
VALIDATION AND ANALYSIS OF NUMERICAL METHODS FOR SOLVING

FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS

A Thesis

by

CONNOR LAWRENCE MITCHELL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Alan Freed
Committee Members, Anastasia Muliana

Raytcho Lazarov
Head of Department, Andreas Polycarpu

May 2018

Major Subject: Mechanical Engineering

Copyright 2018 Connor Lawrence Mitchell

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/187122233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Fractional-order differential equations have been very effective in modeling the behavior of var-

ious phenomena that have been otherwise difficult to accurately simulate. A new class of predictor-

corrector schemes for solving nonlinear fractional-order differential equations has been proposed

with claims of both increased accuracy and decreased computational cost. The purpose of this

research is to test and attempt to validate these claims through both an independent replication of

the results reported for the new method, as well as a comparison against the performance of an

existing standard. Additionally, an operational software package that implements this new method

will result as a byproduct of this research.

Independent simulations are run for this new method, and compared against the findings of

this new method’s author. This research is broken down into three main areas of interest: (1)

Independently develop software for the newly proposed and existing methods, (2) Conduct an error

analysis on the methods’ order of accuracy, and (3) Conduct a computational cost analysis of the

two methods in their pure form. This research has successfully created a tool for solving fractional-

order differential equations with greater accuracy than the existing method, with replicated findings

in regard to order of accuracy. The claims of decreased computational cost were neither confirmed

or disproved, and require further study. The results of this research have not only increased the

validity and usage-case understanding of the newly proposed method, but also raised new areas for

future work with respect to optimization and run speed.

ii

DEDICATION

For my family, who have shaped me into the person I am, support me in every endeavor, and will

always be a part of my heart. Thank you Don, Fay, Mark, Susan, and Taylor.

iii

ACKNOWLEDGMENTS

I would like to extend a special thank you to my advisor, Dr. Alan Freed. As a former profes-

sor of mine, your passion and enthusiasm for teaching speaks volumes to your character, and your

courses inspired my career path. As an advisor, you were always available and eager to help guide

me in research or otherwise, and you taught me the value of thought. Getting to work with you as

a student, teaching assistant, and researcher has been an absolute pleasure, and I want to thank you

for all of your time and support.

I would also like to thank Dr. Muliana and Dr. Lazarov for serving on my thesis committee,

dedicating their time to me, and supporting me throughout my degree program.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Alan Freed and Dr. Anastasia

Muliana of the Department of Mechanical Engineering and Dr. Raytcho Lazarov of the Department

of Mathematics. The data and mathematical models analyzed for this thesis were provided by Dr.

Freed. All other work conducted for the thesis was completed by the student independently.

Funding Sources

This thesis was partially funded by the Texas A&M University Engineering Experiment Station

(TEES).

v

NOMENCLATURE

ABM Adams-Bashforth-Moulton

FDE Fractional Differential Equation

FFT Fast Fourier Transform

MF-PCL (Acronym undefined by [1]) Second-order scheme
with linear interpolation

MF-PCQ (Acronym undefined by [1]) Third-order scheme
with quadratic interpolation

ODE Ordinary Differential Equation

PC Predictor Corrector

PECE Predict Evaluate Correct Evaluate

STEM Science, Technology, Engineering, and Mathematics

TEES Texas A&M University Engineering Experiment Station

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Introduction. 1
1.2 Motivation . 2
1.3 Fractional-Order Differential Equations . 3
1.4 Adams-Bashforth-Moulton (ABM) Method . 5
1.5 New Proposed Method by Nguyen and Jang . 6

1.5.1 Second-Order Scheme with a Linear Interpolator (MF-PCL) 7
1.5.2 Third-Order Scheme with a Quadratic Interpolator (MF-PCQ) 8

2. RESEARCH OBJECTIVES . 11

2.1 Independent Software Development and Simulation . 11
2.2 Error Analysis . 11
2.3 Computational Cost Analysis. 12

3. METHODS . 13

3.1 Independent Software Development and Simulation . 13
3.1.1 Independent Software Development . 13
3.1.2 Simulation . 18

3.2 Error Analysis . 20
3.3 Computational Cost Analysis. 21

vii

4. RESULTS. 23

4.1 Expected Results . 23
4.1.1 Simulation . 23
4.1.2 Error Analysis . 23
4.1.3 Computational Cost . 24

4.2 Experimental Results . 26
4.2.1 Simulation . 26
4.2.2 Error Analysis . 26
4.2.3 Computational Cost . 40

5. CONCLUSIONS AND FUTURE WORK . 44

5.1 Conclusions. 44
5.2 Future Work . 45

REFERENCES . 46

APPENDIX A. ADDITIONAL RESULTS, EXPECTED AND INDEPENDENTLY SIM-
ULATED. 47

A.1 Example Equation 2 Results . 47
A.1.1 Expected Results, from [1] . 47
A.1.2 Independent Simulation Results . 49

A.2 Example Equation 3 Results . 51
A.2.1 Expected Results, from [1] . 51
A.2.2 Independent Simulation Results . 53

A.3 Example Equation 4 Results . 55
A.3.1 Expected Results, from [1] . 55
A.3.2 Independent Simulation Results . 56

APPENDIX B. SOFTWARE SOURCE CODE. 58

B.1 Method Source Code . 58
B.2 Supplemental Software . 109

viii

LIST OF FIGURES

FIGURE Page

3.1 Start-up grid for the new proposed method from [1]. 16

4.1 Expected results for computational time (in seconds) vs. number of steps (N). 25

4.2 Independent simulation results of competing methods. Left: α = 0.25, Right:
α = 1.25. 26

4.3 Error analysis from independent simulation of competing methods (α = 0.5). 29

4.4 Error analysis from independent simulation of competing methods (α = 0.75). 29

4.5 Error analysis from independent simulation of competing methods (α = 1.25). 30

4.6 Error analysis from independent simulation of competing methods (α = 1.5). 31

4.7 Error analysis from independent simulation of competing methods (α = 0.25). 31

4.8 Comparison of reported data from [1] with independent simulation, α = 0.5. 32

4.9 Comparison of reported data from [1] with independent simulation, α = 1.25. 33

4.10 Comparison of reported data from [1] with independent simulation, α = 0.25. 33

4.11 B0,n
n+1 Coefficient Error Analysis . 37

4.12 B1,n
n+1 Coefficient Error Analysis . 37

4.13 Error analysis from independent simulation of competing methods (α = 0.25),
using EL2 , with analytically-solved coefficient integrals. 39

4.14 Computational cost results for α = 0.25. 42

4.15 Computational cost results for α = 0.75. 42

4.16 Computational cost results for α = 1.25. 43

ix

LIST OF TABLES

TABLE Page

4.1 Expected results using Example Equation 1, Eq. (3.5), as reported in [1].. 24

4.2 Expected results from computational cost analysis, as reported in [1].. 25

4.3 Independent simulation results of ABM vs MF-PCL using Example Equation 1,
Eq. (3.5) . 27

4.4 Independent simulation results of ABM vs MF-PCQ using Example Equation 1,
Eq. (3.5) . 28

4.5 Percent difference of values between those reported in [1], and inpependent simu-
lation values. 35

4.6 Independent simulation results of MF-PCL and MF-PCQ using Example Equation
1, Eq. (3.5), using analytical solutions to B coefficients and A coefficients 39

4.7 Results from computational cost analysis (time for each method is reported in sec-
onds). 40

A.1 Expected results using Example Equation 2, Eq. (3.6), as reported in [1].. 47

A.2 Expected results using Example Equation 2, Eq. (3.6), as reported in [1].. 48

A.3 Independent simulation results of ABM vs MF-PCL using Example Equation 2,
Eq. (3.6).. 49

A.4 Independent simulation results of ABM vs MF-PCQ using Example Equation 2,
Eq. (3.6).. 50

A.5 Expected results using Example Equation3, Eq. (3.7), as reported in [1]. 51

A.6 Expected results using Example Equation 3, Eq. (3.7), as reported in [1].. 52

A.7 Independent simulation results of ABM vs MF-PCL using Example Equation 3,
Eq. (3.7).. 53

A.8 Independent simulation results of ABM vs MF-PCQ using Example Equation 3,
Eq. (3.7).. 54

A.9 Expected results using Example Equation 4, Eq. (3.8), as reported in [1].. 55

x

A.10 Independent simulation results of ABM vs MF-PCL using Example Equation 4,
Eq. (3.8).. 56

A.11 Independent simulation results of MF-PCQ using Example Equation 4, Eq. (3.8). . . . 57

xi

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

With any new development in the realm of STEM, a very integral part of the scientific process

is the act of replication. Successful replication of the findings of an author helps to validate that

the findings are in fact accurate and meaningful, and is a critical step in the advancement of sci-

entific knowledge. Note here that the linguistic choice of replication was not arbitrarily selected;

it is chosen and differentiated from the term ‘reproduction’. Replication insists that the method is

independently tested, without influence from the original author. This eliminates biases on exper-

imentation, and therefore can truly validate/debunk the scientific discovery or advancement that

is being claimed. Reproduction, in contrast, would imply that the same data/results are analyzed

and found to be in agreement by an independent group. More specifically, reproducibility could

suggest that the same software used by [1] was also used in this research, which is why the dis-

tinction is made here. One additional distinction that should be made before continuing is the

definition of a method and a scheme in the context of this document. A method hierarchically en-

velops specific schemes of a certain method. For example, this research investigates two methods:

the Adams-Bashforth-Moulton method, and the new method proposed by [1]. However, this new

method contains two different implementations with regard to the interpolator that is used, which

are referred to as separate schemes under this single method.

In this study, the published journal article by Nguyen and Jang [1] will be studied and the

method proposed within will be recreated independently. No software by the authors of this

method, nor any other third-party distribution is provided or referenced. Using the schemes pro-

posed within [1], this research will produce a software package that is capable of computing so-

lutions using the proposed method. These independently simulated results will then undergo the

same analysis and post-processing as presented in [1], and will be compared against each other to

1

determine if the method has, in fact, been replicated.

In order to attempt to replicate the findings of [1], this research has investigated the three objec-

tives discussed briefly in the abstract, and in further detail later. A software package was developed

that is capable of solving fractional differential equations, and post-processing of the simulation

data was performed with respect to both error and computational cost of the method. The results

of this study have replicated the method to a high degree of accuracy, and have been able to at least

partially validate the claims made by [1]. The specific findings and claims will be discussed in

more detail later. In addition to these findings, this study has also created the need for further re-

search with respect to order of accuracy for inhomogeneous initial conditions, improved numerical

integration methods for a specific class of integrands over diminutive intervals, and optimization

techniques for decreased computational cost.

1.2 Motivation

The primary motivation for this study with respect to application is rooted in the simulation

of mechanics of material deformation. The behavior and response of certain classes of materials,

especially in the classes of viscoelasticity and viscoplasticity, have been exceptionally difficult to

accurately model using ordinary differential equations. One strategy to increase the fidelity of these

difficult-to-model behaviors is to use a heredity term, or a so-called memory effect relating to the

material in question. In other words, the prediction of the state of the material at the current time

in question is influenced by its state at all previous times. One effective approach to include this

heredity is to model the material behavior using fractional-order differential equations (FDE’s),

which will be discussed in further detail later.

The inclusion of this material heredity mechanism in the model, however, comes with a greatly

increased computational cost. Many previous studies into specific applications using FDE’s have

failed due to computational expense issues. Therefore, a new method that decreases the computa-

2

tional expense of the memory effect would be a very useful advancement.

1.3 Fractional-Order Differential Equations

In order to discuss these new methods, let us first give an overview of what is meant by a

fractional-order differential equation. An abbreviated explanation of some concepts used in this

research are recalled below. For a more detailed and complete background into fractional calculus,

see [2]. The following discussion and derivation will follow closely to the introduction of [1], as

the methods proposed in this article are the primary focus of the research. The fractional derivative

of a function is defined below as

Dα
0 y(t) = f(t, y(t)), t = [0, T] (1.1)

y(k)(0) = yk, k = 0, 1, ...,m− 1, (1.2)

where m− 1 < α ≤ m ∈ Z+. The fractional derivative expressed above may be defined in several

different forms; however the form used moving forward will be the Caputo derivative ([3]), which

is defined below as

Dα
0 y(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−1−αym(τ)dτ (1.3)

This choice is made because of the convenience in establishing the initial conditions with relative

ease when using the Caputo derivative. The initial conditions of the Caputo derivative are equiva-

lent to those of integer-order derivatives, which are much easier to establish, and have a physical

significance. The Riemann-Liouville derivative, which is not used here, is much more useful for

applications in the study of wave-based phenomena. This is due to the initial conditions of the

wave not being of particular interest, but rather, the wave at some point along its path. The initial

conditions of the Riemann-Liouville derivative are defined in terms of initial values of fractional

derivatives, as opposed to the integer-order values as mentioned with the Caputo derivative. A

more detailed description of these different forms can be found in [4].

3

A continuous function y(t) is a solution to Eq. (1.1) if and only if it is a solution to the Volterra

integral equation ([5])

y(t) = g(t) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ, (1.4)

where the initial condition, g(t) is defined as

g(t) =
m−1∑
k=0

yk
tk

k!
. (1.5)

A discretized grid over which a solution is sought is constructed as

ΦN := {tj : 0 = t0 < t1, ... < tj < ... < tn < tn+1 < tN = T}. (1.6)

Assuming this grid is uniform, i.e. h = tj+1 − tj,∀j = 0, ..., N − 1, a solution can be expressed

as a set of three terms, seen below by rewriting Eq. (1.4) as ([6]),

y(tn+1) = g(tn+1) + y∗(tn+1) + Y (tn+1), (1.7)

where y∗(tn+1) = y∗n+1 quantifies a lag term, and Y (tn+1) = Yn+1 is defined as the increment term.

The lag term is the source of heredity, or memory effect, in fractional-order differential equations.

This lag term, described by

y∗(tn+1) =
1

Γ(α)

∫ tn

0

(tn+1 − τ)α−1f(τ, y(τ))dτ (1.8)

requires information from all prior time steps, from 0 to the current time tn, in order to calculate

the y(tn+1) term. The increment term, described by

Y (tn+1) =
1

Γ(α)

∫ tn+1

tn

(tn+1 − τ)α−1f(τ, y(τ))dτ, (1.9)

4

is responsible for advancing solution to the next increment, as the name implies.

All of the methods being analyzed in this study involve the same basic "Predict, Evaluate, Cor-

rect, Evaluate" (PECE) operating principle. That is, an estimated value yPn+1 is predicted, and used

to calculate the increment term to progress. This is followed by calculation of the corrector term,

which is the approximation of the solution, using the notation ỹn+1 ≈ yn+1.

1.4 Adams-Bashforth-Moulton (ABM) Method

The Adams-Bashforth-Moulton method ([7]) is re-derived below in order to highlight the com-

ponents of the method, and to aid in setting up a comparison between the methods presented in

this study. This method is the existing standard that will be used as a comparison and benchmark

for the new schemes proposed in [1]. Equation (1.4) can be rewritten as

y(tn+1) = g(tn+1) +
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn+1 − τ)α−1f(τ, y(τ))

+
1

Γ(α)

∫ tn+1

tn

(tn+1 − τ)α−1f(τ, y(τ))dτ.

(1.10)

First, the predictor value, ỹPn+1 must be developed. A low-order approximation is used, obtained

using a constant interpolation over each interval, Ij = [tj, tj+1],

f(t) ≈ f(tj)χIj(t), (1.11)

where

χIj(t) =

1, if t ∈ Ij,

0, otherwise.
(1.12)

5

Combining Eq. (1.11) with Eq. (1.10), the predictor equation is constructed:

ỹPn+1 = gn+1 +
1

Γ(α)

n∑
j=0

Cj
n+1f̃j, (1.13)

where the coefficient is defined as

Cj
n+1 =

∫ tj+1

tj

(tn+1 − τ)α−1dτ =
hα

α
[(n+ 1− j)α − (n− j)α]. (1.14)

Next, the corrector, ỹn+1 must be developed. Using a linear Lagrange interpolation function, f(t)

is interpolated over each interval, t ∈ Ij , such that

f(t) ≈ fjLj(t) + fj+1Lj+1(t), t ∈ Ij, (1.15)

where

Lk(t) =
t− tl
tk − tl

, (k, l) = (j, j + 1), (j + 1, j). (1.16)

Combining Eq. (1.10) and Eq. (1.15), the equation for the corrector can be rewritten as

ỹn+1 = gn+1 +
1

Γ(α)

n−1∑
j=0

[B0,j
n+1f̃j +B1,j

n+1f̃j+1] +
1

Γ(α)
[B0,n

n+1f̃n +B1,n
n+1f̃

P
n+1], (1.17)

with the coefficients, which can be evaluated explicitly, being defined as

B0,j
n+1 =

∫ tj+1

tj

(tn+1 − τ)α−1Lj(τ)dτ,

B1,j
n+1 =

∫ tj+1

tj

(tn+1 − τ)α−1Lj+1(τ)dτ.

(1.18)

1.5 New Proposed Method by Nguyen and Jang

The following development summarizes the new method proposed by Nguyen and Jang in [1].

Both the second-order scheme, with a linear interpolator (herein referred to as MF-PCL), and the

6

third-order scheme, with a quadratic interpolator (herein referred to as MF-PCQ), will be displayed

below.

1.5.1 Second-Order Scheme with a Linear Interpolator (MF-PCL)

The construction of the newly proposed second-order scheme begins with the following lemma.

Lemma 1.1 Assume φ(t) ∈ P1[0, T] where P1 is the space of all polynomials of degree less

than or equal to one. Let φn, n = 0, ...N , be the restricted value of φ(t) on grid ΦN defined in Eq.

(1.6). Then, there exist coefficients b0
n+1 and b1

n+1 such that the following equality

∫ tn+1

tn

(tn+1 − τ)α−1φ(τ)dτ =
hα

α(α + 1)
(b0
n+1φn−1 + b1

n+1φn), (1.19)

is exact. More precisely,

b0
n+1 = −1, b1

n+1 = α + 2; (1.20)

The proof for this is shown in full detail in [1]. The new scheme is now defined below, where the

predictor formula is defined as

ỹPn+1 = gn+1 + ỹ∗n+1 +
h

Γ(α + 2)
[b0
n+1f̃n−1 + b1

n+1f̃n], (1.21)

and the corrector formula is defined as

ỹn+1 = gn+1 + ỹ∗n+1 + Ỹn+1. (1.22)

These equations consist of the lag term, which appears in both the predictor and corrector equa-

tions, defined as

ỹ∗n+1 =
1

Γ(α)

n−1∑
j=0

[B0,j
n+1f̃j +B1,j

n+1f̃j+1], (1.23)

7

the increment term, defined as

Ỹn+1 =
1

Γ(α)
[B0,n

n+1f̃n +B1,n
n+1f̃

P
n+1], (1.24)

and the initial condition, gn+1, as defined in Eq. (1.5).

1.5.2 Third-Order Scheme with a Quadratic Interpolator (MF-PCQ)

The construction of the newly proposed third-order scheme begins with the following lemma.

Lemma 1.2 Assume φ(t) ∈ P2[0, T] where P2 is the space of all polynomials of degree less

than or equal to two. Let φn, n = 0, ...N , be the restricted value of φ(t) on grid ΦN defined in Eq.

(1.6). Then, there exist coefficients a0
n+1, a1

n+1, and a2
n+1 such that the following equality

∫ tn+1

tn

(tn+1 − τ)α−1φ(τ)dτ = A(a0
n+1φn−2 + a1

n+1φn−1 + a2
n+1φn) (1.25)

is exact, where

A =
hα

α(α + 1)(α + 2)
, (1.26)

and

a0
n+1 =

α + 4

2
,

a1
n+1 = −2(α + 3),

a2
n+1 =

2α2 + 9α + 12

2
.

(1.27)

Using a quadratic Lagrange polynomial, f(t) is interpolated over each interval [tj−1, tj+1], j ≥ 1,

such that

f(t) ≈
j+1∑

k=j−1

fkQ
j
k(t), (1.28)

where

Qj
k(t) =

j+1∏
m=j−1
m 6=k

t− tm
tk − tm

. (1.29)

8

On the first interval [t0, t1], j = 0, so tj−1 is not defined. Hence, f(t) can be interpolated here

using

f(t) ≈ f0Q
0
0(t) + f 1

2
Q0

1
2
(t) + f1Q

0
1(t), (1.30)

where 1

Q0
0(t) =

(t− t 1
2
)(t− t1)

(t0 − t 1
2
)(t0 − t1)

,

Q0
1
2
(t) =

(t− t0)(t− t1)

(t 1
2
− t0)(t 1

2
− t1)

,

Q0
1(t) =

(t− t0)(t− t 1
2
)

(t1 − t0)(t1 − t 1
2
)
.

(1.31)

Combining Eq. (1.28) and Eq. (1.10), the new scheme is now defined below, where the predictor

formula is defined as

ỹPn+1 = gn+1 + ỹ∗n+1 +
hα

Γ(α + 3)
[a0
n+1f̃n−2 + a1

n+1f̃n−1 + a2
n+1f̃n], (1.32)

and the corrector formula is defined as

ỹn+1 = gn+1 + ỹ∗n+1 + Ỹn+1. (1.33)

This corrector is the of the same form as the second-order scheme, and likewise uses the same lag

term as in the predictor. The components of these equations consist of the lag term, defined as

ỹ∗n+1 =
1

Γ(α)
[A0,0

n+1f̃0 + A1,0
n+1f̃ 1

2
+ A2,0

n+1f̃1]

+
1

Γ(α)

n−1∑
j=1

[A0,j
n+1f̃j−1 + A1,j

n+1f̃j + A2,j
n+1f̃j+1],

(1.34)

1The equation for Q0
1
2

(t) is incorrectly reported in [1]. The correct form is reported in Eq. (1.31).

9

where

A0,0
n+1 =

∫ t1

0

(tn+1 − τ)α−1Q0
0(τ)dτ,

A1,0
n+1 =

∫ t1

0

(tn+1 − τ)α−1Q0
1
2
(τ)dτ,

A2,0
n+1 =

∫ t1

0

(tn+1 − τ)α−1Q0
1(τ)dτ,

(1.35)

the increment term, defined as

Ỹn+1 =
1

Γ(α)
[A0,n

n+1f̃n−1 + A1,n
n+1f̃n + A2,n

n+1f̃
P
n+1], (1.36)

and the initial condition, gn+1, as defined in Eq. (1.5).

10

2. RESEARCH OBJECTIVES

To guide this research, the following objectives were identified and explored, broken down

into three major areas of interest. Each of these three objectives will be discussed in further detail

regarding both the methods of testing and the results.

1. Independently develop software for the proposed method and the existing standard.

2. Conduct an error analysis on the methods’ order of accuracy using simulated test cases.

3. Conduct a computational cost analysis of the methods.

2.1 Independent Software Development and Simulation

The first step towards running a meaningful analysis of the methods in question requires creat-

ing a functional software tool. In order for this validation to be meaningful, the numerical methods

should be independently written and simulated, using only the derived equations present in [1].

This research objective is a prerequisite to the remaining two objectives, as functional numerical

methods must be constructed in order to collect meaningful data for error analysis and computa-

tional cost comparisons.

The numerical methods under analysis are written using MATLAB®. There also exists a third-

party MATLAB® function [8] for the Adams-Bashforth-Moulton method that will be used for

increased fidelity in simulation testing. The completion of this research objective allows for fu-

ture research of applications in the area of fractional-order differential equations, with a well-

documented, easy to operate user interface.

2.2 Error Analysis

The second research objective, error analysis, explores the accuracy of each of the numerical

methods proposed. This objective is the major focus of this research, and is necessary for the com-

11

pletion of the first objective. The results from this objective yield important information regarding

simulation fidelity. The focus here will be not necessarily on performance of the methods on a

case-by-case basis, but rather on the order of error across several classes of equations at different

values of α, in both magnitudes of 0 < α ≤ 1 and α > 1.

Jang and Nguyen state that the global error EG for their proposed schemes are on the order of

O(h2) for the 2nd order scheme with linear interpolation, and O(h3) for the 3rd order scheme with

quadratic interpolation ([1]), regardless of the order of α. This would be a significant improvement

over the Adams-Bashforth-Moulton method for cases where 0 < α < 1, which has been shown in

[9] to be on the order of O(hp), where p = min(1 + α, 2).

2.3 Computational Cost Analysis

The third and final major focus of this research will involve computational cost of the numer-

ical methods. While increased accuracy is typically a welcomed advancement, it can oftentimes

stymie the adoption of new numerical methods if it comes with an increased computational cost.

However, the method presented by Nguyen and Jang claims to lower the computational cost while

also decreasing (or maintaining for α ≥ 1) the order the error.

12

3. METHODS

The following chapter will discuss a detailed approach to completing each of the previously

expressed research objectives.

3.1 Independent Software Development and Simulation

3.1.1 Independent Software Development

The software development portion of this objective will largely require converting mathemati-

cal equations into numerical methods in a programming language. As mentioned, MATLAB® was

the chosen programming language for developing these methods.

Computation of integral functions will be achieved using the MATLAB® adaptive quadrature

function, integral(). No independent integrator function will be developed for this research. The

functions are of the following form:

[T, Y] = MF_PCL(alpha, fdefun, t0 , tfinal , y0 , h), (3.1)

[T, Y] = MF_PCQ(alpha, fdefun, t0 , tfinal , y0 , h), (3.2)

[T, Y] = ABM(alpha, fdefun, t0 , tfinal , y0 , h) (3.3)

where Eq. (3.1) corresponds to the 2nd order scheme with linear interpolation, and Eq. (3.2) cor-

responds to the 3rd order scheme with quadratic interpolation. Equation (3.3) refers to the existing

method being compared against, the Adams-Bashforth-Moulton method.

As mentioned previously, there exists a preexisting third-party MATLAB® function for the

13

ABM method, titled fde12, which has the following user interface:

[T, Y] = fde12(alpha, fdefun, t0 , tfinal , y0 , h). (3.4)

All methods are designed to follow the same interface, allowing the user to easily switch between

methods.

Function Inputs

• alpha: The order of the differential equation. Alpha is any positive number α ∈ R+

• fdefun: The fractional-order differential equation. fdefun should be a function handle, and

should be a function of y and t. The notation for this in MATLAB® is @(y,t) followed by

the equation.

• t0: The initial time. t0 should be a scalar value.

• tfinal: The final time. tfinal should be a scalar number > t0.

• y0: Initial conditions. y0 is a matrix with rows of length equal to the size of the problem,

and columns equal to m, which is defined above in the discussion following Eq. (1.1) and

Eq. (1.2).

• h: The step size of the problem. h must be a scalar value > 0. The step size remains constant

over the entire simulation.

Function Outputs

• Y: Solution to the FDE. Y should be a matrix matching in column size to the y0 input, and

row size according to the number of steps taken.

• T: Time. T should be a vector of times ranging from the start time, t0, to the final time,

tfinal, incremented by the step size, h.

14

Supporting Files

The software package consists of a main function file for each numerical method as defined

above, as well as all of the supporting functions saved in separate function files. The supporting

files in the software package include:

• Linear Lagrange Interpolation Function: (Linear_Interp.m)

• Quadratic Lagrange Interpolation Function: (Quadratic_Interp.m)

• Initial Condition Calculator: (Calculate_IC .m)

• 2nd Order Coefficient Calculator: (B_Coefficents .m)

• 3rd Order Coefficient Calculator: (A_Coefficents .m)

• Start-up Algorithm: (StartupProcedure.m)

• Simulation and Usage-Example Test Script: (MF _TestScript .m)

Additionally, while they not part of the methods, the following two files included in this research

are used in conducting an error analysis on anomalous behavior in certain specific test cases. This

will be discussed in further detail in the results of this thesis.

• 2nd Order Analytical Coefficient Calculator: (B_Coefficents_Analytical .m)

• 3rd Order Analytical Coefficient Calculator: (A_Coefficents_Analytical .m)

The MATLAB® source code for these functions are included in Appendix B.

Start-up Algorithm

In order to find a desired accuracy for ỹ1, ỹ2, [1] uses a start-up algorithm that utilizes a com-

bination of constant, linear, and quadratic interpolation to approximate values at th/4, th/2, th, and

t2h. This start-up grid is shown below in Fig. 3.1. The start-up algorithm is reproduced here from

[1]. Note here that the nomenclature used for t0, t 1
4
, etc. is defined in Fig. 3.1. The subscripts

15

Figure 3.1: Start-up grid for the new proposed method from [1].

are in reference to the starting time, t0, and the step-size, h. For example, ỹ 1
4

is described as the

approximate solution to the FDE at time t0 + h
4
. Similarly, g 1

4
is the initial condition term evaluated

at this same time step, which is defined previously by Eq. (1.5). The following two equations will

be used frequently, and are defined below:

Âc,d,en,a,b =

∫ tb

ta

(tn − τ)α−1
(τ − td
tc − td

)(τ − te
tc − te

)
dτ

B̂c,d
n,a,b =

∫ tb

ta

(tn − τ)α−1
(τ − td
tc − td

)
dτ

1. Approximate ỹ 1
4
:

• Predict ỹP1
4

: (constant interpolation)

ỹP1
4

= g 1
4

+
1

Γ(α + 1)

(h
4

)α
f̃0

2. Correct ỹ 1
4
: (linear interpolation)

ỹ 1
4

= g 1
4

+
1

Γ(α)
(B̂

0, 1
4

1
4
,0, 1

4

f̃0 + B̂
1
4
,0

1
4
,0, 1

4

f̃P1
4

)

3. Approximate ỹ 1
2
:

ỹ∗1
2

=
1

Γ(α)
(B̂

0, 1
4

1
2
,0, 1

4

f̃0 + B̂
1
4
,0

1
2
,0, 1

4

f̃ 1
4
)

16

• Predict ỹP1
1
2

: (constant interpolation)

ỹP1
1
2

= g 1
2

+ ỹ∗1
2

+
1

Γ(α + 1)

(h
4

)α
f̃ 1

4

• Predict ỹP2
1
2

: (linear interpolation)

ỹP2
1
2

= g 1
2

+ ỹ∗1
2

+
1

Γ(α)
(B̂

1
4
, 1
2

1
2
, 1
4
, 1
2

f̃ 1
4

+ B̂
1
2
, 1
4

1
2
, 1
4
, 1
2

f̃P1
1
2

)

• Correct ỹ 1
2
: (quadratic interpolation)

ỹ 1
2

= g 1
2

+
1

Γ(α)
(Â

0, 1
4
, 1
2

1
2
,0, 1

2

f̃0 + Â
1
4
,0, 1

2
1
2
,0, 1

2

f̃ 1
4

+ Â
1
2
,0, 1

4
1
2
,0, 1

2

f̃P2
1
2

)

4. Approximate ỹ1:

ỹ∗1 =
1

Γ(α)
(B̂

0, 1
2

1,0, 1
2

f̃0 + B̂
1
2
,0

1,0, 1
2

f̃ 1
2
)

• Predict ỹP1
1 : (constant interpolation)

ỹP1
1 = g1 + ỹ∗1 +

1

Γ(α + 1)

(h
2

)α
f̃ 1

2

• Predict ỹP2
1 : (linear interpolation)

ỹP2
1 = g1 + ỹ∗1 +

1

Γ(α)
(B̂

1
2
,1

1, 1
2
,1
f̃ 1

2
+ B̂

1, 1
2

1, 1
2
,1
f̃P1

1)

• Correct ỹ1: (quadratic interpolation)

ỹ1 = g1 +
1

Γ(α)
(Â

0, 1
2
,1

1,0,1 f̃0 + Â
1
2
,0,1

1,0,1 f̃ 1
2

+ Â
1,0, 1

2
1,0,1 f̃

P2
1)

5. Approximate ỹ2:

ỹ∗2 =
1

Γ(α)
(Â

0, 1
2
,1

2,0,1 f̃0 + Â
1
2
,0,1

2,0,1 f̃ 1
2

+ Â
1,0, 1

2
2,0,1 f̃1)

17

• Predict ỹP1
2 : (constant interpolation)

ỹP1
2 = g2 + ỹ∗2 +

hα

Γ(α + 1)
f̃1

• Predict ỹP2
2 : (linear interpolation)

ỹP2
2 = g2 + ỹ∗2 +

1

Γ(α)
(B̂1,2

2,1,2f̃1 + B̂2,1
2,1,2f̃

P1
2)

• Correct ỹ2: (quadratic interpolation)

ỹ2 = g2 +
1

Γ(α)
(Â0,1,2

2,1,2f̃0 + Â1,0,2
2,1,2f̃1 + Â2,0,1

2,1,2f̃
P2
2)

3.1.2 Simulation

Upon completion of construction and validation of the software tools, simulations will be run

using an assortment of fractional differential equations. Results from each of the numerical meth-

ods will be compared against each other as well as the FDEs’ known solutions. The four test cases

that were used in [1] include the following:

Sample Equation 1

Dα
0 y(t) =

40320

Γ(9− α)
t8−α − 3

Γ(5 + α
2
)

Γ(5− α
2
)
t4−

α
2 +

9

4
Γ(α + 1) +

(3

2
t
α
2 − t4

)3 − y(t)
3
2 (3.5)

y(0) = 0, y′(0) = 0

whose exact solution is given by:

y(t) = t8 − 3t4+α
2 +

9

4
tα

18

Sample Equation 2

Dα
0 y(t) =

Γ(4 + α)

6
t3 + t3+α − y(t) (3.6)

y(0) = 0, y′(0) = 0

whose exact solution is given by:

y(t) = t3+α

Sample Equation 3

Dα
0 y(t) =

Γ(5 + α)

24
t4 + t8+2α − y2(t) (3.7)

y(0) = 0, y′(0) = 0

whose exact solution is given by:

y(t) = t4+α

Sample Equation 4

Dα
0 y(t) =

2

Γ(3−α)
t2−α − y(t) + t2 − t, α > 1,

2
Γ(3−α)

t2−α − 1
Γ(2−α)

t1−α − y(t) + t2 − t, α ≤ 1,

(3.8)

y(0) = 0, y′(0) = −1

whose exact solution is given by:

y(t) = t2 − t

These equations are simulated using both competing numerical methods, and are also com-

pared against their true solutions. These four test cases also have the added benefit for this analysis

that they have also been simulated and reported in [1]. This gives four test cases to compare this

study against, not only for the actual solutions, but also against the findings of Nguyen and Jang.

19

3.2 Error Analysis

Upon completion of the software development and simulations, error analysis can now be

conducted. The three major questions that this research attempts to answer with regard to error

analysis include:

1. How does the point-wise error at the final time, tN = T compare between the methods?

2. How does the least squares error, EL2 , over the time interval compare between the methods?

3. Has the method proposed by Nguyen and Jang yielded a constant order of error ofO(h2) for

the 2nd order scheme, and O(h3) for the 3nd order scheme, as they claim, regardless of α?

Pointwise Error Calculation

The pointwise error of the simulations will be calculated for the methods in question using the

following:

Ept(T) = |yN − ỹN | (3.9)

Least Squares Error Calculation

The second measure of error used for this analysis will be a least squares error over the full

domain of the problem, calculated using the following:

EL2 =

(
h

N∑
j=0

|yj − ỹj|2
) 1

2

(3.10)

Order of Error

One of the hallmark achievements claimed by this new method is a reduction in order of error,

specifically whenever α < 1. This is because the order of the ABM method is an error of order

O(hp), where p = min(α+ 1, 2), as shown in [9]. It is therefore clear that for values of alpha less

than one, especially with h � 1, the magnitude of error will be significantly larger for the ABM

method. In order to assess this claim, the above two measures of error, Eq. (3.9) and Eq. (3.10),

20

will be used to calculate the order of error for each of the methods.

This order of error is calculated by finding the slope of the error plots for both measures of

error described above. The local slope, m, is calculated between two neighboring reported errors

and their respective step sizes, where h = [h1, h2, ..., hi, ..., hn], and Ei represents the measure at

that corresponding step-size:

mi+1 =
log(Ei+1)− log(Ei)

log(hi+1)− log(hi)
(3.11)

Each simulation may then yield an overall order by averaging each local slope, mi, as calculated

by

M =
1

n− 1

n−1∑
i=1

mi+1. (3.12)

Each local slope will be reported in the tabulated results of the simulations, while the overall order

will appear for each method on the plots displaying error vs. step-size.

3.3 Computational Cost Analysis

The second hallmark achievement that the method by Nguyen and Jang claims is that they have

reduced the computational cost of their schemes by half over the ABM method. Their claim is that

this increase in speed is a result of the removal of recalculating the memory effect in the predictor

step. This idea can be seen in the derivations of the methods, where the same lag term, Eq. (1.23),

is used in calculating both the predictor, Eq. (1.21), and the corrector, Eq. (1.22) for the MF-PCL

method. In contrast, the ABM method uses two different heredity terms for calculation of the pre-

dictor and corrector terms, as seen in Eq. (1.13) and Eq. (1.17), respectively.

The final objective of this research is to run a computational cost study of the methods in ques-

tion. This will be achieved by running a number of simulation test cases in which both α and

the step-size are varied. Each trial case is run five times to collect a reasonable sample size and

eliminate any obvious outliers. These five times for each test case will then be used to obtain an

21

average computational time. The computational time will be collected using the MATLAB® tic

and toc functions to provide a consistent and reliable measurement for time collection. Using the

same approach as in the error analysis, the computational time and step-size are plotted for several

different values of α in order to determine the order of the method with respect to computational

expense. These plots help to show the differences in the order of the competing methods, as well

as the relative speed for each test case.

22

4. RESULTS

The following chapter will be separated into two major sections. The ‘Expected Results’ sec-

tion will present only data and results from [1]. No data from the independent simulations will

be reported here. In contrast, the ‘Experimental Results’ section will display all results from the

independent simulations of the method, as-well-as plots and data comparing the simulated data to

the independent simulations.

4.1 Expected Results

4.1.1 Simulation

The findings of [1] include two simulations comparing the performance of ABM against their

newly proposed method, referred to as MF-PCL. Both methods are evaluated against the true solu-

tion, using a grid size of N = 20, T = 1 second, and values of α = 0.25, 1.25. These simulations

use Eq. (3.5) and its associated initial conditions/true solution. These results are displayed in [1,

Fig. 1].

4.1.2 Error Analysis

There are several tables of error calculations reported in [1]. The tables displaying results from

Eq. (3.5) will be reproduced below for the purpose of comparison to the independent simulation

results. To avoid redundant commentary, the results from the remaining equations are included

in Appendix A. Note in the tabulated data to follow that, as indicated, roughly the same order of

accuracy is present for 0 < α < 1 as well as for α ≥ 1 for the MF-PCL method. Conversely, there

is a clear change in order for varying values of α when looking at the ABM method.

Table 4.1 displays the data reported by [1] using Eq. (3.5), and varies simulation parameters

of α = [0.25, 0.5, 1.25], and N = 1
h

= [10, 20, 40, 80, 160, 320]. It is acknowledged in [1] that the

23

Table 4.1: Expected results using Example Equation 1, Eq. (3.5), as reported in [1].

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 2.50E-01 - 3.14E-01 - 1.74E-01 - 2.10E-01 -
20 1.81E-02 3.79 8.69E-02 1.85 1.46E-02 3.58 1.44E-02 3.87
40 3.61E-03 2.33 2.48E-02 1.81 2.64E-03 2.46 1.64E-03 3.14
80 1.45E-03 1.31 8.05E-03 1.63 5.07E-04 2.38 2.47E-04 2.73
160 6.58E-04 1.14 2.82E-03 1.52 9.95E-05 2.35 4.13E-05 2.58
320 2.97E-04 1.15 1.03E-03 1.45 2.02E-05 2.3 7.46E-06 2.47

α = 0.5
10 1.79E-02 - 4.94E-02 - 2.66E-02 - 1.41E-02 -
20 1.81E-03 3.3 1.38E-02 1.84 5.30E-03 2.33 2.09E-03 2.75
40 4.17E-04 2.12 4.15E-03 1.73 1.07E-03 2.3 3.60E-04 2.54
80 1.76E-04 1.24 1.32E-03 1.65 2.31E-04 2.22 7.10E-05 2.35
160 7.98E-05 1.15 4.33E-04 1.61 5.31E-05 2.12 1.56E-05 2.19
320 3.39E-05 1.24 1.46E-04 1.57 1.27E-05 2.06 3.65E-06 2.1

α = 1.25
10 5.53E-03 - 8.14E-03 - 1.02E-02 - 6.04E-03 -
20 1.59E-03 1.8 1.88E-03 2.11 2.34E-03 2.12 1.38E-03 2.13
40 4.33E-04 1.88 4.43E-04 2.09 5.70E-04 2.04 3.34E-04 2.04
80 1.14E-04 1.92 1.06E-04 2.07 1.41E-04 2.01 8.26E-05 2.02
160 2.97E-05 1.94 2.54E-05 2.06 3.52E-05 2 2.05E-05 2.01
320 7.66E-06 1.96 6.13E-06 2.05 8.80E-06 2 5.12E-06 2

order of accuracy for small step sizes is even higher than anticipated. This behavior is attributed

to the competence between the errors in the lag and increment term of the truncation errors when

α is small. It should also be noted that the start-up algorithm utilizes a combination of linear and

quadratic interpolation, as well as decreased step-size to initialize the second-order linear scheme,

and therefore may also result in a higher than anticipated order of accuracy, especially where N is

small and the start-up algorithm carries a larger influence.

4.1.3 Computational Cost

Finally, [1] has set a benchmark on computer run-time measurements. While it is not expected

that the times themselves will match, this does give a benchmark trend between the two methods,

24

in terms of relative speeds. There is also no specification on how these values were obtained, how

many samples of each run were recorded, nor if this is an average run-time or the fastest run for

each test case. Table 4.2 below displays a table of computation time values, with the graphical

representation of these times plotted on a log-log scale in Fig. 4.1.

Table 4.2: Expected results from computational cost analysis, as reported in [1].

α = 0.25
N 100 200 400 600 800 1000
ABM (seconds) 0.002 0.01 0.04 0.09 0.16 0.262
MF-PCL (seconds) 0.001 0.007 0.025 0.05 0.096 0.15

α = 0.5
N 100 200 400 600 800 1000
MF-PCQ (seconds) 0.123 0.231 0.622 0.981 1.49 1.471

Figure 4.1: Expected results for computational time (in seconds) vs. number of steps (N).

25

4.2 Experimental Results

4.2.1 Simulation

The following results will display the independent simulations and findings from this research,

and compare these findings against those of [1]. Figure 4.2 below is a recreation of the solutions

displayed in [1, Fig. 1], in order to provide further evidence of successful reproduction of the

methods. This figure displays results using Eq. (3.5) for N = 20, and α = 0.25 (left) and

α = 1.25 (right).

Figure 4.2: Independent simulation results of competing methods. Left: α = 0.25, Right: α =
1.25.

4.2.2 Error Analysis

Table 4.3 below displays the results from independent simulation of the MF-PCL scheme.

Again, the ABM values displayed are generated from independent simulations using the fde12

MATLAB® function provided in [8]. The tabulated data here matches very closely with Table 4.1,

with the exception of the results from α = 0.25 with high values ofN . This claim will be discussed

in more detail and proved later.

26

Table 4.3: Independent simulation results of ABM vs MF-PCL using Example Equation 1, Eq.
(3.5)

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 2.50E-01 – 3.14E-01 – 1.65E-01 – 1.99E-01 –
20 1.81E-02 3.79 8.69E-02 1.85 1.46E-02 3.49 1.45E-02 3.78
40 3.61E-03 2.33 2.48E-02 1.81 2.69E-03 2.45 1.69E-03 3.10
80 1.45E-03 1.31 8.05E-03 1.63 5.42E-04 2.31 2.80E-04 2.59
160 6.58E-04 1.14 2.82E-03 1.51 1.26E-04 2.10 6.79E-05 2.04
320 2.97E-04 1.15 1.03E-03 1.45 4.13E-05 1.62 3.06E-05 1.15

α = 0.5
10 1.79E-02 – 4.94E-02 – 2.65E-02 – 1.42E-02 –
20 1.81E-03 3.30 1.38E-02 1.84 5.30E-03 2.32 2.10E-03 2.76
40 4.16E-04 2.12 4.15E-03 1.73 1.07E-03 2.30 3.60E-04 2.54
80 1.77E-04 1.24 1.32E-03 1.65 2.31E-04 2.22 7.10E-05 2.34
160 7.98E-05 1.15 4.33E-04 1.61 5.31E-05 2.12 1.56E-05 2.19
320 3.39E-05 1.24 1.46E-04 1.57 1.27E-05 2.06 3.65E-06 2.09

α = 1.25
10 5.53E-03 – 8.14E-03 – 1.01E-02 – 6.06E-03 –
20 1.59E-03 1.80 1.88E-03 2.11 2.34E-03 2.11 1.38E-03 2.14
40 4.33E-04 1.88 4.43E-04 2.09 5.70E-04 2.04 3.34E-04 2.04
80 1.14E-04 1.92 1.06E-04 2.07 1.41E-04 2.01 8.26E-05 2.02
160 2.97E-05 1.94 2.54E-05 2.06 3.52E-05 2.00 2.05E-05 2.01
320 7.66E-06 1.96 6.13E-06 2.05 8.80E-06 2.00 5.12E-06 2.00

Recall from prior discussion that the expected order of error of the methods are given as

O(h2) for the 2nd order scheme with linear interpolation, and O(h3) for the 3rd order scheme

with quadratic interpolation. Meanwhile, the ABM method is expected to show error on the order

of O(hp), where p = min(1 + α, 2). Seeing that all of these methods should have an order of

error of the form hM , it is convenient to display the error against the step-size on a log-log plot,

where the this data should be a line with approximate slope M ([10]). Recalling from Eq. (3.11),

the local slopes can be calculated and then averaged by Eq. (3.12) to obtain an overall order of the

method for that specific simulation configuration. This value, M , is displayed on each of the plots

to follow, with the exception of the simulations using α = 0.25, due to the non-linearity of results.

27

Table 4.4 displays the results of the MF-PCQ simulation using the same simulation configu-

ration as in Table 4.3. The results from the ABM simulation are reproduced here for the sake of

comparison, but are identical to those values presented in Table 4.3. Again, note that there are

unexpected results for α = 0.25 which will be discussed later.

Table 4.4: Independent simulation results of ABM vs MF-PCQ using Example Equation 1, Eq.
(3.5)

α = 0.25
ABM MF-PCQ

N Ept Order EL2 Order Ept Order EL2 Order
10 2.50E-01 – 3.14E-01 – 6.77E-02 – 7.66E-02 –
20 1.81E-02 3.79 8.69E-02 1.85 4.28E-03 3.98 2.48E-03 4.95
40 3.61E-03 2.33 2.48E-02 1.81 4.70E-04 3.18 2.41E-04 3.37
80 1.45E-03 1.31 8.05E-03 1.63 7.67E-05 2.62 5.52E-05 2.12
160 6.58E-04 1.14 2.82E-03 1.51 3.05E-05 1.33 3.33E-05 0.73
320 2.97E-04 1.15 1.03E-03 1.45 2.11E-05 0.53 2.48E-05 0.43

α = 0.5
10 1.79E-02 – 4.94E-02 – 1.33E-02 – 5.82E-03 –
20 1.81E-03 3.30 1.38E-02 1.84 1.49E-03 3.16 5.60E-04 3.38
40 4.16E-04 2.12 4.15E-03 1.73 1.58E-04 3.23 5.25E-05 3.41
80 1.77E-04 1.24 1.32E-03 1.65 1.75E-05 3.18 5.24E-06 3.32
160 7.98E-05 1.15 4.33E-04 1.61 2.03E-06 3.11 5.68E-07 3.21
320 3.39E-05 1.24 1.46E-04 1.57 2.44E-07 3.05 6.57E-08 3.11

α = 1.25
10 5.53E-03 – 8.14E-03 – 7.08E-03 – 2.53E-03 –
20 1.59E-03 1.80 1.88E-03 2.11 9.57E-04 2.89 2.95E-04 3.10
40 4.33E-04 1.88 4.43E-04 2.09 1.26E-04 2.93 3.57E-05 3.04
80 1.14E-04 1.92 1.06E-04 2.07 1.62E-05 2.96 4.40E-06 3.02
160 2.97E-05 1.94 2.54E-05 2.06 2.05E-06 2.98 5.47E-07 3.01
320 7.66E-06 1.96 6.13E-06 2.05 2.58E-07 2.99 6.82E-08 3.00

Figure 4.3 and Figure 4.4 display that the ABM method is behaving as expected, with error on

the order of O(hp). Likewise, the MF-PCL and MF-PCQ methods are maintaining constant error

orders of approximately O(h2) and O(h3), respectively.

28

Figure 4.3: Error analysis from independent simulation of competing methods (α = 0.5).

Figure 4.4: Error analysis from independent simulation of competing methods (α = 0.75).

With the transition from values of α < 1 to α > 1, the ABM method should now show a

constant error of order O(h2). This is shown by the reported order of the method being equal to

29

O(hp), where p = min(1 + α, 2). For all values of α ≥ 1, p = 2. This means that the MF-PCL

and ABM methods should perform equally with respect to accuracy, which is evident in Fig. 4.5

and Fig. 4.6.

Figure 4.5: Error analysis from independent simulation of competing methods (α = 1.25).

As mentioned previously, there exists anomalous behavior for the simulations conducted using

a value of α = 0.25. Figure 4.7 is produced to illustrate this unexpected result. It can be seen

that both the MF-PCL and MF-PCQ schemes appear to asymptotically approach a limited order of

accuracy. This behavior is investigated further in the following section.

30

Figure 4.6: Error analysis from independent simulation of competing methods (α = 1.5).

Figure 4.7: Error analysis from independent simulation of competing methods (α = 0.25).

31

Figure 4.8 and Figure 4.9 display the values reported from [1] overlaid with results from the

independent simulations conducted in this research. This set of graphics is presented in order

to more clearly compare their performance. The independent simulations for these values of α

perform nearly identically to the expected results.

Figure 4.8: Comparison of reported data from [1] with independent simulation, α = 0.5.

In contrast, Fig. 4.10 illustrates the magnitude of deviation in performance as N increases.

This further illustrates the anomalous behavior that has been previously mentioned, and motivates

the need to determine whether this behavior is a characteristic of the method, or rather a misrepre-

sentation of the method’s true performance that was brought on by implementation.

32

Figure 4.9: Comparison of reported data from [1] with independent simulation, α = 1.25.

Figure 4.10: Comparison of reported data from [1] with independent simulation, α = 0.25.

33

As an additional means of comparing performance of the two methods with respect to error,

Table 4.5 is produced below. This table calculates the percent difference for each measure of error,

and its respective order. Percent difference, calculated between findings by [1] and the independent

simulations of this research, is computed by

%Difference =
(EInd .Sim. − E[1])
1
2
(EInd .Sim. + E[1])

X100%, (4.1)

where EInd .Sim. is any value from the independent simulations of this research, and E[1] is any

corresponding value from [1]. It should be noted that the results published in [1] are only re-

ported to two decimal places, so some round-off error will be present when computing the percent

differences.

34

Table 4.5: Percent difference of values between those reported in [1], and inpependent simulation
values.

α = 0.25
ABM MF-PCL

N Ept (%) Order (%) EL2 (%) Order (%) Ept (%) Order (%) EL2 (%) Order (%)
10 0.03 – -0.10 – -5.6 – -5.3 –
20 -0.03 -0.04 0.05 0.07 0.26 -2.52 0.73 -2.36
40 -0.13 -0.11 0.13 -0.12 1.79 -0.60 2.88 -1.18
80 0.15 0.15 -0.05 -0.26 6.68 -2.99 12.35 -5.10
160 0.01 0.17 -0.17 -0.33 23.85 -11.24 48.66 -23.26
320 -0.04 -0.15 0.18 -0.13 68.55 -34.96 121.56 -72.94

α = 0.5
10 -0.23 – -0.07 – -0.3 – 0.5 –
20 0.12 0.03 -0.23 0.12 -0.08 -0.27 0.24 0.29
40 -0.19 0.12 0.04 -0.02 0.45 0.03 0.13 -0.04
80 0.31 -0.23 -0.09 0.27 0.18 -0.20 -0.07 -0.21
160 -0.01 -0.37 0.10 -0.28 0.00 0.18 -0.21 -0.08
320 0.00 -0.40 -0.21 0.18 0.22 0.03 0.03 -0.38

α = 1.25
10 0.05 – -0.05 – -0.6 – 0.3 –
20 0.20 -0.22 0.11 0.09 0.12 -0.31 -0.18 0.29
40 -0.04 0.00 0.03 -0.16 0.02 -0.05 0.03 0.18
80 0.30 0.03 -0.42 -0.02 0.23 0.11 -0.06 -0.15
160 0.14 0.14 -0.18 -0.11 0.09 0.20 0.15 -0.12
320 0.04 -0.18 -0.02 -0.07 -0.01 0.07 0.00 0.18

Corrected Results Using Analytically-Solved Coefficient Integrals

The above results of the independent simulations for MF-PCL and MF-PCQ contain an area

of concern with regard to the combination of low values of α and high values of N . It would

appear that there is a subroutine or calculation in the process of carrying out these schemes under

certain conditions that is adversely affecting their performance. It can be seen in Fig. 4.7 that

both the linear and quadratic interpolation schemes converge to the same order of error, pointing

suspicions to the kernel of the integrand found in Eq. (1.18) and Eq. (1.35), given as (tn+1−τ)α−1.

These inconsistencies were discovered to be the result of computational error of a lower order

35

than the method when B coefficients (or A coefficients in the case of MF-PCQ) in the increment

term, specifically in the Bn
1 term when tn+1 = tj+1. This is brought on by the MATLAB® integral

function performing poorly for low values of alpha when evaluating this integral explicitly, when

compared against the analytical solutions. With increasing number of steps, N , this integration

error becomes more apparent, and it can be seen to converge to an order of this integral evaluation

error. This is because the method at low step size is of lower order of error than the integration

error. However, as the step-size decreases and the method reaches the crossover point of exhibiting

a higher order of error than this integration error, the integration error overshadows the method.

Once this error is larger than the method’s error, it dictates the apparent order of the method.

However, for cases where α is larger, the MATLAB® integral function performs much more

accurately, and the expected order of the method for each respective scheme is clearly visible. The

findings for these cases match very closely to both the theoretical order of error and the findings

reported in [1].

In order to prove the above claim, a short analysis of the calculation of the B coefficients is

presented. Note that the analysis is not repeated for the A coefficients, as the kernel of the inte-

grand, which is the same for both, is the source of this error, and not the interpolation functions

that multiply onto the kernel.

Using the MATLAB® symbolic math package, definite integrals can be solved analytically with

the int() function, and then compared against the numerical integration function, integral(). Figure

4.11 displays this analysis on the B0,n
n+1 coefficient, while Fig. 4.12 presents the same analysis on

the B1,n
n+1 coefficent, with these coefficients being defined in Eq. (1.18), specifically when applied

in Eq. (1.24).

This analysis was carried out by taking the average point-wise error at a single time-step when

36

Figure 4.11: B0,n
n+1 Coefficient Error Analysis

Figure 4.12: B1,n
n+1 Coefficient Error Analysis

calculated with several different step-sizes, h = [1
10
, 1

20
, 1

40
, 1

80
, 1

160
, 1

320
, 1

640
, 1

1280
]. The point-wise

error was then calculated across a range of low α values. This analysis was repeated for three total

37

time-steps. Multiple step-sizes and time-steps were used to eliminate confounding results, and

verify that this error is in fact a function of α.

Figure 4.11 shows that there is negligible error in this coefficient calculation for values of α

as low as 0.1. However, the error seen in Fig. 4.12 is exceptionally large up to values of roughly

α = 0.45. This error present in the numerical integration of the B1,n
n+1 coefficient has the potential

to be the driving factor in the order of the method for simulations with α < 0.5, particularly where

N is large.

Figure 4.13 displays that, with the substitution of the analytical calculation of the B coefficients

in the increment term, this previously-shown anomaly ceases to persist. With this new finding, this

research is fully successful in replicating the findings presented in [1] with respect to the proposed

method. Table 4.6 now matches very closely with the findings of [1], as reported in Table 4.1.

The decision was made that the results should be reported using purely the numerical integra-

tion, rather than using the analytical integration as a fix. This choice was made for two major

reasons. First, this research is a study of pure numerical methods, and it is desired to replicate the

method using only techniques of numerical methods. The use of symbolic math equation solvers

would violate this goal. Second, replicating the results of [1] using the analytical integral solver

would make the software package much more difficult to reproduce using other programming

languages. By reporting these results, including the shortcomings of the MATLAB® numerical

integral solver, this research draws attention to this concern, and serves as a point of warning and

encouragement to study more effective numerical methods of solving integrals of this type.

38

Figure 4.13: Error analysis from independent simulation of competing methods (α = 0.25), using
EL2 , with analytically-solved coefficient integrals.

Table 4.6: Independent simulation results of MF-PCL and MF-PCQ using Example Equation 1,
Eq. (3.5), using analytical solutions to B coefficients and A coefficients

α = 0.25
MF-PCL MF-PCQ

N Ept Order EL2 Order Ept Order EL2 Order
10 1.64E-01 – 1.99E-01 – 6.76E-02 – 7.60E-02 –
20 1.46E-02 3.49 1.44E-02 3.79 4.19E-03 4.01 2.37E-03 5.00
40 2.64E-03 2.46 1.64E-03 3.14 4.24E-04 3.30 1.99E-04 3.57
80 5.07E-04 2.38 2.47E-04 2.73 4.26E-05 3.32 1.80E-05 3.47
160 9.95E-05 2.35 4.13E-05 2.58 4.26E-06 3.32 1.64E-06 3.45
320 2.02E-05 2.30 7.47E-06 2.47 4.33E-07 3.30 1.54E-07 3.41

39

4.2.3 Computational Cost

In order to test the competing numerical methods with respect to computational time, it was

important to ensure that the subroutines used to calculate terms were the same. This means that the

same integration method should be used across all methods. By this standard, the fde12() function

should not be used as the standard to compare these methods against in regard to computation time.

This is because the coefficients are evaluated using the FFT algorithm described in [11], which

increases performance of the computational cost to N log(N)2 instead of N2 in the traditional

ABM implementation. Therefore, a traditional implementation of the ABM method, as re-derived

in [1], is required. By creating an independent ABM method, this research is able to compare

the actual methods in question, with both the MF-PCL/MF-PCQ and ABM using the same set of

subroutines.

Table 4.7: Results from computational cost analysis (time for each method is reported in seconds).

α = 0.25
N 10 20 40 50 100 200 400
ABM 0.07 0.20 0.65 1.02 3.86 15.35 64.78
MF-PCL 0.11 0.23 0.70 1.06 3.92 15.57 62.84
MF-PCQ 0.27 0.44 1.24 1.77 6.15 23.16 95.69
fde12 0.03 0.03 0.04 0.04 0.05 0.05 0.07

α = 0.75
N 10 20 40 50 100 200 400
ABM 0.05 0.17 0.65 1.00 3.91 15.42 62.02
MF-PCL 0.07 0.22 0.67 0.99 3.96 15.60 62.38
MF-PCQ 0.24 0.42 1.20 1.77 6.01 23.14 92.35
fde12 0.03 0.04 0.04 0.04 0.05 0.05 0.06

α = 1.25
N 10 20 40 50 100 200 400
ABM 0.05 0.17 0.67 1.07 3.89 15.42 61.92
MF-PCL 0.07 0.20 0.71 1.02 3.88 15.43 62.14
MF-PCQ 0.22 0.40 1.19 1.74 5.98 23.10 91.68
fde12 0.03 0.04 0.04 0.04 0.05 0.05 0.06

40

The findings of this research do not show any conclusive results that would suggest that the

MF-PCL scheme performs at the one-half computational cost claimed by [1]. However, this also

does not disprove their claim. The completion of the computational cost analysis points again

to the MATLAB® numerical integration function, integral(), which appears to have a very high

computational cost. This claim is made due to the fact that computation of the heredity term in

the corrector is the most computationally expensive portion of the method. This term contains

a call to the MATLAB® integral() function in both methods. The major difference between the

methods stems from the difference in calculation of the heredity term in the predictor. In the ABM

method, Eq. (1.14) shows the heredity calculation is merely a sum with only simple mathematical

operations being performed for each term being the summed. The computational time for a single

calculation of this term is roughly between the order of 10−5 and 10−6 seconds. Comparatively,

the computational time of calculating the B coefficients one time is 10−3 seconds. Therefore, the

benefits of eliminating a small-cost term in the predictor will be hidden when both methods are

running a routine that is much more computationally cumbersome on each step, especially as the

heredity term grows.

It can be seen in Table 4.7 that while the order of computational time appears to follow the

same order with respect to number of steps, the actual computational time is several orders of

magnitude higher than those reported by [1]. Therefore, it is believed that any improvements in

speed are much too small to be detectable using the current integration technique. This finding

provides further encouragement for future research into alternative or new integration techniques

that are both fast and capable of accurately calculating integrals of this type.

Additionally, this analysis includes the startup procedure in the cost for the MF-PCL/MF-PCQ

schemes. The ABM method does not have a startup procedure in its traditional application, so this

helps to explain the initial gap in computation time for low step-sizes, as seen in Fig. 4.14, Fig.

4.16, and 4.16. It is unclear if the startup-procedure is included in the results published in [1].

41

Figure 4.14: Computational cost results for α = 0.25.

Figure 4.15: Computational cost results for α = 0.75.

42

Figure 4.16: Computational cost results for α = 1.25.

43

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Using only the methods presented by Nguyen and Jang in [1], this research was able to suc-

cessfully replicate their reported results, and confirm the claimed orders ofO(h2) for the 2nd order

scheme with linear interpolation, MF-PCL, and O(h3) for the 3rd order scheme with quadratic

interpolation (MF-PCQ), regardless of the order of α. This finding, satisfying the second objective

of this research, comes with one caveat, which is also displayed and briefly mentioned in [1]. The

solutions to simulations of Eq. (3.8), which are included in Appendix A of this paper and match

very closely with the results of Nguyen and Jang, show that the expected order of error does not

hold here. They justify this deviation with the fact that Eq. (3.8) violates a theorem presented in

their error analysis that requires the function be Lipschitz continuous.

With this acknowledged, the successful replication both of these schemes under Nguyen and

Jang’s new method provides validation of the software package that was developed to implement

this method, satisfying the first objective as well. This success is also met with one caveat, which is

the limitation of using the MATLAB® numerical integration function, integral(). This research has

displayed the shortcomings of this integration function, and its profound effect on the accuracy of

the method under certain simulation configurations. The range of acceptable usage of this built-in

MATLAB® function with respect to this software package has been laid out in the discussion in

the results chapter.

Unfortunately, another short-coming of the MATLAB® integration function is its large com-

putational cost. This function caused difficulty to be able to see any statistically significant speed

improvements of MF-PCL over the ABM method, and also greatly increased overall computational

times. However, the MF-PCL scheme also did not perform more slowly than the existing method,

44

while boasting improved accuracy for α < 1.

5.2 Future Work

As mentioned above, there are multiple justifications for the replacement of the built-in MATLAB®

numerical integration function. It is suggested that a new/different method of calculating numerical

integrals of this class be used in its place that would perform much more accurately at low values

of α. This replacement integration method should also greatly improve the software package’s

computational speed. One proposed option would be use of the technique found in fde12 ([8]),

which uses a fast Fourier transform (FFT) algorithm to solve the convolution integrals.

Additionally, this software package was developed using as few built-in MATLAB® functions

as possible. This was done in effort to minimize the language and environment dependence of the

method’s implementation. Writing software in this manner makes it much easier to transition this

method into other programming languages. It is suggested that this software be transitioned over

to other languages, such as Python, in order to broaden its usage.

Finally, it is suggested that this method be tested using additional FDE’s not reported in this

thesis or [1]. More specifically, additional test cases should be sought with non-homogeneous

initial conditions, as only one case was presented in Nguyen and Jang’s article, and it was shown

to deviate from the expected order of accuracy. Further investigation should be performed to see if

this is in fact a factor in the deviation from expected performance.

45

REFERENCES

[1] T. B. Nugyen and B. Jang, “A high-order predictor-corrector method for solving nonlinear

differential equations of fractional order,” Fractional Calculus and Applied Analysis, vol. 20,

No. 2, pp. 447–476, 2017.

[2] I. Podlubny, Fractional Differential Equations. Academic Press, 1999.

[3] M. Caputo, “Linear models of dissipation whose q is almost frquency independent,” The

Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529–539, 1967.

[4] M. Rahimy, “Applications of fractional differential equations,” Applied Mathematical Sci-

ences, vol. 4, pp. 2453–2461, 2010.

[5] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2010.

[6] D. Conte and I. D. Prete, “Fast collocation methods for volterra integral equations of con-

volution type,” Journal of Computational and Applied Mathematics, vol. 196, pp. 652–663,

2006.

[7] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical

solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, pp. 3–22, 2002.

[8] R. Garrappa, “Predictor-corrector pece method for fractional differential equations.”

https://www.mathworks.com/matlabcentral/fileexchange/32918-

predictor-corrector-pece-method-for-fractional-differential-

equations, 2012.

[9] K. Diethelm, N. J. Ford, and A. D. Freed, “Detailed error analysis for a fractional adams

method,” Numerical Algorithms, vol. 36, pp. 31–52, 2004.

[10] J. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley, 2008.

[11] E. Harrier, C. Lubich, and M. Schlichte, “Fast numerical solution of nonlinear volterra con-

volution equations,” SIAM J. Sci. Statist. Comput., vol. 6, pp. 532–541, 1985.

46

https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations

APPENDIX A

ADDITIONAL RESULTS, EXPECTED AND INDEPENDENTLY SIMULATED

A.1 Example Equation 2 Results

A.1.1 Expected Results, from [1]

Table A.1: Expected results using Example Equation 2, Eq. (3.6), as reported in [1].

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 1.20E-01 - 5.84E-02 - 2.17E-02 - 1.32E-02 -
20 4.46E-02 1.43 2.07E-02 1.49 3.71E-03 2.54 2.22E-03 2.57
40 1.65E-02 1.43 7.48E-03 1.47 6.64E-04 2.48 3.92E-04 2.5
80 6.20E-03 1.41 2.77E-03 1.44 1.25E-04 2.41 7.26E-05 2.43
160 2.36E-03 1.39 1.05E-03 1.4 2.46E-05 2.34 1.42E-05 2.36
320 9.15E-04 1.37 4.03E-04 1.38 5.09E-06 2.27 2.91E-06 2.29

α = 0.5
10 4.39E-02 - 2.14E-02 - 8.33E-03 - 4.98E-03 -
20 1.38E-02 1.67 6.32E-03 1.76 1.53E-03 2.44 8.76E-04 2.51
40 4.41E-03 1.64 1.96E-03 1.69 3.20E-04 2.26 1.76E-04 2.31
80 1.44E-03 1.61 6.28E-04 1.64 7.28E-05 2.14 3.92E-05 2.17
160 4.82E-04 1.58 2.07E-04 1.6 1.74E-05 2.07 9.24E-06 2.08
320 1.63E-04 1.56 6.97E-05 1.57 4.25E-06 2.03 2.25E-06 2.04

α = 1.25
10 1.33E-02 - 6.41E-03 - 9.46E-03 - 4.75E-03 -
20 3.17E-03 2.07 1.44E-03 2.16 2.34E-03 2.02 1.10E-03 2.1
40 7.60E-04 2.06 3.35E-04 2.1 5.83E-04 2 2.67E-04 2.05
80 1.83E-04 2.05 7.97E-05 2.07 1.46E-04 2 6.56E-05 2.02
160 4.43E-05 2.05 1.92E-05 2.05 3.64E-05 2 1.63E-05 2.01
320 1.08E-05 2.04 4.66E-06 2.04 9.10E-06 2 4.05E-06 2.01

47

Table A.2: Expected results using Example Equation 2, Eq. (3.6), as reported in [1].

α = 0.2
MF-PCQ

N Ept Order EL2 Order
10 3.25E-03 - 2.93E-03 -
20 2.13E-04 3.93 2.32E-04 3.66
40 1.89E-05 3.49 2.02E-05 3.52
80 1.72E-06 3.46 1.83E-06 3.46
160 1.63E-07 3.4 1.71E-07 3.42
320 1.59E-08 3.36 1.65E-08 3.38

α = 0.5
10 5.81E-04 - 5.63E-04 -
20 5.09E-05 3.51 4.69E-05 3.58
40 5.24E-06 3.28 4.56E-06 3.36
80 5.93E-07 3.14 4.96E-07 3.2
160 7.06E-08 3.07 5.77E-08 3.1
320 8.63E-09 3.03 6.97E-09 3.05

α = 1.5
10 5.81E-04 - 5.63E-04 -
20 5.09E-05 3.51 4.69E-05 3.58
40 5.24E-06 3.28 4.56E-06 3.36
80 5.93E-07 3.14 4.96E-07 3.2
160 7.06E-08 3.07 5.77E-08 3.1
320 8.63E-09 3.03 6.97E-09 3.05

48

A.1.2 Independent Simulation Results

Table A.3: Independent simulation results of ABM vs MF-PCL using Example Equation 2, Eq.
(3.6).

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 1.20E-01 - 5.84E-02 - 2.16E-02 - 1.32E-02 -
20 4.46E-02 1.43 2.07E-02 1.49 3.65E-03 2.57 2.20E-03 2.59
40 1.65E-02 1.43 7.48E-03 1.47 6.13E-04 2.57 3.73E-04 2.56
80 6.20E-03 1.41 2.77E-03 1.44 8.55E-05 2.84 5.89E-05 2.67
160 2.36E-03 1.39 1.05E-03 1.40 6.16E-06 3.79 5.55E-06 3.41
320 9.15E-04 1.37 4.03E-04 1.38 1.95E-05 -1.66 6.87E-06 -0.31

α = 0.5
10 4.39E-02 - 2.14E-02 - 8.36E-03 - 5.02E-03 -
20 1.38E-02 1.67 6.32E-03 1.76 1.54E-03 2.44 8.77E-04 2.52
40 4.41E-03 1.64 1.96E-03 1.69 3.20E-04 2.26 1.76E-04 2.31
80 1.44E-03 1.61 6.28E-04 1.64 7.28E-05 2.14 3.92E-05 2.17
160 4.82E-04 1.58 2.07E-04 1.60 1.74E-05 2.07 9.24E-06 2.08
320 1.63E-04 1.56 6.97E-05 1.57 4.25E-06 2.03 2.25E-06 2.04

α = 1.25
10 1.33E-02 - 6.41E-03 - 9.48E-03 - 4.76E-03 -
20 3.17E-03 2.07 1.44E-03 2.16 2.34E-03 2.02 1.10E-03 2.11
40 7.60E-04 2.06 3.35E-04 2.10 5.83E-04 2.00 2.67E-04 2.05
80 1.83E-04 2.05 7.97E-05 2.07 1.46E-04 2.00 6.56E-05 2.02
160 4.43E-05 2.05 1.92E-05 2.05 3.64E-05 2.00 1.63E-05 2.01
320 1.08E-05 2.04 4.66E-06 2.04 9.10E-06 2.00 4.05E-06 2.01

49

Table A.4: Independent simulation results of ABM vs MF-PCQ using Example Equation 2, Eq.
(3.6).

α = 0.2
ABM MF-PCQ

N Ept Order EL2 Order Ept Order EL2 Order
10 1.58E-01 - 7.66E-02 - 2.57E-03 - 2.72E-03 -
20 6.17E-02 1.35 2.87E-02 1.42 2.96E-04 3.12 1.87E-04 3.86
40 2.37E-02 1.38 1.07E-02 1.42 3.78E-04 -0.35 1.46E-04 0.36
80 9.14E-03 1.37 4.10E-03 1.39 3.14E-04 0.26 1.22E-04 0.25
160 3.58E-03 1.35 1.59E-03 1.36 2.56E-04 0.29 9.91E-05 0.30
320 1.42E-03 1.33 6.30E-04 1.34 2.11E-04 0.28 8.11E-05 0.29

α = 0.5
10 4.39E-02 - 2.14E-02 - 5.81E-04 - 5.63E-04 -
20 1.38E-02 1.67 6.32E-03 1.76 5.09E-05 3.51 4.69E-05 3.58
40 4.41E-03 1.64 1.96E-03 1.69 5.24E-06 3.28 4.56E-06 3.36
80 1.44E-03 1.61 6.28E-04 1.64 5.93E-07 3.14 4.96E-07 3.20
160 4.82E-04 1.58 2.07E-04 1.60 7.06E-08 3.07 5.77E-08 3.10
320 1.63E-04 1.56 6.97E-05 1.57 8.63E-09 3.03 6.97E-09 3.05

α = 1.5
10 1.34E-02 - 6.31E-03 - 1.16E-03 - 6.37E-04 -
20 3.20E-03 2.06 1.42E-03 2.15 1.55E-04 2.91 8.35E-05 2.93
40 7.76E-04 2.04 3.33E-04 2.09 1.99E-05 2.95 1.07E-05 2.97
80 1.90E-04 2.03 8.03E-05 2.05 2.53E-06 2.98 1.35E-06 2.98
160 4.66E-05 2.02 1.96E-05 2.03 3.19E-07 2.99 1.70E-07 2.99
320 1.15E-05 2.02 4.83E-06 2.02 4.00E-08 2.99 2.13E-08 3.00

50

A.2 Example Equation 3 Results

A.2.1 Expected Results, from [1]

Table A.5: Expected results using Example Equation3, Eq. (3.7), as reported in [1].

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 2.85E-01 - 9.86E-02 - 1.10E-01 - 3.80E-02 -
20 1.41E-01 1.02 4.00E-02 1.3 2.49E-02 2.15 6.99E-03 2.44
40 5.87E-02 1.26 1.49E-02 1.43 4.10E-03 2.6 1.07E-03 2.7
80 2.17E-02 1.43 5.32E-03 1.48 6.10E-04 2.75 1.68E-04 2.67
160 7.75E-03 1.49 1.91E-03 1.48 9.58E-05 2.67 2.92E-05 2.52
320 2.79E-03 1.47 7.03E-04 1.44 1.63E-05 2.56 5.56E-06 2.4

α = 0.5
10 1.10E-01 - 3.92E-02 - 3.05E-02 - 1.18E-02 -
20 3.79E-02 1.54 1.15E-02 1.77 4.73E-03 2.69 1.80E-03 2.7
40 1.23E-02 1.62 3.47E-03 1.73 7.84E-04 2.59 3.29E-04 2.45
80 3.97E-03 1.63 1.08E-03 1.68 1.50E-04 2.38 6.97E-05 2.24
160 1.30E-03 1.61 3.51E-04 1.63 3.24E-05 2.21 1.61E-05 2.11
320 4.34E-04 1.58 1.16E-04 1.59 7.52E-06 2.11 3.89E-06 2.05

51

Table A.6: Expected results using Example Equation 3, Eq. (3.7), as reported in [1].

α = 0.2
MF-PCQ

N Ept Order EL2 Order
10 3.88E-02 - 1.31E-02 -
20 4.80E-03 3.01 1.26E-03 3.37
40 3.97E-04 3.6 9.26E-05 3.77
80 2.74E-05 3.86 6.68E-06 3.79
160 1.99E-06 3.78 5.41E-07 3.63
320 1.59E-07 3.65 4.79E-08 3.5

α = 0.5
10 4.92E-03 - 1.98E-03 -
20 3.45E-04 3.84 1.45E-04 3.77
40 2.69E-05 3.68 1.32E-05 3.46
80 2.46E-06 3.45 1.41E-06 3.23
160 2.56E-07 3.27 1.63E-07 3.11
320 2.90E-08 3.14 1.96E-08 3.05

α = 1.5
10 3.06E-03 - 1.45E-03 -
20 4.00E-04 2.93 1.80E-04 3.01
40 5.12E-05 2.97 2.24E-05 3.01
80 6.48E-06 2.98 2.79E-06 3
160 8.15E-07 2.99 3.49E-07 3
320 1.02E-07 3 4.36E-08 3

52

A.2.2 Independent Simulation Results

Table A.7: Independent simulation results of ABM vs MF-PCL using Example Equation 3, Eq.
(3.7).

α = 0.25
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 2.85E-01 - 9.86E-02 - 1.10E-01 - 3.80E-02 -
20 1.41E-01 1.02 4.00E-02 1.30 2.48E-02 2.15 6.95E-03 2.45
40 5.87E-02 1.26 1.49E-02 1.43 4.00E-03 2.63 1.05E-03 2.73
80 2.17E-02 1.43 5.32E-03 1.48 5.52E-04 2.86 1.51E-04 2.79
160 7.75E-03 1.49 1.91E-03 1.48 5.63E-05 3.29 1.67E-05 3.18
320 2.79E-03 1.47 7.03E-04 1.44 1.22E-05 2.21 4.11E-06 2.02

α = 0.5
10 1.10E-01 - 3.92E-02 - 3.05E-02 - 1.18E-02 -
20 3.79E-02 1.54 1.15E-02 1.77 4.73E-03 2.69 1.80E-03 2.71
40 1.23E-02 1.62 3.47E-03 1.73 7.84E-04 2.59 3.29E-04 2.45
80 3.97E-03 1.63 1.08E-03 1.68 1.50E-04 2.38 6.97E-05 2.24
160 1.30E-03 1.61 3.51E-04 1.63 3.24E-05 2.21 1.61E-05 2.11
320 4.34E-04 1.58 1.16E-04 1.59 7.52E-06 2.11 3.89E-06 2.05

53

Table A.8: Independent simulation results of ABM vs MF-PCQ using Example Equation 3, Eq.
(3.7).

α = 0.25
ABM MF-PCQ

N Ept Order EL2 Order Ept Order EL2 Order
10 3.60E-01 - 1.24E-01 - 3.72E-02 - 1.26E-02 -
20 2.05E-01 0.81 5.66E-02 1.13 3.36E-03 3.47 8.76E-04 3.84
40 9.79E-02 1.07 2.34E-02 1.28 6.13E-04 2.45 1.51E-04 2.53
80 3.92E-02 1.32 8.81E-03 1.41 5.86E-04 0.07 1.49E-04 0.02
160 1.43E-02 1.46 3.22E-03 1.45 3.94E-04 0.57 1.11E-04 0.43
320 5.10E-03 1.48 1.19E-03 1.44 2.79E-04 0.50 8.52E-05 0.38

α = 0.5
10 1.10E-01 - 3.92E-02 - 4.92E-03 - 1.98E-03 -
20 3.79E-02 1.54 1.15E-02 1.77 3.45E-04 3.84 1.45E-04 3.77
40 1.23E-02 1.62 3.47E-03 1.73 2.69E-05 3.68 1.32E-05 3.46
80 3.97E-03 1.63 1.08E-03 1.68 2.46E-06 3.45 1.40E-06 3.23
160 1.30E-03 1.61 3.51E-04 1.63 2.56E-07 3.27 1.63E-07 3.11
320 4.34E-04 1.58 1.16E-04 1.59 2.90E-08 3.14 1.96E-08 3.05

α = 1.25
10 2.38E-02 - 9.77E-03 - 3.06E-03 - 1.45E-03 -
20 5.68E-03 2.07 2.14E-03 2.19 4.00E-04 2.93 1.80E-04 3.01
40 1.36E-03 2.06 4.96E-04 2.11 5.12E-05 2.97 2.24E-05 3.01
80 3.31E-04 2.05 1.19E-04 2.06 6.48E-06 2.98 2.79E-06 3.00
160 8.07E-05 2.03 2.89E-05 2.04 8.15E-07 2.99 3.49E-07 3.00
320 1.98E-05 2.03 7.11E-06 2.02 1.02E-07 3.00 4.36E-08 3.00

54

A.3 Example Equation 4 Results

A.3.1 Expected Results, from [1]

Table A.9: Expected results using Example Equation 4, Eq. (3.8), as reported in [1].

α = 0.3
MF-PCQ

N Ept Order EL2 Order
10 8.44E-04 - 4.77E-03 -
20 4.34E-06 7.6 1.21E-03 1.97
40 4.71E-07 3.2 3.23E-04 1.91
80 6.40E-08 2.88 8.88E-05 1.87
160 7.05E-08 0.14 2.51E-05 1.82
320 3.38E-08 1.06 7.30E-06 1.78

α = 0.5
10 1.03E-04 - 3.25E-03 -
20 5.78E-06 4.15 8.29E-04 1.97
40 3.05E-06 0.92 2.30E-04 1.85
80 1.88E-06 0.7 6.84E-05 1.75
160 8.12E-07 1.21 2.16E-05 1.67
320 3.16E-07 1.36 7.10E-06 1.6

α = 1.25
10 3.02E-04 - 2.81E-04 -
20 8.62E-05 1.81 8.72E-05 1.69
40 2.48E-05 1.8 2.68E-05 1.7
80 7.21E-06 1.78 8.11E-06 1.72
160 2.12E-06 1.77 2.44E-06 1.74
320 6.25E-07 1.76 7.28E-07 1.74

55

A.3.2 Independent Simulation Results

Table A.10: Independent simulation results of ABM vs MF-PCL using Example Equation 4, Eq.
(3.8).

α = 0.3
ABM MF-PCL

N Ept Order EL2 Order Ept Order EL2 Order
10 3.14E-02 - 2.01E-02 - 3.56E-03 - 5.99E-03 -
20 1.10E-02 1.52 6.88E-03 1.55 6.04E-04 2.56 1.38E-03 2.12
40 3.91E-03 1.49 2.40E-03 1.52 1.20E-04 2.33 3.54E-04 1.96
80 1.42E-03 1.46 8.59E-04 1.48 2.64E-05 2.19 1.01E-04 1.80
160 5.26E-04 1.43 3.16E-04 1.44 5.96E-06 2.14 3.19E-05 1.67
320 1.98E-04 1.41 1.19E-04 1.41 1.19E-06 2.33 1.07E-05 1.57

α = 0.5
10 1.44E-02 - 8.58E-03 - 2.74E-03 - 5.30E-03 -
20 4.52E-03 1.68 2.55E-03 1.75 7.15E-04 1.94 1.80E-03 1.56
40 1.46E-03 1.63 8.20E-04 1.64 2.10E-04 1.77 6.58E-04 1.45
80 4.81E-04 1.60 2.85E-04 1.52 6.51E-05 1.69 2.49E-04 1.40
160 1.62E-04 1.57 1.05E-04 1.44 2.09E-05 1.64 9.54E-05 1.38
320 5.52E-05 1.55 3.96E-05 1.41 6.86E-06 1.61 3.66E-05 1.38

α = 1.25
10 6.74E-04 - 1.32E-03 - 2.41E-03 - 2.32E-03 -
20 3.63E-04 0.89 5.21E-04 1.34 7.05E-04 1.77 7.25E-04 1.68
40 1.43E-04 1.35 1.84E-04 1.50 2.12E-04 1.73 2.25E-04 1.69
80 5.00E-05 1.51 6.12E-05 1.59 6.43E-05 1.72 6.98E-05 1.69
160 1.65E-05 1.60 1.97E-05 1.63 1.95E-05 1.72 2.15E-05 1.70
320 5.28E-06 1.65 6.22E-06 1.67 5.90E-06 1.72 6.59E-06 1.71

56

Table A.11: Independent simulation results of MF-PCQ using Example Equation 4, Eq. (3.8).

α = 0.3
MF-PCQ

N Ept Order EL2 Order
10 8.41E-04 - 4.77E-03 -
20 2.87E-06 8.20 1.21E-03 1.97
40 6.29E-07 2.19 3.23E-04 1.91
80 9.02E-07 -0.52 8.87E-05 1.87
160 7.18E-07 0.33 2.51E-05 1.82
320 5.40E-07 0.41 7.29E-06 1.78

α = 0.5
10 1.03E-04 - 3.25E-03 -
20 5.78E-06 4.15 8.29E-04 1.97
40 3.05E-06 0.92 2.30E-04 1.85
80 1.88E-06 0.70 6.84E-05 1.75
160 8.12E-07 1.21 2.16E-05 1.67
320 3.16E-07 1.36 7.10E-06 1.60

α = 1.25
10 3.02E-04 - 2.81E-04 -
20 8.62E-05 1.81 8.72E-05 1.69
40 2.48E-05 1.80 2.68E-05 1.70
80 7.21E-06 1.78 8.11E-06 1.72
160 2.12E-06 1.77 2.44E-06 1.74
320 6.25E-07 1.76 7.28E-07 1.74

57

APPENDIX B

SOFTWARE SOURCE CODE

B.1 Method Source Code

function [T,Y] = MF_PCL(alpha,fdefun,t0,tfinal,y0,h)

%MF_PCL Solves an initial value problem for a non-linear

differential↪→

% equation of fractional order (FDE). The code

implements the↪→

% 2nd-order linear interpolation predictor-corrector

PECE method of [1].↪→

%

% [T,Y] = MF_PCL(ALPHA,FDEFUN,T0,TFINAL,Y0,h) integrates the

initial value↪→

% problem for the FDE, or the system of FDEs, of order ALPHA >

0↪→

% D^ALPHA Y(t) = FDEFUN(T,Y(T))

% Y^(k)(0) = y0, k=0,...,m-1

% where m is the smallest integer greater than ALPHA and

D^ALPHA is the↪→

% fractional derivative according to the Caputo's definition.

%INPUTS:

% (1) alpha: The order of the differential equation. Alpha

must be >0.↪→

% (2) fdefun: Fractional Differential Equation. Must be a

function handle↪→

58

% in the form of fdefun = @(T,Y)

% (3) t0: Initial time. t0 must be a scalar

% (4) tfinal: Final time. tfinal must be a scalar

% (5) y0: Initial conditions. See below for info on y0*

% (6) h: step-size. h must be a scalar value > 0.

%OUTPUTS:

% (1) T: Time. T should be a vector ranging from t0:h:tfinal

% (2) Y: Solution to the FDE. Y should be the same length as

T, as↪→

% defined above.

%

% *The set of initial conditions y0 is a matrix with a number of

rows equal to↪→

% the size of the problem (hence equal to the number of rows

of the↪→

% output of FDEFUN) and a number of columns depending on ALPHA

and given↪→

% by m.

%

%[1] T. B. Nugyen and B. Jang, ŞA high-order predictor-corrector

method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

59

%% Error Catching

%Verify that the final time is greater than initial time.

if tfinal <= t0

error('The initial time, t0, must be less than the final

time, tfinal.')↪→

end

%Verify alpha is a positive value.

if alpha <= 0

error('Alpha must be a positive value')

end

%Check for required number of initial conditions

num_init_conds_req = ceil(alpha);

if size(y0,2) <= num_init_conds_req

error('y0 does not contain sufficient initial condition

information to solve the problem. y0 should be a row

vector of length equal to ceil(alpha). (E.G. if alpha =

1.25, y0 = [y(0), y_prime(0)])')

↪→

↪→

↪→

end

% Check that fdefun is a function handle.

if isa(fdefun, 'function_handle') == 0

error('fdefun input is not a function handle')

end

60

% Verify that the grid is compatible with the method.

tfinal_on_grid_check = (tfinal-t0)/h;

if mod(tfinal_on_grid_check, 1) ~= 0

error('grid does not end on tfinal. This method requires a

constant step size. Please reconfigure your t0, tfinal,

and h values such that (tfinal-t0)/h is an integer

value.')

↪→

↪→

↪→

end

%% Internal Variable Initialization

b0 = -1;

b1 = alpha + 2;

%Preallocate Variable Arrays for Speed

num_terms = (tfinal-t0)/h;

y_corrector = zeros(1, num_terms);

y_predictor = zeros(1, num_terms);

f_predictor = zeros(1, num_terms);

f_corrector = zeros(1, num_terms);

g = zeros(1, num_terms);

y_lag_final = zeros(1, num_terms);

y_increment = zeros(1, num_terms);

%% Initialize Counters:

61

% NOTE: Since the step can be a non-integer value, (i.e. n =

% t0:h:tfinal), we need an integer variable corresponding to

this step for↪→

% array indexing purposes. These are defined below:

% 1) jj: This is the indexing variable for lag calculations. It

corresponds↪→

% with the step j, where j is summed from 0 to n-1

% 2) nn: This is the indexing variable for the method. It

corresponds with↪→

% the step n, which is the current timestep.

%Again, since the startup takes us through 2*h, we have the

following:↪→

%nn = 1: y(0)

%nn = 2: y(h)

%nn = 3: y(2h), with y(nn+1) being the first unknown term of the

algorithm.↪→

nn = 3;

starting_step = (2*h + t0);

% Startup Export contains the values needed from the

StartupProcedure. As↪→

% defined below, StartupProcedure contains:

% 1) startup_export(1) = f_corrector evaluated at t = h

% 2) startup_export(2) = f_corrector evaluated at t = 2h

% 3) startup_export(3) = y_corrector evaluated at t = h

% 4) startup_export(4) = y_corrector evaluated at t = 2h

62

scheme = 'linear';

startup_export = StartupProcedure(fdefun, scheme, t0, y0, alpha,

h);↪→

f_corrector(1) = fdefun(t0, y0(1));

f_corrector(2) = startup_export(1);

f_corrector(3) = startup_export(2);

y_corrector(1) = y0(1);

y_corrector(2) = startup_export(3);

y_corrector(3) = startup_export(4);

%Calculate Coefficients for Linear Interp method. Will remain a

constant↪→

%value over the full method, so can be calculated prior to the

loop.↪→

[B_0n_Coeff, B_1n_Coeff] =

B_Coefficients(starting_step,starting_step+h,

starting_step+h, alpha);

↪→

↪→

g(1) = calculate_IC(y0,alpha,0);

%% 2nd Order, Linear Interpolation

% n is the current time step. Starts at 2*h, and increases by h

each time.↪→

% This is because the startup procedure calculates up through

2*h, so the↪→

63

% next y_(n+1) term desired is y_(2*h + h). % This will

calculate values up↪→

% to final time tfinal, since each loop solves the y_(n+1) term.

for n = starting_step:h:tfinal-h

%lag term incrementor and lag summer reset for each pass of

n.↪→

jj = 1;

y_lag_sum = 0;

for j = 0:h:n-h

%Calculate Coefficients for lag terms:

[B_0j_Coeff, B_1j_Coeff] = B_Coefficients(j,j+h, n+h,

alpha);↪→

% Summation Portion of the lag term.

y_lag_sum = y_lag_sum + B_0j_Coeff*f_corrector(jj) +

B_1j_Coeff*f_corrector(jj+1);↪→

%Increment the interior counter

jj = jj + 1;

end

%Calculate the initial condition term

g(nn+1) = calculate_IC(y0, alpha, n+h);

% Lag term for this time step is now complete!

64

y_lag_final(nn+1) = 1/gamma(alpha)*y_lag_sum;

%Now we are able to calculate the predictor:

% Predictor term at the new step:

y_predictor(nn+1) = g(nn+1) + y_lag_final(nn+1) +

h^alpha/gamma(alpha+2)*(b0*f_corrector(nn-1) +

b1*f_corrector(nn));

↪→

↪→

%Evaluate the FDEfun using this y_predicted value, at the

current time↪→

%step that we are looking to predict at.

f_predictor(nn+1) = fdefun(n+h, y_predictor(nn+1));

%Increment term at the new step

y_increment(nn+1) =

1/gamma(alpha)*(B_0n_Coeff*f_corrector(nn) +

B_1n_Coeff*f_predictor(nn+1));

↪→

↪→

%Corrector term at the new step, using same lag term, and

above↪→

%increment term

y_corrector(nn+1) = g(nn+1) + y_lag_final(nn+1) +

y_increment(nn+1);↪→

65

%Evaluate fdefun using corrector y_value guess instead of

predicted y_value. To↪→

%be used in the next prediction stage.

f_corrector(nn+1) = fdefun(n+h, y_corrector(nn+1));

%increment n indexing variable.

nn = nn + 1;

end

%return the final output variables

Y = y_corrector;

T = t0:h:tfinal;

%% END of Method

end

function [T,Y] = MF_PCL(alpha,fdefun,t0,tfinal,y0,h)

%MF_PCL Solves an initial value problem for a non-linear

differential↪→

% equation of fractional order (FDE). The code

implements the↪→

% 2nd-order linear interpolation predictor-corrector

PECE method of [1].↪→

%

% [T,Y] = MF_PCL(ALPHA,FDEFUN,T0,TFINAL,Y0,h) integrates the

initial value↪→

% problem for the FDE, or the system of FDEs, of order ALPHA >

0↪→

66

% D^ALPHA Y(t) = FDEFUN(T,Y(T))

% Y^(k)(0) = y0, k=0,...,m-1

% where m is the smallest integer greater than ALPHA and

D^ALPHA is the↪→

% fractional derivative according to the Caputo's definition.

%INPUTS:

% (1) alpha: The order of the differential equation. Alpha

must be >0.↪→

% (2) fdefun: Fractional Differential Equation. Must be a

function handle↪→

% in the form of fdefun = @(T,Y)

% (3) t0: Initial time. t0 must be a scalar

% (4) tfinal: Final time. tfinal must be a scalar

% (5) y0: Initial conditions. See below for info on y0*

% (6) h: step-size. h must be a scalar value > 0.

%OUTPUTS:

% (1) T: Time. T should be a vector ranging from t0:h:tfinal

% (2) Y: Solution to the FDE. Y should be the same length as

T, as↪→

% defined above.

%

% *The set of initial conditions y0 is a matrix with a number of

rows equal to↪→

% the size of the problem (hence equal to the number of rows

of the↪→

% output of FDEFUN) and a number of columns depending on ALPHA

and given↪→

67

% by m.

%

%[1] T. B. Nugyen and B. Jang, ŞA high-order predictor-corrector

method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

%% Error Catching

%Verify that the final time is greater than initial time.

if tfinal <= t0

error('The initial time, t0, must be less than the final

time, tfinal.')↪→

end

%Verify alpha is a positive value.

if alpha <= 0

error('Alpha must be a positive value')

end

%Check for required number of initial conditions

num_init_conds_req = ceil(alpha);

if size(y0,2) <= num_init_conds_req

68

error('y0 does not contain sufficient initial condition

information to solve the problem. y0 should be a row

vector of length equal to ceil(alpha). (E.G. if alpha =

1.25, y0 = [y(0), y_prime(0)])')

↪→

↪→

↪→

end

% Check that fdefun is a function handle.

if isa(fdefun, 'function_handle') == 0

error('fdefun input is not a function handle')

end

% Verify that the grid is compatible with the method.

tfinal_on_grid_check = (tfinal-t0)/h;

if mod(tfinal_on_grid_check, 1) ~= 0

error('grid does not end on tfinal. This method requires a

constant step size. Please reconfigure your t0, tfinal,

and h values such that (tfinal-t0)/h is an integer

value.')

↪→

↪→

↪→

end

%% Internal Variable Initialization

b0 = -1;

b1 = alpha + 2;

%Preallocate Variable Arrays for Speed

69

num_terms = (tfinal-t0)/h;

y_corrector = zeros(1, num_terms);

y_predictor = zeros(1, num_terms);

f_predictor = zeros(1, num_terms);

f_corrector = zeros(1, num_terms);

g = zeros(1, num_terms);

y_lag_final = zeros(1, num_terms);

y_increment = zeros(1, num_terms);

%% Initialize Counters:

% NOTE: Since the step can be a non-integer value, (i.e. n =

% t0:h:tfinal), we need an integer variable corresponding to

this step for↪→

% array indexing purposes. These are defined below:

% 1) jj: This is the indexing variable for lag calculations. It

corresponds↪→

% with the step j, where j is summed from 0 to n-1

% 2) nn: This is the indexing variable for the method. It

corresponds with↪→

% the step n, which is the current timestep.

%Again, since the startup takes us through 2*h, we have the

following:↪→

%nn = 1: y(0)

%nn = 2: y(h)

70

%nn = 3: y(2h), with y(nn+1) being the first unknown term of the

algorithm.↪→

nn = 3;

starting_step = (2*h + t0);

% Startup Export contains the values needed from the

StartupProcedure. As↪→

% defined below, StartupProcedure contains:

% 1) startup_export(1) = f_corrector evaluated at t = h

% 2) startup_export(2) = f_corrector evaluated at t = 2h

% 3) startup_export(3) = y_corrector evaluated at t = h

% 4) startup_export(4) = y_corrector evaluated at t = 2h

scheme = 'linear';

startup_export = StartupProcedure(fdefun, scheme, t0, y0, alpha,

h);↪→

f_corrector(1) = fdefun(t0, y0(1));

f_corrector(2) = startup_export(1);

f_corrector(3) = startup_export(2);

y_corrector(1) = y0(1);

y_corrector(2) = startup_export(3);

y_corrector(3) = startup_export(4);

%Calculate Coefficients for Linear Interp method. Will remain a

constant↪→

%value over the full method, so can be calculated prior to the

loop.↪→

71

[B_0n_Coeff, B_1n_Coeff] =

B_Coefficients(starting_step,starting_step+h,

starting_step+h, alpha);

↪→

↪→

g(1) = calculate_IC(y0,alpha,0);

%% 2nd Order, Linear Interpolation

% n is the current time step. Starts at 2*h, and increases by h

each time.↪→

% This is because the startup procedure calculates up through

2*h, so the↪→

% next y_(n+1) term desired is y_(2*h + h). % This will

calculate values up↪→

% to final time tfinal, since each loop solves the y_(n+1) term.

for n = starting_step:h:tfinal-h

%lag term incrementor and lag summer reset for each pass of

n.↪→

jj = 1;

y_lag_sum = 0;

for j = 0:h:n-h

%Calculate Coefficients for lag terms:

[B_0j_Coeff, B_1j_Coeff] = B_Coefficients(j,j+h, n+h,

alpha);↪→

72

% Summation Portion of the lag term.

y_lag_sum = y_lag_sum + B_0j_Coeff*f_corrector(jj) +

B_1j_Coeff*f_corrector(jj+1);↪→

%Increment the interior counter

jj = jj + 1;

end

%Calculate the initial condition term

g(nn+1) = calculate_IC(y0, alpha, n+h);

% Lag term for this time step is now complete!

y_lag_final(nn+1) = 1/gamma(alpha)*y_lag_sum;

%Now we are able to calculate the predictor:

% Predictor term at the new step:

y_predictor(nn+1) = g(nn+1) + y_lag_final(nn+1) +

h^alpha/gamma(alpha+2)*(b0*f_corrector(nn-1) +

b1*f_corrector(nn));

↪→

↪→

%Evaluate the FDEfun using this y_predicted value, at the

current time↪→

%step that we are looking to predict at.

f_predictor(nn+1) = fdefun(n+h, y_predictor(nn+1));

73

%Increment term at the new step

y_increment(nn+1) =

1/gamma(alpha)*(B_0n_Coeff*f_corrector(nn) +

B_1n_Coeff*f_predictor(nn+1));

↪→

↪→

%Corrector term at the new step, using same lag term, and

above↪→

%increment term

y_corrector(nn+1) = g(nn+1) + y_lag_final(nn+1) +

y_increment(nn+1);↪→

%Evaluate fdefun using corrector y_value guess instead of

predicted y_value. To↪→

%be used in the next prediction stage.

f_corrector(nn+1) = fdefun(n+h, y_corrector(nn+1));

%increment n indexing variable.

nn = nn + 1;

end

%return the final output variables

Y = y_corrector;

T = t0:h:tfinal;

%% END of Method

end

function [T,Y] = MF_PCQ(alpha,fdefun,t0,tfinal,y0,h)

74

%MF_PCQ Solves an initial value problem for a non-linear

differential↪→

% equation of fractional order (FDE). The code

implements the↪→

% 3rd-order quadratic interpolation predictor-corrector

PECE method of [1].↪→

%

% [T,Y] = MF_PCQ(ALPHA,FDEFUN,T0,TFINAL,Y0,h) integrates the

initial value↪→

% problem for the FDE, or the system of FDEs, of order ALPHA >

0↪→

% D^ALPHA Y(t) = FDEFUN(T,Y(T))

% Y^(k)(0) = y0, k=0,...,m-1

% where m is the smallest integer greater than ALPHA and

D^ALPHA is the↪→

% fractional derivative according to the Caputo's definition.

%INPUTS:

% (1) alpha: The order of the differential equation. Alpha

must be >0.↪→

% (2) fdefun: Fractional Differential Equation. Must be a

function handle↪→

% in the form of fdefun = @(T,Y)

% (3) t0: Initial time. t0 must be a scalar

% (4) tfinal: Final time. tfinal must be a scalar

% (5) y0: Initial conditions. See below for info on y0*

% (6) h: step-size. h must be a scalar value > 0.

%OUTPUTS:

75

% (1) T: Time. T should be a vector ranging from t0:h:tfinal

% (2) Y: Solution to the FDE. Y should be the same length as

T, as↪→

% defined above.

%

% *The set of initial conditions y0 is a matrix with a number of

rows equal to↪→

% the size of the problem (hence equal to the number of rows

of the↪→

% output of FDEFUN) and a number of columns depending on ALPHA

and given↪→

% by m.

%

%[1] T. B. Nugyen and B. Jang, ŞA high-order predictor-corrector

method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

%% Error Catching

%Verify that the final time is greater than initial time.

if tfinal <= t0

error('The initial time, t0, must be less than the final

time, tfinal.')↪→

end

76

%Verify alpha is a positive value.

if alpha <= 0

error('Alpha must be a positive value')

end

%Check for required number of initial conditions

num_init_conds_req = ceil(alpha);

if size(y0,2) <= num_init_conds_req

error('y0 does not contain sufficient initial condition

information to solve the problem. y0 should be a row

vector of length equal to ceil(alpha). (E.G. if alpha =

1.25, y0 = [y(0), y_prime(0)])')

↪→

↪→

↪→

end

% Check that fdefun is a function handle.

if isa(fdefun, 'function_handle') == 0

error('fdefun input is not a function handle')

end

% Verify that the grid is compatible with the method.

tfinal_on_grid_check = (tfinal-t0)/h;

if mod(tfinal_on_grid_check, 1) ~= 0

error('grid does not end on tfinal. This method requires a

constant step size. Please reconfigure your t0, tfinal,

and h values such that (tfinal-t0)/h is an integer

value.')

↪→

↪→

↪→

77

end

%% Internal Variable Initialization

a0 = (alpha + 4)/2;

a1 = -2*(alpha+3);

a2 = (2*alpha^2 + 9*alpha + 12)/2;

m = 1; % TODO: should be calculated later with IC

%% Initialize Counters:

% NOTE: Since the step can be a non-integer value, (i.e. n =

% t0:h:tfinal), we need an integer variable corresponding to

this step for↪→

% array indexing purposes. These are defined below:

% 1) jj: This is the indexing variable for lag calculations. It

corresponds↪→

% with the step j, where j is summed from 0 to n-1

% 2) nn: This is the indexing variable for the method. It

corresponds with↪→

% the step n, which is the current timestep.

%Again, since the startup takes us through 2*h, we have the

following:↪→

%nn = 1: y(0)

%nn = 2: y(h)

%nn = 3: y(2h), with y(nn+1) being the first unknown term of the

algorithm.↪→

nn = 3;

78

starting_step = 2*h + t0;

% Startup Export contains the values needed from the

startupProcedure. As↪→

% defined below, StartupProcedure contains:

% 1) startup_export(1) = f_corrector evaluated at t = h/2

% 2) startup_export(2) = f_corrector evaluated at t = h

% 3) startup_export(3) = f_corrector evaluated at t = 2h

% 4) startup_export(4) = y_corrector evaluated at t = h/2

% 5) startup_export(5) = y_corrector evaluated at t = h

% 6) startup_export(5) = y_corrector evaluated at t = 2h

scheme = 'quadratic';

startup_export = StartupProcedure(fdefun, scheme, t0, y0, alpha,

h);↪→

f_corrector(1) = fdefun(t0, y0(1));

f_corrector(2) = startup_export(2);

f_corrector_one_half = startup_export(1);

f_corrector(3) = startup_export(3);

y_corrector(1) = y0(1);

y_corrector(2) = startup_export(5);

y_corrector_one_half = startup_export(4);

y_corrector(3) = startup_export(6);

%Calculate Initial Condition

g(1) = calculate_IC(y0, alpha, 0);

79

[A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] =

A_Coefficients(starting_step, starting_step+h,

starting_step-h, starting_step, starting_step+h,

starting_step+h, alpha);

↪→

↪→

↪→

%% 3rd Order, Quadratic Interp

% n is the current time step. Starts at 2*h, and increases by h

each time.↪→

% This is because the startup procedure calculates up through

2*h, so the↪→

% next y_(n+1) term desired is y_(2*h + h). % This will

calculate values up↪→

% to final time tfinal, since each loop solves the y_(n+1) term.

for n = starting_step:h:tfinal-h

%lag term incrementor and lag summer reset for each pass

of n.↪→

jj = 2;

y_lag_sum = 0;

for j = h:h:n-h

%Calculate Coefficients for lag terms:

[A_0j_Coeff, A_1j_Coeff, A_2j_Coeff] = A_Coefficients(j,

j+h,j-h, j, j+h, n+h, alpha);↪→

80

% Summation Portion of the lag term.

y_lag_sum = y_lag_sum + A_0j_Coeff*f_corrector(jj-1) +

A_1j_Coeff*f_corrector(jj) +

A_2j_Coeff*f_corrector(jj+1);

↪→

↪→

%Increment the interior counter

jj = jj + 1;

end

%Calculate the initial condition term

g(nn+1) = calculate_IC(y0, alpha, n+h);

%Compute the initial set of coefficients, evaluated at n+h.

[A_00_Coeff, A_10_Coeff, A_20_Coeff] =

A_Coefficients(0,h,0,h/2,h,n+h, alpha);↪→

% Apply Coefficient weights to the fde evaluated at

respective time↪→

% steps

A_initial = A_00_Coeff*f_corrector(1) +

A_10_Coeff*f_corrector_one_half +

A_20_Coeff*f_corrector(2);

↪→

↪→

% Lag term for this time step is now complete!

y_lag_final(nn+1) = 1/gamma(alpha)*(A_initial + y_lag_sum);

81

%Now we are able to calculate the predictor:

% Predictor term at the new step.

y_predictor(nn+1) = g(nn+1) + y_lag_final(nn+1) +

h^alpha/gamma(alpha+3)*(a0*f_corrector(nn-2) +

a1*f_corrector(nn-1) + a2*f_corrector(nn));

↪→

↪→

%Evaluate the FDEfun using this y_predicted value, at the

current time↪→

%step we are looking to predict at.

f_predictor(nn+1) = fdefun(n+h, y_predictor(nn+1));

%Increment term at the new step

y_increment(nn+1) =

1/gamma(alpha)*(A_0n_Coeff*f_corrector(nn-1) +

A_1n_Coeff*f_corrector(nn) +

A_2n_Coeff*f_predictor(nn+1));

↪→

↪→

↪→

%Corrector term at the new step, using the same lag term,

and above↪→

%increment term

y_corrector(nn+1) = g(nn+1) + y_lag_final(nn+1) +

y_increment(nn+1);↪→

%Evaluate using corrector y_value guess instead of predicted

y_value. To↪→

82

%be used in the next prediction stage.

f_corrector(nn+1) = feval(fdefun, n+h, y_corrector(nn+1));

%increment n indexing variable

nn = nn + 1;

end

%return the final output variables

Y = y_corrector;

T = t0:h:tfinal;

%% END of Method

end

function [B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t_j, t_jj,

t_nn, alpha)↪→

%B_Coefficients is a supporting function in the FDE solver

packages MF_PCL/MF_PCQ.↪→

%This function computes the coefficients as defined in [1].

%INPUTS:

% (1) t_j: (scalar) lower bound of integration

% (2) t_jj: (scalar) upper bound of integration, t_jj>t_j

% (3) t_nn: (scalar) current time-step the coefficient is to be

evaluated at↪→

% (4) alpha: (scalar) order of the FDE. alpha > 0.

%OUTPUTS:

% (1) B_0n_Coeff: (scalar) Coefficient calculated using L_j

83

% (2) B_1n_Coeff: (scalar) Coefficient calculated using L_jj

%

%%[1] T. B. Nugyen and B. Jang, ŞA high-order

predictor-corrector method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

% Call the linear Lagrangian interpolation function

[L_j, L_jj] = Linear_Interp(t_j,t_jj);

%The core of the integral, this portion is the same for both B_0

and B_1.↪→

B_kernel = @(tau) ((t_nn-tau).^(alpha-1));

%These lines combine the kernel with each appropriate

interpolation↪→

%function, combining both function handles into one:

B_0n_funct = @(tau) B_kernel(tau).*L_j(tau);

B_1n_funct = @(tau) B_kernel(tau).*L_jj(tau);

%These lines compute the integral of the overall function, using

the bounds↪→

%input:

B_0n_Coeff = integral(B_0n_funct, t_j,t_jj);

B_1n_Coeff = integral(B_1n_funct, t_j,t_jj);

84

end

function [A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] = A_Coefficients(i c

ntegrand_low,integrand_high,t_low,t_mid,t_up,t_eval,alpha)↪→

%A_Coefficients is a supporting function in the FDE solver

packages MF_PCL/MF_PCQ.↪→

%This function computes the coefficients as defined in [1].

%

%This function has additional inputs as compared to

B_Coefficients due to↪→

%additional flexibility required by the startup scheme,

StartupProcedure.↪→

%

%INPUTS:

% (1) integrand_low: (scalar) lower bound of integration

% (2) integrand_high: (scalar) upper bound of integration,

t_high>t_low↪→

% (3) t_low: (scalar) low value used by the quadratic

interpolator↪→

% (4) t_mid: (scalar) middle value used by the quadratic

interpolator↪→

% (5) t_up: (scalar) upper value used by the quadratic

interpolator↪→

% (6) t_eval: current time-step the coefficient is to be

evaluated at↪→

% (7) alpha: (scalar) order of the FDE. alpha > 0.

%OUTPUTS:

85

% (1) A_0n_Coeff: (scalar) Coefficient calculated using Q_low

% (2) A_1n_Coeff: (scalar) Coefficient calculated using Q_mid

% (3) A_2n_Coeff: (scalar) Coefficient calculated using Q_up

%

%%[1] T. B. Nugyen and B. Jang, ŞA high-order

predictor-corrector method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

% Call the quadratic Lagrangian interpolation function

[Q_low, Q_mid, Q_up] = Quadratic_Interp(t_low, t_mid, t_up);

%The core of the integral, this portion is the same for A_0,

A_1, and A_2.↪→

A_kernel = @(tau) ((t_eval-tau).^(alpha-1));

%These lines combine the kernel with each appropriate

interpolation↪→

%function, combining both function handles into one:

A_0n_funct = @(tau) A_kernel(tau).*Q_low(tau);

A_1n_funct = @(tau) A_kernel(tau).*Q_mid(tau);

A_2n_funct = @(tau) A_kernel(tau).*Q_up(tau);

%These lines compute the integral of the overall function, using

the bounds↪→

86

%input:

A_0n_Coeff = integral(A_0n_funct,integrand_low,integrand_high);

A_1n_Coeff = integral(A_1n_funct,integrand_low,integrand_high);

A_2n_Coeff = integral(A_2n_funct,integrand_low,integrand_high);

end

function [L_j, L_jj] = Linear_Interp(t_j, t_jj)

% Linear_Interp is a supporting function for in FDE solver

packages MF_PCL/MF_PCQ.↪→

% This function implements a linear Lagrangian interpolation

over the↪→

% time-step from t_j to t_jj.

%INPUTS:

% (1) t_j = (scalar number) lower bound of interpolation

% (2) t_jj = (scalar number) upper bound of interpolation (jj

:= j + 1)↪→

%OUTPUTS:

% (1) L_j = (function handle @(tau)...) lower-end

interpolation function↪→

% (2) L_jj = (function handle @(tau)...) upper-end

interpolation function↪→

L_j = @(tau) (tau - t_jj) / (t_j - t_jj);

L_jj = @(tau) (tau - t_j) / (t_jj - t_j);

end

function [Q_low, Q_mid, Q_up] =

Quadratic_Interp(t_low,t_mid,t_up)↪→

87

% Quadratic_Interp is a supporting function in the FDE solver

packages MF_PCL/MF_PCQ.↪→

% This function implements a quadratic Lagrangian interpolation

over the↪→

% time-step from t_low to t_high.

%INPUTS:

% (1) t_low = (scalar number) lower bound of interpolation

% (2) t_mid = (scalar number) middle value of interpolation

% (3) t_high = (scalar number) upper value of interpolation

%OUTPUTS:

% (1) Q_low = (function handle @(tau)...) lower-end

interpolation function↪→

% (2) Q_mid = (function handle @(tau)...) middle

interpolation function↪→

% (3) Q_up = (function handle @(tau)...) upper-end

interpolation function↪→

Q_low = @(tau) ((tau - t_mid)/(t_low - t_mid)) .* ((tau -

t_up)/(t_low - t_up));↪→

Q_mid = @(tau) ((tau - t_low)/(t_mid - t_low)) .* ((tau -

t_up)/(t_mid - t_up));↪→

Q_up = @(tau) ((tau - t_low)/(t_up - t_low)) .* ((tau -

t_mid)/(t_up - t_mid));↪→

end

88

% This is a test script to accompany thr FDE solver packages,

% MF_PCL/MF_PCQ. This script will present an example of how to

use the↪→

% packages and present one of the example fde's present in [1].

%

%[1] T. B. Nugyen and B. Jang, ŞA high-order predictor-corrector

method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

%

clear all;

close all;

clc;

%INPUTS:

alpha = 0.3;

fdefun = @(t,y) (40320/gamma(9-alpha))*t^(8-alpha) -

3*(gamma(5+alpha/2)/gamma(5-alpha/2))*t^(4-alpha/2) +

9/4*gamma(alpha+1) + (3/2*t^(alpha/2)-t^4)^3-y^(3/2);

↪→

↪→

t0 = 0;

t_final = 1;

y0 = [0,0];

tfinal = 1;

h = 0.05;

%Call the 2nd order method, MF_PCL:

89

[T,Y_PCL] = MF_PCL(alpha,fdefun,t0,tfinal,y0,h);

%Call the 3rd order method, MF_PCQ:

[T,Y_PCQ] = MF_PCQ(alpha,fdefun,t0,tfinal,y0,h);

%Call the original Method, ABM:

[T,Y_ABM] = fde12(alpha,fdefun,t0,tfinal,y0,h);

%Calculate True Solution:

i = 1;

for t = t0:h:tfinal

True_Solution(i) = t^8 - 3*t^(4+alpha/2)+9/4*t^alpha;

%Change depending on Eq being used!↪→

i = i +1;

end

figure(1)

title('Comparison of Competing Methods')

plot(T,Y_PCL);

hold on;

plot(T,Y_PCQ);

hold on;

plot(T,Y_ABM);

hold on;

plot(T,True_Solution);

legend('MF-PCL', 'MF-PCQ', 'ABM', 'Exact Solution')

xlabel('time, (T)')

ylabel('Solution, (Y)')

90

function IC = calculate_IC(y0, alpha, t_eval)

% calculate_IC is a supporting function in the FDE solver

packages,↪→

% MF_PCL/MF_PCQ. This function calculates the g term relating to

the initial↪→

% condition data. It is calculated according to [1].

%

%INPUTS:

% (1) y0: (vector/ array of scalars) y0 should be of length m,

defined as↪→

% m = ceiling(alpha). The terms of y0 are the values

of [y(0),↪→

% y'(0), y''(0), ..., y^(m-1)] in this order.

% (2) alpha: (scalar) order of the FDE. alpha > 0.

% (3) t_eval: (scalar) the time that g is being evaluated at.

%OUTPUTS:

% (1) IC: (scalar) value of g evaluated at the time specified.

%

% %%[1] T. B. Nugyen and B. Jang, ŞA high-order

predictor-corrector method for↪→

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

g = 0;

m = ceil(alpha);

91

for k = 0:m-1

g = g + y0(k+1)*(t_eval^k)/factorial(k);

end

IC = g;

end

function [startup_export] = StartupProcedure(fdefun, scheme, t0,

y0, alpha, h)↪→

% StartupProcedure is a supporting function to the FDE solver

packages↪→

% MF_PCL/MF_PCQ. This function is called by both schemes to

begin the↪→

% method. It uses a combination of constant, linear, and

quadratic↪→

% interpolation to provide a high-accuracy early-heredity by

computing↪→

% values over a non-constant-sized grid of [0, h/4, h/2, h,

2*h]. This↪→

% function follows the definition as described in [1].

%

%INPUTS:

% (1) fdefun: (function handle @(T,Y) ...) The fractional

differential equation.↪→

% (2) scheme: (string) 'linear' or 'quadratic'. This determines

which↪→

92

% values are returned from the function call,

depending on which↪→

% scheme is being used.

% (3) t0: (scalar) initial time. t0 must be >= 0.

% (4) y0: (vector) The initial value of the problem.

% (5) alpha: (scalar) order of the FDE. alpha > 0.

% (6) h: (scalar) This is the step-size of the problem. The

startup↪→

% procedure will divide h into the grid described

above. h >0.↪→

%OUTPUTS:

% (1) startup_export: (vector) % array that exports the required

values↪→

% computed in the startup procedure:

% Linear scheme: [f_corrector(h),

f_corrector(2h),↪→

% y_corrector(h),

y_corrector_(2h)]↪→

% Quadratic scheme: [f_corrector(h/2),

f_corrector(h),↪→

% f_corrector(2h),

y_corrector(h/2),↪→

% y_corrector(h),

y_corrector_(2h)]↪→

%

% %[1] T. B. Nugyen and B. Jang, ŞA high-order

predictor-corrector method for↪→

93

% solving nonlinear differential equations of fractional

order,Ť↪→

% Fractional Calculus and Applied Analysis, vol. 20, No. 2,

pp. 447Ű476, 2017.↪→

%% Initial Values

g = zeros(1,10);

%Preallocate Variable arrays

f_predictor = zeros(1, 5);

y_predictor = zeros(1, 5);

f_corrector = zeros(1,5);

y_corrector = zeros(1,5);

y_predictor_P1 = zeros(1,5);

y_predictor_P2 = zeros(1,5);

f_predictor_P1 = zeros(1,5);

f_predictor_P2 = zeros(1,5);

f_corrector(1) = fdefun(t0, y0(1));

%% Approximate y(h/4)

%%%↪→

%% Predict y(h/4):

jj = 1;

g(jj+1) = calculate_IC(y0, alpha, t0+h/4);

94

y_predictor(jj+1) = g(jj+1) + 1/gamma(alpha +

1)*(h/4)^alpha*f_corrector(jj);↪→

%% Correct y(h/4)

%Intermediate Steps:

% 1. Calculate B coefficients

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + 0, t0 + h/4, t0 +

h/4, alpha) ;↪→

% 2. Calculate f_pred, using y_pred.

f_predictor(jj+1) = fdefun(t0 + h/4, y_predictor(jj+1)) ;

y_corrector(jj+1) = g(jj+1) +

1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj) +

B_1n_Coeff*f_predictor(jj+1));

↪→

↪→

% Calculate f_corrector(h/4)

f_corrector(jj+1) = fdefun(t0 + h/4, y_corrector(jj+1));

jj = jj + 1;

%% Approximate y(h/2)

%%%↪→

% Next Step Indexing Key:

% jj + 1 = 3, corresponding to h/2.

% jj = 2, corresponding to h/4.

% jj - 1 = 1, corresponding to 0.

95

%% c

%%%%%%%%%%%↪→

%Lag term:

%Intermediate Steps:

%1. Calculate B Coefficients

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + 0, t0 + h/4, t0 +

h/2, alpha) ;↪→

g(jj+1) = calculate_IC(y0, alpha, t0+h/2);

y_lag(jj+1) = 1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj-1) +

B_1n_Coeff*f_corrector(jj));↪→

%% Predict y(h/2) Constant Interp:

y_predictor_P1(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha+1)*(h/4)^alpha*f_corrector(jj);↪→

%% Predict y(h/2) Linear Interp:

%Intermediate Steps:

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + h/4, t0 + h/2, t0

+ h/2, alpha) ;↪→

f_predictor_P1(jj+1) = fdefun(t0 + h/2, y_predictor_P1(jj+1));

y_predictor_P2(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj) +

B_1n_Coeff*f_predictor_P1(jj+1));

↪→

↪→

96

%% Correct y(h/2) : Quadratic Interp:

%Intermediate Steps:

[A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] = A_Coefficients(t0 + 0,t0

+ h/2,t0 + 0,t0 + h/4,t0 + h/2,t0 + h/2,alpha);↪→

f_predictor_P2(jj+1) = fdefun(t0 + h/2, y_predictor_P2(jj+1));

y_corrector(jj+1) = g(jj+1) +

1/gamma(alpha)*(A_0n_Coeff*f_corrector(jj-1) +

A_1n_Coeff*f_corrector(jj) +

A_2n_Coeff*f_predictor_P2(jj+1));

↪→

↪→

↪→

f_corrector(jj+1) = fdefun(t0 + h/2, y_corrector(jj+1));

jj = jj +1;

%% Approximate y(h)

%%%↪→

% Next Step Indexing Key:

% jj + 1 = 4, corresponding to h.

% jj = 3, corresponding to h/2.

% jj - 1 = 2, corresponding to h/4.

% jj - 2 = 1, corresponding to 0.

%% c

%%%%%%%%%%%↪→

% Lag term:

97

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + 0, t0 + h/2, t0 +

h, alpha) ;↪→

g(jj+1) = calculate_IC(y0, alpha, t0+h);

y_lag(jj+1) = 1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj-2) +

B_1n_Coeff*f_corrector(jj));↪→

%% Predict y(h) Constant Interp:

y_predictor_P1(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha+1)*(h/2)^alpha*f_corrector(jj);↪→

%% Predict y(h) Linear Interp:

%Intermediate Steps:

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + h/2,t0 + h,t0 +

h, alpha) ;↪→

f_predictor_P1(jj+1) = fdefun(t0 + h, y_predictor_P1(jj+1));

y_predictor_P2(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj) +

B_1n_Coeff*f_predictor_P1(jj+1));

↪→

↪→

%% Correct y(h) : Quadratic Interp:

%Intermediate Steps:

98

[A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] = A_Coefficients(t0 + 0,t0

+ h,t0 + 0,t0 + h/2,t0 + h,t0 + h,alpha);↪→

f_predictor_P2(jj+1) = fdefun(t0 + h, y_predictor_P2(jj+1));

y_corrector(jj+1) = g(jj+1) +

1/gamma(alpha)*(A_0n_Coeff*f_corrector(jj-2) +

A_1n_Coeff*f_corrector(jj) +

A_2n_Coeff*f_predictor_P2(jj+1));

↪→

↪→

↪→

f_corrector(jj+1) = fdefun(t0 + h, y_corrector(jj+1));

jj = jj +1;

%% Approximate y(2h)

%%%↪→

% Next Step Indexing Key:

% jj + 1 = 5, corresponding to 2h.

% jj = 4, corresponding to h.

% jj - 1 = 3, corresponding to h/2.

% jj - 2 = 2, corresponding to h/4.

% jj - 3 = 1, corresponding to 0.

%% c

%%%%%%%%%%%↪→

% Lag term:

[A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] = A_Coefficients(t0 +0,t0 +

h,t0 + 0, t0 + h/2,t0 + h,t0 + 2*h, alpha) ;↪→

99

g(jj+1) = calculate_IC(y0, alpha, t0+2*h);

y_lag(jj+1) = 1/gamma(alpha)*(A_0n_Coeff*f_corrector(jj-3) +

A_1n_Coeff*f_corrector(jj-1) + A_2n_Coeff*f_corrector(jj));↪→

%% Predict y(2h) Constant Interp:

y_predictor_P1(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha+1)*(h)^alpha*f_corrector(jj);↪→

%% Predict y(2h) Linear Interp:

%Intermediate Steps:

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0 + h, t0 + 2*h, t0 +

2*h, alpha) ;↪→

f_predictor_P1(jj+1) = fdefun(t0 + 2*h, y_predictor_P1(jj+1));

y_predictor_P2(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha)*(B_0n_Coeff*f_corrector(jj) +

B_1n_Coeff*f_predictor_P1(jj+1));

↪→

↪→

%% Correct y(2h) : Quadratic Interp:

%Intermediate Steps:

[A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] = A_Coefficients(t0 + h, t0

+ 2*h, t0 + 0, t0 + h,t0 + 2*h, t0 + 2*h,alpha);↪→

100

f_predictor_P2(jj+1) = fdefun(t0 + 2*h, y_predictor_P2(jj+1));

y_corrector(jj+1) = g(jj+1) + y_lag(jj+1) +

1/gamma(alpha)*(A_0n_Coeff*f_corrector(jj-3) +

A_1n_Coeff*f_corrector(jj) +

A_2n_Coeff*f_predictor_P2(jj+1));

↪→

↪→

↪→

f_corrector(jj+1) = fdefun(t0 + 2*h, y_corrector(jj+1));

% Linear vs Quadratic Startup:

%Linear scheme requires values at h and 2h, quadratic scheme

requires↪→

%values at h/2, h, and 2h.

if strcmp(scheme, 'linear') == true

startup_export = [f_corrector(jj), f_corrector(jj+1),

y_corrector(jj), y_corrector(jj+1)];↪→

elseif strcmp(scheme, 'quadratic') == true

startup_export = [f_corrector(jj-1), f_corrector(jj),

f_corrector(jj+1), y_corrector(jj-1), y_corrector(jj),

y_corrector(jj+1)];

↪→

↪→

else

error('Please enter a valid scheme for the startup algorithm

to export the required values. The accepted inputs are

"linear", "ABM" and "quadratic".')

↪→

↪→

end

end

101

function [T,Y] = ABM(alpha,fdefun,t0,tfinal,y0, h)

%ABM Solves an initial value problem for a non-linear

differential↪→

% equation of fractional order (FDE). The code

implements the↪→

% Adams-Bashforth-Moulton method.

%

% [T,Y] = ABM(ALPHA,FDEFUN,T0,TFINAL,Y0,h) integrates the

initial value↪→

% problem for the FDE, or the system of FDEs, of order ALPHA >

0↪→

% D^ALPHA Y(t) = FDEFUN(T,Y(T))

% Y^(k)(0) = y0, k=0,...,m-1

% where m is the smallest integer greater than ALPHA and

D^ALPHA is the↪→

% fractional derivative according to the Caputo's definition.

%INPUTS:

% (1) alpha: The order of the differential equation. Alpha

must be >0.↪→

% (2) fdefun: Fractional Differential Equation. Must be a

function handle↪→

% in the form of fdefun = @(T,Y)

% (3) t0: Initial time. t0 must be a scalar

% (4) tfinal: Final time. tfinal must be a scalar

% (5) y0: Initial conditions. See below for info on y0*

% (6) h: step-size. h must be a scalar value > 0.

%OUTPUTS:

102

% (1) T: Time. T should be a vector ranging from t0:h:tfinal

% (2) Y: Solution to the FDE. Y should be the same length as

T, as↪→

% defined above.

%

% *The set of initial conditions y0 is a matrix with a number of

rows equal to↪→

% the size of the problem (hence equal to the number of rows

of the↪→

% output of FDEFUN) and a number of columns depending on ALPHA

and given↪→

% by m.

%

%% Error Catching

%Verify that the final time is greater than initial time.

if tfinal <= t0

error('The initial time, t0, must be less than the final

time, tfinal.')↪→

end

%Verify alpha is a positive value.

if alpha <= 0

error('Alpha must be a positive value')

end

%Check for required number of initial conditions

num_init_conds_req = ceil(alpha);

103

if size(y0,2) < num_init_conds_req

error('y0 does not contain sufficient initial condition

information to solve the problem. y0 should be a row

vector of length equal to ceil(alpha). (E.G. if alpha =

1.25, y0 = [y(0), y_prime(0)])')

↪→

↪→

↪→

end

% Check that fdefun is a function handle.

if isa(fdefun, 'function_handle') == 0

error('fdefun input is not a function handle')

end

% Verify that the grid is compatible with the method.

tfinal_on_grid_check = (tfinal-t0)/h;

if mod(tfinal_on_grid_check, 1) ~= 0

error('grid does not end on tfinal. This method requires a

constant step size. Please reconfigure your t0, tfinal,

and h values such that (tfinal-t0)/h is an integer

value.')

↪→

↪→

↪→

end

%% Internal Variable Initialization

%Preallocate Variable Arrays for Speed

num_terms = (tfinal-t0)/h;

y_corrector = zeros(1, num_terms);

y_predictor = zeros(1, num_terms);

f_predictor = zeros(1, num_terms);

104

f_corrector = zeros(1, num_terms);

g = zeros(1, num_terms);

y_lag_final = zeros(1, num_terms);

y_increment = zeros(1, num_terms);

scheme = 'linear';

%% Initialize Counters:

% NOTE: Since the step can be a non-integer value, (i.e. n =

% t0:h:tfinal), we need an integer variable corresponding to

this step for↪→

% array indexing purposes. These are defined below:

% 1) jj: This is the indexing variable for lag calculations. It

corresponds↪→

% with the step j, where j is summed from 0 to n-1

% 2) nn: This is the indexing variable for the method. It

corresponds with↪→

% the step n, which is the current timestep.

nn = 1;

f_corrector(1) = feval(fdefun, t0, y0(1));

y_corrector(1) = y0(1);

%Calculate Coefficients for Linear Interp method. Will remain a

constant↪→

%value over the full method, so can be calculated prior to the

loop.↪→

[B_0n_Coeff, B_1n_Coeff] = B_Coefficients(t0,t0+h, t0+h, alpha);

105

%% Begin Method for ABM

% n is the current time step. Starts at t0, and increases by h

each time.↪→

% This will calculate values up to final time tfinal - h, since

each loop↪→

% solves the y_(n+1) term.

for n = t0:h:tfinal-h

% Calculate initial condition term for the time-step desired

g(nn+1) = calculate_IC(y0,alpha,n+h);

%Predictor Formula:

%lag term incrementor and lag summer reset for each pass of

n.↪→

jj = 1;

predictor_sum_term = 0;

for j = 0:h:n

%Calculate heredity term for the predictor, C_Coeff.

C_Coeff = h^alpha/alpha*((n+h-j)^alpha - (n-j)^alpha);

%Summing over all previous time steps

predictor_sum_term = predictor_sum_term +

C_Coeff*f_corrector(jj);↪→

106

jj = jj+1;

end

%We are now able to calculate the predictor at the new step:

y_predictor(nn+1) = g(nn+1) +

1/gamma(alpha)*predictor_sum_term;↪→

%Evaluate the fdefun using this y_predicted value, at the

current time↪→

%step that we are looking to predict at.

f_predictor(nn+1) = fdefun(n+h, y_predictor(nn+1));

% Corrector Formula (This is the same Same as MF-PCL)

jj = 1;

y_lag_sum = 0;

for j = 0:h:n-h

%Calculate Coefficients for lag term:

[B_0j_Coeff, B_1j_Coeff] = B_Coefficients(j,j+h, n+h,

alpha);↪→

% Summation Portion of the lag term.

y_lag_sum = y_lag_sum + B_0j_Coeff*f_corrector(jj) +

B_1j_Coeff*f_corrector(jj+1);↪→

%Increment the interior counter

jj = jj + 1;

107

end

% Lag term for this time step is now complete!

y_lag_final(nn+1) = 1/gamma(alpha)*y_lag_sum ;

%Increment term at the new step

y_increment(nn+1) =

1/gamma(alpha)*(B_0n_Coeff*f_corrector(nn) +

B_1n_Coeff*f_predictor(nn+1));

↪→

↪→

%Corrector term at the new step

y_corrector(nn+1) = g(nn+1) + y_lag_final(nn+1) +

y_increment(nn+1);↪→

%Solve using corrector y_value guess instead of predicted

y_value. To↪→

%be used in the next prediction stage.

f_corrector(nn+1) = feval(fdefun, n+h, y_corrector(nn+1));

%increment n incexing variable.

nn = nn + 1;

end

%returns the final output variables

Y = y_corrector;

T = t0:h:tfinal;

%% END of Method

108

end

B.2 Supplemental Software

function [B_0n_Coeff_sym, B_1n_Coeff_sym] =

B_Coefficients_Analytical(t_j, t_jj, t_nn, alpha)↪→

%This function is not a part of the core software package and is

not↪→

%recommended to be used in the FDE solvers. This function is not

called in↪→

%any of the methods, but instead can be substituted with the

%'B_Coefficients()' function call to calculate the analytical

answer to↪→

%the convolution integral. This function was used in

supplemental error↪→

% analysis only.

syms tau

L_j_sym = (tau - t_jj) / (t_j - t_jj);

L_jj_sym = (tau - t_j) / (t_jj - t_j);

B_0n_funct_sym = (t_nn-tau)^(alpha-1) * L_j_sym;

B_0n_Coeff_sym = double(int(B_0n_funct_sym,t_j,t_jj));

B_1n_funct_sym = (t_nn-tau)^(alpha-1) * L_jj_sym;

B_1n_Coeff_sym = double(int(B_1n_funct_sym,t_j,t_jj));

109

end

function [A_0n_Coeff, A_1n_Coeff, A_2n_Coeff] =

A_Coefficients_Analytical(integrand_low,integrand_high,t_low c

,t_mid,t_up,t_eval,alpha)

↪→

↪→

%This function is not a part of the core software package and is

not↪→

%recommended to be used in the FDE solvers. This function is not

called in↪→

%any of the methods, but instead can be substituted with the

%'A_Coefficients()' function call to calculate the analytical

answer to↪→

%the convolution integral. This function was used in

supplemental error↪→

% analysis only.

syms tau

Q_low = ((tau - t_mid)/(t_low - t_mid)) * ((tau - t_up)/(t_low

- t_up));↪→

Q_mid = ((tau - t_low)/(t_mid - t_low)) * ((tau - t_up)/(t_mid

- t_up));↪→

Q_up = ((tau - t_low)/(t_up - t_low)) * ((tau - t_mid)/(t_up -

t_mid));↪→

110

%The core of the integral, this portion is the same for A_0,

A_1, and A_2.↪→

A_kernel = ((t_eval-tau)^(alpha-1));

%These lines combine the kernel with each appropriate

interpolation↪→

%function, combining both function handles into one:

A_0n_funct = A_kernel*Q_low;

A_1n_funct = A_kernel*Q_mid;

A_2n_funct = A_kernel*Q_up;

%These lines compute the integral of the overall function, using

the bounds↪→

%input:

A_0n_Coeff =

double(int(A_0n_funct,integrand_low,integrand_high));↪→

A_1n_Coeff =

double(int(A_1n_funct,integrand_low,integrand_high));↪→

A_2n_Coeff =

double(int(A_2n_funct,integrand_low,integrand_high));↪→

end

111

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Introduction
	Motivation
	Fractional-Order Differential Equations
	Adams-Bashforth-Moulton (ABM) Method
	New Proposed Method by Nguyen and Jang
	Second-Order Scheme with a Linear Interpolator (MF-PCL)
	Third-Order Scheme with a Quadratic Interpolator (MF-PCQ)

	Research Objectives
	Independent Software Development and Simulation
	Error Analysis
	Computational Cost Analysis

	Methods
	Independent Software Development and Simulation
	Independent Software Development
	Simulation

	Error Analysis
	Computational Cost Analysis

	Results
	Expected Results
	Simulation
	Error Analysis
	Computational Cost

	Experimental Results
	Simulation
	Error Analysis
	Computational Cost

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES
	APPENDIX Additional Results, Expected and Independently Simulated
	Example Equation 2 Results
	Expected Results, from BongsooJang
	Independent Simulation Results

	Example Equation 3 Results
	Expected Results, from BongsooJang
	Independent Simulation Results

	Example Equation 4 Results
	Expected Results, from BongsooJang
	Independent Simulation Results

	APPENDIX Software Source Code
	Method Source Code
	Supplemental Software

