𝑟𝑢 𝑠𝑖𝑛(𝜃𝑢)
]  (96) 

Applying the transport theorem to Eq. (96) yields, 

𝑣⃑𝑃𝑢/𝑅𝐺|𝑅𝐹
=
𝑑𝑂𝐺𝑃𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑑𝑡
|
𝑅𝐹

𝑅𝐺

=
𝑑𝑂𝐺𝑃𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

𝑑𝑡
|
𝑅𝐹

𝑅𝐹

+ 𝜔⃑⃑⃑𝑅𝐹/𝑅𝐺|𝑅𝐹
× 𝑂𝐺𝑂𝑢⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

𝑅𝐹
= [

𝑥̇𝑃𝑢/𝑅𝐺
𝑦̇𝑃𝑢/𝑅𝐺
𝑧̇𝑃𝑢/𝑅𝐺

]

𝑅𝐹

  (97) 

where 
𝑑

𝑑𝑡
|
𝑅𝐹

𝑅𝐺
 represents the time derivative of the vector with respect to the reference 

frame 𝑅𝐺  (sensed in 𝑅𝐺) and projected in the reference frame 𝑅𝐹. 

After obtaining the velocity of the unbalance mass from Eq. (97), the kinetic 

energy of the mass unbalance can be written as, 
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𝑇𝑢 =
1

2
𝑚𝑢(𝑥̇𝑃𝑢/𝑅𝐺

2 + 𝑦̇𝑃𝑢/𝑅𝐺
2 + 𝑧̇𝑃𝑢/𝑅𝐺

2 )      (98) 

2.8.6. Equation of motion 

The beam element rotor model presented in Section 2.8 and the nonlinear fluid 

film bearing introduced in Section 2.5 are combined together to simulate a rotor-bearing 

system under large support motions. 

The displacements of the journal with respect to the support structure are 

included to derive the lubricant thickness between the journal and bearing pad. In the 

meantime, the lubricant forces (pressure) are calculated based on the thickness of the 

lubricant film and included in the equilibrium equations for the entire rotor-bearing-

support system. 

Due to the nonlinearity of the rotor system, transient analysis is employed. An 

iterative computation approach [77] is applied in order to obtain the equilibrium point of 

the journal in the bearing. 

The virtual work done by bearing forces can be expressed as, 

𝛿𝑊𝑏 = (𝐹𝑏𝑦𝑒𝑦 + 𝐹𝑏𝑧𝑒𝑧) ⋅ 𝛿𝑢⃑⃑𝑏       (99) 

where 𝛿𝑊𝑏 and 𝛿𝑢⃑⃑𝑏 represents the virtal work and displacement vector per infinitesimal 

displacement. 𝑒𝑦 and 𝑒𝑧 are unit vectors in 𝑌 and 𝑍 directions, respectively. 𝐹𝑏𝑦 and 𝐹𝑏𝑧 

are the same bearing forces as defined in Eq. (49) and (50). 

The Lagrange’s equations are applied to Eqs. (75), (85), (90), (91), (93), (94), 

(98) and (99) to derive the equation of motion of the rotor-bearing system under support 

motion. The erroneous formulation of kinetic energy presented in [39] is corrected by 
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using the formulations derived in this work. The corrected formulations of kinetic energy 

for a rigid disk and shaft segment, 𝑇𝑑 and 𝑇𝑠, are provided in Appendix A. 

 Guyan Reduction Method 

A solid element model may involve thousands of DOFs more than a beam 

element model. As a result, the solid element model requires more computation time and 

a large RAM. In other words, a solid element model is more accurate that beam element 

model at the sacrifice of computational resources. A remedy for this is to use model 

reduction methods to condense the DOFs of the solid element model. The Guyan 

reduction method [16] has been successfully applied to the shaft axisymmetric FE model 

in [11], and thereby, is used in the present work to reduce the FE model size and enhance 

the computation speed. The master DOFs for the Guyan reduction are selected in such a 

way that the DOFs with large damping, inertia, or external load are retained [25]. A 

software algorithm that automates the retaining process has been provided in [20] 

The equation of motion for a rotor or support solid element model may be 

described as, 

[𝑀]{𝑞̈} + [𝐶]{𝑞̇} + [𝐾]{𝑞} = {𝑓}       (100) 

where the DOF vector {𝑞} can be separated into two groups, namely retained DOF 

vector {𝑞𝑅} and condensed DOF vector {𝑞𝐶}. The retained vector contains 𝑁𝑅 DOFs. 

The condensed vector has 𝑁𝐶 DOFs. It is clear that the DOF number is reduced from the 

original 𝑁 to 𝑁𝑅. Accordingly, the mass or inertia matrix [𝑀], damping matrix [𝐶], 

stiffness matrix [𝐾] and external load vector {𝑓} are rearranged to be, 
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[
[𝑀𝑅𝑅] [𝑀𝑅𝐶]

[𝑀𝐶𝑅] [𝑀𝐶𝐶]
] [
{𝑞̈𝑅}

{𝑞̈𝐶}
] + [

[𝐶𝑅𝑅] [𝐶𝑅𝐶]

[𝐶𝐶𝑅] [𝐶𝐶𝐶]
] [
{𝑞̇𝑅}

{𝑞̇𝐶}
] + [

[𝐾𝑅𝑅] [𝐾𝑅𝐶]

[𝐾𝐶𝑅] [𝐾𝐶𝐶]
] [
{𝑞𝑅}

{𝑞𝐶}
] = [

{𝑓𝑅}

{𝑓𝐶}
] 

(101) 

where the subscripts 𝑅 and 𝐶 indicate the retained and condensed DOFs, respectively. 

The condensed inertia, damping and external load terms are assumed to be negligible. 

Regarding the selection of retained DOFs for the Guyan reduction, a general rule is to 

retain the DOFs with large inertia, damping, or external load. 

The displacements of the rotor system can be obtained by following the equation 

[
{𝑞𝑅}

{𝑞𝐶}
] = [𝑇𝐺]{𝑞𝑅}         (102) 

where the Guyan transformation matrix [𝑇𝐺] is defined as, 

[𝑇𝐺] = [
[𝐼𝑅𝑅]

−[𝐾𝐶𝐶]
−1[𝐾𝐶𝑅]

]        (103) 

Substituting Eqs. (102) and (103) into Eq. (101) yields, 

[𝑀𝐺]{𝑞̈𝑅} + [𝐶𝐺]{𝑞̇𝑅} + [𝐾𝐺]{𝑞𝑅} = {𝑓𝐺}      (104) 

where 

[𝑀𝐺] = [𝑇𝐺]
𝑇[𝑀][𝑇𝐺]         (105) 

 [𝐶𝐺] = [𝑇𝐺]
𝑇[𝐶][𝑇𝐺]         (106) 

 [𝐾𝐺] = [𝑇𝐺]
𝑇[𝐾][𝑇𝐺]         (107) 

  {𝑓𝐺} = [𝑇𝐺]
𝑇{𝑓}         (108) 

It can be seen from Eqs. (104)-(108) that the dimension of the equation of motion has 

been reduced from (𝑁 × 𝑁) in Eq. (100) to (𝑁𝑅 × 𝑁𝑅) in Eq. (104). More detailed 

derivations can be found in Ref. [25]. 
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 Summary of Modeling Approaches 

This chapter presented improved formulations of the axisymmetric solid 

harmonic element rotor model and a systematic modeling approach for analysis of a 

rotor system with hydrodynamic fluid film bearings undergoing large support motion. 

The improvements made on the rotor axisymmetric FE modeling include (1) 

developing an axisymmetric FE formulation of the centrifugal stress-stiffening effects 

that is implementable as a software algorithm, and (2) developing an axisymmetric FE 

formulation of the spin-softening effects that is implementable as a software algorithm. 

This is the first time that the centrifugal stress-stiffening and spin-softening effects are 

formulated for the axisymmetric solid harmonic element rotor modeling. 

An improved MIMO TF modeling approach is presented for modeling a support 

structure. MIMO TFs representing a support structure are transformed into a state-space 

form and then integrated in the rotor axisymmetric FE model. The rotor-bearing-support 

model constructed based on a rotor axisymmetric FE model and support MIMO TFs 

consumes much less computation time than a complete solid FE rotor-bearing-support 

model. 

In addition, an improved systematic modeling approach that utilizes Timoshenko 

beam elements and accounts for support motion is presented. This approach is for 

modeling a rotor system with flexible shafts on hydrodynamic journal bearings 

undergoing large support motion. This is the first time that the hydrodynamic fluid film 

journal bearing model, instead of the linear eight-coefficient bearing model and short 

journal bearing model, is integrated into a rotor-bearing system undergoing support 
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motion. The bearing forces acting on the rotor are determined by solving the Reynold’s 

equation for lubricant film pressure utilizing a 2D finite element fluid film model. 

Finally, Guyan reduction method is introduced and applied in order to reduce the 

simulation time and save computer resources. 
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3. MODELING OF A DRILLSTRING WITH IMPACT AND TORSIONAL 

DAMPERS 

 

This chapter presents a FE modeling approach for simulation of a drillstring with 

impactors and torsional dampers. The drillstring model is shown in Figure 20. 

 

 

Figure 20. Drilling rig (left) and cross section of the drillstring (right) with impact 

dampers and a torsional damper. Reprinted from Ref. [1]. 

 

___________________________________________________________________ 

* Reprinted with permission from “Suppression of Lateral and Torsional Stick–Slip Vibrations 

of DrillstringsWith Impact and Torsional Dampers” by Hu, L., Palazzolo, A., and Karkoub, M., 

2016, ASME J. Vib. Acoust. 138(5), 051013, Copyright 2016 by ASME. 
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By resorting to the modeling approach proposed in this chapter, novel centralized 

impact dampers and torsional dampers are developed for suppressing drillstring 

vibrations, and various design parameters of the dampers are compared. Finally, 

guidance of the damper design is provided for acquiring stronger suppression effects on 

drillstring vibration. 

3.1. Impact Damper 

Impact dampers, also known as impactors, are able to dissipate kinetic energy in 

impact. Due to the complex drilling conditions underneath, prediction of drillstring 

resonance might be inaccurate and hence result in violent vibrations that cause damage 

to the tubulars and borehole wall. 

 

 

Figure 21. Cross section of the impact damper and DC at moment of impact. 

Reprinted from Ref. [1]. 

 

The impactors are made of metals like steel or iron and are installed in the DC. 

As is shown in Figure 21, the hollow cylinder shape enables drilling fluids to pass 
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through, and the spherical bump is designed for impact. The novel centralized impact 

dampers presented here are explained by analysis and demonstrated by simulations, with 

an underlying assumption that the physical implementations are feasible. 

3.1.1. Coefficient of restitution model 

The COR model is widely used to measure the restitution of an impact between 

two objects. The kinetic energy of two bodies after one-dimensional impact of pure 

translation can be measured by, 

𝑣1
+ =

1

1+𝜇𝑚
[(𝜇𝑚 − 𝑒𝐶𝑂𝑅)𝑣1

− + (1 + 𝑒𝐶𝑂𝑅)𝑣2
−]     (109) 

𝑣2
+ =

1

1+𝜇𝑚
[𝜇𝑚(1 + 𝑒𝐶𝑂𝑅)𝑣1

− + (1 − 𝜇𝑚 ⋅ 𝑒𝐶𝑂𝑅)𝑣2
−]    (110) 

where 𝑣1
+ and 𝑣1

− represent the velocities of body 1 before and after impact, respectively, 

and 𝑣2
+ and 𝑣2

− represent the velocities of body 2 before and after impact, respectively. 

The mass ratio 𝜇𝑚 is defined as, 

𝜇𝑚 =
𝑚1

𝑚2
          (111) 

where 𝑚1 and 𝑚2 are the mass of body 1 and body 2, respectively. The COR here is 

defined as, 

𝑒𝐶𝑂𝑅 =
𝑣2
+−𝑣1

+

𝑣1
−−𝑣2

−          (112) 

By referring to Ref. [65], the COR 𝑒𝐶𝑂𝑅 for most materials within a linear elastic 

range and below the input impact velocity of 0.5 𝑚/𝑠𝑒𝑐 can also be written as, 

𝑒𝐶𝑂𝑅 = 1 − 𝛼 ⋅ 𝑣𝑖         (113) 
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where 𝛼 ranges between 0.1 and 0.6  𝑠𝑒𝑐/𝑚 for steel and iron according to [63], 𝑣𝑖 

refers to the relative velocity of body 1 and body 2 before impact (e.g. the input impact 

velocity shown in Figure 21). 

3.1.2. Nonlinear dynamic contact model 

The COR of inelastic impact is dependent on material properties, collision 

velocity, and geometry of the impactors. In order to include the latter two characteristics, 

a nonlinear dynamic contact model is developed based on the nonlinear damping model 

proposed in [65]. This improved dynamic contact model includes not only a nonlinear 

Hertzian contact restoring force and a nonlinear, viscous contact damping force but also 

a dry friction tangential contact force induced by the relative rotation between the 

impactor and the DC. 

As can be found in [65], it is a prerequisite for the nonlinear damping model to 

be valid that 𝛼2𝑣𝑖
2 is negligible in comparison with 2𝛼𝑣𝑖. Therefore, in this work, the 

COR model is not used for simulation of impact, but determines whether this 

prerequisite is valid. 

In accordance with the Hertz law of contact, impact forces can be formulated by 

the force-interference relations (Figure 21), 

𝐹 = 𝑘𝛿
3

2          (114) 

where F  and   denote the force and interference in contact, respectively, and k  is 

interpreted in the Appendix C. As noted in Ref. [65], this formula is only applicable if 

the dimensions of the impact area are relatively small compared to the radii of curvature 

of the contact bodies. The size of the impacting bodies in the present paper meets this 



 

 87 

  

requirement. The shape of the impact damper and DC at the moment of impact can be 

approximated as sphere and cylindrical cup, respectively. 

The force-interference law yields the final equation of motion during impacting 

[65] as, 

𝑚𝐼𝛿̈ + 𝑐𝛿̇ + 𝑘𝛿
3

2 = 0         (115) 

where 𝑐 =
3

2
𝛼𝑘𝛿

3

2. Consequently, the contact forces reacting on the DC are equal to 

𝑐𝛿̇ + 𝑘𝛿
3

2. 

 

 

Figure 22. Planar impacting model for impactor-DC collision. Reprinted from Ref. 

[1]. 

 



 

 88 

  

For each pair of impactor and DC section that come into collision, the total 

transverse loads acting on the DC section are included in the planar impacting model, 

which is depicted in Figure 22. The dash line connecting the DC center D  and the 

impactor center 𝐼 is extended across the contact point 𝑄 of the DC and the point 𝑃 of the 

impactor. The impactor collides with the DC wall when the distance between 𝐷 and 𝐼, 𝑑, 

exceeds the clearance 𝐶0, and the collision is approximated to occur in the 𝑌𝑍 plane. 

During collision, the restoring forces due to the elastic deformation will induce friction 

forces in the tangential direction, and it is assumed here that only sliding frictions exist 

between the two impacting surfaces. As shown in Figure 22, the velocity vectors of the 

DC and impactor centers are defined as 𝑣⃑𝐷 and 𝑣⃑𝐼, respectively. The edge velocity 

vectors 𝑣⃑𝑃 and 𝑣⃑𝑄 of the contact points 𝑃 and 𝑄 are derived from, 

𝑣⃑𝑃 = 𝑣⃑𝐼 + 𝜔⃑⃑⃑𝐼 × 𝑟𝑃
𝐼

         (116) 

𝑣⃑𝑄 = 𝑣⃑𝐷 + 𝜔⃑⃑⃑𝐷 × 𝑟𝑄
𝐷

         (117) 

where 𝜔⃑⃑⃑𝐷 and 𝜔⃑⃑⃑𝐼 are the rotation speed vectors of the DC and impactor, respectively, 

P Ir  represents the radius vector starting from 𝐼 and ending at 𝑃, and it is similar with 

Q Dr . The velocity vector angle 𝜑𝑃 can be derived from 𝑣⃑𝑃, and then, the tangential 

angle 𝜑𝑡,𝑃 is obtained from 𝜑𝑡,𝑃 = 𝜑𝑃 − 𝛽 where 𝛽 = 𝑡𝑎𝑛−1 (
𝑧𝐼−𝑧𝐷

𝑦𝐼−𝑦𝐷
). 𝜑𝑡,𝑄 can be 

derived in the same way. Finally, the tangential velocities of the contact points 𝑃 and 𝑄 

are given as, 

𝑣𝑡,𝑃 = 𝑣𝑃 𝑠𝑖𝑛(𝜑𝑡,𝑃)         (118) 
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𝑣𝑡,𝑄 = 𝑣𝑄 𝑠𝑖𝑛(𝜑𝑡,𝑄)         (119) 

The interference in Eq. (115), 𝛿, is related to 𝐶0 by, 

𝛿 = √(𝑦𝐼 − 𝑦𝐷)2 + (𝑧𝐼 − 𝑧𝐷)2 − 𝐶0       (120) 

and the corresponding velocity vector is written as, 

𝛿
̇
= (𝑦̇𝐼 − 𝑦̇𝐷)𝑖 + (𝑧̇𝐼 − 𝑧̇𝐷)𝑗        (121) 

where 𝑖 and 𝑗 represent the unit vector in 𝑌 and 𝑍 directions, respectively, and the vector 

angle of 𝛿
̇
 can be subsequently expressed as, 

𝛽𝑐 = 𝑡𝑎𝑛
−1 (

𝑧̇𝐼−𝑧̇𝐷

𝑦̇𝐼−𝑦̇𝐷
)         (122) 

An imbalance mass is located in the middle of the DC (Figure 21) with an 

eccentric distance 𝑒. The drillstring rotation creates centrifugal forces that can be 

decomposed into two components in 𝑌 and 𝑍 directions as, 

𝐹𝑒,𝑦 = 𝑚𝐷𝑒𝜔𝐷
2 𝑐𝑜𝑠(𝜔𝐷𝑡)        (123) 

𝐹𝑒,𝑧 = 𝑚𝐷𝑒𝜔𝐷
2 𝑠𝑖𝑛(𝜔𝐷𝑡)        (124) 

The final equations for the impact forces and moments acting on the DC and 

impactor are given as, 

   𝐹𝐷,𝑦 = 𝐹𝑒,𝑦 + 𝑘𝛿
3
2 𝑐𝑜𝑠(𝛽) + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽𝑐) − 

[𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] 𝜇 𝑐𝑜𝑠 (𝛽 +
𝜋

2
) ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)    (125) 

   𝐹𝐷,𝑧 = 𝐹𝑒,𝑧 + 𝑘𝛿
3
2 𝑠𝑖𝑛(𝛽) + 𝑐𝛿̇ 𝑠𝑖𝑛(𝛽𝑐) − 

[𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] 𝜇 𝑠𝑖𝑛 (𝛽 +
𝜋

2
) ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)   (126) 
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 𝑇𝐷,𝜑 = −𝑟𝐷𝜇 [𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)    (127) 

   𝐹𝐼,𝑦 = −𝑘𝛿
3
2 𝑐𝑜𝑠(𝛽) − 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽𝑐) + 

[𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] 𝜇 𝑐𝑜𝑠 (𝛽 +
𝜋

2
) ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)   (128) 

   𝐹𝐼,𝑧 = −𝑘𝛿
3
2 𝑠𝑖𝑛(𝛽) − 𝑐𝛿̇ 𝑠𝑖𝑛(𝛽𝑐) + 

[𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] 𝜇 𝑠𝑖𝑛 (𝛽 +
𝜋

2
) ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)   (129) 

 𝑇𝐼,𝜑 = 𝑟𝐼𝜇 [𝑘𝛿
3

2 + 𝑐𝛿̇ 𝑐𝑜𝑠(𝛽 − 𝛽𝑐)] ⋅ 𝑠𝑖𝑔𝑛(𝑣𝑡,𝑄 − 𝑣𝑡,𝑃)    (130) 

The equations of motion for the impactor may be written as, 

𝑚𝐼𝑦̈𝐼 = 𝐹𝐼,𝑦          (131) 

𝑚𝐼𝑧̈𝐼 = 𝐹𝐼,𝑧          (132) 

𝐽𝐼𝜑̈𝐼 = 𝑇𝐼,𝜑          (133) 

3.2. Torsional Damper 

As demonstrated in Figure 20, a torsional damper of a cylindrical shape is 

installed inside the DC. Damping forces may be induced by the drilling mud passing 

through the outer surface of the torsional damper that has a relative rotational speed with 

respect to the DC. Larger damping forces can be obtained by encasing the torsional 

damper surrounded by high-viscosity fluid. Another way to increase the torsional 

damping is to reduce the clearance between the surfaces of the torsional damper and the 

DC wall. 

The torsional damper can be placed on an angular contact thrust ball bearing at 

the bottom of the DC (shown in Figure 23) or on a grooved baseplate fixed to the bottom 
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of the DC (shown in Figure 24). The relative rotation of the torsional damper with 

respect to the DC causes the drag torque of the high-viscosity fluid and tends to dampen 

out the rotational vibration of the DC. 

 

 

Figure 23. Torsional damper on an angular contact thrust ball bearing. 
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Figure 24. Torsional damper on a grooved baseplate. 

 

The damping forces act as torque on the torsional damper. The total angular 

motion can be described by, 

𝐽𝐴𝜑̈𝐴 + 𝑐𝑀(𝜑̇𝐴 − 𝜑̇𝐵) + 𝑇𝐴 ⋅ 𝑠𝑖𝑔𝑛(𝜑̇𝐴 − 𝜑̇𝐵) = 0     (134) 

where 𝑐𝑀 denotes the coefficient of the mud damping, and the torque 𝑇𝐴 is induced by 

sliding frictions between the torsional damper 𝐴 and inner base of the DC 𝐵. 

3.3. Beam Element Modeling of Drillstrings 

The Timoshenko beam element model shown in Section 2.1 is applied in 

simulation of the rotor dynamic behaviors of the DP and DC. 

3.3.1. Drillstring rotor model 

The dynamic formulation based on the Timoshenko beam FEs for the model of a 

drillstring either in or out of impacting is given as, 

[𝑀𝑒]{𝑞̈𝑒} + ([𝐶𝑒] + [𝐺𝑒]){𝑞̇𝑒} + ([𝐾𝑆
𝑒] + [𝐾𝜎

𝑒]){𝑞𝑒} = {𝑓𝑒}   (135) 
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where [𝐺𝑒] represents the gyroscopic matrix, and [𝐾𝑆
𝑒] the stiffness matrix. The 

stress-stiffening matrix [𝐾𝜎
𝑒] is representative of the influences of gravity and axial 

loading on transverse stiffness of the drillstring. The weight of the drillstring with the 

impactors and torsional damper and the WOB are accounted for as axial load in the 

external load vector {𝑓𝑒}. Stress stiffening acts to increase lateral bending stiffness under 

tensile load or reduce it under compressive load. The specific matrices can be found in 

[5, 66]. 

3.3.2. Coulomb and Stribeck friction torque 

In the previous study of stick-slip vibration, either Coulomb [50, 52] or Stribeck  

[56, 57] torque models has been applied, but it highly depends on the type of DBs and 

drilling conditions to decide which torque model is adequate. Therefore, we apply both 

Coulomb torque 𝑇𝐶 and Stribeck torque 𝑇𝑆 as TOB to the DB node (the bottom node of 

the drillstring beam FE model shown in Figure 20). As illustrated in Figure 25, the 

torque 𝑇𝐶 equals 𝑇𝑠𝑡𝑡 when the angular velocity of the bit 𝜔𝐵 = 0 while turns into 𝑇𝑠𝑙𝑑 

when the bit starts rotating. 
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Figure 25. Coulomb torque model: sliding torque 𝑻𝒔𝒍𝒅 and static torque 𝑻𝒔𝒕𝒕. 
Reprinted from Ref. [1]. 

 

 

Figure 26. Stribeck torque model. Reprinted from Ref. [1]. 

 

In contrast, the Stribeck torque model shown in Figure 26 allows a continuous 

change of the TOB with the angular velocity of the bit, which can be described by, 

𝑇𝑆 = −
𝑇𝑆0

1+𝜆|𝜔𝐵|
⋅ 𝑠𝑖𝑔𝑛(𝜔𝐵)        (136) 

where a small 𝜆 indicates a moderately declining torque curve. 
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3.3.3. Integration of impact and torsional dampers 

In impacting, the external load {𝑓𝑒} in Eq. (135) consists of the weight of the 

drillstring with the impactors and torsional damper and the WOB 𝐹𝑊, the TOB 𝑇𝑇𝑂𝐵, the 

impact-induced forces 𝐹𝐷,𝑦 and 𝐹𝐷,𝑧 and the torque 𝑇𝐷,𝜑 (refer to Eqs. (125)-(130)), and 

the torque resulting from the mud damping 𝑐𝑀(𝜑̇𝐴 − 𝜑̇𝐵) and sliding friction 𝑇𝐴 ⋅

𝑠𝑖𝑔𝑛(𝜑̇𝐴 − 𝜑̇𝐵) (refer to in Eq. (134)). The resultant external load vector for the element 

node 𝑛 may be written as, 

{fn
e} = [𝐹𝑊, 𝐹𝐷,𝑦, 𝐹 (𝑇𝐷,𝜑 + 𝑇𝑇𝑂𝐵 + 𝑐𝑀(𝜑̇𝐴 − 𝜑̇𝐵) + 𝑇𝐴 ⋅ 𝑠𝑖𝑔𝑛(𝜑̇𝐴 − 𝜑̇𝐵))

𝑇

𝐷,𝑧
  (137) 

The specific load to be added into Eq. (137) depends upon the load condition, 

and thereby, not all the external loads need to be included. The novel impact and 

torsional dampers presented here are explained by analysis and demonstrated by 

simulations, with an underlying assumption that the physical implementations are 

feasible. 

3.4. Summary 

The chapter presented an approach to model a drillstring equipped with 

centralized impact dampers and torsional dampers. This novel damper design is aimed at 

suppressing lateral vibrations of the drillstring that operates close to the bending critical 

speeds and stick-slip torsional vibration within the operating speed range. The 

simulation of the collision between the impactor and DC utilized a vibro-impact model, 

which included a nonlinear Hertzian contact restoring force and a viscous contact 
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damping force as the radial impacting forces and considers the sliding frictions in 

between as tangential forces. 

The drillstring was modeled with the Timoshenko beam FEs. The stress-

stiffening effect was introduced into the drillstring FE model in order to include the 

influences of drillstring weight and axial loading on transverse string stiffness. Both 

Coulomb torque and Stribeck torque models were applied when modeling the external 

forces contributing to the drillstring vibration. 
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4. VALIDATION OF MIMO TRANSFER FUNCTION MODELING 

 

This chapter aims to validate the MIMO support TF modeling approach that was 

proposed in Sections 2.6 and 2.7. A rotor system that is composed of a rotor, two 

bearings and a solid support structure is utilized for validation.  

The proposed RSSM that consists of a solid FE rotor model and a state-space 

support model is compared with the CSRSM. General rotor dynamic analyses, such as 

natural frequencies, critical speeds, unbalanced response, and logarithmic decrement 

(log dec) are compared in order to demonstrate the accuracy of using the RSSM in lieu 

of the CSRSM. In the meanwhile, the computation time is provided to show whether the 

proposed modeling approach is effective in model reduction. Furthermore, a thorough 

comparison of the rotor-support modes up to 100,000 cpm (~1667 Hz) is conducted 

among the RSSM, the solid FE rotor with a super-element support model (SRSSM), and 

the beam FE rotor with a solid FE support model (BRSSM). 

In addition, the modes up to 100,000 cpm are compared among the super-

element, beam element, and RSSM. Further, the proposed RSSM is useful for 

applications in vibration control and active magnetic bearing systems. 

 

 

___________________________________________________________________ 

* Reprinted with permission from “Solid Element Rotordynamic Modeling of a Rotor on a 

Flexible Support Structure Utilizing Multiple-Input and Multiple-Output Support Transfer 

Functions” by Hu, L., and Palazzolo, A., 2016, Journal of Engineering for Gas Turbines and 

Power, 139(1), 012503, Copyright 2016 by ASME. 
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4.1. Rotor System Model and Grid Sensitivity 

A scaled-down rotor-support system, which is modeled with either the solid 

elements or both solid elements and TFs, is presented for investigation and comparison. 

The rotor consists of a thin-walled shaft and three disks and is supported by two tilting 

pad bearings. The axisymmetric harmonic FE method is used to model the thin-walled 

rotor, which is depicted in Figure 27. The material properties of the rotor are set as 𝜌 =

7800𝑘𝑔/𝑚3, 𝜈 = 0.3, 𝐸 = 2.1 × 1011𝑁/𝑚2. The stiffness and damping of the bearings 

are obtained from a specialized bearing coefficient-prediction program and are given in 

Figure 28 and Figure 29. The structure supporting the rotor is composed of a bearing 

pedestal and a baseplate with four feet fixed to ground. The material properties of the 

support structure are given as 𝜌 = 2700𝑘𝑔/𝑚3, 𝜈 = 0.33, 𝐸 = 6.9 × 1010𝑁/𝑚2. 

Tetrahedron elements are used to model the support structure. The CSRSM is 

demonstrated in Figure 30. 
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Figure 27. Cross-section (top) and 3D solid (bottom) FE mesh models of the rotor 

supported by two tilting-pad bearings. Reprinted from Ref. [80].  

 

 

Figure 28. Stiffness coefficients of the bearing. Reprinted from Ref. [80]. 
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Figure 29. Damping coefficients of the bearing. Reprinted from Ref. [80]. 

 

 

Figure 30. Solid FE mesh model of the rotor-support system. Reprinted from Ref. 

[80]. 

 

Before the FE simulation results can be used for comparison, a grid sensitivity 

test on the CSRSM is conducted in order to validate the solid FE modeling. The damped 

natural frequencies of the third mode of the rotor-support system are calculated for 

comparison and are presented in Figure 31. It can be seen that the percentage difference 

of the natural frequencies, compared to the natural frequencies obtained from the finest 

mesh, varies from 36.3% to 1.2%, which indicates that the natural frequencies converge 

with the refinement of mesh of the rotor and support. Therefore, the FE model with a 
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1.2% difference can be used as a benchmark in evaluation of the proposed modeling 

approach. 

 

Figure 31. Grid sensitivity test for the third mode of the CSRSM at the rotational 

speed of 5000 rpm. Reprinted from Ref. [80]. 

 

4.2. Significance of Curve-Fitting 

The FRF data is obtained by applying frequency-dependent load (sinusoidal 

forces) on the fictitious bearing attachment points of the support FE model. The TFs are 

subsequently obtained by curve-fitting the FRF data with polynomials, where extra 

attention needs be given to the polynomial order selection. Consider curve-fitting with 

the lower degree TFs like the second-order numerator divided by third-order 

denominator (second/third or written as 2th/3th in Figure 32) polynomials. It is found that 

not all the sixteen TFs in Eq. (54) are well fitted. Take 𝐺𝑍2𝑍2, for example. The curve fit 

shown in Figure 32 fails to capture the exact frequency (150 Hz) of the amplitude peak, 

where the rotor and support structure vibrate vertically (refer to the bottom figure shown 
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in Figure 35). Since 𝐺𝑍2𝑍2 represents the TF between the excitation force and response 

in the vertical direction at the right bearing location, the shifting of the critical frequency 

of 𝐺𝑍2𝑍2 probably leads to shifted vibration peaks or extra peaks. In order to solve this 

problem, a higher polynomial degree with the fifth-order numerator divided by sixth-

order denominator (fifth/sixth or written as 5th/6th in Figure 32) is employed. As Figure 

32 shows, the fifth/sixth TF perfectly fits the original FRF curve. 

 

 

Figure 32. Transfer function 𝑮𝒁𝟐𝒁𝟐 with the second/third and fifth/sixth 

polynomials. Reprinted from Ref. [80]. 

 

For simplicity, the detailed TF matrices are not provided. After converting the TF 

matrices into a state space, the matrix formulas provided in the preceding sections are 

employed to combine the state-space model of the support structure with the rotor FE 

model. 
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4.3. Comparison of Rotor Dynamic Analyses 

Simulation results of commonly applied rotor dynamic analyses, such as the 

critical speed map, unbalance response, and log dec, are presented in Figure 33 through 

Figure 43. 

 

 

Figure 33. Critical speeds for the first and second modes. Reprinted from Ref. [80]. 

 

 

Figure 34. Critical speeds for the third and fourth modes. Reprinted from Ref. [80]. 
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Figure 35. Mode shapes for the first (top), second (middle) and third (bottom) 

critical speeds of the rotor-support system. Reprinted from Ref. [80]. 
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Figure 36. Mode shape (top: orthographic projection, middle: front view, bottom: 

top view) for the fourth critical speed of the rotor-support system. Reprinted from 

Ref. [80]. 

 

In regard to the rotor-support system, the first four critical speeds to appear 

within the rotating speed range of 0-15,000 rpm are presented in Figure 33 and Figure 

34, with the corresponding mode shapes shown in Figure 35 and Figure 36. As can be 

seen from Figure 33, the first critical speed is 3140 rpm for the CSRSM and 3125 rpm 

for the RSSM. That is to say, the percentage difference of the first critical speeds 

between these two models is less than 0.5%. The second and fourth critical speeds 

obtained from the proposed RSSM are 3455 rpm and 13,769 rpm, respectively. For the 

CSRSM, they are 3455 rpm and 13,771 rpm, respectively. As demonstrated in Figure 33 
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and Figure 34, the natural frequency lines for these two modes nearly coincide with each 

other. The third critical speed of the RSSM is 8748 rpm with a 0.6% difference from 

8805 rpm of the CSRSM. The close agreement confirms the accuracy of the proposed 

modeling approach compared with the complete solid FE modeling approach, in terms of 

the natural frequency prediction. 

To further validate the RSSM, unbalance response analysis is performed. The 

unbalanced mass distance of 25𝑔 ⋅ 𝑚𝑚 is attached to the center of the middle disk. The 

peak-to-peak (p-p) unbalance response of the rotor at the middle disk and two bearing 

locations is demonstrated in Figure 37 to Figure 42. It can be clearly observed that the 

vibration amplitudes of the RSSM agree with those of the CSRSM. The highest 

vibration peaks at each of those three locations all occur at the speed of 3125 rpm (the 

first critical speed) or 3450 rpm (near the second critical speed). At the speed of 8830 

rpm (close to the third critical speed), violent vibrations appear in the vertical direction, 

whereas the horizontal vibrations are much milder. This may be attributed to the mode 

coupling in the vertical direction between the rotor and support structure, as can be seen 

from the bottom mode shape depicted in Figure 35. At 13,800 rpm (near the fourth 

critical speed), however, vibrations peak in both vertical and horizontal directions. This 

can be explained by the mode shapes shown in Figure 36, where the rotor and support 

structure are not only coupled in the vertical direction but in horizontal direction as well, 

thereby leading to both vertical and horizontal vibration peaks. 
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Figure 37. Horizontal magnitude of the unbalance response at the center of the 

middle disk. Reprinted from Ref. [80]. 

 

 

Figure 38. Vertical magnitude of the unbalance response at the center of the middle 

disk. Reprinted from Ref. [80]. 
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Figure 39. Horizontal magnitude of the unbalance response at the left bearing 

location. Reprinted from Ref. [80]. 

 

 

Figure 40. Vertical magnitude of the unbalance response at the left bearing 

location. Reprinted from Ref. [80]. 
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Figure 41. Horizontal magnitude of the unbalance response at the right bearing 

location/ Reprinted from Ref. [80]. 

 

 

Figure 42. Vertical magnitude of the unbalance response at the right bearing 

location. Reprinted from Ref. [80]. 

 

Apart from the unbalance analysis, stability of the rotor system is always one of 

the primary concerns in rotor dynamic analyses. The log dec of the rotor system, which 

is commonly used in the turbomachinery industry to determine the dynamic stability, is 

calculated and compared in Figure 43. For the first, third and fourth modes, the 

percentage difference of the log dec between the RSSM and the CSRSM is within 3%. 
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With regard to the second mode within the operating speed range, the largest difference 

is 15%, which occurs at the speed of 15,000 rpm. In general, the RSSM shows good 

agreement with the CSRSM. 

 

 

Figure 43. Stability analysis of the rotor-support system. Reprinted from Ref. [80]. 

 

4.4. Comparison of Computation Time 

In order to demonstrate the computational efficiency of the proposed approach, 

the computation time is compared among the CSRSM, RSSM, SRSSM, and BRSSM. 

Before comparison, the Guyan reduction method [16] is applied to all the FE models, 

retaining 10% DOFs of each model. The comparison, as illustrated in Table 2, is made 

between the simulation time required for obtaining the eigenvalues of the lowest 100 

modes of the rotor-support system. The simulation is performed on the HP Z420 

workstation with a 3.7 GHz Quad-core Intel Xeon CPU and 48 GB RAM. 
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Table 2. Simulation time for obtaining the eigenvalues of the lowest 100 modes of 

the rotor-support system with 10% DOFs retained. Reprinted from Ref. [80]. 

 CSRSM RSSM SRSSM BRSSM 

Rotor model 2050 DOFs 2050 DOFs 2050 DOFs 

38 

DOFs 

Support 

model 

2537 DOFs 

96×96  

state-space matrix 

(96 DOFs) 

6 DOFs 2537 DOFs 

Total DOFs 4587 2146 2056 2575 

Time for 

meshing 

2 min 2 min 2 min 1.5 min 

Computation 

time per 

speed 

14 min 2.5 min 2.5 min 3 min 

Time for 

obtaining 

FRFs 

 5 min   

 

For the CSRSM, it takes 14 min to obtain the eigenvalues at each rotational 

speed. In contrast, the RSSM requires only 2.5 min. The reduction of the computation 

time benefits from the substantial reduction of the solid FE support structure model from 

2537 DOFs to the 96×96 (96 DOFs) state-space model that corresponds to the 5th/6th 

TFs of the support structure. Generally, rotordynamic analyses will be conducted at 
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dozens of different rotational speeds, due to the gyroscopic effects, the change of the 

bearing or seal coefficients, etc. Also, both the mesh generation and the calculation of 

the FRFs are performed only once. Therefore, by counting the total simulation time, the 

RSSM is nearly five times faster than the CSRSM. This time reduction factor will 

increase with less DOFs of the rotor model and more DOFs of the support structure 

model as the RSSM mainly retains the DOFs of the rotor model. 

In addition to the comparison with the solid FE model, the RSSM is compared 

with the SRSSM and BRSSM. As Table 2 shows, the computation time is 2.5 minutes 

for the RSSM vs. 3 minutes for the BRSSM. This can be explained by the larger total 

number of DOFs of the BRSSM, i.e. that the sum of DOFs of the beam FE rotor model 

(38 DOFs) and the solid FE support structure model (2537 DOFs) are more than the 

DOFs of the RSSM (2146 DOFs in total). In regard to the SRSSM, the reduced 

substructure (support structure) is assembled together with the rotor FE model via two 

bearing attachment points that are exterior to the super-element support model. 

As illustrated in Table 2, either the computation time or the time for mesh 

generation is quite close between the RSSM and the SRSSM. Although the state-space 

support model seems to have many more DOFs (96 DOFs) than the super-element 

support model (6 DOFs), the computation difference between these two models is in 

practice less than three seconds on account of having nearly the same total number of 

DOFs (2146 DOFs vs. 2056 DOFs). 
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4.5. Comparison of Higher-Frequency Mode Predictions 

In contrast with the slight advantage of the SRSSM in computation time, the 

predictions made by the SRSSM are probably less accurate than the RSSM for some 

higher-frequency modes. To prove this, both the RSSM and the SRSSM are compared 

with the CSRSM in terms of natural frequencies. The BRSSM is also included in this 

comparison in order to show that the proposed modeling approach is more accurate than 

the beam rotor model in higher-frequency modes. 

For the rotor-support system with the rotor spinning at 10,000 rpm, the natural 

frequencies of the modes up to 100,000 cpm (~1667 Hz) are given in Table 3. It can be 

seen that nearly all the natural frequencies of the RSSM are in close agreement with 

those of the CSRSM except for a few higher modes such as modes 16 and 17. The 

inaccurate prediction is caused by the insufficiently accurate curve-fitting. The currently 

employed TFs with the fifth-order numerator divided by sixth-order denominator 

(fifth/sixth) is accurate for curve-fitting the FRF data for the lower modes (lower than 

mode 13) but may not be accurate enough for the higher modes. When the higher modes 

of the support structure become as complicated as shown in the bottom figure of Figure 

44, the fifth/sixth order curve-fitting may cause prediction errors. 
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Table 3. Natural frequencies of the rotor-support system at the rotational speed of 

10,000 rpm. Reprinted from Ref. [80]. 

Natural 

frequency 

(cpm) 

CSRSM RSSM SRSSM BRSSM 

Mode 1 3091 3086 (0%) 3092 (0%) 3171 (3%) 

Mode 2 3485 3485 (0%) 3490 (0%) 3586 (3%) 

Mode 3 8719 8705 (0%) 8868 (2%) 8809 (1%) 

Mode 4 14,323 14,315 (0%) 14,509 (1%) 14,660 (2%) 

Mode 5 17,471 17,451 (0%) 17,818 (2%) 17,748 (2%) 

Mode 6 19,081 19,081 (0%) 19,081 (0%) 19,484 (2%) 

Mode 7 21,615 21,430 (-1%) 35,391 (64%) 21,672 (0%) 

Mode 8 29,588 29,584 (0%) 29,609 (0%) 31,137 (5%) 

Mode 9 33,037 33,037 (0%) 33,037 (0%) 33,812 (2%) 

Mode 10 37,350 36,986 (-1%) 40,213 (8%) 37,615 (1%) 

Mode 11 41,473 41,422 (0%) 41,836 (1%) 42,621 (3%) 

Mode 12 42,392 42,407 (0%) 42,554 (0%) 47,608 (12%) 

Mode 13 47,938 49,359 (3%) 63,414 (32%) 47,960 (0%) 

Mode 14 60,550 60,560 (0%) 60,549 (0%) 67,418 (11%) 

Mode 15 64,606 67,945 (5%) N/A 64,717 (0%) 

Mode 16 70,190 67,914 (-3%) N/A 70,224 (0%) 

Mode 17 76,890 90,004 (17%) N/A 76,892 (0%) 

 



 

 115 

  

Table 3. Continued. 

Natural 

frequency 

(cpm) 

CSRSM RSSM SRSSM BRSSM 

Mode 18 78,786 79,436 (1%) 93,125 (18%) 80,184 (2%) 

Mode 19 85,458 85,458 (0%) 85,457 (0%) 95,523 (12%) 

Mode 20 89,814 106,427 (18%) N/A 104,394 (16%) 

Mode 21 89,923 90,772 (1%) 91,865 (2%) 88,171 (-2%) 

Mode 22 91,451 91,395 (0%) 91,349 (0%) 97,181 (6%) 

Mode 23 98,168 98,495 (0%) 98,771 (1%) 104,318 (6%) 

Mode 24 98865 98,958 (0%) 117,339 (19%) 100,618 (2%) 

Mode 25 100,889 100,948 (0%) 101,033 (0%) 111,100 (10%) 

 

As for the SRSSM, most of the modes are in accordance with those of the 

CSRSM, except that modes 7 and 13 are inaccurately predicted (64% and 32% 

differences, respectively) and modes 15, 16, 17 and 20 are missing. The reason for these 

inaccurate or missing modes can be found in Figure 44. As the top figure shows, the 

rotor and support are coupled in mode 7. It is likely that the support structure is over-

reduced by using the super-element. As a result, the dynamic characteristics of the 

support structure modes that have a complex mode shape like mode 7 may not be 

perfectly represented by the support super-element model. In addition, the super-element 

support model fails to predict some of the high-frequency support structure modes like 
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mode 16 (bottom figure in Figure 44) when the mode shape is more complicated. This 

can be remedied by dividing the support structure into more than one substructure. For 

example, the bearing pedestal could be separated as a substructure, or even the baseplate 

could be divided into several segments. However, the selection of substructures greatly 

depends on people’s experience and may sacrifice the modeling time for accuracy. 

 

 

Figure 44. Mode shapes of the solid FE rotor-support model corresponding to 

modes 7 (top) and 16 (bottom) in Table 3. Reprinted from Ref. [80]. 

 

With regard to the BRSSM, the prediction is fairly accurate (within 10% 

difference) for the lower-frequency modes but slightly inaccurate (10-20% difference) 

for the higher-frequency modes. This may be caused by the violation of the assumption 

in the beam theory that the plane sections remain plane after deformation. As can be 

observed from Figure 45, the segments of the shaft between the disks are severely 

bending, which may result in the non-beam deformation (i.e., the shaft sections are not 

plane after deformation). 
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From the comparison of the modes well above the operating speed range, it can 

be briefly concluded that the RSSM is more accurate than the SRSSM and BRSSM for 

the higher-frequency modes. Since the practical bandwidth of interest for AMB 

controllers is above 1000 Hz, the RSSM would be a good replacement of the SRSSM or 

BRSSM for the AMB-mounted turbomachinery. Moreover, the AMB controller can be 

easily integrated into the RSSM. 

 

 

Figure 45. Mode shape of the solid FE rotor-support model corresponding to mode 

12 in Table 3. Reprinted from Ref. [80]. 

 

4.6. Summary 

This chapter validated the MIMO TF modeling approach proposed in Sections 

2.6 and 2.7. A thin-walled shaft with multiple flexible disks on a flexible support 

structure was modeled using both the CSRSM and the RSSM.  

In regard to the CSRSM, the rotor is modeled with the axisymmetric solid 

harmonic FEs, and the support structure is modeled with tetrahedral elements. The 

Guyan reduction method is applied to simplify both solid FE rotor and support models. 

As for the RSSM, the structure supporting the rotor is represented by the TFs that 

are derived from the solid FE support model or measured FRFs of the substructure at the 
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bearing locations. The TF matrix is further transformed into a state-space form and 

integrated into the rotor FE model. 

Firstly, the grid sensitivity test was conducted in order to validate the CSRSM. 

Then, the RSSM was compared with the CSRSM in regard to the general rotor 

dynamic analyses. The metrics included natural frequency, critical speed, unbalance 

response, logarithm decrement, and computation speed. The simulation results show that 

the RSSM provides a dynamically accurate approximation of the solid FE model in 

terms of rotor dynamic analyses. Moreover, the computation time for the RSSM is 

reduced to less than 20% of the time required for the CSRSM. 

At last, both the SRSSM and the BRSSM were included, along with the RSSM, 

in a comparison of the high-frequency modes of the rotor system. The results show that 

the RSSM is more accurate in predicting high-frequency modes than the other two 

approaches. 

During the comparison, the way to find the curve fit for the FRFs of the support 

structure is also investigated. The frequency sampling and the polynomial degree of the 

TF are significant for the quality of curve-fitting. More specifically, a good excitation 

frequency sample should contain the response information in the neighborhood of the 

frequencies with a dramatic amplitude or phase change and should be the union of the 

frequencies of all the FRFs. In the meanwhile, the polynomial degree of the TF is better 

selected in such a way that the peaks and shifts of the TF amplitude or phase angle are 

retained by the curve fit with as a low polynomial degree as possible. 
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5. AXISYMMETRIC SOLID ELEMENT ROTORDYNAMIC ANALYSIS 

 

This chapter will use the axisymmetric solid FE modeling approaches presented 

in Chapter 2 to investigate the dynamic behaviors of rotors with thin-walled shafts and 

flexible disks. A comprehensive comparison between the beam FE rotor model and the 

axisymmetric solid FE rotor model will be presented. 

5.1. Verification of Rotor Dynamics Software 

The axisymmetric FE formulation developed in the work is implemented in the 

in-house rotor dynamics software. Unless otherwise specified, the Guyan reduction 

method is applied to the solid FE models. Before comparison of beam FE and solid FE 

models, a three-disk rotor with tilting-pad bearing support [86, 87] has been used to 

validate the rotor dynamics code.  

For the lowest five modes of the rotor system operating at 4000 rpm, the natural 

frequency differences between the axisymmetric FE model and experiment are no more 

than 5%. The results obtained from the axisymmetric FE model is more accurate than 

from the beam FE model. The maximum natural frequency difference is 7% (difference 

exceeds 10% if using the beam element model) for the sixth bending mode. As pointed 

out in [87], the maximum difference is due to the neglecting of the foundation structure. 

Overall, the improved axisymmetric FE model presented in this work is verified to be 

sufficiently accurate for the following comparisons with the beam element model. 
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5.2. Bearing Attachment 

As mentioned in the previous bearing attachment section 2.2.3, excessive local 

distortions may occur if the bearing linear dynamic force coefficients (stiffness and 

damping) are not connected to the axisymmetric elements model in a manner that 

distributes the bearing forces. To illustrate this, consider the case of a cylindrical thin-

walled shaft with 𝐿/𝐷𝑂 = 4 and 𝑡 = 0.025𝐷𝑂 (refer to Table 4 for definitions). As 

shown in Figure 46, the flexible shaft is supported by two identical symmetric bearings. 

The bearing damping is set zero. The bearing stiffness is set as 𝐾𝑦𝑦 = 𝐾𝑧𝑧 = 5𝐾𝑆 (i.e. 

stiff bearing). 𝐾𝑆 is defined as the bending stiffness of the shaft and can be expressed as 

𝐾𝑆 = 48𝐸𝐼/𝐿
3. The physical meaning of 𝐾𝑆 can be explained as the bending stiffness of 

a cylindrical shaft at the middle of which a lateral point force is imposed. 

 

 

Figure 46. Straight hollow shaft supported by two bearings. Reprinted from Ref. 

[69].  

 

Figure 47 (a) shows modal deformations with the bearing coefficients applied at 

a single surface node, leading to excessive local distortions of the journal. Figure 47 (b) 
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shows the same mode shape with the bearing attachment made in a distributed manner as 

described in the Bearing Attachment section. “Distributed” here implies that each 

bearing stiffness coefficient is equally (or adjustable) divided by the same number of 

surface nodes of the journal and then attached to the surface nodes. This may help to 

eliminate unrealistic local deformations and warping. 

 

 

(a)    (b)  

Figure 47. Deformation of a thin-walled journal with stiff bearing supports. (a) 

Point bearing attachment. (b) Distributed bearing attachment. Reprinted from Ref. 

[69]. 

 

5.3. Parametric Studies 

Axisymmetric solid FE models will produce more accurate results than beam FE 

models when properly meshed as posited in [9]. In particular beam elements are not 

sufficiently accurate for modeling thin-walled shafts and flexible disks because of the 

violation of the beam assumption. The present work identifies specific design features of 
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a rotor system that are likely to cause inaccurate natural frequency predictions when 

using the beam FE model. Table 4 provides a list of related rotor parameters. 

 

Table 4. Parameters of axisymmetric and beam FE rotor models. Reprinted from 

Ref. [69]. 

Variable Definition 

𝐿/𝐷𝑂  Ratio of the straight shaft length to the shaft outer diameter. Refer to 

Figure 46. 

𝑡/𝐷𝑂  Ratio of the shaft wall thickness to the shaft outer diameter. Refer to 

Figure 46. 

𝐿𝑑/𝐷𝑂  Ratio of the disk thickness to the straight shaft outer diameter. Refer to 

Figure 54 for 𝐿𝑑. 

𝜃 Taper angle of the conical segment of a shaft. Refer to Figure 50 for 𝜃. 

𝑡/𝐷𝑂𝑟  Ratio of conical segment wall thickness to shaft outer diameter at the 

right end. Refer to Figure 50 for 𝐷𝑂𝑟. 

𝐾𝐵/𝐾𝑆  Ratio of the bearing stiffness to the structural stiffness of the shaft. Refer 

to Section 5.3.1 for 𝐾𝐵 and 𝐾𝑆. 

1 or 2 The number of the disks and their locations. 

 

5.3.1 Cylindrical thin-walled shaft 

As depicted in Figure 46, a dimensionless straight hollow shaft supported by two 

identical bearings with symmetric stiffness (i.e.  𝐾𝑥𝑥  =  𝐾𝑦𝑦 = 𝐾𝐵) and zero damping. 

Various combinations of 𝐿/𝐷𝑂 , 𝑡/𝐷𝑂 , and 𝐾𝐵/𝐾𝑆  (𝐾𝑆 has been defined in Section 5.2) 
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have been investigated, and simulation results are demonstrated in Figure 48 and Figure 

49. As can be seen from Figure 48, the difference of free-free natural frequencies 

between solid and beam FE models becomes larger as shaft wall thickness gets thinner 

(i.e. 𝑡/𝐷𝑂 decreases). when 𝑡/𝐷𝑂  = 0.04, the difference exceeds 10%. The 

dimensionless natural frequency, 𝜔̂𝑛, is defined as, 

𝜔̂𝑛 = 𝜔𝑛√
𝑀𝑆

𝐾𝑆
 with 𝑀𝑆 =

𝜌𝜋

4
(𝐷𝑂

2 − 𝐷𝐼
2)𝐿      (138) 

where 𝜔𝑛 is the natural frequency of the shaft. 

 

 

Figure 48. Percentage difference of natural frequencies between axisymmetric and 

beam FE models for a free-free straight thin-walled shaft with 𝑳/𝑫𝑶 = 𝟒. 

Reprinted from Ref. [69]. 

 

Varying the bearing stiffness coefficients from 0.1 to 5 times the structural 

stiffness of the shaft shows the impact of bearing parameters on the prediction difference 

between axisymmetric FE and beam FE models. As can be seen from Figure 49, the 
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higher the bearing stiffness (i.e. 𝐾𝐵/𝐾𝑆  increases) is, the larger the difference is. In 

addition, a shorter shaft (i.e. 𝐿/𝐷𝑂  shown in the upper figures of Figure 49 are smaller 

than in the lower figures) or a thinner shaft wall (i.e. 𝑡/𝐷𝑂  shown in the left figures of 

Figure 49 are smaller than in the right figures) also results in a larger prediction 

difference of natural frequencies. 

 

 

Figure 49. Dimensionless natural frequencies of the straight thin-walled shaft 

supported by two bearings with four different rotor configurations. Reprinted from 

Ref. [69]. 

 

5.3.2 Stepped, thin-walled shaft 

This section investigates a thin-walled shaft composed of both straight and 

conical/stepped segments. The conical/stepped segment is modeled with conical beam 
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elements [8]. As Figure 50 shows, the shaft is divided into twenty elements (purely 

stepped shaft segment consists of one element, and the conical segment with 𝜃 = 11° 

consists of five elements). A variety of thin-walled shafts with 𝑡/𝐷𝑂𝑟  = 0.025 and the 

gradually decreasing taper angles from 90 to 11 degrees have been modeled with 

axisymmetric FEs, which are illustrated in Figure 51. 

 

 

Figure 50. Beam element model for a stepped thin-walled shaft. Reprinted from 

Ref. [69]. 
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Figure 51. Axisymmetric element models of longitudinal semi-sections of the step 

shafts with different taper angles. Reprinted from Ref. [69]. 

 

It can be seen from the simulation results shown in Figure 52 that as the taper 

angle gets smaller, the natural frequencies for the first bending mode predicted by the 

axisymmetric FE model become closer to those predicted by the beam FE model. As 

shown in Figure 53, clearly non-beam deformations occur at the step location in the 

axisymmetric FE model, indicating that it may be inaccurate to use beam elements to 

model a stepped thin-walled shaft. 
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Figure 52. Percentage difference of natural frequencies for the first bending mode 

between axisymmetric FE and beam FE models for a free-free step-like thin-walled 

shaft. Reprinted from Ref. [69]. 

 

 

Figure 53. Non-beam-like deformations of the solid element’s longitudinal section 

of the step shaft in the first bending mode. Reprinted from Ref. [69]. 
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5.3.3 Thin-walled shaft with flexible disks 

For a beam FE rotor model, a disk is typically represented by a rigid body with 

concentrated mass and inertia. However, its flexibility may become important as it gets 

relatively thin in comparison with the shaft diameter. Furthermore, if the first flexural 

modes of the disk appear within the operating speed range, the disk should not be treated 

as a rigid body. A rotor system composed of a thin-walled shaft and a flexible disk is 

utilized to investigate the influences of a disk flexibility on natural frequencies. The 

corresponding 2D triangle mesh of the longitudinal section of the rotor is shown in 

Figure 54 (the bottom semi-section is added just for visualization). The disk diameter is 

set as four times the outer diameter of the shaft. The stiffness of the two bearings that 

support the shaft at both ends varies from 0.1 to 5 times the structural stiffness of the 

shaft, 𝐾𝑆 (the same definition as in the Bearing Attachment section). The other non-

dimensional constants that characterize the model include 𝐿/𝐷𝑂 , 𝑡/𝐷𝑂 , and 𝐿𝑑/𝐷𝑂 . 
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Figure 54. Longitudinal section mesh of a thin-walled shaft with a disk, shown here 

with 𝑳/𝑫𝑶 = 𝟖, 𝒕/𝑫𝑶 = 𝟎. 𝟎𝟓, 𝑳𝒅/𝑫𝑶 = 𝟎. 𝟐. Reprinted from Ref. [69]. 

 

Simulation results are presented in Figure 55, which show increasing difference 

between axisymmetric FE and beam FE model natural frequency predictions in the 

rocking mode as either the bearings get stiffer (i.e. 𝐾𝐵/𝐾𝑆  increases) or the shaft wall 

gets thinner (i.e. 𝑡/𝐷𝑂   shown in the left figures of Figure 55 are smaller than in the right 

figures). This results from the greater amount of shaft deformation occurring as the 

bearings become stiffer and the wall thickness becomes smaller, which also effects the 

amount of shaft out of plane cross-sectional warping. 
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Figure 55. Dimensionless natural frequencies of a thin-walled shaft with a disk 

supported by two bearings with four different rotor configurations. Reprinted from 

Ref. [69]. 

 

For illustration, consider comparing the natural frequency differences between 

the axisymmetric FE and beam FE model predictions at 𝐾𝐵/𝐾𝑆 = 5 (i.e. stiff bearing). 

The percentage difference decreases only by 4.9% in the rocking mode when just the 

shaft wall thickness ratio 𝑡/𝐷𝑂 is increased from 0.05 to 0.2, and the disk is relatively 

thick with 𝐿𝑑/𝐷𝑂 = 0.5. In contrast, the percentage difference rises significantly by 

55.8% with a decrease in the disk thickness 𝐿𝑑/𝐷𝑂   from 0.5 to 0.2. This indicates that in 

the rocking mode disk thickness changes contributes more to the natural frequency 

difference than shaft wall thickness. The thicker disk has only a slight effect on the 
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difference in the bouncing and first bending modes. This results from the cross-sections 

near the mid-span deforming heavily in the rocking mode while only slightly in the other 

two modes, which can be seen from Figure 56. Additionally, an axisymmetric FE model 

can predict the first disk diametral mode while a beam FE model cannot. 

 

 

Figure 56. Lowest four modes of a hollow shaft with a disk supported by two stiff 

bearings: 𝑳/𝑫𝑶 = 𝟖, 𝒕/𝑫𝑶 = 𝟎. 𝟐, 𝑳𝒅/𝑫𝑶 = 𝟎. 𝟐, shaft bouncing mode (top left), 

shaft rocking mode (top right), the first shaft bending mode (bottom left), the first 

disk diametral mode (bottom right). Reprinted from Ref. [69]. 

 

The next example considers a rotor with two flexible disks and a thin walled 

shaft. As shown in Figure 57, the shaft length is set as 𝐿/𝐷𝑂 = 15, and the disk diameter 

is four times the outer diameter of the shaft. Two disks are installed at 1/4 and 3/4 

length along the shaft. The variables considered are shaft wall thickness, disk thickness, 
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and bearing stiffness. The three lowest mode shapes and their labels are provided in 

Figure 58. 

 

 

Figure 57. Longitudinal section mesh of a thin-walled shaft with two disks: 𝑳/𝑫𝑶 =
𝟏𝟓, 𝒕/𝑫𝑶 = 𝟎. 𝟎𝟓, 𝑳𝒅/𝑫𝑶 = 𝟎. 𝟐. Reprinted from Ref. [69]. 

 

Figure 59 shows that for both bouncing and rocking modes, the predictions by 

the axisymmetric FE model are close to those by the beam FE model. This result can be 

explained the same way as in the straight thin-walled shaft case, i.e. the long shaft design 

with 𝐿/𝐷𝑂 = 15 helps reduce the difference. Non-beam deformations increase in the 

first bending mode as the bearings get stiffer (i.e. 𝐾𝐵/𝐾𝑆  increases). For this reason, the 

difference between the axisymmetric FE and beam FE models rises even with a long 

shaft and will get larger when the thickness of the shaft wall decreases (i.e. 𝑡/𝐷𝑂  shown 

in the upper left figure of  Figure 59 are smaller than in the upper right figure) or the 

thickness of the disk decreases (i.e. 𝐿𝑑/𝐷𝑂 shown in the upper left figure of Figure 59 

are smaller than in the lower left figure). However, it can be seen from the other figures 

of Figure 59 that the difference is not apparent when either the shaft or the disk is thick 

(i.e. when 𝑡/𝐷𝑂 = 0.2 or 𝐿𝑑/𝐷𝑂 = 0.5). 
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Figure 58. Lowest three modes of a thin-walled shaft with two disks, supported by 

two stiff bearings: 𝑳/𝑫𝑶 = 𝟏𝟓, 𝒕/𝑫𝑶 = 𝟎. 𝟐, 𝑳𝒅/𝑫𝑶 = 𝟎.𝟐; shaft bouncing mode 

(top), shaft rocking mode (middle), the first shaft bending mode (bottom). 

Reprinted from Ref. [69]. 
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Figure 59. Dimensionless natural frequencies of a thin-walled shaft with two disks 

supported by two bearings with four different rotor configurations. Reprinted from 

Ref. [69]. 

 

5.4. Summary 

An axisymmetric solid harmonic element approach with improved modeling 

capabilities for flexible rotor systems has been presented along with illustrative 

numerical examples and parametric studies. Improvements include the centrifugal stress-

stiffening and spin-softening effects. More accurate simulations of thin-walled shaft and 

flexible disk rotor dynamic response can be attained by using the improved 

axisymmetric elements. 
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The implementation of the centrifugal stress-stiffening and spin-softening 

matrices enables an accurate prediction of the change of resonant frequencies and critical 

speeds caused by the rotation of the rotor. 

Bearing forces are distributed to a number of nodes within the range of the 

longitudinal bearing length rather than a single surface node of the journal to prevent 

fictitious, excessive local distortions of the thin-walled journal. 

Only the zeroth, first and second order harmonics are included in the 

axisymmetric FE model. The Guyan reduction method is employed to condense the 

matrices and significantly reduce computational time. 

Both thin-walled shafts and flexible disks are prone to non-beam deformations. 

Natural frequency predictions using beam FE differs more from axisymmetric FE 

predictions when the shaft length gets shorter and wall gets thinner. Investigation of 

various thin-walled stepped shafts with straight and conical segments shows that the 

difference between the axisymmetric FE and beam FE predicted natural frequencies 

becomes larger with the increase in the taper angle of the conical segment. 

Disk flexibility and locations have an impact on the prediction accuracy of the 

beam FE model compared with the axisymmetric element model. If a thin disk, implying 

more flexibility, is installed at the mid-span of a thin-walled shaft, then a large 

prediction difference tends to occur at the rocking or second bending mode due to large 

deformations of the disk. In contrast, a large difference of predicted natural frequencies 

between the axisymmetric and beam FE models may appear at the first bending mode if 
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two flexible disks are symmetrically placed away from the center of the shaft at quarter 

spans.  

The comparison results can be used for guidance on choosing the axisymmetric 

solid or the beam FE models in the rotor design and rotor dynamic analysis. 
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6. ANALYSIS OF ROTOR-BEARING SYSTEM UNDERGOING SUPPORT 

MOTION 

 

The chapter will study the influences of the support motion on the rotor stability. 

The beam element rotor model and hydrodynamic fluid film bearing model, which are 

presented in Chapter 2, will be applied in the investigation. 

6.1. Validation of Finite Element Hydrodynamic Journal Bearing Model 

Fixed-pad (or fixed-profile) bearings are commonly used in the rotating 

machinery. In comparison with tilting-pad bearings, fixed pad bearings are less 

expensive but have strong cross-coupling effects. The cross-coupling effects may cause 

severe instability of the rotor system. Therefore, the present investigations are focused 

on the rotor systems with fixed-pad bearings, in particular the four-axial groove and 

four-lobe journal bearings. The investigation results can be easily extended and applied 

to other fixed-pad bearings. 

The bearing 2D FE model presented in Chapter 2 will be validated in this section 

before being used for the investigation of the impact of support motion on the rotor 

performance. 
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Figure 60. Four-lobe journal bearing. 

 

As shown in Figure 60, the four-lobe journal bearing has four equally distributed 

grooves. The groove angle does not have to be 10  and can be adjustable. The 

dimensions and properties of the four-lobe bearing are given as follows. 

Preload factor: 0.5pM =  

Radius of the bearing: 0.04 m  

Length of the bearing: 0.04 m  

Radial clearance of the bearing: 57 10 m−  ( 2.76mil ) 

Lubricant viscosity: 0.02 Pa s  

Lubricant density: 3850 /kg m  

The coefficients of the stiffness and damping are calculated by using a 

specialized bearing software (the relevant numerical algorithm has been implemented in 
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our in-house rotordynamics software). The bearing code is developed based on the 2D 

FE hydrodynamic bearing model presented in Section 2.5. The results are illustrated in 

Table 5. 

 

Table 5. Coefficients of stiffness and damping of the four-lobe journal bearing with 

preload=0.5 predicted based on the bearing FE model presented in this work. 

Sommer-

feld 

Number 

Eccen-

tricity 

Ratio 

Attitude 

Angle 

(deg) 

Kyy Kyz Kzy Kzz Cyy Cyz Czy Czz 

1.17 0.203 -32.0 6.03 8.56 -9.18 6.32 17.96 -1.07 -0.98 18.72 

0.719 0.304 -33.7 4.73 5.68 -6.70 5.39 12.17 -1.42 -1.37 13.57 

0.478 0.404 -35.7 4.16 4.15 -5.68 5.38 9.17 -1.64 -1.63 11.41 

0.323 0.505 -38.1 3.84 3.08 -5.25 5.84 7.12 -1.81 -1.82 10.46 

0.215 0.603 -40.7 3.54 2.19 -5.07 6.63 5.49 -1.95 -1.95 10.04 

0.137 0.702 -43.8 3.17 1.46 -5.08 7.97 4.17 -1.99 -2.00 10.03 

 

Table 6. Coefficients of stiffness and damping of the four-lobe journal bearing with 

preload=0.5 in Someya table [88]. 

Somm-

erfeld 

Number 

Eccen-

tricity 

Ratio 

Attitud- 

e Angle 

(deg) 

Kyy Kyz Kzy Kzz Cyy Cyz Czy Czz 

1.17 0.2 -31.6 6.03 8.65 -9.24 6.16 18.4 -1.14 -1.10 19.1 

0.719 0.3 -33.4 4.63 5.82 -6.57 5.33 12.5 -1.30 -1.28 13.5 

0.478 0.4 -35.5 4.08 4.01 -5.73 5.26 8.91 -1.64 -1.62 11.8 
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Table 6. Continued. 

Somm-

erfeld 

Number 

Eccen-

tricity 

Ratio 

Attitud- 

e Angle 

(deg) 

Kyy Kyz Kzy Kzz Cyy Cyz Czy Czz 

0.323 0.5 -37.8 3.74 3.21 -5.12 5.68 7.43 -1.82 -1.80 10.4 

0.215 0.6 -40.6 3.41 2.18 -4.87 6.50 5.48 -1.85 -1.83 9.78 

0.137 0.7 -43.6 3.00 1.26 -4.83 7.81 3.78 -1.78 -1.76 9.65 

 

The coefficients of the same bearing can be looked up in the Someta table [88] 

and illustrated in Table 6. It can be seen that the results predicted by the hydrodynamic 

bearing FE model in this work match the data in Someya table.  

6.2. Validation of Rotor System Model 

A rotor system is built up by assembling the beam FE rotor model and the 2D FE 

hydrodynamic bearing model presented in Chapter 2. 

Consider the rotor system shown in Figure 61 for the purpose of validation. A 

disk with an imbalance mass is mounted at the middle of a slender shaft. The whole rotor 

(shaft and disk) is supported by two hydrodynamic (here four-axial groove) journal 

bearings which are fixed to the ground (no support motion). 
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Figure 61. Rotor on two hydrodynamic journal bearings without support motion. 

 

The dimensions and material properties of the rotor are given below. 

Radius of the shaft: 0.04 m  

Length of the shaft: 1.6 m  

Radius of the disk: 0.15 m  

Thickness (axial length) of the disk: 0.03 m  

Density of the shaft and disk: 37800 /kg m  

Elastic modulus of the shaft: 11 22 10 /N m  

Poisson’s ratio: 0.3  

Spin speed: 4000 rpm  
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Figure 62. Four-axial groove journal bearing. 

 

The dimensions and properties of the four-axial groove bearing dipicted in Figure 

62 are given below. 

Pad preload: 0pM =  

Pad offset: 0.5p =  

Length of the bearing: 0.04 m  

Radial clearance of the bearing: 57 10 m−  ( 2.76mil ) 

Lubricant viscosity: 0.02 Pa s  

Lubricant density: 3850 /kg m  

The proposed rotor and hydrodynamic bearing FE models proposed in this work 

will be validated by comparison with the commercial rotor dynamics software XLTRC2. 

XLTRC2 is based on a beam element rotor model and linear coefficient bearing model. 
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The coefficients of the bearing are obtained from the in-house experimental dataset of 

the Turbomachinery lab of Texas A&M University. 

The predicted amplitudes and orbits of the left journal based on the proposed 

rotor-bearing model are shown in Figure 63 and Figure 64. The amplitudes and orbits 

predicted by XLTRC2 are shown in Figure 65. The displacements of the left journal are 

in good agreement. 

 

 

Figure 63. Displacements of the left journal predicted by the proposed rotor-

bearing FE model at the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 

 

 

Figure 64. Orbits of the left journal (red circle is bearing clearance) predicted by 

the proposed rotor-bearing FE model at the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 
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Figure 65. Response of the left journal predicted by XLTRC2. 

 

The predicted amplitudes and orbits of the right journal based on the proposed 

rotor-bearing model are shown in Figure 66 and Figure 67. The amplitudes and orbits 

predicted by XLTRC2 are shown in Figure 68. The displacements of the right journal are 

in good agreement. 

 

 

Figure 66. Displacements of the right journal predicted by the proposed rotor-

bearing FE model at the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 
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Figure 67. Orbits of the right journal (red circle is bearing clearance) predicted by 

the proposed rotor-bearing FE model at the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 

 

 

Figure 68. Response of the right journal predicted by XLTRC2. 

 

The predicted amplitudes and orbits of the disk based on the proposed rotor-

bearing model are shown in Figure 69 and Figure 70. The amplitudes and orbits 

predicted by XLTRC2 are shown in Figure 71. The displacements of the disk are in good 

agreement. 
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Figure 69. Displacements of the disk predicted by the proposed rotor-bearing FE 

model at the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 

 

 

Figure 70. Orbits of the disk predicted by the proposed rotor-bearing FE model at 

the rotor spin speed of 𝟒𝟎𝟎𝟎 𝒓𝒑𝒎. 
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Figure 71. Response of the disk predicted by XLTRC2. 

 

It can be concluded from the validation presented in this section that the 

proposed beam element rotor model and hydrodynamic journal bearing 2D FE model are 

sufficiently accurate for investigation of the rotor behaviors under support motion. 

6.3. Discretization of Rotor 

The rotor consists of a flexible shaft and a rigid disk. The flexible shaft is 

discretized into 10 beam elements (utilizing the Timoshenko beam element model 

presented in Section 2.8), as is shown in Figure 72. A rigid disk that has the same 

dimensions as that shown in Figure 61 in Section 6.2 is mounted at the middle of the 

shaft. The rotor is supported by two identical four-axial journal bearings. The parameters 

of the bearing are provided in Section 6.2. 

 



 

 148 

  

 

Figure 72. Cross-section of the beam FE rotor model (red circle represents rigid 

disk, and green and purple lines represent bearing attachment). 

 

6.4. Influences of Support Pitch on Rotor Stability 

The rotor-bearing system model presented in Chapter 2 is able to simulate six 

motion types: heave, sway, surge, roll, pitch, and yaw. This work is focused on 

investigation of the support pitch which is commonly seen in an on-board rotor system.  

Consider a vessel (rigid support) that pitches about its body center, as is shown in 

Figure 73. Two identical four-axial groove journal bearings move with the support 

structure as they are rigidly connected to the support. The rotor and bearing parameters 

are the same as provided in Figure 61 in Section 6.2. The onset speed of instability of the 

rotor system is 5400 𝑟𝑝𝑚. When the bearing load (equal to rotor weight here) is 

smaller, the onset speed of instability may be lower than than 5400 𝑟𝑝𝑚. The rotor spin 

speed in this case is 5100 𝑟𝑝𝑚, which is lower than the onset speed of instability of the 
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rotor-bearing system without support motion. In other words, the rotor is stable without 

support motion. 

 

 

Figure 73. Rotor on two four-axial grooves journal bearings undergoing vessel 

pitch (𝜽𝒚 represents the pitch angle about Y axis, 𝑳 is equal to half the vessel length, 

𝑳𝟏 is the distance of the center of gravity of the vessel from the left end of the rotor, 

and 𝑳𝟐 is the axial span of the two bearings). 

 

The vessel pitch motion imposed on the rotor system is defined by, 

𝜃𝑦 = 𝜙 ⋅ 𝑠𝑖𝑛(𝜔𝑡)         (139) 

where 𝜃𝑦 represents the support pitch angle. 𝜙 denotes the amplitude of the pitch motion 

and is set as 𝜙 = 10∘ (≃ 0.175 𝑟𝑎𝑑).   represents the frequency of the pitch motion 

and is set as 𝜔 = 0.1 𝐻𝑧, and 𝑡 is time. 0.1 𝐻𝑧 is a reasonable pitch frequency for small 

crafts. It is stated in [89] that the significant wave height can reach 2 m for 60% of the 

time in hostile seas. Wave heights may exceed 30 m. The mean wave period is normally 
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from 15 to 20 sec in severe weather situations and unlikely shorter than 4 sec. The peak 

acceleration defined here is also reasonable according to the practice reported in [89]. 

By assuming that the vessel body is rigid, the pitch angle 𝜃𝑦 is imposed on the 

foundation. As a result, the foundation not only pitches but heaves as well. The 

displacements of the left and right journals in the vertical direction are expressed as ℎ1 

and ℎ2, respectively, which are shown in Figure 73.  

First, consider the left journal under the support heave, which can be described 

as, 

        ℎ1 = −𝐿1 ⋅ 𝑠𝑖𝑛(𝜙 ⋅ 𝑠𝑖𝑛(𝜔𝑡))       (140) 

        𝑣1 = −𝐿1 ⋅ 𝜙 ⋅ 𝜔 ⋅ 𝑐𝑜𝑠(𝜙 ⋅ 𝑠𝑖𝑛(𝜔𝑡)) ⋅ 𝑐𝑜𝑠(𝜔𝑡)     (141) 

𝑎1 = 𝐿1 ⋅ 𝜙 ⋅ 𝜔
2 ⋅ [𝜙 ⋅ 𝑠𝑖𝑛(𝜙 ⋅ 𝑠𝑖𝑛(𝜔𝑡)) ⋅ 𝑐𝑜𝑠2(𝜔𝑡) + 𝑐𝑜𝑠(𝜙 ⋅ 𝑠𝑖𝑛(𝜔𝑡)) ⋅ 𝑠𝑖𝑛(𝜔𝑡)]

  (142) 

where 𝑣1 and 𝑎1 represent the velocity and acceleration of the left bearing housing in the 

vertical direction, respectively. 

Given that the vessel is 30 m in length, then 𝐿 = 15 𝑚. As shown in Figure 73, 

point G, which represents the center of gravity of a vessel, is 13.02 𝑚 away from the 

left bearing (i.e. 𝐿1 = 13.02 𝑚). The axial span of the two bearings, which is also equal 

to the length of the shaft, is set as 𝐿2 = 1.98 𝑚. As a result, the pitch motion of the 

support can be described by the curves shown in Figure 74 and Figure 75. It can be 

observed from Figure 75 that the decrease in vertical acceleration due to gravity may 

reach 40% , implying a 40% decrease in the rotor weight. 
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Figure 74. Pitch angle of the support with offset half bearings. 

 

 

Figure 75. Vertical accelerations of the support (accelerations are expressed with 

the gravity of Earth 𝒈). 

 

Simulation results of the vessel pitch are shown in Figure 76 and Figure 77. It 

can be seen that the rotor becomes unstable under support pitch. The root cause for the 

rotor instability is explained as follows. The pitching support imposes a tremendous 

acceleration on the rotor via bearing forces, leading to a decrease in the rotor gravity in 

the vertical direction. As can be seen from Figure 75, the vertical acceleration almost 

decreases by 0.4𝑔 at the valley point. The phenomenon is analogous to the so-called 
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weight loss effect. As the rotor weight on the bearing decreases, the threshold speed of 

instability goes down, causing the rotor instability. 

 

 

Figure 76. Displacements of the right journal with respect to the support under 

vessel pitch (supported by two four-axial groove bearings) at the rotor spin speed of 

5100 rpm. 

 

 

Figure 77. Orbits of the right journal with respect to the bearing under vessel pitch 

(supported by two four-axial groove bearings) at the rotor spin speed of 5100 rpm. 

 

6.5. Remedy for Rotor Instability 

This section aims at proving that an offset half bearing is a good replacement or 

remedy for a four-axial groove bearing. 
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Figure 78. Offset half journal bearing. 

 

Consider the same rotor and vessel shown in the last section for comparison. The 

dimensions and properties of a offset half journal bearing (Figure 78) is given below. 

Ratio of bearing length to bearing diameter: 0.5 

Pad preload: 𝑀𝑝 = 0.5 for the offset half bearing 

Pad offset: 𝛼𝑝 = 1 for the offset half bearing 

Length of the bearing: 0.04 m 

Radial clearance of the bearing: 7 × 10−5𝑚 (2.76𝑚𝑖𝑙) 

Lubricant viscosity: 0.02 (𝑃𝑎 ⋅ 𝑠) 

Lubricant density: 850 (𝑘𝑔/𝑚3) 

To investigate the influences of the bearing offset on rotor stability, the four-axial 

groove bearing is compared with the offset half bearing. The same vessel pitch motion as 

shown in Figure 74 and Figure 75 is used in the comparison. 
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Figure 76 and Figure 77 show that the rotor on two four-axial groove bearings is 

unstable at the spin speed of 5100 rpm. But it can be seen from Figure 79 and Figure 80. 

that the rotor on two offset half bearings is stable. 

 

 

Figure 79. Displacements of the right journal with respect to the support under 

vessel pitch (supported by two offset half bearings) at the rotor spin speed of 5100 

rpm. 

 

 

Figure 80. Orbits of the left journal with respect to the bearing under vessel pitch 

(supported by two offset half bearings) at the rotor spin speed of 5100 rpm. 

 

It can be explained as the weight-loss effects that are induced by support motion. 

The preload and pad offset of the offset half bearing actually generate a rotor 
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eccentricity before being loaded. It could be argued that in brief, the higher rotor 

eccentricity compensates the weight loss effects (or bearing unloading in the rotor 

dynamics). In other words, the weight loss can be compensated by introducing pad 

preload and pad offset, which the offset half bearing has but the four-axial groove 

bearing does not. 

6.6. Summary 

The influences of the support motion on rotor stability are studied. The 

conclusions based on the nonlinear transient analysis addressed the nonlinear dynamic 

problems with rotor instability and provide remedies for the rotor instability caused by 

support motions. 

Support pitch may cause rotor instability at the spin speed lower than the onset 

speed of instability. The root cause for this phenomenon is the weight-loss effects, also 

called unloaded bearing effects in the rotor dynamics perspective. 

Finally, using offset half bearing is proposed as a remedy for the rotor instability 

caused by support pitch. The reason is that pad preload and pad offset of the offset half 

bearing can increase the journal eccentricity and compensate the weight loss of the rotor 

under support motion. 
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7. DEVELOPMENT OF IMPACT AND TORSIONAL DAMPERS FOR 

SUPPRESSION OF DRILLSTRING VIBRATIONS 

 

The modeling approach for the drillstring rotor, impact damper and torsional 

damper have been clarified in Chapter 3. In this chapter, those components will be 

assembled to be a whole drillstring model for vibration analysis. 

7.1. Drillstring Model 

The conceptual design of the drillstring that is composed of a DP, a DC, a DB, 

and the impactors and torsional damper is demonstrated in Figure 20. The ROB and DA 

are the working conditions that are commonly seen in a drilling process. It is therefore 

necessary to ensure the effectiveness of the impactors and torsional damper in these 

conditions. The parameters of the drillstring system are illustrated in Table 7, and 

boundary conditions are specified for each working condition.  

As the drillstring is fully suspended in the ROB condition and partially 

suspended in the DA condition, the weight of the impactors and torsional damper will 

increase the bending stiffness of the drillstring, thereby shifting the critical speeds. To 

exclude the influence of shifting critical speeds on the vibration amplitude, the weight of 

the impactors and torsional damper is always accounted for in the comparison of 

vibrations at the critical speed even if there are no dampers in the drillstring. 

 

___________________________________________________________________ 

* Reprinted with permission from “Suppression of Lateral and Torsional Stick–Slip Vibrations 

of DrillstringsWith Impact and Torsional Dampers” by Hu, L., Palazzolo, A., and Karkoub, M., 

2016, ASME J. Vib. Acoust. 138(5), 051013, Copyright 2016 by ASME. 
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Table 7. Parameters of the drillstring. Reprinted from Ref. [1]. 

Component Parameter Value Unit 

DP 

Length 80 𝑚  

OD 100 𝑚𝑚 

ID 75 𝑚𝑚 

Number of beam FEs 40 - 

Density 8000 𝑘𝑔/𝑚3 

Mass 2199 𝑘𝑔 

Modulus of elasticity 2.1 × 1011 𝑁/𝑚2 

Poisson’s ratio 0.3 - 

Transverse mud damping per axial length 50 𝑁 ⋅ 𝑠/𝑚2 

Torsional mud damping per axial length 0 − 2 

𝑁 ⋅ 𝑚

⋅ 𝑠/𝑟𝑎𝑑 

DC 

Length 15 𝑚 

OD 150 𝑚𝑚 

ID 75 𝑚𝑚 

Number of beam FEs 10 - 

Density 8000 𝑘𝑔/𝑚3 

Mass 1590 𝑘𝑔 

Eccentricity 1 − 8 𝑚𝑚 

Modulus of elasticity 2.1 × 1011 𝑁/𝑚2 
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Table 7. Continued. 

Component Parameter Value Unit 

DC 

Poisson’s ratio 0.3 - 

Transverse mud damping per axial length 300 𝑁 ⋅ 𝑠/𝑚2  

Torsional mud damping per axial length 0 − 6 

𝑁 ⋅ 𝑚

⋅ 𝑠/𝑟𝑎𝑑 

Impact 

damper 

Density 8000 𝑘𝑔/𝑚3 

Number 9 - 

Total mass 143 − 286 𝑘𝑔 

Modulus of elasticity 2.1 × 1011 𝑁/𝑚2 

Poisson’s ratio 0.3 - 

Clearance between the impactor and DC 10 − 30 𝑚𝑚 

Sliding friction coefficient between the 

impactor and DC 
0.4 - 

Torsional 

Damper 

Length 2.5 − 6 𝑚 

Density 8000 𝑘𝑔/𝑚3 

Mass 226 − 542 𝑘𝑔 

Moment of inertia 0.4 − 0.8 𝑘𝑔 ⋅ 𝑚2 

Number 1 - 

Sliding friction coefficient between the 

torsional damper and inner base of the DC 
0.002 − 0.35 - 
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Table 7. Continued. 

Component Parameter Value Unit 

Torsional 

Damper 

Torsional damping 0.25 − 8 

𝑁 ⋅ 𝑚

⋅ 𝑠/𝑟𝑎𝑑 

 

The DC is usually 27 − 36𝑚 in length and is slender in terms of the ratio of 

length to diameter. Two or more stabilizers are installed on the DC, and the segment 

between two stabilizers (called DC span) is about 15𝑚 long. The DC may consist of 

several DC spans, and the total length of the DC is dependent on the BHA design. 

According to Refs. [59, 60], the lateral position of the stabilizer is assumed constrained 

to zero, and the first bending mode is most commonly seen within the rotating speed 

range of the drillstring. Therefore, it is acceptable for a conceptual design to use a DC 

span with two stabilizers located at both ends (see pinned points A  and B  shown in 

Figure 20) to investigate the lateral dynamics of the DC in impacting. 

The length of the DP varies with the depth of the well and may even reach a few 

kilometers. In contrast, the diameter of the DP is normally less than 0.2𝑚, which makes 

the DP act more like a string than the DC. A pendulum drillstring model, in which case 

the top of the DP is pinned (the pinned node has zero displacement but is free to rotate), 

has been employed in [52, 58] to study lateral and torsional vibrations. As stated in [58], 

the DC is essential for the analysis of lateral whirl. This is understable because the DP is 

much slenderer (longer with a smaller diameter) than the DC and two ends of the DC 

span may experience a dramatic geomery change (the stabilizers which has a much 
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larger diameter than the DP are normally mounted at the ends of the DC). As a result, the 

bending mode shapes of the DP hardly affect that of the DC if the DP is very long. That 

being said, DP length may not have a significant impact on the DC lateral vibrations if 

the DP is enough long. 

In this work, the length of the DP is set eighty meters. To verify that the DP is 

enough long, a forty meters long DP is constructed with the same drillstring beam 

elements (such as impactor dimension, density, etc.) and drilling conditions as those for 

the eighty meters long DP. Figure 81 shows the bending mode shape of the DC at the 

spin speed of 89𝑟𝑝𝑚. Nodes 𝑂, 𝐴 and 𝐵 represent the top of the DP, the top end of the 

DC and the drill bit (or bottom end of the DC), respectively. The drill bit displacements 

and velocities obtained from the drillstring model with an eighty meters long DP and a 

forty meters long DP are shown in Figure 82 and Figure 83, respectively. It can be seen 

by comparing Figure 82 with Figure 83 that the drill bit lateral whirl motions are similar 

for the two different DP lengths, indicating that the eighty meters long DP is enough 

long and will not have great influences on the investigation of lateral vibrations of the 

drill bit. It is understandable that the longer DP does not affect much drill bit motions 

since the DP is much slender and thereby much more flexible than the DC in terms of 

bending. 
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Figure 81. Mode shape of the drillstring with a forty meters long DP at the bending 

critical speed of 𝜴 = 𝟖𝟗 𝒓𝒑𝒎. 

 

 

Figure 82. Displacement and velocity of the DC at point B with an eighty meters 

long DP in the ROB condition at the critical speed of 𝜴 = 𝟖𝟗 𝒓𝒑𝒎. 
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Figure 83. Displacement and velocity of the DC at point B with a forty meters long 

DP in the ROB condition at the critical speed of 𝜴 = 𝟖𝟗 𝒓𝒑𝒎. 

 

7.2. Drilling Conditions 

In general, there are two major drilling conditions, namely rotating-off-bottom 

(ROB) and drilling-ahead (DA). The former indicates that the DB of the drillstring is not 

contacting the rocks at the bottom of the well, and thus is rotating without drilling torque 

on the DB. The latter denotes the drilling status in which the DB is pressing and cutting 

the rocks at the bottom of the well. 

7.2.1. Rotating-off-bottom (ROB) 

The drillstring while rotating off bottom can be modeled by setting both pinned 

points 𝐴 and 𝐵 in Figure 20 free, analogous to a pendulum with the top end 𝑂 pinned. 

The boundary conditions may be written as 𝑥𝑂 = 𝑦𝑂 = 𝑧𝑂 = 0 and 𝜔𝑂 = 𝑐𝑜𝑛𝑠𝑡., where 

the subscript 𝑂 denotes the top end of the DP near the hoist/rotary table, and the spin 

speed of the top drive 𝜔𝑂 is constant. It is assumed that the DC mass is eccentric, and no 
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drilling torque acts on the DB. The drillstring carries the tensile axial load resulting from 

the weight of the DP, DC, impactors and torsional damper. 

7.2.2. Drilling-ahead (DA) 

With regard to the DA condition, both ends (𝐴 and 𝐵) of the DC shown in Figure 

20 are pinned, and the drilling torque acting on the DB is included. Hence, the boundary 

conditions may be written as 𝑥𝑂 = 𝑦𝑂 = 𝑧𝑂 = 0, .O const = , and 𝑦𝐴 = 𝑧𝐴 = 𝑦𝐵 = 𝑧𝐵 =

0. In the axial direction, the hoist pulls the DP, and the bottom of the borehole supports 

the DC weight. That is to say, the DP is in tension, and the DC is under compressive 

load. The unbalanced forces caused by the eccentric DC mass are loaded in the middle 

of the DC. 

7.3. Simulation for ROB 

The drillstring operating in the ROB condition has been simulated, and the 

results are demonstrated in Figure 84 through Figure 91. As Figure 84 shows, the largest 

lateral deflections of the DC in the whirl mode at the bending critical speed of 𝛺 =

119𝑟𝑝𝑚 are located at two bending peaks, i.e. point 𝐶 (4.5𝑚 away from point 𝐴) and 

point 𝐵 (the bottom of the DC). 
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Figure 84. Mode shape of the drillstring at the bending critical speed of 𝜴 =
𝟏𝟏𝟗 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

The impactors are installed in the DC in such a way that the mass of nine 

impactors are equally distributed (31.8𝑘𝑔 per element, 286𝑘𝑔 in total) with a clearance 

of 𝑑 = 10𝑚𝑚 between the impactor and DC. As a result, the vibration amplitudes of 

points 𝐵 and 𝐶 at 𝛺 = 119𝑟𝑝𝑚 are reduced from 22𝑚𝑚 and 12𝑚𝑚 to 14𝑚𝑚 and 

8𝑚𝑚, respectively, which can be seen from Figure 85 and Figure 86. This suppression 

effects on the vibration amplitudes are attributed to the impacting between the DC and 

impactors that may dissipate the kinetic energy of the drillstring. If we reduce the mass 

of the impactors from 286𝑘𝑔 (18% of the mass of the DC) to 143𝑘𝑔 (9% of the mass 

of the DC), in which case the mode shape of the drillstring is the same as that shown in 

Figure 84, the vibration amplitudes at 𝐵 and 𝐶 increase from 14𝑚𝑚 and 8𝑚𝑚 to 16𝑚𝑚 

and 9𝑚𝑚, respectively, which is displayed in Figure 85 to Figure 87. This increase can 

be understood by looking into either the impacting model with the COR or the one with 

a Hertzian contact force and a nonlinear viscous damping force. 
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Figure 85. Displacement and velocity of the DC at point 𝑩 without (left) or with 

(right) impactors with 𝒅 = 𝟏𝟎 𝒎𝒎 and the total impactor mass of 𝟐𝟖𝟔 𝒌𝒈 in the 

ROB condition at the critical speed of 𝜴 = 𝟏𝟏𝟗 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

 

Figure 86. Displacement and velocity of the DC at point 𝑪 without (left) or with 

(right) impactors with 𝒅 = 𝟏𝟎 𝒎𝒎 and the total impactor mass of 𝟐𝟖𝟔 𝒌𝒈 in the 

ROB condition at the critical speed of 𝜴 = 𝟏𝟏𝟗 𝒓𝒑𝒎. Reprinted from Ref. [1]. 
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Figure 87. Displacement and velocity of the DC at point 𝑩 (left) and point 𝑪 (right) 

with 𝒅 = 𝟏𝟎 𝒎𝒎 and the total impactor mass of 𝟏𝟒𝟑 𝒌𝒈 under impacting in the 

ROB condition at the critical speed of 𝜴 = 𝟏𝟏𝟕 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

As far as the impacting model with the COR is concerned, the velocity of the DC 

after inelastic collision can be described by, 

𝑥̇𝐷
+ =

1

1+𝜂
[𝜂(1 + 𝑒𝐶𝑂𝑅)𝑥̇𝐼

− + (1 − 𝜂𝑒𝐶𝑂𝑅)𝑥̇𝐷
−]     (143) 

where 𝑥̇𝐷 represents the velocity of the DC, 𝑥̇𝐼 the velocity of the impactor, 𝜂 the mass 

ratio of the impactor to the DC, and the superscripts + and − denote the velocity after 

and before collision, respectively. If we assume that 𝑒𝐶𝑂𝑅 is constant (if 𝜂 does not 

change too much) and 𝑥̇𝐼
− = 0, it can be derived from Eq. (143) that 𝑥̇𝐷

+ drops when 𝜂 

rises, which implies that after collision, the kinetic energy of the DC containing the 

impactors with larger mass is less than with smaller mass. In other words, more kinetic 

energy is dissipated by the impactor with larger mass than with smaller mass, indicating 

that the lateral vibration is attenuated to a larger extent. This conclusion is verified by 
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the simulation results presented in Figure 85 to Figure 87 that after the mass of the 

impactors increases, the lateral velocities of point 𝐵 and point 𝐶 in impacting decrease 

from 200𝑚𝑚/𝑠 and 115𝑚𝑚/𝑠 to 180𝑚𝑚/𝑠 and 105𝑚𝑚/𝑠, respectively. 

Regarding the impacting model with a Hertzian contact restoring force and a 

nonlinear viscous contact damping force, the enhancement of the vibration suppression 

is attributed to the larger inertia of the impactors, which renders less change of the 

velocities of the impactors. In other words, the impactor does not follow the motion of 

the DC under contact forces, implying that the relative velocity between the impactor 

and the DC may increase (this conclusion does not apply to the impactor with much 

smaller mass than the DC). According to Eq. (113), an increase in the relative input 

velocity 𝑣𝑖 yields a smaller COR, thereby dissipating more kinetic energy of the DC. As 

demonstrated in Figure 87, the velocity of the impactor with respect to point 𝐶 under the 

total impactor mass of 286𝑘𝑔 is a little larger than under the total impactor mass of 

143𝑘𝑔. In addition to 𝑣𝑖, the coefficient 𝛼 usually increases with the mass of the 

impactor according to the measured data presented in Ref. [63]. Hence, it can be clearly 

seen that a larger impactor mass renders an increase in both 𝑣𝑖 and 𝛼, thereby causing 

the COR to decline and leading to more dissipation of kinetic energy of the DC. 
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Figure 88. Velocity of the impactor with respect to the DC at point 𝑪 with 𝒅 = 𝟏𝟎
 𝒎𝒎 and the total impactor mass of 𝟐𝟖𝟔 𝒌𝒈 (left) at the critical speed of 𝜴 = 𝟏𝟏𝟗
 𝒓𝒑𝒎 or 𝟏𝟒𝟑 𝒌𝒈 (right) at the critical speed of 𝜴 = 𝟏𝟏𝟕 𝒓𝒑𝒎 under impacting in 

the ROB condition. Reprinted from Ref. [1]. 

 

 

Figure 89. Displacement of the DC at point 𝑩 (top) and point 𝑪 (bottom) with 𝒅 =
𝟐𝟎 𝒎𝒎 (left) or 𝒅 = 𝟑𝟎 𝒎𝒎 (right) and the total impactor mass of 𝟐𝟖𝟔 𝒌𝒈 under 

impacting in the ROB condition at the critical speed of 𝜴 = 𝟏𝟏𝟗 𝒓𝒑𝒎. Reprinted 

from Ref. [1]. 
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Figure 90. Orbit of the relative displacement of the impactor with respect to the DC 

(top) and collision state (1 represents collision, 0 no collision) between the impactor 

and the DC (bottom) at point 𝑪 with 𝒅 = 𝟐𝟎 𝒎𝒎 (left) or 𝒅 = 𝟑𝟎 𝒎𝒎 (right). 

Reprinted from Ref. [1]. 
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Figure 91. Displacement of the DC (top), collision state (1 represents collision, 0 no 

collision) between the impactor and DC (middle), and velocity of the impactor with 

respect to the DC (bottom) at point 𝑪 with 𝒅 = 𝟏𝟎 𝒎𝒎 (left) or 𝒅 = 𝟐𝟎 𝒎𝒎 (right) 

and the total impactor mass of 𝟐𝟖𝟔 𝒌𝒈 in the ROB condition at the critical speed of 

𝜴 = 𝟏𝟏𝟗 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

Moreover, the clearance between the impactor and DC also has an effect on the 

suppression of lateral vibrations. As can be seen from Figure 89, the vibration reduction 

is greater with 𝑑 = 20𝑚𝑚 than with 𝑑 = 30𝑚𝑚. The collision state shown in Figure 90 

corresponds to a total impactor mass of 286𝑘𝑔 in the ROB condition at 𝛺 = 119𝑟𝑝𝑚. 

This plot indicates that the impactor collides with the DC more frequently with 𝑑 =

20𝑚𝑚 than with𝑑 = 30𝑚𝑚. Thus, the greater vibration reduction may be plausibly 

explained by the smaller clearance instigating more frequent impacting, which leads to 

increased dissipation of kinetic energy.  
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The energy dissipation mechanism is more complex though since a smaller 

clearance is likely to cause a decrease in the relative impact velocity as the impact 

damper may closely follow the DC with a small clearance. This conclusion is verified by 

analyzing the orbits of the impactor, which is presented as the relative displacements of 

the impactor with respect to the DC in Figure 90. It can be seen from these orbits that the 

impactor follows the DC more closely under 𝑑 = 20𝑚𝑚 than under 𝑑 = 30𝑚𝑚. 

According to Eq. (113), the COR will increase when the input impact velocity drops. 

Hence, the frequent impacting caused by a small clearance may not necessarily increase 

the total amount of dissipated kinetic energy. This is illustrated in Figure 91, which 

shows that the impactor collides with the DC more frequently with 𝑑 = 10𝑚𝑚 than with 

𝑑 = 20𝑚𝑚, but the impacting velocity, i.e. the velocity of the impactor with respect to 

the DC, is smaller under 𝑑 = 10𝑚𝑚 than under 𝑑 = 20𝑚𝑚. Due to this, the vibration 

amplitudes of the DC at point 𝐶 with 𝑑 = 10𝑚𝑚 are larger than that with 𝑑 = 20𝑚𝑚. 

7.4. Simulation for DA 

The drillstring may undergo both lateral whirl and torsional stick-slip vibrations 

while drilling ahead. As shown in Figure 92, the DC mode that corresponds to the 

bending critical speed of 𝛺 = 91𝑟𝑝𝑚 is the first bending mode with the largest 

deflection (point 𝐷) appearing in the middle of the DC. The simulation results of the 

drillstring vibration utilizing the Coulomb torque model with 𝑇𝑠𝑙𝑑 = 0.8𝑇𝑠𝑡𝑡 are 

demonstrated in Figure 93. Like in the ROB condition, the weight of the impactors and 

torsional damper in the DA condition is included regardless of impacting, and the total 

mass of the impactors is 286𝑘𝑔 (18% of the mass of the DC). It can be seen from Figure 
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93 that the largest vibration amplitude approaches 14𝑚𝑚 without the impactors and 

torsional damper and drops to 7𝑚𝑚 in impacting, and the stick-slip vibrations dampened 

out owing to the torsional damper. For the case presented in Figure 93, nine impactors 

are installed in an even mass distribution in the DC (31.8𝑘𝑔 per element of the DC). The 

mass and the moment of inertia of the torsional damper are 226𝑘𝑔 (14% of the mass of 

the DC) and 0.4𝑘𝑔 ⋅ 𝑚2, respectively. 

 

 

Figure 92. Mode shape of the drillstring at the bending critical speed of 𝜴 = 𝟗𝟏
 𝒓𝒑𝒎. Reprinted from Ref. [1]. 
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Figure 93. Rotary speed of the DB, lateral displacement and velocity of the DC at 

point 𝑫 utilizing the Coulomb torque model without (left) or with (right) the 

impactors and torsional damper under 𝒅 = 𝟏𝟎 𝒎𝒎 and the even mass distribution 

of the impactors in the DA condition at the critical speed of 𝜴 = 𝟗𝟏 𝒓𝒑𝒎. 

Reprinted from Ref. [1]. 

 

In addition, the mass distribution of the impactors may have influences on the 

suppression effects. The mass of the impactors in the DA condition is distributed as 

(15.9,15.9, 31.8, 47.7, 63.6, 47.7, 31.8, 15.9, and 15.9) 𝑘𝑔, which is proportional to 

the displacement distribution of the DC in the first bending mode (Figure 92), for the 

nine impactors instead of 31.8𝑘𝑔 for each impactor. For simplicity, we call it the mode-

oriented mass distribution. These two ways of mass distribution are compared in Figure 

93 and Figure 94. The simulation results show that a larger mass distributed at point 𝐷 

(the location of the largest displacement in the bending mode) leads to a larger reduction 
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of the vibration amplitude, which is further reduced from 7𝑚𝑚 (Figure 93) to 4𝑚𝑚 

(Figure 94). The reason for this larger reduction is partially the same as what has been 

clarified in the ROB condition, i.e. that the impactor with a larger mass (63.6𝑘𝑔) is able 

to dissipate more kinetic energy of the DC than with a smaller mass (31.8𝑘𝑔). The 

difference lies in that the total mass of the impactors utilizing the mode-oriented 

distribution remains constant (286𝑘𝑔), compared to increasing the mass of the impactors 

in the ROB case. That is to say, the mode-oriented mass distribution is able to enhance 

the suppression effects on the lateral vibrations of the DC without changing the total 

mass of the impactors. 

 

 

Figure 94. Rotary speed of the DB, lateral displacement and velocity of the DC at 

point 𝑫 utilizing the Coulomb torque model with the impactors and torsional 

damper under 𝒅 = 𝟏𝟎 𝒎𝒎 and the mode-oriented mass distribution of the 

impactors in the DA condition at the critical speed of 𝜴 = 𝟗𝟏 𝒓𝒑𝒎. Reprinted from 

Ref. [1]. 
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The stick-slip could appear at a wide range of rotary speeds. As displayed in 

Figure 93, the peak rotary speed of the DB in the stick-slip vibration may reach twice the 

rotary speed of the top drive, thereby aggravating the whirl vibration of the DC. Ideally, 

a torsional damper is installed inside the DC to mitigate the stick-slip vibration of the 

drillstring, and the torsional damper with a larger moment of inertia is more effective 

than with a smaller moment of inertia. In practice, however, the torsional damper may be 

less effective due to the sliding friction torque between the torsional damper and the 

inner base of the DC that supports the weight of the torsional damper. For the simulation 

results demonstrated in Figure 93 and Figure 94, the coefficients of sliding friction 

between the torsional damper and inner base of the DC are both set as 𝜇𝐴 = 0.002, 

which is close to the coefficient of rolling friction for an angular contact thrust ball 

bearing. Similar to the drillstring utilizing the Coulomb torque model, the stick-slip 

vibration induced by the Stribeck torque model can be completely attenuated by the 

torsional damper under a small coefficient of friction like 𝜇𝐴 = 0.002, which is 

demonstrated in Figure 95. 
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Figure 95. Rotary speed of the DB, lateral displacement and velocity of the DC at 

point 𝑫 utilizing the Stribeck torque model without (left) or with (right) the 

impactors and torsional damper under 𝒅 = 𝟐𝟎 𝒎𝒎 and the mode-oriented mass 

distribution of the impactors in the DA condition at the critical speed of 𝜴 =
𝟗𝟏 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

It would be simpler for assembly if the torsional damper is installed directly on 

the inner base of the DC. In this condition, the friction between the torsional damper and 

DC base may be treated as the sliding friction between two metal surfaces. Normally, the 

coefficient of dry sliding friction 𝜇𝐴 is close to 0.35, and 𝜇𝐴 may decrease with the mud 

fluid lubricating the inner base of the DC. As can be seen from Figure 96, for the 

Coulomb torque model, an increase in the friction torque between the torsional damper 

and inner base of the DC results only in a very minor reduction in stick-slip vibration 
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mitigation. On the contrary, as shown in Figure 97, the torsional vibration of the 

drillstring that utilizes the Stribeck torque model with 𝜆 = 0.02 may result in limit 

cycles with the amplitudes oscillating between 77𝑟𝑝𝑚 and 105𝑟𝑝𝑚 under a large 

coefficient of friction of 𝜇𝐴 = 0.35. The limit cycles may dampen out under either a 

small 𝜇𝐴 or a moderately declining torque curve with 𝜆 < 0.02. This is because a large 

friction torque, which is attributed to a large 𝜇𝐴,  makes the torsional damper closely 

chase, or drive the rotating DC. In other words, the relative rotating speed between the 

torsional damper and DC approaches zero, resulting in less dissipation of kinetic energy. 

Therefore, any support structure with a low friction torque, such as an angular contact 

thrust ball bearing, is useful in enhancing the mitigation effects on torsional vibrations. 

The Stribeck torque model has the characteristic that torque decreases with increased 

rotary speed, which induces a negative damping and may cause severe torsional 

vibrations. A moderately declining torque curve, which implies a small 𝜆, leads to a 

small negative damping. In accordance with Ref. [56], the torque curve usually declines 

mildly in practice, indicating that 𝜆 < 0.025 is adequate for the real DA case. Note that 

the Stribeck friction torque will cause torsional instability if the drillstring has no 

torsional damping. 
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Figure 96. Rotary speed of the DB and lateral displacement of the DC at point 𝑫 

utilizing the Coulomb torque model with the impactors and torsional damper 

under 𝒅 = 𝟏𝟎 𝒎𝒎, 𝝁𝑨 = 𝟎. 𝟑𝟓, and the even mass distribution of the impactors in 

the DA condition at the critical speed of 𝜴 = 𝟗𝟏 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

 

Figure 97. Rotary speed of the DB and lateral displacement of the DC at point 𝑫 

utilizing the Stribeck torque model with the impactors and torsional damper under 

𝒅 = 𝟐𝟎 𝒎𝒎, 𝝁𝑨 = 𝟎. 𝟑𝟓, and the mode-oriented mass distribution of the impactors 

in the DA condition at the critical speed of 𝜴 = 𝟗𝟏 𝒓𝒑𝒎. Reprinted from Ref. [1]. 
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In comparison with the higher-frequency stick-slips shown in Figure 93 and 

Figure 95, oscillations at the first torsional mode of the full drillstring with a period of 

2 − 10 seconds are usually more damaging. To model these lower natural frequencies, 

the length of the DP is extended to 1.2𝑘𝑚, and the DC to 30𝑚. Additionally, the 

external torsional damping caused by mud and drilling fluid is set to zero in order to 

exclude its influence on the mitigation of stick-slip vibrations. Zero torsional damping 

may result in severe speed oscillation. The speed oscillation will increase as WOB 

increases so the parametric study starts at zero WOB. The simulation results are 

presented in Figure 98 and Figure 99. For the Coulomb torque model, as is shown in 

Figure 98, the torsional vibration of the DB under the extended 30𝑘𝑁 WOB is 

suppressed by the torsional damper in the simple speed oscillation period. In contrast, 

the highest WOB to extend for the Stribeck torque model (Figure 99) is 3𝑘𝑁. 

 

 

Figure 98. Rotary speed of the DB utilizing the Coulomb torque model without 

(left) or with (right) the impactors and torsional damper in the DA condition in the 

first torsional mode of the drillstring under 𝟑𝟎 𝒌𝑵 WOB in the first torsional mode 

at the critical speed of 𝜴 = 𝟑𝟒 𝒓𝒑𝒎. Reprinted from Ref. [1]. 
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Figure 99. Rotary speed of the DB utilizing the Stribeck torque model without (left) 

or with (right) the impactors and torsional damper in the DA condition in the first 

torsional mode of the drillstring under 𝟑 𝒌𝑵 WOB in the first torsional mode at the 

critical speed of 𝜴 = 𝟑𝟒 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

Besides the stick-slip, the DC and DB may be destabilized by mud or drilling 

fluid. As pointed out in Ref. [37, 90], this type of destabilizing force may be explained 

as the presence of cross-coupled stiffness in the form of [
0 𝐾𝑋𝑌

−𝐾𝑋𝑌 0
] at the DC and 

DB. The simulation results from the drillstring model with 𝐾𝑋𝑌 = 7000𝑁/𝑚 are 

demonstrated in Figure 100 and Figure 101. The eigenvalue of the drillstring system for 

the first bending mode of the DC is 0.46 + 𝑗9.78, indicating a negative damping ratio of 

𝜉 = −0.05. As can be seen from Figure 100, the DC without the impactors and torsional 

damper is unstable, and the amplitudes of lateral vibration reach 400𝑚𝑚 in 10 s, which 

far exceed the clearance between the DC and the borehole. A short time period of 𝑡 =

8 − 10𝑠 is selected to clearly present the stick-slip vibration of the DB. When the 

impactor dampers and torsional damper are installed in the DC, the drillstring becomes 

stable, and the vibration amplitudes of the DC are attenuated to 12𝑚𝑚. Furthermore, the 

stick-slip vibration is completely suppressed. It is similar with the drillstring utilizing the 

Stribeck torque model that the impact dampers are able to stabilize the drillstring (Figure 
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101). Owing to the impactors, the accumulative kinetic energy resulting from the 

negative damping is dissipated through impacting. 

 

 

Figure 100. Rotary speed of the DB and lateral displacement of the DC at point 𝑫 

utilizing the Coulomb torque model without (left) or with (right) the impactors and 

torsional damper, with cross-coupled stiffness, 𝒅 = 𝟐𝟎 𝒎𝒎 and the mode-oriented 

mass distribution of the impactors in the DA condition at the critical speed of 𝜴 =
𝟗𝟑 𝒓𝒑𝒎. Reprinted from Ref. [1]. 
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Figure 101. Rotary speed of the DB and lateral displacement of the DC at point 𝑫 

utilizing the Stribeck torque model without (left) or with (right) the impactors and 

torsional damper, with cross-coupled stiffness, 𝒅 = 𝟐𝟎 𝒎𝒎 and the mode-oriented 

mass distribution of the impactors in the DA condition at the critical speed of 𝜴 =
𝟗𝟑 𝒓𝒑𝒎. Reprinted from Ref. [1]. 

 

7.5. Summary 

This chapter analyzed a complete drillstring system that is comprised of a DP, a 

DC, a DB, and several impact and torsional dampers that are installed in the DC. 

Coulomb and Stribeck torque models were separately included in the simulation of 

drillstring vibrations. By using the vibro-impact model and drillgstring FE model 

developed in Chapter 3, the mitigation effects of the impact and torsional dampers on the 

drillstring vibration in the working conditions like ROB and DA were investigated. Both 

of the translational collision between the DC and impactor and the tangential friction in 

between were considered. The destabilizing forces induced by drilling fluid or mud were 

also introduced to study the stabilizing effects of the impact damper on the drillstring. 
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Finally, various design parameters of the impact damper and torsional damper were 

investigated for the purpose of acquiring stronger suppression effects on drillstring 

vibration. 
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8. CONCLUSIONS AND FUTURE WORK 

 

8.1. Summary and Conclusions 

The present work (1) improves the rotor dynamic modeling of rotating machinery 

by developing axisymmetric FE formulations of the stress-stiffening and spin-softening 

effects, (2) improves the beam FE modeling of a rotor under support motion by 

integrating a 2D FE hydrodynamic fluid film bearing model, (3) enhances simulation 

speed and reduces computer recource usage for numerical analysis of a rotor system with 

flexible support structures by developing a MIMO transfer function modeling approach 

for support structures, and (4) develops novel impact dampers for suppressing vibrations 

of low-speed rotating machines (drillstrings). 

In regard to the first contribution, the axisymmetric FE formulation of the 

centrifugal stress-stiffening effects is extended from a stationary structure solid element 

model in the Cartesian coordinate system to a rotor axisymmetric solid element model in 

the cylindrical coordinate system. The axisymmetric FE formulation of the spin-

softening effects is developed to account for a decrease in radial stiffness of rotating 

blades and disks. Both axisymmetric FE formulations have been used in the 

development of rotor dynamic software algorithms. 

In addition to the formulation, the improved axisymmetric FE rotor model is used 

for comparison of solid element and beam element rotor models. It can be concluded 

from the simulation results that the centrifugal stress-stiffening effects will increase the 

axial bending stiffness of shafts and disks. The spin-softening effects will reduce the 
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radial stiffness of shafts and disks. Guidelines for when and how to use the improved 

axisymmetric FE model for design and analysis of thin-walled rotors and flexible disks 

are provided. 

Regarding the second contribution, a preceding Timoshenko beam element 

model of a rotor under support motion is improved by correcting the beam FE 

formulation and replacing the linear eight-coefficient and short journal bearing models 

with a hydrodynamic fluid film bearing 2D FE model. In comparison with the preceding 

methods, the support motion is not simply imposed on the rotor, but transferred to rotor 

via bearing fluid film forces. The conclusions drawn from the simulation results are that 

support pitch may cause rotor instability. The preload and offset, which increase the 

eccentricity, help stabilize the rotor under large support motion. Therefore, the offset-

half bearing with preload and offset may be a remedy for the instability of a rotor with 

the four-axial groove bearing (may be extended to any fixed-pad journal bearing) 

support. 

With regard to the third contribution, a MIMO transfer function support structure 

model is improved by combining the axisymmetric FE rotor and solid element support 

structure models and transforming into a state-space representation. The simulation 

results show that the simulation time is substantially reduced (down to 25%). The 

stability of the rotor system can be predicted from the state-space rotor system model. 

This MIMO transfer function model is beneficial for designers to do quick revisions of 

the rotor and support structure combo. 
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Finally, the novelty of the present work includes the development of centralized 

impact dampers and torsional dampers to suppress the lateral and torsional vibrations of 

a drillstring. According to the numerical analysis, the properly arranged (mode-oriented 

mass distribution) dampers are able to attenuate lateral vibration of the drillstring that 

operates close to the bending critical speeds and the stick-slip torsional vibration within 

the operating speed range. 

8.2. Future Work 

The followings need improvements in the future. 

(a) 3D solid element rotor model may be demanded for investigation of non-

symmetric rotors such as electric generator and gas turbine blades. 

(b) As the shaft wall gets thinner, the axisymmetric FE mesh model needs 

refinement, which may require more computer resources. In this case, a shell element 

model could be a better choice in terms of computation efficiency. Thus, a thorough 

comparison of the axisymmetric FE model with the shell FE model should be conducted 

in order to understand the merits and demerits of these two rotor modeling approaches. 

(c) The high-fidelity models of the Tilting-pad bearings, ball bearings, and 

squeeze film dampers may be implemented into the present beam FE rotor model with 

support motion. 

(d) LuGre friction model may be applicable to the friction of the drill bit in the 

contact. This model is based on the elasticity of the contacting solids and can be used to 

check the attenuation performance of the impact dampers. 
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APPENDIX A 

AXISYMMETRIC SOLID HARMONIC FINITE ELEMENT FORMULATION FOR 

ROTOR SYSTEM 

 

The rotor displacement {𝑈𝑅} of Eq. (6) shown in Chapter 2 can be expanded by 

using the shape functions and node displacements from certain harmonic modes. Not all 

the modes are needed because higher-order modes have much less influences on lateral 

vibrations of the rotor than lower-order modes (particularly zeroth and first order 

modes). In regard to the centrifugal stress-stiffening and spin-softening effects, both 

zeroth order and first order modes are effective modes, which can be seen from the 

derivation presented in Sections 2.3 to 2.4. 

In regard to Eq. (5), 𝑢𝑅
𝑒  is composed of all harmonics and may be expressed as, 

{UR
e} = ∑ {um

e }𝑁
𝑚=0          (A  1) 

with 

{um
e } = [Nm]{qm

e }         (A  2) 

The shape function shown in Eq. (5) can be expanded as, 

[N] = [𝑁0 ⋯ 𝑁𝑁]         (A  3) 

where the shape function at harmonics = 𝑚, [𝑁𝑚], is composed of the symmetric and 

antisymmetric components as follows. 

[Nm] = [𝑁𝑚𝑆 𝑁𝑚𝐴]         (A  4) 

The symmetric components may be written as, 
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 
( ) ( )

( ) ( )

( ) ( )

1 3

mS 1 3

1 3

cos 0 0 cos 0 0

N 0 cos 0 0 cos 0

0 0 sin 0 0 sin

m m

m m

m m

N m N m

N m N m

N m N m

 

 

 

 
 

=  
 
 

         (A  5) 

The antisymmetric components can be expressed as, 

 
( ) ( )

( ) ( )

( ) ( )

1 3

mA 1 3

1 3

sin 0 0 sin 0 0

N 0 sin 0 0 sin 0

0 0 cos 0 0 cos

m m

m m

m m

N m N m

N m N m

N m N m

 

 

 

 
 

=  
 − − 

         (A  6) 

To facilitate the integral operation of the axisymmetric element for the circumferential 

angles 𝜃 ∈ [0,2𝜋], [𝑁𝑚𝑆] and [𝑁𝑚𝐴] may be transformed into, 

[𝑁𝑚𝑆] = [𝑁𝑚,𝑐𝑜𝑠] 𝑐𝑜𝑠(𝑚𝜃) + [𝑁𝑚,𝑠𝑖𝑛] 𝑠𝑖𝑛(𝑚𝜃)     (A  7) 

[𝑁𝑚𝐴] = −[𝑁𝑚,𝑠𝑖𝑛] 𝑐𝑜𝑠(𝑚𝜃) + [𝑁𝑚,𝑐𝑜𝑠] 𝑠𝑖𝑛(𝑚𝜃)     (A  8) 

where 

[𝑁m,cos] = [
𝑁𝑚1 0 0 𝑁𝑚3 0 0
0 𝑁𝑚1 0 ⋯ 0 𝑁𝑚3 0

0 0 0 0 0 0

]     (A  9) 

[𝑁m,sin] = [
0 0 0 0 0 0
0 0 0 ⋯ 0 0 0
0 0 𝑁𝑚1 0 0 𝑁𝑚3

]               (A  10) 

Substituting Eqs. (A  1)-(A  6) and Eq. (5) into Eq. (6) yields the equations of 

motion for each element at mth order harmonics as, 

[𝑀𝑚
𝑒 ]{𝑞̈𝑚

𝑒 } + [𝐶𝑚
𝑒 ]{𝑞̇𝑚

𝑒 } + [𝐾𝑚
𝑒 ]{𝑞𝑚

𝑒 } = {𝑓𝑚
𝑒}     (A  11) 
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where [𝑀𝑚
𝑒 ], [𝐶𝑚

𝑒 ] and [𝐾𝑚
𝑒 ] represent mass, damping and stiffness matrix, respectively, 

{𝑞𝑚
𝑒 } is displacement vector, {𝑓𝑚

𝑒} is external force vector, and the superscripts e  and   

indicate element and derivative of time, respectively. 

The element displacement vector {𝑞𝑒} has the following form, 

{𝑞𝑒} = [ 𝑢0𝑟𝑆1,  𝑢0𝑧𝑆1,  𝑢0𝜃𝑆1,  … , 𝑢0𝑟𝑆𝑁𝑒 ,  𝑢0𝑧𝑆𝑁𝑒 ,  𝑢0𝜃𝑆𝑁𝑒 ,

𝑢0𝑟𝐴1,  𝑢0𝑧𝐴1,  𝑢0𝜃𝐴1,  … , 𝑢0𝑟𝐴𝑁𝑒 , 𝑢0𝑧𝐴𝑁𝑒 ,  𝑢0𝜃𝐴𝑁𝑒 ,

⋯
𝑢𝑁𝑟𝑆1,  𝑢𝑁𝑧𝑆1, 𝑢𝑁𝜃𝑆1,  … , 𝑢𝑁𝑟𝑆𝑁𝑒 ,  𝑢𝑁𝑧𝑆𝑁𝑒 ,  𝑢𝑁𝜃𝑆𝑁𝑒 ,

𝑢𝑁𝑟𝐴1,  𝑢𝑁𝑧𝑆1,  𝑢𝑁𝜃𝐴1,  … , 𝑢𝑁𝑟𝐴𝑁𝑒 , 𝑢𝑁𝑧𝐴𝑁𝑒 ,  𝑢𝑁𝜃𝐴𝑁𝑒 ]𝑇

 (A  12) 

where 𝑢 are the displacements, the subscripts 𝑁 and 𝑁𝑒 are the number of nodes within 

an axisymmetric element and number of harmonics, respectively. 𝑆 and 𝐴 represent the 

symmetric and antisymmetric components. As shown in Eq. (4), 𝑢0𝜃𝑆𝑖, 𝑢0𝑟𝐴𝑖 and 𝑢0𝑧𝐴𝑖 

can be eliminated due to 𝑠𝑖𝑛(0) = 0. As a result, {𝑞𝑒} may be reduced to, 

{𝑞𝑒} = [ 𝑢0𝑟𝑆1,  𝑢0𝑧𝑆1,  𝑢0𝜃𝐴1,  … , 𝑢0𝑟𝑆𝑁𝑒 ,  𝑢0𝑧𝑆𝑁𝑒 ,  𝑢0𝜃𝐴𝑁𝑒
⋯

𝑢𝑁𝑟𝑆1, 𝑢𝑁𝑧𝑆1, 𝑢𝑁𝜃𝑆1,  … , 𝑢𝑁𝑟𝑆𝑁𝑒 ,  𝑢𝑁𝑧𝑆𝑁𝑒 ,  𝑢𝑁𝜃𝑆𝑁𝑒
𝑢𝑁𝑟𝐴1,  𝑢𝑁𝑧𝑆1,  𝑢𝑁𝜃𝐴1,  … , 𝑢𝑁𝑟𝐴𝑁𝑒 , 𝑢𝑁𝑧𝐴𝑁𝑒 ,  𝑢𝑁𝜃𝐴𝑁𝑒 ]𝑇

 (A  13) 

{𝑞𝑒} at the mth mode are obtain from Eqs. (A  12) and (A  13) by selecting the items 

with the first subscript equal to m. The matrices and vectors for the rotor FE model can 

be obtained by assembling all the elemental matrices and vectors. 

As shown in Chapters 2 and 3, the integral operation is required to obtain the 

final FE matrices and vectors. There are generally two ways for numerical analysis in the 

computer program. One is to apply the Gaussian quadrature numerical integration [91-

93]. The other is to use the approximate integration formula, as is shown in [68].  
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Regarding the Gaussian quadrature method, Table 8 illustrates the weights and 

evaluation points for integration on a three-node triangle element. 

Table 8. Weights and evaluation points for integration on a triangle element. 

Point 

number 𝒋 
Weights 𝑯𝒋 

Evaluation 

point 𝝃𝒋 

Evaluation 

point 𝜼𝒋 

Evaluation 

point 𝜻𝒋 

1 0.10995174 0.81684757 0.09157621 0.09157621 

2 0.10995174 0.09157621 0.81684757 0.09157621 

3 0.10995174 0.09157621 0.09157621 0.81684757 

4 0.22338159 0.10810302 0.44594849 0.44594849 

5 0.22338159 0.44594849 0.10810302 0.44594849 

6 0.22338159 0.44594849 0.44594849 0.10810302 

 

The approximate integration formula is expressed as, 

∫ 𝐿1
𝑚𝐿2

𝑛𝐿3
𝑝𝑑𝐴

𝐴𝑒
=

𝑚!𝑛!𝑝!

(𝑚+𝑛+𝑝+2)!
⋅ 2𝐴𝑒      (A  14) 

In this work, linear triangle elements are employed to model the axisymmetric semi-

section of the rotor. Therefore, the component of the shape function shown in Eq. (A  5) 

can be expressed as, 

𝑁𝑚𝑖 = 𝐿𝑖         (A  15) 

with the evaluation points 𝜉𝑗, 𝜂𝑗, and 𝜁𝑗  representing 𝐿𝑖. 

𝐴̃𝑖 = 𝑟𝑗𝑧𝑘 − 𝑟𝑘𝑧𝑗        (A  16) 

𝑎𝑖 = 𝑧𝑗 − 𝑧𝑘         (A  17) 

𝑏𝑖 = 𝑟𝑘 − 𝑟𝑗         (A  18) 
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𝐿𝑖 =
1

2𝐴𝑒
(𝐴̃𝑖 + 𝑎𝑖𝑟 + 𝑏𝑖𝑧)       (A  19) 

where 𝑖, 𝑗, 𝑘 = 1, 2, 3. The element area 𝐴𝑒 is derived from, 

𝐴𝑒 =
1

2
(𝑎1𝑏2 − 𝑎2𝑏1)        (A  20) 

The effective centroid of the element is, 

3

1

i i

i

r r L
=

=          (A  21) 

The constitutive matrix representing the stress-strain relationship in Eq. (27) is 

given as follows, 

[𝐷] =
𝐸

(1+𝜐)(1−2𝜐)

[
 
 
 
 
 
 
 
1 − 𝜐 𝜐 𝜐 0 0 0
𝜐 1 − 𝜐 𝜐 0 0 0
𝜐 𝜐 1 − 𝜐 0 0 0

0 0 0
1

2
− 𝜐 0 0

0 0 0 0
1

2
− 𝜐 0

0 0 0 0 0
1

2
− 𝜐]

 
 
 
 
 
 
 

  (A  22) 

where E  and   are modulus of elasticity and Poisson’s ratio, respectively. 

Recall that the strain is derived from, 

{𝜀𝑚
𝑒 } = [𝜕]{𝑢𝑚

𝑒 } = [𝜕][𝑁𝑚]{𝑞𝑚
𝑒 }      (A  23) 

[𝜕] indicates the partial derivatives of the displacements as shown below, 

[∂] =

[
 
 
 
 
 
 
 
 
 
∂

∂𝑟
0 0

0
∂

∂𝑧
0

1

𝑟
0

1

𝑟

∂

∂𝜃
∂

∂𝑧

∂

∂𝑟
0

0
1

𝑟

∂

∂𝜃

∂

∂𝑧
1

𝑟

∂

∂𝜃
0 (

∂

∂𝑟
−
1

𝑟
)]
 
 
 
 
 
 
 
 
 

       (A  24) 
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Using [𝐵𝑚] to represent [𝜕][𝑁𝑚] yields, 

[𝜕][𝑁𝑚] = [𝐵𝑚] = [[𝐵𝑚𝑆] [𝐵𝑚𝐴]]      (A  25) 

An understanding should be reached that the two harmonics sets, 𝑚 = 0 and 𝑚 = 1, 2, … 

will lead to totally different representations of [𝐵𝑚]. This difference is not specified in 

any of the aforementioned literatures as the harmonics 𝑚 = 0 are generally not used in 

the analysis of lateral vibrations. First, 𝑚 = 0 leads to the following representation of 

[𝐵𝑚], 

[𝐵0𝑆]
6×9

=

[
 
 
 
 
 
 
 
∂𝑁01

∂𝑟
0 0

∂𝑁03

∂𝑟
0 0

0
∂𝑁01

∂𝑧
0 ⋯ 0

∂𝑁03

∂𝑧
0

𝑁01

𝑟
0 0

𝑁03

𝑟
0 0

∂𝑁01

∂𝑧

∂𝑁01

∂𝑟
0

∂𝑁03

∂𝑧

∂𝑁03

∂𝑟
0

0 0 0 ⋯ 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 

    (A  26) 

[𝐵0𝐴]
6×9

=

[
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 ⋯ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 −
∂𝑁01

∂𝑧
⋯ 0 0 −

∂𝑁03

∂𝑧

0 0 (
𝑁01

𝑟
−
∂𝑁01

∂𝑟
) 0 0 (

𝑁03

𝑟
−
∂𝑁03

∂𝑟
)]
 
 
 
 
 
 

   (A  27) 

Secondly, [𝐵𝑚𝑆] and [𝐵𝑚𝐴] with 𝑚 = 1, 2, … can be obtained from, 

[𝐵𝑚𝑆] = [𝐵𝑚1] 𝑠𝑖𝑛(𝑚𝜃) + [𝐵𝑚2] 𝑐𝑜𝑠(𝑚𝜃)     (A  28) 

[𝐵𝑚𝐴] = −[𝐵𝑚1] 𝑐𝑜𝑠(𝑚𝜃) + [𝐵𝑚2] 𝑠𝑖𝑛(𝑚𝜃)    (A  29) 

where 
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[𝐵𝑚1]
6×9

=

[
 
 
 
 
 
 

0 0 0
0 0 0
0 0 0
0 0 0

0 −𝑚
𝑁𝑚1

𝑟

∂𝑁𝑚1

∂𝑧

−𝑚
𝑁𝑚1

𝑟
0 (

∂𝑁𝑚1

∂𝑟
−
𝑁𝑚1

𝑟
)

⋯ ⋯

]
 
 
 
 
 
 

   (A  30) 

[𝐵𝑚2]
6×9

=

[
 
 
 
 
 
 
 
∂𝑁𝑚1

∂𝑟
0 0

0
∂𝑁𝑚1

∂𝑧
0

𝑁𝑚1

𝑟
0 𝑚

𝑁𝑚1

𝑟
∂𝑁𝑚1

∂𝑧

∂𝑁𝑚1

∂𝑟
0

0 0 0
0 0 0

⋯ ⋯

]
 
 
 
 
 
 
 

     (A  31) 

As show in Eq. (A  11), the damping and stiffness matrices for an element can be 

further expressed as, 

[𝐶𝑚
𝑒 ] = [𝐺𝑚

𝑒 ] + [𝐶𝑉𝑚
𝑒 ]        (A  32) 

[𝐾𝑚
𝑒 ] = [𝐾𝑆𝑚

𝑒 ] + [𝐾𝜎𝑚
𝑒 ] − [𝐾𝛺𝑚

𝑒 ]      (A  33) 

where the subscript 𝑚 represents the mth mode, [𝐺𝑒] represents the gyroscopics, [𝐶𝑉
𝑒] 

the structural damping (neglectable for most rotating machinery), [𝐾𝑆
𝑒] the structural 

stiffness due to structure elasticity, [𝐾𝜎
𝑒] the centrifugal stress-stiffening effect, and [𝐾𝛺

𝑒] 

the spin-softening effect. 

For harmonics 𝑚 = 1, 2, …, the mass and stiffness matrices have been provided 

in [14]. When 𝑚 = 0, the symmetric and antisymmetric components of the element mass 

and stiffness matrices are different. The elemental mass matrix can be defined as, 

[𝑀0
𝑒] = [

[𝑀0𝑆𝑆
𝑒 ] [0]

[0] [𝑀0𝐴𝐴
𝑒 ]

]       (A  34) 

where [𝑀0𝑆𝑆
𝑒 ] and [𝑀0𝐴𝐴

𝑒 ] are given by, 
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[𝑀0𝑆𝑆
𝑒 ] = 2𝜋 ∫ 𝜌

[
 
 
 
 
 
 
 
 
𝐿1𝐿1 0 0 𝐿1𝐿2 0 0 𝐿1𝐿3 0 0
0 𝐿1𝐿1 0 0 𝐿1𝐿2 0 0 𝐿1𝐿3 0
0 0 0 0 0 0 0 0 0
𝐿2𝐿1 0 0 𝐿2𝐿2 0 0 𝐿2𝐿3 0 0
0 𝐿2𝐿1 0 0 𝐿2𝐿2 0 0 𝐿2𝐿3 0
0 0 0 0 0 0 0 0 0
𝐿3𝐿1 0 0 𝐿3𝐿2 0 0 𝐿3𝐿3 0 0
0 𝐿3𝐿1 0 0 𝐿3𝐿2 0 0 𝐿3𝐿3 0
0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 

𝐴𝑒
𝑟𝑑𝐴     (A  35) 

[𝑀0𝐴𝐴
𝑒 ] = 2𝜋 ∫ 𝜌

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 𝐿1𝐿1 0 0 𝐿1𝐿2 0 0 𝐿1𝐿3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 𝐿2𝐿1 0 0 𝐿2𝐿2 0 0 𝐿2𝐿3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 𝐿3𝐿1 0 0 𝐿3𝐿2 0 0 𝐿3𝐿3]

 
 
 
 
 
 
 
 

𝐴𝑒
𝑟𝑑𝐴 (A  36) 

The elemental stiffness matrix can be written as, 

[𝐾0
𝑒] = [

2𝜋 ∫ [𝐵0𝑆]
𝑇[𝐷][𝐵0𝑆]𝑟𝑑𝑟𝑑𝑧𝐴𝑒

[0]

[0] 2𝜋 ∫ [𝐵0𝐴]
𝑇[𝐷][𝐵0𝐴]𝑟𝑑𝑟𝑑𝑧𝐴𝑒

] (A  37) 

where the definitions of [𝐷], [𝐵0𝑆] and [𝐵0𝐴] can be found in [12], and the integrals in 

Eq. (A  37) are obtained by using Gaussian quadrature. Although the FE model is 

developed based on three-node triangular elements, the derived matrices can be 

expanded to other types of elements. 

Regarding the strain energy due to centrifugal forces, the expanded strain vector 

{𝛿𝜎
𝑒} shown in Eq. (28) may be as, 

{𝛿𝜎
𝑒} = [

𝜕𝑢𝑟

𝜕𝑟
,  
𝜕𝑢𝑟

𝜕𝑧
,  
1

𝑟
(
𝜕𝑢𝑟

𝜕𝜃
− 𝑢𝜃) , 

𝜕𝑢𝑧

𝜕𝑟
,  
𝜕𝑢𝑧

𝜕𝑧
, 
1

𝑟

𝜕𝑢𝑧

𝜕𝜃
,  
𝜕𝑢𝜃

𝜕𝑟
,  
𝜕𝑢𝜃

𝜕𝑧
, 
1

𝑟
(𝑢𝑟 +

𝜕𝑢𝜃

𝜕𝜃
)]
𝑇

(A  38) 

With regard to Eq. (32), [𝐺𝜎𝑚
𝑒 ], may be represented as, 

[𝐺𝜎𝑚
𝑒 ] = [𝐺𝜎𝑚𝑐

𝑒 ] 𝑐𝑜𝑠(𝑚𝜃) + [𝐺𝜎𝑚𝑠
𝑒 ] 𝑠𝑖𝑛(𝑚𝜃)       (A  39) 
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where 𝑚 = 0, 1, 2, …. 

Substituting Eq. (A  39) in Eq. (32) yields, 

[𝐾𝜎𝑚
𝑒 ] = 𝜋 ∫ ([𝐺𝜎𝑚𝑐

𝑒 ]𝑇[𝑆𝜎0
𝑒 ][𝐺𝜎𝑚𝑐

𝑒 ] + [𝐺𝜎𝑚𝑠
𝑒 ]𝑇[𝑆𝜎0

𝑒 ][𝐺𝜎𝑚𝑠
𝑒 ])𝑟𝑑𝑟𝑑𝑧

𝐴𝑒
  (A  40) 

where  

[𝑆𝜎
𝑒] = [

[𝜎0
𝑒] [0] [0]

[0] [𝜎0
𝑒] [0]

[0] [0] [𝜎0
𝑒]
]       (A  41) 

[𝐺𝜎𝑚𝑐
𝑒 ]
9×18

=

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0

∂𝑁𝑚1

∂𝑧
0 0 ⋯ ⋯ 0 0 0 ⋯ ⋯

0 0 0
𝑚𝑁𝑚1

𝑟
0

𝑁𝑚1

𝑟

0
∂𝑁𝑚1

∂𝑟
0 0 0 0

0 0 0 2 ∗ 3 ∗ 0 0 0 2 ∗ 3 ∗

0 0 0 0
𝑚𝑁𝑚1

𝑟
0

0 0 0 0 0 −
∂𝑁𝑚1

∂𝑟

0 0 0 ⋯ ⋯ 0 0 −
∂𝑁𝑚1

∂𝑧
⋯ ⋯

0 0 0 0 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (A  42) 

[𝐺𝜎𝑚𝑠
𝑒 ]
9×18

=

[
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0

0 0 0 ⋯ ⋯
∂𝑁𝑚1

∂𝑧
0 0 ⋯ ⋯

−
𝑚𝑁𝑚1

𝑟
0 −

𝑁𝑚1

𝑟
0 0 0

0 0 0 0
∂𝑁𝑚1

∂𝑟
0

0 0 0 2 ∗ 3 ∗ 0 0 0 2 ∗ 3 ∗

0 −
𝑚𝑁𝑚1

𝑟
0 0 0 0

0 0
∂𝑁𝑚1

∂𝑟
0 0 0

0 0
∂𝑁𝑚1

∂𝑧
⋯ ⋯ 0 0 0 ⋯ ⋯

0 0 0 0 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (A  43) 
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where 2 ∗ indicates that these three columns have the same form as the left three 

columns next to them except that the shape function terms 𝑁𝑚1 are replaced by 𝑁𝑚2, and 

a similar convention for 3 ∗. 

Applying the numerical integration to Eq. (A  40) yields, 

[𝐾𝜎𝑚
𝑒 ] = 𝜋𝐴𝑒∑𝐻𝑗𝑟𝑗 ([𝐺𝜎𝑚𝑐

𝑒 (𝜉𝑗,  𝜂𝑗 ,  𝜁𝑗)]
𝑇
[𝑆𝜎0
𝑒 ] [[𝐺𝜎𝑚𝑐

𝑒 (𝜉𝑗,  𝜂𝑗 ,  𝜁𝑗)]]

𝑁

𝑗=1

 

                               +[𝐺𝜎𝑚𝑠
𝑒 ]𝑇[𝑆𝜎0

𝑒 ][𝐺𝜎𝑚𝑠
𝑒 ]) (A  44) 

where 𝐻𝑗, 𝑟𝑗, 𝜉𝑗, 𝜂𝑗, and 𝜁𝑗  are given in Table 8.  

As shown in Eq. (36), the elemental spin-softening matrix for the 𝑚th harmonics 

(𝑚 ≠ 0) may be re-arranged as, 

[𝐾𝛺𝑚
𝑒 ]

18×18
 = [

[𝐾𝛺𝑚𝑆]
9×9

[0]
9×9

[0]
9×9

[𝐾𝛺𝑚𝑆]
9×9

]       (A  45) 

where 

[𝐾𝛺𝑚𝑆
𝑒 ]
9×9

= 𝛺2𝜌 ∫

[
 
 
 
 
 
 
 
 
 
 
𝑁𝑚1𝑁𝑚𝑗 0 0

0 0 0
0 0 𝑁𝑚1𝑁𝑚𝑗

𝑁𝑚2𝑁𝑚𝑗 0 0

0 0 0 𝑗 = 2 𝑗 = 3

0 0 𝑁𝑚2𝑁𝑚𝑗
𝑁𝑚3𝑁𝑚𝑗 0 0

0 0 0
0 0 𝑁𝑚3𝑁𝑚𝑗 ]

 
 
 
 
 
 
 
 
 
 

𝑟𝑑𝑟𝑑𝑧
𝐴𝑒

  (A  46) 

where 𝑗 = 2 indicates that the three columns have the same form as the left three 

columns next to them except that the shape function terms 𝑁𝑚1 are replaced by 𝑁𝑚2, and 

a similar convention for 𝑗 = 3. 
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[𝐾𝛺𝑚
𝑒 ] for the zeroth harmonics is different than Eqs. (A  45) and (A  46). When 

𝑚 = 0, [𝐾𝛺𝑚
𝑒 ] may be written as, 

[𝐾𝛺0
𝑒 ]

18×18
= [

[𝐾𝛺0𝑆]
9×9

[0]
9×9

[0]
9×9

[𝐾𝛺0𝐴]
9×9

]       (A  47) 

where 

[𝐾𝛺0𝑆
𝑒 ]
9×9

= 𝛺2𝜌 ∫

[
 
 
 
 
 
 
 
 
 
𝑁01𝑁0𝑗 0 0

0 0 0
0 0 0

𝑁02𝑁0𝑗 0 0

0 0 0 𝑗 = 2 𝑗 = 3

0 0 0
𝑁03𝑁0𝑗 0 0

0 0 0
0 0 0 ]

 
 
 
 
 
 
 
 
 

𝑟𝑑𝑟𝑑𝑧
𝐴𝑒

   (A  48) 

[𝐾𝛺0𝐴
𝑒 ]
9×9

= 𝛺2𝜌 ∫

[
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 𝑁01𝑁0𝑗
0 0 0
0 0 0 𝑗 = 2 𝑗 = 3

0 0 𝑁02𝑁0𝑗
0 0 0
0 0 0
0 0 𝑁03𝑁0𝑗 ]

 
 
 
 
 
 
 
 
 

𝑟𝑑𝑟𝑑𝑧
𝐴𝑒

   (A  49) 

where the convention for 𝑗 = 2,  3 is similar to Eq. (A  46). 

Regarding Eq. (13), the generalized bearing force acting on the circle of node 𝑃 

can be expressed as, 

(a) when the DOF, 𝑞𝑗, corresponds to 𝑈𝑛𝑟𝑆
𝑃  shown in Eq. (4) with 𝑛 = 0, 1, 2, …, 
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1

2 2

0 0,2, 1,3,

1

2 2

20,2, 1,3, 0

( 1) ( 1)

0,

( 1) ( 1)

( 1) ,

{

m mN N N
P P P P
j yy mrS yz mrS mrA

m m m

m mN N N
P P P

nzz mrS mrA zy mrS

m m m

Q K u K u u

if n is odd

K u u K u

if n is even

−

= = =

−

= = =

   
= − +  − +  −  

    

   
−  − +  − +   

    − 

  

  
(A  50) 

(b) when the DOF, jq , corresponds to 
P
nrAU  shown in Eq. (4) with 0,1,2n = , 

1

2 2
1

20,2, 1,3, 0

0,

( 1) ( 1)

( 1) ,

{
m mN N N

P P P P
nj zz mrS mrA zy mrS

m m m

if n is odd

Q K u u K u

if n is odd

−

−

= = =

   
= −  − +  − +   

    − 
   (A  51) 

The above equations are applicable even if the harmonics number, 𝑚, exceeds 2. 

In regard to the beam FE formulation of a spinning rotor under support motion in 

Section 2.8, the kinetic energy for a rigid disk 𝑇𝑑 and a shaft segment 𝑇𝑠 can be 

expressed as, 

𝑇𝑑 =
1

2
𝑚𝑑(𝑥̇𝐹 +𝜔𝐹𝑦𝑧𝐹 + 𝜔𝐹𝑦𝑧𝑅 − 𝜔𝐹𝑧𝑦𝐹 − 𝜔𝐹𝑧𝑦𝑅)

2
 

+
1

2
𝑚𝑑(𝑦̇𝐹 + 𝑦̇𝑅 − 𝜔𝐹𝑥𝑧𝐹 − 𝜔𝐹𝑥𝑧𝑅 + 𝜔𝐹𝑧𝑥𝐹 + 𝜔𝐹𝑧𝑥𝑅)

2 

+
1

2
𝑚𝑑(𝑧̇𝐹 + 𝑧̇𝑅 + 𝜔𝐹𝑥𝑦𝐹 +𝜔𝐹𝑥𝑦𝑅 − 𝜔𝐹𝑦𝑥𝐹 − 𝜔𝐹𝑦𝑥𝑅)

2
 

+
1

2
𝐼𝑝𝑑 [𝛼̇𝑅 − 𝛾̇𝑅𝛽𝑅 + 𝜔𝐹𝑥 (1 −

1

2
𝛽𝑅
2) (1 −

1

2
𝛾𝑅
2) + 𝜔𝐹𝑦 (1 −

1

2
𝛽𝑅
2) 𝛾𝑅 − 𝜔𝐹𝑧𝛽𝑅]

2

+
1

2
𝐼𝑡𝑑 ∙ 

[
𝛽̇𝑅 𝑐𝑜𝑠 𝛼𝑅 + 𝛾̇𝑅 𝑠𝑖𝑛 𝛼𝑅 (1 −

1

2
𝛽𝑅
2) + 𝜔𝐹𝑥 𝑠𝑖𝑛 𝛼𝑅 ⋅ 𝛽𝑅 (1 −

1

2
𝛾𝑅
2) − 𝜔𝐹𝑥 𝑐𝑜𝑠 𝛼𝑅 ⋅ 𝛾𝑅

+𝜔𝐹𝑦 𝑠𝑖𝑛 𝛼𝑅 ⋅ 𝛽𝑅 ⋅ 𝛾𝑅 + 𝜔𝐹𝑦 𝑐𝑜𝑠 𝛼𝑅 (1 −
1

2
𝛾𝑅
2) + 𝜔𝐹𝑧 𝑠𝑖𝑛 𝛼𝑅 (1 −

1

2
𝛽𝑅
2)

]

2
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+
1

2
𝐼𝑡𝑑

[
 
 
 −𝛽̇𝑅 𝑠𝑖𝑛 𝛼𝑅 + 𝛾̇𝑅 𝑐𝑜𝑠 𝛼𝑅 (1 −

1

2
𝛽𝑅
2) + 𝜔𝐹𝑥 𝑐𝑜𝑠 𝛼𝑅 ⋅ 𝛽𝑅 (1 −

1

2
𝛾𝑅
2) +

𝜔𝐹𝑥 𝑠𝑖𝑛 𝛼𝑅 ⋅ 𝛾𝑅 +

𝜔𝐹𝑦 𝑐𝑜𝑠 𝛼𝑅 ⋅ 𝛽𝑅 ⋅ 𝛾𝑅 − 𝜔𝐹𝑦 𝑠𝑖𝑛 𝛼𝑅 (1 −
1

2
𝛾𝑅
2) + 𝜔𝐹𝑧 𝑐𝑜𝑠 𝛼𝑅 (1 −

1

2
𝛽𝑅
2)]
 
 
 
2

  

(A  52) 

𝑇𝑠 =
1

2
∫ [𝜌𝑠𝐴𝑠(𝑦̇𝑆

2 + 𝑧̇𝑆
2) + 𝐼𝑡𝑠(𝛽̇𝑆

2 + 𝛾̇𝑆
2)]

𝐿

0

𝑑𝑥 

+𝜔𝐹𝑥∫ [𝜌𝑠𝐴𝑠(𝑦𝑆𝑧̇𝑆 − 𝑦̇𝑆𝑧𝑆) + 𝐼𝑡𝑠(𝛽𝑆𝛾̇𝑆 − 𝛽̇𝑆𝛾𝑆)]
𝐿

0

𝑑𝑥 

−(𝛺 + 𝜔𝐹𝑥)∫ 𝐼𝑝𝑠𝛽𝑆𝛾̇𝑆𝑑𝑥 +
1

2

𝐿

0

∫ 𝜌𝑠𝐴𝑠[𝜔𝐹𝑥
2 (𝑦𝑆

2 + 𝑧𝑆
2) + 𝜔𝐹𝑧

2 𝑦𝑆
2 + 𝜔𝐹𝑦

2 𝑧𝑆
2]

𝐿

0

𝑑𝑥 

+
1

2
∫ [𝐼𝑡𝑠𝜔𝐹𝑥

2 (𝛽𝑆
2 + 𝛾𝑆

2) + 𝐼𝑝𝑠(𝜔𝐹𝑧
2 𝛽𝑆

2 + 𝜔𝐹𝑦
2 𝛾𝑆

2)]
𝐿

0

𝑑𝑥 

+∫ 𝜌𝑠𝐴𝑠 [
𝑥𝑆(𝜔𝐹𝑧𝑦̇𝑆 − 𝜔𝐹𝑦𝑧̇𝑆 − 𝜔𝐹𝑥𝜔𝐹𝑦𝑦𝑆 − 𝜔𝐹𝑥𝜔𝐹𝑧𝑧𝑆) + 𝑇1𝑦̇𝑆

+𝑇2𝑧̇𝑆 + 𝑇3𝑦𝑆 + 𝑇4𝑧𝑆 − 𝜔𝐹𝑦𝜔𝐹𝑧𝛽𝑆𝛾𝑆
]

𝐿

0

𝑑𝑥 

+∫ [
𝐼𝑡𝑠(𝜔𝐹𝑧𝛾̇𝑆 + 𝜔𝐹𝑦𝛽̇𝑆 − 𝜔𝐹𝑥𝜔𝐹𝑦𝑧𝑆 + 𝜔𝐹𝑥𝜔𝐹𝑧𝑦𝑆 + 𝜔𝐹𝑦𝜔𝐹𝑧𝛽𝑆𝛾𝑆)

+𝐼𝑝𝑠(𝜔𝐹𝑥𝜔𝐹𝑦𝑧𝑆 + 𝛺𝜔𝐹𝑦𝛾𝑆 − 𝜔𝐹𝑥𝜔𝐹𝑧𝛽𝑆 − 𝛺𝜔𝐹𝑧𝛽𝑆 − 𝜔𝐹𝑦𝜔𝐹𝑧𝛽𝑆𝛾𝑆)
]

𝐿

0

𝑑𝑥 

+
1

2
∫ [𝜌𝑠𝐴𝑠𝑥𝑆𝑇5 + 𝜌𝑠𝐴𝑠𝑇6 + 𝜌𝑠𝐴𝑠𝑥𝑆

2(𝜔𝐹𝑦
2 +𝜔𝐹𝑧

2 ) + 𝐼𝑡𝑠(𝜔𝐹𝑦
2 +𝜔𝐹𝑧

2 )
𝐿

0

+ 𝐼𝑝𝑠(𝛺 + 𝜔𝐹𝑥)
2] 𝑑𝑥 − 

1

2
∫ [𝐼𝑝𝑠𝜔𝐹𝑥

2 (𝛽𝑆
2 + 𝛾𝑆

2) + 𝐼𝑝𝑠𝛺𝜔𝐹𝑥(𝛽𝑆
2 + 𝛾𝑆

2) + 𝐼𝑡𝑠(𝜔𝐹𝑧
2 𝛽𝑆

2 + 𝜔𝐹𝑦
2 𝛾𝑆

2)]
𝐿

0
𝑑𝑥 (A  53) 

where 

𝑇1 = 𝑦̇𝐹 + 𝜔𝐹𝑧𝑥𝐹 − 𝜔𝐹𝑥𝑧𝐹       (A  54) 

𝑇2 = 𝑧̇𝐹 + 𝜔𝐹𝑥𝑦𝐹 − 𝜔𝐹𝑦𝑥𝐹       (A  55) 

𝑇3 = 𝜔𝐹𝑥(𝑧̇𝐹 + 𝜔𝐹𝑥𝑦𝐹 − 𝜔𝐹𝑦𝑥𝐹) − 𝜔𝐹𝑧(𝑥̇𝐹 − 𝜔𝐹𝑧𝑦𝐹 + 𝜔𝐹𝑦𝑧𝐹)  (A  56) 
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𝑇4 = 𝜔𝐹𝑦(𝑥̇𝐹 − 𝜔𝐹𝑧𝑦𝐹 + 𝜔𝐹𝑦𝑧𝐹) − 𝜔𝐹𝑥(𝑦̇𝐹 + 𝜔𝐹𝑧𝑥𝐹 −𝜔𝐹𝑥𝑧𝐹)  (A  57) 

𝑇5 = 𝜔𝐹𝑧𝑦̇𝐹 − 𝜔𝐹𝑦𝑧̇𝐹 + 𝜔𝐹𝑦
2 𝑥𝐹 + 𝜔𝐹𝑧

2 𝑥𝐹 − 𝜔𝐹𝑥𝜔𝐹𝑦𝑦𝐹 − 𝜔𝐹𝑥𝜔𝐹𝑧𝑧𝐹 (A  58) 

𝑇6 = 𝑥̇𝐹
2 + 𝑦̇𝐹

2 + 𝑧̇𝐹
2 + 𝜔𝐹𝑥

2 (𝑦𝐹
2 + 𝑧𝐹

2) + 𝜔𝐹𝑦
2 (𝑥𝐹

2 + 𝑧𝐹
2) + 𝜔𝐹𝑧

2 (𝑥𝐹
2 + 𝑦𝐹

2)   

+2𝜔𝐹𝑥(𝑦𝐹𝑧̇𝐹 − 𝑦̇𝐹𝑧𝐹) + 2𝜔𝐹𝑦(𝑥̇𝐹𝑧𝐹 − 𝑥𝐹 𝑧̇𝐹) + 2𝜔𝐹𝑧(𝑥𝐹𝑦̇𝐹 − 𝑥̇𝐹𝑦𝐹) 

−2(𝜔𝐹𝑥𝜔𝐹𝑦𝑥𝐹𝑦𝐹 + 𝜔𝐹𝑥𝜔𝐹𝑧𝑥𝐹𝑧𝐹 + 𝜔𝐹𝑦𝜔𝐹𝑧𝑦𝐹𝑧𝐹)    (A  59) 

where 𝐿 represents the length of the shaft segment. 

 

 

 



 

 212 

  

APPENDIX B 

STATE-SPACE FORMULATION FOR ROTOR-BEARING-SUPPORT SYSTEMS 

 

The variables in the state-space model of the rotor and support are defined as 

follows. 

{𝑞𝑅} = [
{𝑈̇𝑅}

{𝑈𝑅}
]                     (B 1) 

[𝐴𝑅] = [
−[𝑀𝑅]

−1[𝐶𝑅] −[𝑀𝑅]
−1[𝐾𝑅]

[𝐼] [0]
]                 (B 2) 

[𝐵RB] = [
[𝑀𝑅]

−1[𝐵RB1]

[0]
]           (B 3) 

[𝐵RB1] =

[
 
 
 
 
 
 
 
 
 
 
 
 

⋮
1 1 0 0

⋮
0 0 1 1

⋮
1 0 0 0

⋮
0 0 1 0

⋮
0 1 0 0

⋮
0 0 0 1

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 

 corresponding to 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
⋮

𝑈0𝑟𝑆
𝐴1

⋮

𝑈0𝑟𝑆
𝐴2

⋮

𝑈1𝑟𝑆
𝐴1

⋮

𝑈1𝑟𝑆
𝐴2

⋮

𝑈1𝑟𝐴
𝐴1

⋮

𝑈1𝑟𝐴
𝐴2

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

                (B 4) 

{𝑓𝐵} = [

𝐹𝐵𝑌1
𝐹𝐵𝑍1
𝐹𝐵𝑌2
𝐹𝐵𝑍2

]                (B 5) 

[𝐵RU] = [
[𝑀𝑅]

−1[𝐵RU1]

[0]
]                   (B 6) 
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[𝐵RU1] =

[
 
 
 
 
 
 
⋮
1 1
⋮
1 0
⋮
0 1
⋮ ]

 
 
 
 
 
 

 corresponding to 

[
 
 
 
 
 
 
⋮

𝑈0𝑟𝑆
𝐵

⋮
𝑈1𝑟𝑆
𝐵

⋮
𝑈1𝑟𝐴
𝐵

⋮ ]
 
 
 
 
 
 

      (B 7) 

{𝑓𝑈} = [
𝐹𝑈𝑋
𝐵

𝐹𝑈𝑌
𝐵 ]              (B 8) 

[𝐶𝑅] = [[0] [𝐶R2]]               (B 9) 

[𝐶R2] =

[
 
 
 
 
 
 
 
 
 
 
 
 

⋮
1 1 0 0

⋮
0 0 1 1

⋮
1 0 0 0

⋮
0 0 1 0

⋮
0 1 0 0

⋮
0 0 0 1

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

 corresponding to 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
⋮

𝑈0𝑟𝑆
𝐴1

⋮

𝑈0𝑟𝑆
𝐴2

⋮

𝑈1𝑟𝑆
𝐴1

⋮

𝑈1𝑟𝑆
𝐴2

⋮

𝑈1𝑟𝐴
𝐴1

⋮

𝑈1𝑟𝐴
𝐴2

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

    (B 10) 

In the state-space support model, [𝐴𝑆], [𝐵𝑆] and [𝐶𝑆] are the minimal realization 

of the corresponding state-space matrices [𝐴̃𝑆], [𝐵̃𝑆] and [𝐶̃𝑆], which may be expressed 

as, 

[𝐴̃𝑆] =

[
 
 
 
[𝐴AiY1] [0] [0] [0]

[0] [𝐴AiZ1] [0] [0]

[0] [0] [𝐴AiY2] [0]

[0] [0] [0] [𝐴AiZ2]]
 
 
 

     (B 11) 
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[𝐴AiBj] =

[
 
 
 
 
[𝐴Y1Bj] [0] [0] [0]

[0] [𝐴Z1Bj] [0] [0]

[0] [0] [𝐴Y2Bj] [0]

[0] [0] [0] [𝐴Z2Bj]]
 
 
 
 

     (B 12) 

[𝐵̃𝑆] =

[
 
 
 
[𝐵AiY1] [0] [0] [0]

[0] [𝐵AiZ1] [0] [0]

[0] [0] [𝐵AiY2] [0]

[0] [0] [0] [𝐵AiZ2]]
 
 
 

     (B 13) 

[𝐵AiBj] =

[
 
 
 
 
[𝐵Y1Bj]

[𝐵Z1Bj]

[𝐵Y2Bj]

[𝐵Z2Bj]]
 
 
 
 

         (B 14) 

[𝐶̃𝑆] = [[𝐶AiY1] [𝐶AiZ1] [𝐶AiY2] [𝐶AiZ2]]      (B 15) 

[𝐶AiBj] =

[
 
 
 
 
[𝐶Y1Bj] [0] [0] [0]

[0] [𝐶Z1Bj] [0] [0]

[0] [0] [𝐶Y2Bj] [0]

[0] [0] [0] [𝐶Z2Bj]]
 
 
 
 

     (B 16) 

where the subscripts 𝐴, 𝐵 indicate 𝑌 or 𝑍, and 𝑖, 𝑗 =1 or 2. The entries of the state-space 

matrices shown in Eqs. (B 12), (B 14), and (B 16) are derived from the TFs 𝐺𝐴𝑖𝐵𝑘(𝑠) 

individually. 

Suppose that there are two bearings involved (can be extended to any number), 

then the damping and stiffness matrices of the bearings are defined as, 

[𝐶𝐵] = [

𝑐𝑌𝑌1 𝑐𝑌𝑍1
𝑐𝑍𝑌1 𝑐𝑍𝑍1

0 0
0 0

0 0
0 0

𝑐𝑌𝑌2 𝑐𝑌𝑍2
𝑐𝑍𝑌2 𝑐𝑍𝑍2

]       (B 17) 
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[𝐾𝐵] = [

𝑘𝑌𝑌1 𝑘𝑌𝑍1
𝑘𝑍𝑌1 𝑘𝑍𝑍1

0 0
0 0

0 0
0 0

𝑘𝑌𝑌2 𝑘𝑌𝑍2
𝑘𝑍𝑌2 𝑘𝑍𝑍2

]       (B 18) 

{𝑦𝑅} = [

𝑈𝑅𝑌1
𝑈𝑅𝑍1
𝑈𝑅𝑌2
𝑈𝑅𝑍2

]          (B 19) 

{𝑦𝑆} = [

𝑈𝑆𝑌1
𝑈𝑆𝑍1
𝑈𝑆𝑌2
𝑈𝑆𝑍2

]          (B 20) 

[𝐴𝑇] = [
[𝐼] + [𝐵RB][𝐶𝐵][𝐶𝑅] −[𝐵RB][𝐶𝐵][𝐶𝑆]

−[𝐵𝑆][𝐶𝐵][𝐶𝑅] [𝐼] + [𝐵𝑆][𝐶𝐵][𝐶𝑆]
]     (B 21) 

[𝐵𝑇] = [
[𝐴𝑅] − [𝐵RB][𝐾𝐵][𝐶𝑅] [𝐵RB][𝐾𝐵][𝐶𝑆]

[𝐵𝑆][𝐾𝐵][𝐶𝑅] [𝐴𝑆] − [𝐵𝑆][𝐾𝐵][𝐶𝑆]
]    (B 22) 

[𝐵UT] = [
[𝐵RU]

[0]
]         (B 23) 

{𝑞} = [
{𝑞𝑅}

{𝑞𝑆}
]          (B 24) 

where the state variable vector of the support structure {𝑞𝑆} accompanies the generation 

of the matrices [𝐴𝑇] and [𝐵𝑇] and has no physical meanings. 
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APPENDIX C 

PARAMETERS FOR FORCE-INTERFERENCE RELATIONS IN THE IMPACT 

MODEL 

 

By referring to Ref. [63], the parameter 𝑘 in the formula for the force-

interference relations can be expressed as, 

𝑘 =
4

3
⋅

𝑞𝑘

(𝛿1+𝛿2)√𝐴+𝐵
        (C 1) 

where 

𝛿1 =
1−𝜈1

2

𝐸1𝜋
         (C 2) 

𝛿2 =
1−𝜈2

2

𝐸2𝜋
         (C 3) 

𝜈 and 𝐸 denote the Poisson’s ratio and modulus of elasticity, respectively, and 

the subscripts 1 and 2 refer to the sphere and cylindrical cup, respectively. For contact 

between a sphere and a cylindrical cup, 𝐴 and 𝐵 can be obtained from, 

𝐴 =
1

2
(
1

𝑅1
−

1

𝑅2
)        (C 4) 

𝐵 =
1

2𝑅1
         (C 5) 

where 𝑅1 and 𝑅2 represent the radius of sphere and cylindrical cup, respectively. 𝑞𝑘 is 

dependent upon 𝐴 and 𝐵 and can be looked up in Ref. [63]. 

 


