
THE NITRILIMINE-ALKENE CYCLOADDITION MECHANISM AND  

PHAGE-DISPLAYED CYCLIC PEPTIDE LIBRARIES FOR DRUG DISCOVERY 

A Dissertation 

by 

XIAOSHAN WANG 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee,  Wenshe Liu 
Committee Members, Tadhg Begley 

Paul Lindahl 
Frank Raushel 

 Head of Department, Simon North 

May 2018 

Major Subject: Chemistry 

Copyright 2018 Xiaoshan Wang



ii 

ABSTRACT 

This study is composed of two parts. In the first part, we discussed nitrilimine-

alkene cycloaddition for protein labeling. The mechanism of this nitrilimine-alkene 

cycloaddition was proposed, and thereby the best experimental condition for this protein 

labeling approach was investigated. The transient formation of nitrilimine in aqueous 

conditions is greatly influenced by pH and chloride. In basic conditions (pH 10) with no 

chloride, a diarylnitrilimine precursor readily ionizes to form diarylnitrilimine that reacts 

almost instantly with an acrylamidecontaining protein and fluorescently labels it.  

In the second part, a novel method for the synthesis of phage-displayed cyclic 

peptide libraries is presented. Cyclic peptide drugs are appealing in the drug discovery 

research area due to their unique advantages including high affinity, high specificity, low 

toxicity, and high cellular and serum stability. In order to identify cyclic peptides as 

therapeutic agents, during my graduate study I have developed a phage display-based 

methodology that integrates the genetic noncanonical amino acid (ncAA) mutagenesis 

technique for the synthesis of novel phage-displayed cyclic peptides through simultaneous 

1,4-addition between a cysteine thiol group and acrylamide moiety in Nε-acryloyl-lysine 

(AcrK), a ncAA. Both cysteine and AcrK are genetically coded. The success of using a 

cysteine and an AcrK to cyclic a peptide in a model protein and phages was validated by 

various approaches. In order to afford a library, a phage-displayed cyclic peptide library 

was constructed by inserting a consecutive but sequence-randomized 6-mer peptide 
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flanked by an amino side cysteine and a carboxyl side AcrK. Panning of the synthesized 

phage-displayed cyclic peptide library was performed against two target proteins that are 

tobacco etch virus (TEV) protease and histone deacetylase 8 (HDAC8). A lot of high-

affinity phage clones were isolated and collected. DNA sequencing of these selected clones 

led to the identification of several peptides that potentially inhibit TEV protease and 

HDAC8. To confirm their potencies as inhibitors, abundant peptides and their fluorophore-

conjugated derivatives were synthesized through solid-phase peptide synthesis (SPPS). 

Measurements of fluorescence polarization change and IC50 value of these peptides when 

they bound to TEV protease and HDAC8 were performed. 

Overall, we have mechanistically characterized the nitrilimine-alkene 

cycloaddition reaction and developed a novel approach for the synthesis of phage-

displayed cyclic peptide libraries. The selection of displayed peptides against TEV protease 

and HDAC8 has resulted multiple peptides that display high potencies against these two 

enzymes. 
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NOMENCLATURE 

AcrK Nε-acryloyl-L-lysine 

AMC 7-Amino-4-methylcoumarin 

CrtK Nε-crotonyl-L-lysine 

FAM 5-Carboxyfluorescein 

FP Fluorescence polarization 

HATs Histone acetyltransferases 

HDACs Histone deacetylases 

NCAA Non-canonical amino acids 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction  

SPPS Solid phase peptide synthesis 

TEV Tobacco etch virus 

Ni-NTA Nickel nitrilotriacetic acid 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

sfGFP Superfolder green fluorescent protein 

SAHA Suberoylanilide hydroxamic acid 

Tris Tris(hydroxymethyl)aminomethane 

TSA Trichostatin A 

WT Wild type 
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CHAPTER I 

INTRODUCTION 

Cyclic Peptide 

Small molecules and biologics are two categories of currently widely used drugs. 

Small molecule drugs are defined as small size drugs with molecular weights less than 500 

Da, while biologics have molecular weights larger than 5000 Da. Compared to large 

biologics such as insulin and antibodies, small molecules have better cell permeability and 

metabolic stability. Small molecules are more suitable for oral delivery while protein 

therapeutics require injection or intranasal delivery. However, because of less structure 

complexity, small molecules don’t perform well in target selectivity as protein therapeutics 

and they may have more side-effects.1 Thus, there is a growing interest in the discovery of 

a new kind of drug.  

With a medium molecular weight between small molecules and large biologics (500 

Da - 5000 Da), peptide-based molecules are recognized as great success in novel 

therapeutics with high selectivity and affinity. It combines favorable properties of small 

molecule drugs such as good bioavailability and stability, and advantages of biologics such 

as high specificity. Moreover, compared to small molecules drugs, peptide-based 

molecules have lower toxicity and low accumulation in tissues due to amino-acid based 

structure. Peptide-based molecules began to emerge in mid-20th century. After decades of 

research and development, more than 7000 peptides have been identified, more than 500 
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peptide-based drugs are in preclinical development, and around 140 peptide-based drugs 

have been applied in clinical trials.2 

Among all peptides, cyclic peptide is a special category of polypeptide with ring 

structure. Compared to traditional linear counterparts, cyclic peptides have more 

advantages in stability because macrocyclic structures is helpful in forming intramolecular 

hydrogen bonds, shielding polar atoms from solvent, and thereby have limited 

conformational flexibility.3 The rigidity of structure also decreases the entropy and allows 

high binding affinity. In addition, due to lack of cleavable terminal amino group and 

carboxyl group, amide-linked cyclization provides protection against proteolytic 

degradation from exo- and endo-peptideases.4 Because of these dominant advantages, more 

and more cyclic peptide drugs emerge in therapeutic market. Currently, more than 40 cyclic 

peptide therapeutics are in clinical trials.5 

There are several common kinds of macrocyclization method, head-to-tail, side-

chain-to-tail and side-chain-to-side-chain reactions. Head-to-tail cyclization formed amide 

bond through lactonization. Side-chain-to-side-chain cyclization includes reactions 

between sulfhydryl groups of cysteines, reactions between an amino group of lysine and a 

carboxyl group of aspartic acid or glutamic acid. It may also occur between canonical 

amino acid and non-canonical amino acid or between non-canonical amino acids. Recently 

Dr. Liu and co-workers has demonstrated the success of 1,4-addition of Nε-acryloyl-l-

lysine, a non-canonical amino acid, with thiol nucleophiles in protein labeling.6 This study 

expands the chemical diversity of peptide cyclization approach.  
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Phage Display 

The phage display system, as first described by George Smith in 1985 7, is one of 

the most powerful methodologies in drug discovery. The phage display technology is 

designed to express foreign peptides as fusion proteins on the surface of filamentous 

phages. In general, a phage library with randomized amino acids at one or more positions 

is capable of having large diversity, containing as many as 1013 different variants. Phage 

selection is also rapid, convenient and efficient in producing large variants and amounts of 

peptides or proteins. The selection and isolation of specific peptides with high affinity can 

be achieved through biopanning of the very diverse phage libraries against immobilized 

targets. Usually, the enrichment of selected phages can be generated by passage and 

expression through an E. coli cell host. To enable high-affinity binding with a specific 

disease-related target, iterative rounds of the selection are performed. Finally, the selected 

phages are subjected to DNA sequencing to determine the peptide sequences. Further study 

of protein-ligand interactions potentially leads to pharmaceutical applications.  

In the phage display system, the best-studied filamentous bacteriophage is F pilus-

specific phage, also known as f1, fd and M13 (Figure 1).8 The most commonly used 

approach is to use a filamentous phage to express a peptide fused to a major coat protein 

(pVIII) or minor coat protein (pIII). The pVIII display system has a high valency (about 

2700 copies per virion) and only 10% can be utilized as fusion peptides.9 In comparison, 

the pIII display system has lower valency than the pVIII system (less than 5 copies per 

virion). A high-valency system typically results in a selection of low affinity ligands, while 

lower valency ensures a selection of high affinity ligands. Moreover, during the expression 



  

4 

 

 

step, pIII can be knocked out while pVIII cannot. Therefore, to guarantee the high-affinity 

selection, most peptides and proteins are displayed with pIII proteins. In genetic 

engineering of phage libraries, phagemid and phages are two mainly used vectors, 

containing replication origins, gene 3 and antibiotic resistance gene. Compared to phages, 

phagemids are more commonly used for several advantages, such as smaller genomes, 

more restriction enzyme recognition sites for gene engineering, higher efficiency and easier 

control in DNA level.10 However, phagemids cannot produce progeny phage particles by 

themselves. For the conversion of phagemids to phage particles, helper phages such as 

M13K07 and VSM13 are required to provide packaging of phagemid DNAs. 

Life circles of filamentous phages include bacterial infection and replication. 

Unlike other DNA phages which inject their DNA into the host cells, filamentous phages 

inject the entire phage particles. For a host cell like Escherichia coli., F pilus enables the 

binding of pIII protein, and membrane protein TolA, TolQ and TolR are receptors. After 

entry into the host cell, the ssDNA of M13 enables the replication and amplification.  
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Figure 1 Structure of M13 phage. 

 

Cyclization of Side Chains in Phage Display 

In recent years, there is much current interest in expanding cyclization methods 

through side chains in phage display system. Although in natural, head-to-tail lactonization 

is a common way to generate macrocyclic peptides, it is not favorable by phage-displayed 

cyclic peptides due to the lack of free C-terminus on phages.7 Two strategies have been 

reported to generate phage-displayed macrocyclic libraries, one through internal side-chain 

reactions and the other through chemical linkers. For the former one, the most widely used 

approach is through a disulfide bond between cysteines of a fusion peptide.  Ghosh and co-

workers demonstrated a method of constructing a 6-mer cyclic library Cys-(Xxx)6-Cys 

(Xxx represents randomized amino acids) and screened this library against protein kinase 

A (Figure 2A).11  Results show that cyclo(CTFRVFGC) is the most abundant sequence 
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with IC50 = 57 ± 3 μM. However, this disulfide bond is not stable in reducing environment, 

and thereby some organic linkers are designed to connect two cysteines.  

To make cyclic phage-displayed libraries through ligation of chemical linkers, 

Szostak and co-workers recently described a method to generate a cyclic phage library 

containing 10 randomized amino acids through the reaction between two cysteines and an 

organic linker dibromoxylene(Figure 2B).12 Winter and co-workers also described a phage 

strategy to generate a bicyclic peptide library through an organic linker tris-

(bromomethyl)benzene which reacts with three cysteines (Figure 2C).13 The peptide 

sequence of the phage library they designed is Cys-(Xxx)6-Cys-(Xxx)6-Cys. After the 

cyclization with tris-(bromomethyl)benzene, the selected bicyclic peptide has ki = 1.5 nM 

towards human plasma kallikrein. To expand the chemical diversity of cyclization, more 

non-canonical amino acids are incorporated into the peptide. Schultz and co-workers have 

already incorporated several non-canonical amino acids into the phage display system14, 

showing that the incorporation of some certain non-canonical amino acids could 

dramatically improve the ligand binding affinity towards specific targets.15 Besides bromo-

cysteine reactions, Derda and co-workers described an efficient way of cyclization using 

dichloro-oxime (DCO) derivatives as a cyclization linker.16 The reaction is quite clean and 

highly chemo- and regio-selective.  
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Figure 2 Cyclization methods to construct cyclic phage library. (A) Cyclization through a 
disulfide bond; (B) Cyclization through an organic linker dibromoxylene between two 
cysteines; (C) Cyclization through an organic linker tris-(bromomethyl)benzene. 
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Genetic Incorporation of Non-Canonical Amino Acids 

There are twenty canonical amino acids found in natural. To expand the chemical 

diversity of amino acids, peptides and proteins, efforts have been made in site-specific 

incorporation of non-canonical amino acids (NCAAs) both in vitro and in vivo. Early 

efforts are focused on canonical machinery to suppress sense codon and incorporate 

NCAAs which are similar to canonical amino acids. This method has been limited to the 

strict similarity between incorporated NCAAs and canonical amino acids, as well as the 

competition from canonical amino acids. Nonsense codon suppression including stop 

codon (amber codon UAG, opal codon UGA and ochre codon UAA) suppression and 

quadruplet codon suppression means reading the nonsense codon as the sense codon to 

insert NCAAs via an orthogonal aminoacyl-tRNA synthetase (AARS)-tRNA pairs. 

Compared to sense codon suppression, this strategy has greater flexibility and has been 

applied in incorporation of more than 150 different NCAAs. Pioneering efforts made by 

Schultz and co-workers utilized a MjTyrRS-𝑡𝑅𝑁𝐴  pair and allowed the site-specific 

insertion of NCAAs at amber codon and bulk expression of proteins in vivo via host cell's 

own translational machinery.17   

The tRNA of the 22nd proteinogenic amino acid, pyrrolysine, is also chosen for its 

success in reassign UAG codon to encode a NCAA. In 2002, pyrrolysine was firstly 

discovered in Methanosarcina barkeri and a specific aminoacyl-tRNA synthetase, 

Pyrrolysyl-tRNA synthetase (PylRS), was reported to encode pyrrolysine with the amber 

codon18,19 . Due to its high substrate side chain promiscuity and low selectivity toward α-

amine and the tRNA anti-codon, PylRS and its orthogonal suppressor tRNAPyl have been 
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harnessed for the genetic code expansion.19 Hereby more NCAAs with hard-to-introduced 

functional group can be incorporated to the recombinant proteins by PylRS-tRNAPyl pairs 

or their mutants. As achieved by Liu and co-workers, the mutants of PylRS and their 

cognitive tRNA pairs have been successfully used in the incorporation of diverse lysine 

and phenylalanine derivatives.6  This translation process can be described as Figure 3. 

Under the catalysis of PylRS or its mutant, Pyl or other corresponding NCAA is transferred 

to the amber codon tRNA. The aminoacylated tRNA is delivered to the A site of the 

ribosome by the elongation factor, and further to the P site to couple its uncharged amino 

acid. Translation will not stop until the ribosome encounters a “real” stop codon.  

  



  

10 

 

 

 

Figure 3 Machinery of NCAA incorporation using a pyrrolysine model 
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Biorthogonal Reactions in Protein Labeling 

Selective labeling with chemical probes has emerged as an indispensable tool to 

investigate structure, function and internal or external interactions of proteins. Success of 

protein labeling requires biorthogonal reactions only with target functional group at a 

defined site. Reaction conditions should also be mild and have little or no toxicity to living 

cells. Additionally, reaction conditions such as aqueous solvent, neutral pH and proper 

temperature are also needed. Moreover, the incorporation of NCAAs bearing diverse 

biorthogonal functionalities allows site-specific labeling of recombinant proteins in vitro 

and in vivo. 

 In recent decades, researchers have made tremendous progress on the discovery of 

biorthogonal reactions with chemo- and regio-selectivity. Amongst these reactions, click 

reactions have raised much focus due to their high selectivity, reliability and the ability to 

meet criterion of protein labeling as mentioned earlier. Click reactions include 1,3-dipolar 

cycloaddtion, Staudinger reaction, copper(I)-catalyzed alkyne-azide cycloaddition 

(CuAAC), Diels–Alder cycloaddition, strain-promoted azide alkyne cycloaddition 

(SPAAC) and so on.  

Amongst these click reactions, aizde derivatives play very important roles due to 

their unique advantages including small size, inert nature and high selectivity when 

reacting with phosphines, alkynes and alkenes. General ligations with azides include 

Staudinger ligation, copper catalyzed azide-alkyne cycloaddition (CuAAC) and copper-

free azide-alkyne cycloaddition (Figure 4).20 
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Figure 4 General ligation of azide derivatives  
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Staudinger ligation between azides and triarylphosphines with a ester group to yield 

amines, reported by Bertozzi and coworkers in 2004, is the first bioconjugation 

methodology applied in living system.21 Later, the traceless Staudinger ligation was 

developed, where phosphine oxide is excised during the formation of amide bond. 

However, the application of Staudinger ligation as a biorthogonal reaction is limited for  

the low reaction rate (~ 10-3 M-1 s-1) and phosphine reagents’ susceptibility to oxidation. 22 

Huisgen’s pioneering efforts in 1,3-dipolar cycloaddition reaction, where azides act 

as 1,3-dipoles and react with alkyes to yield triazoles under the catalysis of copper(I) salts, 

has had a profound impact in protein labeling. This CuAAC reaction is at least 25 times 

faster than the Staudinger ligation.22 However, the toxicity of copper which may be harmful 

to living systems is still a big problem. Thereby reactions without catalysis from copper 

have raised more focus. These reactions are the so-called “Cu-free click reactions”. One 

example is strain-promoted alkyne-azide cycloaddition (SPAAC) which can avoid copper 

catalysis by introducing ring strain into the alkyne.23  

Nitrile imine is also an essence synthetic intermediate of 1,3-dipolar cycloadditions 

leading to pyrazolines, pyrazoles and other organic compounds.24 Non-stabilized nitrile 

imines have six different structures: 1,3-dipolar, allenic, propargylic, reverse 1,3-dipolar, 

1,3-diradical and carbonic, as shown in Figure 5.25 Sibi and co-workers firstly reported the 

highly regio- and enantio-selective  asymmetric 1,3-diplar cycloaddition of nitrile imines 

to olefins in 2005.26  
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Figure 5 Fundamental structures of nitrile imine  
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In recent years researchers have reported a variety of methods to generate nitrile 

imine from different precursors, including 1) heating or photolysis of tetrazoles, 2) catalytic 

oxidation of aldehyde, 3) based-induced dehydrohalogenation of hydrazonoyl chlorides 

(Figure 6).27 These generated nitrile imines are able to react with a number of 

dipolarophiles, leading to various cycloaddition products.  

 

Figure 6 Generations of nitrile imine and related reactions. 
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Fluorescence Protein Labeling Strategy and Fluorogenic Probes 

Fluorescence microscopy and fluorescent labeling are powerful tools for biological 

research. Fluorescent labeling includes direct labeling with fluorophore probes and 

labeling with fluorescence turn-on probes. For the former one, an ideal fluorophore should 

have small size, intense brightness, good spectral properties and long-term photostability.28  

For the latter one, fluorogenic reactions lead to fluorescent products from two non-

fluorescent reagents. The turn-on fluorescence comes from the new fluorophore scaffold 

synthesized through cycloaddition of starting materials, or from activation of fluorescence 

resonant energy transfer (FRET) from an energy-transfer agent.29 Reactions with the 

dienophile and removal of a functional group which quenches fluorescence of a 

fluorophore may also increase inherent fluorescence signal from original probes. These 

activatable fluorescent turn-on probes are highly desirable for the rapid imaging of 

biomolecules, low background signal and simple labeling step without removal of 

unreacted reagents.29  

 However, because of the difficulty of design, only a few probes have been reported 

in recent years. Lin and co-workers firstly discovered a photo-induced tetrazole-alkene 

cycloaddition and termed it as “photoclick reaction” in 2008 (Figure 7).30  Photoclick 

reaction is biocompatible, easier to trigger, more convenient to monitor, as well as highly 

photoactivable.  Additionally, it provides spatial and temporal control over the labeling 

process. 31 Fluorescence from the photo-induced cycloaddition product was observed after 

irradiation of UV lamp at 302 nm. The fast reaction requires reactive intermediate species 

triggered by light, and can be finished in 1 min. Moreover, the facile products from facile 
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alkenes and alkynes also show the similar efficiency. In addition, when reacting with 

tetrazole, cyclic alkenes tend to have higher yields than acyclic counterpart.32 Reaction has 

been reported in the labeling of protein or peptide in vitro and in vivo.33 Recently, Guo and 

co-workers demonstrated a similar fluorogenic probe based on styrene–tetrazine 

cycloaddition for in live cell labeling.34  

 

 

 

Figure 7 “Photoclick” 1,3-dipolar cycloaddition reaction 
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Histone Deacetylases  

Introduction 

Acetylation of histones is a very important posttranslational modification (PTM) 

process in various organisms. The highly reversible acetylation process occurs at lysine 

residues on histones, especially amino-terminal tail of histones. Under catalysis of histone 

acetyltransferases (HATs), lysine residues on histones become acetylated. Histone 

acetylation affects chromatin structure and gene expression, allowing the acetylated 

chromatin more accessible to interacting proteins.35 As opposed to acetylation, histone 

deacetylation catalyzed by histone deacetylases (HDACs) removes of the acetyl group 

from an ε-N-acetyl lysine on a histone. To date, 18 HDACs have been identified. Based on 

their phylogenetic similarity, human HDACs can be classified into four subclasses:  Class 

I (HDAC1, HDAC2, HDAC3, and HDAC8), Class II (HDAC4, HDAC5, HDAC6, 

HDAC7, HDAC9, and HDAC10), Class III (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, 

SIRT6, and SIRT7), and Class IV (HDAC11). Unlike Class I, II and IV which contains 

metal ion catalysis cofactor, Class III HDACs require NAD+ as a cofactor for deacetylation. 

Histone deacetylation has impact on chromatin structure by making the DNA wrapped by 

histone more tightly, as well as transcription, protein-protein interaction and dynamics of 

histone crosstalk. Thus, abnormal HDACs or aberrant deacetylation process contributes to 

many human diseases, including cancer and diverse disorders.  

Discovery of HDAC inhibitors is important to the cellular regulation and anti-

cancer therapeutic development. To date, FDA has approved four HDAC inhibitor drugs 

for anti-cancer purpose. At the same time, five HDAC inhibitor drugs are in clinical trial 

process. The first HDAC inhibitor drug Vorinostat, also known as suberoylanilide 
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hydroxamic acid (SAHA, Figure 8), is approved by FDA for the treatment of cutaneous 

T-cell lymphoma (CTCL) in 2006.36 The hydroxamic acid group can chelate the active-site 

zinc in HDAC and inhibit binding from other substrates. Later, Romidepsin (FK228, 

Figure 8) was approved in 2009 for its striking treatment in peripheral T-cell lymphoma 

(PTCL). It is notable that Romidepsin is a cyclicpeptide drug isolated from 

Chrossmobacterium violaceum. The intramolecular disulfide bond of Rommidepsi can be 

reduced in cells, yielding a thiol side chain that can chelate the active-site zinc in HDAC.37 

Another example is Trichostatin A (TSA, Figure 8) , a widely used HDAC inhibitor with 

30-fold stronger inhibitory activity than SAHA.38, 39 However, TSA has not been applied 

to clinical trial yet. For most of these FDA-approved drugs, a big problem is nonselectivity 

towards most HDACs, which may inhibit non-target HDAC or other non-target proteins, 

leading to side effects including cardiac arrhythmia and thrombocytopenia.40,41  
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Figure 8  Commonly used HDAC8 inhibitors 
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HDAC8 structure 

Among all HDAC homologues, HDAC8 is the best studied in both mechanism and 

structure. HDAC8 is a zinc-dependent class I deacetylase, containing 377 amino acids. It 

has been demonstrated that the overexpression of HDAC8 affects cAMP responsive 

element binding protein (CREB) phosphorylation in cells. The overexpression is also 

reported in multiple cancer tissues, including colon, breast, lung and pancreas. Substrates 

of HDAC8 include not only acetylated histones (H2A/H2B, H3 and H4 histones), but also 

some non-histone substrates. Examples of histone substrates include acetylated lysines at 

position 14 (Kac14), 16 (Kac16)  and 20 (Kac20) on histone H4 or its derivatives.42 Besides 

histone substrates, some acetylated non-histone peptides can also be catalyzed by HDAC8, 

such as arginine-Kac129 in Estrogen-Related Receptor α (ERRα), RHKK in p53, 

RSKacFE in inv(16) fusion protein, and transcription factor CREB. It has been 

demonstrated that peptides with a N-terminal arginine at the -1 position to the acetyllysine 

or a C-terminal phenylalanine at the +1 position are potential substrates of HDAC8.42 More 

non-histone substrates are being studied for specificity of deacetylation sites.  

HDAC8 is the second smallest enzyme in HDAC family. Unlike other HDACs 

catalytically active as large complexes, HDAC8 functions as a small complex and is 

therefore chosen as a good target for the study of deacetylase. 43 In general, the structure 

of HDAC8 is a head-to-head dimer, with a zinc ion and two potassium ions in each 

monomer part.44 The zinc ion is pentacoordinated by Asp178, His180, Asp267 and one or 

two water molecules.44 The monomer HDAC8 consists of eight parallel β-sheets 

surrounded by eleven α-helixes. In the active site, there is a long hydrophobic tunnel 

leading to a narrow pocket. The tunnel and the surrounding nine loops have been 
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demonstrated to accommodate the binding of acetylated substrates.  Crystal structure of 

HDAC8 and Trichostatin A (TSA), a well-studied HDAC inhibitor, illustrates how TSA 

interact with HDAC via the binding of the  tunnel and three nearby loops (Figure 9). 36 

 

 

 

 

Figure 9  Surface of HDAC8 with two TSA molecules near active site. PDB ID:1t64. The 
first TSA molecule binds to the active site inside the tunnel. The second TSA molecule 
binds to the cavity nearby.45  
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Catalytic Mechanism of HDAC8 

 Figure 10 illustrates a proposed mechanism of HDAC8. As mentioned previously, 

the Zn2+ ion has a 5-coordinate square pyramidal geometry, including two asparagines, a 

histidine and two water molecules. During the catalysis process, one of these two water 

molecules is replaced by the acetyl lysine substrate. His143 functions as a base and accepts 

a proton from the zinc-chelated water molecule. The rate-determining step is where the 

deprotonated water molecule nucleophilically attacks the chelated carbonyl oxygen from 

acetylated lysine substrates. A hydrogen bond is generated between Tyr306 and the 

carbonyl group, forming a tetrahedron oxyanion intermediate. Later, the deacetylated 

lysine product leaves after getting a proton from the protonated base. Finally, the acetate 

product leaves after replaced by a water molecule.36  To prove the key role of His143 and 

Tyr306, Christianson and co-workers mutated His143 to arginine. Additionally, Marco and 

coworkers also mutated Tyr306 to phenylalanine, respectively.46,47 Results show that both 

of the mutated enzymes are inactive to their substrates.  

 Due to the two monovalent cation (MVC) sites in HDAC8, the HDAC8 catalytic 

activity can be modulated by the concentration of cations such as  K+ and Na+. Fierke and 

co-workers investigated the two MVCs and demonstrated that the first MVC near the active 

site enhances HDAC8 catalysis, while the second MVC, which is 20 Å from the active site, 

decreases catalytic activity.48 In general, addition of low concentration of  K+ increases the 

catalysis activity (K1/2, act = 14 mM), while the high concentration decreases the catalysis 

activity (K1/2, int = 130 mM). 36 Additionally, other divalent metal ions can also enhance the 

HDAC8 activity, following the order Co2+ > Fe2+ > Zn2+ > Ni2+.49   
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Figure 10  Proposed mechanism for HDAC catalysis. 
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CHAPTER II 

THE NITRILIMINE-ALKENE CYCLOADDITION IS AN ULTRA RAPID 

CLICK REACTION* 

 

Introduction 

A recent mining of organic reactions for click labelling of proteins has 

revamped tetrazine-based inverse electron-demand Diels-Alder cycloaddition50–54 and 

cyclooctyne-based 1,3-dipolar cycloaddition.55–58 Unlike the Cu+-catalysed click 

reaction,59–61 both tetrazine- and cyclooctyne-involved cycloadditions undergo 

spontaneously in aqueous conditions, avoiding side reactions potentially induced by a 

transition metal catalyst.62 A noteworthy advantage of tetrazine-based click reaction is 

its fast reaction kinetics. A hitherto fastest reported tetrazine-transcyclooctene reaction 

has a second-order rate constant as 2.8×106 M-1s-1.63 Cyclooctyne was originally 

explored for labeling proteins with azide and recently extended to react with nitrone 

and tetrazine functionalities for click labeling of proteins.56,64,65 Cyclooctyne reacts 

rapidly with tetrazine.66 Derivatives of cyclooctyne that react with azide and nitrone 

with a second-order rate constant higher than 50 M-1s-1 have also been developed.67–69 

Another copper-free click reaction that has been recently explored for protein labeling 

but not yet highly appreciated is the nitrilimine-alkene cycloaddition.70 On contrary to 

tetrazine and cyclooctyne that stably exist in aqueous conditions, nitrilimine reacts 

*Reprinted (adapted) with permission from “The nitrilimine–alkene cycloaddition is 
an ultra rapid click reaction” by Wang, X. S., Lee, Y. -J., and Liu, W. R. Chem. 
Commun 2014, 50, 3176-3179. Copyright 2014 The Royal Society of Chemistry.  
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with water, therefore needs to be formed transiently.6 There are two general methods to 

transiently form nitrilimine in aqueous conditions. One is the photolysis of tetrazole and 

the other is the ionization of hydrozonoyl halide.70,71 Lin and coworkers have extended the 

first approach for photoclick labeling of proteins that contain the alkene functionality in 

living cells.72–74 The second approach has been recently explored to undergo fluorescent 

turn-on labeling of proteins incorporated with norbornene and acrylamide moieties.6,75,76 

Reaction kinetics of the nitrilimine-alkene cycloaddition that involved both tetrazole and 

hydrozonoyl chloride as nitrilimine precursors were previously characterized.6,73 All these 

characterizations were performed in a PBS-acetonitrile (1:1) buffer. The high concentration 

of chloride (140 mM) in PBS potentially offsets the transient formation of nitrilimine and 

consequently curbs its reaction with alkene. Here we report a comprehensive study of 

effects of pH and chloride concentrations on the nitrilimine-alkene cycloaddition reaction 

kinetics and demonstrate the nitrilimine-alkene cycloaddition is an ultra rapid click reaction 

for protein labeling at a slightly basic condition (pH 10) with no chloride.  
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Experimental Methods 

1. Kinetic Analysis 

Acrylamide was added to a solution of hydrazonoyl chloride (1 in Figure 11, 5 μM, 

2mL) in 1:1 acetonitrile-50 mM phosphate buffer at different pH and varying 

concentrations of chloride. The florescence increases at 480 nm due to the formation of 

pyrazoline product was monitored by PTI QM-40 fluorescent spectrophotometer with 320 

nm excitation. 

 

 

 

 

 

 

 

 

Figure 11 The nitrilimine-alkene reaction in the presence of chloride 
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2. Equation Derivation 

As indicted by Figure 11, when [H+] >> KH and [Cl+] >> KCl, the formation rates of 6 

and 7 and the consumption rate of 1 follow a relation defined by 
𝒅[𝟏]

𝒅𝒕
=  

𝒅[𝟔]

𝒅𝒕
+ 

𝒅[𝟕]

𝒅𝒕
, in 

which 
𝒅[𝟏]

𝒅𝒕
= 𝒌𝒄 ∙ [𝟓] ∙ [𝟒], 

𝒅[𝟕]

𝒅𝒕
= 𝒌𝒉 ∙ [𝟒] + 𝒌𝒉 ∙ [𝟑], [𝟑] = [𝟏] ∙

𝑲𝑪𝒍

[𝑪𝒍 ]
 and [𝟒] = [𝟏] ∙

𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
. Therefore the consumption rate of 1 can be defined as 

𝒅[𝟏]

𝒅𝒕
= 𝒌𝒄 ∙  

𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
∙

[𝟓] + 𝒌𝒉 ∙  
𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
+ 𝒌𝒉 ∙  

𝑲𝑪𝒍

[𝑪𝒍 ]
∙ [𝟏]  that can be integrated to give [𝟏] =  [𝟏]𝟎 ∙

𝒆
𝒌𝒄∙

𝑲𝑯∙𝑲𝑪𝒍
𝑯 ∙[𝑪𝒍 ]

∙[𝟓] 𝒌𝒉∙
𝑲𝑯∙𝑲𝑪𝒍

𝑯 ∙[𝑪𝒍 ]
𝒌𝒉 ∙

𝑲𝑪𝒍
[𝑪𝒍 ]

𝒕
. At anytime, [𝟔] + [𝟕] =  [𝟏]𝟎 − [𝟏]  and 

[𝟕]

[𝟔]
=

𝒌𝒉∙[𝟒] 𝒌
𝒉

∙[𝟑]

𝒌𝒄∙[𝟓]∙[𝟒]
=  

𝒌𝒉∙[𝟒] 𝒌
𝒉

∙ 
𝑯

𝑲𝑯
 ∙ [𝟒]

𝒌𝒄∙[𝟓]∙[𝟒]
=

𝒌𝒉 𝒌
𝒉

∙ 
𝑯

𝑲𝑯
 

𝒌𝒄∙[𝟓]
 that can be simplified to give [𝟔] =

𝒌𝒄∙[𝟓]

𝒌𝒄∙[𝟓] 𝒌𝒉 𝒌𝒉 ∙
𝑯

𝑲
𝑯

∙ [𝟏]𝟎 ∙ (𝟏 − 𝒆
𝒌𝒄∙

𝑲𝑯∙𝑲𝑪𝒍
𝑯 ∙[𝑪𝒍 ]

∙[𝟓] 𝒌𝒉∙
𝑲𝑯∙𝑲𝑪𝒍

𝑯 ∙[𝑪𝒍 ]
𝒌𝒉 ∙

𝑲𝑪𝒍
[𝑪𝒍 ]

𝒕
). 

 

3.  Protein Expression and Characterization 

DNA sequence of sfGFP2TAG 

Atgtagaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcc

gtggagagggtgaaggtgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgttccgtggcca

acacttgtcactactctgacctatggtgttcaatgcttttcccgttatccggatcacatgaaacggcatgactttttcaagagtgccat

gcccgaaggttatgtacaggaacgcactatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggt

gatacccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttggacacaaactcgagtacaactttaa

ctcacacaatgtatacatcacggcagacaaacaaaagaatggaatcaaagctaacttcaaaattcgccacaacgttgaagatggt

tccgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtcgaca
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caatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtccttcttgagtttgtaactgctgctgggattacacatggc

atggatgagctctacaaaggatcccatcaccatcaccatcactaa (The mutated site is highlighted in red) 

sfGFPS2Acrk Expression and Purification 

The pEVOL-PylT-PrKRS was constructed as previously reported.6 Plasmid 

pEVOL-PylT-PrKRS plasmid and pET-sfGFPS2TAG were cotransformed with BL21 

(DE3) and plate on agar plate containing ampicillin (100 μg/mL) and chloramphenicol (34 

μg/mL). A single colony was picked and inoculated into 5 mL of LB medium with 

ampicillin and chloramphenicol. This overnight culture was used to inoculate 100 mL of 

LB medium. Cells were grown at 37℃ in an incubator (250 r.p.m.). When OD600, 200 mM 

Nε-acryloyl-lysine (AcrK), 1 mM IPTG and 0.2% arabinose were added. After 8 hour 

induction, cells were harvested by being centrifuged at 4000 g for 15 min, and resuspended 

in a lysis buffer (50 mM NaH2PO4, 250 mM NaCl, 10 mM imidazole, pH 8.0. The cell 

lysate was sonicated in an ice bath six times (2 min each pulse, 5 min interval for cooling), 

and centrifuged at 1000g for 60 min (4 ℃). The supernatant was isolated and incubated 

with 1 mL Ni-NTA resin (Qiagen) (1.5 h, 4 ℃), and then loaded to a column. The protein-

resin mixture was washed with 50 mL of a wash buffer containing 50 mM NaH2PO4, 250 

mM NaCl and 10 mM imidazole (pH 8.0), and eluted by a elution buffer containing 50 mM 

NaH2PO4, 250 mM NaCl and 250 mM imidazole (pH 8.0). The purified protein was 

concentrated and dialyzed into a buffer containing 10 mM ammonium bicarbonate. The 

protein was analyzed by 15% SDS-PAGE and stored at -80℃. 
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4. Protein Labeling with Hydrazonoyl Chloride 1 

pH dependence of the labeling reaction in the presence of chloride 

   Hydrazonoyl chloride 1(5 mM, 15 μL) was added to the solution of sfGFP2Acrk (5 

μM, 500 μL) in 1:1 acetonitrile-50 mM phosphate buffer with 50 mM chloride (pH 6-10) 

incubated at RT for 10 min and then quenched by 500 mM acrylamide. The labeled-protein 

was further purified using Ni-NTA resin (5 μL). The protein-bound resin was centrifuged 

(10 min, 13.4k) and washed with water for 4 times. After boiling the resin in 6X protein 

loading buffer (375 mM Tris-HCl, 10% SDS, 30% Glycerol, 0.03% Bromophenol blue, 

600 mM DTT) and filtering, the labeled protein was released and subjected to 15% SDS-

PAGE analysis. In-gel fluorescence detection was performed using BioRad ChemiDoc 

XRS+ Imaging system before the gel was stained by coomassie blue.   

Chloride dependence of the labeling reaction at pH7 

Hydrazonoyl chloride 1 (5 mM, 15 μL) was added to the solution of sfGFP2Acrk 

(5 μM, 500 μL) in 1:1 acetonitrile-50 mM phosphate buffer (pH7), with chloride 

concentration from 0 to 200 mM recpectively, incubated at RT for 30 min and then 

quenched by 500 mM acrylamide. The labeled-protein was further purified using Ni-NTA 

resin(5 μL). The protein-bound resin was centrifuged (10 min, 13.4k) and washed with 

water for 4 times. After boiling the resin in 6X protein loading buffer (375 mM Tris-HCl, 

10% SDS, 30% Glycerol, 0.03% Bromophenol blue, 600 mM DTT) and filtering, the 

labeled protein was released subjected to 15% SDS-PAGE analysis. In-gel fluorescence 

detection was performed using BioRad ChemiDoc XRS+ Imaging system before the gel 

was stained by coomassie blue. 
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The labeling reaction at pH 10 without chloride 

Hydrazonoyl chloride 1 (5 mM, 15 μL) was added to the solution of sfGFP2Acrk 

(5 μM, 500 μL) in a 1:1 acetonitrile-50mM phosphate buffer (pH10 without chloride), 

incubated at for 1, 2, 3, 4 min respectively and then quenched by 500 mM acrylamide. The 

labeled-protein was further purified using Ni-NTA resin(5 μL). The protein-bound resin 

was centrifuged (10 min, 13.4k) and washed with water for 4 times. After boiling the resin 

in 6X protein loading buffer (375 mM Tris-HCl, 10% SDS, 30% Glycerol, 0.03% 

Bromophenol blue, 600 mM DTT) and filtering, the labeled protein was released and 

subjected to 15% SDS-PAGE analysis. In-gel fluorescence detection was performed using 

BioRad ChemiDoc XRS+ Imaging system before the gel was stained by coomassie blue. 

Labelling with different proteins 

Hydrazonoyl chloride 1 (5 mM, 15 μL) was added to different solutions: 1: 

sfGFP2AcrK; 2: sfGFP-p53 peptide fusion; 3: BSA; 4: lysozyme; 5: sfGFP; 6: sfGFP ( all 

proteins are 5 μM, 500 μL) in a 1:1 acetonitrile-50mM phosphate buffer (pH10 without 

chloride), incubated at for 1, 2, 3, 4 min respectively and then quenched by 500 mM 

acrylamide. The labeled-protein was further purified using Ni-NTA resin (5 μL). The 

protein-bound resin was centrifuged (10 min, 13.4k) and washed with water for 4 times. 

After boiling the resin in 6X protein loading buffer (375 mM Tris-HCl, 10% SDS, 30% 

Glycerol, 0.03% Bromophenol blue, 600 mM DTT) and filtering, the labeled protein was 

released and subjected to 15% SDS-PAGE analysis. In-gel fluorescence detection was 

performed using BioRad ChemiDoc XRS+ Imaging system before the gel was stained by 

coomassie blue. 
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Figure 12 The selective labeling of sfGFP2AcrK with diarylnitrilimine. Proteins (1: 
sfGFP2AcrK; 2: sfGFP-p53 peptide fusion; 3: BSA; 4: lysozyme; 5: sfGFP; 6: sfGFP 
incorporated with a meta-trifloromethyl-phenylalanine at its S2 site) were incubated with 
5 mM hydrazonyl chloride 1 for 20 min before they were analyzed by SDS-PAGE. The 
top panel shows the Coomassie-blue staining of the gel and the bottom panel shows the 
fluorescent imaging of the gel before it was Coomassie-blue stained. The data clearly 
demonstrated the specific reaction between acrylamide and nitrilimine. 
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Results and Discussion 

We chose a hydrozonoyl chloride (1 in Figure 13) as a nitrilimine precursor for our 

kinetic analysis due to the difficulty of quantitative photolysis of a tetrazole to form a 

nitrilimine that nonetheless reacts with water and chloride in aqueous conditions to form a 

hydrozonoyl chloride. In an aqueous buffer with a high concentration of chloride ion, 1 

presumably undergoes two parallel two-step ionization processes to lose a proton cation 

and a chloride anion to generate a nitrilimine 4 as shown in Figure 13. 4 then reacts either 

with 5 to form a fluorescent cycloaddition product 6 or with water to produce a hydrazide 

7. 7 can also be made from the reaction of water with the immediate dechlorination product 

3 of 1. These two parallel ionization processes of hydrozonoyl halide in aqueous conditions 

were studied and demonstrated previously.77 Assuming the ionization of 1 to form 4 is a 

fast equilibrium, the formation of 6 will follow  

[𝟔] =
𝒌𝒄∙[𝟓]

𝒌𝒄∙[𝟓] 𝒌𝒉 𝒌𝒉 ∙
𝑯

𝑲
𝑯

∙ [𝟏]𝟎 ∙ (𝟏 − 𝒆
𝒌𝒄∙

𝑲𝑯∙𝑲𝑪𝒍
𝑯 ∙[𝑪𝒍 ]

∙[𝟓] 𝒌𝒉∙
𝑲𝑯∙𝑲𝑪𝒍

𝑯 ∙[𝑪𝒍 ]
𝒌𝒉 ∙

𝑲𝑪𝒍
[𝑪𝒍 ]

𝒕
)                   (1) 

when 5 is excessive, [H+]>>KH, and [Cl-]>>KCl. In eqn (1), [1]0 represents the initial 

concentration of 1. Based on eqn (1), the pseudo first-order reaction rate constant of the 6 

formation can be described as  

𝒌𝒂𝒑𝒑 = 𝒌𝒄 ∙
𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
∙ [𝟓] + 𝒌𝒉 ∙

𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
+ 𝒌𝒉′ ∙

𝑲𝑪𝒍

[𝑪𝒍 ]
.                     (2) 

This equation can be further simplified as  

𝒌𝒂𝒑𝒑 = 𝒌𝒄(𝒐𝒃𝒔) ∙ [𝟓] + 𝒌𝒉(𝒐𝒃𝒔)                                           (3) 

Where 
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𝒌𝒄(𝒐𝒃𝒔) = 𝒌𝒄 ∙
𝑲𝑯∙𝑲𝑪𝒍

[𝑯 ]∙[𝑪𝒍 ]
.        (4) 

As 6 is highly fluorescent, its formation can be facilely detected using a fluorescent 

spectrophotometer and analysed to obtain kapp. The determined kapp values at varied 

concentrations of 5, at a given pH and a chloride concentration can be readily fitted to eqn 

(3) to obtain kc(obs). In principle, the determined kc(obs) values at varying pH and chloride 

concentrations will allow to assess kc, the second-order rate constant of the nitrilimine-

alkene cycloaddition in aqueous conditions.  
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Figure 13 The ionization of diarylhydrozonoyl chloride to form diarylnitrilimine in 
aqueous conditions with chloride and the subsequent reactions with alkene and water. 
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We first studied the pH dependence of kc(obs) at 50 mM chloride. Reactions 

between 5 M 1 and varying concentrations of acrylamide at five given pH (6-10) were 

monitored using a PTI QM-40 fluorescent spectrophotometer with an excitation light 

at 320 nm and an emission detection at 480 nm. The fluorescence incremental data 

were fitted to a single exponential increase equation to obtain kapp. The resolved kapp 

values were then plotted against the acrylamide concentrations. As shown in Figure 

14, kapp is linearly dependent on the acrylamide concentration at a given pH and the 

data were readily used to determine kc(obs), validating the mechanism proposed in 

Figure 13. Although log (kc(obs)) shows a linear dependence on pH (Figure 14A) as 

eq. (4) predicts, (eq. (4) can be transformed as 𝒍𝒐𝒈 𝒌𝒄(𝒐𝒃𝒔) = 𝒍𝒐𝒈
𝒌𝒄∙𝑲𝑯∙𝑲𝑪𝒍

[𝑪𝒍 ]
+ 𝒑𝑯), 

the data can not be simply fitted to eqn (4) and best fitted to  

𝒌𝒄(𝒐𝒃𝒔) = 𝒌𝒄 ∙
(𝑲𝑯)𝒙∙𝑲𝑪𝒍

[𝑯 ]𝒙∙[𝑪𝒍 ]
     (5) 

with an x value as 0.64±0.01 and 𝒌𝒄 ∙
(𝑲𝑯)𝟎.𝟔𝟒∙𝑲𝑪𝒍

[𝑪𝒍 ]
 as (1.42±0.01) ×10-5. Any deviation 

from eq. (4) may be due to the presence of chloride that changes the proton activity 

during the ionization process. This is highly possible as a similar deviation was not 

observed during the kinetic analyses in reaction conditions without chloride, which 

will be presented later. Figure 14A clearly shows that the observed cycloaddition rate 

constant increased about 200 folds when pH was changed from 6 to 10. Therefore, 

when an acrylamide-containing protein is separately labeled with 1 at different pH, 

faster labeling rates are expected at higher pH values. To approve this, we performed 

the labeling of sfGFP2AcrK (a superfolder green fluorescent protein with Nε-acryloyl-



  

37 

 

 

lysine (AcrK) incorporated at its S2 position) by 150μM 1 for 15 min at 50 mM 

chloride and pH from 6 to 10. AcrK is a noncanonical amino acid with an acrylamide 

moiety that can be genetically incorporated into proteins at amber mutations sites in E. 

coli using an evolved pyrrolysyl-tRNA synthetase-𝐭𝐑𝐍𝐀𝐂𝐔𝐀
𝐏𝐲𝐥  pair. The expression of 

sfGFP2AcrK followed a method described in a previous publication.6 Presented in 

Figure 14B, the labeling efficiency is clearly pH dependent, with higher pH leading 

to more efficient labeling.  
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Figure 14  (A) the pH dependence of kc(obs). The inset shows the acrylamide 
concentration dependence of kapp at pH 8 and 50 mM chloride in acetonitrile-50 mM 
phosphate buffer (1:1). (B) The labeling efficiency of sfGFP2AcrK by 1 at different pH. 
The labeling reactions between 5 μM sfGFP2AcrK and 150 μM 1 were carried out in 
acetonitrile-50mM phosphate buffer (1:1) for 15 min before 500 mM acrylamide was 
added to sequestrate 1 from reacting with sfGFP2AcrK and then the labeling solutions were 
analyzed by SDS-PAGE. The top panel shows the Coomassie blue stained gel and the 
bottom panel presents a fluorescent image of the same gel before it was stained by 
Coomassie blue. The fluorescent imaging was performed with a BioRad ChemDoc XRS 
system under UV irradiation. 
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Eqn (5) also indicates an inverse linear dependence of kapp on the chloride 

concentration, which has been approved by our kinetic studies performed in varying 

chloride concentrations and pH 9. At a particular chloride concentration (10-100 mM), 

the determined kapp values are linearly dependent on the acrylamide concentrations, 

which were used to obtain kc(obs). Plotting kc(obs) against 1/[Cl-] shows that this 

dependence is linear (Figure 15 A). We also did similar kinetic analyses at 1 mM 

chloride. Although the determined kapp values are much higher than those determined 

at higher chloride concentrations, the kapp values at different acrylamide concentrations 

are almost constant, and therefore not valid for the calculation of kc(obs). It is possible 

that at a low chloride concentration, the two dechlorination processes (2 to 4 and 1 to 

3) do not reach fast equilibria, invalidating Figure 13 and eqn (1) in data analysis. This 

study clearly shows a strong inhibitory effect of chloride on the nitrilimine-alkene 

cycloaddition, indicating that applying the nitrilimine-alkene cycloaddition for protein 

labeling needs to avoid running the reaction at a high chloride concentration. This is 

exactly what we observed in the labeling reactions of sfGFP2AcrK by 1 at pH 7 and 

different chloride concentrations (Figure 15B). A 30 min labeling reaction in the 

absence of chloride led to an intensely fluorescently labeled protein. The labeling 

efficiency gradually diminished when the chloride concentration was increased from 

0 to 200 mM.  
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Figure 15  (A) the chloride dependence of kc(obs). (B) The labeling efficiency of 
sfGFP2AcrK by 1 at pH 7 and different chloride concentrations. The labeling reactions 
between 5 μM sfGFP2AcrK and 150 μM 1 were carried out in acetonitrile-50mM 
phosphate buffer (1:1), pH 7, and varying chloride concentrations for 30 min before 500 
mM acrylamide was added to sequestrate 1 from reacting with sfGFP2AcrK and then the 
labeling solutions were analyzed by SDS-PAGE. The top panel shows the Coomassie blue 
stained gel and the bottom panel presents a fluorescent image of the same gel before it was 
stained by Coomassie blue. 
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The aforementioned kinetic analyses at 1 mM chloride prompted us to look into 

the reaction kinetics of the nitrilimine-alkene cycloaddition in the absence of chloride. 

Without chloride, the ionization of 1 and subsequent reactions with water and alkene 

will presumably follow a mechanism presented in Figure 16. The two dechlorination 

steps become rate limiting. Since the ionization of 1 will generate an equal amount of 

chloride in reaction conditions, providing 1 at a concentration much lower than 1 mM 

will not eviscerate the mechanism shown in Figure 16. Figure 16 depicts the  

formation of 6 following  

[𝟔] =
𝒌𝒄∙[𝟓]

𝒌𝒄∙[𝟓] 𝒌𝒉 𝒌𝒉 ∙
𝑯

𝑲
𝑯

∙ [𝟏]𝟎 ∙ (𝟏 − 𝒆
𝒌𝑪𝒍∙

𝑲𝑯
𝑯

𝒌𝑪𝒍 𝒕
)   (6) 

that results in an apparent rate constant defined as  

𝒌𝒂𝒑𝒑 = 𝒌𝑪𝒍 ∙
𝑲𝑯

[𝑯 ]
+ 𝒌𝑪𝒍′.     (7) 

Eqn (7) shows that kapp is inversely proportional to the proton centration but not related 

to the provided acrylamide, which was observed during kinetic analyses of the 

nitrilimine-alkene cycloaddition in the absence of chloride. When reactions between 5 

μM 1 and different acrylamide concentrations were performed at a specific pH without 

chloride, they all resulted in a same reaction rate constant (inset of Figure 17A). 

Raising the pH value led to higher reaction rate constants. The logarithms of 

determined kapp values as a function of pH are presented in Figure 17A, which can be 

well fitted to eqn (7). At pH 10 with chloride, the determined kapp is 0.111±0.002 s-1. 

Since this rate constant is not related to the concentrations of both 1 and the acrylamide, 

so using 1 to label a protein with an acrylamide moiety at any concentrations of 1 and 
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the protein will have a labeling half life close to 6 s when the chloride anion is absent 

in labeling conditions, further resulting in almost instantaneous protein labeling. To 

demonstrate this rapid labeling process, we tested the labeling of sfGFP2AcrK by 1 at 

pH 10 for different lapses of time. As shown in Figure 17B, labeling sfGFP2AcrK 

with 1 for 1 min to 4 min all led to an intensely fluorescently labeled protein with an 

equally fluorescent intensity, implying that the labeling reaction was mostly completed 

within 1 min.  
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Figure 16 The ionization of diarylhydrozonoyl chloride to form diarylnitrilimine in 
aqueous conditions without chloride and the subsequent reactions with alkene and water. 
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Figure 17 (A) the pH dependence of kapp in the absence of chloride. The data were 
fitted to eqn (7). The inset shows the acrylamide concentration dependence of kapp at pH 5-
10 in acetonitrile-50 mM phosphate buffer (1:1) but absence of chloride. All determined 
kapp values at a given pH are similar. (B) The labeling efficiency of sfGFP2AcrK by 1 at 
pH 10 without chloride. The labeling reactions between 5 μM sfGFP2AcrK and 150  μM 1 
were carried out in acetonitrile-50mM phosphate buffer (1:1) with no chloride provided for 
different lapses of time (1-4 min) before 500 mM acrylamide was added to sequestrate 1 
from reacting with sfGFP2AcrK and then the labeling solutions were analyzed by SDS-
PAGE. The top panel shows the Coomassie blue stained gel and the bottom panel presents 
a fluorescent image of the same gel before it was stained by Coomassie blue.  
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Conclusions 

Being a catalyst-free click reaction type, nitrilimine-alkene cycloaddition has been 

explored for click and photo-click labeling of proteins. All previous kinetic 

characterizations of the nitrilimine-alkene cycloaddition were completed in PBS buffers 

that contained high concentrations of chloride. The current study clearly shows that all 

previously measured second-order rate constants of the nitrilimine-alkene cycloaddition 

are apparent second-order rate constants that are significantly influenced by pH and 

chloride concentrations. Based on eqn (5), one would need to determine KH and KCl to 

calculate kc, the second-order rate constant of the nitrilimine-alkene cycloaddition. When 

we derived eqn (1), we applied the following preconditions; [H+] >> KH and [Cl-] >> KCl. 

When these conditions do not hold, the determined apparent rate constant in theory will in 

theory follow  

𝒌𝒄(𝒐𝒃𝒔) = 𝒌𝒄 ∙
𝑲𝑯∙𝑲𝑪𝒍

([𝑯 ] 𝑲𝑯)∙([𝑪𝒍 ] 𝑲𝑪𝒍)
    (8) 

but should be best described as  

𝒌𝒄(𝒐𝒃𝒔) = 𝒌𝒄 ∙
(𝑲𝑯)𝟎.𝟔𝟒∙𝑲𝑪𝒍

([𝑯 ] 𝑲𝑯)𝟎.𝟔𝟒∙([𝑪𝒍 ] 𝑲𝑪𝒍)
    (9) 

due to the proton activity deviation from what is indicated by the pH. As indicated by eqn 

(9), in a specific chloride concentration, kc(obs) will reach a plateau when [H+] << KH. As 

we did not observe the trend of kc(obs) becoming saturated to pH 10, a safe guess of a KH 

value is small than 10-12. Similarly, kc(obs) showed an inversely proportional dependence of 

the chloride concentration when lower than 10 mM. A safe estimate of a KCl value is small 

than 10-3. We have determined that at 50 mM chloride, 𝒌𝒄 ∙
(𝑲𝑯)𝟎.𝟔𝟒∙𝑲𝑪𝒍

[𝑪𝒍 ]
 is 1.42×10-5. With 
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two estimated values of KH and KCl, we can easily determine a kc value higher than 3.4×104 

M-1s-1. This reaction rate constant is comparable to that of the rapid transcyclooctene-

tetrazine cycloaddition and makes the nitrilimine-alkene cycloaddition one of the fastest 

click reactions. Another implication of our study is the possibility of different labeling 

kinetics in extracellular and intracellular spaces when the nitrilimine–alkene reaction is 

applied for in vivo labeling. Mammalian cells maintain an intracellular chloride 

concentration which is much lower than their extracellular environments.78 This large 

chloride concentration variation may allow for the application of the nitrilimine–alkene 

reaction to specifically achieve intracellular protein sensitization. 
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CHAPTER III 

PHAGE-DISPLAYED CYCLIC PEPTIDE LIBRARIES FOR THE 

IDENTIFICATION OF INHIBITORS OF HISTONE DEACETYLASES 

 

Introduction 

 Histone deacetylases (HDAC8) comprise an indispensable enzyme class for 

humans. Aberrant overexpression of HDACs has been demonstrated to be related with 

many human diseases such as cancers. Thus, discovery of HDAC inhibitors are very import 

to therapeutic studies. Current widely used HDAC inhibitors includes vorinostat (SAHA), 

trichostatin A (TSA), and Romidepsin (FK228). Although these inhibitors have shown 

excellent inhibition ability through chelation of metal ion at active site, selective inhibition 

is a drawback due to non-specificity to most HDACs. 

To investigated more potential HDAC inhibitors with high affinity and specificity, 

focus has been raised on peptide-based molecules. Due to advantages such as high binding 

affinity, cell permeability, less toxicity, high target specificity, peptide-based molecules 

have emerged as indispensable leads for drug discovery. Moreover, development of solid-

phase peptide synthesis (SPPS) makes peptide-based molecules synthesized efficiently and 

conveniently.79 Amongst these peptide drugs, cyclic peptides are very attractive. Compared 

to linear counterparts, cyclic peptides have dominant advantages including conformational 

rigidity and stability against proteolysis.  

Recent years have seen numerous reports on the construction of cyclic peptide 

libraries. Amongst these methodologies, phage display is a highly powerful tool in high-

throughput screening of enzyme inhibitors. Phage display expresses foreign peptides on 
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the surface of filamentous phages. By linking phenotype to genotype, phage display can be 

used to build peptide library from the construction of phage library in DNA level. The ease 

of genetic manipulation makes phage display an outstanding biological platform. However, 

one pitfall of the phage-displayed peptide library is the limitation of 20 canonical amino 

acids.  To overcome this shortage, one strategy is using chemoselective bioconjugation and 

surface chemistry techniques. Another strategy is to incorporate non-canonical amino acids 

which can efficiently expand chemical diversity as well as provide more strategies of 

cyclization. Compared to bioconjugation methodologies which require the installation of 

biorthogonal reagents, the incorporation of NCAA is more straightforward and easily 

manipulated. 

The thiol group on cysteine is very reactive and undergoes a wide variety of 

reactions, such as Michael addition and nucleophilic substitution. To generate a cyclic 

peptide, many researchers have focused on bis-cysteine cyclic peptides [11]. The most well-

studied approach of the cyclization was through an intramolecular disulfide bridge between 

two internal cysteine thiol groups. O’neil and co-workers firstly reported phage-displayed 

cyclic peptide library consists of two cysteines and six randomized amino acids in 

between.80 High-affinity cyclic peptides with disulfide bonds are selected as inhibitors of 

platelet glycoprotein IIb/IIIa.80,81 However, the disulfide bond is reducible, and therefore 

its application in vivo is limited. To overcome the limitation of disulfide bonds, we 

explored reactions using a cysteine with other functional groups instead of a reaction 

between two cysteines. To expand the chemical diversity of cyclic peptides, we used a non-

canonical amino acid (NCAA), rather than any canonical amino acid, as a cyclization 

reagent. The incorporation of NCAA into a peptide is based on stop codon suppression. In 
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this approach, a nonsense stop codon (such as UAG) is used to direct the incorporation of 

NCAAs when a particular NCAA-corresponding aminoacyl-tRNA synthetase (aaRS)-

tRNA pair is present in cells. 

In this dissertation the well-studied 1,4-addition between cysteine and the 

acrylamide moiety is used as cyclization approach (Figure 18). The second order rate 

constant of the reaction between acrylamide and β-mercaptoethanol (β-ME) is 0.013 ± 

0.001 M−1 s−1 at pH 7.4[11]. Our group recently synthesized two acrylamide-containing 

NCAAs, Nε-acryloyl-L-lysine (AcrK) and Nε-crotonyl-L-lysine (CrtK), and incorporated 

them into proteins at amber mutation sites. Then the reaction between AcrK and β-ME was 

investigated. Results show that in a slightly alkali environment (pH~8), both proteins 

bearing these NCAAs can be labeled with β-ME efficiently6. Hereby we used this efficient 

1,4-cycloaddition for the construction of phage-displayed cyclic peptide library.  

 

 

 

 

Figure 18  1,4–addition between cysteine and the acrylamide moiety 
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Experimental Methods 

1. Synthesis of NCAAs 

Synthesis of Nε-acryloyl-L-lysine (AcrK)6 

To a solution of N-hydroxysuccinimide (1.3 g, 11.3 mmol) in anhydrous 

dichloromethane (25 mL) was added N,N-diisopropylethylamine (1.5 mL, 8.9 mmol), 

followed by dropwise addition of acryloyl chloride (0.8 mL, 9.3 mmol) in ice bath over 10 

min. The mixture was then stirred for 10 hours at room temperature. The mixture was 

extracted with ethyl acetate (50 mL), washed with saturated NH4Cl solution and brine, and 

dried with anhydrous sodium sulfate. The solution was filtered and evaporated under 

vacuum to give 2 (1.5 g) as yellow oil.  

To a solution of copper(II) sulfate pentahydrate (1.0 g, 4.0 mmol) in water (50 mL) 

was added lysine hydrochloride (1.5g, 8.0 mmol) and sodium bicarbonate (1.9g, 22.4 

mmol). The mixture was stirred at room temperature for 20 min. A solution of compound 

2 in acetone (20 mL) was added to the reaction. The reaction mixture continued stirring at 

room temperature for additional 10 h. The blue mixture was filtered, and the blue filter 

cake was washed with water (three times) and acetone, dissolved in a solution of water and 

chloroform (v/v = 1:1, 100 mL), stirred at room temperature for 20 min. To the suspension 

was added 8-hydroxyquinoline (1.6 g, 11.0 mmol). The solution was stirred at room 

temperature for 30 min. The green suspension was filtered, and the filtrate was washed 

with chloroform for three times, concentrated under reduced pressure, subjected to ion-

exchange chromatography for further purification, and give Nε-acryloyl-L-lysine as a white 

powder (1.2 g, 60%).  
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Figure 19 Synthesis of AcrK. 
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Synthesis of  Nε-crotonyl-L-lysine (CrtK)6  

A suspension of Boc-Lys(Cbz)-OMe (4.00 g, 10.1 mmol) and palladium on carbon 

(10% Pd, 0.67g, 0.64 mmol) was stirred under a hydrogen balloon at roomt temperature 

for 3 h. The mixture was filtered over a celite pad, and the filtrate was concentrated to give 

4 (2.51 g) as a clear oil. The product is pure enough for the next step.  

To a solution of 4 (2.51 g, 9.6 mmol) and crotonic acid (1.70g, 19.2 mmol) in 

anhydrous dichloromethane (50 mL) was added dimmethylaminolpyridine (0.048 g, 3.8 

mmol), followed by dropwise addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (2.3 g, 12 mmol) in anhydrous dichloromethane (10 mL) over 10 min.The 

mixture was stirred at room temperature for 15 h, extracted by ethyl acetate (50 mL), 

washed with brine (50 mL x 3), dried with anhydrous MgSO4, evaporated and subjected to 

chromatography to afford 5 (2.66 g) as a clear oil for next step without further purification. 

To a solution of 5 (2.66 g, 8.0 mmol) in tetrahydrofuran (25 mL) was added lithium 

hydroxide solution (1 M, 40 mL, 40 mmol) in an ice-water bath. The reaction was stirred 

in the ice-water bath for 2 h. The reaction mixture was diluted with water (25 mL), 

extracted with ethyl acetate (25 mL x 3) to remove impurities. The aqueous layer was 

adjusted to pH 3 with 6 M hydrochloric acid solution and extracted with ethyl acetate (25 

mL x 2). The combined ethyl acetate solution was washed with brine (25 mL x 3), dried 

with anhydrous MgSO4, concentrated under reduced pressure to afford a colorless oil for 

next step without further purification.  

To a solution of hydrochloric acid in dioxane (4 M, 10 mL, 40 mmol) was added 

the oil from previous step. The reaction was stirred at room temperature for 4 h, diluted 
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with dichloromethane and evaporated under reduced pressure to give 6 (1.35g, 70% for 

three steps) as a white powder.  

 

 

 

 
 
 

Figure 20 Synthesis of CrtK 
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2. sfGFP mutant Expression, Purification and Labeling 

DNA sequence of Met-Ala-(Ala)5-TAG-sfGFP 

atggccgccgccgccgccgcctagaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaat

gggcacaaattttctgtccgtggagagggtgaaggtgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaa

actacctgttccgtggccaacacttgtcactactctgacctatggtgttcaatgcttttcccgttatccggatcacatgaaacggcatg

actttttcaagagtgccatgcccgaaggttatgtacaggaacgcactatatctttcaaagatgacgggacctacaagacgcgtgct

gaagtcaagtttgaaggtgatacccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttggacaca

aactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaagaatggaatcaaagctaacttcaaaattcgc

cacaacgttgaagatggttccgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagac

aaccattacctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtccttcttgagtttgtaactgctg

ctgggattacacatggcatggatgagctctacaaaggatcccatcaccatcaccatcactaa (mutated sites are 

highlighted in red) 

DNA sequence of Met-Cys-(Ala)5-TAG-sfGFP 

atgtgcgccgccgccgccgcctagaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaat

gggcacaaattttctgtccgtggagagggtgaaggtgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaa

actacctgttccgtggccaacacttgtcactactctgacctatggtgttcaatgcttttcccgttatccggatcacatgaaacggcatg

actttttcaagagtgccatgcccgaaggttatgtacaggaacgcactatatctttcaaagatgacgggacctacaagacgcgtgct

gaagtcaagtttgaaggtgatacccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttggacaca

aactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaagaatggaatcaaagctaacttcaaaattcgc

cacaacgttgaagatggttccgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagac

aaccattacctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtccttcttgagtttgtaactgctg
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ctgggattacacatggcatggatgagctctacaaaggatcccatcaccatcaccatcactaa (mutated sites are 

highlighted in red) 

sfGFP Derivatives Expression and Purification 

Plasmid pEVOL-PylT-PrKRS and pEVOL-PylT-BuKRS were constructed as 

previously reported.6 pEVOL-PylT-PrKRS plasmid and pET-Met-Cys-(Ala)5-TAG-sfGFP 

or pET-Met-Ala-(Ala)5-TAG-sfGFP were cotransformed with BL21 (DE3) and plate on 

agar plate containing ampicillin (100 μg/mL) and chloramphenicol (34 μg/mL). A single 

colony was picked and inoculated into 5 mL of LB medium with ampicillin and 

chloramphenicol. This overnight culture was used to inoculate 100 mL of LB medium. 

Cells were grown at 37℃ in an incubator (250 r.p.m.). When OD600, 200 mM AcrK or 

CrtK, 1 mM IPTG and 0.2% arabinose were added. After 8-hour induction, cells were 

harvested by being centrifuged at 4000 g for 15 min and resuspended in a lysis buffer (50 

mM NaH2PO4, 250 mM NaCl, 10 mM imidazole, pH 8.0. The cell lysate was sonicated in 

an ice bath six times (2 min each pulse, 5 min interval for cooling), and centrifuged at 

1000g for 60 min (4 ℃). The supernatant was isolated and incubated with 1 mL Ni-NTA 

resin (Qiagen) (1.5 h, 4 ℃), and then loaded to a column. The protein-resin mixture was 

washed with 50 mL of a wash buffer containing 50 mM NaH2PO4, 250 mM NaCl and 10 

mM imidazole (pH 8.0), and eluted by a elution buffer containing 50 mM NaH2PO4, 250 

mM NaCl and 250 mM imidazole (pH 8.0). The purified protein was concentrated and 

dialyzed into a buffer containing 10 mM ammonium bicarbonate. The protein was analyzed 

by 15% SDS-PAGE and stored at -80℃. 
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Protein Labeling with Hydrazonoyl Chloride 1 

   Hydrazonoyl chloride 1 (5 mM, 15 μL) was added to four different solutions of 

Met-Cys-(Ala)5-AcrK-sfGFP, Met-Ala-(Ala)5-AcrK-sfGFP, Met-Cys-(Ala)5-CrtK-sfGFP 

and Met-Ala-(Ala)5-CrtK-sfGFP after (5 μM, 500 μL) in a 1:1 acetonitrile-50mM 

phosphate buffer (pH10 without chloride), incubated at for 10 min respectively and then 

quenched by 500 mM acrylamide. The labeled-protein was further purified using Ni-NTA 

resin(5 μL). The protein-bound resin was centrifuged (10 min, 13.4k) and washed with 

water for 4 times. After boiling the resin in 6X protein loading buffer (375 mM Tris-HCl, 

10% SDS, 30% Glycerol, 0.03% Bromophenol blue, 600 mM DTT) and filtering, the 

labeled protein was released and subjected to 15% SDS-PAGE analysis. In-gel 

fluorescence detection was performed using BioRad ChemiDoc XRS+ Imaging system 

before the gel was stained by Coomassie blue. 

 

3. Target Protein Expression and Purification 

Protein Sequence of HDAC8 

meepeepadsgqslvpvyiyspeyvsmcdslakipkrasmvhslieayalhkqmrivkpkvasmeematfhtdaylqh

lqkvsqegdddhpdsieyglgydcpategifdyaaaiggatitaaqclidgmckvainwsggwhhakkdeasgfcylnda

vlgilrlrrkferilyvdldlhhgdgvedafsftskvmtvslhkfspgffpgtgdvsdvglgkgryysvnvpiqdgiqdekyy

qicesvlkevyqafnpkavvlqlgadtiagdpmcsfnmtpvgigkclkyilqwqlatlilggggynlantarcwtyltgvilg

ktlsseipdhefftaygpdyvleitpscrpdrnephriqqilnyikgnlkhvlenlyfqgdydipttlehhhhhh 

HDAC8 Expression and Purification  

Plasmid pHD4-HDAC8-TEV-His6 was transformed with BL21-CodonPlus(DE3). 

A single colony was picked and inoculated into 5 mL of 2xYL supplemented with 
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ampicillin (Amp) (100 μg/mL). This overnight culture was used to inoculate 500 mL of 

autioinduction TB medium (24 g/L yeast extract, 12 g/L tryptone, 8 g/L tris, 4 g/L lactose, 

1 g/L glycerol, pH 7.5) supplemented with ampicilin (100 μg/mL) and 200 μM ZnSO4. 

Cells were grown at 37℃ in an incubator (250 r.p.m.). After 20-hour auto-induction, cells 

were harvested by being centrifuged at 4000 g for 15 min, and resuspended in a lysis buffer 

(50 mM NaH2PO4, 250 mM NaCl, 10 mM imidazole, pH 8.0. The cell lysate was sonicated 

in an ice bath six times (3 min each pulse, 6 min interval for cooling), and centrifuged at 

1000g for 60 min (4 ℃). The supernatant was isolated and incubated with 1 mL Ni-NTA 

resin (Qiagen) (1.5 h, 4 ℃), and then loaded to a column. The protein-resin mixture was 

washed with 50 mL of a wash buffer containing 50 mM NaH2PO4, 250 mM NaCl and 10 

mM imidazole (pH 8.0), and eluted by a elution buffer containing 50 mM NaH2PO4, 250 

mM NaCl and 250 mM imidazole (pH 8.0). Eluted fractions were collected, concentrated 

and subjected to a Q Sepharose column (GE Healthcare) for further purification. The 

purified protein was dialyzed into a dialysis buffer (25 mM Tris - HCl, 300 mM NaCl, 200 

μM ZnSO4, 5 μM KCl, pH7.5). The protein was stored as 5 μM aliquots at -80℃.  
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Figure 21 15% SDS Page gel imaging of purified HDAC8. 
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TEV Protease Expression and Purification  

BL21(DE3) transformed with N-terminal His-tagged TEV protease was grown in 

5 mL of LB medium at 37oC. This overnight culture was used to inoculate 500 mL of 2xYT 

medium supplemented with ampicilin (100 μg/mL). Cells were grown at 37℃ in an 

incubator (250 r.p.m.) and induced with 800 μM IPTG after OD600 reached 0.4 ~ 0.6. After 

4 hour induction, cells were harvested by being centrifuged at 4000 g for 15 min, and 

resuspended in a lysis buffer (50 mM NaH2PO4, 250 mM NaCl, 10 mM imidazole, pH 8.0. 

The cell lysate was sonicated in an ice bath six times (2 min each pulse, 5 min interval for 

cooling), and centrifuged at 1000g for 60 min (4 ℃). The supernatant was isolated and 

incubated with 1 mL Ni-NTA resin (Qiagen) (1.5 h, 4 ℃), and then loaded to a column. 

The protein-resin mixture was washed with 50 mL of a wash buffer containing 50 mM 

NaH2PO4, 250 mM NaCl and 10 mM imidazole (pH 8.0), and eluted by a elution buffer 

containing 50 mM NaH2PO4, 250 mM NaCl and 250 mM imidazole (pH 8.0). The purified 

protein was concentrated and dialyzed into a buffer containing 10 mM ammonium 

bicarbonate. The protein was analyzed by 15% SDS-PAGE and stored at -80℃. 

  

4. Construction of Phage Library 

DNA sequencing of pADLg3-TGC-(NNK)6-TAG phagemid 

gcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccct

gataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgcct

tcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactgg

atctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgc
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ggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccag

tcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggcca

acttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgtt

gggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgca

aactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccactt

ctgcgctcggcgcttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcact

ggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacaga

tcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcattt

ttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcaga

ccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctacc

agcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactg

ttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagt

ggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggct

gaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgaga

aagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagg

gagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgt

caggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgac

ccgacaccatcgaatggcgcaaaacctttcgcggtatggcatgatagcgcccggaagagagtcaattcagggtggtgaatgtg

aaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacg

tttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggc

gggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatct

cgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaagcggcggtgcac

aatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcac
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taatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggc

gtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctgg

ctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttca

acaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgc

gcgccattaccgagtccgggctgcgcgttggtgcggacatctcggtagtgggatacgacgataccgaagacagctcatgttata

tcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggcc

aggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctct

ccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcggtacccgataa

aagcggcttcctgacaggaggccgttttgttttgcagcccacctcaacgcaattaatgtgagttagctcactcattaggcacccca

ggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgat

tacgaatttctagataacgagggcaaatcatgaaatacctattgcctacggcggccgctggattgttattactcgcggcccagccg

gccatggcctcgnnknnknnknnknnknnktagggcccgggaggccaaggcggtggttctgagggtggtggctccctcg

agggcgcgccagccgaaactgttgaaagttgtttagcaaaacctcatacagaaaattcatttactaacgtctggaaagacgacaa

aactttagatcgttacgctaactatgagggctgtctgtggaatgctacaggcgttgtggtttgtactggtgacgaaactcagtgttac

ggtacatgggttcctattgggcttgctatccctgaaaatgagggtggtggctctgagggtggcggttctgagggtggcggttctga

gggtggcggtactaaacctcctgagtacggtgatacacctattccgggctatacttatatcaaccctctcgacggcacttatccgc

ctggtactgagcaaaaccccgctaatcctaatccttctcttgaggagtctcagcctcttaatactttcatgtttcagaataataggttcc

gaaataggcagggtgcattaactgtttatacgggcactgttactcaaggcactgaccccgttaaaacttattaccagtacactcctg

tatcatcaaaagccatgtatgacgcttactggaacggtaaattcagagactgcgctttccattctggctttaatgaggatccattcgtt

tgtgaatatcaaggccaatcgtctgacctgcctcaacctcctgtcaatgctggcggcggctctggtggtggttctggtggcggctc

tgagggtggcggctctgagggtggcggttctgagggtggcggctctgagggtggcggttccggtggcggctccggttccggt

gattttgattatgaaaaaatggcaaacgctaataagggggctatgaccgaaaatgccgatgaaaacgcgctacagtctgacgcta

aaggcaaacttgattctgtcgctactgattacggtgctgctatcgatggtttcattggtgacgtttccggccttgctaatggtaatggt
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gctactggtgattttgctggctctaattcccaaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatat

ttaccttctttgcctcagtcggttgaatgtcgcccttatgtctttggcgctggtaaaccatatgaattttctattgattgtgacaaaataaa

cttattccgtggtgtctttgcgtttcttttatatgttgccacctttatgtatgtattttcgacgtttgctaacatactgcgtaataaggagtct

taatcaagctttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatccc

ttataaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactcca

acgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggt

gccgtaaagcactaaatcggaaccctaaagggagcccccgatttagagcttgacggggaaagccggcgaacgtggcgagaa

aggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacc

cgccgcgcttaatgcgccgctacagggcgcgtcaggtg  (mutated sites are highlighted in red. n presents 

any of a, g, c, t, and k presents g or t) 

Construction of Phagemid Library 

The phagemid library was constructed and amplified by Polymerase chain reaction 

(PCR) using forward primer:  5'- GGT CCG ATG GCC NNK NNK NNK NNK NNK 

NNK GGC CCG GG -3', and reverse primer: 5'- CCA CGG CCA TGG CCG GCT GGG 

CCG CG -3'. The PCR product was digested by NCoI restriction enzyme, and ligated by 

T4 DNA ligase. The ligated plasmids were electroporated into competent Ecoli. Top10 

cell, incubated with 1 mL of LB medium and then inoculated into 5 mL of LB medium 

containing 100 μg/mL ampicillin. After OD600 reached 1.0, 0.5 mL of cell culture was 

mixed with with 50% glycerol and stored in -80 °C. Several of aliquots are made to for the 

total coverage of more than 1011 cfu. To collect the phagemids, normalized amount of cell 

stocks was used to guarantee equal amount of phagemids from each aliquot.   
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Phage Expression 

Q350 at M13KO7 was mutated to stop codon TAA to knock out expression of pIII 

protein from helper phage. Phagemid library constructed from previous step was electro-

porated into Ecoli. Top10 electro competent cells with M13KO7g3TAA and pEVOL-

CloDF-AcrkRS. Transformed cells were inoculated into 100 mL of 2YT medium. Fusion 

protein expression was induced with 0.2% arabinose, 0.5 mM IPTG, 2 mM AcrK when 

OD600 reached 0.5. After 12-hour induction, cell pellets were precipitated by centrifuge and 

discarded. The supernatants containing phages were precipitated by chilled polyethylene 

glycol, and then subjected to centrifuge (15 min, 10,000 g, 4 ℃). Phage pellets were 

collected and dissolved in PBS buffer. The total number of phage was calculated as 

following: 10 uL of phages was incubated at 65 oC water bath for 15 min to kill all Ecoli. 

Top10 cell. 90 uL of  Top10F’ (OD600 = 1.0) are infected by these phages and subjected to 

the agar plate with serial dilution for calculation. The total yield is around 1010 cfu per 100 

mL of LB medium, sufficient to cover library diversity (theoretical diversity of a 6-mer 

library is 20 = 6.4 x 106) 

 

5. Phage Selection Against TEV Protease and HDAC8 

For selection, streptavidin magnetic beads that only bind to biotin for selection were 

used. To generate biotinylated protein in aqueous solution, biotin sulfosuccinimidyl ester 

kit (thermos fisher scientific) was used since a succinimidyl ester moiety reacts w i t h  

primary amine group (Figure 22). A 15μM purified target protein was incubated with 

30μM biotin succinimidyl ester in 50 mM phosphate buffer for 2 hours at room 

temperature. The reaction was quenched with addition of 10 mM lysine and subjected to 
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the protein purification kit (Bio-RAD). 5 uM purified biotinylated protein are incubated 

with streptavidin magnetic beads (Pierce) for 1 hour in PBS buffer. Unreacted protein was 

washed away.   

 

 

 

Figure 22 Reaction between biotin succinimidyl ester and protein with primary amine 

 

In selection process, to remove individuals capable of non-specific binding, phage 

library was pre-incubated with only streptavidin magnetic beads for every round of 

selection. Later, phage library was incubated with protein-binding streptavidin magnetic 

beads for 10 min. The beads were washed 10 times by phosphate buffered saline with 

Tween-20 (PBST, 8mM Na2HPO4, 150mM NaCl, 3 mM KCl, 2mM KH2PO4, 0.05% 

Tween-20, pH 7.4), eluted with Glycine-HCl buffer (pH 2.2), and neutralized with Tris 

buffer (pH 9.1). Top10F’ cells were infected by the eluted phage to calculated the number 

of phage particles. To amplify the selected phage library, the phagemid from infected 

Top10F’ cells were extracted. Cell transformation, phage expression and phage selection 

were repeated for consecutive three rounds. For better comparison, controls of background 

binding phages with streptavidin magnetic beads were also studied in each round of 

selection.  
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Figure 23 illustrates the number of eluted phage for every round, of TEV protease 

and HDAC8, respectively. A dramatic increase of eluted phages was observed after three 

rounds, for both TEV protease and HDACs, while only a slightly enrichment of controls 

was observed. 

 

 

 

Figure 23 Number of eluted phages for TEV protease and HDAC8 in each selection round.  
Number of input   phages is 109 in each round.
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 6. Synthesis of Selected Peptide CX6-AcrK (X designates any canonical amino acid) 

General information 

With advantages such as high yield, ease of handling and simple isolation steps,  

solid phage peptide synthesis (SPPS) strategy has been demonstrated as the best alternative 

to synthesize peptides.79,82 In this strategy, the peptide sequences are synthesized from C-

terminal to N-terminal (Figure 24). Special resins are used as solid phase to couple amino 

acids one by one. The amino acids with protected side chains are coupled to the α-amino 

group. In this dissertation, Fmoc-protected amino acids were used in synthesis of selected. 

After the removal of Fmoc protecting group from N-terminal and activation of C-terminal, 

coupling of each amino acid is usually finished in a few minutes to a few hours. Unreacted 

reagents and byproducts were then washed away by DMF and dichloromethane. Finally, 

peptides were cleaved from resin by 95% TFA, precipitated by cold ether and subjected to 

further characterization. To monitor the coupling process, Kaiser test is the most commonly 

used approach. Similar to ninhydrin test, only primary amines turn blue when they reacts 

with Kaiser test kit (Figure 25).83,84  
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Figure 24 General procedure of solid phage peptide synthesis (SPPS) 
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Figure 25 Reaction of Kaiser test. 
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Couple the first lysine to the resin 

200 mg rink amide MBHA resin (Novabiochem) in DMF was added to a poly 

vessel, swelled for 1 h. Fmoc group of the resin was then deprotected by 20% (vol/vol) 

piperidine in DMF for 30 minutes, and then washed with DMF, dichloromethane (DCM) 

and methanol. Fmoc-Lys(mtt)-OH (4 equiv), tetramethyluronium hexafluorophosphate 

(HBTU, 4 equiv) and diisopropyl-ethylamine (DIEA, 10 equiv) were dissolved in DMF. 

The solution was added to the reaction vessel under nitrogen and mixed with the resin. 

Coupling was not finished until Kaiser-ninhydrin test became negative.   

Couple the remaining amino acids to the resin 

Fmoc-protected amino acids (4 equiv), tetramethyluronium hexafluorophosphate 

(HBTU, 4 equiv) and diisopropyl-ethylamine (DIEA, 10 equiv) were dissolved in DMF 

(10 mL). The solution was added to the reaction vessel under nitrogen and mixed with the 

resin. Reaction was not stopped until Kaiser-ninhydrin test became negative.  The last 

amino acid we used is Boc-Cys(trt)-OH. There is no additional deprotection steps after the 

final coupling.  

Synthesis of N-succinimidyl acrylate6 

To a solution of N-hydroxysuccinimide (1.3 g, 11.3 mmol) in anhydrous 

dichloromethane (25 mL) was added N,N-diisopropylethylamine (1.5 mL, 8.9 mmol), 

followed by dropwise addition of acryloyl chloride (0.8 mL, 9.3 mmol) in ice bath in 10 

min. The mixture was then stirred for 10 hours at room temperature. The mixture was 

extracted with 50 mL of ethyl acetate, washed with saturated NH4Cl solution (x3) and 



  

70 

 

 

brine, and dried with anhydrous Na2SO4. The solution was filtered and evaporated under 

vacuum to give a yellow oil (1.5 g).   

Couple N-succinimidyl acrylate to the first lysine 

After the coupling of cysteine, use % TFA in dichloromethane (vol/vol) and 1% 

triisopropylsilane (TIS) in dichloromethane (vol/vol) to remove -mtt group. N-

Succinimidyl acrylate (2 equiv) and DIEA (5 equiv) in DMF were added to the resin and 

coupled until Kaiser test became negative.  

Cleavage of the peptide from the resin 

4 mL of cleavage solution containing 92.5% trifluoroacetic acid (TFA), 2.5% TIS, 

2.5% water, 2.5% 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was incubated 

with 200 mg resin for 2~3 hours.  The peptide products were precipitated with 10 volume 

cold diethyl ether. The cleaved peptides were collected by centrifuge, washed with cold 

diethyl ether and purified by HPLC. The purified products were lyophilized and subjected 

to MALDI-TOF analysis. 

Preparation of cyclic peptide 

Purified peptide was dissolved in PBS buffer and incubated at room temperature 

for 4 hours, and subjected to HPCL for purification. Eluted peptide solution was 

lyophilized to give a white powder. Compared to linear peptides, 1H NMR shows the 

appearance of  δ 5.89 (m, 1H), proving the success of cyclization between side chain of 

cysteine and the acryloyl moiety of AcrK.  
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Figure 26  MALDI-TOF spectrum of CQWFSHR-AcrK, M.W.:1144.02 g/mol 
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Figure 27  MALDI-TOF spectrum of CGTWLKF-AcrK, M.W.:1035.28 g/mol 
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Figure 28  MALDI-TOF spectrum of CWRDYLI-AcrK, M.W.:1149.38 g/mol 
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Figure 29  1H NMR spectrum for cyclo(CWRDYLI-AcrK) 
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7. Fluorescence Polarization Measurement 

Synthesis of 5-carboxyfluorescein (FAM) -conjugated peptide (CX6-AcrK-K(5-FAM), X 

designates any amino acid) 

Couple the first lysine to the resin: 200 mg rink amide MBHA resin (Novabiochem) 

in DMF was added to a poly vessel, swelled for 1 h. Fmoc group of the resin was then 

deprotected by 20% (vol/vol) piperidine in Dimethylformamide (DMF) for 30 minutes, 

and then washed with DMF, dichloromethane (DCM) and methanol. Fmoc-Lys(mtt)-OH 

(4 equiv), tetramethyluronium hexafluorophosphate (HBTU, 4 equiv) and diisopropyl-

ethylamine (DIEA, 10 equiv) were dissolved in DMF. The solution was added to the 

reaction vessel under nitrogen and mixed with the resin. Coupling was not finished until 

Kaiser-ninhydrin test became negative.     

Couple 5-Carboxyfluorescein to lysine: -Mtt protecting group from the first lysine 

was removed by repeated washing of 1% TFA in dichloromethane (vol/vol) and 1% 

triisopropylsilane (TIS) in dichloromethane (vol/vol). Couple 5-Carboxyfluorescein (2 

equiv) and DIEA (5 equiv) in DMF were added to the resin and coupled until Kaiser test 

became negative. 

Couple the remaining amino acids to the resin: Fmoc-protected amino acids (4 

equiv), tetramethyluronium hexafluorophosphate (HBTU, 4 equiv) and diisopropyl-

ethylamine (DIEA, 10 equiv) were dissolved in DMF. The solution was added to the 

reaction vessel under nitrogen and mixed with the resin. Reaction was not finished until 

Kaiser-ninhydrin test became negative.  The last amino acid we used is Boc-Cys(trt)-OH. 

There is no additional deprotection steps after the final coupling.  
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Couple N-Succinimidyl acrylate to the second lysine: after the coupling of cysteine, 

use % TFA in dichloromethane (vol/vol) and 1% triisopropylsilane (TIS) in 

dichloromethane (vol/vol) to remove -mtt group from the second lysine. N-Succinimidyl 

acrylate (2 equiv) and DIEA (5 equiv) in DMF were added to the resin and coupled until 

Kaiser test became negative.  

Cleavage of the peptide from the resin: 4 mL of cleavage solution containing 92.5% 

trifluoroacetic acid (TFA), 2.5% TIS, 2.5% water, 2.5% 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) was incubated with 200 mg resin for 2 hours.  

The peptide products were precipitated with 10 volume cold diethyl ether. The cleaved 

peptides were collected by centrifuge, washed with cold diethyl ether and subjected to 

HPCL for purification. The purified products were lyophilized and subjected to MALDI-

TOF analysis. 

Preparetion of cyclic peptide: Purified peptide was dissolved in PBS buffer and 

incubated at room temperature for 4 hours, and subjected to HPCL for purification. Eluted 

peptide solution was lyophilized to give a white powder. 

Fluorescence polarization measurement 

25 nM 5-FAM-conjugated cyclic peptide and different concertation of target 

proteins (160 nM to 160 µM) were incubated at black 96-well plates. PBS buffer were 

added to make the final volume 200 µL in each well. Fluorescence polarization was 

measured by a microplate reader at Ex/Em = 490 nm / 520 nm.  
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8. I50 Value Measurement 

Synthesis of Boc-lys(Ac)-AMC 85 

Boc-lys(Ac)-OH (2.0 mmol, 576.7 mg) and 7-Amino-4-methylcoumarin (2.0 

mmol,350.4 mg) were dissolved in ice-chilled anhydrous THF (50 mL). Pyridine (20.0 

mmol, 1.6 mL) was added to the solution dropwise, followed by the addition of phosphoryl 

chloride (8.4 mmol, 0.8 mL). The mixture was stirred in ice-water bath for 3 hours. Later, 

the reaction was quenched by the addition of saturated sodium bicarbonate solution (50 

mL). The mixture was concentrated to 50 mL under reduced pressure. The mixture was 

extracted with 25 mL dichloromethane for three times, and washed with 25 mL saturated 

NaCl solution and 0.5 M HCl solution (4 x 50 mL). The combined dichloromethane 

extraction was dried over anhydrous MgSO4, concentrated under reduced pressure, and 

dissolved in HCl/MeOH (1:4 v/v). The solution was stirred at room temperature for 24 

hours and concentrated under reduced pressure, affording desired product (489.1 mg, 55% 

for two steps) as a yellow powder.   

 

 

Figure 30 Synthesis of Boc-Lys(Ac)-AMC 
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IC50 value measurement  

Peptide CQSLWMN-AcrK was pre-incubated at PBS buffer for 4 hours for 

cyclization, generating cyclo(CQSLWMN-AcrK). Different concentrations (1 nM – 1000  

µM) of cyclo(CQSLWMN-AcrK) and 5 µM HDAC8 were added to a black 96-well plate 

(Pierce). PBS buffer was added to make the final volume in each well 200 µL. The plate 

was incubated at 30℃ for 10 min. 50 µM Boc-Lys(Ac)-AMC was added to each well. 

After 1-hour incubation at 30℃, the HDAC-catalyzed deacetylation was terminated by 

addition of trichostatin A (TSA, 1 µM), followed by addition of trypsin (0.5 mg/mL) to the 

reaction solution. After additional 1-hour incubation at 30℃, the fluorescence of coumarin 

was measured by a microplate reader with Ex/Em = 360 nm/ 460 nm. Experiments of IC50 

measurements were repeated three times.  
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Figure 31 MALDI-TOF spectrum of CWRDYLI-AcrK-K(5-FAM), M.W.: 1636 g/mol 
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Figure 32 MALDI-TOF spectrum of CWRDYLIKK(5-FAM), M.W.: 1581 g/mol 
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Figure 33 MALDI-TOF spectrum of CWRDYLI-AcrK-K(5-FAM), M.W.: 1631 g/mol 
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Figure 34  MALDI-TOF spectrum of CWRDYLIK-K(5-FAM), M.W.: 1575 g/mol 
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Figure 35  MALDI-TOF spectrum of CQSLWMN-AcrK-K(5-FAM), M.W.: 1549 g/mol 
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Figure 36  MALDI-TOF spectrum of CQSLWMNK-K(5-FAM), M.W.: 1493 g/mol 
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Figure 37  1H NMR spectrum for Boc-Lys(Ac)-AMC 
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Results and Discussion 

 

1. Characterization of 1, 4-cycloaddition in sfGFP 

Before the construction of peptide libraries, we firstly tested 1, 4-cycloaddition 

between cysteine and the acrylamide moiety in model protein Met-Cys-(Ala)5-AcrK-

sfGFP and Met-Cys-(Ala)5-CrtK-sfGFP, respectively. Nε-acryloyl-L-lysine (AcrK) and 

Nε-crotonyl-L-lysine (CrtK) (Figure 38), two NCAAs both bearing an acrylamide moiety, 

were incorporated at amber TAG position by two mutants of PylRS, PrKRS (Y384W 

MmAcKRS1 mutant) and BuKRS (Y384W PylRS mutant), respectively. For better 

comparison, another two sfGFP mutants without cysteine, Met-(Ala)6-AcrK-sfGFP and 

Met-(Ala)6-CrtK-sfGFP, were generated in the same way and used as linear controls. 

Theoretically, these two linear controls have no free cysteine and cannot undergo 

cyclization. 

 

Figure 38 Structure of AcrK and CrtK. 
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To test the success of cyclization, hydrozonoyl chloride 1 acts as a fluorogenic 

probe. If there is any unreacted acrylamide moiety in Met-Cys-(Ala)5-AcrK-sfGFP or Met-

Cys -(Ala)5-CrtK-sfGFP, the remaining acrylamide moiety undergoes a fluorescence turn-

on nitrile imine cycloaddition a with hydrozonoyl chloride 1, leading to a fluorescent 

cycloaddition product from those non-fluorescence starting materials (Figure 39A). 

Thereby monitoring fluorescence is an approach to detect the cyclization process. Details 

of this nitrile imine cycloaddition have been demonstrated in Chapter II. The best condition 

for the reaction is in acetonitrile-50 mM phosphate buffer ( vol/vol = 1:1) at pH 10. The 

reaction is very efficient and can be finished in one minute. In this way, sfGFP mutants 

bearing AcrK and CrtK were both incubated with hydrozonoyl chloride in acetonitrile-50 

mM phosphate buffer (1:1), pH 10 for 10 min, and then subjected to SDS page analysis 

(Figure 39B). Both Met-Cys-(Ala)5-AcrK-sfGFP(a) and Met-Cys-(Ala)5-CrtK-sfGFP (d) 

show no fluorescence, verifying that the cyclization through 1,4-addition is already 

completed during sfGFP expression and purification steps. In contrast, both of the two 

sfGFP mutants without cysteine show fluorescence. Additionally, the linear sfGFP mutants 

incorporated with CrtK shows weaker fluorescence than the mutants with AcrK, 

demonstrating the fact that CrtK was less reactive that AcrK. This is because the methyl 

group in CrtK residue hinders the attack from cysteine thiol due to steric effect, and thus 

the reaction rate of CrtK with hydrozonoyl chloride is slower than that of AcrK.  
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Figure 39 (A) Click reaction between hydrozonoyl chloride and alkene; (B) SDS-Page 
analysis of a. Met-Cys-(Ala)5-AcrK-sfGFP and control b. Met-(Ala)6-AcrK-sfGFP, control 
c.Met-(Ala)6-CrtK-sfGFP and d. Met-Cys-(Ala)5-CrtK-sfGFP after reaction with 
hydrozonoyl chloride in acetonitrile-50 mM phosphate buffer (1:1) with pH 10. The top 
gels were stained by Coomassie blue; the bottom are the same gels but visualized by 
fluorescence before stained by Coomassie blue. 

 

 

 

 

  



  

89 

 

 

2. Construction of Phage-displayed Cyclic Peptide Library  

Encouraged by the success of cyclization reactions on model proteins, we extended 

this approach to the construction of phage-displayed cyclic peptide library bearing a 

conserved cysteine and AcrK. To incorporate NCAAs into phage library, our lab has 

developed a strategy based on the amber stop codon suppression. In our methodology, 

pADLg3 phagemid was used to produce full-length pIII coat protein, where the foreign 

peptide incorporated with an NCAA is fused to. Compared to the other phage vectors, 

pADL phagemids have notable advantages such as low contamination risk, PelB secretion 

and single pDNA package. A helper phage lacking pIII is required to pack phagemid, and 

guarantee that the only pIII derived from pADL phagemid. After transformation with cells 

(e.g. Escherichia coli) and expression, single-strand phagemid DNA is infected by helper 

phages and efficiently packed into viral particles. Then the packed fusion proteins will be 

released from host cells.  

For the genetic construction, pADL library, a TAG-enriched M13 phagemid library 

of pIII fusion proteins, was constructed by flanking diversity of 6 residue positions between 

a cysteine codon and the amber stop codon, each residue position randomizing 20 canonical 

amino acids. Polymerase chain reaction (PCR) enables the insertion of six randomized 

codons (NNKs) between pelB and pIII in the pADL phagemid. The amino acid sequence 

is: (PelB)-Ala-Cys-(Xxx)6-TAG-(pIII) (Xxx designates a randomized canonical amino 

acid). More than 109 clones were obtained to guarantee the coverage for the possibility of 

all 20 amino acids at each randomized position (206 = 6.4x107).  

Next, we investigated the expression of phage library. Given that two plasmids with 

a same replication origin are incompatible during expression, CloDF origin was used 
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instead of p15A in synthetase plasmid to avoid the conflict, since the helper phage M13K07 

has a p15A origin. To incorporate AcrK into the phage library, synthetase plasmid pEVOL-

CloDF-PrKRS were constructed, as reported previously.6 The M13K07 helper phage is 

used for phage assembly and infectivity during expression to generate a fusion peptide on 

the phage surface. In addition, genetic modification of helper phages is necessary for the 

pIII knockout to guarantee that pIII only comes from phagemid. Herein, we mutated Q350 

to stop codon TAA to delete pIII from helper phage. The cloned pADLg3 phagemid, 

M13K07g3TAA and the synthetase plasmid were electroporated into E. Coli Top10 

competent cells and expressed with AcrK. Thus, the pIII fusion Ala-Cys-(Xxx)6-AcrK 

peptide was displayed on the surface of M13 filamentous phage and cyclized through 1,4-

addition between cysteine and AcrK. The expression yield for purified phage is 1010 

colony-forming units/L. 

 

3. Screening a Phage-displayed Cyclic Library Against Target Proteins: TEV Protease 

and HDAC8 

With the 6-mer cyclic phage library in hand, we performed the selection against 

two target proteins: a well-studied target protein tobacco etch virus (TEV) protease and a 

cancer related protein HDAC8, respectively. A biotin capture reagent, here biotin-

sulfosuccinimidyl ester, which could react with a primary amine, was used for the 

biotinylation of target proteins. Next, the 6-mer cyclic phage library with more than 109 

different pIII fusion peptides was subjected to three consecutive rounds of selection against 

two biotinylated target proteins immobilized on streptavidin magnetic beads, respectively. 

To remove impact from non-specific binding, phage was pre-incubated with streptavidin 
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magnetic beads before every round of selection. After each round of selection, Top10F’ 

cells are infected by the selected phage, and were used to extract selected phagemid DNA. 

Next, these selected phagemids were amplified, and then subjected to the next round of 

selection (Figure 40).  
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Figure 40  Phage generation and amplification 

 

 

 

 

 

Figure 41  General process of phage selection  
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After three rounds of selection against streptavidin mobilized biotinylated-TEV 

protease, dramatically enriched phage-displayed peptide sequences were observed. Eluted 

number of phages increase 250 folds from the first round to the last round. A number of 

clones were chosen and sent for DNA sequencing to identify the sequences. Sequencing 

results show that the cyclic peptide sequence, CWRDYLI-AcrK, is the most abundant 

sequence, followed by CQWFSHR-AcrK and CGTWLKF-AcrK (Table 1). Later these 

three peptide sequences were synthesized through solid phase peptide synthesis (SPPS) 

method. Solid phase peptide synthesis is based on a solid resin and synthesized from C-

terminal to N-terminal using N-terminal protected amino acids. HPLC allows the 

purification of the final peptide products. Isothermal thermal titration (ITC) was used to 

characterize the binding affinity between selected cyclic peptides and target protein TEV 

protease.  

For selection against HDAC8, phage enrichment was also observed after three 

rounds of selection against streptavidin mobilized succinimidyl-HDAC8. Eluted number 

of phage particles increases from 40 folds from the first round to the third round. Out of all 

identified phagemids sequence, CQSLWMN-AcrK is the most abundant sequence, 

followed by CKHSLWV-AcrK and CLSDCRU-AcrK (Table 1). 
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Table 1 Selected peptide sequencing result* 

Target protein Peptide Number of clones 

TEV protease 

 

CWRDYLI-AcrK 10 

CQWFSHR-AcrK 8 

CGTWLKF-AcrK 7 

HDAC8 CQSLWMN-AcrK 8 

CKHSLWV-AcrK 2 

CLSDCRU-AcrK 1 

*36 clones were sequenced after the 3rd round of selections. 

 

4. Fluorescence Polarization Study of HDAC8 and TEV Protease 

Having identified the selected peptide sequence, we characterized interaction and 

inhibition ability of them against target proteins. Fluorescence polarization (FP) is a 

sensitive nonradioactive approach for the measurement of interactions between 

macromolecules when one of the reactant is relatively small and fluorophore-labeled. 

When excited by polarized light, the fluorescent labeled molecule emits light with a degree 

of polarization that is inversely proportional to the molecular rotation of fluorophore-

labeled molecule.86 Moreover, the molecular rotation is related to the molecular weight. A 

lager molecule has a slower rotation.86,87 Thus, when a small fluorophore binds to a 

macromolecule, association rate or dissociation rate could be determined by monitoring 

the change of polarization. In general, a small fluorophore is less than 1500 Da. Sometimes 
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a fluorophore can be up 5000 Da if the binding protein is much larger than itself. 

Quantitatively, FP is termed as the difference between the parallel and perpendicular 

emission intensity divided by the total of the parallel and perpendicular emission intensity: 

FP = (Iparallel - Iperpendicular) / (Iparallel - Iperpendicular) 

where Iparallel is the intensity of emission light which is parallel to the excitation light plane 

and Iperpendicular is the intensity of emission light which is perpendicular to the excitation 

light plane. 

 

 
 
 

Figure 42 Mechanism of fluorescence polarization 
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In this dissertation, small peptides conjugated with 5-FAM fluorophore were used 

as fluorescence polarization assay. For TEV protease, we chose two most abundant peptide 

sequences and synthesized their fluorophore-labeled derivatives: cyclo(CWRDYLI-AcrK-

K(5-FAM)) and cyclo(CQWFSHR-AcrK-K(5-FAM)). For HDAC8, we chose the most 

abundant peptide and synthesized its fluorophore-labeled derivative: cyclo(CQSLWMN-

AcrK-K(5-FAM)). At the same time, linear counterparts without acryloyl group on the 

lysine were also synthesized as linear controls. To determine the interaction between 

fluorophore-labeled peptide probes and target proteins, fluorophore-labeled peptide probes 

in PBS buffer were added into a 96-well, black-bottom plate. Increasing concentrations of 

target proteins were added to different well, and mixed with previously added fluorophore-

labeled peptide probe. The total reaction volume in each well is 200 uL. The final 

concentration of each fluorophore-labeled peptide probe is fixed to 25 nM, while the final 

concentration of each target proteins ranges from 100 nM to 120 µM. The plates were 

subjected to BioTek Synergy H1 microplate reader, with a 490 nm excitation filter and a 

520 nm emission filter at 30 °C.  

The shape of relation curve of polarization and protein concentration is sigmoidal. 

From the curve of polarization vs protein concentration, dissociation rate (kd) was 

calculated. Compared to liner counterparts without acryloyl group in the lysine, all 

fluorophore-labeled cyclic peptide probes have better binding affinity with 5-7 folds 

smaller kd (Figure 43). Thus, we have established a methodology for the discovery of 

cyclic peptide inhibitors with significant increased affinity and better specificity. 
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Figure 43  (A) Selected cyclic peptides conjugated to 5-FAM fluorophore as FP probes (2 
- 4); linear peptides conjugated to 5-FAM fluorophore as FP probes (5 - 7). (B) Binding 
affinity of FP probes (2-7) to TEV protease and HDAC8.  
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Figure 44 Fluorescence polarization measurement of cyclic peptides CWRDYLI-AcrK-
K(5-FAM) and CQWFSHR-AcrK-K(5-FAM) with TEV Protease 
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Figure 45 Fluorescence polarization measurement of linear peptides CWRDYLIK-K(5-
FAM) and CQWFSHRK-K(5-FAM) with TEV protease 
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Figure 46 Fluorescence polarization measurement of cyclic peptide CQSLWMN-AcrK-
K(5-FAM) with HDAC8 
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Figure 47 Fluorescence polarization measurement of linear peptide CQSLWMNK-K(5-

FAM) with HDAC8 
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Figure 48 Fluorescence polarization measurement of cyclic peptide CWRDYLI-AcrK-
K(5-FAM) with HDAC8 
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5. Inhibition Ability Measurement 

Inhibition ability of selected peptide with HDAC8 was investigated by the 

measurement of half maximal inhibitory concentration (IC50 value). In this dissertation, a 

fluorophore 7-Amino-4-methylcoumarin (AMC) derivative,  Boc-lys(Ac)-AMC, was used 

to obtain IC50 value of HDAC8.85,88,89 Boc-lys(Ac)-AMC was synthesized from α-BOC-ε-

acetyl lysine and 7-Amino-4-methylcoum using POCl3 and pyridine.90 Different 

concentrations ranging from 1 nM to 100 µM of selected cyclic peptide,  CQSLWMN-

AcrK, were mixed with 2 µM of purified HDAC8 in black 96-well plate. PBS buffer was 

added to make the total reaction volume in each well 200 µL. 50 µM Boc-lys(Ac)-AMC 

was added to the solution. After 1 hour incubation, 2 µM TSA was added to the solution 

to stop the HDAC8 inhibition activity, followed by the addition of trypsin (0.5 mg/mL). 

The plate was incubated at 30 °C for 2 hours, allowing the cleavage of trypsin of 

deacetylated assay and releasing free AMC fluorophore. Intensity was normalized for the 

inhibition ability. IC50 value for CQSLWMN-AcrK against HDAC8 is 9.7±0.4 µM. 

Compared to well-studied HDAC inhibitors such as SAHA (IC50 = 306 nM ) and TSA 

(IC50 = 110 nM ), the inhibition ability is not very strong.91 However, as the library only 

contains 6 randomized amino acids, the inhibition ability for this small size library is good. 

We expect by screening against a cyclic phage library with more positions with randomized 

amino acids, potential inhibitors would be selected with lower IC50 value and increased 

inhibition ability.   
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Figure 49 Scheme of Boc-Lys(Ac)-AMC assay. Inhibition activity is determined by 
monitoring fluorescence form methylcoumarin fluorophores. 
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Figure 50 I50 measurement of cyclic peptide CQSLWMN-AcrK with HDAC8 
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CHAPTER IV 

CONCLUSIONS 

 

In the first part of this study, we proposed a mechanism for nitrile-imine 

cycloaddition in the absence of chloride. Then we performed a serial of kinetic study and 

protein labeling experiment, demonstrating that the nitrile imine cycloaddition is an ultra 

rapid reaction. Also, we found an optimized reaction condition, pH 10 without chloride, 

for efficient protein labeling which can be finished in 1 min.  

In the second part, we have established a methodology to select bivalent inhibition 

ligands from cyclic phage library against specific target proteins with high affinity, better 

specificity and increased inhibition ability. In this study, we incorporated non-canonical 

amino acid AcrK and constructed 6-mer cyclic peptide phage library. The cyclization was 

through 1,4-addition between cysteine and acryloyl moiety. Phage display methodology 

was used for the selection of target proteins via three consecutive rounds of screening 

against streptavidin mobilized biotinylated TEV protease and biotinylated HDAC8, 

respectively. Fluorescence polarization measurements have indicated the high specificity 

and affinity of selected peptides with target proteins. IC50 value of selected peptide, 

CQSLWMN-AcrK, against HDAC8 is 9.7 ± 0.4 µM. We expect larger library such as 12-

mer cyclic phage library would have increased inhibition ability. Also, further studies will 

focus on inhibition mode based on protein structure, cellular permeability and delivery, 

and in vivo study. Moreover, we will also apply this methodology to discover peptide-based 

drugs for more HDACs and other human disease related proteins. 



  

107 

 

 

REFERENCES 

 

1. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The Future of Peptide-based 

Drugs. Chem. Biol. Drug Des. 81, 136–147 (2013). 

2. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future 

directions. Drug Discov. Today 20, 122–128 (2015). 

3. Nielsen, D. S. et al. Orally Absorbed Cyclic Peptides. Chem.Rev. 117, 8128 

(2017). 

4. Joo, S. H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. 

Ther. 20, 19–26 (2012). 

5. Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and 

future. Curr. Opin. Chem. Biol. 38, 24–29 (2017). 

6. Lee, Y.-J. et al. A Genetically Encoded Acrylamide Functionality. ACS Chem. 

Biol. 8, 1664–1670 (2013). 

7. Berth-Jones, J. The use of ciclosporin in psoriasis. J. Dermatolog. Treat. 16, 258–

277 (2005). 

8. Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous 

Bacteriophage: Biology, Phage Display and Nanotechnology Applications. Curr. 

Issues Mol. Biol. 13, 51–76 (2011). 

9. Smith, G. P. & Petrenko, V. A. Phage Display. Chem. Rev. 97, 391–410 (1997). 



  

108 

 

 

10. Qi, H., Lu, H., Qiu, H.-J., Petrenko, V. & Liu, A. Phagemid Vectors for Phage 

Display: Properties, Characteristics and Construction. J. Mol. Biol. 417, 129–143 

(2012). 

11. Meyer, S. C., Shomin, C. D., Gaj, T. & Ghosh, I. Tethering Small Molecules to a 

Phage Display Library: Discovery of a Selective Bivalent Inhibitor of Protein 

Kinase A. J. AM. CHEM. SOC 129, 13812–13813 (2007). 

12. Schlippe, Y. V. G., Hartman, M. C. T., Josephson, K. & Szostak, J. W. In Vitro 

Selection of Highly Modified Cyclic Peptides That Act as Tight Binding 

Inhibitors. J. AM. CHEM. SOC 134, 10469–10477 (2012). 

13. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial 

chemical libraries based on bicyclic peptides. Nat. Chem. Biol.  7, 502–507 (2009). 

14. Tian, F., Tsao, M.-L. & Schultz, P. G. A Phage Display System with Unnatural 

Amino Acids. J. Am. Chem. Soc.  126, 15962–15963 (2004). 

15. Lee, H. S., Spraggon, G., Schultz, P. G. & Wang, F. Genetic Incorporation of a 

Metal-Ion Chelating Amino Acid into Proteins as a Biophysical Probe. J. Am. 

Chem. Soc. 131, 2481–2483 (2009). 

16. Ng, S. & Derda, R. Organic & Biomolecular Chemistry Phage-displayed 

macrocyclic glycopeptide libraries. Org. Biomol. Chem. 14, (2016). 

17. Wang, L., Magliery, T. J., Liu, D. R. & Schultz, P. G. A New Functional 

Suppressor tRNA/Aminoacyl−tRNA Synthetase Pair for the in Vivo Incorporation 

of Unnatural Amino Acids into Proteins. J. Am. Chem. Soc. 122, 5010–5011 



  

109 

 

 

(2000). 

18. Ng, S. & Derda, R. Organic &amp; Biomolecular Chemistry Phage-displayed 

macrocyclic glycopeptide libraries. Org. Biomol. Chem 14, (2016). 

19. Wan, W., Tharp, J. M. & Liu, W. R. Pyrrolysyl-tRNA synthetase: An ordinary 

enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta - 

Proteins Proteomics 1844, 1059–1070 (2014). 

20. Schilling, C. I., Jung, N., Biskup, M., Schepers, U. & Brae, S. Bioconjugation via 

azide–Staudinger ligation: an overview. Chem. Soc. Rev. Chem. Soc. Rev 40, 

4840–4871 (2011). 

21. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell 

surfaces in living animals. Nature 430, 873 (2004). 

22. Lang, K. & Chin, J. W. Cellular Incorporation of Unnatural Amino Acids and 

Bioorthogonal Labeling of Proteins. Chem.Rev. 114, 4764–4806 (2014). 

23. McKay, C. S. & Finn, M. G. Click Chemistry in Complex Mixtures: 

Bioorthogonal Bioconjugation. Chem. Biol. 21, 1075–1101 (2014). 

24. Beue, D., Qiao, G. G. & Wentrup, C. Nitrile Imines: Matrix Isolation, IR Spectra, 

Structures, and Rearrangement to Carbodiimides. J. Am. Chem. Soc 134, 

5339−5350 (2012). 

25. Beue, D. & Wentrup, C. Carbenic Nitrile Imines: Properties and Reactivity. J. 

Org. Chem. 79, 1418–1426 (2014). 



  

110 

 

 

26. Sibi, M. P., Stanley, L. M. & Jasperse, C. P. An Entry to a Chiral Dihydropyrazole 

Scaffold: Enantioselective [3 + 2] Cycloaddition of Nitrile Imines. J. AM. CHEM. 

SOC 127, 8276–8277 (2005). 

27. Zhang, Y., Liu, W. & Zhao, Z. K. Nucleophilic Trapping Nitrilimine Generated by 

Photolysis of Diaryltetrazole in Aqueous Phase. Molecules 19, 306–315 (2014). 

28. Toseland, C. P. Fluorescent labeling and modification of proteins. J. Chem. Biol. 6, 

85–95 (2013). 

29. Vázquez, A. et al. Mechanism-Based Fluorogenic trans -Cyclooctene-Tetrazine 

Cycloaddition. Angew. Chemie Int. Ed. 56, 1334–1337 (2017). 

30. Song, W., Wang, Y., Qu, J., Madden, M. M. & Lin, Q. A photoinducible 1,3-

dipolar cycloaddition reaction for rapid, selective modification of tetrazole-

containing proteins. Angew. Chem., Int. Ed. 47, 2832–2835 (2008). 

31. Ramil, C. P. & Lin, Q. Photoclick chemistry: a fluorogenic light-triggered in vivo 

ligation reaction. Curr. Opin. Chem. Biol. 21, 89–95 (2014). 

32. Ramil, C. P. & Lin, Q. Bioorthogonal chemistry: strategies and recent 

developments. Chem. Commun. 49, 11007–11022 (2013). 

33. Song, W., Wang, Y., Qu, J. & Lin, Q. Selective Functionalization of a Genetically 

Encoded Alkene-Containing Protein via Photoclick Chemistry in Bacterial Cells. 

J. Am. Chem. Soc., 130, 9654–9655 (2008). 

34. Shang, X. et al. Fluorogenic protein labeling using a genetically encoded 



  

111 

 

 

unstrained alkene. Chem.Sci 8, (2017). 

35. Eberharter, A. & Becker, P. B. Histone acetylation: a switch between repressive 

and permissive chromatin Second in review series on chromatin dynamics. EMBO 

Rep. 3, 224–229 (2002). 

36. Wolfson, N. A., Ann Pitcairn, C. & Fierke, C. A. HDAC8 substrates: Histones and 

beyond. Biopolymers 99, 112–126 (2013). 

37. Seto, E. & Yoshida, M. Erasers of Histone Acetylation: The Histone Deacetylase 

Enzymes. Cold Spring Harb Perspect Biol 6, 1–26 (2014). 

38. Marks, P. A. et al. Histone deacetylases and cancer: causes and therapies. Nat. 

Rev. Cancer 1, 194 (2001). 

39. Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the 

TSA and SAHA inhibitors. Nature 401, 188 (1999). 

40. Negmeldin, A. T., Knoff, J. R. & Pflum, M. K. H. The structural requirements of 

histone deacetylase inhibitors: C4-modified SAHA analogs display dual 

HDAC6/HDAC8 selectivity. Eur. J. Med. Chem. 143, 1790–1806 (2018). 

41. Kelly, W. K. et al. Phase I Study of an Oral Histone Deacetylase Inhibitor, 

Suberoylanilide Hydroxamic Acid, in Patients With Advanced Cancer. J. Clin. 

Oncol. 23, 3923–3931 (2005). 

42. Chakrabarti, A. et al. HDAC8: a multifaceted target for therapeutic interventions. 

Trends Pharmacol. Sci. 36, 481–492 (2015). 



  

112 

 

 

43. Alam, N. et al. Structure-Based Identification of HDAC8 Non- histone Substrates 

Structure-Based Identification of HDAC8 Non-histone Substrates. Structure 458–

468 (2016). doi:10.1016/j.str.2016.02.002 

44. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone 

deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. 

Natl. Acad. Sci. U. S. A., 101, 15064–15069 (2004). 

45. Somoza, J. R. et al. Structural Snapshots of Human HDAC8 Provide Insights into 

the Class I Histone Deacetylases Treatment with HDIs causes tumor cells to cease 

growth and to either differentiate or become apoptotic. These findings have led to 

interest in the use of HDIs as an. Structure 12, 1325–1334 (2004). 

46. Vannini, A. et al. Substrate binding to histone deacetylases as shown by the crystal 

structure of the HDAC8-substrate complex. EMBO Rep. 8, 879–884 (2007). 

47. Dowling, D. P., Gantt, S. L., Gattis, S. G., Fierke, C. A. & Christianson, D. W. 

Structural Studies of Human Histone Deacetylase 8 and Its Site-Specific Variants 

Complexed with Substrate and Inhibitors,. Biochemistry 47, 13554–13563 (2008). 

48. Gantt, S. L., Joseph, C. G. & Fierke, C. A. Activation and Inhibition of Histone 

Deacetylase 8 by Monovalent Cations. J. Biol. Chem. 285, 6036–6043 (2010). 

49. Gantt, S. L., Gattis, S. G. & Fierke, C. A. Catalytic Activity and Inhibition of 

Human Histone Deacetylase 8 Is Dependent on the Identity of the Active Site 

Metal Ion. Biochemistry 45, 6170–6178 (2006). 

50. Liu, D. S. et al. Diels–Alder Cycloaddition for Fluorophore Targeting to Specific 



  

113 

 

 

Proteins inside Living Cells. J. Am. Chem. Soc. 134, 792–795 (2012). 

51. Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. 

Fast and Sensitive Pretargeted Labeling of Cancer Cells through a Tetrazine/trans-

Cyclooctene Cycloaddition. Angew. Chemie Int. Ed. 48, 7013–7016 (2009). 

52. Taylor, M. T., Blackman, M. L., Dmitrenko, O. & Fox, J. M. Design and Synthesis 

of Highly Reactive Dienophiles for the Tetrazine–trans-Cyclooctene Ligation. J. 

Am. Chem. Soc. 133, 9646–9649 (2011). 

53. Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine Ligation: Fast 

Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity. J. Am. 

Chem. Soc. 130, 13518–13519 (2008). 

54. Devaraj, N. K., Hilderbrand, S., Upadhyay, R., Mazitschek, R. & Weissleder, R. 

Bioorthogonal Turn-On Probes for Imaging Small Molecules inside Living Cells. 

Angew. Chemie Int. Ed. 49, 2869–2872 (2010). 

55. Chang, P. V et al. Copper-free click chemistry in living animals. Proc. Natl. Acad. 

Sci. U. S. A., 107, 1821–1826 (2010). 

56. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. 

Proc. Natl. Acad. Sci. U. S. A., 104, 16793–16797 (2007). 

57. Sletten, E. M., Nakamura, H., Jewett, J. C. & Bertozzi, C. R. 

Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-

Cyclodextrin. J. Am. Chem. Soc. 132, 11799–11805 (2010). 



  

114 

 

 

58. Codelli, J. A., Baskin, J. M., Agard, N. J. & Bertozzi, C. R. Second-Generation 

Difluorinated Cyclooctynes for Copper-Free Click Chemistry. J. Am. Chem. Soc. 

130, 11486–11493 (2008). 

59. Rostovtsev, V. V, Green, L. G., Fokin, V. V & Sharpless, K. B. A Stepwise 

Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective ‘Ligation’ of 

Azides and Terminal Alkynes. Angew. Chemie Int. Ed. 41, 2596–2599 (2002). 

60. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click Chemistry: Diverse Chemical 

Function from a Few Good Reactions. Angew. Chemie Int. Ed. 40, 2004–2021 

(2001). 

61. Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. Polytriazoles as 

Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 6, 2853–2855 (2004). 

62. Wu, B., Wang, Z., Huang, Y. & Liu, W. R. Catalyst-Free and Site-Specific One-

Pot Dual-Labeling of a Protein Directed by Two Genetically Incorporated 

Noncanonical Amino Acids. ChemBioChem 13, 1405–1408 (2012). 

63. Rossin, R. et al. Highly Reactive trans-Cyclooctene Tags with Improved Stability 

for Diels–Alder Chemistry in Living Systems. Bioconjug. Chem. 24, 1210–1217 

(2013). 

64. Ning, X. et al. Protein Modification by Strain-Promoted Alkyne–Nitrone 

Cycloaddition. Angew. Chemie Int. Ed. 49, 3065–3068 (2010). 

65. Plass, T. et al. Amino Acids for Diels–Alder Reactions in Living Cells. Angew. 

Chemie Int. Ed. 51, 4166–4170 (2012). 



  

115 

 

 

66. Lang, K. et al. Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for 

Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid 

Fluorogenic Diels–Alder Reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012). 

67. McKay, C. S., Moran, J. & Pezacki, J. P. Nitrones as dipoles for rapid strain-

promoted 1,3-dipolar cycloadditions with cyclooctynes. Chem. Commun. 46, 931–

933 (2010). 

68. Gordon, C. G. et al. Reactivity of Biarylazacyclooctynones in Copper-Free Click 

Chemistry. J. Am. Chem. Soc. 134, 9199–9208 (2012). 

69. Mckay, C. S., Chigrinova, M., Blake, J. A. & Pezacki, J. P. Organic &amp; 

Biomolecular Chemistry Kinetics studies of rapid strain-promoted [3 + 2]-

cycloadditions of nitrones with biaryl-aza-cyclooctynone. Org. Biomol. Chem 10, 

(2012). 

70. Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chemie Int. Ed. 

English 2, 565–598 (1963). 

71. Huisgen, R. et al. 1.3-Dipolare Additionen, II. Synthese von 1.2.4-Triazolen aus 

Nitriliminen und Nitrilen. Justus Liebigs Ann. Chem. 653, 105–113 (1962). 

72. Song, W., Wang, Y., Qu, J. & Lin, Q. Selective Functionalization of a Genetically 

Encoded Alkene-Containing Protein via ‘Photoclick Chemistry’ in Bacterial Cells. 

J. Am. Chem. Soc. 130, 9654–9655 (2008). 

73. Wang, Y., Song, W., Hu, W. J. & Lin, Q. Fast Alkene Functionalization In Vivo 

by Photoclick Chemistry: HOMO Lifting of Nitrile Imine Dipoles. Angew. Chemie 



  

116 

 

 

Int. Ed. 48, 5330–5333 (2009). 

74. Song, W., Wang, Y., Qu, J., Madden, M. M. & Lin, Q. A Photoinducible 1,3-

Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-

Containing Proteins. Angew. Chemie Int. Ed. 47, 2832–2835 (2008). 

75. Yu, Z., Pan, Y., Wang, Z., Wang, J. & Lin, Q. Genetically Encoded Cyclopropene 

Directs Rapid, Photoclick-Chemistry-Mediated Protein Labeling in Mammalian 

Cells. Angew. Chemie Int. Ed. 51, 10600–10604 (2012). 

76. Kaya, E. et al. A Genetically Encoded Norbornene Amino Acid for the Mild and 

Selective Modification of Proteins in a Copper-Free Click Reaction. Angew. 

Chemie Int. Ed. 51, 4466–4469 (2012). 

77. Hegarty, A. F., Cashman, M. P. & Scott, F. L. The kinetics of nitrilimine formation 

in base-catalysed hydrolysis of hydrazonyl halides. J. Chem. Soc, Perkin Trans. 2 

44–52 (1972).  

78. Billups, D. & Attwell, D. Control of intracellular chloride concentration and 

GABA response polarity in rat retinal ON bipolar cells. J. Physiol. 545, 183–198 

(2002). 

79. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid-phase peptide 

synthesis. J. Pept. Sci. 22, 4–27 (2016). 

80. O’Neil, K. T. et al. Identification of novel peptide antagonists for GPIIb/IIIa from 

a conformationally constrained phage peptide library. Proteins Struct. Funct. 

Bioinforma. 14, 509–515 (1992). 



  

117 

 

 

81. Deyle, K., Kong, X.-D. & Heinis, C. Phage Selection of Cyclic Peptides for 

Application in Research and Drug Development. Acc. Chem. Res. 50, 1866–1874 

(2017). 

82. Palomo, J. M. Solid-phase peptide synthesis: an overview focused on the 

preparation of biologically relevant peptides. RSC Adv. 4, 32658–32672 (2014). 

83. Sarin, V. K., Kent, S. B. H., Tam, J. P. & Merrifield, R. B. Quantitative monitoring 

of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 117, 

147–157 (1981). 

84. Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Color test for detection 

of free terminal amino groups in the solid-phase synthesis of peptides. Anal. 

Biochem. 34, 595–598 (1970). 

85. Galleano, I., Nielsen, J. & Madsen, A. S. Letter Syn lett Scalable and Purification-

Free Synthesis of a Myristoylated Fluoro- genic Sirtuin Substrate. 28, 2169–2173 

(2017). 

86. Arkin, M. R., Glicksman, M. A., Fu, H., Havel, J. J. & Du, Y. Inhibition of 

Protein-Protein Interactions: Non- Cellular Assay Formats. (2012). 

87. Ng, Y. Z., Baldera-Aguayo, P. A. & Cornish, V. W. Fluorescence Polarization 

Assay for Small Molecule Screening of FK506 Biosynthesized in 96-Well 

Microtiter Plates. Biochemistry 56, 5260–5268 (2017). 

88. Wegener, D., Wirsching, F., Riester, D. & Schwienhorst, A. A Fluorogenic 

Histone Deacetylase Assay Well Suited for High-Throughput Activity Screening. 



  

118 

 

 

Chem. Biol. 10, 61–68 (2003). 

89. Grozinger, C. M. & Schreiber, S. L. Deacetylase Enzymes: Biological Functions 

Review and the Use of Small-Molecule Inhibitors. Chem. Biol. 9, 3–16 (2018). 

90. Hoffmann, K., Brosch, G., Loidl, P. & Jung, M. A non-isotopic assay for histone 

deacetylase activity. Nucleic Acids Res. 27, (1999). 

91. Huber, K. et al. Inhibitors of Histone Deacetylases CORRELATION BETWEEN 

ISOFORM SPECIFICITY AND REACTIVATION OF HIV TYPE 1 (HIV-1) 

FROM LATENTLY INFECTED CELLS. jounal Biol. Chem. 286, 22211–22218 

(2011). 

 

 




