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ABSTRACT 

 

This project addresses questions about human foraging behavior in the 

ethnographic context of small-scale fishing-foraging in the Commonwealth of Dominica, 

an island in the Eastern Caribbean. The first goal of this project is to further develop a 

method of inferring foraging behaviors from GPS data by testing a recent partial sum 

approach—the CUMSUM method. The principle underpinning this method of research is 

that remotely gathered movement data can be accurately translated into meaningful data 

on foraging activities. GPS data produces movement tracks that are used to parse out 

changes in behavior, but segmentation of GPS tracks into different bouts of foraging 

activities is not straightforward. Previous research demonstrates that the CUMSUM 

method has benefits for detecting behavioral shifts and identifying patches of resources 

behaviorally, but it has seen limited testing across different foraging contexts. 

Developing this method has broad application across a range of disciplines, and one 

relevant utility is using CUMSUM segments to test foraging models. A second goal of 

this project is to demonstrate by testing a prediction of the marginal value theorem. The 

MVT explores generalized decision-making rules on patch residence time and was 

primarily developed in experimental settings with non-human animals. There are few 

tests of the MVT among human populations in naturalistic settings. 

Research activities took place across three field sessions in the rural village of 

Desa Ikan, Dominica, among artisanal fisher-foragers. I tested the CUMSUM method 

with fishing data and found the method correctly identifies about 90% of patches with 



 

iii 

 

relatively small error rates. The strength of this approach is using both directly observed 

behavioral data to ground-truth simultaneously collected GPS data. I tested an aspect of 

the MVT using patch data from both observational data and CUMSUM segment data. 

Observational data supports the theoretical prediction that fishers spend more time in 

patches with higher travel costs, while support from CUMSUM model-generated data is 

equivocal. 
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NOMENCLATURE 

 

ARS Area-restricted search 

MMA Max-min algorithm  

MVT Marginal value theorem 

N10 Sample of ten fishing trips with GPS data and direct observation 

N30 Sample of thirty fishing trips with GPS data only 
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CHAPTER I  

INTRODUCTION 

 

Animals move across the land and seascape in ways that often make direct 

behavioral observation of activities difficult, expensive, time-costly, and even 

impossible. To mitigate these constraints, remotely gathered movement data have been 

used to identify and interpret an array of behaviors (for salient examples and recent 

reviews, see: Brown, Kays, Wikelski, Wilson, & Klimley, 2013; Clark et al., 2006; 

Handcock et al., 2009; Harris et al., 1990; Hebblewhite & Haydon, 2010; Löttker et al., 

2009; Tomkiewicz, Fuller, Kie, & Bates, 2010; Turner, Udal, Larson, & Shearer, 2000; 

Ungar et al., 2005). Tracking animal movement for these purposes is now common with 

the availability of small GPS devices, which record high-resolution movement data. 

Recording and interpreting animal movement tracks with GPS devices has wide, general 

applicability and is pertinent for a variety of research questions on animal behavior. For 

instance, the way in which animals search for aggregations of resources, or patches, 

frequently makes it difficult to study foraging behavior directly. Researchers have used 

GPS tracks to identify behavioral shifts and associated patch exploitation during bouts of 

foraging (Papworth, Bunnefeld, Slocombe, & Milner‐Gulland, 2012; Postlethwaite, 

Brown, & Dennis, 2013). 

The general principle underlying this kind of research is that remotely gathered 

movement data such as GPS tracks can be accurately segmented into meaningful 

behavioral data that reflects changes in the activities of an animal, such as shifts in 
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foraging strategies (Buchin, Buchin, Gudmundsson, Löffler, & Luo, 2011). The aim of 

GPS segmentation methods is to pinpoint changes in behavior along a movement 

trajectory by identifying contiguous points along a movement track that are 

homogeneous with respect to certain criteria. In other words, GPS segmentation allows a 

researcher to find series or stretches of adjacent data that are relatively constant or 

exhibit less variation in variables describing animal movements, including variables such 

as speed, velocity, and sinuosity or tortuosity. These measures vary in characteristic 

ways with different behaviors, including common behavioral search modes such as 

extensive and intensive search, associated with travel between patches or foraging for 

resources within patches, respectively (Buchin et al., 2011). 

Segmenting movement trajectories that contain many potential scales of analysis 

into biologically meaningful bouts of behaviors is not necessarily a straightforward 

process. The cross-context applicability of some approaches is uncertain, especially in 

the case of human foraging. A major utility of further developing methods of remote 

behavioral observation is that it alleviates constraints associated with studying foraging 

activities directly. This potentiates further theoretical development. For instance, 

foraging theory contains general principles explaining decision-making and models that 

posit generalized solutions to the challenges of making a living—how an organism 

chooses which resources to exploit or not, habitat choice and movement, and time 

allocation decisions. Many foraging models were not developed with human foraging 

data nor with humans in mind. Despite a breadth of research on human foraging, it is 
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still important to further understand how well this body of theory describes, explains, 

and predicts human foraging activities. I discuss these nuances in chapter two.  

This project addresses questions about GPS track segmentation methods and 

human foraging behaviors in the ethnographic context of small-scale fishing-foraging in 

the Commonwealth of Dominica, an island-nation in the Eastern Caribbean. To 

accomplish this, I collected fishing-foraging data from 2014-2016 in Dominica. 

Research activities took place in the fishing village of Desa Ikan, located on the rural 

east coast of the island. Dominican fishers employ a suite of small-scale, decentralized 

foraging strategies to exploit a wide range of marine species. This ethnographic context 

is ideal for addressing questions about foraging behavior, with different fishing 

strategies providing multiple, independent conditions for these tests. 

My first goal is to test a method of GPS track segmentation, the CUMSUM 

approach, developed by Knell & Codling (2012). The CUMSUM approach has been 

noted by other researchers as a potential advancement in identifying discrete behavioral 

states from empirical movement data albeit without offering any further testing of the 

method (Bennison et al., 2017;Garriga et al., 2016; Giuggioli & Kenkre, 2014; Hooten & 

Johnson, 2017; Notling et al., 2015; Patterson et al., 2016; Walker, Rivoirard, Gasper, & 

Bez, 2015). An exception comes from Alvard, Carlson, & McGaffey (2015), who show 

the utility of the CUMSUM approach in a far-from-shore, pelagic fishing-foraging 

context (using FAD technology, which is described in the ethnographic context section). 

The authors demonstrate that the CUMSUM method has benefits for detecting 

behavioral shifts and identifying patches of resources behaviorally. I test the CUMSUM 
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method in a near-shore, demersal fishing context (also described below). Overall, the 

CUMSUM method has seen very limited testing across different foraging contexts. 

The second goal of my project is to demonstrate how developing segmentation methods 

potentiates tests of foraging models by offering a test of a general tenet from foraging 

theory. One salient model, the marginal value theorem (MVT) (Charnov, 1976), explores 

decision-making rules regarding time allocation. Given a handful of assumptions and 

general principles (discussed in detail in chapter two), the MVT makes a variety of 

predictions of how an animal ought to behave under specified conditions. One major 

prediction from the MVT is the amount of time an organism should spend in any one 

patch of resources, or patch residence time, in order to maximize the overall return rate 

from foraging effort (Charnov, 1976; Charnov, Orians, & Hyatt, 1976; Krebs, Ryan, & 

Charnov, 1974; MacArthur & Pianka, 1966; McNair, 1982). The MVT was primarily 

developed in experimental settings and with non-human animals (Danchin, Giraldeau, & 

Cézilly, 2008), but anthropologists invoke the principles defined by this optimality 

model to explain a variety of human decision-making processes (e.g. Aswani, 1998; 

Burger et al., 2005; Beckerman, 1983c; De Boer & Prins, 1989; Edwards, Josephson, & 

Coltrain, 1994; Launchbaugh & Howery, 2005; Metcalfe & Barlow, 1992; Smith et al., 

1983; Smith & Wishnie, 2000). However, there are few tests of the MVT among human 

populations in naturalistic settings. 

The strength of this project is using both directly observed behavioral data via 

focal follows of fishing trips to ground-truth simultaneously collected GPS data. The 

CUMSUM method has broad theoretical and practical applications across a range of 
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disciplines. Most germane to this project is the application of CUMSUM for 

behaviorally identifying patches of resources to show how prominent foraging models 

such as the MVT can be refined to move foraging theory forward with methodological 

development. Foraging theory (see chapter two) integrates ecological studies of human 

behavior into the framework of evolutionary theory. Refining foraging theory remains an 

important endeavor for anthropologists because it improves our understanding of the 

ultimate causes of human behaviors. Where behavior does not conform to the patterns 

predicted by foraging theory, we still gain insight by identifying unappreciated 

constraints or trade-offs and can better appreciate proximate mechanisms that may cause 

behavior to deviate (Nettle et al., 2017). The primary intellectual merit of this project is 

linking aspects of biological and cultural anthropology with ecology to address these 

kinds of core theoretical issues. 

This route has the potential to provide new, practical guidance for contemporary 

issues like resource management and biodiversity conservation (Nettle et al., 2017).  In 

terms of broader impact, developing remote behavioral observation and segmentation 

methods along with foraging theory works to link evolutionary theory with policy 

development and intervention initiatives. Refining cost-effective methods of identifying 

behavioral strategies provides a way to gauge major foraging mechanisms for resource 

exploitation and resource distribution in an environment (Barraquand & Benhamou, 

2008; Knell & Codling, 2012). In this way, characterizing fishing practices is essential 

for evaluating sustainability and environmental impacts e.g., how coastal reef systems 

are affected by near-shore, demersal fishing strategies like pot fishing, which can have 
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drastic consequences on ecosystems (Breen, 1990; C. B. Butler & Matthews, 2015; Carr 

& Harris, 1997; Matsuoka, Nakashima, & Nagasawa, 2005; Renchen et al., 2014; 

Stelfox, Hudgins, & Sweet, 2016). Elucidating the ultimate motivations and proximate 

mechanisms of harmful behaviors can help us understand how to change them. I return 

to this discussion in chapter nine. 

The rest of my dissertation is presented with the following organization. Chapter 

two provides a detailed review of background information. I discuss the major foraging 

behaviors of interest, pertinent scaling issues and how they relate to the study of 

ecological processes such as animal movement, and the existing GPS segmentation 

methods and the CUMSUM approach of Knell & Codling (2012). I also detail the 

development, merits, major criticisms, and prominent tests of foraging theory and the 

marginal value theorem. Chapter three is a description of the ethnographic context of 

this research in terms of the geography and geology of the Commonwealth of Dominica, 

the peopling and colonial history of the island, and current demographics. I also describe 

Desa Ikan, the specific village where I conducted fieldwork, in chapter three. Chapter 

four is an account of the Dominican fishery and the major fishing practices and 

technologies I observed in Desa Ikan. In chapter five, I provide a summary of my 

research aims with reference to the specific datasets on fishing-foraging efforts that I use 

to generate tests of the CUMSUM and MVT. I also give a description of field methods 

for data collection in chapter five. Chapters six, seven, and eight contain data 

descriptions, analyses, and results for all the major aims of this project. Finally, chapter 

nine offers a summary of project outcomes and other concluding remarks. 
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CHAPTER II 

BACKGROUND 

 

Foraging behaviors: major search modes 

Behavioral ecologists study the foraging decisions of animals and how they 

impact survival and reproduction as expressed by changes in aniaml behavior (Dall, 

Giraldeau, Olsson, McNamara, & Stephens, 2005; Gaillard et al., 2010; McFarland, 

1977). Extensive and intensive search are two fundamental, contrasting components of 

foraging strategies identified among a number of animals, including humans (Bond, 

1980; Boyd, 1996; Eifler, Baipidi, Eifler, Dittmer, & Nguluka, 2012; Ford, 1983; Hills, 

Kalff, & Wiener, 2013; Kareiva & Odell, 1987; Le Boeuf et al., 2000; Macarthur & 

Pianka, 1966; Senft et al., 1987; Wasko & Sasa, 2012; Wiens, 1976). Extensive search is 

most often associated with travel between resource patches and includes covering a 

(usually) larger area in lower detail at relatively higher speeds with low tortuosity of 

movements (Bond, 1980; Kareiva & Odell, 1987). Intensive search, also called area-

restricted search or ARS, (Curio, 1976) includes more efficient, confined, within-patch 

behaviors. ARS involves covering a smaller area in higher detail at lower speeds with 

higher tortuosity (Bond 1980; Kareiva & Odell 1987), bounding at the patch boundary 

(Fauchald & Tveraa, 2003), and even performing memory-based search loops within the 

patch (Benhamou, 1994). A graphical example of these two behaviors can be found in 

Figure 11 of chapter six. Benhamou (2014) helpfully frames the differences between 

behavioral search modes with respect to the density of search effort per unit area: 
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extensive search includes a lower density of search effort, while intensive search 

involves a high density effort. The contrasting nature of these behavioral search modes is 

due to the fact that resource are aggregated into patches and their densities tend to 

exhibit a contagious distribution. In other words, the behavior of an animal during 

extensive and intensive search modes will generally be different given differences in the 

targets for which an animal searches. 

 

Scale & the “stationarity” concept 

Extensive and intensive search modes should not be exclusively associated with 

large and small scales, respectively, because both can occur at the same smaller scales. 

Scale invokes the associated concepts of range, also known as extent, and resolution, 

also called grain (Benhamou, 2014; Wiens, 1989). The range, the upper and lower limits 

over which variation can be measured, is usually inversely related to resolution, the 

smallest increment measurable with a particular instrument. However, technological 

innovations have led to devices like the handheld GPS, which can record long series of 

data over large spatial and temporal ranges with high spatiotemporal resolution. Small-

scale can refer to high resolution even over a large range, while large-scale can refer to a 

large range irrespective of resolution. The following discussion of scaling parallels the 

more generally known effects of sampling scale on observed patterns. Early, Wiens 

(1989) showed that sampling scale plays a crucial role in what behaviors are identified 

or not, which has long been a central issue in ecology (Allen & Hoekstra, 1990; Foster, 

Schoonmaker, & Pickett, 1990; Foster, 1992; Levin, 1992; Underwood, Chapman, & 
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Connell, 2000). Incorporating scale-dependent concepts has proven useful for many 

ecological questions (Börger, Dalziel, & Fryxell, 2008; Habeeb, Trebilco, Wotherspoon, 

& Johnson, 2005). For example, workers have shown that animal movement processes 

are scale-specific (Benhamou, 2010; Benhamou, 2011; Simpson, Piercy, King, & 

Codling, 2013; Wehner, Michel, & Antonsen, 1996). A central consideration for 

understanding many ecological processes should be determining biologically meaningful 

or relevant movement scales. 

Animal movement processes work at different spatial and temporal scales 

because the landscapes and ocean-scapes in which they make a living show multi-scale 

levels of spatiotemporal organization (Chave, 2013; Levin, 1992). The way an animal 

perceives this multi-scale environment is reflected in its movements, which is driven by 

scale-dependent balance between factors favoring “stationarity” (Benhamou, 2014) and 

factors favoring locational shifts (Mueller & Fagan, 2008; Owen-Smith, Fryxell, & 

Merrill, 2010; Van Moorter et al., 2013; Van Moorter et al., 2009). Benhamou (2014) 

defines the helpful “stationarity” concept as the statistical stability of variable(s) defining 

animal movement, e.g. speed, tortuosity, velocity, etc. Said another way, stationarity 

refers to a probability distribution that does not change across space and/or time for 

given, relevant movement criteria, at a specific scale of observation. Benhamou (2014) 

contrasts stationarity with transitional phases marked by variation in the variable or 

parameters of interest, which occur between stationary phases as animals shift 

behavioral strategies and activities. 
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Movement processes at larger or smaller scales will be different due to the effects 

of other, scale-specific constraints as well (Benhamou, 1992). Patterns are driven by 

factors such as inter- and intra-specific competition, critical resources, and predation 

risks, which vary across local and global scales (Boyce, 2006; Fortin, Fryxell, 

O'brodovich, & Frandsen, 2003; Mayor, Schneider, Schaefer, & Mahoney, 2009). These 

factors can be linked to, for example, seasonality and diet cycles, which also vary 

periodically and across different spatial scales (Polansky, Wittemyer, Cross, Tambling, 

& Getz, 2010; Riotte-Lambert, Benhamou, & Chamaillé-Jammes, 2013; Van Moorter et 

al., 2013). Depending on the perspective, certain movement could be considered both 

variable and “stationary” (i.e., relatively constant) at the same scale. Consider this 

common example: the location of migratory birds varies greatly during migration 

phases, but they are also constant or “stationary” in terms of overall moving direction 

(Wiltschko & Wiltschko, 2003). Concepts such as ‘stationarity’ a la Benhamou (2014) 

help make explicit the scales of relevance for a given research aim and reveal how 

processes at one scale relate to and affect processes at immediately smaller or larger 

scales.  

 

Segmentation 

GPS datasets are comprised of information on animal movements and 

environmental factors, which can be recorded with high spatiotemporal resolution and 

can contain numerous observation scales for potential analysis. In this sense, the use of 

GPS devices in behavioral research opens the door to analysis at many different scales. 
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All methods of GPS track segmentation—where segmentation refers to parsing 

movement trajectories into distinct bouts of different behaviors—require some degree of 

a priori information, namely, defining an appropriate sampling scale for the analysis. 

Thus, parsing GPS tracks into bouts of e.g., extensive search and intensive search 

behavior, is not often a straightforward process and requires a thorough consideration of 

scaling. As argued above, researchers must consider which movement scales are most 

relevant for understanding how an animal makes a living in and interacts with the 

environment. For example, in a series of movement data like a GPS track, an animal 

changes its location as it moves through its environment in search of resource patches. 

As temporal locational shifts correspond to e.g., velocity vectors, movement scales can 

be defined as the scales at which location time series are stationary (Benhamou, 2014). 

This may allow the researcher to determine or at least approximate an appropriate scale 

of analysis for a specific research question. 

For segmentation methods, the sampling scale is the scale at which behaviors are 

determined to be stationary or not for a variable of interest. In application, the sampling 

scale—also known as the threshold or observation window—refers to a pre-defined, 

constant numerical value used to segment a movement path into bouts of distinct 

behaviors like intensive and extensive search (Knell, 2011). In other words, the threshold 

or window defines the subset of consecutive observations along the movement track on 

which an analysis locally operates as it moves through the larger sequence of a 

movement trajectory. In chapter six, I work through an example to show how changing 
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the scale of analysis—the observation window—produces different results in terms of 

what behavioral shifts are identified or overlooked during segemntation. 

When dealing with the high resolution, long series data recorded by GPS devices, 

the time series of movement parameters like speed and turning angle are expected to be 

piecewise stationary (Benhamou, 2014), with smaller-scale bouts corresponding to 

different behavioral modes.  Segmenting involves systematic identification of piecewise 

behavioral shifts at a pre-determined scale of analysis: alternations between stationary to 

transitional (i.e., non-stationary) phases. These behavioral changes are represented in a 

segmentation analysis as ‘turning,’ ‘break,’ or ‘cut’ points. Generally, such points are 

defined as sufficient changes in the statistical parameters of the movement variable(s) of 

interest (Benhamou, 2014; Knell & Codling, 2012; Lavielle, 2005).  

When segmenting a movement trajectory like a GPS track, a sticking point is that 

determining turning points—transition phases between stationary phases of extensive 

search and ARS—can be difficult because patterns at smaller scales may interact with 

the sampling process. It is possible to smooth this ‘noise’ (i.e., shifts at smaller scales) to 

reveal behavioral patterns at larger scales. In application, Benhamou (2014) suggests 

that, for a given window or scale of analysis, a series of data is at least roughly stationary 

if the statistical parameters (e.g. mean and variation) of the variable of interest (e.g. basic 

movement elements like speed, velocity, or tortuosity) calculated on a half-range width 

sliding window does not depend on the window location within that range of data. This 

means that if a range of data is stationary at the given scale of analysis, fluctuations or 

shifts at smaller scales should be smoothed within that window. However, even if a 
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stationary phase for a given variable at a given scale is relatively obvious or easy to 

identify across a movement series (e.g., visually discernable along a GPS track), it can 

be difficult to determine stationary phases at finer scales. This is especially true when 

transitions between stationary and non-stationary phases are relatively smooth rather 

than sharp. Similarly, when the duration of transition phases are short, they are easily 

missed by segmentation methods. In reality, segmenting a movement series into bouts of 

meaningful behavioral modes can be ambiguous to some degree, even if systematic. I 

return to this issue in chapter seven with an example.  

The importance of identifying behavioral shifts, e.g., between extensive and 

intensive search modes, has led to the development of several segmentation approaches. 

The most powerful methods require a deeper knowledge about the system, as the 

researcher must specify many model parameters (Gutenkunst et al., 2007; Jonsen, 

Flemming, & Myers, 2005; Morales et al., 2010), but when information on the system is 

limited, these methods are probably not feasible (Barraquand & Benhamou, 2008). The 

methods described below—first time passage, residence time, and fractal landscape—

provide insight for many questions and work very well in particular contexts but also 

have limitations affecting wide applicability. Knell & Codling (2012) provide a succinct 

sum of the limitations common to these methods. The authors assert that these methods 

are analytically complex, do not effectively handle unexpected behaviors or 

environmental noise within the window of analysis, and the first and last segments of a 

track are lost because the observation window must intersect the movement path on both 

sides of a time-series step to generate movement statistics. 
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The first-time passage approach (Fauchald & Tveraa, 2003) tells us the duration 

of time spent within a theoretical, bounded, circular region, determined by summing the 

number of steps from the center of the circle to its perimeter. This method assumes 

larger values will correspond to ARS and that patches are circular and of equal 

magnitude, which is unsupported (Barraquand & Benhamou, 2008).  Residence time 

(Barraquand & Benhamou, 2008) is similar to first-time passage but includes additional 

forward and backwards steps spent within the circular region. The radius is determined 

from a range of radii, which should result in an optimal circle size with regards to 

generality and precision, but the drawback is that this requires additional information 

about the environment or movement process (Knell & Codling, 2012). The circle radius 

remains constant throughout both first-time passage and residence time analyses and 

thus, neither method appears to effectively handle unexpected behaviors or 

environmental noise. A third approach, the fractal landscape method (Tremblay, 

Roberts, & Costa, 2007), measures tortuosity of a random search path within a two-

dimensional, bounded square region (Dicke & Burrough, 1988). This method assumes 

parts of the path corresponding to ARS result in increased plane coverage and thus larger 

fractal dimensions (Knell & Codling, 2012). The method does not provide insight about 

the distribution of steps within the squares, nor is the optimal square size known. It has 

also been aptly pointed out that one should avoid fractal analysis unless a constant 

fractal dimension across a range of spatial scales is demonstrated (Turchin, 1996). 
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The CUMSUM method  

The CUMSUM approach, a partial sum method recently developed by  Knell & 

Codling (2012), also aims to categorize segments of a GPS track into groups of major 

behavioral strategies e.g., extensive search and ARS. As with the methods described 

above, the CUMSUM approach still requires a pre-defined threshold for the sampling 

window but has additional benefits. Overall, the method requires fewer inferred 

decisions and is analytically simpler to interpret, which may result in wider applicability 

across a range of research contexts The CUMSUM method uses a cumulative sum 

equation to generate a time series plot, which is analyzed to determine the underlying 

behavioral patterns of the moving animal. A partial sum is the sum of a part of a 

sequence, and a cumulative sum is simply a series of partial sums of a given sequence 

for a parameter of interest. A CUMSUM time series is based on bouts of deviations from 

the average values of a variable—in this case, chosen spatiotemporal criteria, such as 

location, speed, direction, velocity, or sinuosity. I will use speed as the example criterion 

to describe and explain this approach.  

For a GPS track of a foraging trip, the cumulative sum sequence is initiated at the 

origin of the movement path (Eq. 1) then implemented for increasing increments of time 

to pool information at each time step (Eq. 2) and plotted as a time series (see Figure 1, 

this chapter, for an example). A CUMSUM analysis begins by calculating the mean 

speed (𝑆̅) across all steps in the time series, and then for each step (St) in the time series, 

the deviation from the mean speed is calculated (St - 𝑆̅). 
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Equation 1 & 2 from Knell & Coddling (2012): 

 𝐶1 = 𝑆 ̅ =
∑ 𝑆2

𝑇
𝑡=2

𝑇−1
  (1) 

 𝐶𝜏 =  ∑ (𝑆𝑡
𝜏
𝑡=2 − 𝑆̅)  (2) 

for 𝜏 = 2, … , 𝑇, where 𝐶𝜏 is the cumulative sum of information e.g. speed at time step 𝜏, 

and 𝑆𝑡 is the value of speed at time step t. 

 

For a sequence of values, where 𝑆𝑡 > 𝑆̅ (St as the last summed value in Eq. 2), 

the cumulative sum of speed (𝐶𝜏) increases, and where 𝑆𝑡 < 𝑆̅,  𝐶𝜏 decreases (Knell & 

Codling, 2012). Put in different terms, if instantaneous speed at a time step (𝑆𝑡) is greater 

than the overall mean speed of the trip (𝑆̅), the cumulative sum of speed (𝐶𝜏) increases, 

for example. Consistent increases in the cumulative sum (𝐶𝜏) result in a positive slope in 

the CUMSUM time series plot, indicative of travel speeds and possibly extensive search. 

If instantaneous speed at time step (𝑆𝑡) is less than the overall mean speed of the trip (𝑆̅), 

the cumulative sum of speed (𝐶𝜏) decreases. Consistent decreases in the cumulative sum 

of speed (𝐶𝜏) result in a negative slope in the CUMSUM time series plot, which may 

designate slow speeds associated with ARS, rest, and other slow movements. Segments 

of consistent positive or negative deviations in speed correspond to stationarity phases 

despite that the cumulative sum changes. In other words, these are phases wherein speed 

exhibits statistical stability in that it remains relatively high or low rather than varying 

widely. Figure 1 shows an example CUMSUM time series adapted from the study of 

Alvard, Carlson, & McGaffey (2015) in which the authors used the CUMSUM method 

to segment a GPS track of a fishing-foraging trip. More discussion on their study is 

provided below. 
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In the second major analytical step of the process, the CUMSUM method 

systematically detects local behavioral shifts along the time series via the max-min 

algorithm (MMA; Knell, 2011; Knell & Codling, 2012). One expects a change in 

behavior to occur when a turning point (also called a break or cut point) is exhibited 

within a time series. A turning point is a step in the CUMSUM series that begins a 

period of sustained directional change in deviations from the mean, relative to the 

previous step in the series (Knell & Codling, 2012). In other words, the MMA classifies 

steps in the time series as a turning point when the cumulative sum of speed changes 

from consistently higher than the average speed to consistently lower than the average, 

or vice versa. Behaviorally, for example, a turning point occurs when a forager 

transitions from high-speed extensive search to low-speed intensive search. 

Turning points identified by the MMA represent a possible behavioral shift if an 

appropriate scale of analysis—window size, 𝜖—is set. In this way, the crux of the 

CUMSUM method rests on setting an appropriate window size, as I emphasized at 

length in earlier sections and later demonstrate in an example in chapter six. The window 

size—the sampling scale—determines what changes in the variable of interest are 

identified by CUMSUM as meaningful behavioral shifts or overlooked as noise. In this 

context, noise can be thought of as statistical changes in the model parameter (e.g. 

speed) at scales smaller than the specified observation window, which are presumably 

not relevant for understanding behavioral changes at that particular movement scale 

(Benhamou, 2014). 
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Statistically, the MMA methodically categorizes turning points as local 

maximum and minimum changes to the current cumulative sum value in order to find 

the initial point in time when these directional changes begin. I will continue using speed 

as the example spatiotemporal criteria to describe how the MMA assigns turning points. 

For example, at time step 𝜏, the MMA determines if the cumulative sum of speed is 

increasing or decreasing, and a maximum or minimum value, 𝐶𝜏 𝑚𝑎𝑥 or 𝐶𝜏 𝑚𝑖𝑛, is set 

(Knell & Codling, 2012). If 𝑆𝑡 > 𝑆̅ at 𝐶𝜏+1  compared to 𝐶𝜏, the maximum value updates 

and a local maximum speed (𝐶𝜏 𝑚𝑎𝑥) is set. Put differently, if the cumulative sum of 

speed at a time step is greater than the cumulative value of speed at the previous step, a 

new speed maximum is assigned. If 𝑆𝑡 < 𝑆̅ at 𝐶𝜏+1, the local maximum value remain 

unchanged. If 𝐶𝜏 𝑚𝑎𝑥 remains unchanged for a pre-determined amount of time, the 

observation window or threshold (𝜖),the location of 𝐶𝜏 𝑚𝑎𝑥 within that window is 

classified as a turning point in the series.   

In practice, decreasing the window size (𝜖) is specifying a finer scale of analysis.  

Defining a finer scale for the CUMSUM analysis results in a greater number of local 

maximum and minimum turning points assigned by the MMA. Inversely, increasing the 

window size is specifying a grosser or coarser scale of analysis. This results in fewer 

turning points identified by the MMA. I demonstrate how changing the observation 

window produces different outcomes through an extensive example in chapter six, which 

further underscores the significance of choosing an appropriate sampling scale. 

Alvard, Carlson, & McGaffey (2015) demonstrate the efficacy of the CUMSUM 

method to correctly identify segments of extensive search and ARS among small-scale 
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fisher-foragers in the Caribbean at the site of Desa Ikan, during deep-water fishing trips 

utilizing fish aggregating device (FAD) technology. The site and fishing contexts are 

extensively described in chapters three and four. Using speed as the model parameter 

and the CUMSUM equations defined above, a time series plot of a typical FAD fishing 

shows shifts between positive deviations from mean speed and negative deviations from 

mean speed (Figure 1). Respectively, these MMA-generated segments of positive and 

negative slopes are associated with bouts travel and ARS, validated by simultaneous 

direct observation of the fishing trip. However, the authors note that during bouts of 

ARS, there might be periods of higher speed that are not travel. Rather, these bouts 

correspond to within-patch behaviors such as reorienting the boat on an ideal mark in the 

patch (Alvard, Carlson, & McGaffey, 2015). Choosing the correct scale for CUMSUM 

analysis should result in such behaviors overlooked as noise. 

 

 

 



 

20 

 

 
 

Figure 1. CUMSUM time series plot of a FAD fishing trip, adapted from Alvard, 

Carlson, & McGaffey (2015). The authors specify a window size of 𝜖 = 1000 for this 

analysis. The red circles are cut points determined by the MMA and should correspond 

to behavioral shifts or transition phases wherein speed is marked by statistical variation. 

FVID indicates a FAD visit ID number i.e., a patch. The first segment with a positive 

slope is high-speed travel i.e., extensive search, as fishers move from the central place 

towards a known FAD location in the open ocean, and the cumulative sum of speed is 

increasing. This is a phase of stationarity—speed is relatively statistically constant as 

fishers maintain travel speeds. The second segment has a negative slope due to negative 

deviations from the overall trip mean speed (the cumulative value of speed decreases) 

and indicates a bout of ARS at a FAD patch i.e., intensive search. The speed of the boat 

is statistically stationary in the patch as a fisher conducts ARS and is also a phase of 

stationarity. The third major segment is positive because the fishers are travelling at 

speeds higher than the mean to return to shore. 

 

 

 

 

The CUMSUM method overcomes some of the limitations of other segmentation 

models. The cumulative sum equation allows inclusion of the first and last segments of 

the track, which can contain information on foraging behavior that is pertinent for some 
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research questions. The MMA also enables the model to better handle unexpected 

changes in behavior and environmental noise within the sampling window by 

systematically, statistically identifying local behavioral shifts rather than relying on 

visual identification by the researcher. Depending on defining an appropriate sampling 

scale or window (𝜖), the CUMSUM approach appears to smooth small-scale behaviors 

while accurately classifying major bouts of travel and ARS. The CUMSUM method is 

promising, but it has seen limited testing and concerns regarding general applicability 

exist. Alvard et al. (2015) demonstrate that the CUMSUM method correctly identified 

all the patches exploited across the foraging trips in sample, but the authors also caution 

generalizing the model across other contexts given that FAD fishing is but one 

specialized strategy of a suite used by fishers. 

 

Foraging theory 

Behavioral ecologists have endeavored to establish some general rules to explain 

animal behavior, and a source of great insight into these issues lies in the corpus of 

foraging theory, which ultimately frames this project. In practice, there are difficulties 

associated with testing foraging models with observational data, but methodological 

development such as that undertaken here using GPS tracks offers potential for helping 

to move this body of theory forward. In this section, I review the evolutionary basis of 

foraging theory and optimality modeling. I also discuss the development of foraging 

theory in anthropology and cite major benefits and criticisms that have been part of this 



 

22 

 

discourse. Next, I define a specific foraging model, the marginal value theorem (MVT) 

and describe associated tests among non-human and human populations. 

Foraging theory is a family of general principles and models that explains how an 

animal behaves as it searches for food—what types of resources an animal exploits or 

not, habitat choice, and time allocation decisions, for example (Stephens & Krebs, 

1986). Deriving from the larger field of evolutionary ecology, foraging theory is also 

anchored by the basic principles of evolutionary adaptation. Most models from foraging 

theory are based on an assumption of optimality: animals, subject to selection processes 

that maximizes Darwinian fitness, should make foraging decisions that contribute to 

overall reproductive success by maximizing energy intake at the lowest cost per unit 

time (Smith & Winterhalder, 1992). In other words, we expect foraging behavior is 

designed by selection in a way that maximizes an organism’s Darwinian fitness. This 

approach to behavior is useful for connecting the principles of selection with actual cases 

and associated diversity (Maynard-Smith, 1978).  

Models derived from the corpus of optimal foraging theory define generalized 

solutions to foraging challenges in an effort to understand decision-making processes 

across a variety of environmental contexts. There are several components to optimal 

foraging theory models. Designed after economic cost-benefit analysis, these formal 

models include goals such as optimizing net energy acquisition rates, a currency like 

calories for measuring the relevant costs and benefits to an animal, a set of constraints 

that are typically aspects of the social and environmental context, and finally, a decision 

and alternative that defines the range of behavioral options to be examined, such as 
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relocating to a new resource patch or remaining in the same one (Davies, Krebs, & West, 

2012). These models have often been developed among biologists and with non-human 

animals (Kacelnik & Brunner, 2002; Oaten, 1977; Owen-Smith et al., 2010; Perry & 

Pianka, 1997; Pyke, Pulliam, & Charnov, 1977; Sih & Christensen, 2001; Stevens & 

Krebs, 1986).  

Anthropologists have also made some contributions to this body of research 

(Winterhalder & Smith, 2000), as they have long been interested in how humans manage 

to make a living in diverse environments. Workers have demonstrated that some aspects 

of human foraging activities are predictable for a variety of reasons (Beckerman, 1983b, 

1983c; Brown, Liebovitch, & Glendon, 2007; Butler, 2001; Commons, Kacelnik, & 

Shettleworth, 2013; Hames, 1990, 1992; Hames & Vickers, 1982; Hawkes, Hill, & 

O'Connell, 1982; Hill & Hawkes, 1983; Hill, Kaplan, Hawkes, & Hurtado, 1987; Jones, 

2004; Levi, Lu, Douglas, & Mangel, 2011; Smith & Winterhalder, 1992; Winterhalder, 

1986; Winterhalder & Smith, 1981, 2000). While researchers have documented a great 

deal of variation in subsistence patterns, it is evident that humans have spent most of 

their time as a species in foraging economies. Starting in the 1980’s, human behavioral 

ecologists focused on the analysis of resource selection and production among hunter-

gatherers. A great effort has been made to document and explain both the similarities 

and the extensive differences between distinct hunter-gatherer societies, as well as 

explaining shifts away from  the hunter-gatherer way of life. This route helped us to 

better understand why we observe these ancestral and modern patterns of human 

subsistence and behavior from an evolutionary and ecological point of view.  
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Evolutionists of the nineteenth century such as E.B. Tylor and L.H. Morgan were 

interested in hunter-gatherer economies, but their ideas were couched in explicitly 

Eurocentric, racist hierarchies that garnered much negative reaction and were eventually 

rejected entirely. The work of J. Steward on hunter-gatherers and culture change 

(Steward, 1936, 1940, 1956, 1972; Steward & Setzler, 1938) honed in on ecological 

concepts of adaptation. His approach, cultural ecology, prefaced much subsequent 

research on foragers throughout the late twentieth century. At this time, methodological 

development and detailed ethnography documented an incredible amount of variation 

between human societies with which the cultural ecology framework of Steward could 

not manage (Smith & Winterhalder, 1992). To deal with such extensive diversity, some 

researchers focused on specific cases while others advanced very general models of 

forager life. At their respective extremes, neither approach is very satisfactory. The 

former approach often failed to articulate theory with data, while the later tended to 

obscure important differences (Smith et al., 1983). It is in this context that the 

framework of foraging theory became appealing to some anthropologists: it is a 

deductive scheme that is general enough to apply across taxa and diverse contexts yet 

can account particular cases with testable hypotheses. In this way, foraging theory 

positions traditional cultural ecology in a format that is subject to empirical testing. 

The anthropological importance of foraging theory rests in its generality. Rather 

than focusing on very specific tactics used by a forager, foraging theory shifts the focus 

to strategic rules of decision-making that have wide applicability. Human foragers must 

be flexible, mobile, and have specialized skills, extensive knowledge about their 
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environment and resources, and a degree of social finesse to solve a number of 

interpersonal dilemmas when foraging. Resources are often unevenly distributed across a 

landscape, vary day-to-day and season-to-season, and are further aggregated into 

mosaic-like patches that a forager must navigate (Kotliar & Wiens, 1990; Stevens & 

Krebs, 1986; Wiens, 1996). Thus, foragers have to determine where to go to, how long 

to stay in a particular patch, how much they can gather in a trip, what resource they 

pursue or pass for potentially better opportunities, and with whom they might coordinate 

their efforts.  

Human behavioral ecologists analyze human foraging choices as products of the 

environmental context, general decision-making rules, and goals that attempt to 

maximize returns from subsistence effort. Ideally, such a framework improves our 

ability to generate explanations of hunter-gatherer diversity by combining principles of 

adaptation and environmental factors with cultural processes affecting production and 

organization (Smith et al., 1983). This integrates ecological studies of human behavior 

into the context of evolutionary theory, which improves our overall understanding of 

human foraging behavior. This is an important approach because evolutionary forces, 

including natural selection acting on genetic and cultural variation, shape our species and 

societies today. Foraging theory helps us identify the varying effects of different 

selective forces acting on foraging behavior (Winterhalder & Smith, 1981). 

Comparing predictions from foraging theory to observed patterns of human 

foraging is a strong approach. As mentioned, the operational—testable—nature of 

foraging theory means its claims, scope, and reliability are open to empirical assessment 
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(Winterhalder & Smith, 1981). This body of theory produces testable hypotheses and 

explicit predictions about behavioral decisions across a range of environmental contexts. 

Framing our ideas in a falsifiable way useful even when data fail to support a model 

because it stimulates further research. A lack of fit between data and a model can still 

tell us something important about subsistence behaviors by focusing our attention on the 

appropriateness of model parameters, assumptions, and possible violations. Foraging 

models generate testable predictions that are sometimes counter to salient notions in 

ecological anthropology or difficult to observe directly, and call into question some of 

the assumptions we make about observed patterns. 

Any comprehensive explanation of human behavior requires us to consider 

evolutionary causation (Winterhalder & Smith, 2000), but this idea is not universally 

shared by all anthropologists. The following critiques of foraging theory that I review 

echo the more general resistance to an evolutionary approach to human behavior as well 

as criticism of the adaptationist program (Gould & Lewontin, 1979; Gray, 1987) and the 

optimization approach (Pierce & Ollason, 1987). Since the inception of optimal foraging 

theory and through today, many question the utility of foraging theory for explaining 

human behavior because they doubt its applicability to human culture (Lee, 1979, 1992). 

Opposition argues that optimality modeling is simplistic and reductionist and thus 

unrealistic (Keene, 1983). Critics point out that the individual-level focus of decision-

making does not account for historical and sociocultural processes that structure human 

social organization and life. On the other hand, proponents of foraging theory emphasize 

that it is not intended to be a qualitative and detailed ethnography (Smith & 
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Winterhalder, 1992). No model can be maximally realistic, precise, and general (Levins, 

1966), but foraging theory contains helpful, heuristic models that guide and ground our 

questions in evolutionary theory. It is true that human cultural systems have no parallel 

among other animals, but such resistance to using developments from non-human animal 

research to guide and inform anthropological research often lacks empirical grounds for 

rejecting (Smith et al., 1983).  

Other concerns and critiques exist. Many tests of foraging models demonstrate 

directional, qualitative agreement between data and theory but stop short in terms of 

finding definitive, quantitative support. In practice, rigorous tests of foraging models are 

limited. Most of the basic do not account for stochastic variation introduces at least some 

degree of uncertainty and risk. There is also difficulty in measuring model parameters 

like prey encounter rates or defining basic concepts like a patch (Gray, 1987, which has 

made it difficult to test in naturalistic settings. In general, a major concern is that a 

model or the parameters of a model may be fundamentally wrong. Perhaps the 

researcher has not chosen the most appropriate model or parameter for the question 

asked, a variable has been misidentified, or important parameters have been left out 

entirely (Davies et al., 2012). A lack of knowledge about the system can lead to errors 

parameterizing the model, which can reduce how much we learn when data fail to 

support a model. In a similar vein, the cost-benefit currency of energetic efficiency 

excludes additional nutrient concerns or considerations of the nonfood qualities of prey. 

However, adding complexity works to reduce model generality (Smith et al., 1983). In 

several ways, foraging models are often limited in terms of spatiotemporal scale (Keene, 
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1983). Models often maximize returns over the short-term, while fitness is usually 

thought of as a lifetime measure. Most foraging models do not explicitly consider or 

factor in the effects of cultural transmission on the time-scale of optimization. Spatially, 

models often assume an individual forager acts in isolation, while ethnographic evidence 

shows am important effect of regional interactions on foraging decisions (Smith et al., 

1983). 

Despite criticisms related to the validity of underlying assumptions and questions 

regarding the applicability of such models to human foragers (Cody, 1974; Gould & 

Lewontin, 1979; Sahlins, 1976), proponents assert that foraging theory remains valid 

tools for generating hypotheses and connecting evolutionary outcomes and trends with 

underlying processes. Foraging theory has advantages as an explanatory framework with 

cross-disciplinary applicability, and anthropologists should continue to develop foraging 

theory with data from human populations alongside animal behavioral ecologists.  

The marginal value theorem 

Time is one of the most precious resources organisms have at their disposal and 

can be converted to energy through work. The time and energy used for one purpose 

cannot be used for other purposes, and these time-allocation decisions affect the number 

of descendants an organism leaves (Hill & Kaplan, 1999). Regarding foraging decisions, 

foragers must decide which patches to exploit, how long to reside in any given patch, 

and when to give up on one patch to search for and exploit another. General and 

mathematically simple, the marginal value theorem (MVT; Charnov, 1976) is a salient 

model from foraging theory with broad application in evolutionary biology (Hayden, 
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Pearson, & Platt, 2011; Stevens & Krebs, 1986) that addresses the “how long” or 

“when” questions of foraging. The model proposes a general rule for time allocation 

decisions for animals in patchy environments and predicts the optimal length of time a 

forager should spend in a particular patch (Charnov, 1976; Charnov, Orians, & Hyatt, 

1976; Krebs, Ryan, & Charnov, 1974; MacArthur & Pianka, 1966; McNair, 1982). The 

MVT is generally shown as a type of economic cost-benefit, contingency model in that 

two choices are presented—keep foraging the same patch or give up and leave, with the 

goal of maximizing e.g., momentary return rates— and there is always a single optimal 

solution to that end (Bettinger, 2009). In this form of the model, there is the goal, a set of 

constraints, one cost, one benefit, and behavioral choices. 

In the MVT model of Charnov (1976), the time a forager should reside in any 

patch depends on length of travel time to reach that patch and the density of resources 

within it. Charnov (1976) constructs the MVT based on a handful of assumption. His 

model requires that patches in an environment are heterogeneous, distributed at random 

relative to one another, a forager visits several separate patches during a single trip, and 

no patch visited twice during the same trip. Foragers are assumed to have complete 

information about the abundance of resources in the environment such that they know 

the mean and maximum return rates in order to make the optimal decision (Pleasants, 

1989). In cases where foragers do not deplete resources in a patch, energy gained 

increases linearly with patch residence time. Alternatively, return rates will diminish 

over time if foraging activity depletes resources in the patch. Thus, the rate of energy 

acquisition can change as a function of time spent in the patch.  The MVT model 
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developed by Charnov and Orians (1973) and Charnov (1976) applies to foraging 

contexts where resources deplete and returns diminish as a function of time. Figure 2 

represents this graphically. 

In general, according to the MVT of Charnov (1976), an animal maximizing net 

return rate should leave a patch when the instantaneous return rate (e.g. calories per 

minute) for a patch drops to average capture rate for habitat (Figure 2). Said another 

way, a patch should be exploited until the return rate for that patch equals or falls below 

the average rate of return across all patches in the habitat. The return rate peaks as a 

function of resource abundance within the patch and time spent travelling to and 

foraging within a patch. The optimal patch residence time (Topt) is found by constructing 

the highest line tangent to the return curve describing patch richness, taking into account 

extensive search time, i.e., the time it takes to travel to the patch. Upon entering a patch, 

initial gains are high because the resources are initially plentiful, but they are generally 

depleted over time due to resource depression caused by the foraging animal (Charnov, 

1976). Patch richness determines the shape of the returns curve, which in turn 

determines the value of slope for tangent AB (Figure 2) and thus the optimal residence 

time. Though the amount of time it takes to travel between patches should be 

independent of the amount of time a foragers spends in any patch, the reverse statement 

is not true. In other words, the time a forager spends in a patch is not independent of 

travel time. All else equal, a forager maximizes energetic intake by spending more time 

in a patch when extensive search (travel) time increases. Referring to Figure 2, imagine 

an increase in travel time for a central place forager because a patch is farther from its 
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home; this decreases the slope of tangent AB and alters where it intersects the 

diminishing returns curve, thus increasing the amount of time until a forager should give 

up on that patch and search for a new patch.  

 

 

 

Figure 2. The Marginal Value Theorem adapted from Charnov (1976). The x-axis is in 

units time, and the y-axis represents energy intake. The diminishing returns curve 

depicts the intake rate for a patch, given resource depression from foraging activities. 

The optimal patch residence time (Topt) is found by constructing the highest line tangent 

to the returns curve, with the tangent AB originating at the start of travel to a patch. 

 

 

 

Tests of the MVT 

Many studies show how well animals approximate the MVT-predicted optimal 

solution to patch residence time and how well animals response facultatively to changing 

environments (Nonacs, 2001), including research with fish, birds, mammals, and insect 

parasitoids (Agetsuma, 1998; Brown, 1988; Kamil & Clements, 1990; Kramer & Weary, 

1991; Marschall, Chesson, & Stein, 1989; Redhead & Tyler, 1988; Van Alphen, 
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Bernstein, & Driessen, 2003; Van Gils, Schenk, Bos, & Piersma, 2003; Wajnberg, 

Bernhard, Hamelin, & Boivin, 2006; Ydenberg, 1984). In addition, the framework of the 

MVT has been applied to understand foraging strategies across a wide range of taxa 

(Danchin, Giraldeau, & Cézilly, 2008). Examples include the optimal duration of 

copulation for males (Parker & Stuart, 1976), the expected duration of cooperative 

interactions for cleaner fish (Bshary, Grutter, Willener, & Leimar, 2008), the evolution 

of the timing of animal migration (Baker, 1978) and clutch-size in insects (Wilson & 

Lessells, 1994), and the expected rate of animal movement through a habitat (Bélisle, 

2005; Bowler & Benton, 2005). For example, Poethke & Hovestadt (2002) apply the 

principles of the MVT to predict when animals should disperse in fragmented 

landscapes, in the context of density-dependent population growth. The authors develop 

an expression for evolutionarily stable dispersal rates in a metapopulation with global 

dispersal and predict that individual dispersal rates should decrease with patch capacity 

and increase with population density (Poethke & Hovestadt, 2002). Poethke & Hovestadt 

(2002) confirm these predictions with individual-based simulation experiments and 

demosntrate the utility of this analytical, MVT-driven approach. 

Generally, human behavioral ecologists have assumed that human foragers are 

governed by the same rules as non-human animals and thus use models such as the MVT 

to understand human decision-making mechanisms. Researchers observe that human 

foraging behavior is at least qualitatively consistent with many foraging models 

(Beckerman, 1983a; Smith et al., 1983; Winterhalder & Smith, 1981). It should be noted 

that most tests of foraging models with human data do not actually address time-related 
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questions of subsistence but more commonly focus on prey and patch choice, for 

example. Despite the relative paucity of tests among human populations, there are some 

explorations of the MVT. Anthropologists invoke the MVT to explain many time-related 

decisions made by humans. Examples include when to move a herd to new pastures (De 

Boer & Prins, 1989; Edwards, Josephson, & Coltrain, 1994; Launchbaugh & Howery, 

2005), when to cultivate new forest growth (Smith & Wishnie, 2000), how much time to 

spend in one foraging habitat versus another (Aswani, 1998; Beckerman, 1983a, 1983c; 

Smith, 1991), how much a carcass is butchered in archaeological contexts (Burger, 

Hamilton, & Walker, 2005), and how much time should be spend processing food or 

butchering a carcass before being carried to a central place (Burger et al., 2005; Metcalfe 

& Barlow, 1992). Both experimental and observational evidence on how well humans 

make or approximate optimal time-related decisions is equivocal, but the directional 

tendency toward MVT-derived principles and optimal solutions is often consistent 

across studies. 

Most work on patch-leaving decisions among humans comes from experiments. 

In an early experimental test with human subjects, Hart & Jackson (1986) found that 

patch residence times trend in the direction predicted by the MVT as resource density 

and travel time between patches varied, but subjects tended to stay in a patch longer than 

the predicted optimal time. In their experiment, subjects collected sultanas arranged at 

two different densities on artificial bushes in order to test the effects of sex, patch 

quality, and travel time on foraging decisions. The authors observed that females spent 

less time at a patch than males and accumulated resources at a greater rate. Overall, 



 

34 

 

participants increased residence time as patch resource density increased and as travel 

time increased, but subjects sometimes resided in patches longer than would produce the 

maximum mean return rate for the habitat (Hart & Jackson, 1986). 

Hackenberg & Axtell (1993), based on an earlier study by Wanchisen et al. 

(1992), simulated patch-leaving decision by requiring human subjects to choose between 

two time schedules that essentially represented the behavioral decisions to stay or leave. 

Subjects sat at a computer and pressed a key numerous times to make the decision to 

stay longer or leave sooner, which earned them a respective rewards based on their 

decision. Each choice was associated with two rewards, both short and long term 

payoffs. The short-term and long-term payoffs for each time schedule varied depending 

on the experimental condition. Overall, the authors found that participants often 

switched decision patterns facultatively and stabilized at the optimal response for an 

experimental condition (Hackenberg & Axtell, 1993). Though there was a degree of 

incomplete experimental control under certain conditions, these results are consistent 

with contemporary work as well as recent research, among human and non-human study 

groups (Cuthil, Haccou, & Kacelnik, 1994; Goubault, Outreman, Poinsot, & Cortesero, 

2005; Roitberg, Sircom, & Roitberg, 1993; Tentelier, Desouhant, & Fauvergue, 2006; 

Visser, Van Alphen, & Nell, 1992; Vos, Hemerik, & Vet, 1998; Wajnberg et al., 2006; 

Wajnberg, Fauvergue, & Pons, 2000; Wanchisen, Tatham, & Hineline, 1992; Wilke, 

Hutchinson, & Todd, 2004). 

More recently, Hutchinson, Wilke, & Todd (2008) conducted an experimental 

computer mockup of fishing to explore aspects of the MVT. In a virtual simulation, 
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human “fished” at successive “ponds” that varied in quality in order to earn money by 

catching fish when they appear. Subjects were able to leave the current patch for a new 

pond at will but incurred significant travel time costs as they moved between ponds. The 

authors found that, compared to the optimal solution predicted by the MVT, participants 

took too long to switch to new patches. Regardless of prey distribution, subjects spent 

much more time at virtual patches where they had found more fish and also shortened 

the length of time spent in the current location when they experienced greater success in 

the previous location. This may be an effect of our psychology e.g., a tendency toward 

confirmation bias, which causes humans to deviate from optimizing behaviors in ways 

that other animals do not (Hutchinson, Wilke, & Todd, 2008). Overall, the results of this 

experiment show how patch-leaving decisions can be tempered by recent information in 

a sub-optimal manner. 

Another researcher conducted a lab-based, virtual “berry picking” experiments 

with roughly homogeneous patches (Wolfe, 2013). Wolfe (2013) showed giving up time 

is consistent with the predictions of MVT if data are averaged over subjects. In an 

elaboration of this berry-picking experiment, Zhang, Gong, Fougnie, & Wolfe (2015) 

demonstrated that average foraging behavior was broadly consistent with MVT 

predictions, including that subjects foraged for more time when overall habitat richness 

was reduced. In these tests, the forager was not given complete information on the 

system before the experiment began. Further, corroborating the results of Hutchinson et 

al. (2008), the giving up time was effected by the return rate in the immediately 

preceding patch even when patch quality was randomized (Zhang, Gong, Fougnie, & 
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Wolfe, 2015), supporting the idea that human foraging behavior is influenced by recent 

experience and new information in ways that do not necessarily maximize mean return 

rates. 

Rigorous, anthropological tests of the MVT with observational data are not 

common. Some researchers attempted to explore aspects of time allocation decisions as 

they evaluated predictions having to do with models such as habitat and patch choice 

rather than the MVT per se. Beckerman (1983a) found that Bari foragers chose to hunt 

rather than fish four out of five times despite that fishing resulted in a higher return rate 

than hunting for all of the time periods sampled. The author observed that time spent 

fishing increased during months when the ratio of fishing return rates to hunting return 

rates was higher. The findings of Beckerman (1983a) do not support the prediction that 

Bari foragers choose patches that yielded the highest average return rates. Smith (1991), 

working with Inuit foragers, also examined the effects of seasonal variability in return 

rates on time spent exploiting different habitat types. He compared return rates in 

terrestrial versus marine habitats to determine if foragers adjusted time in each context 

according to their respective profitabilities as per season. Consistent with the 

observations of the Bari by Beckerman (1983a), Smith (1991) found that Inuit foragers 

spent more time in the more profitable habitat per season but not exclusively despite that 

return rates are maximized by always selecting the more profitable habitat. 

Kaplan & Hill (1992) pointed to several limitations with these early, exemplary 

studies that made use of observational data. Both studies described above use long-term 

averages, which does not account for daily changes that affect foraging decision, such as 
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weather and environmental conditions. The cumulative gains functions for various 

activity and habitat types were unknown in both studies, which means it is possible that 

features of the fishing patches. Similarly, there are significant differences between 

hunting and fishing contexts in ways that could result in a higher total gain from hunting 

despite a lower average return rate. Bar modern, advanced fishing vessels, marine 

foragers are usually constrained by the amount of time a human can spend on the water 

(Kaplan & Hill, 1992). On the other hand, hunting is often more open-ended and lasts 

longer since it is a terrestrial activity. 

Most anthropological tests of optimality models are limited to hunter-gatherers in 

terrestrial habitats with a few exceptions, such as those described above (Aswani, 1998; 

Beckerman, 1983c; Begossi, 1992; Bird & Bird, 1997; Smith, 1991). This is due to the 

fact that prey mobility and the spatial characteristics of marine habitats present 

significant analytical challenges. The work of Aswani (1998) is a good example of how 

to handle these challenges. He assessed habitat choice and aspects of the MVT among 

marine foragers in southwestern New Georgia of Solomon Islands. Aswani (1998) used 

these models to predict the daily and seasonal movement of marine foragers. Aswani 

(1998) assumed that lagoon coral reef flats and drops exploited by fishers are micro-

habitats that experience resource depression as foraging times increase, and hence, the 

MVT is an appropriate model for this context. On the other hand, he observed that 

Roviana fisher-foragers often violated the MVT assumption that patches are exploited 

sequentially and randomly. Aswani (1998) reported that the within-patch movements of 

Roviana fishers are “haphazard,” even if they do not select habitat types at random, 
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suggesting that the MVT remains an appropriate model to use. These considerations 

provide a good example of the challenges of testing optimal models with humans in 

naturalistic setting. 

Aswani (1998) found that time allocation decisions in the context of habitat types 

and patches were broadly consistent with predictions from the MVT and theory. Roviana 

fishers directed more effort to habitats with the highest yields and reduced visits to 

habitats with lower yields for each of the three tidal seasons studied. Per fishing bout, 

less time is spent in a patch as habitat productivity increases, unless travel costs to the 

habitat were also higher. Residence times and the number of patches visited increased 

because there were alternative, productive patches within range. When habitat 

productivity decreased, fishers increased residence time because it was too costly to 

travel to a different patch if the yield was not higher. In sum, the Roviana fishers 

observed by Aswani (1998) behaved to maximize their foraging efficiency. 

Human foragers: additional considerations 

In practice, deductive tests of foraging models under naturalistic conditions are 

limited. Direct observation of foraging activity can be very costly in terms of money, 

time, and safety. There are also difficulties in measuring phenomena like prey encounter 

rates and per-patch richness, delimiting patches, and identifying an appropriate temporal 

scale.  Calculating optimal patch residence times requires specifying the exact functional 

form for the accumulation of gains in the patch, and even then, calculating optimal 

residence time can be impossible to solve analytically (Calcagno, Mailleret, Wajnberg, 

& Grognard, 2014). Graphical methods to solve optimal patch residence time (Figure 2 



 

39 

 

above, for example) are useful for accommodating more arbitrary gains curves (Parker & 

Stuart, 1976). However, these types of arguments were developed with respect to 

homogeneous habitats and have restricted scope for predictions in heterogeneous 

environments without additional considerations of how habitat heterogeneity affects 

optimal solutions (Calcagno, Grognard, Hamelin, Wajnberg, & Mailleret, 2014; Stevens 

& Krebs, 1986). In other words, in the context of habitat variability, it may be difficult to 

assess or attribute robustness and generality to common graphical predictions of the 

MVT. This includes widely-cited and assumed premises such as the directional 

relationship between travel time and optimal patch residence time, or the inverse 

relationship between patch encounter rate and optimal residence time (Calcagno et al., 

2014). On the other hand, as already mentioned, falsified MVT predictions provide an 

opportunity to identify inaccurate assumptions regarding constraints and currencies of 

particular hypotheses, thereby still proving a valuable tool. 

There are aspects of the MVT, and optimal foraging theory in general, that have 

yet to be confirmed for human foragers. It is important to continue to test and develop 

foraging models among human populations. How does human foraging deviate from 

what we might expect, given assumptions and principles outlined by foraging theory? 

While there is evidence that human prey and food-item encounters within patches are 

often encountered sequentially (Burger et al., 2005), there is little evidence that human 

foragers sequentially encounter patches (Kaplan & Hill, 1992). Central-place foragers 

like humans often leave home with specific patch targets determined in advance, 

choosing which patches to exploit rather than encountering them completely at random. 
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This might mean that the classic form of the MVT model is unsuitable and could lead to 

incorrect predictions about patch use and residence time. Most models do not address the 

assumption that a forager has perfect or complete knowledge of the environment—how 

might a researcher address this without also having complete knowledge of the 

environment? Yet, foragers have been shown to have extensive domain knowledge about 

the environment, the flora, and the fauna which they utilize, such as the density and 

abundance of certain food items in the habitat (Stevens & Krebs, 1986). Anthropologists 

have long since documented how such knowledge is reflected in foraging decisions 

(e.g.,(Binford, 1978; Hill & Hurtado, 2017). 

Human culture and ultrasociality affect human foraging decision mechanisms in 

ways that makes us different from other animals (Richerson & Boyd, 1998). Cultural 

transmission probably affects the time-scale of optimization, which should vary with the 

ultimate goal of the forager. Given the human capacity for cultural storage of 

information and forethought (Richerson & Boyd, 2005), deviations from short-term 

optimization seem much more likely for us than other species. Humans often make 

foraging decisions that appear to reduce short-term return rates but might provide 

important information related to future resource distribution and abundance (Kaplan & 

Hill, 1992). This kind of information can be helpful for determining future productivity 

of a patch (e.g. if it is worth visiting again tomorrow, or next week, next season, etc.), 

which can also be communicated to other group members. Relating to future use and our 

capacity for forethought, and unlike most other animals, perhaps an overriding concern 

for human foragers is risk minimization and reduced variability of daily resource 
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availability, rather than maximizing net energy acquisition (Caraco et al., 1990; Cashdan 

et al., 1983; Smith et al., 1983). To be clear, this is not to say that foragers are practicing 

resource conservation—researchers have shown that human foragers prefer higher short-

term return rates over long-term return rates associated with resource conservation 

(Alvard, 2007; Smith & Wishnie, 2000)—but rather there is additional reason to 

consider the time-scale of optimization in the case of human foragers.  

The effects of evolved, prosocial emotions like trust, empathy, and conformation 

bias (Richerson & Boyd, 2005) also likely affect foraging decisions in ways that are not 

observed in other animals. Spatially, foraging models often assume an individual forager 

acts in isolation or in small groups, but humans are embedded within groups like 

communities, villages, chiefdoms, etc. with goals beyond self-interest (Cronk & Leech, 

2012; Richerson & Boyd, 1999). Ethnographic evidence shows the clear effect of 

regional interactions on foraging decisions (Smith et al., 1983). Empirical evidence 

directly supporting group selection of these sorts of pro-social behavior comes from 

behavioral economics, such as public goods games involving coordination payoffs and 

punishment of non-normative behaviors (Boyd, Gintis, Bowles, & Richerson, 2003; 

Henrich & Boyd, 2001; Henrich et al., 2001). A strong reliance on cultural innovations 

and institutional solutions was a critical aspect of behavioral modernity (Alvard, 2003; 

Herrmann, Call, Hernández-Lloreda, Hare, & Tomasello, 2007; Kaplan & Lancaster, 

2000; Richerson & Boyd, 2005; Tomasello, Carpenter, & Call, 2005) and probably  

affected our evolved foraging behavior processes as well. It is important to determine the 

extent to which foraing models are supported by non-experimental data and to 
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understand deviations in human populations. The directional predictions of the MVT 

have generally been verified among human populations albeit sometimes with varying 

conclusions (Beckerman, 1983a, 1983c; O'Connell & Hawkes, 1984; Stevens & Krebs, 

1986), and observations on time-related foraging decisions are often qualitative and 

anecdotal.  
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CHAPTER III 

ETHNOGRAPHIC CONTEXT: DOMINICA 

 

Geology & geography 

Fieldwork took place in the Commonwealth of Dominica, a Caribbean island-

nation of the Lesser Antilles. Research activities were conducted across three field 

sessions spanning July-August 2014, June-August 2015, and March-July 2016; field 

methods are described in chapter five. Dominica sits between the Caribbean Sea and the 

North Atlantic Ocean at 15°25’N, 61°20’W, about halfway between Puerto Rico and 

Trinidad and Tobago (Figure 3). It is about center in the chain of islands making up the 

Lesser Antilles archipelago. The island is part of the Windward Islands of the Lesser 

Antilles along with its immediate French neighbors, Martinique and Guadeloupe, and St. 

Vincent and the Grenadines, Grenada, and St. Lucia (Macfarlan, 2010).  

Dominica is about forty-seven kilometers long and twenty-six kilometers across 

at its widest point (Evans & James, 1997), featuring a tremendously rugged landscape 

with sheer precipices that rise out of the sea and throughout the interior. It is far and 

away the most mountainous island in the Eastern Caribbean, being formed about thirty 

million years ago by pyroclastic volcanic activity and built on a submarine ridge of Early 

Tertiary age (about sixty million years or older; Honeychurch, 1995). The backbone of 

Dominica is made of dormant volcanoes, but at least four of them can become active 

(Evans & James, 1997). The edge of the Caribbean plate is about eighty kilometers from 

the east coast of Dominica, and the subduction of the Atlantic plate is responsible for 
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much of the seismic activity experienced in the region (Smith et al., 2013). Due to its 

location, hurricanes, earthquakes, and landslides are a near constant threat (Evans & 

James, 1997). 

Weather in Dominica is tropical and moderate due to the Northeast trade winds 

and heavy rainfall. The island is classified as a Marine Tropical Climate that experiences 

little seasonal variation, with a wet season from June through December and a dry 

season from January through May (Dominica Meteorological Service, retrieved online 

2017). Thanks to this climate, Dominica is known as the “Nature Island” of the 

Caribbean because of its spectacular biodiversity. There are many fresh-water rivers 

flowing from the mountainous interior to the sea, which creates a rich ecology that local 

Dominicans prize (Yarde, 2013). The nature island is about 15.5° from the Equator and 

lies in the path of the south equatorial current, which flows from the west coast of Africa 

to South America, intermixes with a branch of the Orinoco River, and then flows into the 

Caribbean sea (Evans & James, 1997; Honeychurch, 1995). It is generally accepted that 

most of the early flora and fauna arrived from South America along this route, though 

some animals were introduced later by humans such as the Agouti, a small rodent, and 

Manicou, also known as opossum (Honeychurch, 1995). 
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Figure 3. The Commonweath of Dominica and neighboring islands in the Eastern 

Caribbean (Alvard, unpublished digital image, n.d.). 

 

 

 

 

The peopling of Dominica & a brief colonial history 

Honeychurch (1995) provides an excellent synthesis of the history of Dominica, 

which I highlight throughout this section. The original name of Dominica, given by the 

earliest Kalinago to inhabit the island, was “Wai’toucoubouli” meaning “tall is her 

body” (Honeychurch, 1995, p. 21). Christopher Columbus was the one to give the long 

island the name of Dominica. A folk theory, and the history taught in schools until the 

late 20th century, tells us that the first people to inhabit Dominica were the “stone 

people,” who were replaced by the “peaceful Arawaks,” who, in turn, were killed by the 

“warlike Caribs” (Honeychurch, 1995, p. 27). 

Archaeological and anthropological research indicate the first humans to inhabit 

Dominica probably originated from the Venezuelan coast of South America, travelling 

on the water from the region of the Orinoco delta as early as five to seven thousand years 
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ago. These people, named the Ortoiroid by Western archaeologists, gradually moved 

through the Antilles to populate the islands. Archaeologists estimate this group occupied 

Dominica beginning roughly two and a half to five thousand years ago. Little is known 

about the Ortoiroid, the earliest inhabitants of Dominica, in terms of who they were and 

how they lived, but most assume they were hunter-gatherers and fishers based on the 

relevant albeit scanty archaeological evidence.  

Around the fourth century, groups of Arawakan-speaking people started to 

colonize the Lesser Antillies (Honeychurch, 1995; Quinlan, 2004). One of these groups, 

the Igneri, settled in Dominica and neighboring Windward islands. The Ortoiroid people 

who inhabited the region were eventually replaced or assimilated by the new Arawak 

Igneri group in the tenth to eleventh centuries. The Arawakan-speaking Igneri are the 

group whom Dominicans refer to as the Arawaks. The Igneri introduced slash-and-burn 

agriculture and ceramics to the Caribbean and brought their own animistic beliefs to 

Dominica. Based on ceramic style and design changes, archaeologists identify three 

successive phases of development for the Ingneri in the region (the Saladoid, the 

Troumassoid, and the Suazoid, in that order). A Saladoid site found in 1977, located 

above present-day Soufriere, tells us much about their way of life. They exploited both 

land and sea resources, depending on gardens for year-round provisions, and they used 

canoes for migration, trade and interisland affairs, fishing, and hunting along the coasts. 

Artifacts preserved at this Saladoid site indicates the Igneri traded from South America 

to as far north as Puerto Rico.  
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Honeychurch (1995) describes that, from about 1400, the Igneri pattern of life 

changed as yet another new immigrant group from the Orinoco region in the south 

gradually imposed themselves and aspects of their culture onto the Igneri people of 

Dominica and the other Windward Islands of the Lesser Antilles. Living Caribs are the 

descendants of the people who moved into and occupied the region during this time. 

Information on these early “Island Caribs,” who were contemporaries of Columbus, are 

from European accounts. “Carib” and “Island Carib” are European appellations. The 

misnomer appears to have resulted from several derivatives of a term the Taíno (another 

Arawakan sub-group and one of the largest indigenous groups of the Caribbean) 

probably used to refer to either a place or any group of hostile people, rather than an 

ethnic group. The ‘Carib’ did not call themselves that; they called themselves Kalinago.  

The Kalinago imposed the masculine aspects of their ancestral culture on the 

domestic life of the preceding Igneri culture, but they were immigrants with too few 

numbers on the island to change the language and culture of the Igneri completely. They 

were organized around a village chief—more a headman than a formal chief, in 

anthropological terms—whose status could be ascribed but was more often achieved. 

They practiced the Igneri form of horticulture, supplementing garden foods with 

gathered, wild-occurring fruits, vegetables, and hunted game. More important to the 

Kalinago subsistence and way of life was fishing and the sea. They had a large variety of 

fishing techniques to exploit a wide-ranging selection of species, with fishing grounds 

extending well into the Leeward Islands. The Kalinago had their own concept of star 

constellations to navigate the open ocean and knew the locations of islands intimately. 
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They crafted well-balanced dugout canoes—a smaller version that carried a few people 

and a much larger version that apparently could carry thirty to forty people—

technologies that persist and are actively preserved by the Kalinago today.  

This freedom of movement changed drastically with European colonization of 

the region, starting with Columbus in the 15th century. By the 1500s, the Spanish 

destroyed Caribbean Carib populations who were used as labor on sugar cane plantations 

along with slaves imported from Africa (Randall, 2003). Dominica was one of the last 

islands in the Caribbean colonized because the topography and unforgiving landscape. 

The Kalinago staved off total European colonization until the early eighteenth century 

when the French established a colony, bringing in enslaved populations from West 

Africa to harvest the natural resources and work sugar cane and pineapple plantations. 

Even before French occupation, slaves escaped to Dominica or had been captured by the 

Kalinago from settlements on other islands. The forests protected the Maroons from 

slavery and provided a place for freed slaves to form communities and later, Maroon 

rebellion played a major role through European rule. Between 1756 and 1763, Dominica 

was caught up in the efforts of the Seven Years War. During this time, the French and 

British fought for control of the island, and eventually, the French ceded possession of 

Dominica to Great Britain in 1763. Rule went back and forth between the French and 

British twice more, but by the mid-nineteenth century, conquest was complete and the 

British ruled the island. The British granted Independence to Dominica in 1978. 

French and African language and culture mixed with indigenous traditions as 

Maroon populations inhabited Dominica and during European colonization of the island, 
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eventually resulting in a Creole language and culture. Given the dates of occupation, 

Honeychurch (1995) observes that Dominica should be more English compared to other 

West Indies islands. However, Dominica was positioned between two valuable colonies 

of the French empire, and this created an imbalance between British occupation and 

French influence. The result was a heavier French influence in Dominica. The official 

language of the island is English, but most speak French patois or Antillean Creole. As 

recently as fifteen years ago, speaking Creole was strictly forbidden. Young people at 

my field site recount getting their knuckles bruised as children for speaking Creole in 

public or in school. Individuals learned from one another and from kids raised other 

villages, particularly more rural villages where such sanctions against Creole were less 

strictly enforced. Today, there is a sense of great national pride and preservation for 

Creole language and cultural traditions, but it is sometimes offset by the desire to 

participate in a global, ‘Western’ culture. 

 

Current demographics 

About seventy-four thousand people live in the 751 km2 area of Dominica 

(Central Intelligence Agency, 2016) an increase from the 2011 census of about seventy-

one thousand people). The population is distributed mostly along the coast while the 

mountainous interior is more sparsely populated but includes major sections of the 

Kalinago reserve. Nearly a third of the total population is concentrated in Roseau, the 

west-coast capital city, and adjacent neighborhoods. A characteristic of many Caribbean 

islands, due to the colonial history of the region, is economic marginalization. In 
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Dominica this has resulted in what can be described as an open, non-corporate peasantry 

(Macfarlan, 2010; Macfarlan, Remiker, & Quinlan, 2012; Smith, 1977; Wolf, 1957). 

Dominica is poor (per capita GDP $11,400 est. 2016) and developing: it is among the 

least developed and most rural country in the Caribbean (Quinlan, 2004). At least 29% 

of the population lives below the poverty line (CIA, est. 2009). The economy is 

primarily based on agriculture and ecotourism, and there is currently no export market 

for the fishing industry in Dominica (more on the Dominican fishery below, this 

chapter). Households generally meet subsistence needs while horticultural surplus is sold 

in local communities, but capital is difficult to accumulate (Macfarlan, 2010).  

The colonial history of the Caribbean has also greatly influenced the ethnic 

composition of the region (Macfarlan, 2010). Dominica is diasporic with a long colonial 

history, and this history shapes the rich, contemporary diversity of the island (Baker, 

1997; Honeychurch, 1995). While some Dominicans are indigenous, referring to 

Kalinago ancestry (2.9%), or of mixed European and indigenous descent (9.1%), most 

are descendants of African slaves and Maroon populations (86.6%) (CIA, est. 2001). 

Due to the mountainous terrain, the island was a Carib stronghold, and later, a Maroon 

stronghold. The island has the only Carib reserve in the region as well. Notably, 

Dominican plantations were different from others in the Caribbean in that owners were 

absentee (Honeychurch, 1995). Consequently, and unlike other islands in the region, 

Dominica is not a black majority ruled by white elites (Quinlan, 2004). 

Indigenous traditions mix with African, French, and British language, values, and 

customs to result in a Creole culture. The official language of the island is English, but 
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most speak French patois and often as a first language (Quinlan, 2004). Catholics, 

Baptists, Seventh Day Adventists, and Protestants are common in Dominica and are 

sometimes influenced by African Vodoun and Santeria beliefs (Salter, 1999). The 

Rastafari movement that emerged in the Caribbean  (Barrett, 1977; Owens, 1976) also 

took hold in Dominica. The Rastafari movement continues to embody resistance to black 

oppression and marginalization, and perhaps functions as a social levelling mechanism, 

particularly in rural areas of the island (Barrett, 1988; Campbell, 1985; Hall, 2001; 

Macfarlan, 2010; Phillips, 2002; Quinlan, 2005). 

  

Desa Ikan: the field site 

Data collection on fishing-foraging in Dominica took place at the medium-sized 

landing site in the village given the pseudonym of Desa Ikan, located on the rural east 

coast (Figure 4). According to the 2011 census, one hundred individuals live in about 

forty different households in Desa Ikan. Communities like Desa Ikan can be thought of 

as geographically bounded, and as Macfarlan (2010) describes, membership is usually 

restricted to those born and raised in the community. Rural Dominicans such as those in 

Desa Ikan and surrounding communities as socially homogeneous and poor, who 

experience little local social stratification relative to other contexts (MacFarlan, 2010). 

During the data collection periods, there were four rum shops operating, which are 

important, socially-central local shops that sell household necessities such as soap, toilet 

paper, and some kinds of dry storage food along with a lot of rum, beer, and other 
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alcohol. Villagers in Desa Ikan gather at these rum shops to socialize, get news, watch 

sporting events, play dominos, drink, and smoke. 

Macfarlan (2010) suggests that rural Dominicans see agricultural work seen as 

good while self-seeking commerce is not as good, which aligns with many of my own 

conversations with individuals from Desa Ikan. I also observed that people in Desa Ikan 

tend to work multiple professions and jobs as opportunities arise. Income is earned 

through limited wage labor, small-scale gardening, fishing, and remittances (Macfarlan 

et al., 2012; Quinlan, 2004; Quinlan, 2005). Almost all adults in Desa Ikan practice 

horticulture, growing food such as yams, taro, plantains, bananas, and pineapples. 

Fishing is one of the most common and important sources of income for men in Desa 

Ikan due to the location of the landing site in the village. A handful of people living in 

rural Desa Ikan commute to larger villages or the capital to work wage-labor jobs. 
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Figure 4. Images adapted from Google Earth© showing (a) the Commonwealth of 

Dominica, and (b) an enhanced view of the field site, Desa Ikan. Published by Google 

(2015). Image (a) shows Dominica, situated between the Caribbean sea off the West 

coast and the Atlantic Ocean off the East coast, with the field site, Desa Ikan, labeled by 

white text on the Eastern coast of the island. Image (b) shows the field site, rotated to an 

Eastern perspective and looking West. Within the black circle nearer the bottom of the 

image, one can see the boats anchored on the shoreline. In the same black circle, by the 

‘n’ in ‘Ikan,’ one can see the human-made stone wave breaker, jetting out into the bay. 

The black circle indicated just above and left of the center of the image might be thought 

of as the heart or center of the village, locally referred to as “the flat.” In this circle, there 

is a primary school that serves Desa Ikan and nearby communities (the “L” shaped 

building with the reddish roof), a Catholic church (rectangle reddish roof), a few rum 

shops, and the only bridge and road connecting the Desa Ikan to the capital city and the 

rest of the Island (with the except of a few villages to the South of Dominica, which are 

also only connected to the rest of the island through the bridge and road in Desa Ikan). 

Accessed online on 20 December 2017. 
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CHAPTER IV 

THE DOMINICA FISHERY 

 

Fisheries development since the twentieth century has led to huge growth in the 

industry around the world (Srinivasan, Watson, & Sumaila, 2012; Watson et al., 2013), 

and global fish stocks are predicted to collapse around 2050 (Costello et al., 2016; Myers 

& Worm, 2003; Norse et al., 2012; Pauly, 2010). Work in the Caribbean has shown that 

the introduction of boat motors in the second half of the twentieth century had the effect 

of shifting fishing from small-scale subsistence practice to one that generates cash 

income (Smith, 1977). Fishing has also a long, impactful history in Dominica—from the 

Igneri to extant Kalinago (Barome, 1966). Boat motors allowed Dominican fishers to 

target both near-shore and far from shore species (examples below, this chapter), which 

changed the domestic market for fish, boat design ownership patterns, and crew 

compositions (Pattullo, 2005). 

Currently, there are thirty-two landing sites in Dominica (Sebastian, 2007), 

including large sites that receive development aid. The Japanese International 

Cooperation Agency (JICA) has donated millions to Dominica to construct a major 

landing site on the island. Pattullo (2005) highlights that this is an apparent effort by the 

Japanese government to encourage Dominican approval of whaling. For example, the 

JICA funded the construction of a multimillion dollar landing site about twenty-two 

miles north of the field site of this project, Desa Ikan. The Japanese government has also 

worked with the Ministry of Agriculture, Fisheries, and Forestry of Dominica in 2008 to 
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conduct a census of fishers in Dominica. The results shows that most fishers were male 

(96%), single (62%), and that the average age of a Dominican fisherman was fifty-three 

years old. The census of fishers also showed that 78% completed primary school and 

15% completed high school. Fishers went to sea about four days per week, on average, 

and 90% of fishers indicated that they sold their own fish while only 7% of fish vendors 

were non-fishers. Venezuela and China has also invested in the Caribbean and 

Dominican infrastructure projects, albeit not directly related to the fishery of Dominica. 

Fishing in Dominica is considered artisanal (Zeller, Booth, & Pauly, 2006). 

There are currently no commercial fishing trawlers operating from the island. Fishing on 

the western, Caribbean coast is markedly different from eastern, Atlantic coast. The 

Caribbean side is usually flat and calm, while the Atlantic side normally experiences two 

to three meter swells. On both sides of the islands, Dominicans practice nearly the same 

variety of fish catching methods to target both pelagic and demersal species. 

Demersal species live and feed on or near the seafloor and are caught year-round 

and near the shore. Common demersal species include many species of snapper 

(Lutjanidae) and grouper (Epinephelus), red and rock hind (Epinephelus guttatas and E. 

adsocensio), trigger fish (Balisties vetula) and a variety of lobster like the Caribbean 

spiny lobser (Panulirus argus) and crab (Coenobita). In the next section, I describe two 

pervasive methods to catch demersal species as practiced at the landing site where 

research activities took place. These fishing techniques include the so-called ‘bank’ and 

‘pot’ catch methods.  
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Pelagic fish live and feed mostly far from shore and in the open ocean, not near 

the sea floor (Miller, 2007). Commonly targeted pelagic species include blue marlin 

(Makaira nigricans), yellow and black fin tuna (Thunnus albacares and T. atlanticus, 

respectively), dolphin fish (Coryohaena hippurus), flying fish (Hirundichthys 

speculiger), barracuda (Sphyraena barracuda), skipjack tuna (Katsuwonus pelamis), and 

king mackerel (Scomberomorus cavalla). Pelagic fish are frequently exploited two ways 

in Dominica. First, via ‘channel’ fishing, which is more common in the winter and 

spring, and second, via ‘FAD’ (fish aggregating device) fishing, which is primarily a 

summer and fall activity. I describe both of these methods below in the context of the 

field site.  

Fishing in Desa Ikan 

Fishers live in Desa Ikan and neighboring communities, sometimes travelling 

about two kilometers to reach the landing site to fish. The landing site at Desa Ikan 

features a boat ramp, a cement sink for cleaning fish, and a building with about twenty-

five lockers (Figure 5). These facilities were funded by the Fisheries Department of 

Dominica who partnered with the Food and Agriculture of the United Nations (FAO) 

and French government to further develop the landing site in Desa Ikan (Alvard, 

personal communication). The project also funded the addition of a large fiberglass boat 

with 85hp outboard motor, locally referred to as the ‘cooperative’ boat to reflect that it is 

not privately owned, as well as an administration building with freezers that serves as the 

local cooperative. 
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A road leading to the landing site bay and the road in and out of the village was 

also constructed, which is best seen in Figure 4b, running along the coast and connecting 

the two black circles.  In 2005, a wave breaker was added to help shelter the bay (best 

seen in Figure 4b and Figure 6). The wave breaker is a valuable addition to the landing 

site because it makes entering and exiting the landing site much easier for fishers and 

protects the boats in the bay from storms and larger waves, to some extent. Finally, in 

2010, the local gas station that was built as part of previous deal between the Dominican 

and Venezuelan governments became functional. 

 

 

 

 
 

Figure 5. The landing site and facilities at Desa Ikan Dominica. This photo I took in 

2015 features the boat ramp and the blue locker facility, which were additions funded by 

the Fisheries Department of Dominica who partnered with the FAO and French 

government to enchance the landing site at Desa Ikan. The boats that are dry-docked in 

this picture were likely pulled on shore for maintenance. The two-toned orange house in 

the background is privately owned and not part of the fishery complex. 
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About thirty boats are docked at the Desa Ikan landing site, including boats both 

dry-docked and in the water. However, this count is liable to change due to, e.g., weather 

conditions, as fishers arrive by boat to buy fuel at the local gas station, interpersonal 

conflict, and other personal reasons such as desire to move a boat to a different landing 

site. Boats operating out of in Desa Ikan are generally fiberglass, wood keeled, or 

fiberglass with a wooden frame. They range from four to eight meters long and are 

equipped with two-stroke outboard motors ranging from 15-85hp, with 40hp and 48hp 

engines as the most common. Figure 6 is a picture of representative boats moored at the 

landing site during the data collection periods. One well-respected fisher emphasized to 

me that the major advantage of “upgrading” to a fiberglass boat is that fiberglass boats 

are built with a rubber bladder in the hull that prevents it from sinking. 

Based on my observations, boats usually hold a maximum of three crew 

members, though two-man crews are the most common composition. Sometimes a man 

will fish alone, and while nearby islands such as Martinique have enforced sanctions 

against fishing alone, Dominica has no such laws. Profits earned from fishing are 

dictated by ownership of the boat and motor as well as who actually does the fishing, 

which is not always the same.  Sometimes one of the fishers owns the boat, motor, and 

gear he uses, and sometimes a non-fisherman owns the boat and motor. In one case, a 

fisherman owned a functional boat, but he fished from a second boat that he did not own 

while his boat was captained by a different man. 

Though there is a division of labor during fishing trips, both crewmen share 

many tasks—it depends on the captain/crew composition. Generally, the captain 
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operates the motor, steers the boat, and is responsible for many aspects of operation. 

Bowmen are responsible for a variety of other logistical tasks, such as being on the 

lookout for buoys, birds (which indicate the presence of schools of fish), and any 

floating debris that attracts fish, as well as raising fish traps, pulling lines, organizing 

catches on ice, and bailing water from the boat. In a few cases at Desa Ikan, the bowman 

is responsible for the local sale of fish once back on shore and handling the monetary 

exchange, but captains often sell fish, too. Other times, the boat owner acts as the 

middle-man. 

 

 

 
 

Figure 6. Boats moored at Desa Ikan during the data collection periods. This photo from 

2015 shows the three types of boats moored at Desa Ikan, behind the stone wave 

breaker. The blue/orange boat on the far left is a wood keel boat, the orange boat that is 

second from the left is fiberglass with a wooden frame, and the white/orange boat that is 

third from the left is a fiberglass boat. 
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When fishing is productive, villagers gather at the landing site when boats are 

expected to return to shore, buy fish, and/or simply watch the action unfold. Some 

individuals, often the same people day-to-day, act as a sort of ‘ground crew’ for the 

fishers by helping them unload equipment and catches from boats. The ‘ground crew’ 

might be boat owners, kin, friends, or community members who are hoping for fish or 

money in exchange for labor. Sometimes fish are given away to friends and kin or 

respected community members, regardless if they provide help to the crew or not.  

A portion of catches are sold to local fish buyers. These middle-men will 

transport and sell the fish in more distant communities, to the national Fishing 

Cooperative in the capital city, and directly to restaurants and resorts around the island. 

From my observations during the data-collection periods, one man accounted for the vast 

majority of such middle-man sales in Desa Ikan. This specific man was often in contact 

with Desa Ikan fishers before they reached shore (via cell phone) to gauge the type and 

quality of their catches and secure the purchase when possible. He also bought fish from 

other landing sites and was a constant source of information on the kinds of catches from 

all around the island.  

Desa Ikan fishers target a variety of both demersal and pelagic species. Fishing 

trips are diurnal, rarely last more than twelve hours, or travel more than sixty kilometers 

from landing site. This ethnographic context of this project is ideal for this project. 

Fishing–foraging in Dominica and Desa Ikan remains small-scale and decentralized, 

with different fishing strategies providing multiple, independent contexts for testing the 
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CUMSUM method and foraging models. Next, I describe four common fishing 

strategies as they are practiced by Desa Ikan and other Dominican fishers. 

Demersal fishing: bank 

Bank techniques are practiced year-round, near-shore, and in relatively 

shallow water, from about thirty to forty-five meters to usually no more than one 

hundred meters, to target demersal species such as snapper (Lutjanus spp.) and 

the others described earlier in this chapter. Patches of resources i.e., aggregates 

of fish, occur along the insular shelf, whose locations are known to individual 

fishers by landmarks. These marks include at least three points of reference on 

the island relative to the position of the boat on the ocean, which is a common 

technique among many small-scale fishers around the world (Igarashi, 1974). 

Desa Ikan fishers locate bank patches visually and from memory—without a 

GPS device. Anywhere from one or two to ten or more patches are visited in a 

single fishing trip. Most bank fishing trips include two fishers, a captain and a 

bowman. Bank fishing involves an array of hook and line techniques at varying 

costs but without rods and reels (Gabriel, Lange, Dahm, & Wendt, 2008). 

The most common method of bank fishing in Desa Ikan and around the 

world is one that uses a stone to sink the line and hooks to the ocean floor (Figure 

7). A fisher typically holds one or two of these lines. Once the boat is positioned 

approximately on the marks of a patch—ideally up-current from the patch to 

maximize time spend drifting through the patch—lines are dropped overboard. 

After the stone sinker touches down on the ocean floor, the line is raised slightly 
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to keep it taut. After all fishing lines are raised and fish unhooked, the captain 

maneuvers the boat back to the mark and repeats the process. The captain 

approximates an ideal spot up-current from the patch, fishers drop lines and make 

minor adjustments if necessary, drift through the patch with lines in the water, 

raise lines to unhook fish or re-bait, and reposition on the mark again if 

necessary. 

 

 

 

 
 

Figure 7. Schematic example of the prevalent “bank” fishing technique in Desa 

Ikan. 
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Demersal fishing: pots 

A second bank strategy to target demersal species employs a classic 

Caribbean fish trap (Gabriel et al., 2008), locally known as “pot” fishing. A 

variety of fish are caught with pots, but the most common are Balistes spp. 

(busse), Lutjanus spp. (snapper), and a variety of lobster and crab. In practice, a 

trap is set on the bottom of the seafloor, about forty to ninety meters deep and 

within about five kilometers of the shore, designated by a buoy (Figure 8). 

Similar to bank fishing, the location of a pot is known to the captain by at least 

three landmarks and is found without the aid of a GPS device. It is not 

uncommon for multiple pots to be deployed in a spatially proximate area. I 

observed that Desa Ikan fishers had anywhere from one or two to as many as ten 

pots deployed at a given time. Property rights are not ambiguous in this context, 

but sometimes a pot is stolen by other Dominican fishers, referred to locally as 

pirates. Once a pot is dropped in the open ocean, it is difficult to defend from 

pirating. 

It is difficult for one fisher to raise these pots alone, and thus, trips 

usually include a captain and a bowman. Only one of four known pot fishers 

from Desa Ikan routinely raised his pots alone. Boats travel towards the 

approximate location of a pot and then slow as the captain and crew look for the 

buoys. The mainline of a fish pot is given a small degree of slack to offset the 

strain of the current, so the buoy will be found in known radius. Depending on 

sea conditions, such as the strength of the current, a pot might be found within a 
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minute or two or might not be found at all. Fishers might give up on a particular 

pot and leave in search of others if it proves very difficult to find. After a pot is 

found, the fishers work together to pull the pot up and onto the boat. 

 

 

 

 
 

Figure 8. Example illustration of a typical pot constructed and deployed by Desa 

Ikan fishers. 

 

 

Figure 9 depicts the common scene of a raised pot resting on the frame of 

the boat while the captain clears the pot of fish and other debris, completes any 

maintenance the pot might need, and then re-baits the pot. The bowman provides 

assistance as necessary. After a pot is cleared and ready to be dropped again, the 
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captain maneuvers the boat back to the original mark before dropping the pot. 

Often, the pot is dropped in the same location where it was found. Alternatively, 

the captain may decide to drop the pot in a new location if he is no longer 

satisfied with the current mark or believes a different patch will result in a better 

catch.  

 

 

 
 

Figure 9. A pot has been raised by two fishermen and rests on the frame of the 

boat. The captain clears the pot of the catch, cleans debris, fixes or maintains the 

pot as necessary, and adds fresh bait before dropping it back overboard to rest to 

the ocean floor. 

 

 

A pot is functional for nine months to a year and occasionally longer, 

with proper maintenance. Pots are one good example of niche construction in the 

context of fishing at Desa Ikan and significantly reduce search time, effort, and 

fuel costs for fishers (Laland, Odling‐Smee, & Feldman, 2001; Odling-Smee, 
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Laland, & Feldman, 2003). The payoff of pot fishing relative to other strategies 

seems to be realized in the long term. While pot fishing is not as immediately 

profitable as e,g, FAD fishing, the day-to-day variation in returns is noticeably 

reduced. However, pot fishing requires highly specialized knowledge on 

construction and use. Pot materials are also relatively expensive, and the cost can 

be prohibitive for any one fisher. Thus, pot fishing it is limited to just a few Desa 

Ikan fishers. As mentioned, four men regularly raised pots. 

Pelagic fishing: channel 

A pelagic fishing strategy, channel fishing, takes place in the late winter 

to early spring seasons, typically eight to fifty kilometers from shore. The target 

species of channel fishing efforts is dolphinfish (Coryphaena spp.), which are 

found in schools and caught with hook and line. Dolphinfish are attracted to 

floating patches of debris such as wood, marine litter, trash, and a common type 

of seaweed (Sargassum spp.) and are often associated with schools of small 

pelagic fish such as flying fish (Cheilopogon melanurus). Rather than look for 

schools of dolphinfish directly, fishers often search for Frigate birds (Fregata 

spp.), which feed on flying fish, the same pray as dolphinfish, and other kinds of 

floating debris and marine litter that attract target species. 

A channel trip begins with relatively high-speed travel outwards from the 

shore to the open ocean. Fishers remain vigilant and search for floating debris 

and/or birds. When a patch of debris or birds are found, and the presence of a 

school of dolphinfish is confirmed, fishers might troll on the edges of debris 
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where fish are found. Fishers drift fish along with the patch as guided by the 

current or maneuver the boat to more ideal location on or around the patch. 

Fishers may visit a single patch or many patches in any given channel trip. It is 

not uncommon for fishers to troll for bait fish near other known patch locations, 

such as near deep-water FADs or around near-shore FADs. 

Pelagic fishing: FADs 

Recently introduced to Dominica, fish aggregating devices (“FADs”) 

consist of a simple technology that floats on or near the surface of the sea, attract 

migratory and pelagic fish, and facilitates their capture (Dempster & Kingsford, 

2004; Dempster & Taquet, 2004). Migratory species move from one part of a 

body of water to another at variable distances and time scales. Species targeted 

by FAD fishing are considered highly migratory in that they undertake 

migrations of significant distances across oceans and have wide geographic 

distributions (Meltzer, 1994; Miller, 2007). FADs are known ethnographically 

across the world and have been used by fishers in the Mediterranean and Asia for 

thousands of years (Davies, Mees, & Milner-Gulland, 2014; Kakuma, 2000; 

Seaman Jr, Buckley, & Polovina, 1989). The FAO of the UN introduced FADs to 

Dominican fishers in the late 1980’s and earl 1990’s, but the technology did not 

become established on the island until after 1998. At this time, the export market 

for bananas changed to the disadvantage of Dominica and attention turned to the 

fishery on the island (Defoe, 2004; Gillett, 2005; Payne, 2008; Theophille & 

Hutchinson, 2012). 
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Moored FADs, locally called “buoys,” are another example of niche 

construction at Desa Ikan; they are designed to create resource patches at known 

locations and significantly reduce search time, effort, and fuel costs for fishers 

(Alvard et al., 2015). A typical Desa Ikan FAD is moored to the seabed with an 

anchor made from a halved fifty-five gallon drum filled with cement and placed 

at a depth of 1,000-3,000 meters, between thirteen and fifty kilometers from 

shore (Figure 10; Alvard et al., 2015). There are shallow water FADs located 

close to shore to target barracuda (Sphyraena spp), but much research focuses on 

deep water FADs (Alvard et al., 2015; Brock, 1985; Cayré, 1991; Dempster & 

Taquet, 2004; Jaquemet, Potier, & Ménard, 2011), which target highly migratory, 

pelagic species such as tuna (Thunnus spp.), marlin (Makaira spp.), and 

dolphinfish. The cost to individually deploy even one FAD is prohibitive, and as 

a result, men cooperate to build and deploy FADs. Since FADs are often a 

common pool resource, property rights can be ambiguous, creating social 

dilemmas. Once deployed, FADs are difficult to monitor and defend from pirates 

(Alvard et al., 2015). 

Travel towards a known deep water FAD anchor point is characterized by 

ballistic, high speed movement. FAD mainlines are given considerable slack to 

reduce strain. FAD heads—the buoys visible on the surface of the water–are be 

found within a very large drift radius (Alvard et al., 2015). Aided by GPS and 

knowledge of how ocean conditions affect the location of a FAD head, fishers 

reduce speed as they search for the head of a FAD. Once they locate a FAD, they 
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might troll the area to catch bait first and check how the FAD head is drifting 

before setting fish traps around it. Traps are made from floats attached to about 

one hundred meters of fishing line and a baited hook. The free-floating trap is 

dropped just up-current from the FAD so that it may drift past the FAD head and 

through the constructed patch. Multiple traps are often dropped at once. Traps 

that appear to stand upright on the water indicate a fish has been hooked, which a 

fisher raises by hand. A trap with no fish is collected down-current from the 

patch.  The result in a back and forth pattern within the patch as captains 

maneuver to above current to drop traps and below current to pick them up 

(Alvard et al., 2015). 
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Figure 10. Schematic example of a typical FAD deployed from Desa Ikan, from 

Alvard et al. (2015). 
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CHAPTER V 

RESEARCH AIMS & FIELD METHODS 

 

Research aims 

Scientists infer foraging decision from patterns generated by animal movement 

and space use, which can be recorded as a movement trajectory like a GPS track. 

Sometimes relevant patterns are obvious, and segmenting a GPS track into bouts of 

pertinent behavioral modes can be based on visual assessment (Knell & Codling, 2012). 

Often, however, behavioral shifts are not obvious or clearly identifiable because patches 

of resources are not always well-defined, discrete units but non-delimited areas with 

higher aggregations of resources (Benhamou, 2004). In these cases, bottom-up 

approaches like those described above in the background section rest on mathematical 

segmentation to isolate stationary phases corresponding to different behavioral modes 

that operate at the same scale. 

For this project, I use both direct behavioral observation and remotely gathered 

movement data, GPS tracks, to identify extensive and intensive search in the context of 

human fishing-foraging activities. The first major goal of my project is to test the 

effectiveness of the CUMSUM for discerning extensive search from travel in the context 

of demersal fising, after the example of Alvard et al. (2015). This further develops the 

usefulness of the CUMSUM method of GPS track segmentation. Is the CUMSUM 

method for identifying changes in foraging behavior robust across different foraging 

contexts? I use the CUMSUM method to identify extensive search versus ARS at 
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patches using GPS tracks collected during demersal fishing trips originating from Desa 

Ikan (see chapter three and four for descriptions). I compare CUMSUM-generated 

segments of behavior with ground-truth data i.e., direct behavioral observation data from 

the same fishing trips. This allows me to gauge the efficacy of the CUMSUM approach 

for distinguishing ARS at patches and extensive search between patches The sample of 

fishing trips recorded with a GPS device that also have simultaneous direct behavioral 

observation is referred to as the “N10” sample throughout this paper. A summary of 

these trips can be found in chapter six. 

 As a secondary test of the CUMSUM method, I compare the results of visual 

segmentation with the results of CUMSUM segmentation. First, I visually segment—

assign behavioral modes to different portions of tracks—a subsample of thirty additional 

GPS tracks for demersal trips that do not have simultaneous direct observation (i.e., 

those not in the N10 sample).  I refer to this data as the N30 sample, which is 

summarized in chapter seven. I also use the CUMSUM method to segment these thirty 

GPS tracks. I compared the results of visual segmentation with CUMSUM segmentation 

to identify similarities and differences. I discuss the extent of agreement between the 

methods and possible sources of error.   

Another goal of this project is to show how the above methodological 

development can help move theory forward by potentiating tests of prominent foraging 

models in contexts where direct behavioral observation is costly. To this end, I use data 

from both direct behavioral observation and patches identified by CUMSUM analysis to 

assess a general prediction of the MVT. I examine if patch residence time increases as a 
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function of increased travel time, measured by patch distance from the landing site 

where trips originate. Do fishers spend more time in patches that are farther from home 

(i.e., incur more costs associated with travel time), and less time in patches that are 

closer to home? The methods I used towards this aim is described in the next section of 

this chapter. The resulting data along with derived patch residence time and patch 

distance calculations are described in chapter eight. 

 

Field methods 

I collected data across three field sessions, spanning July-August 2014, June-

August 2015, and March-July 2016. In total, I observed a total of eight hundred forty-

four fishing trips leaving and returning to the field site, Desa Ikan, during these periods. 

Of these N = 844 trips, N = 536 have associated remote behavioral observation in the 

form of GPS tracks. N = 130 of the trips with associated GPS tracks are demersal fishing 

trips, which is the specific foraging context of this project. N = 10 of these demersal 

fishing trips with GPS tracks also have simultaneous direct observation. The methods I 

used to collect these data are described below, and the resulting, relevant datasets are 

described throughout chapters six, seven, and eight in context with subsequent analysis. 

Ethics statement 

This research was approved by the Commonwealth of Dominica Fisheries 

Department (RP-05/129-FIS-3) and Texas A&M University’s Office of Research 

Compliance Institutional Review Board (project IRB2009-0209D). The IRB approved 
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the use of oral consent from fishers, as asking for signed consent in this ethnographic 

context put a significant strain on the research-subject relationship. Subjects were 

informed concerning the nature of the research, with the option to decline to participate 

made clear. This project was funded by the NSF via a Research Enrichment for Graduate 

Students (REG) award (BCS-1260201) and A&M’s Anthropology department. 

Movement data 

Compact, hand-held GPS devices manufactured by LOCOSYS Technology, 

model GT-31/ BGT-31, were housed in hard plastic, water-proof containers made by 

Pelican Products, Inc. Fishers often stored these devices within another dry-storage tub 

where they housed their own supplies and equipment. The plastic barriers did not 

prevent a device from receiving a signal, and the open sea conditions were favorable for 

satellite reception. LOCOSYS report a 95% probability that the recorded positions are 

within a ten meter radius around the actual location of the vessel. The devices use SiRF 

Star-3 high sensitivity, low power GPS chips and feature a rechargeable, built-in 

lithium-ion polymer battery. 

I collected GPS data for N = 536 of the N = 844 trips observed originating and 

returning to Desa Ikan, including N = 130 demersal fishing trips. Before fishers departed 

from Desa Ikan each morning, I handed an activated, encased GPS device to one 

crewmember from each boat. The men took the GPS aboard the boat while they fished 

for the day. In the afternoon or evening of the same day, I collected GPS devices from 

the fishers when they returned to Desa Ikan. Captains who agreed to have a GPS device 

on board were compensated (3.80 USD per trip). 
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GPS devices programmed to record at one-second intervals generate high 

resolution time series, movement tracks with associated spatial coordinates. I 

downloaded the resulting GPS output files into GPS Track Editor© by MapSphere. 

Using this software, I modified tracks so that on-shore pre- and post-trip data points 

were removed and color-coded tracks by speed. I imported the edited GPS track into 

Google Earth© and overlaid it on top of satellite imagery of the coast and seascape. In 

Google Earth©, I viewed and animated the track at different spatial and temporal scales 

to better understand the nature of fishing trips and patch use via visual analysis. 

Along with GPS data, I also recorded data on fishing efforts and returns. When 

fishers returned to the landing site in the afternoon, I documented the number and the 

species of all fish as catches were unloaded from the boat. I also recorded the weight of 

each fish they were measured and prepared for local market sale, organized for 

consumption, and/or prepared for storage in freezers. Boat captains and crews provided 

me with contextual information about the trip, such as sea conditions, what types of 

patches were visited, where certain fish were caught, social encounters, and any 

unexpected issues such as equipment trouble and significant gear loss. I recorded these 

data in small notebooks and then transferred this information to formal data collection 

sheets that were used for all field sessions. Finally, I typed and stored a digital copy of 

these data in Microsoft Access©, keeping data backed up on an external hard drive.  

Direct behavioral observation 

Ground truth data refers to information collected or observed directly at a 

location and can be compared to remotely gathered data, such as GPS data collected at 



 

76 

 

the same time (Jensen, 2009). I collected ground-truth data by simultaneous direct 

observation of fishing trips via focal follows to create a ground-truth dataset with which 

to compare GPS tracks of the same trips. A focal follow is a method of direct behavioral 

observation that involves observing the behavior of a focal individual during specific 

activities and for a given length of time (Altmann, 1974). In this case, the focal 

individual is the captain of the boat. I identified focal individuals based on their safety 

practices (e.g. carrying oars and a sail, sobriety, etc.), the consistency and frequency they 

employed demersal fishing strategies, and their willingness to allow a non-national, 

female researcher on board, resulting in a convenience sample. 

During a focal follow, I synchronized my watch with the GPS device to allow 

correlation between the GPS tracks and direct observations made on the boat, which is a 

common ground-truth method (Li & Zhang, 2012; Pohl & Van Genderen, 1998; Xiao et 

al., 2006). I used event sampling to note changes in behavior and the timing of 

behavioral shifts, focusing on time entering and exiting patches. In other words, I 

recorded the exact times and duration of bouts of travel and ARS at patches. Events most 

germane to this project include travel, search for and navigation to known patches, 

fishing/ARS, social encounters with other boats, and encounters with floating debris like 

seaweed patches. 

During focal follows, I confirmed my observations of fishing activities and 

behavioral shifts with the captain and crew, who are experts in the demersal fishing 

domain. This allowed me to more confidently differentiate between ARS and travel and 

develop expectations on how that might manifest as a GPS track. I noted the timing of a 
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variety of other events, including: when a fisher was baiting hooks and preparing or 

maintaining lines, when a fisher had a line (or lines) in the water, when he started raising 

a line, when a line was back on board the boat, the exact timing of any fish catches, 

when a fisher was adjusting the position of the boat within a patch, when he had 

difficulty approximating a patch location or finding a buoy and spend more time 

searching for the patch, and finally, significant time spent on boat and motor repairs 

during the fishing trip. 

I recorded information on fish catches and efforts during direct observation. I 

documented the number and the species of all fish as catches were pulled into the boat. I 

also recorded estimates of the weight of each fish as it was brought on board. I asked the 

fishers to estimate the weight of each fish as he unhooked it because it was not possible 

to weigh each fish individually on the boat as they were caught. Once back on shore, I 

recorded exact weights of catches when possible and compared this to the estimates 

fishers made. The differences were small and underscored the accuracy of the fishers’ 

approximations. I also recorded how many lines and hooks a fisher used, as well as 

instances of gear loss and boat or motor trouble during observed foraging trips. I have 

some data on fuel use, but I do not have complete data on the costs associated with bait, 

storing catches on ice, or transporting catches for sale elsewhere on the island. 

Conversation with the fishers before, during, and after focal follows allowed me to learn 

from their experiences and develop expectations about the overall characteristics, costs, 

and benefits of demersal fishing. 
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 In addition to the fee for carrying a GPS device on board, I compensated fishers 

who agreed to participate in a focal follow for the inconveniences associated with having 

a researcher on board (28 USD per trip). I recorded focal follow notes in waterproof 

notebooks while in the boat. I typed and stored my notes in Microsoft Word© and 

Access© immediately after the focal follow ended and backed up these digital files on a 

hard drive. These field methods resulted in twelve focal follows of demersal trips, but 

two of these trips are unusable due to lost or corrupt GPS data files. Overall, I collected 

usable ground-truth data for ten demersal fishing trips—five so-called “bank” fishing 

trips and give so-called “pot” fishing trips—resulting in the “N10” sample. 
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CHAPTER VI 

N10: ANALYSIS & RESULTS 

 

Data description 

Near-shore, demersal strategies—bank and pot fishing—are the subject of this 

project and account for 29% (N = 241) of all observed trips (N = 844 across all field 

sessions). Just over half of these trips have associated GPS tracks (N = 130). Ten of 

these trips have simultaneous direct behavioral observation, for five ‘bank’ trips and five 

‘pot’ trips. Thus, the primary CUMSUM analysis is limited to the sample of N = 10 trips 

that include complete GPS track data with complete, simultaneous direct behavioral 

observation. I refer to this data as the N10 sample. 

Table 1 provides summary data for the N10 sample. This sample includes four 

different captains and four different boats: one boat and captain accounts for 50% of the 

trips, a second boat and captain accounts for three trips, and the third and fourth captains 

and boats account for one trip each. Excluding the observer, each trip included two 

men—a captain and a crew member. The methods described above produced a wide 

variety of data on fishing efforts and returns. Most relevant to the present example 

analysis are data on finding and exploiting resource patches—bouts of extensive and 

ARS—in the context of demersal fishing. 
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Table 1  

Summary of each trip in the N10 sample 

TripID Date Type 
Duration 

(hr) 

Average 

speed 

(m/s) 

Standard 

deviation 

of speed 

N 

1758 08/14/2014 Pot 3.05 1.49 1.46 11,144 

1977 06/19/2015 Pot 3.85 1.66 1.61 13,817 

2058 07/17/2015 Pot 3.00 2.02 1.62 10,841 

2072 07/21/2015 Bank 8.47 1.24 1.62 30,423 

2101 07/29/2015 Bank 10.08 0.91 1.14 35,154 

2114 07/31/2015 Pot 4.00 1.77 1.41 14,283 

2178 03/17/2016 Bank 9.50 1.42 1.64 34,044 

2246 04/09/2016 Pot 3.40 1.88 1.47 12,209 

2282 04/19/2016 
Bank, 

Twin 
5.37 1.05 1.75 19,083 

2369 05/14/2016 Bank 6.40 1.62 1.86 22,759 

Mean   5.71 1.51 1.56  

 

 

Visual assessment 

I first mapped the tracks of each demersal trip in the N10 sample onto the ocean-

scape using GPS Track Editor©, an open-source software by MapSphere 

(http://www.gpstrackeditor.com/). Figure 11, plots A through J, presents the map of each 

trip. The N10 sample consists of two types of demersal fishing strategies—five pot and 

five bank fishing trips. At the scale depicted in Figure 11, the movement paths of each 

trip type are indistinguishable. All movement paths show classic central place foraging 

(Orians & Pearson, 1979). Fishers travelled from Desa Ikan towards near-shore patches 

known to them where subsequent bouts of intensive search with travel between patches 

occurred, then they returned to the starting point. 
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At the spatial scale depicted in the GPS tracks in Figure 11, travel appears to 

account for a major portion of each track. Plots of speed versus time, however, reveal 

temporal heterogeneity in speed across the duration of each trip is more evident than 

shown in the GPS tracks. Figure 12, plots A through J, shows bouts of both higher speed 

associated with travel as well as significant bouts of slower speeds associated with drift 

and low-powered, within-patch movements. 

 

 

 

 
 

Figure 11. GPS tracks of demersal fishing trips in the N10 sample. Plots A, B, C, F, and 

H are “pot” fishing trips, while plots D, E, G, I, and J are “bank” fishing trips. The gray-

shaded portion is land, and the white portion is the Atlantic Ocean. The black line is the 

GPS track and shows the movement patch of the boat. Trips originate from Desa Ikan, 

on the east coast of Dominica and then return to the central place after visiting a number 

of patches. The long, linear sections of track correspond to travel between patches and 

to/from Desa Ikan as well as other behaviors involving realtively higher-speed 

movements. The sinuous and aggregated clusters of tracks are candidates for ARS at 

patches and other behaviors involving slower, low-powered movements or drift of the 

boat. 
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Figure 11. Continued 
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Figure 11. Continued 
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Figure 12. Time series plots of speed for each demersal fishing trip in the N10 sample. 

Across the duration of a trip, speed exhibits much heterogeneity in speed as fishers sift 

between behavioral search moves associated with foraging activities. 
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Figure 12. Continued 
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GPS devices recorded positional data—latitude and longitude—at one second 

intervals. Using these data, instantaneous travel speed was calculated based on the 

distance traveled between each pair of consecutive one second points on a track. The 

mean speed of each trip in the N10 sample ranged from 0.91 meters/second to 2.02 m/s 

(SD 1.14-1.86; Table 1). Frequency distributions of speed for each trip reveal a bi-modal 

or somewhat tri-model distribution (Figure 13). The inset scree plots in Figure 13 reveal 

an inflection point around three groups as well, possibly indicating an increased total 

within sum of squares for fewer clusters. In other words, for each trip, binning speed into 

three groups seems to minimize the variance of each of the three clusters compared to 

the within-cluster variance for two groups. 

I further explored the nature of speed for the N10 sample using a k-means cluster 

analysis. Specifying three groups, I calculated the means, range, and size of each of the 

three modes of speed for each trip (Table 2). I provide a summary of the modal ranges of 

means and modal mean of means across all trips in Table 3. During focal follows, I most 

often observed the speeds associated with modes one and the lower speeds of mode two 

during ARS at patches, while I observed the higher speeds of mode two and mode three 

during travel between patches and to/from the central place. The mean range of mode 

one is 0.39-0.71 meters per second and corresponds to drift. The range of means for 

mode two is 1.83-3.17 m/s and corresponds to slower, low-powered movements toward 

the left side of its distribution and some relatively slower travel speeds at the right end of 

its distribution. Mode three corresponds to travel between patches or the home place and 

ranges between 3.26-7.26 m/s. 
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Figure 13. Histograms of speed across the duration of each trip in the N10 sample. Inset 

scree plot shows the cluster that minimizes the average variance of the clusters per trip, 

with an inflection point between two to four clusters for all trips. 
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Figure 13. Continued 
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Table 2 

K-means analysis of speed for N10 trips 

TID Mode Mean (m/s) Range (m/s) N 

1758 1 0.55 0.00-1.69 7329 

 2 2.83 1.70-3.79 2902 

 3 4.75 3.80-7.61 913 

1977 1 0.59 0.00-1.75 8743 

 2 2.93 1.77-4.06 3756 

 3 5.19 4.07-9.26 1297 

2058 1 0.66 0.00-1.73 5400 

 2 2.81 1.73-3.82 3901 

 3 4.85 3.83-8.28 1540 

2072 1 0.54 0.00-1.85 24315 

 2 3.17 1.86-4.80 4439 

 3 6.44 4.81-11.01 1636 

2101 1 0.50 0.00-1.53 29624 

 2 2.57 1.54-3.64 2995 

 3 4.72 3.65-8.27 1886 

2114 1 0.64 0.00-1.66 7639 

 2 2.68 1.67-3.58 5116 

 3 4.49 3.59-8.24 1479 

2178 1 0.58 0.00-1.79 25661 

 2 3.01 1.80-4.20 3885 

 3 5.41 4.21-7.73 3429 

2246 1 0.57 0.00-1.40 5476 

 2 2.24 1.41-3.20 4263 

 3 4.17 3.21-7.69 2470 

2282 1 0.39 0.00-1.09 14813 

 2 1.83 1.11-4.52 2946 

 3 7.26 4.55-9.51 1213 

2369 1 0.71 0.00-1.90 16860 

 2 3.09 1.92-4.85 3811 

 3 6.62 4.86-9.92 1927 
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Table 3 

Summary of means from cluster analysis for N10 trips 

Mode Range of means (m/s) Mean of means (m/s) 

1 0.39-0.71 0.57 

2 1.83-3.17 2.72 

3 3.26-7.26 5.39 

 

 

 

The duration of bouts of travel and ARS are known from direct observations of 

trips. During focal follows, I recorded when fishers shifted behaviors—started and 

stopped travel and ARS—confirming my observations with the captain and crew (see 

chapter five for methods details). I sum these observational data in Table 4. Overall, 

fishers allocated 25% of foraging time to travel (N = 47,700 or 13.25 hours) and 75% of 

time to ARS (N = 141,840 or 39.40 hours). The length of a bout of travel varies widely, 

ranging from 0.03-1.38 hours, with a mean of 0.19 hours (SD = 0.22 hours). The length 

of a bout of ARS also ranges widely, from 0.02-4.73 hours, with a mean of 0.68 hours 

(SD = 0.92 hours). Noise segments were noted in focal follows as activities that were not 

related to fishing (e.g., stopping the boat to make a call). Noise segments during travel 

and ARS accounted for 4.22 hours of total foraging time, which was included in the 

travel and ARS percentages noted above (mean = 0.15 h, SD = 0.17). In comparison, 

summing the size of each mode from k-means analysis across all N10 trips (total N = 

201,664 or 56 hours) shows that 72% of time is allocated to mode one, 19% to mode 

two, and 9% to mode three (Table 5). This makes sense given that, as mentioned, speeds 

falling within mode two correspond to both ARS and travel, at the left or right side of its 

distribution, respectively. 
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Table 4 

Duration of bouts of travel and ARS for N10 trips from direct observation 

Type Travel ARS Noise 

Total number of bouts 68 62 29 

Range (hrs) 0.03-1.38 0.02-4.73 0.02-0.73 

Median (hrs) 0.10 0.23 0.03 

Mean (hrs) 0.19 0.68 0.15 

SD (hrs) 0.22 0.92 0.17 

Total (hrs) 13.25 (25.17%) 39.40 (74.83%) 4.22 

 

 

Table 5 

K-means size of modes across N10 sample 

 N (seconds) Total time (hrs) Proportion 

Mode 1 145860 40.52 0.72 

Mode 2 38014 10.56 0.19 

Mode 3 17790 4.91 0.09 

Total 201664   

 

 

 

Demersal versus pelagic fishing contexts 

Recall that I am using speed to describe the movements of human fishers in an 

effort to broadly characterize major foraging behaviors—travel and ARS at patches. I 

want to identify shifts between these two behaviors with speed as the model parameter 

for the CUMSUM segmentation method. I must specify an appropriate scale of 

analysis—the window size for CUMSUM—to accomplish this with accuracy. At this 

point, it is useful to provide a comparison between demersal fishing relative to pelagic 

fishing to contextualize the importance of scale. Comparing the nature of speed during 
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these two independent fishing strategies reveals how they differ in ways that may affect 

the overall utility of the CUMSUM approach.  

The multi-modal distribution of speed for the N10 sample of demersal trips is not 

as consistent as the tri-modal distribution of speed for the pelagic, FAD trips analyzed by 

Alvard et al. (2015). The frequency distributions for two representative FAD trips are 

presented in Figure 14 for comparison, and overall, a clear tri-modal distribution is 

evident. Compared to the k-means analysis of the N10 sample, the FAD sample shows a 

mean range of 0.37-1.06 m/s for mode one, 2.84-5.23 m/s for mode two, and 6.17-8.54 

m/s for mode three (Alvard et al., 2015). These authors also report that the three modal 

speeds are consistent with certain behaviors observed during focal follows: mode one is 

associated with drift, mode two is associated with slower, low-powered movements 

within movements, and mode three is associated with higher speed travel to and from 

patches. Their observations concur with my own despite that speeds for the N10 sample 

do not bin as neatly nor range as widely as the FAD sample. With FAD trips, more time 

is spent in travel, which increases the mean speed of the trip and makes it easier to 

distinguish it from ARS (Alvard et al., 2015). Patch residence time is also longer for 

FAD trips and thus easier to avoid model errors and noise. The differences between the 

speed of demersal and pelagic strategies likely significantly affect the scale and efficacy 

of the CUMSUM method (further example below). 
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Figure 14. Histograms of speed for two representative FAD trips adapted after Alvard et 

al. (2015). The inset scree plots also show three groups minimize the average variance of 

the clusters per trip. 

 

 

CUMSUM example: TID2072 

Time series 

In this section, I demonstrate the CUMSUM process by applying the method to 

an example demersal fishing trip from the N10 sample—bank trip TID2072—using 

speed as the model parameter to describe movement. The first step of segmenting a GPS 

track is generating a time series plot using the CUMSUM equations (Eq. 1 and 2 in 

chapter two) developed by Knell & Colding (2012). Figure 15 provides a CUMSUM-

generated time series plot of the cumulative sum of speed (m/s) during each time-step in 

trip TID2072. Recall that consistent deviations greater than the mean speed of the trip 

have a positive cumulative sum value and slope (i.e., 𝐶𝜏 increases). Segments with 

exhibiting an increasing cumulative sum of speed are consistent with relatively higher 

travel speeds observed during the focal follow. Deviations less than the overall mean trip 

speed have negative values and slopes when speed at time steps are lower than the mean 
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trip speed (i.e., 𝐶𝜏 decreases). In Figure 15, for example, the first segment is consistent 

positive deviations from the mean trip speed and results in a positive slope in the time 

series as 𝐶𝜏 increases. This segment corresponds to observed ballistic travel from Desa 

Ikan out to sea (t = 1 to t = 858), known via ground-truth data. The next CUMSUM 

segment in Figure 15 for TID2072 is a period of lower speed is associated with observed 

ARS at the first patch visited that trip (t = 859 to t = 3304), which results in a decreasing 

𝐶𝜏 value and negative slope in the time series. 

 

 

 

 

Figure 15. CUMSUM time series for TID2072 with ϵ = 600. Deviations greater than the 

mean speed of the trip have a positive cumulative sum value and slope (Cτ increases), 

while deviations less than the mean trip speed have negative values and slopes (Cτ 

decreases). The first and second segments, labeled above, correspond to travel and ARS 

at a patch, respectively. These behaviors are known from simultaneous direct 

observation, which is a common ground-truth method. 
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Max-min algorithm & scaling issues 

The second step of the CUMSUM method is to parse out behavioral shifts with 

the max-min algorithm (MMA), but given the scaling issue discussed in chapter two, one 

must begin by identifying an appropriate resolution. The goal is to identify meaningful 

shifts from travel to ARS, e.g., identified by the shift from segment one to segment two 

in Figure 15 above, without identifying noise (type I error)—shifts in speed within 

patches or at smaller scales not relevant for a given research question. In a time series, 

noise corresponds to the smaller peaks and valleys such as the additional peak in speed 

the middle of segment two in Figure 15. Behaviorally, this small peak corresponds to a 

fisher briefly increasing speed to readjust the position of the boat within the patch. To 

this end, defining the most appropriate sampling scale—𝜖, the window or threshold in 

which local speed maxima and minima are identified via the MMA—is key in 

determining what behaviors are identified or not during segmentation (Knell & Codling, 

2012). 

If the scale is too fine, there is a risk of a false positive. A false positive, in this 

context, occurs when peaks or valleys in the cumulative deviations from the mean speed 

along the time series—noise—is falsely identified as meaningful behavioral shifts. That 

is, at fine scales, the methods erroneously IDs bouts of travel within ARS segments or 

bouts of ARS between travel segments. Finer scales correspond to smaller windows (𝜖). 

Alternatively, if the scale is too coarse, the method can make type II errors. Coarser 

scales correspond to larger windows. In this case, type II errors occur when the method 

overlooks significant peaks and valleys along the time series, or said another way, it 
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overlooks actual bouts of ARS at patches and bouts of travel. More discussion on the 

nature of errors is given below.  

Selecting an appropriate window of analysis, 𝜖, becomes particularly important 

when segmenting via the CUMSUM method if there is overall less travel time across the 

trip (Knell & Codling, 2012). I observed this to be characteristic of demersal fishing in 

Desa Ikan. My observation is underscored by a k-means cluster analysis for example trip 

TID2072 in which only 5% of trip time is spent at a higher travel speed. In comparison, 

Alvard et al. (2015) indicate that travel accounts for 36% of all points across the FAD 

sample. This example also provides further reason to believe demersal strategies such as 

bank and pot fishing differ from pelagic strategies like FAD fishing in ways that will 

affect the scale of analysis. 

Alvard et al. (2015) determine an appropriate sampling scale post hoc by finding 

the smallest window that identifies all FAD patches as ARS without error. Following 

their example, I compare the MMA, model-generated segments with ground-truth data 

from the focal follow for example trip TID2072. In this case, a window size of 𝜖 = 600 

identifies most bouts of ARS known from simultaneous direct behavioral observation 

while minimizing the number of type I and II errors (Figure 16). For TID2072, a finer 

scale results in additional peaks and valleys of noise being falsely identified as ARS, 

while a coarser scale overlooks major behavioral shifts. The nature of these errors are 

discussed below. 
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Figure 16. CUMSUM time series for TID2072 with behavioral cut-points labeled, using 

a window of 𝜖 = 600. The red circles (1-18) indicate hypothesized behavioral shifts, 

local speed maxima and minima identified by the MMA that will be tested against 

ground-truth data. Patches are identified behaviorally as ARS, which correspond to 

segments with a negative slope between red circles. Travel corresponds to segments with 

a positive slope between the red circles. The red circle labeled “X” indicates noise 

associated with re-entering the landing site at the conclusion of the trip and is thus 

excluded from analysis. The three black circles—indicated along segments 6-7, 10-11, 

and 12-13—specify discrepancies between the CUMSUM results and ground-truth data 

i.e., errors made by CUMSUM. 

 

 

As an alternatively strategy, Knell & Codling (2012) suggest the optimal window 

size for CUMSUM segmentation is within the range of values that provide the first 

relatively long consecutive period without a change in the number of segments identified 

by the MMA. Figure 17 presents the results of this strategy as a plot of the number of 
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segments produced at varying window sizes for TID2072. Applying the approach of 

Knell & Codling (2012), I estimate a tentative window size for CUMSUM segmentation 

as 𝜖 ≅ 600-800. It appears there is agreement between the post hoc method of Alvard et 

al. (2015) and the approach of Knell & Codling (2012) for estimating an appropriate 

scale of analysis for segmentation with the MMA. 

 

 

Figure 17. Number of segments produced per window size. Indicated by the circle, 𝜖 ≅ 

600starts the range of the smallest window sizes that provide the first relatively long, 

consecutive period without a change in the number of segments classified by the MMA. 

This plot also shows the inverse relationship between the MMA window size and the 

number of behavioral shifts identified. 
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 Results for TID2072 with 𝜖 = 600  

Ten patches are known from direct behavioral observation via a focal follow I 

conducted during TID2072. Table 6 sums the nature of these ten patches and the bouts 

of travel between them. Seven patches correspond to ARS at strictly ‘bank’ patches as 

characterized by the ‘bank’ fish catching method in chapter four, while two patches 

correspond to fishing at floating seaweed patches, and one patch corresponds to ARS at 

a near-shore FAD. The CUMSUM analysis of TID2072 with a window of 𝜖 = 600 

indicates nine patches were visited across the duration of the fishing trip, as shown in 

Figure 16. The CUMSUM method correctly identifies all seven ‘bank’ patches as well as 

the one visit to the near-shore FAD. The method fails to detect the two very short bouts 

of ARS at seaweed patches. These two errors correspond to the type II errors described 

in Figure 16. Finally, one segment is falsely identified as ARS (t = 20,125 to t = 20,423), 

which corresponds to the type I error also described in Figure 16. In this case, the model 

incorrectly classifies within patch noise as a behavioral shift to travel and thus gives the 

impression that there were more patches than exist. In other words, this segment is noise 

within patch eight (Table 6) and does not represent travel nor subsequent ARS at a new 

patch. In sum, at a window size 𝜖 = 600, CUMSUM makes two type II errors and one 

type I error. 
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Table 6 

Summary of direct observation of TID2072 

Behavior/event Start time Patch Patch type 

Travel from shore 7:01   

ARS 7:16 1 Bank 

Travel 7:57   

ARS 8:02 2 Bank 

Travel 8:21   

ARS 8:25 3 Bank 

Travel 8:57   

ARS 9:03 4 Seaweed 

Travel 9:04   

ARS 9:06 5 Bank 

Travel 9:47   

ARS 9:53 6 Bank 

Travel 10:33   

ARS 10:33 7 Seaweed 

Travel 10:40   

ARS 10:41 8 Bank 

Travel 13:30   

ARS 13:37 9 Bank 

Travel 15:06   

ARS 15:10 10 Near-shore FAD 

Travel to shore 15:18   

 

 

 

Errors at different scales of analysis 

Does the CUMSUM method better identify all known patches at finer scales? 

Overall, no. For TID2072, the two very short bouts of ARS at seaweed patches that were 

not identified at 𝜖 = 600 remain overlooked for 𝜖 ≤ 575. At the same time, the number of 

false positives increases substantially at increasingly smaller window sizes (𝜖 ≤ 575). To 

demonstrate, Figure 18 presents the results of CUMSUM segmentation with a window 

size of 𝜖 = 500. This scale of analysis results in a total of four type I errors, including the 

same one type I error made at 𝜖 = 600 plus three additional type I errors. In comparison 
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with the ground-truth data, these segments are not known behavioral shifts but instead 

match noise within a single patch. These type I errors all correspond to within patch 

movements during ARS at patch eight (Table 6), which had much back-and-forth 

movement as the captain frequently adjusted the position of the boat within the patch. 

The method makes two type II errors in which the two seaweed patches (patches four 

and seven in Table 6) remain overlooked. These are the same two errors made by the 

CUMSUM method with a window of 𝜖 = 600 as well. In sum, decreasing the window 

size in which MMA operates, i.e., using a finer scale, does not improve patch 

identification yet increases the number of type I errors. 
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Figure 18. CUMSUM time series for TID2072 with 𝜖 = 500. Patches are identified 

behaviorally as ARS, which correspond to segments with a negative slope between red 

circles. The red circles (1-24) indicate hypothesized behavioral shifts, local speed 

maxima and minima identified by the MMA that are tested with ground-truth data. The 

red circle labeled “X” indicates noise associated with re-entering the landing site at the 

conclusion of the trip and is thus excluded from analysis. The black circles—indicated 

along segments 6-7, 10-11,12-13, 14-15, 16-17, and 18-19—specify discrepancies 

between the CUMSUM results and ground-truth data i.e., errors made by CUMSUM. 

 

 

What is the nature of the errors made by CUMSUM at coarser scales? For 

TID2072, specifying a larger window (𝜖 ≥ 625) in which MMA operates results in fewer 

type I error but more type II errors. Figure 19 shows the results of CUMSUM 

segmentation with a window size of 𝜖 = 700. Compared to 𝜖 = 500, there are fewer type 

I errors. Compared to 𝜖 = 600, the same type I error is made where noise in patch eight is 

falsely classified as a behavioral shift. The method makes three type II errors at 𝜖 = 700. 
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The two seaweed patches remain overlooked, and additionally, CUMSUM overlooks the 

last patch corresponding to ARS at patch ten (Table 6) is also missed. In sum, increasing 

the window size in which MMA operates does not improve patch identification despite 

reducing false positives. 

 

 

 
 

Figure 19. CUMSUM time series for TID2072 with 𝜖 = 700. Patches are identified 

behaviorally as ARS, which correspond to segments with a negative slope between red 

circles. The red circles (1-16) indicate hypothesized behavioral shifts, local speed 

maxima and minima identified by the MMA that are tested with ground-truth data. The 

red circle labeled “X” indicates noise associated with re-entering the landing site at the 

conclusion of the trip and is thus excluded from analysis. The black circles—indicated 

along segments 6-7, 10-11, 12-13, and 16-X—specify discrepancies between the 

CUMSUM results and ground-truth data i.e., errors made by CUMSUM. 
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CUMSUM analysis for the N10 sample 

Scaling 

I repeated this process for all trips in the N10 sample to identify the optimal 

window size for each trip and better understand the errors associated with increasing and 

decreasing scales of analysis. To achieve this, I applied the CUMSUM process with 

window sizes ranging from 𝜖 = 500 to 𝜖 = 2000, at 100-second intervals. I compared 

segmentation results at each interval with ground-truth data to classify segments as 

correct (matching focal follow observations) or as errors (type I or II). Table 7 describes 

the results of CUMSUM analysis in terms of the number of segments produced for each 

trip per window size. I limit description to 𝜖 = 500-1200 because of the great number of 

type I errors at window sizes less than 𝜖 = 500 and type II errors at scales greater than 

𝜖 = 1200.  

The gray-shaded boxes in Table 7 indicate the optimal range of window sizes for 

each trip—that which most accurately identifies patches while also minimizing type I 

and II errors TID2058 and TID 2014 include a window range because the change in 

window size resulted in a decrease in one error type but increase in the other. This close 

examination of each trip at various scales of analysis leads me to determine that a 

window size of 𝜖 = 600 produces the best results for the N10 sample. In other words, 

across trips, a window size of 𝜖 ≅ 600 identifies the greatest number of patches while 

also reducing the number of type I and II errors made by the method. The counts in 

Table 7 include segments of noise associated with entering and exiting the landing site—

behaviors that occurred before or after the fishing trip was fully underway. These 
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segments of noise will not be counted as significant type I errors in the following 

discussion because they are not factors for the problem at hand, which is determining the 

best scale of analysis for differentiating travel and ARS at patches during fishing trips. I 

describe the errors per trip below. 

 

 

Table 7 

Number of CUMSUM-generated segments by window size. The gray-shaded cells 

indicate the number of segments identified by CUMSUM that best agree with the 

number of behavior changes known from focal follows, and thus, the best window 

ranges for segmentation. 

TID 
𝜖 = 

500 

𝜖 = 

600 

𝜖 = 

700 

𝜖 = 

800 

𝜖 = 

900 

𝜖 = 

1000 

𝜖 = 

1100 

𝜖 = 

1200 

1758 15 15 15 14 12 10 10 8 

1977 17 16 16 14 12 12 10 10 

2058 13 11 10 8 8 8 8 6 

2072 26 20 18 18 16 16 16 16 

2101 24 24 14 12 12 9 7 7 

2114 17 14 14 14 14 14 12 10 

2178 19 17 15 15 12 10 10 10 

2246 12 10 10 8 8 8 8 6 

2282 10 8 8 8 8 8 8 8 

2369 13 13 12 12 12 12 12 12 

 

 

 

 

The following discussion revolves around minimum segments—those that the 

method identifies as potential segments of ARS once the fishing trip was fully 

underway. Six patches are known from direct observation of TID1758. CUMSUM with 

𝜖 = 500-700 identifies all six patches but makes two type II errors. These two type II 

errors are not resolved at smaller windows. Above 𝜖 = 800, the number of type II errors 

accumulates as CUMSUM overlooks segments of travel between bouts of ARS. 
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Seven patches are known from direct observation of TID1977. CUMSUM with 𝜖 

= 500 identifies all seven patches but also makes a type I error. Results from 𝜖 = 600-

700 also identify all seven patches. One type II error is make at 𝜖 = 800, two type II 

errors at 𝜖 = 900-1000, and three type II errors at 𝜖 = 1100-1200. 

Four patches are known from direct observation of TID2058. This trip included a 

good deal of search noise, resulting from a particularly rough ocean current, that made a 

clean CUMSUM result difficult to obtain. The best scale for this trip is 𝜖 = 500-600. 

Specifying a winnow of 𝜖 = 500 results in identification of all four patches but also 

results in four type I errors. A window of 𝜖 = 600 identifies three of four patches, one 

type II error, but makes only one type I error. As expected, thresholds above 𝜖 = 800, the 

number of type II errors accumulates without further reducing type I errors. 

Eleven patches plus one social encounter are known for TID2101. The social 

encounter does not include ARS related to fishing but is nonetheless a sustained period 

of drift and thus identifies as a segment of below-average speed. A window of 𝜖 = 500-

600 identifies all eleven patches plus the social encounter with no type I or II errors. The 

threshold range of 𝜖 = 700-1200 accumulate six to eight type II errors. 

Seven patches are known for TID2114. As with TID2058, TID2114 includes 

significant amount of search noise associated with a rough current. The best range of 

analysis for this trip is large at 𝜖 = 500-1000. A window 𝜖 = 500 identifies all seven 

patches but also makes two type I errors. A scale range of 𝜖 = 600-1000 identifies six of 

the seven known patches, making one type II error but no type I errors. Windows 

ranging from 𝜖 = 1100-1200 accumulate additional type II errors. 
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Four patches are known from direct observation of TID2178. A threshold of 𝜖 = 

500 identifies all four patches but makes four type I errors. At a window of 𝜖 = 600, the 

method identifies all four patches but makes three type I errors. The best scale of 

analysis for this trip is 𝜖 = 700-800, as all four patches are identified and two type I 

errors are made. At 𝜖 = 900, the two type I errors remain but CUMSUM also makes one 

type II error. For a scale of 𝜖 = 1000-1200, the method makes one type II error and one 

type I error. 

TID2246 is another trip with a great deal of search noise due to rough sea 

conditions, and thus, CUMSUM results are also somewhat noisy. Four patches are 

known from direct observation. A window of 𝜖 = 500 makes one type II error but also 

makes two type I errors. A threshold range of 𝜖 = 600-700 results in the same type II 

error but  only one type I error. The number of type II errors increases for windows of 𝜖 

= 800-1200 without resolving the type II error made at finer scales. 

Three patches are known for TID2282. With a windown of 𝜖 = 500, CUMSUM 

identifies all three patches but makes one type I error. A scale range of 𝜖 = 600-1200 

identifies all three patches. Analysis in this window range results in no type I or type II 

errors. 

Six patches are known from direct observation of TID2369. A window range of 𝜖 

= 500-600 identifies five of six patches, making one type II error and no significant type 

I errors. This overlooked bout of ARS is very short and not resolved at finer scales. 

Specifying a window in the range of 𝜖 = 700-1200 results in two type II errors.  
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Results 

Across trips in the N10 sample, and as I demonstrated with TID2072, increasing 

the window size above 𝜖 = 600 obscures major bouts of ARS, which are counted as type 

II errors. Decreasing the window size below 𝜖 = 600 results in more false positives, 

which are classified as type I errors. Overall, CUMSUM segmentation of the trips in 

sample N10, with a window of 𝜖 = 600, produces a total of 148 segments. Table 8 sums 

the results of this analysis. 

Seventy-four segments match sustained, above-average speeds (i.e. maximum 

segments), which corresponds mostly to travel. These maximum segments have a mean 

speed of 3.31 meters/second, which falls within the range of mode three from k-means 

analysis albeit towards the lower end of the distribution of mode three (Table 3). 

Seventy-four segments match sustained, below-average speeds (i.e. minimum segments), 

which corresponds to bouts of drift and slower, low-powered movements. These 

minimum segments have a mean speed of 0.88 m/s, which falls within the range of mode 

one from k-means analysis (Table 3). As expected, speeds falling within mode two from 

k-means analysis are classified by CUMSUM as either maxima or minima, depending on 

the nature of speed at adjacent time steps along the track. Reflecting this, the proportion 

of time CUMSUM allocates to maximum segments is thirteen hours or 23% of total 

time. The proportion of time CUMSUM allocates to minimum segments is forty-four 

hours or 77% of total time. These results generally agree with the k-means distribution 

of time for the N10 sample, but again, with time from mode two split between maximum 

or minimum segments. 
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Table 8 

CUMSUM segments (w=600) description for N10 sample 

Segment type  Maximum (travel) Minimum (ARS) 

Number  74 74 

Speed (m/s) Range 0.41-6.96 0.30-5.08 

 Mean 3.31 0.88 

 SD 1.38 0.9 

Time (hr) Range 0.01-0.84 0.01-3.33 

 Mean 0.18 0.59 

 SD 0.15 0.6 

 Total 13.11 44 

 

 

 

Table 9 presents a summary of the resulting errors for CUMSUM with a window 

of 𝜖 = 600 for each trip in the N10 sample. Across all ten trips, sixty-two patches are 

known from ground truth data. The CUMSUM methods accurately identifies fifty-six of 

these sixty-two known patches. The CUMSUM method actually identifies sixty-two 

segments of potential ARS, but detailed comparison with direct observations reveals that 

six of the sixty-two CUMSUM segments correspond to noise within patches, not 

separate, independent bouts of ARS. In other words, the method makes six type I errors 

and six type II errors. Overall, the CUMSUM method accurately identifies N = 56 

patches that correspond to the known N = 62 patches, or 90% of patches in the N10 

sample. 
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Table 9 

N10 results and error count for CUMSUM with 𝜖 = 600 

TID 

Number of 

known 

patches 

Patches 

found by 

CUMSUM 

Type I 

errors 

Type II 

errors 

1758 6 6 0 0 

1977 7 7 0 0 

2058 4 3 1 1 

2072 10 8 1 2 

2101 11 11 0 0 

2114 7 6 0 1 

2178 4 4 3 0 

2246 4 3 1 1 

2282 3 3 0 0 

2369 6 5 0 1 

Total 62 56 6 6 

 

 

 

Figure 20, plots A-J, present the CUMSUM time series and behavioral shifts 

identified by the MMA with a window size of 𝜖 = 600 for all trips in the N10 sample in 

order to demonstrate the efficacy and errors of the method. In these figures, the 

numbered red circles indicate supposed behavioral shifts, local speed maxima and 

minima identified by the MMA that should agree with ground-truth data. As specified 

before, ARS corresponds to segments with a negative slope between red circles, and 

travel corresponds to segments with a positive slope between red circles. The red circles 

labeled “X” indicate noise associated with entering and exiting the landing site and are 

thus excluded from analysis. The black circles indicated along the time series specify a 

discrepancy between the CUMSUM results and ground-truth data. Type I and type II 

errors are defined in the black boxes in each of the plots in Figure 20. 
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Figure 20. CUMSUM time series plots A-J, all with 𝜖 = 600, for each N10 demersal 

trip. The red circles labeled “X” indicate noise associated with entering and exiting the 

landing site and are thus excluded from analysis. The numbered red circles indicate 

supposed behavioral shifts, local speed maxima and minima identified by the MMA that 

should agree with ground-truth data. Patches are identified behaviorally as ARS, which 

correspond to segments with a negative slope between red circles. The black circles 

indicated along the time series specify a discrepancy between the CUMSUM results and 

ground-truth data. 

 

(A) TID1758: Six patches were visited during TID1758, known from ground-truth data; 

the CUMSUM method identifies all six patches with no error. 
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Figure 20. Continued 

 

(B) TID1977: Seven patches are known; the method identifies all seven patches with no 

error. 
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Figure 20. Continued 

 

(C) TID2058: Four patches are known; the method identifies three of four patches, 

making one type I error and one type II error. The ocean current was rough and resulted 

in much noise, which made the CUMSUM result somewhat noisy. For example, the 

segment between circles 5-6 above corresponds to the captain stopping extensive search 

to eat a snack and wait for the rough current to calm down, not ARS. 
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Figure 20. Continued 

 

(D) TID2072: As discussed above in the scaling section, ten patches are known. The 

method identifies eight of the ten patches, making one type I error and two type II errors. 

The two type II errors correspond to very short bouts of ARS at seaweed patches during 

otherwise higher-speed travel segments. These two type II errors are not resolved at finer 

scales. 
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Figure 20. Continued 

 

(E) TID2101: Eleven patches are known; the method identifies all eleven patches despite 

that ARS bouts were relatively short, as seen in the time series. These short bouts of 

ARS appear to be spatially contiguous on the GPS track, but during the focal follow, the 

captain indicated that they were different patches and independent bouts of ARS. This 

trip includes a social encounter, which also results in a sustained period of drift (i.e. 

below-average speeds) and is thus identified as a segment of ARS despite that it is not 

actually ARS (segment 21-22). 
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Figure 20. Continued 

 

(F) TID2114: Seven patches are known; the method identifies six of seven patches, 

making one type II error. This trip had significant search noise associated with a rough 

current. 
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Figure 20. Continued 

 

(G) TID2178: Four patches are known; the method identifies all four patches and makes 

three type I errors. This trip also had search noise associated with a rough current that 

make segmentation difficult at all scales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

118 

 

 
 

Figure 20. Continued 

 

(H) TID2246: Four patches are known; the method identifies three of four patches, 

making one type I error and one type II error. This is another trip with a great deal of 

noise because of rough sea conditions and thus CUMSUM results are noisy. 
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Figure 20. Continued 

 

(I) TID2282: Three patches are known; the method identifies all three patches with no 

error 
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Figure 20. Continued 

 

(J) TID2369: Six patches are known; the method identifies five of six patches, making 

one type II error. This overlooked bout of ARS is very short and not resolved at finer 

scales. 

 

 

 

 

It is possible to gauge the accuracy of the MMA method by comparing the 

predicted cut points—the starts and stops of ARS at patches identified by CUMSUM 

method—with the observed starts and stops of ARS known via ground truth data. 

CUMSUM predicts forty-four hours of ARS, equaling an average of about forty-three 

minutes per patch. The observed total patch residence time is forty hours, with a known 

average of thirty-nine minutes per patch. The mean of the differences between the 

CUMSUM-predicted start points and the known start points is about fifty-one seconds. 
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This degree of error accounts for 2.18% of average patch residence time, which is 

relatively small even if significant. A paired samples t-test suggests the mean of pairwise 

differences between the observed and predicted start times of ARS is significantly 

different from zero [t(55) = 2.49, p = 0.02). For the majority of cases, the MMA 

algorithm predicts the start of ARS nearly a minute earlier than direct observation. This 

is due to the fact that, using speed as the model parameter, CUMSUM is identifying 

ARS for the patch locations as fishers approximate patch marks or buoys rather than 

fishing per se. I documented the time when fishers began ARS for fish. The mean of the 

differences between the CUMSUM predicted end points and the known end points is 

almost forty-three seconds, which accounts for 1.84% of average patch residence time. 

This degree of error is also relatively small. A paired samples t-test suggests the 

difference in means between the observed and predicted end times is not significantly 

different from zero [t(55) = 1.49, p = 0.14). While my observations and the MMA 

algorithm both identify when fishers end ARS, and the forty-three second difference is 

the difference between when fishers departed a patch and the amount of time it took to 

reach travel speeds recognized by the MMA algorithm as cut points. My results and 

observation concur with those of Alvard et al. (2015) in the context of speed during 

pelagic fishing. The authors find similar discrepancies between the CUMSUM results 

and ground-truth data in regards to the starts and stops of ARS during FAD fishing. 
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CHAPTER VII 

N30: ANALYSIS & RESULTS  

 

Data description 

I generated the N30 sample of fishing trips to provide another test of the 

CUMSUM method on a set of data that is different from the one that generated the 

model. For this test, I compared CUMSUM model predations to the results of visual 

segmentation (methods described below) as opposed to ground-truth data to gauge the 

efficacy of the method and the applicability of the results from segmenting the N10 

sample to other demersal trips. To create the N30 sample, I first compiled a sample of 

additional data from the same data collection periods (July-August 2014, June-August 

2015, and March-July 2016) based on two criteria. A trip must have an associated GPS 

track, and a trip must be classified specifically as a ‘bank’ type of trip. In other words, I 

exclude trips in which fishing techniques other than ‘bank’ fishing were employed, 

including channel fishing, raising pots, and fishing FADs or near-shore FADs. The main 

reason I limit this subsample to ‘bank’ trips is that including trips with additional 

demersal methods introduces more variation to a GPS track and thus potentiates 

additional errors during visual segmentation. This resulted in a subset of eighty bank 

trips. Next, I systematically randomly sampled the qualifying eighty fishing trips with a 

sample interval of three) to extract thirty trips for CUMSUM analysis. These N = 30 

trips comprise the N30 sample.  
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Table 10 provides summary data for the N = 30 trip in the N30 sample. Each trip 

was comprised of two men, a captain and a crew member.  The N30 sample includes six 

captains and six boats. One man captained two different boats, accounting for 47% of 

trips in the sample (N = 14). This fisher captained one boat for N = 12 trips (40%) and a 

different, second boat for N = 2 trips (7%). A second fisher also captained the same boat 

as the first fisher for N = 2 trips, accounting for another 7% of trips. A third boat and 

captain combination accounts for 23% of trips (N = 7 trips). A fourth boat and captain 

accounts for 16% of trips (N = 5). Lastly, a fifth and sixth boat and captain combination 

accounts for N = 1 trip per man, accounting for 3% of trips each. 
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Table 10 

Summary of each trip in the N30 sample 

TID Date 
Duration 

(hrs) 

Average speed 

(m/s) 

Standard 

deviation of 

speed 

N 

1646 7/29/2014 11.50 1.03 1.29 41450 

1658 7/30/2014 5.67 1.33 1.24 20237 

1691 8/9/2014 4.52 0.69 1.08 15951 

1762 8/15/2014 7.07 1.32 1.20 25425 

1771 8/19/2014 8.18 1.56 2.06 29480 

1783 8/20/2014 6.90 1.23 1.42 24840 

1808 5/15/2015 8.07 1.44 1.77 28844 

1847 5/22/2015 7.38 1.96 1.34 26593 

1903 6/4/2015 8.15 1.16 1.44 29413 

1943 6/10/2015 7.10 1.14 1.63 24607 

1971 6/17/2015 7.13 1.70 1.52 25765 

2062 7/17/2015 9.05 0.94 1.33 32595 

2079 7/23/2015 9.87 0.95 1.30 35522 

2093 7/27/2015 8.33 1.13 2.20 27212 

2109 7/31/2015 8.33 0.94 1.07 29740 

2139 3/8/2016 7.52 0.92 1.72 26987 

2168 3/15/2016 2.67 2.12 2.24 9490 

2203 3/29/2016 1.55 2.14 1.70 5584 

2225 4/5/2016 6.78 2.36 1.99 24410 

2256 4/12/2016 5.10 1.36 1.68 18400 

2276 4/15/2016 9.45 1.88 2.12 34035 

2269 4/18/2016 8.17 0.79 1.67 29337 

2281 4/19/2016 8.07 1.31 2.09 29023 

2300 4/25/2016 8.15 2.06 2.34 29291 

2339 5/5/2016 8.83 0.91 1.40 31815 

2379 5/20/2016 7.90 1.16 1.40 28479 

2407 5/26/2016 8.58 1.34 1.91 30755 

2420 5/27/2016 6.17 1.27 1.89 22199 

2456 6/9/2016 7.27 1.38 1.90 26113 

2462 6/10/2016 9.93 1.13 1.65 35801 

Mean  7.45 1.35 1.65  
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Speed 

As with the N10 sample, the movement speeds of the trips in the N30 sample 

generally exhibit a tri-modal distribution. I used a k-means cluster analysis to explore the 

nature of speed and calculated the modal ranges, means and sizes, for each trip in the 

N30 sample (Table 11). Table 12 includes a summary of the means of modes across all 

N30 trips. The range of mode one means is 0.26-0.82 meters/second and corresponds 

drift speeds. The mean range of mode two is 0.94-4.73 m/s and corresponds to some 

slower, low-powered movements as well as low-speed travel. The mean range of mode 

three is 3.23-8.8 m/s and corresponds to higher-speed travel. Summing the size of each 

mode across all N30 trips (total N=805,532 or about 224 hours), 71% of foraging time is 

allocated to mode one, 19% to mode two, and 10% to mode three (Table 13). These 

values are very similar to the ranges, means, and sizes of modes for the N10 sample. The 

similarity of the N10 and the N30 samples in terms of speed provides justification that 

the N10 sample of focal follows is likely representative of the wider dataset of bank 

fishing trips. 
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Table 11 

K-means analysis of speed for N30 trips 

TID Mode Mean (m/s) Range (m/s) N 

1646 1 0.36 0.00-1.40 31262 

 2 2.45 1.41-3.14 5369 

 3 3.85 3.15-7.55 4819 

1658 1 0.46 0.00-1.29 12780 

 2 2.14 1.30-2.6 2548 

 3 3.23 2.68-5.41 4807 

1691 1 0.44 0.00-1.18 14367 

 2 1.97 1.21-4.05 845 

 3 6.17 4.10-10.49 466 

1762 1 0.60 0.00-1.56 17251 

 2 2.53 1.57-3.60 6990 

 3 4.68 3.61-7.28 1159 

1771 1 0.55 0.00-2.07 22453 

 2 3.58 2.07-5.45 4744 

 3 7.32 5.45-9.76 2283 

1783 1 0.50 0.00-1.52 18918 

 2 2.55 1.52-3.42 2515 

 3 4.31 3.44-7.57 3407 

1808 1 0.54 0.00-1.74 21462 

 2 2.96 1.75-4.33 4399 

 3 5.72 4.36-9.98 2978 

1847 1 0.65 0.00-1.61 12239 

 2 2.58 1.62-3.20 8762 

 3 3.82 3.21-6.88 5590 

1903 1 0.54 0.00-1.66 23663 

 2 2.78 1.67-4.06 3677 

 3 5.34 4.07-9.49 2073 

1943 1 0.49 0.00-1.57 19388 

 2 2.65 1.57-4.74 3292 

 3 6.86 4.76-9.48 1313 

1971 1 0.56 0.00-1.71 15276 

 2 2.88 1.73-3.68 7334 

 3 4.49 3.69-8.35 3143 

2062 1 0.45 0.00-1.68 27527 

 2 2.92 1.69-4.42 3892 

 3 5.93 4.43-10.76 1175 

2079 1 0.44 0.00-1.56 29723 
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Table 11. Continued 

 2 2.69 1.57-3.83 3706 

 3 5.02 3.85-10.33 2093 

2093 1 0.57 0.00-1.57 21177 

 2 2.57 1.57-3.57 4382 

 3 4.58 3.58-9.13 1562 

2109 1 0.43 0.00-0.83 20840 

 2 1.34 0.89-2.42 5524 

 3 3.52 2.43-9.08 3282 

2139 1 0.28 0.00-2.07 23296 

 2 3.87 2.08-5.14 2067 

 3 6.41 5.15-9.42 1614 

2168 1 0.62 0.00-1.59 5668 

 2 2.57 1.60-4.33 1897 

 3 6.13 4.35-10.13 1915 

2203 1 0.82 0.00-1.59 2453 

 2 2.38 1.60-4.16 2437 

 3 5.94 4.17-9.63 694 

2225 1 0.56 0.00-2.18 12719 

 2 3.82 2.19-4.58 7918 

 3 5.34 4.58-7.25 3773 

2256 1 0.44 0.00-1.70 13630 

 2 2.96 1.70-3.83 2038 

 3 4.74 3.85-9.52 2732 

2276 1 0.50 0.00-2.04 18987 

 2 3.60 2.05-5.16 7619 

 3 6.72 5.16-10.04 2731 

2269 1 0.26 0.00-2.49 30531 

 2 4.73 2.50-6.75 2952 

 3 8.80 6.77-10.39 552 

2281 1 0.34 0.00-2.09 23200 

 2 3.85 2.10-5.25 3081 

 3 6.67 5.26-9.82 2742 

2300 1 0.45 0.00-2.02 18623 

 2 3.62 2.03-4.87 5301 

 3 6.13 4.88-9.88 5367 

2339 1 0.38 0.00-1.98 27182 

 2 3.60 1.99-5.05 3945 

 3 6.52 5.06-10.05 688 
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Table 11. Continued 

2379 1 0.36 0.00-0.60 16061 

 2 0.94 0.62-2.37 6970 

 3 3.82 2.38-9.67 5448 

2407 1 0.41 0.00-2.17 24184 

 2 3.94 2.18-5.15 4386 

 3 6.36 5.15-9.85 2185 

2420 1 0.51 0.00-2.00 18188 

 2 3.50 2.01-5.62 1114 

 3 7.75 5.62-13.81 2897 

2456 1 0.50 0.00-2.04 20787 

 2 3.59 2.04-4.85 2693 

 3 6.10 4.85-8.89 2633 

2462 1 0.47 0.00-1.82 30086 

 2 3.18 1.83-4.43 2426 

 3 5.67 4.43-8.40 3289 

 

 

 

 

Table 12  

Summary of means from cluster analysis of N30 trips 

Mode Range of means (m/s) Mean of means (m/s) 

1 0.26-0.82 0.48 

2 0.94-4.73 2.96 

3 3.23-8.8 5.6 

 

 

 

 

Table 13 

Size of modes across N30 sample 

 N (secs) Total time (hrs) Portion 

Mode 1 575739 159.93 0.71 

Mode 2 150059 41.68 0.19 

Mode 3 79734 22.15 0.10 

Total 805532 223.76  
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Visual segmentation of N30 trips 

Method & example 

Trips in the N30 sample have associated GPS tracks but no simultaneous direct 

observation. In order to provide a test of the CUMSUM method, I visually and 

systematically segmented each trip in the N30 sample into bouts of travel and ARS. 

First, I examined and edited GPS tracks in GPS Track Editor© to exclude portions of 

track occurring on shore before and after the fishing trip, following the same procedures 

as with the N10 sample. Figure 21 depicts the GPS track of a trip, TID1762, 

representative of the N30 sample Next, I color-coded GPS tracks by speed in order to 

help visually differentiate major bouts of ballistic, high-speed travel and sinuous, low or 

drift speed clusters of ARS. Figure 22 exemplifies my approach for initially visually 

segmenting tracks based on gross changes in speed and sinuosity. 
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Figure 21. N30 example GPS track of bank fishing trip TID1762. The gray-shaded 

portion is land, and the white portion is the Atlantic Ocean. The black line is the GPS 

track and shows the movement patch of the boat. Trips originate from Desa Ikan, on the 

east coast of Dominica and then return to the central place after visiting a number of 

patches. The clumps along the track are candidates for ARS at patches and other 

behaviors involving slower, low-powered movements or drift of the boat. 
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Figure 22. N30 example trip TID1762 with GPS track color-coded by speed. Trips 

originate from Desa Ikan, on the east coast of Dominica, and then return to the central 

place after visiting a number of patches in the Atlantic ocean. The green and blue line is 

the GPS track and shows the movement of the boat. The track is color-coded by speed: 

green represents relatively higher speeds, while blue represents relatively lower speeds. 

The black arrows represent the direction of travel. The seven blue clumps along the 

track, squared and labeled, are major bouts of ARS and other behaviors involving 

slower, low-powered movements or drift of the boat. 

 

 

 

 



 

132 

 

After visually identifying major segments of travel and ARS, I relied on my 

domain knowledge and experience from focal follows to guide classification of less 

obvious segments. I also used what I learned from close examination of the GPS tracks 

in the N10 sample and k-means analysis of the N30 sample to develop quantitative 

criteria for systematic visual segmentation. These criteria are speed and duration of 

sustained speed. I based the speed criterion on the mean of mode two for a particular trip 

from k-means analysis (Table 11). Travel speeds correspond to speeds greater than the 

mean of mode two for a particular trip. ARS at patches corresponds to speeds that fall 

below the mean of mode two for a particular trip. The second criterion, regarding the 

duration of sustained speed, is based on the median size of noise segments known from 

direction observation (1.8 minutes, or N = 108 seconds; Table 4 in chapter six). I 

classified a change in speed as a behavioral shift if speed remained relatively higher or 

lower for longer than the median duration of a noise segment (N ≥ 108).  

In sum, my approach to visual segmentation uses speed (above or below an 

average) and sustained changes in speed (duration) to systematically define travel and 

ARS, which is essentially the same process as CUMSUM method. If instantaneous 

speed increased to greater than the mean of mode two from k-means analysis for that trip 

(Table 11) and remained so for nearly two minutes or more (at least N ≥ 108; Table 4), I 

classified it as behavioral shift to travel. If speed fell to below the mean of mode two 

from k-means analysis and remained below this speed for about two minutes or more, I 

classified it as a behavioral shift to ARS.  
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Figure 23 shows an example of how I applied this criteria to resolve less obvious 

shifts between ARS and travel in TID1762. This example demonstrates how, depending 

on the spatial scale, one might identify a single clump of ARS or several, smaller bouts 

of ARS at different patches. Viewing the track at a higher resolution, as in Figure 23, 

reveals several smaller clumps of ARS connected by a shorter segment of travel 

compared to the inset imagine in Figure 23, adapted form Figure 22.  I resolved this 

issue by applying the criteria of speed and duration of speed. The potential segment of 

travel in Figure 23, indicated by the black arrow along the track, contains much less 

sinuous movement and speeds ranging from 0.44-2.69 m/s. Speed rises to above the 

mean of mode two from k-means analysis for this trip (2.53 m/s; Table 11); however, the 

vast majority of points along this segment of the trajectory remain well below the mean 

of mode two. This segment also contains 2.15 minutes of low-powered movement (N = 

129 seconds, from N = 9610-9739). In sum, the portion of track in question represents 

about two minutes of time but speeds remained very low overall despite a few peaks. 

Thus, I classified this portion of track as within-patch movement/noise and not a shift to 

travel. This clump of track represents ARS at a single patch. 
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Figure 23. High resolution view of ARS at a patch during N30 example trip TID1762. 

This bout of ARS corresponds to foraging in patch three (from Figure 22), which is 

depicted here in the inset in the upper-left corner. The thick, black arrows indicate a 

portion of track that was difficult to visually classify. Here, the boat appears to travel in 

a relatively straighter path at somewhat increased speeds, which means that this may or 

may not be a significant bout of travel and thus two separate bouts of ARS. I resolved 

this issue by applying the criteria defined above in the text. The portion of track in 

question represents about two minutes of time but speeds remained very low—I classify 

the questionable portion of track as within-patch movements, i.e., noise, and not travel. 

Therefore, this portion of track contains ARS at a single patch. 
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Results 

I repeated this visual segmentation process across all trips in the N30 sample in 

order to provide a comparison and base for assessing the efficacy of the CUMSUM 

method. Across all thirty trips in the N30 sample, N = 161 patches are known from 

visual segmentation of GPS tracks. The exact number of patches I identified in each trip 

can be found in Table 14. The nature of these trips, based on my visual assessment of 

each GPS track, is as follows. A majority of these trips exhibit clear and distinct bouts 

ARS versus travel (TIDs 1658, 1762, 1783, 1943, 1971, 2062, 2079, 2093, 2139, 2168, 

2203, 2205, 2256, 2300, 2339, 2407, 2420), which the CUMSUM method will likely 

distinguish accurately. Some trips have patches that appear noisy, probably due to 

suboptimal weather or ocean conditions where captains must constantly adjusting the 

position of the boat above the patch (TIDs 1646, 1903, 2109, 2269, 2456). The noisiness 

of these trips may result in an increase in type I errors during CUMSUM segmentation 

compared to visual segmentation 

Several trips have features which may significantly affect the utility of the 

CUMSUM method (TIDs 1691, 1771, 1808, 1847, 2276, 2281, 2379, 2462). A few of 

these trips have very little variation in speed and/or lower overall speed across the 

duration of the trip. Some trips have segments of probable ARS, indicated by drift 

speeds, yet these segments are not as sinuous as expected. Some drift segments cover a 

much larger area than expected for a single bank patch. Finally, some trips have patches 

that appear highly spatially contiguous and overlapping. Visual segmentation of these 
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sorts of trips was difficult, and I relied on my decision-making criteria for classifying 

segments.  

 

 

 

Table 14 

N30 patches identified visually along GPS tracks  

TID Number of patches 

1646 6 

1658 5 

1691 6 

1762 7 

1771 3 

1783 6 

1808 8 

1847 7 

1903 5 

1943 5 

1971 9 

2062 6 

2079 7 

2093 9 

2109 5 

2139 5 

2168 1 

2203 1 

2225 5 

2256 3 

2269 3 

2276 8 

2281 6 

2300 4 

2339 8 

2379 7 

2407 4 

2420 5 

2456 1 

2462 6 

Total 161 
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N30 trip TID2462, shown in Figure 24, is a good example of the problems I 

encountered while visually segmenting fishing trips. The first three patches visited 

during TID2462 appear contiguous and linear while covering a larger swath of ocean 

than seen in most other bank trips. Patches one and two are distinguished by N = 119 

seconds of above-average speed. Patches two and three are separated by N = 205 

seconds above-average speed. Both ambiguous segments just meet my criteria for 

significant shifts between ARS and travel and are thus defined as three distinct patches. 

Yet, as one can see in Figure 24, it appears the captains are navigating back to a point in 

the previous patch and continuing along the same trajectory. In this way, patches are 

contiguous or overlapping. Despite treating data systematically, realistically, there is still 

significant ambiguity on whether behavioral shifts I identified are meaningful or not and 

if these shifts truly indicate separate patches or not. 
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Figure 24. High resolution view of ARS and travel segments during N30 trip TID2462. 

The green and blue line is the GPS track and shows the movement of the boat in the 

Atlantic Ocean. The track is color-coded by speed: green represents relatively higher—

above average—speeds, while blue represents relatively lower speeds. The three black 

boxes around portions of blue-colored track indicate major bouts of ARS and other 

behaviors involving slower, low-powered movements or drift of the boat. One can see 

the linear and overlapping nature of these three bouts of ARS, which brings into question 

whether these are actually separate and independent patches or not. I applied my criteria 

for visual segmentation to resolve this issue. The black arrows along green-colored track 

between major bouts of ARS represent the direction of travel. First, one can see speeds 

are above-average for the trip given the green coloring. Second, the arrow labeled “travel 

between ARS 1 & ARS 2” represents about two minutes of travel, and the arrow labeled 

“travel between ARS 2 and 3” represents about three and a half minutes of travel. Both 

segments meet my speed and duration criteria for being classified as a major shift to 

travel. Thus, ARS 1, 2, and 3 are defined as separate patches. 
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CUMSUM analysis: results & comparison 

CUMSUM segmentation of all trips in the N30 sample, with a window of 𝜖 = 

600, produces a total of N = 437 segments (Table 15). N = 230 segments correspond to 

sustained, above-average speeds and bouts of travel, or maximum segments. These 

maxima have a mean speed of 3.36 m/s, which falls within the ranges of both mode two 

and mode three means from k-means analysis (Table 12). N = 207 segments correspond 

to sustained, below-average speeds and bouts of drift and slower movements, or 

minimum segments. These minima have a mean speed of 0.75 m/s, which falls within 

the range of mode one means from k-means analysis (Table 12). Similar to the result of 

N10 analysis, speeds falling within mode two from k-means are classified as either 

maxima or minima depending on the nature of adjacent points along the time series. 

Overall, CUMSUM allocates 48 hours or 22% of total time to maximum segments or 

travel, versus 177 hours or 78% of total time to minimum segments or ARS and other 

slow movements (Table 15). This again reflects the k-means distribution of time for the 

N30 sample, with time from mode two allocated to either maximum or minimum 

segments (Table 13). The proportion of time the CUMSUM approach allocates to travel 

and ARS segments for the N30 sample is also very similar to the known N10 sample 

ratio of time spent travelling (75%) to conducting ARS at patches (25%) (Table 4, 

chapter six). 
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Table 15 

CUMSUM segments (𝜖 = 600) description for N30 sample 

Segment type  Travel ARS 

Number  230 207 

Speed (m/s) Range 0.41-7.80 0.23-7.72 

 Mean 3.36 0.75 

 SD 1.41 0.92 

Time (hr) Range 0.0003-1.54 0.01-4.87 

 Mean 0.21 0.84 

 SD 0.24 0.73 

 Total  48.24 174.33 

 

 

As with the N10 sample, the raw counts of maximum and minimum segments in 

Table 15 include segments of noise associated with entering and exiting the landing 

site—behaviors that occurred before or after the fishing trip was fully underway. For 

instance, there are N = 25 minimum segments (out of N = 207 total) that correspond to 

this sort of behavior. While these beginning and end segments are initially pertinent for 

characterizing the overall trip, these N = 25 minimum segments do not correspond to 

ARS at patches. In other words, these segments are not factors determining how well the 

CUMSUM method differentiates bouts of travel and ARS at patches during fishing trips. 

In order not to inflate the error count, and to keep the following analysis symmetric to 

the N10 sample, these noise segments are not counted as significant type I errors in the 

analysis below. Thus, the remaining number of CUMSUM minimum segments relevant 

for comparison is N = 182. 

The CUMSUM method (𝜖 = 600) identifies N = 182 segments of potential ARS 

across all N30 fishing trips, excluding extra noise segments associated with entering and 

exiting the landing site. I assessed minimum segments as correct or in error based on 



 

141 

 

agreement or lack of agreement with visual segmentation results. Table 16 summarizes 

the counts and nature of remaining type I and II errors associated with the N = 182 

minimum segments. Overall, N = 148 of these N = 182 segments from Table 16 

correspond to visually-identified ARS. Table 17 directly compares the results of my 

visual segmentation with patches also identified by the CUMSUM analysis (𝜖 = 600) for 

each trip in the N30 sample. As noted, N = 161 patches are known from visual 

segmentation of GPS tracks. Similar to the N10 sample, the CUMSUM method 

identifies about 92% of visually-identified patches in the N30 sample.  

Thirty-four of the N = 182 CUMSUM minimum segments appear to correspond 

to noise within patches when compared to the results of visual segmentation (Table 16). 

In other words, the method may make thirty-four type I errors for the N30 sample. Given 

that CUMSUM identifies N = 148 of N = 161 patches correctly, compared to the results 

of visual segmentation, the method makes thirteen type II errors. Additionally, closer 

comparison of datasets reveals that method misses bouts of ARS from TID1847, 

resulting in two more type II errors. In both cases, ARS at a patch was initially identified 

but cut short by several minutes. Here, the MMA accurately identified the beginning of 

ARS at a patch but then prematurely identified a shift to travel and missed subsequent 

ARS at that same patch. The CUMSUM analysis probably had difficulty with TID1847 

because the transitions from ARS to travel were relatively smooth in that speed 

differentials were changed very gradually rather than abruptly. Thus, the method makes 

fifteen type II errors for the N30 sample (Table 16) compared to visual segmentation. 
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Table 16 

Summary of error counts for N = 182 CUMSUM minimum segments for N30 trips 

TID 
CUMSUM 

ARS count 

Type I 

error count 

Type II 

error count 
Error notes 

1646 10 4 0 IDs all but also noise 

1658 5 0 0 IDs all 

1691 3 0 3 Misses 3 patches 

1762 7 0 0 IDs all 

1771 4 2 1 Misses 1 patch, IDs noise 

1783 6 0 0 IDs all 

1808 7 0 1 Misses 1 patch 

1847 8 1 2 Misses sig. ARS, IDs noise 

1903 8 3 0 IDs all but IDs noise 

1943 5 0 0 IDs all 5, but 

1971 7 0 2 Misses 2 patches 

2062 6 0 0 IDs all 

2079 9 2 0 IDs all but also noise 

2093 8 0 1 Misses 1 patch 

2109 11 7 1 Misses 1 patch, IDs noise 

2139 5 0 0 IDs all 

2168 1 0 0 IDs all 

2203 1 0 0 IDs all 

2225 5 0 0 IDs all 

2256 3 0 0 IDs all 

2269 6 3 0 IDs all but also noise 

2276 7 0 1 Misses 1 patch 

2281 4 0 2 Misses 2 patches 

2300 5 1 0 IDs all but also noise 

2339 9 1 0 IDs all but also noise 

2379 7 1 1 Misses 1 patch, IDs noise 

2407 4 0 0 IDs all 

2420 7 2 0 IDs all but also noise 

2456 4 3 0 IDs patch but also noise 

2462 10 4 0 IDs all but also noise 

Total 182 34 15  
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Table 17 

Comparison of visual segmentation results and 

CUMSUM results (𝜖 = 600) for N30 trips 

TID Visable GPS patches CUMSUM patches 

1646 6 6 

1658 5 5 

1691 6 3 

1762 7 7 

1771 3 2 

1783 6 6 

1808 8 7 

1847 7 7 

1903 5 5 

1943 5 5 

1971 9 7 

2062 6 6 

2079 7 7 

2093 9 8 

2109 5 4 

2139 5 5 

2168 1 1 

2203 1 1 

2225 5 5 

2256 3 3 

2269 3 3 

2276 8 7 

2281 6 4 

2300 4 4 

2339 8 8 

2379 7 6 

2407 4 4 

2420 5 5 

2456 1 1 

2462 6 6 

Total 161 148 
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CHAPTER VIII 

MVT CONSIDERATIONS: ANALYSIS & RESULTS 

 

The second goal of this project is to test a prediction from the MVT to show how 

developing methods like the CUMSUM approach can help move foraging theory 

forward. For central place foragers, one key prediction from the MVT is that patch 

residence time should increase as a function of increasing travel costs (Charnov, 1976). 

Given the discussion in chapter two, we expect that fishers from Desa Ikan spend more 

time in patches that take longer to reach and spend less time in patches that take less 

time to reach. For fisher-foragers in Desa Ikan, travel cost for a patch is measured as 

how long it takes a fisher to travel between patches—from the end of ARS at one patch 

to the start of ARS at a subsequent patch. 

I explored this question using data on patches from both the N10 sample and the 

N30 sample. The N10 samples provides direct observation data and CUMSUM-

generated data on patches. The N30 sample provides CUMSUM-generated patch 

information with no simultaneous direct observation to ground-truth results. Here, I 

assume that near-shore patches constitute microhabitats that experience resource 

depression due to foraging activities, after the example of Aswani (1998). I cannot 

measure depletion it to produce the cumulative gains curve characteristic of the MVT, 

which is a common problem (Aswani, 1998; Bettinger, 2009; Calcagno et al., 2014).  
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N10 sample 

I use data from direct observation for this first test of the MVT with patches in 

the N10 sample. During focal follows, I used event sampling to document fishing 

efforts. Refer to chapter five for details on this type of data collection and the specific 

methods I used. To briefly review, the N10 sample contains ten fishing trips, including 

five pot trips and five bank trips. There is a total of N = 62 patches across the N10 

sample, including N = 34 bank patches and N = 28 pot patches. Table 18 presents a 

summary of relevant data by trip. It was possible to compute the cumulative distance 

travelled during a fishing trip as well as the maximum distance travelled from the origin 

point using the GPS position data. 

 

 

Table 18 

Catch & effort summary for the N10 sample 

TID 

Number 

patches 

visited 

Cumulative 

distance 

travelled 

(km) 

Maximum 

distance 

travelled 

(km) 

Duration 

(hr) 

Total 

catch 

(kg) 

Average 

return 

rate 

(kg/hr) 

1758 6 16.61 4.67 3.05 24.04 7.88 

1977 7 23.06 5.12 3.85 60.33 15.7 

2058 4 21.95 4.84 3.00 23.59 7.86 

2072 10 37.74 4.99 8.47 34.47 4.07 

2101 11 33.17 4.68 10.1 24.27 2.41 

2114 7 25.51 5.18 4.00 34.02 8.51 

2178 4 48.46 11.4 9.50 8.620 0.91 

2246 4 22.97 6.14 3.40 8.160 2.40 

2282 3 20.24 4.75 5.37 50.80 9.46 

2369 6 37.46 8.38 6.40 32.21 5.03 

Total 62   57.12 300.5  

Mean    10.39 54.64 6.42 
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First, I explored the relationship between patch residence time and trip type, 

given that they are different fishing techniques despite both methods targeting demersal 

species. Table 19 provides patch type and patch residence time for each trip in the 

sample. The following computations use the log-transformed values of patch residence 

times because this variable displays a positive skew before conversion. Log 

transformation results in a dataset that is amenable to linear modeling. The times 

reported here have been back-transformed to be more understandable. The patch 

residence time data are mostly normally distributed after logarithmic transformation, but 

Levene’s test demonstrates hederoskedasticity [F(1, 60) = 14.76, p = 0.0003). In other 

words, patch residence time variances are significantly different for bank (variance = 

3.86 minutes) and pot (variance = 1.34 minutes) patches, so I applied corrections for 

unequal variances. Additionally, a generally accepted standard is that linear models 

remain fairly robust with some heterogeneity of variance, probably as long as the 

maximum variance is no more than four times greater than the minimum variance 

(Brown & Forsythe, 1974; Garson, 2012; Schultz, 1983). Regardless, Welch’s two 

sample t-test shows the difference between the mean residence time of bank patches (M 

= 33.78 minutes, SD = 3.19) and the mean residence time pot patches (M = 15.33 

minutes, SD = 1.72 mins) is significantly different from zero [t(48.30) = 3.53, p = 

0.0009). Trip type—bank or pot—has a significant effect on patch residence time (𝛽 = -

1.37, t(58) = -2.41, p = 0.02) and explains a portion of variation in patch residence time 

(R2 = 0.13, F(3,58) = 4.08, p = 0.01). 
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Table 19 

Patch type and residence times for N = 62 patches from N10 trips 

Trip type TID PID Residence time (mins) 

Pot 1758 P1 0.22 

 1758 P2 0.40 

 1758 P3 0.37 

 1758 P4 0.30 

 1758 P5 0.28 

 1758 P6 0.30 

 1977 P7 0.25 

 1977 P8 0.57 

 1977 P9 0.28 

 1977 P10 0.28 

 1977 P11 0.40 

 1977 P12 0.28 

 1977 P13 0.23 

 2058 P14 0.23 

 2058 P15 0.27 

 2058 P16 0.32 

 2058 P17 0.48 

 2114 P39 0.18 

 2114 P40 0.05 

 2114 P41 0.22 

 2114 P42 0.30 

 2114 P43 0.25 

 2114 P44 0.50 

 2114 P45 0.22 

 2246 P50 0.05 

 2246 P51 0.25 

 2246 P52 0.28 

 2246 P53 0.22 

Bank 2072 P18 0.68 

 2072 P19 0.32 

 2072 P20 0.53 

 2072 P21 0.02 

 2072 P22 0.68 

 2072 P23 0.67 

 2072 P24 0.08 

 2072 P25 2.82 

 2072 P26 1.48 

 2072 P27 0.13 

 2101 P28 0.45 

 2101 P29 1.90 



 

148 

 

Table 19. Continued 

Bank 2101 P30 0.28 

 2101 P31 0.50 

 2101 P32 0.30 

 2101 P33 0.32 

 2101 P34 0.40 

 2101 P35 1.12 

 2101 P36 0.20 

 2101 P37 0.15 

 2101 P38 2.60 

 2178 P46 1.65 

 2178 P47 1.12 

 2178 P48 0.82 

 2178 P49 3.18 

 2282 P54 3.53 

 2282 P55 0.93 

 2282 P56 0.32 

 2369 P57 1.47 

 2369 P58 1.50 

 2369 P59 1.10 

 2369 P60 0.65 

 2369 P61 0.22 

 2369 P62 0.13 

 

 

Pot fishing techniques are an example of niche construction and inherently 

different from other types of bank fishing in ways that affect patch residence time. Pot 

patch locations are known to the fishers and marked with a buoy; once the pot buoy is 

visually located, it is a matter of raising the pot, clearing it of a catch, and dropping it 

back into the sea (see chapter four for more ethnographic detail). Pot fishers need not 

repeatedly pass the boat through a patch, nor does pot fishing require fishing with a hook 

and line like bank fishing. As shown in the above section, these differences result in a 

significantly smaller mean and variance for ‘pot’ patch residence times compared to 

‘bank’ patch residence times. Additionally, the type of trip, bank or pot, is highly 
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correlated with whom captained a given trip in the N10 sample. One captain accounted 

for all of the pot trips, while the other three captains in the sample accounted for bank 

trips. Due to these factors, the remaining analyses in this section are limited to bank 

patches.  

Residence time as a function of search time 

Table 20 presents a summary of catch and effort data for each bank patch (N = 

34).  During direct observation, I noted the start and end times of travel, or extensive 

search, between patches as well. Travel costs per patch are measured by the amount of 

time spent in extensive search between each patch—the start of travel to a patch to the 

end of travel as a fisher reaches that particular patch. I also recorded the start and end 

times of ARS in patches during direct observation. Patch residence time equals the 

amount of time spent conducting ARS in a patch. The following computations use the 

log transformed value for patch residence times because the data are right-skewed. This 

transformation corrects the right skew to allow for use of linear regression.  

Two major outliers (P21 and P46) were removed from the sample, resulting in a 

sample of N = 32 bank patches. Inclusion of these two points did not affect the results 

below but did affect model assumptions. Per patch search time (hr) is a significant 

predictor of patch residence time (hr) in the predicted direction [𝛽 = 3.64, t(30) = 3.23, p 

= 0.003] and explains a portion of the variation in residence time [R2 = 0.26, F(1, 30) = 

10.44 p = 0.003] (Figure 25). The residual plot indicates an adequate fit for the model, 

and assumptions are satisfied for criteria of the Global Validation of Linear Model 
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Assumptions (GVLMA; criteria include global statistic, skewness, kurtosis, link 

function, and heteroskedasticity) at a significance level of 0.05. 

 

 

 

Table 20 

Summary of N = 34 bank patches from N10 sample 

TID PID Residence time (hr) Search time (hr) 

2072 P18 0.68 0.25 

2072 P19 0.32 0.08 

2072 P20 0.53 0.07 

2072 P21 0.02 0.10 

2072 P22 0.68 0.03 

2072 P23 0.67 0.10 

2072 P24 0.08 0.03 

2072 P25 2.82 0.02 

2072 P26 1.48 0.12 

2072 P27 0.13 0.07 

2101 P28 0.45 0.30 

2101 P29 1.90 0.20 

2101 P30 0.28 0.05 

2101 P31 0.50 0.07 

2101 P32 0.30 0.03 

2101 P33 0.32 0.10 

2101 P34 0.40 0.10 

2101 P35 1.12 0.27 

2101 P36 0.20 0.05 

2101 P37 0.15 0.07 

2101 P38 2.60 0.05 

2178 P46 1.65 1.77 

2178 P47 1.12 0.18 

2178 P48 0.82 0.07 

2178 P49 3.18 0.47 

2282 P54 3.53 0.32 

2282 P55 0.93 0.08 

2282 P56 0.32 0.07 

2369 P57 1.47 0.63 

2369 P58 1.50 0.30 

2369 P59 1.10 0.12 
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Table 20. Continued 

2369 P60 0.65 0.08 

2369 P61 0.22 0.08 

2369 P62 0.13 0.03 

 

 

 

 

Figure 25. Plot of patch search time (hr) and patch residence time (hr) with regression 

line for N = 32 bank patches known from direct observation of N10 trips. This plot 

shows the statistically significant and positive, directional effect of search time on patch 

residence time, known from the N10 sample. 
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N30 sample 

The CUMSUM method identified N = 148 segments of ARS at patches that also 

corresponded to visually-identified patches for the N30 sample of bank fishing trips. 

Table 21 provides relevant trip data for this sample. I used this CUMSUM-generated 

data to determine travel costs, measured as search time, and residence time for each 

patch in the sample (Table 22). Four influential outliers were excluded from analysis 

(P66, P67, P157, and P166) due to the fact that these data affected model assumptions 

and create a significant relationship compared to the results presented below. Thus, the 

resulting sample includes N = 144 bank patches for analysis. The following 

computations use the log transformed value for patch residence times because the data 

are right-skewed. This transformation corrects the skew to allow for use of linear 

modeling.  

Search time (hr) is not a significant predictor of patch residence time (hr) in the 

predicted direction [β = 0.07, t(142) = 0.81, p = 0.81]. The residual and diagnostic plots 

for this model indicate an adequate fit, and all assumptions are satisfied for all criteria of 

the GVLMA at a significance level of 0.05. This equivocal result does not necessarily 

undermine the results of analyzing the N10 bank patches, but it does not offer much 

support for the MVT prediction that patch residence time increases as travel cost, 

measured by search time, increases. 
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Table 21 

Summary of N = 148 bank patches from the N30 sample 

TID 

Number of 

CUMSUM-identified 

patches (N=148) 

Cumulative 

distance 

travelled (km) 

Maximum 

distance 

travelled (km) 

Duration (hr) 

1646 6 42.78 7.65 11.51 

1658 5 27.16 5.90 5.68 

1691 3 11.36 2.25 4.60 

1762 7 33.62 5.75 7.07 

1771 2 46.05 10.67 8.19 

1783 6 30.58 6.36 6.90 

1808 7 41.62 7.40 8.01 

1847 7 52.00 12.64 7.39 

1903 5 34.04 6.41 8.17 

1943 5 29.35 5.22 7.19 

1971 7 43.94 10.38 7.17 

2062 6 30.66 4.89 9.05 

2079 7 33.58 4.93 9.87 

2093 8 33.17 4.68 10.08 

2109 4 28.24 4.18 8.31 

2139 5 24.85 6.56 7.50 

2168 1 20.14 7.30 2.64 

2203 1 11.95 3.53 1.55 

2225 5 57.50 17.63 6.78 

2256 3 25.01 6.48 5.11 

2269 3 26.78 6.72 9.45 

2276 7 55.25 10.92 8.15 

2281 4 38.02 6.49 8.06 

2300 4 60.42 16.16 8.14 

2339 8 29.11 4.77 8.84 

2379 6 33.06 6.65 7.91 

2407 4 41.07 10.63 8.54 

2420 5 28.12 6.16 6.17 

2456 1 36.09 9.82 7.25 

2462 6 40.47 9.18 9.94 
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Table 22 

Data for N = 148 bank patches from N30 sample 

TID PID Residence time (hr) Search time (hr) 

1646 P63 0.763 0.112 

1646 P64 0.505 0.322 

1646 P65 3.902 0.663 

1646 P66 0.068 3.421 

1646 P67 0.037 0.243 

1646 P68 0.472 0.673 

1658 P69 0.680 0.096 

1658 P70 0.449 0.653 

1658 P71 0.393 0.149 

1658 P72 0.658 0.161 

1658 P73 1.441 0.304 

1691 P74 2.654 0.150 

1691 P75 0.655 0.033 

1691 P76 0.202 0.048 

1762 P77 0.928 0.540 

1762 P78 0.171 0.155 

1762 P79 0.408 0.097 

1762 P80 0.611 0.163 

1762 P81 0.718 0.107 

1762 P82 2.307 0.277 

1762 P83 0.143 0.164 

1771 P84 1.805 0.162 

1771 P85 2.647 0.225 

1783 P86 0.668 0.149 

1783 P87 0.508 0.047 

1783 P88 0.972 0.450 

1783 P89 1.001 0.319 

1783 P90 1.680 0.094 

1783 P91 0.718 0.079 

1808 P92 1.155 0.091 

1808 P93 0.773 0.112 

1808 P94 1.864 0.224 

1808 P95 0.406 0.058 

1808 P96 0.559 0.182 

1808 P97 0.450 0.076 

1808 P98 1.029 0.173 

1847 P99 0.498 0.928 



 

155 

 

Table 22. Continued 

1847 P100 0.406 0.872 

1847 P101 0.110 0.928 

1847 P102 0.557 0.249 

1847 P103 0.628 0.512 

1847 P104 0.339 0.216 

1847 P105 0.789 0.174 

1903 P106 1.686 0.396 

1903 P107 0.808 0.084 

1903 P108 1.008 0.112 

1903 P109 0.400 0.082 

1903 P110 3.157 0.212 

1943 P111 0.429 0.151 

1943 P112 1.381 0.183 

1943 P113 3.087 0.103 

1943 P114 0.299 0.087 

1943 P115 0.732 0.064 

1971 P116 0.471 0.062 

1971 P117 0.342 0.293 

1971 P118 0.923 0.450 

1971 P119 0.170 0.112 

1971 P120 0.633 0.447 

1971 P121 0.403 0.611 

1971 P122 0.987 0.223 

2062 P123 1.093 0.124 

2062 P124 1.476 0.086 

2062 P125 0.490 0.276 

2062 P126 1.013 0.072 

2062 P127 3.215 0.094 

2062 P128 0.840 0.071 

2079 P129 1.036 0.151 

2079 P130 1.542 0.246 

2079 P131 1.460 0.303 

2079 P132 2.542 0.062 

2079 P133 0.691 0.124 

2079 P134 0.470 0.085 

2079 P135 0.353 0.121 

2093 P136 0.352 0.294 

2093 P137 0.453 0.205 
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Table 22. Continued 

2093 P138 0.807 0.226 

2093 P139 2.789 0.061 

2093 P140 0.270 0.106 

2093 P141 0.136 0.079 

2093 P142 0.202 0.058 

2093 P143 0.345 0.051 

2109 P144 1.286 0.040 

2109 P145 0.371 0.287 

2109 P146 4.542 0.074 

2109 P147 1.174 0.158 

2139 P148 2.059 0.46 

2139 P149 1.032 0.053 

2139 P150 1.432 0.041 

2139 P151 0.976 0.153 

2139 P152 1.043 0.049 

2168 P153 1.934 0.379 

2203 P154 0.755 0.257 

2225 P155 0.128 0.099 

2225 P156 0.373 0.615 

2225 P157 0.906 1.110 

2225 P158 1.353 0.400 

2225 P159 0.804 0.604 

2256 P160 1.084 0.069 

2256 P161 1.527 0.555 

2256 P162 1.209 0.306 

2269 P163 0.600 0.106 

2269 P164 5.899 0.483 

2269 P165 2.093 0.049 

2276 P166 0.504 1.538 

2276 P167 0.235 0.069 

2276 P168 0.498 0.067 

2276 P169 1.385 0.632 

2276 P170 0.878 0.087 

2276 P171 0.656 0.156 

2276 P172 0.674 0.075 

2281 P173 2.191 0.409 

2281 P174 1.362 0.265 

2281 P175 0.526 0.470 
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Table 22. Continued 

2281 P176 1.078 0.058 

2300 P177 0.642 1.012 

2300 P178 0.711 0.097 

2300 P179 1.209 0.351 

2300 P180 2.909 0.292 

2339 P181 2.143 0.098 

2339 P182 1.271 0.114 

2339 P183 0.764 0.102 

2339 P184 0.909 0.457 

2339 P185 0.619 0.095 

2339 P186 1.160 0.035 

2339 P187 0.228 0.064 

2339 P188 0.529 0.066 

2379 P189 0.719 0.127 

2379 P190 0.760 0.575 

2379 P191 1.061 0.040 

2379 P192 1.375 0.086 

2379 P193 1.133 0.088 

2379 P194 0.890 0.173 

2407 P195 0.617 0.988 

2407 P196 1.813 0.079 

2407 P197 1.519 0.338 

2407 P198 2.865 0.204 

2420 P199 0.326 0.226 

2420 P200 0.363 0.203 

2420 P201 0.176 0.075 

2420 P202 3.098 0.226 

2420 P203 1.200 0.103 

2456 P204 5.924 0.568 

2462 P205 0.955 0.051 

2462 P206 1.218 0.113 

2462 P207 1.344 0.773 

2462 P208 1.063 0.034 

2462 P209 2.541 0.128 

2462 P210 1.305 0.109 
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Figure 26. Plot of search time (hr) and residence time (hr) with regression line for N = 

144 bank patches from CUMSUM analysis of N30 trips. This model uses patch data 

from the CUMSUM method rather than direct observation. This regression plot shows a 

slightly positive but non-significant effect of search time on patch residence time.  
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CHAPTER IX 

CONCLUSIONS 

 

 

Recording and interpreting animal movement tracks with GPS devices has wide, 

general applicability for a range of questions on animal behavior. The goal of GPS track 

segmentation is to identify major changes in animal activities along a movement 

trajectory that correspond to real, biologically meaningful behavioral shifts. Translating 

GPS tracks into behavioral data is now common albeit not straightforward, and methods 

of parsing out behavioral shifts often have limitations. The CUMSUM approach of Knell 

and Codling (2012) seems to be a methodological advancement, but it has undergone 

little testing and its cross-context applicability is unclear. The usefulness of the 

CUMSUM process is that it is analytically simple to make scaling adjustments and 

interpret. One important assessment of the CUMSUM segmentation method is to 

determine how well the method identifies shifts between major foraging activities, such 

as extensive search (travel) and ARS, without identifying within-patch noise during bout 

of ARS.  

The primary goal of this project was to test the CUMSUM method of segmenting 

GPS data into meaningful behavioral data, specifically to identify shifts between 

extensive search and ARS. To this end, I demonstrated the utility of this approach in the 

context of small-scale fishing-foraging in the Commonwealth of Dominica. I conducted 

the analysis with N = 10 demersal fishing trips, the N10 sample, using speed as the 

spatiotemporal parameter to describe movement and segment GPS tracks into bouts of 
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extensive search and ARS. This sample of ten fishing trips includes ground-truth data 

via simultaneous direct behavioral observation. Direct observation provides the known, 

exact locations and times of travel and ARS at patches, which provide a comparative 

base to determine the best scale of analysis and overall efficacy of the CUMSUM 

method. 

The first step to all segmentation methods is defining an appropriate sampling 

scale. In the case of the CUMSUM method, this is the window (𝜖) in which local speed 

maxima and minima are identified via the max-min algorithm (Knell & Codling, 2012). I 

examined the results of the CUMSUM process across a range of different window sizes 

and compared these segmentation results with ground-truth data to classify segments as 

accurate and matching focal follow observations or as type I or II errors. Across trips in 

the N10 sample, increasing the window size above 𝜖 ≅ 600 obscures major bouts of 

ARS, or results in more type II errors. Decreasing the window size below 𝜖 ≅ 600 

results in more false positives, or type I errors. A second approach to determining the 

best scale of analysis, suggested by Knell & Codling (2012), specifies that the 

appropriate window lies within the range of window sizes that provides the first 

consecutive period without a large change in the number of resulting segments identified 

by the max-min algorithm.  I applied this method as well and found agreement between 

each approach—both indicate a window range of 𝜖 ≅ 600 is appropriate for all trips the 

N10 sample. 

After determining the optimal scale of analysis, I segmented each trip in the N10 

sample with the CUMSUM method. Compared to ground truth data, CUMSUM 
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correctly identified fifty-six of sixty-two known patches. In other words, the CUMSUM 

method identified 90% of known patches in the N10 sample while making six type I 

errors and six type II errors. I also compared CUMSUM-predicted starts and stops of 

ARS at patches (i.e. behavioral shifts identified by the man-min algorithm) with the 

observed starts and stops of ARS known from direct observation in order to gauge the 

accuracy of the method. A paired samples t-test showed that the max-min algorithm 

predicted the start of ARS nearly a minute earlier than direct observation, which is a 

statistically significant difference. In using speed as the model criterion for segmenting, 

the CUMSUM method is identifying ARS for patch locations as they approximated 

patch marks, while I documented the time when fishers began ARS for fish and dropped 

a fishing line in the water. A second paired samples t-test suggested the difference in 

means between the predicted and observed ARS stop times is not significantly different 

from zero; these differences reflect the time it takes for the captain to accelerate the boat 

to travel speeds recognized by the algorithm. These tests demonstrate a relatively low 

error rates as well as the overall efficacy of the CUMSUM method in the demersal 

fishing context. Overall, the method provides a good way to understand major shifts in 

foraging behaviors and gross patch use if an appropriate sampling scale is identified. 

Further, CUMSUM segmentation is accurate even when based on only handful of direct 

observations, such as the present N = 10 sample of demersal trips with direct 

observation.  

I assessed the applicability of the results from segmentation of the N10 sample to 

an additional subset of demersal trips, the N30 sample. I used these data to provide 
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another test of the efficacy of the CUMSUM method by comparing model-generated 

segments of ARS with ARS identified visually. I limited this sample of N = 30 trips to 

strictly bank demersal trips that have associated GPS tracks. The trips in the N30 sample 

do not have simultaneous ground-truth data, so I visually segmented these trips to create 

a dataset with which to compare CUMSUM results. First, I visually segmented each trip 

in the N30 sample into major, obvious bouts of travel and ARS. For segments of GPS 

tracks less easily classified, I used additional criteria to maintain systematic visual 

segmentation. This method of visual segmentation is the same process the CUMSUM 

method uses to segment a track.  

I applied this visual segmentation process across all trips in the N30 sample. 

While I relied on my decision-making criteria for classifying segments systematically, 

there is a considerable degree of uncertainty regarding the nature of the behavioral shifts 

I identified. It is unclear if all patches I identified behaviorally as ARS actually 

correspond to ARS and fishing activities. It is possible these bouts correspond to some 

other type of behavior, such as boat maintenance, social encounters with other boats, and 

other non-foraging activities. In sum, my approach to visual segmentation resulted in 

identification of N = 161 patches. This provided a comparison for assessing the efficacy 

of the CUMSUM method for identifying patches behaviorally as ARS. 

Next, I segmented trips in the N30 sample with the CUMSUM method using 

speed as the model parameter and a window of 𝜖 = 600, as determined from the results 

of segmenting the N10 sample. The method identified N = 182 segments of potential 

ARS for the N30 sample. Overall, N = 148 of these N = 182 segments correspond to 
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ARS also identified visually. The remaining thirty-four segments of the N = 182 are 

noise within patches when compared to visual segmentation results. In other words, the 

method made thirty-four type I errors, if visual segmentation is accurate. Overall, the 

method missed fifteen segments of ARS, or fifteen type II errors. 

The CUMSUM approach and visual segmentation showed agreement about 92% 

of the time for demersal fishing. Visual segmentation takes a long time and subject to 

human error. The CUMSUM method offers a segmentation approach that takes a 

fraction of the time and has very similar outcomes in terms of identifying behaviors. The 

results from the N10 sample were appropriate for scaling and segmenting the N30 

sample via the CUMSUM method, which suggests a good degree of generalizability if 

an appropriate sampling scale can be determined for a particular foraging context. I was 

able to determine a relatively accurate scale of analysis for the CUMSUM process from 

just a handful of trips (N = 10 focal follows). This is advantageous if applied to contexts 

where direct observation of foraging behavior is costly and a large sample is not 

possible. 

Direct behavioral observation of animal behavior is idea but can be dangerous, 

expensive, or impossible in some cases. Developing methods of remote behavioral 

observation and segmentation approaches like the CUMSUM method has the advantage 

of reducing the cost and time of data collection in the long run with broad application 

across a range of disciplines. For example, methodological development potentiates tests 

of prominent foraging models that have often been developed with non-human animals 

and in experimental settings (Owen-Smith et al., 2010; Pyke, Pulliam, & Charnov, 
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1977), such the well-known and widely-referenced MVT. As a secondary goal of this 

project, I assessed a major prediction from the MVT to show how the CUMSUM 

analysis can be used for these kinds of theoretical considerations. 

The MVT predicts that, for central place foragers, patch residence time should 

increase as travel costs increase. To test this, I assumed patches exploited by fishers 

depleted despite that I was unable measure patch depletion to produce the cumulative 

gains curve characteristic of the MVT. Specifically, I assumed the patches exploited by 

fishers constitute microhabitats that deplete due to foraging effort, following the 

example of Aswani (1998). Given these assumptions, I tested the prediction that patch 

residence times should exhibit a direct relationship with travel time. First, using data 

from the N10 sample with direct observation, I used known extensive search (travel) 

times to measure travel costs of each patch and known patch residence times to show a 

significant, positive directional relationship between these two factors. Second, I used 

patch data from the CUMSUM-generated segments to provide a secondary test of this 

prediction of the MVT, limiting the sample to the N = 148 segments that also correspond 

to visually identified patches. In this iteration, I used maximum segments, corresponding 

to extensive search time, to measure per patch travel costs. I used minimum segments, 

corresponding to ARS at patches, to measure patch residence times. In the case of the 

N10 sample, regression revealed a significant relationship between search time and 

patch residence time such that patch residence time increases as a function of increasing 

search time. Regression using the N30 sample of bank batches shows a positive albeit 

non-significant relationship between search time and residence time. 
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Overall, the test with N10 bank patches provide support for the MVT prediction 

in the context of demersal fishing, and while the test with N30 bank patches is equivocal, 

it does not necessarily undermine the results from the test with the N10 sample. As 

discussed, the CUMSUM method seems to identify ARS for patches rather than ARS for 

fish when tracks are segmented based on deviations in speed. This may not be a problem 

for understanding gross behavioral changes—intensive versus extensive search—and 

gauging large-scale patch use patterns. Regarding the relationship between patch 

residence time and travel costs as predicted by the MVT, identifying ARS for fish rather 

than ARS for patches is probably more appropriate. Perhaps a different sampling scale 

or even a different model parameter such as turning angle would be more appropriate for 

differentiating these types of finer-scale phenomena. The usefulness of an analytically 

simple method like the CUMSUM approach lies in the ability to investigate many scales 

of observation, within the same large-range, high resolution datasets, to assess such 

issues and move theory forward. 

When attempting to assess the MVT and similar foraging models, there are 

difficulties in measuring model parameters like prey encounter rates and delimiting 

patches. An advantage of the CUMSUM method is that it efficiently and relatively 

effectively delimits patches. Patches of resources in the ocean are notoriously difficult to 

define, e.g. due to prey mobility, and it is difficult to discern if ocean patches deplete as 

the MVT model of Charnov (1976) assumes. An alternative is to assume that patches do 

not deplete, which results in linear gains function and implies that foragers should never 

leave such a patch in search of different one (Bettinger, 2009; Kacelnik, Hammerstein, 
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& Stevens, 2012). It is probably more appropriate to assume many near-shore fishing 

patches, such as those associated with the demersal context of this project, constitute 

microhabitats that deplete (Aswani, 1998).  

Another assumption of the MVT often violated by purposive human foragers is 

that patches are exploited randomly and sequentially (Aswani, 1998; Kaplan & Hill, 

1992). GPS tracks for the N10 and N30 samples demonstrate that fishers will return to a 

patch that was already visited that trip and fish it again. Figure 24 in chapter seven 

provides a good example of how fishers might return to the same fishing patch more 

than once in a given trip. These kinds of issues are helpful in that they lead researchers 

to reevaluate their starting assumptions and refine how we frame specific hypotheses and 

tests. This is particularly relevant in the context of human foraging where proximate, 

cultural processes may play a significant role in decision-making processes. In an 

anthropological context, it can be used to refine our understanding of how human 

foraging approximates and deviates from the widely accepted tenets of theory and the 

predictions of optimality models. While foraging theory has great benefits as a tool for 

asking questions and creating hypotheses, some of its main premises remain 

unconfirmed for human forgers, particularly in a naturalistic setting (Bartumeus & 

Catalan, 2009).  

This avenue allows researchers to identify patches of resources behaviorally and 

thus assess major mechanisms of resource exploitation, which has major practical 

significant. Fisheries around the world face over-exploitation as well as conflicts of 

interest and competition between local, national, and regional entities. Legal structures 



 

167 

 

attempt to regulate fisheries and common-pool marine resources, but management is 

diminished by weak institutions, ineffective enforcement of regulatory measures, a lack 

of post-harvest infrastructure for appropriate processing and marketing of catches, and 

finally, limited involvement of fishers (Salas & Gaertner, 2004). In the past several 

decades, maritime anthropology has demonstrated the usefulness of integrating 

evolutionary and foraging theory to understand indigenous coastal management 

strategies and their effects of the marine environment (Acheson, 1981; Ayers & 

Kittinger, 2014; Calamia, 1996; Dahl, 1988; Feeny, Berkes, McCay, & Acheson, 1990; 

Fulton, Smith, Smith, & van Putten, 2011; Martin, 2006; McCay, 1978; McCay & 

Acheson, 1990; McGoodwin, 2001; Miller, Kaneko, Bartram, Marks, & Brewer, 2004; 

Moran, 1990, 1993; Munro, 1996; Pinkerton, 2011; Ruddle & Akimichi, 1984; Zhou et 

al., 2010). The anthropological contexts of much of this research also highlights how 

important it is to include the participation and agreement of local people, local 

authorities, and indigenous communities while emphasizing the links between 

sustainability, poverty, and human well-being (Alexander, Armitage, & Charles, 2015; 

Alfaro-Shigueto et al., 2010; Béné, Hersoug, & Allison, 2010; Chapin III, Sommerkorn, 

Robards, & Hillmer-Pegram, 2015; Coulthard, Johnson, & McGregor, 2011; Guo, 2017; 

Kittinger et al., 2015; Ostrom, 2015; Sandström, Crona, & Bodin, 2014; Shackeroff & 

Campbell, 2007; Sowman, 2006; Whittingham, Campbell, & Townsley, 2003). 

In terms of broader impact, projects that aim to understand local-level fishing 

practices and outcomes play a major role in informing policy associated with 

sustainability and conservation efforts, human well-being, ownership, and tenure right to 
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fishery resources and coastal access (Daw, Brown, Rosendo, & Pomeroy, 2011). Local 

fisheries play a pivotal role in food security for local, national, and international markets, 

as well as in developing sustainable and equitable resource use and eradicating poverty 

(FAO, 2015), and small-scale fisheries are a large part of income and food security in 

most rural, poor, coastal communities. However, these contexts remain poorly 

documented in national and global fishery statistics (Heyman & Dieseldorff, 2012), 

which biases management of marine resources towards the short-term, for-profit 

interests of industrial fleets rather than long-term goals of marine ecosystem health and 

local community well-being. Documenting small-scale fisheries provides practical 

information that helps bridge this gap and promotes the involvement of fishers in 

management strategies, which in turn, increases the success of conversation outcomes. A 

more inclusive approach that promotes the involvement of fishers and local authority in 

policy development and regulatory processes has been shown (by Heyman & 

Dieseldorff, 2012, for example) to improve both the scientific understanding of the 

marine resources in question, identification of management hotspots, and overall 

management effectiveness and success. In this way, the importance of small-scale 

fisheries and local fishing communities like Desa Ikan is not fully realized. 
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