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ABSTRACT

This dissertation studies the emerging topics in genome sequencing and analysis

with DNA and RNA. The optimal hybrid sequencing and assembly for accurate genome

reconstruction and e�cient detection approaches for novel ncRNAs in genomes are

discussed.

The next-generation sequencing is a significant topic that provides whole genetic

information for the further biological research. Recent advances in high-throughput

genome sequencing technologies have enabled the systematic study of various genomes

by making whole genome sequencing a↵ordable. To date, many hybrid genome

assembly algorithms have been developed that can take reads from multiple read

sources to reconstruct the original genome. An important aspect of hybrid sequencing

and assembly is that the feasibility conditions for genome reconstruction can be

satisfied by di↵erent combinations of the available read sources, opening up the

possibility of optimally combining the sources to minimize the sequencing cost while

ensuring accurate genome reconstruction. In this study, we derive the conditions

for whole genome reconstruction from multiple read sources at a given confidence

level and also introduce the optimal strategy for combining reads from di↵erent

sources to minimize the overall sequencing cost. We show that the optimal read set,

which simultaneously satisfies the feasibility conditions for genome reconstruction

and minimizes the sequencing cost, can be e↵ectively predicted through constrained

discrete optimization.

The availability of genome-wide sequences for a variety of species provides a large

database for the further RNA analysis with computational methods. Recent studies

have shown that noncoding RNAs (ncRNAs) are known to play crucial roles in various
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biological processes, and some ncRNAs are related to the genome stability and a variety

of inherited diseases. The discovery of novel ncRNAs is hence an important topic,

and there is a pressing need for accurate computational detection approaches that can

be used to e�ciently detect novel ncRNAs in genomes. One important issue is RNA

structure alignment for comparative genome analysis, as RNA secondary structures

are better conserved than the RNA sequences. Simultaneous RNA alignment and

folding algorithms aim to accurately align RNAs by predicting the consensus structure

and alignment at the same time, but the computational complexity of the optimal

dynamic programming algorithm for simultaneous alignment and folding is extremely

high. In this work, we proposed an innovative method, TOPAS, for RNA structural

alignment that can e�ciently align RNAs through topological networks. Although

many ncRNAs are known to have a well conserved secondary structure, which provides

useful clues for computational prediction, the prediction of ncRNAs is still challenging,

since it has been shown that a structure-based approach alone may not be su�cient for

detecting ncRNAs in a single sequence. In this study, we first develop a new approach

by utilizing the n-gram model to classify the sequences and extract e↵ective features

to capture sequence homology. Based on this approach, we propose an advanced

method, piRNAdetect, for reliable computational prediction of piRNAs in genome

sequences. Utilizing the n-gram model can enhance the detection of ncRNAs that have

sparse folding structures with many unpaired bases. By incorporating the n-gram

model with the generalized ensemble defect, which assesses structure conservation

and conformation to the consensus structure, we further propose RNAdetect, a novel

computational method for accurate detection of ncRNAs through comparative genome

analysis. Extensive performance evaluation based on the Rfam database and bacterial

genomes demonstrates that our approaches can accurately and reliably detect novel

ncRNAs, outperforming the current advanced methods.
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NOMENCLATURE

The mathematics notations in the first section.

G Length of the target genome sequence

L
i

Length of the read from the i-th source

N
i

Number of reads from the i-th source

L Set of overall read lengths {L
i

}

N Set of overall read numbers {N
i

}

L Average read length over available sequencing sources

N Number of total reads

K Length of valid overlap in bps (base pairs)

C Coverage depth NL/G

✓ Normalized valid overlap K/L

The mathematics notations in the second section.

G
n

Graph of the n-th topological network

V
n

Set of nodes in the n-th graph

E
n

Set of weighted edges in the n-th graph

N Length of RNA sequence

R Topological similarity

R
S

Structural similarity

R
C

Connected similarity

R
E

Sequence similarity
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The mathematics notations in the third section.

L Length of the sequence

R Homologous likelihood

S Maximum homologous likelihood for a sequence

Z Z-score for the similarity measure

n Size of n-gram model

The mathematics notations in the fourth section.

⌦ Structure ensemble of the RNA sequence

S Structure matrix of the RNA structure

N Length of the RNA sequence

E
i

MFE of the i-th sequence

E
single

Average MFE for the sequences in the alignment

E
cons

MFE for the sequence alignment

P
A

Probability of the alignment between two RNA sequence

P
S

Probability of the RNA structure

P
cons

Consensus structure score

R Homologous likelihood

Z Z-score for the features

d Distance between two RNA secondary structures

n Ensemble defect of the RNA structure
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1. INTRODUCTION

1.1 Background

In 1944, Oswald Avery and his colleagues published experimental evidence

revealing that deoxyribonucleic acid (DNA) is the carrier of genetic information [2].

The study shed light on our understanding of genetics and inspired the discovery of

genetic code. Later in 1958, the central dogma of molecular biology was first stated by

Francis Crick [3]. The central dogma describes genetic information is transcribed from

DNA to RNA, and then coding RNA is translated to proteins. In this scenario, RNA

has been regarded as an intermediary in the gene expression until the discovery of

functional noncoding RNAs in the 1980s [4]. Noncoding RNAs were found to be much

more abundant than coding RNAs and play crucial roles in diverse cellular processes

such as transcriptional and post-transcriptional regulation, chromosome replication,

RNA processing and modification, and protein degradation and translocation [5–7]. It

is now known that housekeeping RNAs, such as transfer RNA (tRNA) and ribosomal

RNA (rRNA), perform structural organization and catalytic roles in the translation

process. Moreover, several small noncoding RNAs, such as micro RNA (miRNA),

Piwi-interacting RNA (piRNA), and short interfering RNA (siRNA), are found to

be associated with regulation and suppression in diverse biological processes [8–10].

These ncRNAs play important roles in gene silencing and protecting the genome

from invasive transposons [11, 12]. Recent studies have shown that some ncRNAs

are linked to the genome stability and a variety of inherited diseases and cancers [13–

20]. These findings suggest the clinical importance of ncRNAs, and hence there is a

pressing need for e↵ective computational methods that can be used for computational

identification of ncRNAs.
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The sequencing technology had advanced rapidly since Fred Sanger developed

chain-termination sequencing method and sequenced the first DNA genome with 5,375

nucleotides in 1977 [21, 22]. With the advent of the high-throughput technique, it

becomes possible to sequence large-scale genomes and transcriptome with reasonable

cost. Meanwhile, these genome-wide sequences provide a mine of genetic information,

that facilitates the further analysis and ncRNA discovery with computational methods.

In this dissertation, we discuss the emerging topics in genome sequencing and analysis

with DNA and RNA. First, the optimal hybrid sequencing and assembly for accurate

genome reconstruction are discussed in the beginning. Second, the structural RNA

alignment is discussed since RNA secondary structures are better conserved and

identified. Furthermore, the e�cient new detection approaches for novel ncRNAs in

genomes are studied.

1.2 Dissertation Outline

This dissertation is organized as follows. In Section 2, the optimal hybrid

sequencing and assembly are studied. We derive the conditions for whole genome

reconstruction from multiple read sources at a given confidence level and also introduce

the optimal strategy for combining reads from di↵erent sources to minimize the overall

sequencing cost. In Section 3, we address the problem of global structural alignment

of pairwise RNA sequences, and propose an innovate method for RNA structural

alignment through topological networks. In Section 4, we study computational

detection for piRNAs using n-gram models and support vector machine. We develop

a new approach by utilizing the n-gram model to classify the sequences and extract

e↵ective features to capture sequence homology for the e�cient detection. In Section 5,

we further study the computational detection for novel noncoding RNAs, and propose

a novel computational method for accurate detection of ncRNAs through e�cient

2



comparative genome analysis. Finally, conclusions and future works are summarized

in Section 6.
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2. OPTIMAL HYBRID SEQUENCING AND ASSEMBLY ∗

2.1 Introduction

Modern high-throughput shotgun sequencing devices sequence genomes using

proprietary techniques to generate a large number of relatively short sequence

fragments. Depending on the technology used, the sequence fragments, typically called

reads, have di↵erent lengths. The desired read length a↵ects the choice of sequencing

technology and the overall cost of the sequencing experiments. In genome assembly

studies, assembly algorithms go through multiple steps to reconstruct the original

genome from the numerous tiny reads, where conditions on minimum read length and

coverage need to be met to distinguish repeats and faithfully reconstruct the original

genome. At present, there are various high-throughput sequencing platforms [23, 24],

where the major commercially available technologies for next-generation sequencing

(NGS) include Illumina HiSeq, Roche 454, and Life Technologies SOLiD. Additionally,

third generation technologies such as PacBio have emerged, which are based on

single-molecule sequencing and generate long reads. Depending on the technology

used, di↵erent sequencing platforms generate reads of di↵erent length and quality at

di↵erent costs. In general, the cost of generating long reads is substantially higher than

that of obtaining short reads, while longer reads make the assembly more accurate,

particularly when repeated regions and gaps are present in the genome. It is possible

to reduce the average sequencing cost by combining reads with di↵erent length and

cost from multiple sources obtained through di↵erent sequencing technologies. This

is referred to as the hybrid assembly, and hybrid assemblers have been developed

∗Reprinted with permission from Optimal hybrid sequencing and assembly: Feasibility conditions
for accurate genome reconstruction and cost minimization strategy by Chun-Chi Chen, Noushin
Gha↵ari, Xiaoning Qiana, Byung-Jun Yoon, 2017. Computational Biology and Chemistry, Volume
69, August 2017, Pages 153-163, Copyright 2017 by Elsevier Ltd.
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to assemble genome sequences based on reads from multiple sources [25–29], which

include widely-used algorithms such as CABOG [25] and ALLPATHS-LG [26].

Although there exist various hybrid assemblers that can assist with genome

assembly from multiple read sources, there is still a pressing need for rigorous

investigation of the feasibility of complete genome reconstruction and the overall

sequencing cost for such hybrid approaches. In recent years, there have been research

e↵orts to examine the minimum requirements for complete genome reconstruction [30]

and to derive a lower bound for the read length and the coverage [31] for the case of

genome assembly based on a single read source. The increasing popularity of hybrid

assembly, as well as the potential quality improvement and cost reduction that can

be attained through the combination of multiple read sources have motivated us

to study critical aspects of hybrid assembly in this work. First, we investigate the

feasibility conditions to ensure complete genome reconstruction based on multiple

read sources. Second, we propose the optimal strategy for combining di↵erent read

sources to minimize the overall sequencing cost while ensuring the feasibility of

complete genome reconstruction. Finally, we present simulation results that verify the

feasibility conditions presented in this work and clearly demonstrate that the proposed

optimal hybrid sequencing strategy can lead to complete genome reconstruction at

the minimum sequencing cost.

2.2 Feasibility Conditions for Accurate Genome Reconstruction and

Cost Minimization Strategy

The main research question that we address in this study is how one can identify

the optimal hybrid sequencing strategy that combines reads from multiple sources

obtained through di↵erent high-throughput sequencing technologies such that it (i)

guarantees the feasibility of accurate whole genome assembly at a given confidence

5



level (or “target success rate”); and (ii) minimizes the total sequencing cost.

In Section 2.2.1, we first discuss the feasibility of whole genome reconstruction

based on multiple read sources, and derive the conditions that can ensure a reliable

assembly of error-free reads. Following previous studies on the feasibility of complete

genome reconstruction based on a single read source [30–32], our work, which extends

the feasibility analysis to multiple read sources, also focuses on the error-free case to

investigate the theoretical bounds for complete genome reconstruction. In practice,

we note that reads contain errors and there are paired-reads that can be regarded

as long reads with erasures. In this work, we simplify the read model and focus

on deriving feasible bounds and optimal sequencing strategies for complete genome

reconstruction with error-free reads. The derived results can be extended to paired-

reads and reads with errors in a relatively straightforward manner by incorporating

read error corrections [33–36].

As observed in Motahari et al. [30] and Bresler et al. [31], the assembly feasibility

depends on both the read lengths and the genome coverage. We can accurately

reconstruct the target genome sequence only by taking reads with proper lengths,

and at the same time, only when the su�cient number of such reads are available

to reasonably cover the entire genome. Although sequencing technologies that yield

longer reads may satisfy the feasibility conditions for a wider variety of genomes,

they also tend to incur higher sequencing cost. Consequently, from the perspective of

resource (or budget) allocation, it would not be prudent to solely rely on read sources

that yield long reads to satisfy the feasibility conditions as such an approach will

incur very high sequencing cost to meet the coverage conditions.

In the proposed optimal hybrid sequencing approach, which we present in Sec-

tion 2.3, we optimally combine multiple read sources to meet the assembly feasibility

conditions – comprised of the “coverage condition” and the “bridging conditions” –
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where the longer (and more expensive) reads are used to ensure the feasibility of

accurate genome assembly while the shorter (and more a↵ordable) reads are used to

satisfy the coverage condition. The proposed hybrid sequencing and assembly approach

is optimal in the sense that it identifies the best strategy for combining multiple

read sources to minimize the total sequencing cost with probabilistic guarantees of

the accurate whole genome assembly. This is achieved by formulating a constrained

optimization problem based on the derived assembly feasibility conditions to determine

the optimal combination that results in the minimum cost.

Finally, in Section 2.3.1, we present an enhanced version of the multi-bridging

algorithm that was originally proposed in Bresler et al. [31], which is a genome

assembly algorithm based on de Bruijn K-mer graph. We show that the modified

algorithm can faithfully reconstruct the whole genome at the desired target success

rate when the predicted feasibility conditions are met.

2.2.1 Feasibility of Accurate Whole Genome Reconstruction

We first define the mathematical notations to be used in our feasibility analysis

for whole genome hybrid assembly. G denotes the length of the target genome to

be reconstructed. L
i

denotes the read length from the i-th source and L = {L
i

}

is defined as the set of all read lengths. Similarly, N
i

denotes the number of reads

from the i-th source and N = {N
i

} is the set of all read numbers for all sources.

The total number of reads is denoted by N and we denote the average read length

for all available reads as L. C = NL/G denotes the coverage depth. Finally, K is

defined as the length of valid overlap in base pairs (bps) and ✓ = K/L denotes the

normalized valid overlap. The value K denotes the minimum overlap that is needed

to recognize that consecutive overlapping reads that can be assembled into a contig

certainly belong to segments in the target genome sequence. A contig is defined as

7



a set of overlapping reads that represent an extended segment in the genome. It is

typical for most genome assemblers to assemble reads into multiple contigs. However,

whole genome reconstruction (and the feasibility thereof) being the main focus of

this work, we aim to assemble the given reads into a single contig.

When considering multiple read sources from di↵erent sequencing technologies,

we will have multiple types of reads at our disposal, each of which has di↵erent

read length and per-base sequencing cost. An important question we face is how to

combine the available read sources and how many reads to draw from each source

to ensure accurate whole genome reconstruction at a desired confidence level (i.e.,

target success rate). In what follows, we aim to address this question. All proofs and

mathematical derivations of the propositions presented in this section can be found

in the Appendix.

2.2.1.1 Feasibility

It is challenging to faithfully reconstruct the original genome from millions of

short reads, partly due to the huge amount and the short length of the reads to be

assembled, but also due to the large size and the inherent complexity of many genomes.

For example, the size of a simple bacterial genome can be several millions of base pairs

while the size of eukaryotic genomes can range from 2 million to over 100 billion in base

pairs [37]. We assess the feasibility of genome assembly from a probabilistic perspective

by adopting the concept of ✏-feasibility introduced in Lander and Waterman [32].

As in Bresler et al. [31], we define “successful” genome reconstruction according to

the notion in the “Human genome sequence quality standards” [38] published by

the National Human Genome Research Institute (NHGRI), where “finishing” the

sequencing of a given chromosome requires that there should be a contiguous sequence

that covers at least 95% of the entire chromosome. Based on this definition, given a set
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of reads from multiple sources with L (i.e., read length) and N (i.e., number of reads),

if there exists an assembler that can successfully reconstruct the original genome

sequence with a success rate of 1 � ✏, we say the assembly is ✏-feasible with reads

(N,L). The value ✏ can be viewed as the target failure rate for genome reconstruction.

In the following, we discuss conditions that need to be met for ✏-feasible assembly.

2.2.1.2 Coverage Condition

Read coverage is defined as the average number of reads that cover a base pair in

the target genome sequence. While high read coverage can lead to better assembly,

it also results in higher sequencing cost. Obviously, it is impossible to completely

reconstruct the whole genome unless every base pair in the genome sequence is covered

by one or more reads. Lander and Waterman’s coverage condition provides a coverage

bound with the required number of reads to make the assembly feasible based on

reads with fixed length [32]. The coverage condition can be further extended by

considering a set of random reads that originate from a long genome sequence, where

their starting locations are assumed to follow a Poisson arrival process [30, 39]. The

following proposition summarizes some key properties regarding the read coverage

based on multiple read sources.

Proposition 1

1.The probability of having reads without valid overlap can be bounded by:

P
overlap

(N, L)  Ne�C(1�✓).

2.The expected number of contigs is Ne�C(1�✓).

3.The expected number of reads in a contig is eC(1�✓).

4.The expected length of a contig (in base-pairs) is given by:
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eC(1�✓) + L,

where P
L

= e�C(1�✓) and L
c

(L) is a correction term for the terminal e↵ect and the

approximation is based on the long sequence assumption.

In Proposition 1, the probability of having non-overlapping reads is dependent on

the total number of reads and the average length of reads (N,L), or equivalently, on

the coverage and the average length (C,L). Given a set of reads with (N,L), for

the assembly to be ✏-feasible, the configuration (C,L) needs to lower the probability

P
overlap

of having non-overlapping reads. We define C
LW

as the minimum coverage

that is needed to satisfy the coverage condition so that P
overlap

 ✏.

2.2.1.3 Bridging Conditions

The feasibility of assembly also depends on the repeat patterns that are present

in the target genome sequence. Repeats may lead to ambiguity unless they can be

resolved based on the obtained reads. Figure 2.1 illustrates the examples of repeat

patterns that need to be resolved.

A simple example is shown in Fig. 2.1(a), where two identical genome segments of

length `
repeat

are present in the genome sequence. In order to accurately localize such

repeats in the target genome, we have to check both sides of each repeating segment

to ensure that the two segments are bounded by di↵erent neighboring bases. For

this, we need a “bridging read” whose length is at least `
repeat

+ 2 (see Fig. 2.1(a)).

If such a read exists for a repeating segment, it is said to be “bridged” as defined

in Bresler et al. [31]. Otherwise, the repeat remains “unbridged”. Figure 2.1(b)
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A                      C G                      T

repeat Bridging read
l repeat +2

(a) Repeat

A                  A
(b) Triple Repeat

G                  C T                  T

(c) Interleaved Repeat
l triple

l inter

G             TA             C

repeat length m repeat length n

Figure 2.1: Repeats in genome sequences. (a) A repeat pattern that consists of two
identical genome segments. A bridging read covering the second segment and the
neighboring bases at both ends is depicted. (b) A triple repeat pattern. (c) An
interleaved repeat pattern.

illustrates another example, called a triple repeat. A triple repeat consists of three

identical genome segments, and we say that the triple repeat is unbridged if none of

the segments is bridged. There can be also interleaved repeats, where two di↵erent

pairs of repeats are located in an interleaved manner as shown in Fig. 2.1(c). As

before, an interleaved repeat is said to be unbridged if none of the repeating segments

is bridged. Both triple repeats and interleaved repeats can cause ambiguity unless

there exist bridging reads that allow us to distinguish the repeating segments and

properly locate their respective positions in the genome.

As illustrated in Fig. 2.2, in the absence of bridging reads, we cannot unam-

biguously resolve the locations of the repeating segments. Such segments may be

switched during the assembly process, and as a result, the ✏-feasible assembly may

not be guaranteed. For an unambiguous assembly in the presence of triple repeats

and interleaved repeats, we need bridging reads whose length is longer than the

critical length `
crit

= 1 +max{`
inter

, `
triple

, `
self

} to ensure ✏-feasible assembly. `
triple

denotes the longest length of any triple repeat, and `
inter

is the maximum length

11
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A  A             G

A  

C        T

A            G

Non-bridging read

(b) Ambiguity of interleaved repeat

C        T

Figure 2.2: Ambiguity from repeats. (a) Ambiguity from triple repeat without
bridging read. (b) Ambiguity from interleaved repeat without bridging read.

of a shorter repeat that is involved in an interleaved repeat, when all such shorter

repeats for all interleaved repeats in the target genome are considered. `
self

is the

length of the longest self-repeat, which will be discussed later. This is typically

referred to as the Ukkonen’s condition [31, 40]. The probability of having unbridged

repeats is another critical factor in considering the feasibility of complete genome

assembly. The probability bounds associated with unbridged reads are summarized

in Proposition 2.

Proposition 2

1.An interleaved repeat is unbridged if neither repeat pair is bridged. Therefore, the

probability bound for all interleaved repeats to remain unbridged is given by:

P (2)

bridged

=
X

m,n

b
m,n

e�2

P
i

N

i

G

[(L

i

�m�1)

+
+(L

i

�n�1)

+
],

where b
m,n

is the number of interleaved repeats in the genome sequence with repeat
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lengths m � n, and (L� n� 1)+ = max(L� n� 1, 0).

2.The probability bound for triple repeats that can lead to assembly error is given by

P (3)

bridged

=
P

m

d
m

e�3

P
i

N

i

G

(L

i

�m�1)

+
+ P (3)

comb

, which is the sum of the probabilities

that all triple repeats remain unbridged and a correction term to account for cases

where some bridged triple repeats may still lead to ambiguity. d
m

is the number

of triple repeats with length m, and P (3)

comb

is the correction term for the case when

some triple repeats are also involved in other repeats in the target genome to be

reconstructed.

3.Finally, the overall bound for the probability that the repeat patterns in the

genome may lead to ambiguity in the assembly process is given by P
bridged

(N,L) =

P (2)

bridged

+ P (3)

bridged

.

For ✏-feasible genome assembly, there should be a read source whose reads are longer

than the critical length `
crit

, and at the same time, P
bridged

(N,L) has to be less than

✏. In other words, for a read set (N,L) to have an ✏-feasible assembler, there should

be long reads with length L
i

such that L
i

> L
crit

. At the same time, there should be

a su�cient number of long reads to ensure that P
bridged

(N,L)  ✏.

2.2.1.4 Self-repeat Bridging Conditions

A self-repeat consists of multiple consecutive repetitions of the same sequence

pattern, as seen in tandem repeats and poly-A segments. Let us consider a self-repeat

segment that consists of identical nucleotide bases. For instance, we may have a

segment of n repeated adenines (A), which we denote as An for simplicity. If similar

self-repeat patterns appear more than once in the target genome, they can lead to

ambiguities in the assembly. Figure 2.3 illustrates such an example, where we have

two self-repeats An and Am whose locations may be switched during the assembly

process. To ensure ✏-feasible assembly, we need to resolve these ambiguities, for which
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An T                  TAm
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Figure 2.3: Ambiguity due to multiple self-repeats. Unless the covering read can
cover the entire self-repeat and its both ends, there will be ambiguity in the assembly.

we need bridging reads that can cover the self-repeats and the neighboring pairs at

both ends. As a result, the self-repeat condition requires bridging reads that are

longer than `
self

+ 1, where `
self

is defined as the length of the longest self-repeat in

the target genome. An upper bound P
self

for the probability of having ambiguous

self-repeats is given in Proposition 3.

Proposition 3 Given the number of self-repeats c
m

with length m, the bound for

the probability of having unbridged self-repeats is:

P
self

(N, L) =
X

m

c
m

e
P

i

N

i

G

(L

i

�m�1)

+
.

2.2.1.5 Final Conditions for ✏-feasible Genome Assembly

So far, we have considered several conditions that need to be met to guarantee ✏-

feasible assembly and have derived the probability bounds for non-overlapping reads,

unbridged interleaved repeats, unbridged triple repeats, and unbridged self-repeats.

Based on our analysis, we arrive at the following overall probability bound:

P
feasible

(N,L) = P
overlap

(N,L) + P
bridged

(N,L) + P
self

(N,L)
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Therefore, given a read set (N,L), the assembly of the target genome is ✏-feasible if

P
feasible

(N,L)  ✏.

2.3 Minimizing the Cost of Sequencing

When we have access to multiple read sources that use di↵erent sequencing

technologies, there exists considerable flexibility regarding how to combine the

available read sources – i.e., how many reads to draw from each source. Reads from

di↵erent sources may have di↵erent lengths as well as di↵erent per-base sequencing

cost. As a result, this flexibility can be exploited to minimize the overall sequencing

cost while ensuring ✏-feasible assembly. Intuitively, this can be achieved by utilizing

longer reads (which are typically more expensive) to meet the bridging conditions and

the shorter reads (which are relatively inexpensive) to meet the coverage condition.

The problem of identifying the optimal strategy for combining multiple read sources

can be naturally formulated as a constrained optimization problem, where the goal is

to find the read set with (N,L) that satisfies the assembly feasibility conditions and

minimizes the total sequencing cost. Let w
i

be the per-base sequencing cost to obtain

reads from the i-th source, where L
i

and N
i

are the read length and the number of

reads, respectively. Then the optimization problem can be formulated as follows:

minimize
N={N

i

}

 

X

i

N
i

L
i

w
i

!

s.t. P
feasible

(N,L)  ✏; N
i

2 N, 8i.

It is important to note that the above optimization problem is a convex discrete

optimization problem with constraints as stated in Proposition 4.

Proposition 4 The problem of finding the optimal read numbers N that minimize

the sequencing cost is a discrete convex optimization problem if L
i

� 2⇢

C

L ' 2

C

L for
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all L
i

2 L, where ⇢ = N

(N�1)(1�✓)

.

Furthermore, minimizing the assembly feasibility bound P
feasible

based on a fixed

sequencing budget is also a discrete convex optimization problem. In case there

are two read sources with read lengths L
1

and L
2

(> L
1

), the condition for the

sequencing cost minimization problem to be convex is L
2

 C

2

L
1

. This condition

is easily met in practical cases, since the coverage is typically high in order to

achieve accurate genome assembly. As there exist e�cient techniques for solving

convex optimization problems, the cost minimization problem at hand can be solved

by mixed-integer convex programming without di�culty [41, 42]. Moreover, fairly

accurate approximate solutions can be found in a very e�cient manner, by relaxation

of the discrete variables [43].

2.3.1 Assembly Algorithm

Most genome assembly algorithms take the so-called overlap-layout-consensus

approach to reconstruct the genome from a large number of short reads. When

using a greedy strategy, reads with overlap are gradually joined together to form a

longer contig. This assembly process can be easily trapped in local optima due to

the ambiguities that may arise from repeat patterns that are present in the genome

sequence [30, 44]. To resolve such ambiguities, we need longer reads that can bridge the

repeats, thereby allowing us to accurately stitch the contigs together. By representing

the reads as nodes and by connecting the nodes that correspond to overlapping

reads, we can construct an assembly graph that reflects the relationship between the

numerous reads [45]. Based on the constructed graph, we can identify the consensus

genome sequence by finding a Hamiltonian path in the graph that visits every node

exactly once, although finding such a path is computationally expensive [46].

Another approach that is especially popular for genome assembly is the K-mer
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AGCTTTT                          TTCGAA

AATG GCT GGCT TGGCA
Read 1 Read 2

AATG ATGG

sliding window

TGGC
GGCTCTTG TTGG

GGCA

De Brujin Graph

AATGGCTTGGCA

GCTT

Genome Sequence

Figure 2.4: Construction of a de Bruijn graph. Each read is scanned by a sliding
window with length K = 4 to form a graph of K-mers. The K-mer “TGGC” is an
X-node with two incoming edges as well as two outgoing edges.

graph based approach, in which reads are assembled by first constructing a de Bruijn

graph and then looking for an Euler path [46, 47] that visits every edge exactly once

to reconstruct the target genome [31, 48]. A de Bruijn graph is a directed graph of

nodes that represent K-mers, where the edges connect the K-mers that overlap in

some of the reads. To construct a de Bruijn graph, each read is scanned sequentially

by sliding a window of length K, and the scanned subsequences are extracted as

K-mer nodes.

As illustrated in Fig. 2.4, K-mers that are adjacent in a given read are connected

to each other in the de Bruijn graph in the same order. K-mers from di↵erent reads

may also be connected if the reads overlap by at least K bases. Due to the presence of

repeats in the target genome sequence, K-mers may have more than one incoming or

outgoing edges in the de Bruijn graph. A K-mer with multiple incoming and outgoing

edges is referred to as an X-node [31]. If there are only simple X-nodes in a given de
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Bruijn graph, which correspond to non-interleaved pairwise repeats, it is relatively

easy to find the target genome sequence through the Euler tour algorithm [47, 49].

However, if interleaved or triple repeats are present in the target genome, the graph

will contain tangled X-nodes leading to multiple candidate Euler paths. Unless such

repeats are properly resolved, ✏-feasible assembly cannot be guaranteed.

Repeats, and therefore the X-nodes that correspond to repeats, can be distin-

guished by bridging reads, which motivates us to remap X-nodes to the corresponding

reads and resolve the multi-path problem through the use of bridging reads. The

“multi-bridging” algorithm proposed in Bresler et al. [31] takes aK-mer based approach

and incorporates a scheme to bridge X-nodes to ensure ✏-feasible reconstruction of

the target genome, in case the read set satisfies the following conditions: (i) triple

repeats are all bridged; (ii) at least one repeat is bridged in an interleaved repeat;

(iii) the genome sequence is covered by reads with valid overlap (minimum of K).

The first condition ensures that X-nodes whose in-degree and out-degree are higher

than two are all bridged. This increases the probability bound for unbridged triple

repeats to
P

m

3d
m

e�
P

i

N

i

G

(L

i

�m�1)

+
, where d

m

is the number of triple repeats and

the factor 3 is due to the requirement that all three repeating segments in each triple

repeat should be bridged. Despite this increase, the multi-bridging algorithm has

TGGCT
GCTGTTGTGG

ATGG

CTGG GCTC
Bridging read

GTTA

GTTG

Figure 2.5: Example of an unresolved X-node for a triple repeat. The X-node TGGCT
is not resolved since not all repeats are bridged. The K-mers CTGG and GCTC are
marked with the bridging read for the unresolved X-node.
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been shown to nearly achieve the lower bound on the minimum coverage required

for genome reconstruction when `
inter

is significantly larger than `
triple

. However, the

performance gap is known to increase when the `
triple

is comparable to or exceeds

`
inter

.

In fact, we can modify the original multi-bridging algorithm proposed in Bresler

et al. [31] to further reduce the gap between the lower bound on minimum coverage

depth required for genome reconstruction and the actual lowest coverage depth at which

✏-feasible assembly can be practically achieved by the algorithm. The performance

gap of the enhanced multi-bridging algorithm to the feasibility bound depends on the

target genome sequence and the available read sets as illustrated in the Appendix.

The pseudocode of the enhanced multi-bridging algorithm is shown in Algorithm 1.

Unresolved X-nodes may cause di�culties when identifying the Euler path, since

the path may not be unique in such a case. However, by marking the repeating

segment (or, equivalently, the corresponding incoming-outgoing edge pair in an X-

node) that can be bridged as described in Step 3, we may still be able to find the

correct Euler path from the graph traversal, despite the presence of some unresolved X-

nodes (see Fig. 2.5 for illustration). The proposed enhanced multi-bridging algorithm

can accurately assemble the target genome sequence if the remaining unmarked

repeats are all simple repeats, in which case the Euler path can be uniquely identified.

For example, an X-node that corresponds to a triple repeat may be reduced to

a simple X-node when one of the repeating segments is bridged, and unless the

remaining unbridged repeating segments are involved in another interleaved repeat,

the remaining ambiguities can be resolved while traversing the unique Euler path.

As a result, the proposed algorithm can resolve additional ambiguities that could not

be handled by the original multi-bridging algorithm [31], thereby further reducing

any gap between the theoretical lower bound on minimum coverage depth [32] and
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Algorithm 1: Enhanced Multi-Bridging Algorithm

Output: sequence Ŝ.
Input: reads R, parameter K.

K-mer graph construction:
1.Build K-mer nodes for all reads R.

foreach read belongs to R do

Extract and record K-mer from the read
Connect K-mer nodes that are adjacent in one read

end

Repeat step2 and step3:
2.Condense the constructed graph.

foreach pair of K-mer nodes belongs to graph do

Combine K-mer nodes that correspond to a unique path
end

X-nodes resolution:
3.Bridge X-nodes.

if repeat for X-nodes are all bridged then

Resolve X-nodes by separating repeats w.r.t. the bridging reads.
else

Mark bridged repeats at X-nodes.
end

until all bridging reads are applied;
4.Find the Euler path in the final graph
5.Reconstruct the genome sequence Ŝ accordingly.

Figure 2.6: Enhanced Multi-Bridging algorithm.

the lowest coverage depth at which ✏-feasible assembly is actually possible.

Finally, following the complexity analysis of the original multi-bridging algorithm

in Bresler et al. [31], the computational complexity of the enhanced assembly algorithm

presented in this section can be analyzed in two phases: (i) K-mer graph construction

and (ii) X-node resolution. The run-time for constructing the K-mer graph is bounded

by O(
P

i

(L
i

�K)N
i

K) with the assumption that the complexity for accessing K-

mers is O(K). For the resolution of X-nodes, the complexity is upper bounded

by O
⇣

P

i

L
i

P

L

i

m=K

a
m

⌘

, where a
m

is the number of repeats with length m. Our
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enhanced multi-bridging algorithm marks the bridged repeats for unresolved X-nodes

in a look-up table, and therefore the computational complexity increase is upper

bounded by O(
P

L

max

m=K

a
m

), where L
max

is the longest read length. Consequently, the

worst-case computational complexity of our enhanced multi-bridging algorithm is still

O
⇣

P

i

L
i

P

L

i

m=K

a
m

⌘

for the X-node resolution.

2.4 Results and Discussion

To validate the derived feasibility conditions for hybrid genome assembly and to

assess the performance of the enhanced multi-bridging algorithm proposed in this

section, we conducted extensive numerical experiments using a number of bacterial

and archaeal genomes. We considered two read sources with read lengths L = {L
1

, L
2

}

and we sampled error-free reads from the target genome for the two sources with

read counts N = {N
1

, N
2

}. We tested our enhanced multi-bridging algorithm for

✏-feasible assembly at ✏ = 5%, where K was set to 40 to maintain appropriate

complexity for constructing the K-mer de Bruijn graph. Increasing K can reduce

the complexity of the X-node bridging step, but on the other hand, it will increase

the complexity of building the K-mer graph and also increase the probability of

having reads without valid overlap. The read set was sampled from the target genome

for di↵erent values of average read length, based on (N,L) predicted to result in ✏-

feasible assembly. The trials were repeated 100 times in each case and the number of

successful genome reconstructions was recorded. For a given average read length, the

minimum coverage that makes ✏-feasible assembly possible based on the proposed

algorithm was compared to the theoretical lower bound on minimum coverage depth.

The vertical axes in Figs. 2.7–2.9 (a,b) correspond to the normalized coverage C/C
LW

.

The green line in each figure shows the assembly feasibility bound for di↵erent average

read lengths, and the upper-right region is the feasible region for ✏-feasible genome
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assembly. The results based on the original Multi-Bridging algorithm [31] are shown

in purple lines for comparison.

In our studies, we used two bacterial genome sequences from Staphylococcus aureus

(NCBI ACCN: PRJNA19489) and Rhodobacter sphaeroides (NCBI ACCN: PRJNA57653)

that are included in the Genome Assembly Gold-standard Evaluations (GAGE) [50].

Additionally, we used the archaeal genome of a Sulfolobus Islandicus strain (NCBI

ACCN: PRJNA162067), whose triple repeat length `
triple

is roughly the same as `
inter

.

For each of these genomes, we considered two di↵erent read sets. In the first read set,

both read lengths L
1

and L
2

were set to exceed the critical length `
crit

to satisfy the

Ukkonen’s condition, where the second read length L
2

was set to be similar to `
crit

to test the critical length. In the second read set, the read lengths (L
1

, L
2

) were set

to (4,300, 150) in order to simulate the case of combining the reads obtained from

PacBio P4-C2 [51] and Illumina HiSeq [52]. Although the average read length can

take any value between L
1

and L
2

, to ensure complete genome reconstruction, the

coverage condition needs to be satisfied by properly combining the two types of reads.

More specifically, the actual read coverage C should be no smaller than C
LW

.

It is important to note that a much larger number of short reads are needed

(compared to long reads) to suppress P
bridged

, which is why the normalized coverage

shown in Figures 2.7–2.9 (a,b) always surges when most of the reads used for the

assembly are short reads (i.e., when the average length is short). As the average read

length increases, the term that corresponds to the coverage condition dominates the

probability bound P
feasible

(N,L) and the normalized coverage converges to one. In

case we are using reads whose lengths are L
1

= 4,300 and L
2

= 150, the average

length can be significantly lower than the critical length, as shown in Figs. 2.7–2.9 (b),

which is because the bridging condition can be satisfied with a moderate number of

long reads (L
1

= 4,300) while the coverage conditions can be satisfied by the short
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reads. As a result, the coverage does not increase too much to satisfy the bridging

condition by using the long reads. However, there is some overhead for incorporating

the short reads to improve the coverage, since many of the short reads will be covered

by the long reads.

Suppose the ratio between the per-base sequencing cost for the long reads (L
1

=

4,300) and that for the short reads (L
2

= 150) is approximately 6:1 [for reference, see

52]. Figures 2.7–2.9 (c) show the minimum sequencing cost for di↵erent N = (N
1

, N
2

)

as well as the optimal value of N that corresponds to the optimal read set that

minimizes the sequencing cost while meeting the assembly feasibility conditions.

One interesting di↵erence across the experiments based on di↵erent genomes is

that, in S. aureus and R. sphaeroides genomes, `
inter

was significantly larger than

`
triple

, hence the terms corresponding to unbridged interleaved repeats dominated the

feasibility probability P
feasible

(N,L). On the other hand, in the S. Islandicus genome,

`
inter

and `
triple

were comparable, hence the term for unbridged interleaved repeats

and that for unbridged triple repeats were both significant in P
feasible

(N,L).
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Figure 2.7: Staphylococcus aureus: G = 2,872,915, `
inter

= 1,799,
`
triple

= 1,397, `
self

= 330.
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Figure 2.8: Rhodobacter sphaeroides: G = 3,188,524, `
inter

= 271,
`
triple

= 114, `
self

= 126.
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Figure 2.9: Sulfolobus islandicus: G = 2,655,201, `
inter

= 761,
`
triple

= 734, `
self

= 15.
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2.5 Conclusions

In this section, we discussed two important issues that relate to whole genome

assembly based on multiple read sources, namely, the feasibility of assembly and the

minimization of sequencing cost. Our work extends a previous study by Bresler et al.

[31], in which they investigated the assembly feasibility conditions based on a single

read source. To take advantage of multiple read sources through the use of di↵erent

sequencing technologies that are currently available, we examined the conditions that

can ensure complete genome reconstruction at a desired success rate based on multiple

read sources. An important aspect of hybrid sequencing and assembly is that, when

multiple read sources are available, the feasibility conditions for genome reconstruction

can be satisfied by di↵erent combinations of the available sources. This opens up the

possibility of optimally combining the reads to minimize the overall sequencing cost

while ensuring complete genome reconstruction. We showed that one can predict the

optimal read set that satisfies the feasibility conditions and minimizes the sequencing

cost by formulating and solving a constrained discrete optimization problem that is

practically convex. Furthermore, we also introduced an enhanced assembly algorithm

that improves the performance of the original multi-bridging algorithm in Bresler et al.

[31]. Through extensive simulations based on several genomes and di↵erent read sets,

we verified the feasibility conditions derived in this section, showed the potential of

the proposed optimal hybrid sequencing and assembly scheme, and demonstrated the

performance of the enhanced multi-bridging algorithm. In this work, we focused on

the case of error-free reads in order to investigate the feasibility of complete genome

reconstruction based on hybrids reads that do not contain any sequencing error. In

addition to the assembly feasibility conditions regarding the minimum required length

of the reads, our study provides the theoretical bound on the minimum coverage
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required for complete genome reconstruction at the desired success rate. In the

presence of sequencing errors, the minimum coverage depth required for complete

genome reconstruction is bound to increase, in order to be able to e↵ectively correct

the errors for accurate assembly. Assembly feasibility conditions for hybrid reads

with potential sequencing errors require further analysis in the future. However, the

overall concept and strategy for optimal hybrid sequencing and assembly discussed in

this section will carry over to the case when sequencing errors are present.
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3. PAIRWISE GLOBAL STRUCTURAL ALIGNMENT OF RNA SEQUENCES

THROUGH TOPOLOGICAL NETWORKS

3.1 Introduction

RNA sequence alignment is one of the important bioinformatics tasks for com-

parative genomic analysis to help speed up functional study and annotation of

novel genes as more and more RNAs have been identified through next-generation

sequencing (NGS). RNA sequence alignment based on the sequence similarity is one

of the common approaches to identify homolog RNA families for comparative analysis.

Homologous RNA sequences with a high similarity can be easily recognized through

the dynamic programming algorithms that find the optimal alignment to minimize

the edit distances between sequences [53, 54]. While for the sequences with a low

level of sequence similarity, the performance of sequence alignment based on the edit

distance is generally inappropriate due to the increasing discrepancies between the

sequences from accumulated nucleotide mutations [55]. The homologous sequences

that descend from the same ancestor can share the similar structure and genomic

functions, but the sequences might di↵er significantly due to accumulated mutations

from genome evolution. As revealed in the comparative structural analyses, the RNA

structures between homologous sequences are more conserved than the sequences

themselves [56–60], and therefore RNA sequence alignment should consider their

underlying RNA folding structures as well.

RNA is a single stranded sequence composed of polymers of the nucleotides

with four types of nitrogenous bases (A, C, G, and U), and has the comprehensive

structure motifs due to the local interaction of the hydrogen bonds between the

organic compound purines (A and G) and pyrimidines (C and U). In general, the
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native three-dimensional structure analysis for RNA is challenging because of the

convoluted tertiary interactions between multiple molecules. Fortunately, due to the

quasi-hierarchical folding structure, RNA secondary structure is more stable and

predictable, and hence is accessible to mathematical analysis [61–63]. RNA secondary

structure is a topology of binary contacts formed by base pairing between Watson-

Crick pairs (AU and CG), and wobble pair (GU), and can be further decomposed into

stem and loop structures, where the stems are the consecutive stacked base pairs and

the loops are unpaired segments bounded by the base pairs as illustrated in Figure 3.1.

For the RNA secondary structure, most base pairs stack in a nested style, in which

for any two base pairs (i
1

, i
2

) and (j
1

, j
2

) either i
1

< i
2

< j
1

< j
2

or i
1

< j
1

< j
2

< i
2

.

In addition, they are non-nested crossing base pairs called pseudoknots. The RNA

structures with pseudoknots make it di�cult for structural alignment through the

standard dynamic programming approaches.

Without given RNA structures, Sanko↵ first proposed a dynamic programming

algorithm to simultaneously solve RNA sequence alignment and common folding

problem (structural alignment) [64]. Several di↵erent implementations of Sanko↵

algorithm have been developed for RNA structural alignment. Among these

implementations, Dynalign and Foldalign use the nearest-neighbor thermodynamic

model to evaluate the free energies of the secondary structure and finds the structure

with the lowest free energy common to the aligned sequences through dynamic

programming [65–68]. Similarly, PARTS introduces the pseudo free energy model

based on the base pairing and alignment probabilities to find the structural alignment

with the maximum of the joint probability [67]. However, the complexity of Sanko↵

algorithm for the structural alignment of two RNA sequences of the length N is O(N6)

in time and O(N4) in space. The extreme time complexity of Sanko↵ algorithm

is impractical for large-scale genome analysis, and hence a number of simplified
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Figure 3.1: RNA structures. (a) Example of RNA structures with stem-loop. The
stems are the consecutive stacked base pairs while the loop is unpaired segments
bounded by the base pairs. (b) Example of RNA structures with pseudoknots. The
non-nested crossing base pairs are pseudoknots.

variations of Sanko↵-like algorithms were developed to e�ciently solve the RNA

structural alignment problem [55, 69, 70]. By using the base pairing probability

as a lightweight energy model, PMcomp modifies the dynamic programming with

restrictions for the matching base pairs to reduce the computational complexity

to O(N3) in time [71]. Following the lightweight energy model of PMcomp, Will’s

LocARNA simplifies the dynamic programming approach with the sparse property
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of the base pairing, and further speed up by the ensemble-based sparsification in

SPARSE to achieve the quadratic time complexity [69, 70]. These programs of

Sanko↵-like algorithms implement with a more or less complete energy model and

find the optimal structural alignment through dynamic programming with various

simplifications.

In contrast to the Sanko↵-like algorithms, we propose a novel approach for RNA

structural alignment by introducing a topological network to integrate RNA sequence

and structure information. The topological network is a convenient representation

for describing elementary features of the underlying structure and has been used

to quantify certain topological features of molecular relationships [72, 73], such as

gene coexpression networks and neural networks. In particular, one of its specific

applications is for global alignment of protein-protein interaction (PPI) networks in

comparative analysis. By capturing physical interactions among proteins in the graph

model for PPI networks [74], PPI network alignment aims to match proteins across

networks in terms of the protein sequence similarity and topological similarity so

that it can transfer functional information of proteins based on aligned or conserved

regions across di↵erent networks. Here the sequence similarity refers to the degree of

homologous resemblance between the protein sequences while the topological similarity

is the similarity of interaction profiles between proteins [75]. One remarkably e�cient

method for global alignment of PPI networks is IsoRank algorithm [76] based on the

spectral graph approach [77] to find the global alignment of multiple PPI networks.

In this study, we adopt the concept of the topological network alignment to derive

an RNA structural alignment by converting RNA sequences to topological networks

according to probabilities of folding structure prediction. Our proposed method for

structural alignment with topological networks (TOPAS ) can e�ciently capture both

the sequence similarity and topological similarity with the computational complexity
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O(N2) in time. Besides, this approach is not restricted to the consecutive nested

structures, so that it can support the RNA structures with pseudoknots. Finally, we

compare our TOPAS algorithm with the Sanko↵ and Sakno↵-like algorithms with the

lightweight energy model. We will show the performance comparison results based on

the benchmark structural RNA families and demonstrate the e�ciency and accuracy

for structural alignment through topological networks.

3.2 Materials and Methods

RNA structural alignment aims to align common folding (stem-loop or pseudoknot)

structures between given RNA sequences. To achieve this, in addition to the sequence

similarity, we innovate to adopt a graphical representation for the sequences composed

of nucleotide bases to capture the topological similarity across sequences based on

their predicted potential folding structures. Such an integration of sequential and

topological information has been proven to be e↵ective in comparative network

analysis [78]. One of such e↵ective approaches to estimate the topological similarity

across networks is Google’s PageRank algorithm [79] where its main idea is that a

pair of objects are likely to be matched if the contiguous neighbors are also matched.

By the similar approach of di↵using the neighborhood similarities, IsoRank [76] shows

the e↵ectiveness and potential of PageRank algorithm in PPI network alignment.

For RNA structural alignment, we first construct the topological networks for the

RNA sequences, and then estimate the similarity between the constructed topological

networks based on the same principle to integrate sequential and structural information

by di↵using the neighborhood similarities.
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3.2.1 Topological Network Construction from RNA Sequences

In order to construct the topological network for the structural alignment of RNA

sequences, we need to identify or infer the pair of interacting nucleotides in the RNA

sequences using the probabilities of folding structure prediction. To this aim, we take

RNA sequences as sequential backbones and model each nucleotide as a node. Those

nodes that can form Watson-Crick pairs or wobble pair are further connected and

weighted by the corresponding base pairing probabilities. The topological network

for an RNA sequence is similar to the PPI networks with probabilistic base pairing

interactions replacing the PPI links. Since the base pairing probability only depends

on the structure of each individual RNA sequence, it can be precomputed by using the

thermodynamic equilibrium model with the experimentally determined parameters [80–

82]. Furthermore, those less-reliable edges with the base pairing probabilities lower

than the threshold (P
Th

) are removed to reduce the computational complexity and

enhance the accuracy of the modeling [81].

In addition to the topological structure, the information of sequence resemblance

is also incorporated to measure the similarity between topological networks. Though

normalized bit-score can be used as an estimation of sequence similarity between

nucleotides, a hidden Markov model (HMM) is adopted for more appropriate

probabilistic estimation for pairwise sequence similarity between nucleotides in the

topological network alignment. Given a pair of RNA sequences, the posterior

probability of matched nodes can be e�ciently estimated for sequence similarity

through the forward-backward algorithm in the hidden Markov model [83, 84].
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3.2.2 RNA Structural Alignment Through Topological Network

Since topological network alignment aims to align the nodes across di↵erent

networks in terms of the topological similarity and sequence similarity, to compute

the overall similarity R for the pair of nodes, we integrate the following three types

of similarities:

1. Structural similarity R
S

for RNA secondary structure.

2. Connected similarity R
C

for continuous connectedness.

3. Sequence similarity R
E

for sequence resemblance.

d c

b Network G1

Network G2

PS1(a,c)

R(c,d)

a

N 

3'

5'
a-1

a+1

G2(b)

N G1(a)

Figure 3.2: The similarity in topological networks. R(c, d) denotes the pairwise
similarity between nodes at position c in network G

1

and position d in network G
2

.
P
S1

(a, c) is the base pairing probability for nodes at position (a, c) in network G
1

.
N

G1(a) denotes the set of neighbors of the node at position a if there exists the base
pairing interaction in network G

1

.

Let G
n

= (V
n

, E
n

) be the n–th topological network, and the nucleotide base in

the n-th sequence can be modeled as a node in V
n

, and if the nodes have a positive

base pairing probability greater than the threshold (P
Th

), it can be modeled as a

weighted edge in E
n

. Suppose that two topological networks G
1

and G
2

are compared
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to find the network alignment according to the overall similarity R. Let R(a, b) be

the overall similarity for the node pair (a, b), where a 2 V
1

and b 2 V
2

are node

indices in the node sets, and N
G

n

(x) be the set of connected neighbors of the node

x in the topological network G
n

. Note that the structural similarity and connected

similarity compose the topological similarity for network alignment. As the similar

methodology to estimate the similarity in IsoRank, two nodes from di↵erent networks

could be matched if their neighbors are also well matched. In order to reflect such

a similarity di↵using principle, we compute the structural similarity R
S

(a, b) and

connected similarity R
C

(a, b) by

R
S

(a, b) =
X

c2N
G1 (a)

d2N
G2 (b)

P
S1(a, c)PS2(b, d)

D(c)D(d)
R(c, d); (3.1)

R
C

(a, b) =
1

2
(R(a� 1, b� 1) +R(a+ 1, b+ 1)), (3.2)

where P
S1(a, c) is the base pairing probability for nodes at the positions (a, c) in the

network G
1

and P
S2(b, d) is the base pairing probability for nodes at the positions

(b, d) in the network G
2

as illustrated in Figure 3.2; and D(c) =
P

u2N
G1 (c)

P
S1(u, c),

D(d) =
P

v2N
G2 (d)

P
S2(v, d) are the weighted degrees of nodes c and d, respectively.

The structural similarity R
S

is associated with its neighbors’ similarities according to

the probabilistic base pairing interactions to make sure that the alignment matches the

nodes that are likely to form base pairs according to the secondary structures. Next,

since the consecutive base pairs are likely to stack together to form the stem and loop

structure in an RNA secondary structure, the connected similarity R
C

is associated

with the contiguous similarity to describe the continuous connection in alignment as

the message-passing approach [85]. Hence, both the equations attempt to integrate the

neighborhood similarity in the network alignment. Finally, the topological similarity
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including the structural similarity R
S

and the connected similarity R
C

are integrated

with the sequence similarity R
E

to iteratively estimate the similarity R as

R = (↵ ·R
S

+ � ·R
C

+ (1� ↵� �) ·R
E

), (3.3)

where ↵ and � are weighting parameters for the structural similarity R
S

and the

connected similarity R
C

with the constraints 0  ↵, �,↵ + �  1.

The equation (3.3) can be rewritten in a matrix form as R = AR, where the matrix

A represents the linear combination of the similarities (R
S

, R
C

, R
E

) according to

equations (3.1-3.3) that describe the relationships in the neighborhood for similarity,

and thus the similarity R can be estimated e�ciently by the power method as follows:

R(k+1)  AR(k)/|AR(k)|, (3.4)

where R(k+1) is the estimation of similarity in the (k + 1)–th iteration, and the initial

similarity R(0) is set to a random unit vector in L
1

–norm. The convergence rate of

the power method is dominated by the second largest eigenvalue of the matrix A,

but the power iteration can be limited to N
It

or stop if the residual is lower than

a predefined tolerance factor. Based on the estimated similarity, the topological

network alignment can be constructed by maximizing the overall similarity through

dynamic programming, such as Needleman-Wunsch algorithm [53] or FOGSAA [86],

and then mapped to the final RNA structural alignment.

The computational complexity is dominated by the estimation of overall similarity

R, and the sparsity of matrix A makes the computation e�cient in O(kd
1

d
2

N2),

where k is the number of iterations in power method and (d
1

, d
2

) are the average

base pairing interaction edges in the networks G
1

and network G
2

, respectively
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(kd
1

d
2

⌧ N2). Additionally, the space complexity is O(N2) that is much lower than

O(N4) required by the Sanko↵ algorithm.

The pseudo-code of the proposed RNA structural alignment through topological

network is summarized as Algorithm TOPAS 3.3 on the following page.

38



Algorithm 2: RNA Structural Alignment (TOPAS)

Output: Structural alignment (Ŝ
1

, Ŝ
2

).
Input: RNA sequences (S

1

, S
2

), probabilistic model (P
S1 , PS2)

Parameters (↵, �, N
It

, P
Th

).

1. Construct topological networks
for n= 1 to 2 do

Construct G
n

= (V
n

, E
n

) from the sequence data (S
n

, P
S

n

, P
Th

)
end

2. Run power method to estimate similarity R
Initialize the similarity vector R(0) with a nonzero random unit vector.

for k= 1 to N
It

do

Initialize R
S

, R
C

to 0
for a= 1 to length(V

1

) do

for b= 1 to length(V
2

) do

Update structure similarity
foreach (c, d) 2 (N

G1(a), NG2(b)) do
R

S

(a, b)+ = R(k�1)(c, d)[P
S1(a, c)PS2(b, d)/D(c)D(d)]

end

Update connected similarity
if Exist R(a� 1, b� 1) then
R

C

(a, b)+ = 1

2

R(k�1)(a� 1, b� 1)
end

if Exist R(a+ 1, b+ 1) then
R

C

(a, b)+ = 1

2

R(k�1)(a+ 1, b+ 1)
end

Update overall similarity
R(k)

A

(a, b) = ↵R
S

(a, b) + �R
C

(a, b) + (1� ↵� �)R
E

(a, b)
end

end

Normalize overall similarity
R(k) = R(k)

A

/|R(k)

A

|
Stop criterion
if |R(k) �R(k�1)| < Tolerance then

break
end

end

3. Run Needleman-Wunch (R) to maximize overall similarity
4. Find RNA structural alignment (Ŝ

1

, Ŝ
2

)

Figure 3.3: RNA structural alignment through topological network (TOPAS ).
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3.3 Results and Discussion

RNAstructure (version 5.8) is a software package for RNA secondary structure

analysis that includes single structure prediction based on the nearest-neighbor thermo-

dynamic model and sequence alignment derived from an HMM [67, 87]. As similarly

done in PARTS, which uses precomputed base pairing and alignment probabilities to

evaluate the pseudo free energies, the probabilistic model in RNAstructure can also

be applied to the RNA structural alignment through topological networks. Based on

the probabilistic model, the topological network is built and then the parameters and

performance assessment are discussed as follows.

3.3.1 Parameters for Topological Similarity

The performances of structural alignment are assessed in terms of sensitivity

(SEN)= TP

TP+FN

and positive predictive value (PPV)= TP

TP+FP

, where TP, FP, and FN

are the number of true positives, false positives, and false negatives, respectively. In

the equation (3.3), where it estimates the overall similarity, the parameter ↵ controls

the contribution of the topological similarity R
T

and the parameter � controls the

contribution of the connected similarity R
C

. In general, both the parameters (↵, �)

in the topological similarity are important in the structural alignment since RNA

secondary structures mainly consist of the continuous stem and loop structures,

and these parameters can be trained through grid search with training data. In

addition, the sequence similarity R
E

should be included to avoid symmetric structural

ambiguity (i.e. ↵+ � < 1), and the level of sequence similarity should keep low to

avoid dominating the alignment results when analyzing sequences with low sequence

identity (SI). To check the performance dependency on the di↵erent parameter

settings (↵ and �), tRNA sequence pairs in Rfam database [88]: (i) X14835.1/6927-

7002 and M32222.1/12777-1363, are selected for the high sequence identity scenario
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(SI= 0.77) and (ii) X14835.1/6927-7002 and M86496.1/1024-1089 are selected for

the low sequence identity scenario (SI= 0.24). For the sequences with high SI, the

performance of structural alignment is not so sensitive to the parameters (↵, �) as

shown in Figure 3.4. In this case, sequence similarity provides enough information

to identify the conserved sequences in the alignment, but including the topological

similarity could further improve the performance. However, for the sequences with

low similarity, the higher level of the topological similarity gains better SEN and

PPV in alignment. In this case, the structural alignment relies on the topological

similarity with the well-predicted structure model.

3.3.2 Performance Comparison

In order to evaluate the performance of our proposed structural alignment method

through topological networks (TOPAS ), pairwise sequences without unknown bases

from BRAliBase 2.1 dataset K2 [89] are used as the benchmark for performance

evaluation and comparison. Including 36 RNA structural families, this benchmark

has total 8,587 pairs of RNA sequences with the average length 109 nt and average

sequence identity 0.67. We compared the performance of the proposed method against

the structural alignment methods based on the Sanko↵ and Sanko↵-like algorithms

as listed in Table 3.1.

In the following analysis, the RNA structural alignment through topological net-

works is abbreviated as TOPAS with the corresponding parameters (↵, �, N
It

, P
Th

)=

(0.40, 0.56, 30, 0.01), and the computational time was measured when running the

experiments on an iMAC (3.5GHz/ 32 GB RAM/ OS X 10.9.5). The computation

time of structural alignment with TOPAS depends on the sequence lengths and the

number of probabilistic interaction edges inferred by the probabilistic model, while

the alignment performance depends on the accuracy of the probabilistic model. As we

41



can see in Table 3.2, TOPAS outperforms the programs based on Sanko↵ or Sanko↵-

like algorithms, and the computation of TOPAS is significantly more e�cient than

the other algorithms.

To thoroughly evaluate our proposed TOPAS algorithm, the sequences with the

sequence identity ranging from the value n� 0.05 to n+ 0.05 are grouped into the

corresponding SI class n to help evaluate the alignments with di↵erent levels of
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(c) tRNA M86496.1

Figure 3.4: Secondary structure of tRNA sequences: (a) tRNA X14835.1/6927-
7002, (b) tRNA M32222.1/1277-1363, and (c) tRNA M86496.1/1024-1089. The RNA
secondary structures were drawn with VARNA [1].
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Figure 3.4: (Continued) Secondary structure of tRNA sequences: Sensitivity (SEN)
and positive predictive values (PPV) for di↵erent sequence similarities: (d) SEN for
tRNA with the high SI, (e) PPV for tRNA with the high SI, (f) SEN for tRNA with
the low SI, and (g) PPV for tRNA with the low SI.

sequence similarity. Figure 3.5 shows the performances with respect to the classified

sequence identity. As illustrated in the figure, although Dynalign has shown promising

results in structural prediction, it does not give the best structural alignment because

the sequence similarity is not included when aligning RNAs and only the helix regions
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Table 3.1: Structural alignment programs used in performance comparison.

Program Version/Package Command† (Configure file) Reference

PARTS RNAstructure 5.8 parts default.conf [67]

Dynalign2 RNAstructure 5.8 dynalign ii default.conf [68]

Foldalign 2.1.0 foldalign -global seq files [66]

LocARNA LocARNA 1.8.7 locarna seq files [69]

SPARSE LocARNA 1.8.7 spare seq files [70]
†Note that “Command (Configure file)” column describes the command to run the
program and we used the default configurations provided by the corresponding
programs.

Table 3.2: Performances for BRAliBase 2.1 K2 dataset.

SEN PPV Log
10

(Time)

TOPAS 0.878 0.938 3.349

PARTS 0.860 0.931 5.625

Foldalign 0.860 0.923 5.657

Dynalign2 0.706 0.914 5.803

LocaRNA 0.704 0.873 3.697

SPARSE 0.654 0.869 3.281

are aligned [68]. The performance of PARTS drops significantly when the sequence

identity decreases because of the inaccuracy of its probabilistic model for those small

samples. It is clear that the structural alignment of TOPAS algorithm is accurate

especially for the sequences with high sequence identity in the benchmark. For the

sequences with low sequence identity, the SEN and PPV of TOPAS alignments are

not as good as FoldAlign. That is because the structural alignment depends on

the estimation of topological similarity, but the probabilistic model is not accurate

enough for these sequences in the benchmark so that the accuracy of the estimation

in topological similarity is degraded.
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In order to evaluate the performance of structural alignment for RNA sequences

with pseudoknot structures, the sequence pairs of Downstream-peptide and wcaG

RNA are taken from Rfam database for performance evaluation. The performances

are summarized in Table 3.3, where 2,000 random pairs are selected from each

RNA structural family for the test. We can again observe that the performance

improvement of our TOPAS algorithm is remarkable in both alignment accuracy

and computation time. In addition, the performance of TOPAS alignment can be

further improved if the structures with pseudoknots can be better estimated. In

Table 3.3, TOPAS (PK) denotes that the results obtained by TOPAS alignment

given with the minimum crossing base pairs of pseudoknots in Downstream-peptide

and wcaG RNA. For instance, for RNA structure with pseudoknots in Figure 3.1b,

the wobble pairs (GU) are minimum crossing base pairs, and the remaining structure

without those crossing pairs is a simple stem and loop structure. There are in

average 5 and 6 minimum crossing base pairs in Downstream-peptide and wcaG RNA

families respectively, and the topological networks given with crossing base pairs can

include the pseudoknot structures if well-predicted. The TOPAS (PK) improves the

performance and demonstrates it works well for RNA structures with pseudoknots

when the topological networks are appropriately constructed.
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Figure 3.5: Performances for BRAliBase 2.1 K2 dataset. (a) SEN with respective to
SI. (b) PPV with respective to SI.
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Table 3.3: Performances for RNA structures with pseudoknot

wcaG RNA Downstream-peptide RNA

SEN PPV Log
10

(Time) SEN PPV Log
10

(Time)

TOPAS 0.847 0.911 2.410 0.861 0.899 1.908

TOPAS (PK) 0.854 0.912 2.401 0.866 0.901 1.903

PARTS 0.839 0.908 4.401 0.827 0.895 3.879

Foldalign 0.834 0.905 3.381 0.805 0.890 2.725

Dynalign2 0.413 0.806 3.979 0.438 0.797 3.266

LocaRNA 0.827 0.902 2.730 0.834 0.898 2.544

SPARSE 0.738 0.901 2.444 0.85 0.906 1.991
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3.4 Conclusions

Many approaches developed for RNA structural alignment have comparable

performances with di↵erent strength and weakness. Sanko↵ algorithms simultaneously

optimize folds and alignments to minimize the free energy but require extremely

high complexity both in time and space. In this study, we proposed an e�cient

approach for the pairwise structural alignment of RNA sequences. We first build

the topological networks based on the probabilistic model for potential folding

structures of RNAs, and then performs structural alignment based on the estimated

similarity that integrates topological similarity and sequence similarity. Through

the extensive performance comparison over the RNA structural families and the

benchmark BRAliBase 2.1 K2 dataset, our proposed TOPAS method is e�cient

and the performance is comparable to the Sanko↵ algorithm with significantly

improved computational e�ciency. Moreover, the proposed structural alignment

through topological networks is not restricted to nested folding structures and can

e↵ectively align RNA sequences with pseudoknots. Thus structural alignment with

TOPAS provides a significant advantage in accuracy and e�ciency without structural

restriction for genomic analysis.
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4. EFFECTIVE COMPUTATIONAL DETECTION OF PIWI-INTERACTING

RNAS USING N-GRAM MODELS AND SUPPORT VECTOR MACHINE ∗

4.1 Introduction

The Piwi-interacting RNA (piRNA) is a new class of small non-coding RNAs

(ncRNAs) whose functions are not fully understood. Recently, the studies have shown

that piRNAs are associated with control of transposon silencing, transcriptional

regulation, and mRNA deadenylation [10, 90, 91]. The piRNAs interact with Piwi

proteins to form RNA-protein complexes involved in silencing of retrotransposons

and other genetic elements. Furthermore, piRNAs are found to be emerging players

in cancer genomes, and hence to have potential clinical utilities [19, 20]. Thus, there

is a prompt demand for identifying the novel piRNAs through e↵ective computational

methods due to their clinical prospect. However, piRNA detection is not straightfor-

ward since piRNAs lack conserved structure motifs and sequence homology between

di↵erent species [92, 93].

The piRNAs are the largest class of small ncRNAs with a wide variety of sequences

in size about 26-31 nucleotide bases [94, 95]. There are two major classes of approaches

developed for piRNA detection. The first class utilizes sequence-based features to

identify piRNAs [96, 97]. Betel et al. [96] found piRNAs have the tendency to have

the nucleobase Uridine at the 5’ cleavage sites and identified piRNAs by checking the

Uridine positions and its 10 upstream and downstream bases. However, the prediction

based on the Uridine positions is not accurate and the classification accuracy is 61-

72% for Mouse piRNAs. The K-mer scheme [97] can have a superior performance

∗Reprinted with permission from E↵ective computational detection of piRNAs using n-gram
models and support vector machine by Chun-Chi Chen, Xiaoning Qiana, Byung-Jun Yoon, 2017. In
proceeding of BMC bioinformatics.
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by checking the frequencies of K-mer strings. All 1,364 K-mers from 1-mer strings

to 5-mer strings are included to predict piRNAs. Since most piRNAs are derived

from genomic piRNA clusters [98–100], the second class utilizes the information on

clustering locus for piRNA detection. Among the approaches based on clustering

locus of piRNAs, proTRAC [101] can identify piRNA clusters and piRNAs from a

small RNA-seq dataset through a probabilistic analysis of mapped sequence reads.

Furthermore, piClust [102] uses a density-based clustering method to identify piRNA

clusters without assuming any parametric distribution model. Besides, the sequence-

based approach can further incorporate distinctive features to detect piRNAs. For

example, piRPred [103] integrates both the features of K-mer string and clustering

locus based on multiple kernel fusion.

In this section, we propose a novel sequence-based piRNA detection algorithm,

called piRNAdetect, which can be used to detect novel piRNAs in genome sequences.

First, we adopt the n-gram models (NGMs) based on the seed sequences to e�ciently

classify the recognized piRNAs into the homologous families. By integrating NGMs

into the sequence classification, it enables flexible exploration of di↵erent sequence

motifs and patterns in a dataset. Based on the classified families, we can further

build the corresponding NGMs and utilize the support vector machine (SVM) to

detect the potential piRNAs. The performance results based on the piRNAs from

distinct species in the piRBase [104] database demonstrate the e�ciency and the

accuracy for piRNA detection using piRNAdetect.

4.2 Materials and Methods

The main task of piRNA detection is to identify novel piRNAs in genome sequences.

To achieve this, we first adopt the n-gram model (NGM) to classify a given database

of recognized piRNAs into families with similar sequence motifs. The NGM is a
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class of probabilistic models, widely applied in bioinformatics research, including

protein identification [105, 106], RNA structure modeling [107], and genome sequence

analysis [108]. Based on homologous sequences, the NGM can estimate the similarity

between sequences with the tolerance for the potential variations involved with

insertions, deletions, and substitutions in the nucleotide or amino acid sequences [108].

The NGM is an (n�1)th-order Markov chain model and each nucleotide or amino acid

base in a sequence only depends on what the preceding (n� 1) bases are. Therefore,

the homologous likelihood for a sub-sequence with length L in the sequence b can be

e�ciently estimated by the following equation (4.1):

R(b, k) = logP (b
k+1,k+n�1

) +
k+L

X

i=k+n

logP (b
i

|b
i�n+1,i�1

), (4.1)

where k is the o↵set of the sub-sequence in b, and b
i

represents the ith base of the

sequence b while b
i,j

represents the sub-sequence (b
i

, b
i+1

, · · · , b
j

) in b. Moreover,

the likelihood R(b, k + 1) can be e�ciently updated from R(b, k) when scanning the

sequence b to search for the homology.

For the sake of piRNA detection, we can first classify the piRNA sequences into

homologous families through NGMs based on the seed sequences in the dataset. Based

on the classified families, we can then build the corresponding NGMs for detection

and further extract the features through the NGMs for an SVM to detect piRNAs.

Based on this idea, we propose a novel piRNA detection method called piRNAdetect.

The procedure for piRNA detection using piRNAdetect is detailed in the following

subsections.
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4.2.1 Clustering Sequences That Share Common Motifs

For a given dataset of sequences, we can classify the sequences with similar motifs

into a homologous family through the NGM based on the seed sequence. Since there

exists a subset of piRNAs derived from repeat regions [109, 110], some piRNAs have

common motifs with repeat sub-sequences. Hence the sequence with the highest

(n-1)-grams frequency is first taken as a seed to collect sequences with the similar

sequence motifs. Based on the seed sequence, we can estimate the state probability

P (b
k+1,k+n�1

) and the transition probability P (b
i

|b
i�n+1,i�1

) of the sequence b from the

statistics, and a pseudo-count is added in the statistics to model potential mutations.

Furthermore, the maximum R(b, k) for all the sub-sequences with length L, which is

set to the minimum sequence length within the dataset, is taken as the homologous

sequence similarity S(b). To normalize the bias of the sequence content in the

sequence classification, the Z-score is adopted as the final similarity measure of the

given sequence with respect to the corresponding NGM:

Z(b) =
S(b)� µ

�
, (4.2)

where S(b) is the sequence similarity of the sequence b, and the parameters µ and � are

the average and the standard deviation of the sequence similarity over the statistical

ensemble for the dataset. Lastly, those similar sequences with the Z-score Z(b) � Z
th

are collected as a homologous family if the collected sequence number N � N
th

, where

the parameters Z
th

and N
th

are predefined threshold values. The classified family

is then extracted from the dataset, and the process to classify sequences into the

homologous family is repeated until all sequences in the dataset are checked to be

the potential seeds.
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4.2.2 Predicting piRNAs Using NGM-based Features

For the purpose of piRNA detection, we first update the NGMs based on the

classified sequences with the similar process as in the sequence classification. For each

classified family, the state probability and the transition probability with pseudo-

counts are estimated for the corresponding NGM. Since we utilize the Z-score of

the sequence similarity S(b) to normalize the bias of sequence length and family

sequence content, the statistical average and the standard deviation of the sequence

similarity are computed based on 18,000 randomly generated sequences obtained from

Monte Carlo shu✏ing simulation [111]. Moreover, the lengths of the test sequences

in the statistical evaluation are ranged from 21 to 36 nucleotides with a step size

of 5, and the Z-score of the sequence similarity can be further estimated by SVM

regression analysis based on the statistical averages and the standard deviations.

The LIBSVM package [112] is employed for SVM regression based on the ✏-support

vector regression models using the radial basis function (RBF) kernel. With the

Z-scores of the sequence similarities from the NGMs with respect to the classified

families, piRNAdetect incorporates those features to detect piRNAs based on the

SVM classifier.

In order to train the SVM classifier for piRNA detection, the sequences are drawn

from the piRBase [104] and Rfam database 12.1 [113, 114] to construct the datasets

with positive samples and negative samples for training and assessment. For each

sequence in the positive samples, the sub-sequence with the same length is randomly

drawn from the Rfam database and is shu✏ed to be considered as the negative control

sample. Based on the dataset, we can train a c-support vector classification (c-SVC)

model using the RBF kernel through the LIBSVM package [112] to detect potential

piRNAs and compute the confidence probability for piRNA detection in a given

53



genome sequence.

4.3 Results and Discussion

To test piRNAdetect, the piRNAs from the piRBase database with length from

26 to 36 are randomly taken to test the performance using 5-fold cross-validation

(CV) approach. In the 5-fold CV, the test samples are randomly partitioned into 5

equal sized folds, and each fold is in turn retained as the test data for the validation

while the remaining 4 folds are taken as the training data. The piRNA detection

performance is evaluated in terms of the accuracy (ACC)=(TP + TN)/(TP + TN+ FP + FN),

the true positive rate (TPR)= TP

TP+FN

, and the false positive rate (FPR)= FP

TN+FP

. TP

denotes the number of correctly identified piRNAs, and TN denotes the number of

correctly identified negative samples. FP denotes the number of negative samples

incorrectly identified as piRNAs, and FN denotes the number of piRNAs that are

missed in the detection.

In order to apply the n-gram model to piRNA detection, the size of n needs to be

less or equal to the length of the target string. Besides, the larger size of n is suitable

for the sequences with longer common motifs while the smaller size of n is proper for

the sequences with intensive variations. Since piRNAs are divergent in both their

structure and sequence, the tetragram is used to have superior performance in piRNA

detection with reasonable computational complexity. In the following discussion, the

parameters in the clustering sequences are first tested to better realize the NGM for

piRNA detection and then the performance of piRNAdetect is compared with the K-

mer scheme [97] as well as piRPred [103] based on the piRNAs from various species.

To simulate piRPred, the locus information for the positive sample is referenced from

piRBase database while random loci are assigned to the negative samples.

54



4.3.1 Evaluating the E↵ectiveness of NGMs for Detecting piRNAs

The piRNAs from H. sapiens with a total number of 32,826 sequences in the

piRBase database are first tested for the parameters in NGMs. In order to test the

e↵ect of the parameters Z
th

and N
th

in the NGMs for piRNA detection with the

di↵erent size of the test datasets, one parameter is taken as a control variable and the

other parameter is varied to check the corresponding accuracy of piRNA detection.

Besides, the sizes of the test dataset used for 5-fold CV are ranged from 2,000 to

32,000 with a step size 2,000.

For the case with the fixed parameter Z
th

= 1.5, Figure 4.1 illustrates the accuracy

and the average number of classified family with respect to the variable parameter N
th

and the sizes of the dataset. The sequence classification needs the size of the dataset

large enough to build the NGMs, and hence the classification with smaller N
th

can

build the NGMs easier and detect piRNAs in a smaller dataset. Moreover, when the

size of the dataset increases, it can build more NGMs with the corresponding classified

families and become more accurate in the detection since more motif patterns are

recognized. In this case with piRNAs from H. sapiens, the piRNA detection with the

parameter N
th

= 50 has the highest possible accuracy. However, it also builds the

maximum amount of the NGMs with the parameter N
th

= 50 and the computational

complexity is proportional to the amount of NGMs in both training and detection.

For the case with fixed parameter N
th

= 200, Figure 4.2 illustrates the accuracy

and the average number of the classified family with respect to the variable parameter

Z
th

and the sizes of datasets. The sequence classification with a higher threshold Z
th

needs a larger dataset to build NGMs. With the size of the dataset large enough, the

detection with a higher threshold Z
th

can build more elaborate NGMs to characterize

piRNAs and better improve the detection accuracy. However, the extremely high
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threshold Z
th

can degrade the accuracy, and the piRNA detection with the parameter

Z
th

= 2.0 has the highest possible accuracy in this test case.
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Figure 4.1: The piRNA detection accuracy and the average number of classified
families for Z

th

= 1.5. (a) The prediction accuracy is shown on the y-axis and the
dataset size is shown on the x-axis. Lines in di↵erent colors correspond to di↵erent
values of N

th

. (b) The average number of classified families for di↵erent N
th

and
dataset size.
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Figure 4.2: The piRNA detection accuracy and the average number of classified
families for N

th

= 200. (a) The prediction accuracy is shown on the y-axis and the
dataset size is shown on the x-axis. Lines in di↵erent colors correspond to di↵erent
values of Z

th

. (b) The average number of classified families for di↵erent Z
th

and
dataset size.
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4.3.2 Performance Evaluation of piRNAdetect

To assess the piRNA detection performance of the proposed piRNAdetect algo-

rithm, we perform 5-fold CV on the piRNAs from the species H. sapiens, R. norvegicus,

and M. musculus. Moreover, the numbers of sequences for each species are listed

in Table 4.1. We randomly drew 30,000 sequences from each species as the positive

samples for the test datasets.

Table 4.1: Dataset size for each species.

Species Size

H. sapiens 32,826
R. norvegicus 63,182
M. musculus 51,664,769

In the following analysis, piRNAdetect utilizes the threshold parameters

(N
th

, Z
th

)= (200, 1.5) to balance the performance and computational complexity. For

performance comparison, the K-mer scheme [97] and piRPred [103] are also

evaluated on the same test datasets. Table 4.2 summarizes the performance of

piRNA detection by piRNAdetect, piRPred with default settings, and K-mer scheme

with the cuto↵ parameter t=1.2 [97]. The accuracy of piRNAdetect for piRNA

detection outperforms K-mer scheme and piRPred in all three distinct species. The

piRPred algorithm uses loci information for piRNA detection and it may need a large

dataset to make accurate predictions, as prediction schemes that utilize clustering

locus typically require a large number of sequence reads to identify clusters.
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Table 4.2: Prediction accuracy of piRNAdetect compared against the K-mer scheme and piRPred.

Method H. sapiens R. norvegicus M. musculus

TPR FPR ACC (%) TPR FPR ACC (%) TPR FPR ACC (%)

piRNAdetect 0.848 0.160 84.40 0.837 0.195 82.11 0.806 0.213 79.65

K-mer scheme 0.821 0.226 79.76 0.781 0.222 77.95 0.698 0.259 71.95
piRPred 0.375 0.098 63.85 0.290 0.201 54.42 0.208 0.020 59.39

Since the cuto↵ parameter is introduced in the K-mer scheme to adjust the

threshold in the decision, the receiver operating characteristic (ROC) curves for three

species are also demonstrated in Figure 4.3. Please note that the ROC curve for

piRPred is not shown in the figure, as piRPred does not assign confidence probabilities

to the predictions it makes. For comparisons based on ROC curves, the area under

curve (AUC) can be used as a useful overall performance measure [115, 116], where a

larger AUC indicates superior prediction performance. As summarized in Table 4.3,

piRNAdetect clearly outperforms the K-mer scheme based on AUC.

In general, the performance of piRNA detection depends on the characteristics of

the training dataset and the prediction model that is constructed. For a sequence-

based approach, the prediction method can achieve good performance if the sequences

are regular and the dataset is large enough to be representative for all sequences. The

K-mer scheme checks all possible sub-sequences with length L  5 and extracts a

total of 1,364 features to detect piRNAs. In comparison, piRNAdetect can practically

check longer sub-sequences while extracting a smaller number of useful features by

utilizing NGMs. However, NGMs rely on the shared sequence motifs in the training

dataset, hence their e↵ectiveness will degrade if significant sequence motifs are absent

or the dataset is not large enough to extract the representative sequence motifs. In

this work, piRNAdetect extracts and utilizes less than 50 features based on NGMs

for predicting piRNAs in H. sapiens, R. norvegicus, and M. musculus.
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Table 4.3: Prediction performance based on average AUC.

Average AUC
species H. sapiens R. norvegicus M. musculus

piRNAdetect 90.28 88.15 85.97

K-mer scheme 87.84 86.06 79.36
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(a) ROC curve for detecting piRNAs in H. sapiens.

Figure 4.3: ROC curves showing the prediction performance of piRNAdetect and the
performance of the K-mer scheme. (a) The performance for predicting piRNAs in H.
sapiens. The false positive rate (FPR) is shown on the x-axis and the true positive
rate (TPR) is shown on the y-axis.
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Figure 4.3: (Continued) ROC curves showing the prediction performance of
piRNAdetect and the performance of the K-mer scheme. (b) The prediction
performance for piRNAs in R. norvegicus. (c) The prediction performance for
piRNAs in M. musculus. The false positive rate (FPR) is shown on the x-axis and
the true positive rate (TPR) is shown on the y-axis.
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4.4 Conclusions

The piRNAs lack conserved characteristics and prominent features that could be

used for recognizing them, which makes accurate prediction of piRNAs challenging. In

this study, we proposed piRNAdetect, a novel algorithm for computational prediction

of piRNAs. The proposed algorithm uses n-gram models (NGMs) to extract predictive

sequence features for e↵ective prediction of piRNAs. Besides, unlike piRPred, which is

specifically designed for Drosophila and human data, our approach can be applied to

identify sequences with shared sequence motifs for any given species. Comprehensive

performance evaluation based on piRNAs in the piRBase database showed that

piRNAdetect clearly outperforms the K-mer scheme, which is also a sequence-based

scheme. Furthermore, despite the improved prediction accuracy, piRNAdetect utilizes

a significantly smaller number of features compared to the K-mer scheme, which

makes piRNAdetect more e�cient and less prone to overtraining.
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5. EFFICIENT COMPUTATIONAL DETECTION OF NOVEL NONCODING

RNAS

5.1 Introduction

Although noncoding RNAs (ncRNAs) are not translated into proteins, many of

them have been found to play important roles in diverse cellular processes such as

transcriptional and post-transcriptional regulation, chromosome replication, RNA

processing and modification, and protein degradation and translocation [6, 7]. It is

not clearly known how many ncRNAs exist even in well-studied model organisms, but

studies indicate that only a small fraction of ncRNAs may have been identified to

date and that a much larger number of ncRNAs may be awaiting future discovery and

investigation [5, 117, 118]. However, unlike coding genes that can be recognized by

various features – e.g., start/end codons, open reading frames (ORFs), composition

bias – ncRNAs typically lack distinctive sequence features, making computational

identification challenging. In fact, most ncRNAs are better conserved in terms of

structure compared to their primary sequence [119, 120], hence it is di�cult to identify

ncRNAs through sequence-based methods. However, it has been also reported that a

structure-based approach may not be su�cient by itself to identify ncRNAs, even

though structural ncRNAs are expected to have secondary structures with higher

thermodynamic stability [121]. Fortunately, comparative sequence analysis can help

shed light on the detection of novel ncRNAs when coupled with a structure-based

approach [122–124].

Through comparative genome analysis, several new RNA species have been found

in a bacterial genome [122, 125, 126]. QRNA is one of the first approaches that

detect ncRNAs through comparative sequence analysis [122, 127]. But QRNA fails
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to identify ncRNAs without significant structure and the method has a relatively

high false positive detection rate [128, 129]. To improve the detection accuracy,

RNAz [129, 130], a widely used ncRNA detection package, utilizes a machine learning

approach based on the thermodynamic stability of the secondary structure and the

structural conservation between multiple aligned sequences. With the availability of

an increasing number of sequenced genomes, more recent packages – including RNAz

2.0 updated with the dinucleotide models [130] and Multifind [131] – overcome the

previous limitation on how many comparative sequences could be jointly analyzed

for ncRNA detection and they also exploit additional statistical features to further

enhance the detection performance.

In this study, we propose a new computational method for novel ncRNA detection

called RNAdetect. In addition to features such as the minimum free energy (MFE)

for thermodynamic stability and structural conservation index (SCI) that were shown

to be useful in existing methods, RNAdetect incorporates novel features based on

the n-gram model (NGM) and the concept of generalized ensemble defect (GED)

to further enhance the ncRNA prediction accuracy. The GED metric provides an

innovative feature that evaluates the conformation of a given structure to an ensemble

of other structures, and utilization of the NGM enhances the assessment of sequence

homology across the genome sequences that are jointly analyzed to detect conserved

ncRNAs. RNAdetect, proposed in this study, extracts sequence-based and structure-

based features that capture critical information across a set of comparative genome

sequences and incorporate the features in a predictive model that uses the support

vector machine (SVM) to detect novel ncRNAs. RNAdetect does not have any

restriction on the number of sequences for comparative analysis, which can lead to

further performance enhancement as a larger number of related sequences become

available for joint analysis. We compare RNAdetect with other leading ncRNA
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identification algorithms – RNAz, RNAz 2.0, and Multifind – based on benchmarks

built from the Rfam database [113, 114], and the genomes of Escherichia coli [132]

and Streptomyces coelicolor [133]. The performance assessment results demonstrate

the e�ciency and the accuracy of RNAdetect, which clearly outperform the existing

state-of-the-art detection methods.

5.2 Materials and Methods

The overall structure of RNAdetect is shown in Figure 5.1. RNAdetect first screens

the input of aligned genome sequences with a sliding window and calculates the various

features needed for ncRNA detection by analyzing the presence of thermodynamically

stable secondary structure in the given sequences and assessing the degree of structure

conservation and sequence homology across the sequences. RNAdetect utilizes the

packages ViennaRNA [134] and RNAstructure [135] for analyzing the input sequences

and uses the LIBSVM package [112] to implement the SVM based on the calculated

features. RNAdetect identities ncRNAs and estimates the corresponding probabilities

using the constructed SVM.

5.2.1 Features for ncRNA Detection

For ncRNAs, their structure is often better conserved than their primary sequence,

hence structural properties provide important clues for identifying ncRNAs. The

SCI, which evaluates structural conservation, has been commonly utilized as a

feature by ncRNA detection methods, but the e↵ectiveness of SCI is a↵ected by

the sequence identity of the input sequences as well as the quality of the sequence

alignment. To address this issue, we introduce a new measure based on the concept

of GED to evaluate structure conservation. As will be shown later, GED analyzes

the consensus structure between sequences based on their alignment probability and

thereby improves the identification of structural ncRNAs. Noncoding RNAs with
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Aligned genome sequences

RNAdetect

RNAfold: Calculate MFE
RNAalifold: Calculate SCI

RNAstructure: Calculate the alignment probability
and the partition function

Calculate the N-gram homologous similarity

Calculate GEDs for the consensus structure
GEDs for the single strand

LIBSVM regression: Calculate the Z-scores for the features

LIBSVM classification: Detect ncRNA and output the probability

MFE, GEDs, and the N-gram homologous similarity

Figure 5.1: Schematic overview of RNAdetect for novel ncRNA detection. The aligned
genome sequences are screened using a sliding window to detect ncRNAs. RNAdetect
calculates the features MFE, SCI, GEDs, and NGM through the comparative analysis
of the input sequences. Based on the Z-scores of the extracted features, RNAdetect
predicts potential ncRNAs and estimates their confidence probabilities using an SVM.

sparse folding structure (e.g., U6 snRNAs and C/D box snoRNAs) are in general not

easy to detect using structure-based approaches [136, 137]. To accurately identify

various types of ncRNAs, including those with sparse structure, the following features

are incorporated in RNAdetect : average Z-score of MFE, SCI, average Z-score of

the minimum GEDs, and the maximum Z-score of the sequence homology measured

using NGMs. In the following subsections, each of these features used in RNAdetect

is discussed in further details.
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5.2.1.1 MFE and SCI

- To detect novel ncRNAs, RNAdetect utilizes RNA structure prediction methods

to extract characteristic structural features commonly observed in many ncRNAs.

In RNA secondary structure prediction, the minimum free energy (MFE) is an

important measure to compute, as it reflects the thermodynamic stability of the RNA

secondary structure [138, 139]. Although the MFE alone may not be su�cient for

distinguishing ncRNAs from the genomic background in a single sequence [121, 140],

the discriminative power can be significantly improved when used in a comparative

setting where related sequences are jointly analyzed [122–124]. In order to remove the

e↵ect of base composition, RNAdetect computes the Z-score of the MFE as follows:

Z(E
i

, q
i

) =
E

i

� µ

�
, (5.1)

where E
i

is MFE of a single sequence q
i

, and the parameters µ and � are the average

and the standard deviation of the MFE computed based on random sequences with the

same base composition as q
i

. The MFE is calculated by RNAfold in the ViennaRNA

package [134, 141], and the Z-score of the MFE is estimated as described by Washietl

et al. [129]. First, the statistical averages and the standard deviations of the MFE

are computed based on 10,648 randomly generated sequences obtained from Monte

Carlo shu✏ing simulations [111]. The lengths of the test sequences range from 50 to

150 nucleotides with a step size of 50. The base composition ratios GC/AT, G/GC

and A/AU of the test sequences range from 25% to 75% with a step size of 5%.

Finally, the Z-score of the MFE is estimated by SVM regression analysis based on

the statistical averages and the standard deviations.

Furthermore, the structural conservation index (SCI) is computed to estimate the
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structural conservation across the aligned sequences. The SCI is defined as:

SCI = E
cons

/E
single

, (5.2)

where E
cons

is the consensus MFE for the sequence alignment and E
single

is the

average MFE of the sequences in the alignment. The SCI will be high (SCI ' 1) if

the sequences in the alignment can fold into a stable common structure. Otherwise,

the SCI will be low (SCI ' 0). The consensus MFE for a given sequence alignment

can be estimated using RNAalifold in the ViennaRNA package [134, 142]. However,

the e↵ectiveness of SCI for ncRNA prediction is known to be a↵ected by the quality

of the sequence alignment. The GED proposed in the following subsection aims to

address this shortcoming of SCI and complement it to improve ncRNA detection

performance.

5.2.1.2 Generalized Ensemble Defect

- Since RNAs do not necessarily fold into the most stable structure predicted

by thermodynamical models, an ensemble-based analysis can be useful for RNA

detection rather than considering only the single most stable structure [131, 143, 144].

The ensemble defect of a given RNA sequence measures the average distance from

one structure to an ensemble of secondary structures [145, 146]. We can measure

the distance between two RNA secondary structures (s
1

, s
2

) based the discrepancy

between the base pair conformations as follows:

d(s
1

, s
2

) = N �
X

1iN

1jN+1

S
i,j

(s
1

)S
i,j

(s
2

), (5.3)
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where N is the sequence length, and S
i,j

(s
1

) 2 {0, 1} are entries of the structure

matrix S(s
1

) that describes the base pairs in the structure s
1

. For 1  j  N , we

have S
i,j

(s
1

) = 1 if the structure s
1

contains the base pair (i, j), and S
i,j

(s
1

) = 0

otherwise. For the case j = N + 1, S
i,N+1

(s
1

) = 1 if base-i is unpaired, otherwise

we have S
i,N+1

(s
1

) = 0. Based on this distance metric over structures, the ensemble

defect for a given structure s can be defined as:

n(s;⌦) =
X

�2⌦

p(�;⌦)d(s, �) (5.4)

= N �
X

1iN

1jN+1

S
i,j

(s)P
S

(i, j),

where ⌦ is the structure ensemble that consists of the potential structures for a given

RNA sequence, and p(�;⌦) is the probability of the structure � in the ensemble ⌦.

The structure probability P
S

(i, j) denotes the equilibrium probability of the base pair

(i, j) for 1  j  N . For j = N + 1, P
S

(i, j) is the equilibrium probability that base-

i will remain unpaired in the structure ensemble ⌦ [145, 147]. The ensemble defect

n(s;⌦) estimates how many bases in structure s are structurally di↵erent from the

stable structures in the ensemble ⌦ on average.

In this work, we further generalize the concept of ensemble defect to make it more

e↵ective for ncRNA detection. For this purpose, we incorporate a loop scale parameter

↵ (� 0) into the structure matrix, which is to scale the distance of unmatched loops

between structures as follows:

S(1)

i,j

(s
1

) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if 1  j  N, and base (i,j) 2 P
p
↵, if j = N + 1, and base-i 2 L

0, otherwise,

(5.5)
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where P is the index set of the paired bases and L is the index set of the unpaired

loops in structure s
1

. Furthermore, we generalize the structure matrix so that it

can be used for the joint analysis of multiple related sequences that may potentially

share a common consensus structure. Given a reference sequence with length N

and a set of related sequences {q
m

}, the entries of the consensus structure matrix

based on the structure s
m

for the sequence q
m

with length N
m

are defined as

S(m)

i,j

(s
m

) =
P

1k,lN

m

P
A

(i, k)P
A

(j, l)S
k,l

(s
m

) for 1  j  N , and S(m)

i,N+1

(s
m

) =
P

1kN

m

P
A

(i, k)
p
↵S

k,N

m

+1

(s
m

), where P
A

(i, k) is the alignment probability between

base-i of the reference sequence and base-k of sequence q
m

. The generalized consensus

structure matrix S(m)(s
m

) denotes the potential consensus structure of the reference

sequence inferred from structure s
m

. Subsequently, by adopting the generalized

consensus structure matrix, we can generalize the concept of ensemble defect of a

given structure s
1

for a set of multiple related sequences.

GivenM sequences with the structure ensemble set ⌦M =
S

M

n=1

⌦
n

, the generalized

ensemble defect (GED) is defined as

n(s
1

;⌦M) =
1

N

M

X

n=1

n

w
n

⇥
X
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n

2⌦
n
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)
o

= 1� 1

N

X

1iN
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S(1)

i,j

(s
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)P
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(i, j),
(5.6)

where w
n

is the non-negative weight parameter for the distance metric according to

the structure ensemble for sequence q
n

such that
P

M

n=1

w
n

= 1. Note that the GED

defined in (5.6) is normalized by the length of the reference sequence.
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The consensus structure score is defined as

P
cons

(i, j) =

8
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n
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,

if j = N + 1.

For the case when only one sequence is given, the structure with the minimum

GED is equivalent to the maximum expected accuracy (MEA) structure with respect

to the loop scale parameter [148, 149]. The MEA-based approach was shown to

outperform the traditional MFE-based approach in some cases [148, 150], where the

main strength of MEA-based prediction lies in the fact that it considers all potential

base pairs in the structure ensemble rather than predicting a single best structure

based on thermodynamic stability.

The Z-scores of the minimum GED for a single sequence with the loop scale

parameters ↵ = {0.5, 1.0, 2.0} are used as features in RNAdetect, where the loop scale

parameters are selected based on the Pearson correlation and the F-score [151, 152] in

order to improve the performance and reduce the complexity of the SVM classification.

The structure probabilities can be estimated and the structure with the minimum

GED can be predicted using RNAfold in the ViennaRNA package [134]. In order

to also consider the consensus structure of the multiple related input sequences for

detecting ncRNAs, the Z-scores of the minimum GED for the given set of sequences

are computed with the loop scale parameters ↵ = {0.5, 1.0, 2.0, 4.0} and the resulting

Z-scores are used as features in RNAdetect. As before, the parameters are selected

according to the Pearson correlation and the F-score. Given M sequences, the

alignment probabilities are first estimated using the RNAstructure package [135], and

72



each sequence in the set is used as a reference sequence to evaluate the average Z-score

of the minimum GED for the consensus structure. Since the GED features separately

evaluate the ensemble defects for individual sequences and multiple sequences, during

the process of evaluating the consensus structure, the reference sequence is excluded

by setting the corresponding weight to 0 and then using a uniform weight 1/(M � 1)

for the other sequences.

5.2.1.3 N-gram Model

- Although the secondary structure is often better conserved than the primary

sequence for many ncRNAs, there are ncRNAs whose structure is sparse and

mainly consist of unpaired bases, which are di�cult to detect using structure-based

approaches [137, 153]. To improve the detection performance for such ncRNAs,

RNAdetect utilizes the n-gram model (NGM) to incorporate additional features based

on sequence homology. NGM is widely used in a variety of domains, including

language analysis [154], protein classification [105, 155], and genome sequence analy-

sis [108]. The NGM provides a simple yet e↵ective way of statistically evaluating the

similarity between nucleotide sequences with tolerance for insertions, deletions, and

substitutions [108]. Since the NGM is essentially an (n� 1)th-order Markov model,

the occurrence probability of the nucleotide at a given sequence position only depends

on the last (n� 1) nucleotides. Based on NGM, the log-likelihood of a substring of

length L in sequence b can be computed by:

R(b, k) = logP (b
k+1,k+n�1

) +
k+L

X

i=k+n

logP (b
i

|b
i�n+1,i�1

), (5.7)

where k is the o↵set of the substring in the sequence, b
i

represents the ith base in

sequence b, and b
i,j

represents the substring (b
i

, b
i+1

, · · · , b
j

) in b. The log-likelihood
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R(b, k + 1) can be e�ciently updated from R(b, k) when scanning the sequence b to

search for potential sequence homology.

In order to learn the NGMs to be used in RNAdetect, we selected 116 families

with high average Z-scores of MFE from Rfam database 12.1 [113, 114]. For each

ncRNA family, an NGM was constructed by estimating the probabilities based on

the sequences in the given family, where pseudo-counts were added to account for

potential variations not observed in the training data. In this work, hexagrams were

used to have high sensitivity and reasonable computational complexity. Based on

each NGM, the maximum R(b, k) is used as the sequence homology score, where the

substring length L was set to the minimum sequence length within the corresponding

ncRNA family. The Z-score is computed from R(b, k) to reduce unwanted bias, and

RNAdetect incorporates the maximum Z-score as an additional feature to utilize

sequence homology for detecting ncRNAs.

5.2.2 Implementation for Classification

In order to train the SVM classifier for ncRNA detection, sequences have been

drawn from the Rfam database 12.1 [113, 114] to construct datasets with positive

samples and negative samples for training and assessment. RNA Families that contain

over 25 members and whose average length is less than 400 bases were selected in the

dataset, including 396 families in total. Sequence sets composed of 3 to 6 sequences

(that do not contain unknown bases) were randomly drawn from each family. In total,

the constructed benchmark contains 44,096 sequence sets and 198,432 RNA sequences.

The sequences in each test set were aligned using ClustalW [156] to obtain positive

samples. The negative samples were obtained by randomly shu✏ing the aligned

sequences following a similar strategy proposed before [123]. Using the LIBSVM

package [112], a c-support vector classification (c-SVC) model with the radial basis
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function (RBF) kernel was trained to detect potential ncRNAs and compute the

confidence probability for the prediction.

5.2.3 Computational Complexity

Here, we briefly analyze the computational complexity of RNAdetect. Given M

aligned sequences of length N , the computational complexity for computing MFE and

SCI using RNAfold and RNAalifold requires is O(MN3) [141, 142]. Furthermore, the

time complexity for calculating the minimum GED is O(MN3), as the computation

time is dominated by the partition function calculation step [148]. The computational

cost for computing the maximum similarity score based on K NGMs for di↵erent RNA

families is O(KN), since the similarity for each family can be iteratively calculated

in linear time. Although training the SVM can be time-consuming and depends on

the size of the training data, the computational complexity for the SVM regression

and classification is proportional to the number of features [157].

5.3 Results and Discussion

We first evaluate the e↵ectiveness of the novel GED and NGM features for ncRNA

detection. Next, we assess the performance of RNAdetect based on the benchmark

constructed from the Rfam database and compare the proposed method with the

current state-of-the-art methods. Finally, we evaluate the e�cacy of RNAdetect for

detecting known ncRNAs buried in genomes, by using a comprehensive benchmark

constructed from E. coli and S. coelicolor genomes.

5.3.1 E↵ectiveness of GED and NGM Features

In this section, we proposed a novel predictive feature for ncRNA detection based

on the concept of generalized ensemble defect. To test the e�cacy of this new feature

when combined with the MFE feature commonly used in existing RNA detection
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methods, we performed the following simulations. For evaluation, we constructed

2,000 sequence sets, where each set is composed of 4 sequences that are randomly

drawn from the tRNA family in the Rfam database. Every sequence set was aligned

using ClustalW [156] to obtain positive samples and negative samples were obtained

by shu✏ing the sequence alignment. Figure 5.2(a) shows the scatter plot based

on MFE and SCI, the two features that are used for ncRNA prediction in existing

methods. In comparison, Figure 5.2(b) shows the scatter plot for the case when

SCI is replaced by the new GED feature (loop scale parameter set to ↵ = 0.5).

Figure 5.2 clearly shows that the GED feature can separate the positive samples from

the negative samples much more e↵ectively compared to the traditional SCI feature,

when combined with MFE.

Table 5.1: Prediction accuracy of the SCI-based
classifier and GED-based classifier.

GED
SCI ↵ =0.5 ↵ =1.0 ↵ =1.5

TPR 0.976 0.997 0.995 0.986
FPR 0.029 0.006 0.010 0.016

Accuracy(%) 97.33 99.58 99.25 98.50

We further compared the e↵ectiveness of SCI and GED by building linear SVM

classifiers optimized by the c-SVC model (with the cost parameter set to be one) [112,

158] and performing classification experiments. The ncRNA detection performance

was assessed in terms of the true positive rate (TPR)= TP

TP+FN

and the false positive

rate (FPR)= FP

TN+FP

. TP denotes the number of correctly identified ncRNAs, FP

denotes the number of negative samples incorrectly classified as ncRNAs, and FN
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Figure 5.2: Scatter plots that compare the e↵ectiveness of SCI (a) and GED (b) for
separating true ncRNAs from randomized negative samples, when combined with
MFE.

denotes the number of ncRNAs that are missed. The results are summarized in

Table 5.1, which compares the prediction performance of the SCI-based classifier
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and that of the GED-based classifier for three di↵erent loop scale parameters ↵ =

0.5, 1.0, 1.5. As shown in the table, all three GED-based classifiers outperformed

the SCI-based classifier. A smaller value for ↵ encourages the formation of a larger

number of base pairs in the RNA secondary structure predicted by MEA. Although

the linear SVM classifier with a smaller ↵ shows better prediction performance,

incorporating GED obtained by using several di↵erent loop scale parameter values

can improve the overall performance of ncRNA detection.

To evaluate the e↵ectiveness of the NGM-based features for detecting ncRNAs

with sparse folding structure, we again compared the prediction performance between

NGM and SCI, when combined with MFE. For this experiment, we constructed 2,000

sequence sets, where each set is composed of 4 sequences randomly drawn from the

U6 snRNA family in the Rfam database. As before, the sequences in each set were

aligned to obtain positive samples and negative samples were obtained by random

shu✏ing of the aligned sequences. Figure 5.3(a) shows the scatter plot based on SCI

and MFE while Figure 5.3(b) shows the scatter plot based on NGM and MFE. As

we can see from Figure 5.3, SCI may not be very useful for detecting ncRNAs with a

sparse folding structure (such as U6 snRNAs), where many bases remain unpaired.

Furthermore, the ncRNA detection performance with the di↵erent size of n-gram was

evaluated by linear SVM classifiers optimized by the c-SVC model, and the results

are summarized in Table 5.2. For such ncRNAs, incorporating NGM-based features

may remarkably enhance the overall prediction accuracy.

5.3.2 Performance on the ncRNA Benchmark Constructed from Rfam Database

In order to assess the ncRNA detection performance of RNAdetect, we used the

ncRNA benchmark that was constructed from the Rfam database as described before

and performed 4-fold cross-validation (CV) experiments to estimate the prediction
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Figure 5.3: Scatter plots that compare the e↵ectiveness of SCI (a) and NGM (b) for
separating true ncRNAs from randomized negative samples, when combined with
MFE.

accuracy. In the CV experiments, the benchmark was randomly partitioned into

four folds of identical size for each family, where three folds were used for training
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Table 5.2: Prediction accuracy of the NGM-
based classifier with the di↵erent size of n-gram.

NGM
n-gram n = 2 n = 3 n = 4 n = 5

TPR 0.827 0.907 0.998 0.999
FPR 0.299 0.105 0.003 0.001

Accuracy(%) 76.40 90.12 99.78 99.95

Table 5.3: Performance evaluation on the ncRNA
benchmark.

Area under curve (AUC) Log
10

(Time)

RNAdetect 97.82 5.06
RNAz 1.0 90.18 3.83
RNAz 2.1 92.74 6.13
Multifind 86.51 6.89

the NGMs and the SVM and the remaining one fold was used for evaluation. For

comparison, RNAz 1.0 [129], RNAz 2.0 [130], and Multifind [131] were also evaluated

on the same benchmark. Figure 5.4 shows the receiver-operator characteristic (ROC)

curves for the four methods. As shown in Figure 5.4, RNAdetect always shows higher

TPR at a given FPR, clearly outperforming the existing methods. The AUC (area

under ROC curve) is the largest for RNAdetect, reflecting the best overall prediction

performance among the four methods.1 Table 5.3 summarizes the AUC and the

overall computation time (in seconds) for the respective ncRNA detection methods

evaluated based on the ncRNA benchmark.

1Please note that Multifind skipped some of the test sets as they led to simulation errors.
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Figure 5.4: ROC curves that show the ncRNA classification performance on the
ncRNA benchmark. RNAdetect clearly outperforms other existing ncRNA prediction
methods.

Table 5.4: Performance evaluation based on the bacterial genome benchmark.

E. coli S. coelicolor
Area under curve Log

10

(Time) Area under curve Log
10

(Time)

RNAdetect 83.83 2.79 88.76 2.66
RNAz 1.0 76.69 2.10 78.93 1.97
RNAz 2.1 83.32 2.76 86.07 3.03
Multifind 81.64 4.77 79.09 4.82

5.3.3 Predicting ncRNAs in Bacterial Genomes

To further evaluate the ncRNA detection performance of RNAdetect, we performed

experiments to predict ncRNAs in the genomes of Escherichia coli (NCBI: NC000913)

and Streptomyces coelicolor (NCBI: NC003888). In order to predict ncRNAs in E. coli,

we first aligned the E. coli genome with the genomes of Klebsiella pneumoniae (NCBI:

NC011283), Salmonella paratyphi (NCBI: NC011147), Salmonella typhi (NCBI: NC004631),

and Shigella boydii (NCBI: NC010658. For this purpose, we used the multiple genome
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(a) ROC curves for ncRNA detection in E. Coli.
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(b) ROC curves for ncRNA detection in S. Coelicolor.

Figure 5.5: ROC curves that show the ncRNA detection performance on the bacterial
genome benchmark.

alignment algorithm called progressiveMauve [159]. Similarly, to predict ncRNAs

in S. coelicolor, we aligned the genome of S. coelicolor with those of Streptomyces

avermitilis (NCBI: NC003155), Streptomyces griseus (NCBI: NC010572), Streptomyces
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scabiei (NCBI: NC013929), and Streptomyces venezuelae (NCBI: NC018750). Although

not all ncRNA loci are known for these genomes, we collected recognized ncRNA loci

from the Ensembl Genomes database[160] and the related papers [161, 162] so that

we can use them as a reference for performance evaluation. By taking segments of the

genome alignment that contain known ncRNAs, we built a genome benchmark that

consists of 113 genome alignment segments, where each segment is at least 450 bases

in length. Aligned segments that contain unknown bases or segments that consist of

fewer than 3 sequences were not included in the benchmark.

For performance evaluation, we used RNAdetect to screen the sequence alignments

in the genome benchmark using a window of length 150 bases and sliding it by 50

bases at a time. The size of the sliding window was chosen such that it is long

enough to detect local structures, but not overly so to avoid excessive inclusion of

irrelevant flanking sequences [163]. To avoid ambiguity in detection, windows that

partially overlap with any ncRNA were excluded. Figure 5.5(a) shows the ROC

curve for ncRNA prediction in E. coli and Figure 5.5(b) shows the ROC curve for

ncRNA prediction in S. coelicolor. In both plots, we can see that RNAdetect generally

outperforms the other three methods for a wide range of FRP, resulting in the largest

AUC (also see Table 5.4). Multifind, which incorporates additional statistical features,

performs better than RNAz 1.0, while the latest version of RNAz (v2.1) generally

outperforms both RNAz 1.0 and Multifind, especially when the FPR is not too low

(i.e., FPR > 0.1⇠0.2).

The overall prediction performance (measured in terms of AUC) and the total

run time (in seconds) are summarized in Table 5.4 for the tested methods. The

computation time was measured on an iMac (Intel Core i7 3.5GHz, 32 GB RAM, OS

X 10.9.5). The performance evaluation results in Table 5.4 show that the proposed

algorithm RNAdetect can accurately detect ncRNAs and is also computationally
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e�cient.

5.4 Conclusions

In this study, we presented a novel method, RNAdetect, for e�cient and reliable

detection of novel ncRNAs in comparative genome sequences. To improve the overall

detection performance, RNAdetect incorporates novel predictive features based on the

concept of generalized ensemble defect (GED) and the n-gram models (NGM). The

GED provides an e↵ective way of assessing structure conservation and conformation to

the consensus structure, while NGM can e↵ectively capture sequence homology, which

can be especially useful for detecting ncRNAs that have a sparse folding structure with

many unpaired bases. Unlike RNAz, which limits the number of sequences in the input

alignment, RNAdetect has virtually no restriction on the number of input sequences

that can be jointly analyzed, hence allowing us to include a larger number of related

genome sequences to improve the detection performance. Extensive performance

evaluation based on the ncRNA benchmark constructed from RNA families in Rfam

database and the genome benchmark constructed from bacterial genomes clearly show

that RNAdetect outperforms other existing ncRNA detection methods in terms of

prediction accuracy. Furthermore, RNAdetect is also computationally e�cient, often

outperforming existing methods in addition to its higher accuracy.
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6. CONCLUSIONS AND FUTURE WORKS

6.1 Whole Genome Reconstruction and Cost Minimization

In the first part of our dissertation, we discuss the feasibility conditions and

cost minimization strategy for the optimal hybrid sequencing and assembly. We

derive the conditions for whole genome reconstruction from multiple read sources

at a given confidence level and also introduce the optimal strategy for combining

reads from di↵erent sources to minimize the overall sequencing cost. We show that

the optimal read set, which simultaneously satisfies the feasibility conditions for

genome reconstruction and minimizes the sequencing cost, can be e↵ectively predicted

through constrained discrete optimization. Through extensive evaluations based on

several genomes and di↵erent read sets, we verify the derived feasibility conditions

and demonstrate the performance of the proposed optimal hybrid sequencing and

assembly strategy. In this work, we simplify the read model and focus on deriving

feasible bounds and optimal sequencing strategies for complete genome reconstruction

with error-free reads. With regard to the future work, the genome reconstruction and

cost minimization strategy can be extended to the reads with errors and the paired-

reads. The paired-reads provide a lower-cost alternative to bridge repetitive sequences

in the sequencing and it can be seen as long reads with erasures in the analysis. In

the presence of sequencing errors, the minimum coverage depth required for complete

genome reconstruction is bound to increase, in order to e↵ectively correct the errors

for accurate assembly. Assembly feasibility conditions for hybrid reads with potential

sequencing errors require further analysis in the future. However, the overall concept

and strategy for optimal hybrid sequencing and assembly in our study can be carried

over to the case when sequencing errors are present.
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6.2 E�cient Computational Detection of Novel Noncoding RNAs

In the second part of our dissertation, we discuss the problem of computational

detection of novel noncoding RNAs. For many RNA families, it is known that

their RNA secondary structures are better conserved than the RNA sequences

themselves. Hence the RNA structural alignment can be employed to explore related

structured ncRNAs. In this work, we propose an innovate method, TOPAS, for RNA

structural alignment through topological networks. The computational complexity

of our proposed method is significantly lower than the dynamic programming

approach, while resulting in favorable alignment results. Furthermore, the proposed

method is not restricted to the nested structures, and hence it can e↵ectively handle

RNAs with pseudoknots. We demonstrate the performance of the proposed method

through extensive evaluation and comparison with state-of-the-art methods based on

benchmark RNA families.

In order to e�ciently search for novel ncRNAs in genomes, we develop a new

approach by utilizing the n-gram model to classify the sequences that share similar

sequence motifs and extract e↵ective features to capture sequence homology. In this

study, we propose a novel method, piRNAdetect, for reliable computational prediction

of piRNAs in genome sequences. We demonstrate the e↵ectiveness of the proposed

piRNAdetect algorithm through extensive performance evaluation based on piRNAs

in di↵erent species and show that piRNAdetect outperforms the current advanced

methods in terms of e�ciency and accuracy. Moreover, we propose RNAdetect, a

novel computational method for accurate detection of ncRNAs through e�cient

comparative genome analysis. RNAdetect enhances the accuracy of ncRNA detection

by incorporating n-gram model and additional predictive features based on the concept

of generalized ensemble defect, which assesses the degree of structure conservation
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across multiple related sequences and the conformation of the individual folding

structures to a common consensus structure. Extensive performance evaluation

based on the Rfam database and bacterial genomes demonstrate that RNAdetect can

accurately and reliably detect novel ncRNAs, outperforming the current up-to-date

methods. In regard to the future work, it is possible to incorporate more elaborate

models, like hidden Markov model, stochastic context-free grammar model [164, 165],

with the similar approach to detect ncRNAs. Furthermore, the detection approach

through comparative genome analysis can apply to eukaryotic genomes with multiple

chromosomes and predict more complex ncRNAs for the further biological research.
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APPENDIX A

MATHEMATICAL PROOFS OF THE PROPOSITIONS

Proof of Proposition 1.1

Suppose the read locations follow a Poisson arrival process with the arrival rate

� = N/G (event intensity) [30], and the length G of each genome sequence satisfies

G � L
i

so that we may ignore the terminal e↵ect in the sequence. Based on this

model, the arrival process is memoryless (i.e.. P (t > t
1

+ t
2

|t > t
1

) = P (t > t
2

)),

so any read can be seen as a new arrival read in the process. Furthermore, the

arrival gap between each pair of consecutive reads follows an exponential distribution

with the rate parameter �. Hence the probability that the arrival gap is larger

than T is P (t > T ) = e��T . Consider an arrival read of length L
a

that is the last

read in a contig. For notational simplicity, we denote the length of the read that

is longer than L
a

as L
i

. Otherwise, it is denoted as L
j

. Hence, the relationship

between the read lengths L
i

, L
j

, and L
a

is L
i

> L
a

� L
j

. For the read with the

length L
a

to be the last read, any read with a longer length L
i

must start at least

L
i

� L
a

bases before this read or start at least L
a

� K bases after the start of

this read, so that there is no read in the interval [L
a

� L
i

, L
a

�K]. Based on the

Poisson model, the probability that there will be no read with the longer length

to cover or overlap with the last read is e�
P

L

i

>L

a

N

i

G

(L

i

�K). Similarly, there is no

read with the shorter or equal length L
j

in the interval [L
a

� L
j

, L
a

� K] and

the probability that there is no reads with the length L
j

overlap with the read is

e
�

P
L

j

L

a

N

j

G

(L

j

�K)

. Therefore the probability that the arrival read is the last read

in a contig is P
L

=
P

a

N

a

N

e�
P

n

N

n

G

(L

n

�K) = e�
NL

G

P
n

N

n

N

(

L

n

L

�✓) = e�C(1�✓). This leads
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to the probability that there exists reads without valid overlap can be bounded as

P
overlap

(N,L)  Ne�
NL

G

(1�✓) = Ne�C(1�✓).

Li

K

La

void interval

Lj

La

K

(a) Case Li >La (b) Case Lj ≤La

void

Figure A.1: The overlap patterns between reads. (a) Read length is greater than the
last read length. (b) Read length is not greater than the last read length.

Proof of Proposition 1.2

Since the number of contigs equals the number of the last reads in contigs, the

expected number of contigs is E[number of contigs]=
P

i

P
L

= Ne�C(1�✓).

Proof of Proposition 1.3

By treating the arrival reads as a geometric process, a read is either overlapped

with the succeeding read or the end of the contig. So the expected number of reads

in the contig is 1/P
L

= eC(1�✓).

Proof of Proposition 1.4

Suppose the last arrival read with the read length L
i

arrives at base position X
i

,

and G is su�ciently large. By checking the positions before the last read arrival, the

possibility is either no arrival read or an arrival read with valid overlap. The

probability of no arrival read is 1�N/G, while the probability of arrival read with

valid overlap is N

G

(1 � P
L

). Hence the random variable X
i

has the distribution
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P (X
i

= m) = (1 � N

G

P
L

)m�1

N

i

G

P
L

. The expected length of the contig can be

represented as the summation of arithmetic-geometric series with a correction term

for the terminal e↵ect, and can be further simplified for the long genome sequence

(G� 1) as follows:

E[length of contig] =
X

m,i

P (X
i

= m)(m� 1 + L
i

)

=
G

X

m=1

(1� N

G
P
L

)m�1

N

G
P
L

(m� 1 + L)

�
L

i

�1

X

i,m=1

P (X
i

= G� L
i

+m+ 1)(G+m)

'G

N
eC(1�✓) + L

Proof of Proposition 2.1

According to the Poisson arrival model, the repeat with the length m is not

bridged if there is no longer read arriving in the preceding segment (L � m � 1).

Hence, the probability of the unbridged repeat with the length m is P (1) = e��(L�m�1),

where � = N/G is the read arrival rate. Here the read length is L > m+1, otherwise

P (1) = 1.

Considering an interleaved repeat with repeat lengths m and n, under the

assumption m � n without loss of generality, it is not bridged if both the repeat

pairs are not bridged. For the case when the read length is L
1

> m + 1, the

probability that the interleaved repeat is not bridged by any read with the length L
1

is P (2)

L1
= e�2

N

G

(L1�m�1)e�2

N

G

(L1�n�1). For the case when the read length L
2

satisfies

m � L
2

� 1 > n, the longer repeat cannot be bridged. Therefore, the unbridged

probability becomes P (2)

L2
= e�2

N

G

(L2�n�1). By combining the results of the above

cases for multiple read sources, the probability of unbridged interleaved repeat can be

bounded by the following: P(unbridged interleaved repeats)= P (2)

L1
\ P (2)

L2
 P (2)

bridged
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=
P

mn

b
mn

e�2

P
i

N

i

G

[(L

i

�m�1)

+
+(L

i

�n�1)

+
], where b

mn

is the number of interleaved

repeats in the target genome sequence withm � n and the step function (L�n�1)+ =

max(L� n� 1, 0).

Proof of Proposition 2.2

Considering triple repeats in a genome sequence, let d
m

be the number of triple

repeats with the length m and `
triple

be the longest triple repeat length. The

previous unbridged repeat formula with the read arrival rate � = N/G can be further

extended to the case that triple repeats are all unbridged. Apply the union bound

over triple repeats: P (3)

all

=
P

m

d
m

e�3�(L�m�1). For the case with multiple read

sources, P (3)

all

= 1 if the read length L  `
triple

+ 1. Regarding triple repeats involved

in other longer repeats in the genome sequence, they may still lead to ambiguity even

when some repeats are bridged. Take Figure A.2 as an example. The triple repeat

TGGCT is involved in the longer repeat TGGCTGTT, and forms a structure similar

to interleaved repeats. Even with a bridging read that bridges the first repeat, there

are still two possible candidate sequences, resulting in ambiguity. In this case, there

is a unique corresponding sequence if either of the last two repeats is bridged.

Therefore, the probability that unbridged triple repeats can result in ambiguity is

bounded by the sum of the probabilities that all triple repeats are not bridged (P (3)

all

)

and the correction term (P (3)

comb

) as shown below:

P (3)

bridged

=
X

m

d
m

e�3

P
i

N

i

G

(L

i

�m�1)

+
+ P (3)

comb

.

Here the correction term includes the cases when some repeating segments in triple

repeats are bridged but the remaining unbridged segments still result in ambiguities

in the assembly (e.g., the remaining unbridged segments of a triple repeat are involved

in another interleaved repeat).
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...                          ...

Genome Sequence

Bridging read

A                 ATGGCTGTT G                 GTGGCTGTT C           CTGGCT...                          ...

Candidate Sequences

A                 ATGGCTGTT G                 GTGGCTGTT C           CTGGCT...                          ...

A                 GTGGCTGTT C                 ATGGCTGTT G           CTGGCT

Figure A.2: The triple repeats involved in longer repeats. There are two candidate
sequences even though the triple repeat segments are bridged by the reads ATGGCTG
and GTGGCTG.

Proof of Proposition 2.3

Through Propositions 2.1 and 2.2, the unbridged probability bound is an

immediate consequence of the union bound given a read set (N,L) as

P
bridged

(N,L)=P (2)

bridged

[ P (3)

bridged

 P (2)

bridged

+ P (3)

bridged

.

Proof of Proposition 3

Given c
m

, the number of self-repeats with the length m in a genome sequence, let

c
m1 be those self-repeats with individual repeat patterns. The remaining set c

m2

consists of the self-repeats with repeat patterns that appear more than once in the

genome sequence. The probability of uncovered self-repeats in the set c
m1 is bounded

by
P

m1
c
m1e

�
P

i

N

i

G

(L

i

�m1+1)

+
while the probability of unbridged self-repeats in the

set c
m2 is bounded by

P

m2
c
m2e

�
P

i

N

i

G

(L

i

�m2�1)

+
. By combining these two separate

sets and further replacing covering reads with bridging reads, the probability of

ambiguous self-repeats can be bounded as follows:
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P
self


X

m1

c
m1e

�
P

i

N

i

G

(L

i

�m1+1)

+
+
X

m2

c
m2e

�
P

i

N

i

G

(L

i

�m2�1)

+


X

m

c
m

e�
P

i

N

i

G

(L

i

�m�1)

+

Proof of Proposition 4

Finding the best solution for an optimization problem over a combinatorial set

leads to convex discrete optimization if both the objective function and the constraint

functions are convex [43]. In the following proofs, we first consider the case when we

are given the read lengths L and then the case when using a fixed read cost to minimize

the bound of the feasibility probability with the constraint 8L
i

� 2L/C(1� ✓).

Given read lengths L, the objective function
P

i

N
i

L
i

C
i

is a linear function, hence

it is convex with respect to N. For the constraint functions, we can rearrange the

formula into a summation of exponential functions as P
feasible

(N,L) = 1TNe�↵

TN +
P

m

�
m

e��

T

m

N. It can be shown that the function is convex through the convex

properties by taking the first- and second-order derivatives. By the composition

convex function property: A composition function f(x) = h � g(x) is convex

if h(x) is convex and non-increasing and g(x) is a concave function. Thus the

composition function f(x) = e�↵

T

x is a convex function if we have h(x) = e�x and

g(x) =
P

i

↵
i

x
i

. By the sum of convex function property: The sum of two convex

functions f(x) = h(x) + g(x) is convex if both h(x) and g(x) are convex. As a

consequence of the above convex properties, the function
P

m

�
m

e��

T

m

N is a convex

function. Hence, the constraint function P
feasible

(N,L)  ✏ is convex if the product

function f(x) = 1Tx · e�↵

T

x is convex. This requires the Hessian matrix of f(x) to

be positive semi-definite, i.e. H = r2f(x) � 0. We can compute the Hessian matrix
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of f(x): H = (↵↵T1Tx � 1↵T � ↵1T )e�↵

T

x , which is positive semi-definite when

(1Tx� 1)↵ � 2. Hence, f(x) is a convex function if (1Tx� 1)↵ � 2. Consequently,

the condition for P
feasible

(N,L) to be a convex function is L
i

� 2

C

L N

(N�1)(1�✓)

= 2

C

L⇢,

where ⇢ = N

(N�1)(1�✓)

. This condition can be further approximated by L
i

> 2

C

L if

N � 1 and ✓ ⌧ 1. Therefore, the cost optimization is a convex discrete optimization

problem when L � 2G

N

.

For the case when the objective is to minimize the feasibility probability bound

based on a fixed read cost, the optimization problem can be formulated in an

epigraph form

minimize
N={N

i

},E
E

s.t. P
feasible

(N,L)  E;
X

i

N
i

L
i

w
i

= F

N
i

2 N, 8i.

where F is the fixed read cost, and E is an auxiliary variable for optimizing the

feasibility probability bound. As in our previous analysis, we arrive at an

optimization problem, where the goal is to minimize the auxiliary variable E, which

is a convex discrete optimization problem under the read length constraint.

Performance Gap Compared to the Feasibility Bound

The gap between the performance of the enhanced multi-bridging algorithm and

the theoretical feasibility bound results from two error patterns when the triple

repeats are involved in longer repeats with improper bridging reads. The first error

pattern occurs when the X-node for triple repeats are bridged with reads but solved

as simple repeats as illustrated in Figure A.3(a). The triple repeat TGGCT is
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involved in the longer repeats ATTGGCT and TGGCTCT, and the X-node TGGCT

is mistaken as a simple repeat by incompetent bridging reads in the X-node

resolution step. In the worst case, even though the triple repeat is bridged by two

bridging reads for the last two repeat segments, it can still lead to ambiguity in the

assembly. The second error pattern occurs when the triple repeat is embedded in the

front longer repeat, and the unresolved X-node is marked but still misleads the path

traversal as illustrated in Figure A.3(b). The triple repeat TGGCT is embedded in

the front longer repeats ATTGGCT, and the X-node TGGCT is marked by one

bridging read for the last segment of repeat. Since the bridging reads of the first and

last repeat segments are the same, the path traversal is misdirected to the last

segment from the first segment, causing the assembly to fail in this case. Let g
m1 be

the number of the first error pattern with the triple repeat length m
1

and g
m2 be the

number of the second error pattern with the triple repeat length m
2

. Based on the

above error patterns, the gap to the feasibility bound can be upper bounded as

P
gap


X

m1

g
m1P0

(m
1

)(1� P 2

0

(m
1

)) +
X

m2

g
m2P

2

0

(m
2

)P
1

(m
2

),

where P
0

(m) = e�
P

i

N

i

G

(L

i

�m�1)

+
and P

1

(m) = 1� P
0

(m).
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C               CTGGCT...                         ...

TGGCT

Bridging read

GCTCT
GTGG

GCTC

CATT

AATT

ATTGG

TCTG

TCTA

A                   ATGGCTCT G               GTGGCTCTAT AT

TGGCT
GCTG

CATT

AATT
ATTGG

GTGG

GCTC

GCTA

Bridging read

C               CTGGCT...                      ...A               ATGGCT G           GTGGCTAT AT

(a)

(b)

Figure A.3: Two error patterns of triple repeats.
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