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ABSTRACT 

 

Composites made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) and carbon nanotube (CNT) have shown unchanged or even increased 

thermopower when electrical conductivity was raised by altering the concentration of 

CNT and/or treating the composites with a polar solvent, dimethyl sulfoxide (DMSO) or 

an acid, formic acid (FA). In this study, an intermediate CNT concentration showed the 

highest thermopower and power factor unlike other typical reports with organic 

composites. The origin of the unusual transport properties was suggested by studying 

changes in the relative ratio of conducting PEDOT core and insulating PSS, 

morphology, and carrier concentration and mobility. Our results indicate that the PSS 

removal by DMSO and FA could alter the carrier transport barrier, and CNT-PEDOT 

junctions could increase thermopower for composites with a low CNT concentration by 

avoiding direct contacts between CNTs. For further studying the role of energy barrier at 

the junctions, organic electrochemical transistor (OECT) was employed as a vehicle to 

modulate relative energy levels of PEDOT and CNT. By constructing the band diagram 

at the junction with HOMO, LUMO, and Fermi levels determined by CV, KPFM, and 

UPS with and without applying gate voltage, the correlation between electrical and 

thermoelectric properties and the energy barrier height was established. An optimized 

power factor of 1047 μW/m-K2 was obtained with a 15 V gate voltage and 0.27 eV 

energy barrier. The improvement of power factor was attributed to the enhancement of 

thermopower due to energy filtering effect with minimally affected electrical 
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conductivity. Further, devices with 1 through 8 CNT-PEDOT junctions were fabricated 

with barrier height fine-tuned through hydrazine reduction to the optimized condition 

(0.27 eV). A promising power factor of up to 1299 μW/m-K2 was obtained with a device 

with 6 junctions.  
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CHAPTER I  

INTRODUCTION  

 

1.1 Background 

Developing and discovering new sources of energy have become one of the 

major focuses of the scientific community in recent years, especially combustion of 

fossil fuels, the current major energy source, suffers from the problems of limited supply 

and air pollution. Thermoelectric generator (TEG) is an alternative energy source that 

utilizes Seebeck effect that converts temperature difference directly into electricity. TEG 

can also be used as heat pumps based on Peltier effect, a reversed effect of Seebeck 

effect, when power is externally supplied. TEG devices contain no moving parts and 

liquid/gas media, and are thus quiet, low maintenance, and environmental friendly. 

Moreover, low-grade heat, which is otherwise wasted, can be utilized by TEG devices to 

generate electricity. Thus, thermoelectric devices gather much attention and interest 

from the industry and academia. To name a few of the applications of thermoelectric 

devices, TEG can be used to recycle waste heat from automobile engine and industrial 

processes, and even to power small portable devices or sensors with low temperature 

energy sources like body temperature. 

The performance of thermoelectric energy generation is often described by a 

dimensionless figure-of-merit called ZT = S2σT/κ, where S, σ, κ, T stand for thermopower 

(or Seebeck coefficient), electrical conductivity, thermal conductivity, and absolute 

temperature, respectively. When the variation of thermal conductivity is not a major 
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concern, the thermoelectric performance of materials can also be estimated by power 

factor (PF), which is given by PF = S2σ.  ZT is related to energy conversion efficiency, 

which is the output electrical energy divided by the input thermal energy, by the 

following equation:  










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  

where η is the energy conversion efficiency, TH and TC are hot side and cold side 

temperatures, respectively, and ZTm is the figure of merit at the medium temperature 

between TH and TC. Note that the term (TH – TC)/TH is the Carnot efficiency.  

ZT improvement is fundamentally important for enhancing energy conversion 

efficiency. We can see from the expression ZT = S2σT/κ, large ZT requires high 

thermopower to create high thermoelectric voltage, high electrical conductivity to 

efficiently transport energy through electrical charges, and low thermal conductivity to 

maintain large temperature difference. However, thermopower, electrical conductivity, 

and thermal conductivity are inter-correlated. It is challenging to optimize one parameter 

without affecting the others, this being the major hurdle for thermoelectric performance 

improvement. For example, according to Wiedemann-Franz law, electrical conductivity 

and thermal conductivity are inter-related with the equation σT/κ = (3/π)2(q/kB)2, where 

kB is Boltzmann constant. It can be seen that improving electrical conductivity inevitably 

raises thermal conductivity, due to the fact that electrons conduct both electricity and 

heat. Also, according to the equation σ = neμ, electrical conductivity is proportional to 

both carrier concentration (n) and carrier mobility (μ). With Mott relation, S = 
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π2kB
2m*T/(3π2)2/3ħ∣e∣n2/3, where m* is the effective mass of an electron, ħ is the Planck 

constant, thermopower is inversely related to carrier concentration. Thus raising 

electrical conductivity by increasing carrier concentration could diminish thermopower. 

The relationship between thermopower, electrical conductivity, and thermal conductivity 

can be manifested in Figure 1.[1] 

 

 

Figure 1. Electrical conductivity (σ), thermopower (α), thermal conductivity (κ), and 

figure-of-merit (ZT) as the function of carrier concentration.[1] (reprinted from [1] with 

permission) 
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From the materials’ perspective, we would like to choose materials or 

combination of materials that are most suitable for thermoelectric applications. 

Generally speaking, insulators or intrinsic semiconductors are too resistive to give large 

enough electrical conductivity, and metals suffer from their high thermal conductivity 

and typically low thermopower (~ 10 μV/K). Therefore, appropriate candidates are 

doped semiconductors. In fact, inorganic semiconducting materials (e.g. PbTe, ZnSb, 

SnSe, etc.) [2-13] have been the major focuses of thermoelectric material research. With 

carrier concentration adjusted to be between 1019 cm-3 to 1020 cm-3 and the efforts to 

reduce thermal conductivity without sacrificing electrical conductivity by nano-

engineering, ZT values above unity are generally achieved for inorganic thermoelectric 

materials.[14] However, inorganic thermoelectric materials suffer from several 

shortcomings. The fabrication of inorganic thermoelectric materials requires both time 

and energy-consuming fabrication processes, such as high-energy ball milling and hot 

pressing. Also, their common component elements such as Pb, Sb, Te, etc., are toxic and 

of limited supply. Furthermore, the materials are typically heavy and brittle, and thus are 

not suitable for portable or wearable device applications. On the contrary, the 

counterpart of organic semiconductors such as conjugated polymers and small molecules 

have the advantages of flexible, light weight, and are solution-processable (which infers 

low cost). Additional benefits of organic materials include their low thermal 

conductivity (less than 1 W/m-k) and high mobility possibly raveling the mobility of 

polycrystalline silicon.[15] Also, benefited from the knowledge accumulated from the 

development of materials along with the research of organic field effect transistors 
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(OFETs), organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs), 

physical and chemical properties of organic materials are highly tunable through 

rationally designed synthetic or fabrication routes and doping treatments.[16] These 

advantages render organic materials promising for thermoelectric applications, 

especially at low temperatures. Recent efforts have shown promising results of energy 

harvesting/conversion based on organic thermoelectric materials.[17-25] In spite of the 

aforementioned benefits, their low carrier mobility and mediocre thermopower are the 

two major factors hindering them from further property improvement. 

 

1.2 Objectives and dissertation outline 

In the first part of this dissertation, thermoelectric composites based on 

conjugated polymer and carbon nanotubes were investigated. The combined strategies of 

hybridization and solvent treatment were employed for developing high performance 

thermoelectric composites. I aims to clarify the interaction between the component 

materials of the composite, as well as to reveal the underlying relationship between 

composition, morphology and electrical and thermoelectric behaviors. The ultimate goal 

is to suggest viable strategies for further properties improvement. 

In the second part of the dissertation, I focus on the investigation of the effect of 

energy barrier at the interface of materials on thermoelectric performance. Energy 

barrier in a composite system was found to be of crucial importance to thermoelectric 

properties, as revealed by the first part of this research. I aim to further study the effect 

of energy barrier (or energy filtering) on thermoelectric performance in terms of barrier 
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height and the number of barriers utilizing organic electrochemical transistor (OECT) as 

a vehicle. The final objective is to enhance the performance of thermoelectric devices by 

interfacial energy barrier engineering. 

The outline of the dissertation is described as the following. In Chapter II, 

commonly employed strategies for improving thermoelectric properties of organic 

materials are reviewed. Then representative studies of thermoelectric composites in 

terms of materials and performance are highlighted and summarized, followed by a brief 

introduction to the electronic properties of carbon nanotubes, which is the filler material 

employed in this research. In the end of this chapter, theoretical and experimental 

researches related to energy filtering effect of both organic and inorganic materials are 

reviewed to shed light on the approaches and strategies to adopt in the current study.  

Chapter III investigates thermoelectric composites based on conjugated polymer 

and carbon nanotubes. After studying the microscopic morphology of the composites, 

the electrical and thermoelectric behaviors of the composite are presented and discussed. 

Then three intriguing behaviors exhibited by the composite are identified and further 

explored, including the origin of largely increased electrical conductivity but unchanged 

thermopower after solvent/acid treatment, as well as the maximized thermopower at 

intermediate CNT concentration. Concluding remarks are made to suggest the directions 

for making high performance composites. 

In Chapter IV, organic electrochemical transistor (OECT) was employed to study 

the effect of energy barriers at the PEDOT-CNT junctions. Design, operation, and 

analysis methods of the OECT are described first. Subsequently, thermoelectric 
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properties of PEDOT-CNT junction in OECT with different kinds of CNTs and with 

varied gate voltages are presented. Then band diagrams are constructed based on 

measurement of energy levels to quantitatively estimate the barrier heights at PEDOT-

CNT junctions. The improvement of thermoelectric properties originated from energy 

barrier is discussed. Finally, with suggested optimized energy barrier condition, multi-

junction devices are fabricated and analyzed to best exploit the effect of energy filtering 

for thermoelectric properties improvement. 

Lastly, Chapter V provides summary of this dissertation and directions for future 

research. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Strategies for thermoelectric properties improvement 

There are a number of strategies researchers adopt for improving thermoelectric 

performance of organic thermoelectric materials. Benefited from the widely-tunable 

nature of electronic structure of organic semiconductors, one of the widely employed 

approaches is to fine tune the carrier concentration or doping level of these materials. As 

mentioned previously, with inter-correlated thermopower, electrical, and thermal 

conductivity, all of which are dictated by carrier concentration, optimizing carrier 

concentration or doping level is an effective way for enhancing thermoelectric 

properties. For example, Crispin et al. optimized thermoelectric properties of PEDOT: 

tos by treating it with a reducing agent, tetrakis(dimethylamino)ethylene (TDAE) to 

change the doping level of PEDOT: tos. UV-vis spectra and XPS were used to verify 

and quantify the change of doping level. The power factor was optimized as the doping 

level was around 22 %.[17] The same group employed a different route for 

thermoelectric property optimization through electrochemical transistor architecture. 

Oxidation level of the PEDOT:PSS “channel” in the transistor was altered by applying 

gate voltage through a “gate” in parallel with the “channel”.[26] The same strategy was 

applied to a different kind of conjugated polymer, poly(3-hexylthiophene) (P3HT). For 

example, P3HT film was doped with NOPF6 and Fe(TFSI)3 stepwise so as to change the 

doping level from 0 % to 35 %. The power factor was improved by three orders of 
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magnitude with a doping level of 25 %.[27] Though many papers have reported the 

optimization of doping level for thermoelectric performance improvement, there is no 

consistent definition of doping level. Also, the optimized doping level varies from one 

work to another. 

On the other hand, microscopic morphology control is an alternative way to 

effectively enhancing the performance of organic thermoelectric materials. 

Morphological factors, such as crystallinity of polymers, crystal orientation, and chain 

conformation determine transport mechanisms of charge carriers (e.g. hopping, 

diffusion, etc.). Charge carrier transport, in turn, influences thermopower, electrical 

conductivity, and thermal conductivity in different ways. For example, charge carrier 

mobility (which affects electrical conductivity according to the formula σ = neμ) can be 

largely increased by increasing crystallinity according to previous study of field effect 

mobility of polymers.[28, 29] Also, material defects such as grain boundary could scatter 

phonons and impede heat transport while allowing charge carriers to transport through, 

improving thermoelectric performance.[30] Morphology of organic thermoelectric 

materials can be controlled through controlling synthesis processes and post treatments. 

For example, D. B. Zhu et al. synthesized β-Naphthalene sulfonic acid doped polyaniline 

(PANI) nanotubes together with PANI samples without specific nanostructure for 

comparison.[31] They found doubled electrical conductivity and 7-time higher 

thermopower for tubular-structured samples. As a result, the ZT value of the tube-like 

PANI was two orders of magnitude higher than its counterpart. Similarly, Taggart et al. 

prepared PEDOT nanowires using the lithographically patterned nanowire electro-
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deposition process.[32] The power factor of the PEDOT nanowire was improved 

compared to PEDOT films without specific orientation owing to enhanced crystallinity 

and charge carrier mobility. Also, Chen et al. fabricated highly anisotropic P3HT films 

with enhanced thermoelectric performance via small molecule epitaxy of 

trichlorobenzene (TCB).[33] With enhanced carrier mobility and almost non-affected 

thermopower via the orientation of polymer chains, a high power factor of 62.4 μW/mK2 

was reported. Lastly, post treatments such as solvent treatment of annealing can also 

alter film morphology as characterized by AFM and TEM.[34] Huge improvement of 

thermoelectric properties of PEDOT:PSS treated by ethylene glycol (ZT up to 0.42) was 

reported.[35]  

 

2.2 Organic thermoelectric composites – materials and performance 

Having discussed the ways for thermoelectric properties improvement for single 

component materials, in the materials design point of view, making composites comprise 

of multiple components of materials formed by hybridization of organic matrix with 

organic/inorganic fillers has been another popular approach. Essentially, composite 

fabrication is an easy and viable way for modifying the properties of materials (including 

carrier concentration, carrier mobility, and microscopic morphology, the properties we 

already discussed and proven to be crucial to thermoelectric performance) by changing 

the ratio and method for hybridization. Also, thermoelectric performance could benefit 

from the interaction of component materials, so a composite could have properties not 

achievable from its component materials. In addition, the massive interface between 
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component materials formed in the nanocomposite could play a key role for 

thermoelectric properties improvement. For example, the interface could serve as 

phonon scattering sites that reduce thermal conductivity.[36-38] Also, the energy barrier 

at the interface originated from the Fermi level mismatch of the component materials 

could have energy filtering effect that potentially raises thermopower, as is one of the 

major focuses of this dissertation. As a result, thermoelectric composite fabrication 

provides a route for combining the benefits of the component materials to achieve 

performance better than each of the components.  

There could be huge variation of ways that how a thermoelectric composite can 

be formed. The polymer matrix could be insulating or conductive. The filler particles 

could be organic, inorganic, and could be variable in size and shapes (i.e. spheres, rods, 

tubes, wires, and platelets).[39] Composites can be prepared by polymerization of 

monomer mixed with filler nanoparticles, reduction of precursors to form filler particles 

in the presence of polymer matrix, or simply forming the solution mixture of the filler 

and the polymer.  

For the polymer materials in the composite, a number of conjugated polymers 

have been investigated for thermoelectric applications, including poly(phenylene 

vinylenes) (PPV),[40] polythiophenes,[27] polycarbazoles,[41] polypyrrole (PPy),[42] 

polyacetylene (PA),[43] and polyaniline (PANI).[44] The highest reported 

thermoelectric properties of conjugated polymers are summarized in Table 1.[39] 

Among all the conjugated polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has 

been one of the most popular organic thermoelectric materials. Its electrical conductivity 
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and thermopower are widely tunable using reducing agents[45-47], electrochemical 

routes,[26] or morphology control. Morphology control with organic solvents such as 

ethylene glycol (EG),[48] dimethyl sulfoxide (DMSO),[21] and methanol (MeOH)[49] 

have been reported. The progress of thermoelectric properties improvement of PEDOT-

based thermoelectric materials has been significant since 2010. In 2011, Crispin et al. 

demonstrated an impressive power factor of 324 μW/m-K2 and ZT of 0.25 with 

PEDOT:tos de-doped with terakis(dimethylamino)-ethylene (TDAE).[45] The high 

power factor was originated from the high thermopower (>200 μV/K). Kim et al. 

employed electrochemical routes to control the doping level of PEDOT:tos films, 

achieving a power factor of 862.9 μW/m-K2 for as synthesized film and 1290 μW/m-K2 

for slightly de-doped film.[50] Mossonnet et al. investigated the relationship between the 

redox potential of the reducing agents and the thermopower of PEDOT:PSS film, 

proposing that redox potential could be utilized for carrier density control.[51] 

 

 

 

 

 

 

 

 

 



 

13 

 

Table 1. Highest reported thermoelectric properties of conjugated polymers.[39] 

(reprinted from [39] with permission) 

 

 

On the other hand, to further improve TE properties of conjugated polymers, 

nanoscale fillers including carbon nanotube (CNT),[20, 21, 52, 53] graphene,[22] Bi2Te3 

particles,[54] gold nanoparticles,[55] and Te nanorods[56] have been hybridized to 

synthesize nanocomposites. Among them, CNTs have promising properties such as their 

outstanding electrical conductivity and mechanical strength. Though they have large 

thermal conductivities (k > 1000 W/m-K for SWCNTs),[57] much lower values (k < 35 

W/m-K) were obtained when CNTs are in forms of bundles, ropes, or mats.[58] It has 

been reported recently that via proper sorting of CNTs with desirable chirality 

distribution and carrier concentration, a promising power factor of 340 μW/m-K2 can be 

achieved.[57]  A brief review of electrical properties of CNTs will be provided in section 

2.3. 
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Here we focus on the review of representative works based on the thermoelectric 

composites formed by conjugated polymers with carbon-based materials, especially 

CNTs. The composites are typically highly conductive, have good mechanical strength, 

and light weight. Their high thermal conductivity is the major hurdle to achieve high ZT. 

Carbon based materials could be planar (graphene), spherical (fullerenes), or tubular 

(CNTs) and they interact with conjugated polymers with different ways. The π-π 

interaction between carbon-based materials and conjugated polymer can help to 

overcome the strong van der Waals interactions between carbon-based materials to 

improve dispersion and can induce morphology and conformation change of polymer 

chains. Abad et al. synthesized a composite made of PANI-HCl and graphene by 

grinding and cold compression molding.[59] A thermopower of 34 μV/K and power 

factor of 14 μW/m-K2 were obtained. Zhao et al. polymerize aniline in the presence of 

graphene oxide (GO) platelet to form a composite with strong PANI-platelet interaction. 

The GO was then reduced into graphene to regain conductivity. However, the ZT 

obtained was not good (4.86  10-4) due to low electrical conductivity.[60] Grunlan et al. 

utilized layer-by-layer assembly method to fabricate a composite made of alternatively 

deposited PANI, graphene, and double-wall CNTs. The thin film with 40 quadlayers 

showed electrical conductivity of 1.08 × 105 S/m, Seebeck coefficient of 130 μV/K, and 

a decent power factor of 1825 μW/m-K2.[22] Yu et al. developed composites made of 

single-wall CNT, PEDOT:PSS, and/or polyvinyl acetate with thermopowers weakly 

correlated with electrical conductivity. Large power factor of up to 160 μW/m-K2 can be 

obtained at room temperature.[61, 62] The same group reported thermally driven large 
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n-type thermoelectric voltage response from hybrids of CNT and PEDOT treated with 

TDAE.[45] It was claimed that TDAE reduction reduced carrier concentration and led to 

improved thermopower, while the partially percolated CNT network maintained 

moderate to high electrical conductivity. A high power factor up to ~1050 μW/m-K2 was 

reported. 

Thermoelectric performance of composites made of conjugated and insulating 

polymers hybridized with organic, inorganic, and carbon-based particle additives are 

summarized in Table 2 for comparison.[39]  
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Table 2. Thermoelectric performance of organic thermoelectric composites.[39] 

(reprinted from [39] with permission) 

 

 

2.3 Electronic properties of carbon nanotubes 

A CNT can be regarded as a cylinder generated by rolling a piece of graphene to 

form a seamless structure. The circumference of CNT can be expressed by the chiral 

vector, C, which connects two crystallographically identical sites of 2-D graphene sheet. 

C = na1 + ma2, where a1 and a2 are primitive lattice vectors of the hexagonal graphene 

sheet. Thus, any CNT can be described by an integer pair of (n,m), which determines 

electronic properties of CNTs. It has been shown that a CNT is metallic (with no 
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bandgap) when n equals to m; a CNT has a small bandgap when n - m or m - n is a 

multiple of 3; a CNT is semiconducting for all other cases.[63] Figure 2 shows chiral 

vectors and corresponding electronic properties of CNTs.[64] Also, there is a relation 

between CNT diameter and bandgap, as formulated by Egap = (4ħvF/3dCNT), where Egap is 

the bandgap, dCNT the diameter of CNT, vF the Fermi velocity and is equal to 8  107 

m/s. From this relation, bandgap of CNT is inversely proportional to its diameter. This 

relation has been experimentally proven, as depicted in Figure 3.[65]  Accordingly, 

CNTs with small diameters (single-wall CNT, double-wall CNT) have larger bandgap 

and are more semiconducting; CNTs with larger diameters (multi-wall CNT) have 

smaller bandgap and are more metallic.  

https://www.imperialcollegeunion.org/food-drink/h-bar
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Figure 2. (n,m) values (chiral vector) and corresponding electronic properties of CNTs. 

Note that (n,0) CNTs are called zigzag CNTs; (n,n) CNTs are called armchair CNTs.[64] 

(reprinted from [64] with permission) 
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Figure 3. Bandgap as a function of CNT diameters. The filled circles indicate bandgap 

of zigzag (n,0) tubes with n = 3k. The filled diamonds indicate bandgap of chiral (n,m) 

tubes with n – m = 3k. Open circles indicate bandgap of zigzag (n,0) tubes with n – m ≠ 

3k. Open diamonds indicate bandgap of tubes with n –m ≠ 3k.[65] (reprinted from [65] 

with permission) 

 

2.4 Energy filtering effect 

The concept of energy filtering can be understood with the following equation: 

fEE
eT

S 
1

 

where e is the electrical charge, T is absolute temperature, E is the energy of charge 

carriers, Ef is Fermi level, and ⟨E – Ef⟩ denotes the average energy difference between 

charge carriers and Fermi level. Since thermopower is proportional to the energy 

difference between charge carriers and Fermi level, if energy barriers with appropriate 

barrier height is introduced into a material system, low energy charge carriers can be 

filtered out while allowing high energy carriers to transport through. Thus ⟨E – Ef⟩ is 

enlarged and thermopower could be improved. From another point of view, 
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thermopower is determined by the average entropy transported per charge carrier. 

Therefore, if charge carriers with greater entropy contribute more to electrical 

conduction, thermopower can be elevated. Thus, again, filtering out low energy charge 

carrier is beneficial to thermopower enhancement. With energy filtering, if the increase 

of thermopower can compensate the decrease of electrical conductivity (because less 

carriers participate in conduction), power factor can be improved. An exemplified band 

diagram at metallic CNT and p-type polymer interface is shown in Figure 4 illustrating 

how a barrier can filter out low energy carrier while allowing high energy carrier to pass. 

 

 

Figure 4. Energy barrier with proper barrier height at the interface of metallic CNT and 

p-type polymer can allow high energy charge carriers (hole) to pass while blocking low 

energy carriers. 

 

 

Studies about energy filtering have been mainly based on inorganic materials. 

Experimental and theoretical results have shown that energy filtering is an effective 

route for increasing power factor. Experimentally, energy filtering is accomplished by 

introducing nanoparticles into a matrix material or creating superlattices (periodic 
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layered structure of two or more materials) to introduce huge amount of interface 

between materials. For example, Shakouri et al. reported that a InGaAs/InGaAlAs 

superlattice showed enhanced power factor due to energy filtering effect.[66] Also, 

improvement of thermopower owing to energy filtering in bulk nanostructured PbTe 

based materials was reported by Morelli et al.[67, 68]  In the work of Stucky et al., 

AgxTey-Sb2Te3 hetero-structured film was reported to have over 50% enhanced 

thermoelectric power factor because the created interfacial barrier can scatter cold 

carriers stronger than hot carriers.[69]  

In the field of organic thermoelectric materials, some research groups have made 

organic thermoelectric composites with enhanced power factor claimed to be due to 

energy filtering effect. For instance, Meng et al. fabricated CNT/PANI nanocomposites 

and found that the power factor was several times larger than that of the individual 

components. They attributed this behavior to the size-dependent energy filtering effect 

originated from nanostructured PANI wrapping around CNT networks.[70] Wang et al. 

made composites based on functionalized graphene with fullerene and PEDOT:PSS. The 

created interface between component materials was considered to potentially introduce 

energy filtering effect that led to 4-fold improvement in the thermopower.[71] However, 

these works are deficient of experimental measurement of materials energetics and the 

measured thermoelectric properties of their composites were not compared to pristine 

component materials. Thus, it is hard to identify the role of energy filtering. On the other 

hand, some groups attempted to construct band diagram at material interfaces by 

measuring energy levels in the system, trying to quantitatively reveal the effect of energy 
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barrier height on the thermoelectric properties. Yu et al. employed a “doping/de-doping” 

approach to maintain proper barrier heights at CNT-PANI junctions while improving 

overall conductivity of the composite.[72] Barrier heights at CNT-PANI junction were 

determined by energy levels measurement and correlated to thermopower based on 

theoretical calculation. Great power factor improvement was obtained due to large 

enhancement of electrical conductivity (~700 %) without significantly sacrificing 

thermopower (90 % remained). Kim et al. made composite films comprised of reduced 

graphene oxide (rGO), PEDOT:PSS and Te nanowires.[73] The power factor obtained 

from the ternary composite was larger than either of the component materials or the 

combination of either two component materials. The authors attributed this behavior to 

the energy filtering effect due to the barriers at Te-PEDOT:PSS interface and 

PEDOT:PSS-rGO interface, which were measured to be 0.24 eV and 0.31 eV, 

respectively. Also, Qiu et al. studied the nanocomposite made of poly(3-hexylthiophene) 

(P3HT) and Bi2Te3 nanowires.[74] The authors attribute the high power factor of 13.6 

μW/mK2 to the strongly scattered low energy carriers as potential barrier at the P3HT- 

Bi2Te3 interface was engineered appropriately. However, in spite of the attempts to 

quantify barrier heights, the relationship between the barrier heights and thermoelectric 

properties was not discussed in depth. In most cases, only descriptive texts and 

schematic diagrams illustrating energy filtering were presented instead of measurement 

results.  Direct correlation between barrier heights, energy filtering, and electronic 

parameters like electrical conductivity and thermopower is still deficient. 
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CHAPTER III 

SOLVENT/ACID TREATED THERMOELECTRIC COMPOSITE MADE OF 

CARBON NANOTUBES FILLED CONJUGATED POLYMER*

 

3.1 Introduction 

Organic thermoelectric materials such as conductive polymers and small 

molecules are under intensive research efforts. Aside from their advantages of high 

flexibility, light weight, and cost-effectiveness, organic thermoelectric materials have 

highly tunable electrical properties with rationally designed synthetic or fabrication 

routes, making them promising alternatives to their inorganic counterpart. Among 

others, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one 

of the most popular organic thermoelectric materials. It affords widely tunable electrical 

conductivity and thermopower with adjustable doping level by reducing agents[46, 47, 

75] or electrochemical routes,[26] and controllable morphology by organic solvents. The 

electrical conductivity of treated PEDOT:PSS could be improved by as many as 4 orders 

of magnitude.[76] Treating PEDOT:PSS with acidic solvents was also reported recently 

with very high electrical conductivity of 2050 S/cm achieved.[77] In addition, it was also 

shown that thermoelectric performance of PEDOT:PSS can be tuned by controlling its 

pH value.[78] Despite these reported TE properties improvement, the underlying 

                                                 

* Reprinted with permission from J.-H. Hsu, W. Choi, G. Yang, C. Yu, Origin of unusual 

thermoelectric transport behaviors in carbon nanotube filled polymer composites after 

solvent/acid treatments, Org. Electron., 45, 182-189, Copyright 2017 by Elsevier. 
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mechanisms for the enhanced performance by polar solvent or acidic solvent treatment 

have not been fully uncovered. On the other hand, PEDOT:PSS is often hybridized with 

nano-sized fillers to form nanocomposites. The proposed reasons for enhanced TE 

properties because of nano-filler incorporation include the improvement of electrical 

conductivity due to polymer ordering, and the enhanced thermopower due to interface 

scattering. 

In this study, CNT was chosen as a filler for effective charge transport since CNT 

can strongly interact with conjugated polymers due to the π-π interaction between 

PEDOT:PSS and CNT.[45] In particular, we studied nontraditional thermoelectric 

transport behaviors observed from our PEDOT:PSS/CNT composites such as unchanged 

thermopower despite a large increase of electrical conductivity, an optimum CNT 

loading to maximize thermopower, and the simultaneous enhancement of electrical 

conductivity and thermopower, which can remarkably improve thermoelectric 

performance. 

 

3.2 Experimental 

3.2.1 Sample preparation  

For the samples with a solvent or acid treatment, 1-g PEDOT:PSS solution 

(CLEVIOS™ PH 1000, H. C. Starck, solid contents: 1.3%) was mixed with 50-mg 

dimethyl sulfoxide (DMSO) (99.9%, Mallinckrodt Chemicals) or 55-mg formic acid 

(FA) (97%, Alfa Aesar) by overnight stirring at room temperature. To synthesize 

PEDOT:PSS/CNT composites, single-wall CNT (P2 grade, carbonaceous purity >90%, 
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metal contents of 4–8 wt%, average diameter of ~1.5 nm, Carbon Solutions, Inc.) of 5.9, 

12.1, 18.6, 40.0, or 65.0 mg was added to 20-mL PEDOT:PSS solution to vary the CNT 

wt% in the composites, and then sonicated the mixture with a pen-type sonicator 

(Misonix Microson XL2000, 10 W) for 2 h and an ultrasonic bath (Branson 1510) for 6 

h for dispersion.  

Cleaned glass slides (8 mm  24 mm) were treated with UV-ozone cleaner 

(Bioforce Nanosciences) for 30 min. Then the PEDOT:PSS or PEDOT:PSS/CNT 

solution with/without the treatment (0.4 mL) was drop-casted on the glass slides and 

dried on a hot plate at 90 °C for 1 h. The treated samples were immersed in DMSO or 

FA for 4 h and then dried at 90 °C on hot plate for 20 min. Typical film thickness was 

measured to be 4-5 μm using a profilometer (Bruker DektakXT). 

 

3.2.2 Thermopower and electrical conductivity measurements 

Samples prepared on glass slides were suspended between two thermoelectric 

devices (Marlow Industries). One of the thermoelectric devices was cooled while the 

other was heated to create temperature gradients along the long side of the samples. 

Temperature differences were measured using two T-type thermocouples (consisting of 

copper and constantan wires) mounted on both ends of the samples by silver paint. 

Thermoelectric voltage was measured by the copper wires in the T-type thermocouples. 

This configuration ensures that temperature and voltage are measured at the same 

location. The maximum temperature differences were set to 6 K (+3 K ~ -3 K with 

respect to room temperature), and thermoelectric voltages at 6-8 different temperature 
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differences were obtained. Then, thermopower values were determined from the slope of 

the linear relation between thermoelectric voltages and temperature differences. For 

electrical conductivity measurements, two additional electrical contacts were created at 

the two ends of the sample to have four-point probe configurations together with the 

copper wires in the thermocouples. By applying current with the outer two electrical 

contacts and measuring voltage with the inner two thermocouples, we obtained current-

voltage relationships and then their slopes were used to find electrical conductivity. 

It should be noted that all of our samples were baked in an oven to avoid a large 

amount of moisture in the samples. It was found that humidity mainly changes 

thermopower of PEDOT:PSS but minimally alters its electrical conductivity. 

Considering the humidity level is ~50 RH% during our measurements, our measured 

value (36 μV/K) for pristine PEDOT:PSS is close to the literature values. Nevertheless 

the influence of humidity on the electrical properties of our “composites” is negligible. 

The electrical conductivity (0.31 S/cm) of pristine PEDOT:PSS is much lower than 4.0 

and 16 S/cm respectively for composites containing 6.7-wt% and 20-wt% CNT. 

According to the parallel resistor model with PEDOT and CNT,[79] the contribution 

from PEDOT:PSS on the composite properties is small due to its low electrical 

conductivity. When the measurements were performed under similar humidity levels, the 

thermopower of pristine PEDOT:PSS was increased with the addition of CNT, 

suggesting the change in thermopower is mainly from CNT.    
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3.2.3 X-ray photoelectron spectroscopy (XPS) 

XPS (DAR 400, Omicron) with Mg Kα X-ray sources was used to determine the 

relative amount of PEDOT to PSS. The base pressure and operation pressure are 310-10 

Torr and 110-9 Torr, respectively. Samples for XPS were prepared by drop-casting the 

solutions on ITO substrates (Nanocs) with the recipes specified in the sample fabrication 

section. The survey scans were collected with 1.0 eV resolution followed by high-

resolution scans of S 2p with 0.05 eV resolution. Peak fitting was performed by using 

CasaXPS program with asymmetric Gaussian/ Lorentzian and Shirley background 

functions. 

 

3.2.4 Tunneling atomic force microscopy  

PeakForce tunneling atomic force microscopy (PF-TUNA) (Dimension Icon, 

Bruker) was used to obtain surface topography as well as current mapping. Images were 

obtained with a Pt/Ir coated AFM tip (PF-TUNA model, Bruker). The samples were 

prepared on gold-coated silicon substrates instead of glass substrates using the same 

materials described in the sample preparation section. Spin-coating was used instead of 

drop-casting to make thin films for proper measurements. The thickness of gold layer on 

silicon was 20 nm and titanium was used as an adhesion layer. A voltage bias of 1 V was 

used to get the TUNA current mapping images. 
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3.2.5 Hall measurements 

Hall measurements were performed following the ASTM F76-08 method at room 

temperature. A custom-made setup employing the Van der Pauw geometry under 1-T 

magnetic field was used. Samples were prepared on square (15 mm  15 mm) glass 

substrates. After obtaining sheet resistance (Rs) of the samples, Hall mobility () was 

obtained using the following relation. 

 = |VH| / (IBRs)        

where |VH|, I, and B, are Hall voltage, current, and magnetic field, respectively. The 

carrier concentration (n) was determined by: 

n = IB / (q|VH|d)  

where q and d are electron charge and sample thickness, respectively. 

When composites contain macroscopically inhomogeneous materials, Hall 

measurement results are unlikely to generate correct values because charge transport 

occurs through the percolated network of the inclusion upon imposing a magnetic field 

due to macroscopic inhomogeneity, as shown in the illustration (Figure 5(a)). In our 

samples, however, the feature sizes of the fillers in our composites are much smaller 

compared to the size of our composites for the Hall measurements. CNTs are several 

microns long and on the order of 10 nm (bundles) in diameter. The sample we used for 

the Hall measurement was 1 cm by 1 cm. Therefore, we believe we can reasonably 

assume that electrons are deflected under a magnetic field like typical materials used for 

the Hall measurements, as illustrated in Figure 5(b). Furthermore, our objective of 

carrying out the Hall measurements is to see the “changes” in carrier concentration and 
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mobility values with DMSO and FA, rather than reporting the actual values. We believe 

that the measurement results are meaningful in this sense although we cannot guarantee 

the accuracy of the actual numbers.       

 

 

Figure 5. (a) Transport of charge carriers under a magnetic field (B) in a 

macroscopically “inhomogeneous” composite with an insulating matrix and conducting 

inclusions. Due to the large dimension of the inclusion and the insulating matrix, the 

transport path is limited along the percolated networks of the conducting inclusions, 

showing non-ideal Hall effects. (b) Transport of charge carriers under a magnetic field in 

a macroscopically “homogeneous” composite with a conducting matrix and conducting 

inclusions. The small dimension of the inclusion and the conducting matrix minimally 

influences the transport path of the charge carrier. For instance, the zigzag-shape black 

line may indicate non-ideal charge transport, but the overall path (red line) is similar to 

that from typical Hall effects. 

 

3.2.6 Thermopower of composites  

The thermopower of composites with the varying volume fraction of conducting 

particles in an insulating (or significantly less conducting) matrix is unchanged, as 

shown in the example below. Suppose that gold particles are embedded in an insulating 



 

30 

 

polymer matrix. The gold particles form one (Figure 6(a)), two (Figure 6(b)), three 

(Figure 6(c)), or some (Figure 6(d)) percolated chains from the left hand side to the right 

hand side.   

 

 

Figure 6. Composites consist of conducting gold particles and an insulating polymer 

matrix. The gold particles form one (a), two (b), three (c), or some percolated chains (d).  

  

The concentration of the conducting particles in the composites shown in Fig. S2 is 

different, but the thermopower values of the samples are identical under the assumption 

of no contact resistance between the gold particles:  

a b c d AuS S S S S     

To calculate the thermopower of the composite, a parallel resistor model[79] can be 

used: 

1 1

Au Matrix

Au Matrix
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R R
S

R R







. 

Since Aumatrix RR  , we know that 

Aumatrix RR

11
 . 



 

31 

 

Thus 

)(
matrix

Au
matrixAucomposite

R

R
SSS  . 

Since 

1
matrix

Au

R

R
, 

the thermopower of the composite can be expressed as:  

Composite AuS S  

 

3.2.7 PEDOT:PSS/DWCNT-DMSO composites 

Double-wall CNT (carbonaceous purity of 99.9 wt %, Continental Carbon 

Nanotechnology) was used to synthesize PEDOT:PSS/DWCNT-DMSO composites with 

various CNT concentrations following the procedures described in the sample 

preparation section. According to the product sheet, DWCNTs were synthesized by 

CVD method and contain two concentric tubes with inner-tube diameters of 0.9-2.4 nm 

and outer-tube diameters of 1.5-3.0 nm with some single- and triple-wall tubes as 

impurities.  

 

3.2.8 Error analysis for electrical conductivity, thermopower, and the power factor 

When an experimental result r is a function of measured variables Xi, 
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The uncertainty can be expressed as:[80] 
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We divide each term in the equation by r2; on the right hand side, we multiply by (Xi/Xi)
 

2 to obtain: 
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where Ur / r is the relative uncertainty of the result, and factors UXi /Xi are the relative 

uncertainty of each variable. The expression of resistance is: 
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Thus the electrical conductivity (σ) is: 
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where R, L, A, I, V, W, t are sample resistance, length, cross sectional area, current, 

voltage, width, and thickness, respectively. The relative uncertainty of electrical 

conductivity is given by 
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From at least 10 measurements, the relative uncertainties of measured parameters 

were UI/I = 0.0013, UV/V = 0.022, UL/L = 0.062, UW/W = 0.072, and Ut/t = 0.11. Then 

Uσ/σ was calculated to be 0.15. Similarly, thermopower is given by 

T

V
S   
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where T is temperature difference. The relative uncertainty of thermopower can be 

obtained by 
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The relative uncertainty for temperature difference, UT/T = 0.073. US/S is calculated to 

be 0.076.  

The power factor (PF) is given by 
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The relative uncertainty of power factor can be obtained by 
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Thus UPF/PF was calculated to be 0.21. 

 

3.3 Results and discussion 

3.3.1 Microscopic morphology of PEDOT:PSS/CNT composites 

We have synthesized PEDOT:PSS/CNT composites whose CNT wt% is 2.2, 4.4, 

6.7, 13.3, or 20 using DMSO (polar solvent) or formic acid (FA) (acid) treated 

PEDOT:PSS. We also prepared PEDOT:PSS without CNT as well as PEDOT:PSS/CNT 

composites without DMSO/FA treatment. Figure 7 shows the cold-fractured cross 
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sections of pristine PEDOT:PSS and PEDOT:PSS/CNT composite films. CNTs were 

pulled out from the surface during the cold-fracturing process, so more CNTs are shown 

for the samples with higher CNT concentrations. CNTs are seen more or less uniformly 

over the surface of the cross section, but it appears that the 20-wt% CNT composite 

contains aggregated CNTs, as shown in the inset of Figure 7(d).  

 

 

Figure 7. SEM images of cold-fractured cross sections of pristine PEDOT:PSS (a) and 

PEDOT:PSS/CNT composites containing 2-wt% CNT (b), 6-wt% CNT (c), and 20-wt% 

CNT (d). The inset shows a portion contains aggregated CNTs.   

 

Figure 8 shows the tunneling atomic force microscope (TUNA) images of 

PEDOT:PSS/CNT composites without solvent/acid treatment. With higher CNT 
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concentrations, the number of brighter lines (higher TUNA current) increased, 

suggesting CNT is better for electron transport compared to PEDOT:PSS. It is also 

possible that PEDOT:PSS near CNTs become a better electrical conductor because the 

crystallinity of conducting polymers near CNTs could be improved due to the π-π 

interaction.[45, 81] When CNT wt% is only 2.2, only small number of bright lines 

(indicating CNT) were observed (Figure 8(a)), and most of CNTs were disconnected. 

With 6.7 wt% CNT, thin and long bright lines were clearly seen, and some of them were 

percolated (Figure 8(b)). When CNT wt% was raised to 20, many of CNTs were 

connected (Figure 8(c)).  

 

 

Figure 8. TUNA current mapping of PEDOT:PSS/CNT composites whose CNT 

concentration is 2.2 wt% (a), 6.7 wt% (b), and 20 wt% (c). Brighter lines indicate more 

conducting CNTs and the darker background corresponds to PEDOT:PSS whose 

electrical conductivity is lower than that of CNT.  

 

3.3.2 Thermoelectric properties of PEDOT:PSS/CNT composites 

The CNT addition to PEDOT:PSS increased electrical conductivity (Figure 9(a)), 

and a noticeable increase in electrical conductivity of the composites prior to the 

treatment was observed from 6.7-wt% CNT loading where percolated CNTs were seen 
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(green diamond symbol in Figure 9(a)). When DMSO or FA treatment was performed, 

the electrical conductivity of pristine PEDOT:PSS (0% CNT) was remarkably improved 

from 0.31 S/cm to 9.9102 S/cm for DMSO-treated sample and 1.1103 S/cm for FA-

treated sample (Figure 9(a)). CNT addition further enhanced the electrical conductivity, 

reaching ~1.8103 S/cm with 20 wt% CNT. The high electrical conductivity could be 

ascribed to well percolated and electrically connected CNTs. The more, thicker, and 

brighter lines in Figure 8(c) from the sample with 20 wt% CNT suggest that carrier 

transport was greatly facilitated through the CNT network. It should be noted that the 

electrical properties of our composites is negligibly affected by humidity (see details in 

section 3.2.2).  
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Figure 9. Electrical conductivity (a), thermopower (b), and power factor (c) of 

PEDOT:PSS/CNT composites when the CNT concentration was varied from 0 to 20 

wt% before and after DMSO/FA treatments.  
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While the electrical conductivity was monotonically increased, the thermopower 

of the pristine PEDOT:PSS (36 μV/K) was raised with the addition of CNT up to 59 

μV/K at 6.7 wt% CNT and then decreased with more CNT to 50 μV/K at 20 wt% CNT 

(Figure 9(b)). The highest thermopower for the samples with DMSO or FA treatment 

was also observed at 6.7 CNT wt%. Surprisingly, thermopower before and after the 

DMSO or FA treatment was similar despite large increase (up to a factor of ~330) in 

electrical conductivity after the treatments. It should be noted that traditional inorganic 

thermoelectric materials show a large reduction in thermopower when electrical 

conductivity is raised.[82, 83] The power factor (Figure 9(c)) became the highest at this 

CNT concentration (6.7 wt% CNT), which are larger (464 and 407 μW/m-K2 after 

DMSO and FA treatment, respectively) than or comparable to those from most of “fully 

organic” thermoelectric materials.[56, 84-89] 

Three intriguing questions arise from the electrical transport behaviors: (1) What 

is the origin of the large increase in electrical conductivity for the composites treated 

with DMSO or FA?; (2) Why was the thermopower of DMSO or FA-treated samples 

unchanged despite the large increase in electrical conductivity?; and (3) Why was the 

thermopower maximized at a particular CNT loading despite the monotonically 

increasing electrical conductivity? 

 

3.3.3 Origin of largely increased electrical conductivity after solvent/acid treatment  

To answer the first question, we performed x-ray photoelectron spectroscopy 

(XPS) measurements for pristine PEDOT:PSS, PEDOT:PSS-DMSO, and PEDOT:PSS-
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FA (Figure 10). The peaks for the S 2p spectra can be fitted by two component peaks 

corresponding to the sulfur atom in PEDOT (centered at 165.0 eV and 163.8 eV) and 

another two component peaks corresponding to the sulfur atom in PSS (centered at 168.9 

eV and 167.8 eV), respectively.[90] The peak areas were used to estimate the relative 

amount of PEDOT and PSS, as summarized in Table 3. It was found that the pristine 

PEDOT:PSS has a large fraction of PSS (72 %). After the DMSO and FA treatment, 

PEDOT was increased from 28 % to 45 % (DMSO) and 51 % (FA), indicating that PSS 

was partially removed after the treatment. Note that the numbers are to compare the 

change in the relative amount of PEDOT and PSS rather than the accurate quantity of 

each species. It is worth noting that PEDOT:PSS were treated with DMSO/FA by 

rigorous overnight stirring prior to the casting process to make the samples, and thus the 

PSS removal is expected to be uniform throughout the sample (not only the surface).    
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Figure 10. (a) XPS survey scan of PEDOT:PSS before and after the DMSO or FA 

treatment. S 2p XPS spectra of pristine PEDOT:PSS (b), PEDOT:PSS treated by DMSO 

(c), and PEDOT:PSS treated by FA (d). The fitted peaks and the component peaks for 

sulfur in PEDOT (165 eV and 163.8 eV) and PSS (167.8 eV and 168.9 eV) are also 

shown.  

 

Table 3 Relative amount of PEDOT and PSS estimated by XPS. APEDOT and APSS are 

respectively the sum of the area of component peaks from PEDOT and PSS.   

Sample APEDOT APSS PEDOT % PSS % 

Pristine PEDOT:PSS 906 2318 28 72 

PEDOT:PSS-DMSO 1000 1221 45 55 

PEDOT:PSS-FA 1730 1659 51 49 
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It has been considered that PEDOT:PSS grains are composed of electrically 

conducting PEDOT rich cores surrounded by insulating PSS rich shells.[91, 92] The 

electrically resistive shell layers suppress charge transport across the grains. Polymer 

chains of PEDOT and PSS are bound together by van der Waals force as well as 

Coulombic attraction due to the positive and negative charges respectively on PEDOT 

and PSS chains.[93] We infer that treating PEDOT:PSS with polar solvent can screen 

the van der Waals force and the Coulombic attraction, facilitating the PSS removal. In 

the case of the acid treatment, protons can couple with the negatively charged PSS, 

weakening the attraction between PEDOT and PSS. The removal of PSS makes 

conductive PEDOT cores in contact with each other, forming more connected 

conducting paths. Thus, the electrical conductivity was boosted up after the treatment. In 

addition to PSS removal, rearrangement of polymer chain conformation[94] or phase 

separation of PEDOT and PSS[77] could also be the contributing factors that lead to the 

conductivity improvement after the treatment. 

We further scrutinized the morphologies using AFM, and then found that the 

root-mean-square roughness changed from 1.5 nm for pristine PEDOT:PSS (Figure 

11(a)) to 1.1 and 1.0 nm respectively for DMSO (Figure 11(b)) and FA (Figure 11(c)) 

treated PEDOT:PSS films. The smoothened surfaces can be attributed to the removal of 

PSS. This is consistent with the XPS results showing that the ratio of PEDOT to PSS for 

the FA-treated sample was slightly higher than that for the DMSO-treated sample and 

much higher than that for the pristine sample.  
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Figure 11. The AFM images of pristine PEDOT:PSS (a) and PEDOT:PSS treated by 

DMSO (b) and FA (c), and their root-mean-square roughnesses are 1.49, 1.11, and 0.95 

nm, respectively. The edge length of the images is 750 nm. The estimated morphology 

of PEDOT:PSS corresponding to ‘a’, ‘b’, and ‘c’ is illustrated in (d), (e), and (f), 

respectively. The dashed line indicates hole transport across PEDOT:PSS grains. The 

smaller grains in ‘e’ have more percolated pathways compared to ‘f’. The AFM images 

of PEDOT:PSS with 6.67-wt% CNT prior to any treatment (g) and after the DMSO (h) 

and FA (i) treatment.    
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3.3.4 Origin of unchanged thermopower after solvent/acid treatment 

The large increase in electrical conductivity did not accompany thermopower 

reduction, which is desirable to improve the thermoelectric power factor. Better 

understanding of this behavior may lead to even larger improvement in the power factor. 

To answer the 2nd question, electronic carrier concentration and mobility were 

determined by the Hall measurement, as shown in Table 4. The DMSO/FA treatment 

increased both mobility and carrier concentration of pristine PEDOT:PSS. The removal 

of PSS raises the relative concentration of conducting PEDOT (i.e., increased carrier 

concentration) as well as results in less interruption by insulating PSS for electronic 

carrier transport through the conducting PEDOT (i.e., increased mobility). 

 

Table 4 Hall mobility and carrier concentration of the PEDOT:PSS composites with 

6.67-wt% CNT and without CNT before and after the DMSO or FA treatment.  

Sample 

Hall mobility* 

(cm2/V-s) 

Carrier concentration*  

(cm-3) 

Pristine PEDOT:PSS 0.11 1.3  1019 

PEDOT:PSS-DMSO 6.5 9.7  1020 

PEDOT:PSS-FA 2.5 2.4  1021 

PEDOT:PSS/CNT-DMSO 19 4.0  1020 

PEDOT:PSS/CNT-FA 14 6.0  1020 

* The numbers shown here are for comparison, and may not be very accurate due to the 

uncertainty of the Hall measurements for composite materials. See section 3.2.5 for more 

details.   
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Among the solvent treatments, DMSO-treated PEDOT:PSS showed higher Hall 

mobility but lower carrier concentration than FA-treated PEDOT:PSS. The higher carrier 

concentration for FA-treated sample can be ascribed to the more effective removal of 

PSS (see Table 3). On the other hand, the higher mobility after DMSO treatment could 

be due to better percolated PEDOT networks caused by smaller granular structure of 

PEDOT:PSS from the DMSO-treated sample according to Figure 11(b),(c) that 

qualitatively indicate the grain size from the contrast (height) information. Thus it can be 

inferred that the smaller grains of DMSO-treated sample have less disconnected PEDOT 

and a lower chance of having bottleneck-type transport constriction. The morphologies 

of PEDOT:PSS before and after DMSO and FA treatments are illustrated in Figure 

11(d),(e),(f), highlighting thinner PSS after the DMSO/FA treatment, and smaller grain 

sizes and more percolated PEDOT networks for the DMSO-treated sample compared to 

the FA-treated sample. There is also a possibility that the higher mobility is originated 

from extended shape or ordered conformation of PEDOT grains after the solvent 

(DMSO) treatment,[49, 95, 96] which leads to more percolated networks.   

It is worth mentioning our reasoning about relatively unchanged thermopower 

with the largely increased carrier concentration after DMSO/FA treatments, which is 

different from the behaviors[82, 83] of typical inorganic thermoelectric materials. When 

the electrical conduction mainly occurs through PEDOT cores rather than insulating 

PSS, thermopower is mainly determined by the conducting PEDOT core. Thermopower 

does not depend on its volume, so a removal of PSS does not affect thermopower. Even 

for a case that the thermopower of PSS is measured to be high, a high electrical 
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resistance of PSS makes its contribution to the total thermopower negligible. For 

PEDOT:PSS, this can be readily understood under an assumption that a parallel resistor 

model[79, 97] with a conductor and an insulator is valid. More details can be found in 

section 3.2.6. 

When CNT was added to PEDOT, the mobility values of FA (2.5 cm2/V-s) and 

DMSO (6.5 cm2/V-s)   treated PEDOT:PSS were remarkably raised to 14 and 19 cm2/V-

s, respectively, resulting in much higher electrical conductivity but negligibly altered 

thermopower. The large mobility increase can be attributed to the exceptional carrier 

mobility (up to 105 cm2/V-s) of CNTs.[79, 98] The lower mobility values compared to 

the intrinsic mobility of CNT may come partly from the intervention of carrier transport 

by PEDOT:PSS coated on CNTs, as shown in Figure 11(g),(h),(i). It is worth noting that 

the decreased carrier concentration after the CNT addition comes from the substitution 

of PEDOT:PSS-DMSO/FA (whose carrier concentration is very high, ~1021 cm-3) with 

CNT whose carrier concentration is intrinsically lower (~1019 cm-3).[45, 99] 

The increase of mobility rendered thermopower insensitive despite the large 

increase in electrical conductivity, which can be “qualitatively” understood from the 

relations between mobility (), thermopower (S), and electrical conductivity ().[100]      

nq                                        (1) 
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where n, q, T, v, E, Ef, fo, and D are carrier concentration, carrier charge, absolute 

temperature, carrier velocity, energy, Fermi energy, Fermi-Dirac distribution, and 
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density of states, respectively. Electrical conductivity is proportional to mobility, as 

evident from Eq. (1), but the mobility in thermopower (Eq. (2)) appears on both 

numerator and denominator, minimally affecting thermopower.  

 

3.3.5 Origin of maximized thermopower at intermediate CNT concentration 

 The last question to answer is why the thermopower was maximized at an 

intermediate CNT wt% despite monotonically increased electrical conductivity with 

CNT addition. More CNT addition typically leads to monotonically increased electrical 

conductivity and monotonically decreased thermopower in a composite.[79, 101, 102] 

Note that the aggregated CNTs displayed in the composite containing 20 wt% CNT are 

unlikely to be the origin of the observed behavior since isolated aggregates were sparsely 

distributed and most of CNTs were more or less uniformly dispersed. Otherwise, 

electrical conductivity would not continuously increase when more CNTs were added. 

We suggest a possible scenario, which is an energy filtering effect that could originate 

from the presence of PEDOT:PSS-CNT junctions in the composite. Energy filtering 

effect arises when an energy barrier at the interface of two dissimilar materials impedes 

transport of low energy charge carriers across the interface while allowing high energy 

carriers to pass.[14, 20, 69-71, 74, 103-106] With proper energy filtering that changes 

the mean energy of the carriers, it is possible to improve thermopower without 

significantly sacrificing electrical conductivity.[103] 

When CNT was added to PEDOT:PSS, a significant portion of carriers travels 

through CNTs, as evident from the increased electrical conductivity. Then these carriers 
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encounter PEDOT:PSS at the junctions between CNTs because PEDOT:PSS are coated 

on the surface of CNTs, as depicted in Figure 11(g),(h),(i) (the spherical particles are 

PEDOT:PSS, and brighter lines are CNTs). At low CNT concentrations, most of CNTs 

are apart, so carrier transport occurs through CNT-PEDOT:PSS-CNT junctions, as 

illustrated in Figure 12(a). Since the highest occupied molecular orbital (HOMO) of the 

insulating PSS layer is likely to be located below the Fermi level of CNT, holes 

(majority carriers) in oxygen-doped p-type CNT (typical CNT stored in air) experience 

an energy barrier that may impede transport of low energy carriers (Figure 12(c)). As the 

CNT concentration increases to a level that CNTs are still not in direct contact, more 

carriers travel through CNTs and thereby this energy filtering effect becomes more 

pronounced.  
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Figure 12. Conceptual illustration of PEDOT:PSS/CNT composites when the CNT 

concentration is low (a) and high (b). Note that the illustration is not to scale. With a low 

CNT concentration, carrier transport occurs mainly through CNT-PEDOT:PSS-CNT 

junctions whereas carriers travel directly through a CNT to another CNT. Energy band 

diagrams corresponding to ‘a’ and ‘b’ are shown respectively in (c) and (d), suggesting 

the presence of an energy barrier for the case of ‘a’.  

 

Further increase in the CNT concentration reduces the distance between CNTs as 

illustrated in Figure 12(b), and thus the effect of PEDOT:PSS-CNT junctions begins to 

vanish, approaching the intrinsic thermopower of CNT (~30 V/K).[107, 108] When 

CNTs are in direct contact or bridged by conducting PEDOT core rather than insulating 

PSS, the energy barrier may become negligible, as illustrated in Figure 12(d). It is worth 

noting that the thermopower of the FA-treated samples (containing the smallest PSS) at 

20 wt% CNT dropped more than those from both samples without the treatment and 
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with DMSO treatment (Figure 9(b)). The least amount of PSS in the FA-treated sample 

may have weakened the energy filtering effect. The relatively high thermopower from 

the composite containing pristine PEDOT:PSS and 15-wt%/20-wt% CNT is another 

indication that more PSS renders thermopower higher. In AFM images, the CNTs in 

DMSO/FA-treated samples (Figure 11(h),(i)) are easily seen but the CNTs in the pristine 

PEDOT:PSS are hardly noticed (Figure 11(g)), suggesting that CNTs in the treated 

samples are in closer proximity compared to those in the pristine sample.   

Therefore, we believe that there is an optimum CNT concentration that makes a 

significant portion of carriers go through the energy barrier without having CNTs in 

direct contact or close proximity that vanishes the filtering effects. In our experiments, it 

appears the optimum CNT concentration is close to 6.7 wt%. This is a case that some 

CNTs are percolated (see Figure 8(b)), which is between a hardly percolated case (see 

Figure 8(a)) and a largely percolated case (see Figure 8(c)). Additionally, we synthesized 

DMSO-treated composites with double-wall CNT containing more metallic tubes. The 

measured electrical conductivity and thermopower of PEDOT:PSS/DWCNT-DMSO 

composites (Figure 13) as a function of CNT wt% are similar to those of 

PEDOT:PSS/CNT-DMSO composites containing single-wall CNTs. This suggests 

carrier transport is governed by metallic tubes or the CNT used in our experiments was 

doped to have the Fermi level close to its HOMO like a degenerate or highly-doped 

semiconductor, which supports our qualitative band diagrams in Figure 12(b),(d).  
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Figure 13. Electrical conductivity (a), thermopower (b), and power factor (c) of DMSO-

treated PEDOT:PSS/DWCNT composites with DWCNT concentrations from 0 to 20 

wt%. 
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3.4 Conclusions 

In summary, this work investigates the thermoelectric properties of CNT-filled 

PEDOT:PSS composites with solvent and acid treatments and suggests the origin of 

unusual electrical transport behaviors  large increase in electrical conductivity for 

DMSO/FA treated composites; simultaneous increase of thermopower and electrical 

conductivity; and maximized thermopower at a particular CNT concentration. From 

XPS, AFM, Hall measurement, and TUNA results, the PSS removal and morphology 

change for the composites treated with DMSO and FA were suggested as important 

contributing factors for the unusual electrical transport. Our results indicate that the 

DMSO/FA treatment mainly removes insulating PSS, improving the carrier mobility and 

thereby electrical conductivity. However, this PSS removal did not noticeably change 

thermopower because thermopower is an intrinsic property that does not depend on 

volume. The energy filtering effect may play a role in maximizing thermopower at an 

intermediate level of CNT concentration because a moderate level of CNT percolation 

makes the PEDOT:PSS-CNT junction effect prominent. The highest power factor was 

observed at an intermediate CNT concentration, which can be mainly attributed to the 

unchanged thermopower despite large increase in electrical conductivity. We believe this 

study provides better understanding of polymer/CNT composites and offers possibility 

for further improvements for TE applications and beyond. 
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CHAPTER IV 

ENERGY BARRIER TUNING AT THE INTERFACE OF ORGANIC 

THERMOELECTRIC MATERIALS FOR THERMOELECTRIC PROPERTIES 

IMPROVEMENT 

 

4.1 Introduction 

From the previous study, it had been revealed that the CNT-PEDOT junctions 

play an important role in the performance of organic composite thermoelectric materials. 

With proper number of junctions that form energy barriers in the conductive path of 

charge carriers, evident thermoelectric properties improvement could be realized 

presumably due to energy filtering effect.  It has been shown theoretically that low 

energy charge carriers reduce thermopower because the partial contribution of low 

energy carriers to thermopower is negative.[109]  Thus, by introducing energy barriers 

in material that selectively filter out low energy carrier, thermopower and overall 

thermoelectric properties could potentially be improved. 

Studies about energy filtering have been mainly focus on inorganic materials. 

Having shown that energy filtering could also play a role in thermopower improvement 

in organic thermoelectric materials in our previous study, some questions could arise 

here: what is the correlation between electrical and thermoelectric properties of the 

materials and the energy barrier height existing at material interface? Is there a proper 

barrier height that leads to maximized thermoelectric properties? By further delving into 

these questions, we aim to have a better understanding of energy filtering effect in 
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organic materials, and to exploit the benefits of energy level engineering to the largest 

extent. Knowing that barrier height can be controlled by adjusting the relative energy 

levels (in particular Fermi levels) between materials, and motivated by the literature 

demonstrating thermoelectric property tuning using organic electrochemical transistor 

(OECT),[48] in this study, we employed OECT as a vehicle for studying the effect of 

energy level (or barrier height) modulation on the thermoelectric properties of CNT-

PEDOT-CNT junction.  

 

4.2 Experimental 

4.2.1 Organic electrochemical transistor (OECT) device fabrication 

For fabricating organic electrochemical transistor devices, SWCNT (P2 grade, 

carbonaceous purity >90%, metal contents of 4–8 wt%, average diameter of ~1.5 nm, 

Carbon Solutions, Inc.), DWCNT (a purified grade called XBC grade, contains two 

concentric tubes with inner-tube diameters of 0.9–2.4 nm and outer-tube diameters of 

1.5–3.0 nm with some single- and triple-wall tubes as impurities) and MWCNT (8–16 

nm) solution were prepared by mixing 10-mg of CNT with 30-mg sodium 

dodecylbenzenesulfonate (SDBS)(88 %, Acros Organics) and 20-g DI water and then 

sonicated the mixture with a pen-type sonicator (Misonix Microson XL2000, 10 W) for 

2 h and an ultrasonic bath (Branson 1510) for 6 h for dispersion. Then the source, drain, 

and gate electrodes formed by CNT films were prepared by spraying CNT solution onto 

pre-cleaned glass substrates (3 inch × 1 inch) ) masked with Kapton tape at ~80 °C with 

a spray gun (0.2 mm nozzle diameter, GP-S1, Fuso Seiki Co.), leaving a gap of 3 mm 
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between source and drain electrodes. The CNT film thickness was measured to be 158 

nm. The samples were immersed into DI water overnight for washing our excess SDBS 

and dried on a hotplate. After removing the mask, the gap between source and drain was 

then bridged with poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate 

(PEDOT:PSS) (CLEVIOS™ PH 1000, H. C. Starck, solid contents: 1.3%) by spraying 

PEDOT:PSS solution pre- doped with 5 wt% dimethyl sulfoxide (DMSO) (99.9%, 

Mallinckrodt Chemicals) at ~80 °C. Finally, poly(4-styrenesulfonic acid) film (PSSH) 

(18 wt%, Sigma-Aldrich) film was sprayed on top of the PEDOT region and bridged the 

PEDOT region and the gate area at room temperature. 

 

4.2.2 Thermopower and electrical conductivity measurements  

Thermopower and electrical conductivity were measured in a same way as 

described in section 3.2.2. 

 

4.2.3 Cyclic voltammetry (CV) 

CHI 600 electrochemical workstation was used to carry out the CV experiments. 

A standard one-compartment and three-electrode cell was used with PEDOT and CNT 

coated Au films as the working electrode, Ag/AgCl as the reference electrode, and Pt 

wire as the counter electrode. The electrolyte solution was made of an anhydrous 

acetonitrile solution (99.8%, Sigma-Aldrich) containing 0.1 M tetraethylammonium 

perchlorate (TEAP)(98%, Acros Organics). Before testing, the solution was bubbled 

with 50-sccm N2 for 20 min to remove oxygen. Ferrocene/ferrocenium (Fc/Fc+) redox 
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couple was used as an external standards for calibrating cyclic voltammetry (CV) curve. 

The half-wave potential of Fc/Fc+ redox couple (E1/2(Fc/Fc+)) was obtained from (Eox + 

Ered)/2, where Eox and Ered are the oxidation and reduction peak potentials, respectively. 

E1/2(Fc/Fc+) was estimated to be -0.04 V. 

The HOMO and LUMO levels were determined by the following equations: 

)8.4( ,,,21 onsetoxFcFcHOMO EEE  
 

)8.4( ,,,21 onsetredFcFcLUMO EEE  
 

where Eox, onset and Ered, onset are the onset potential of oxidation and reduction peaks of 

SWCNT, respectively. 

 

4.2.4 Ultraviolet visible near infrared (UV-vis-NIR) spectroscopy and Tauc plot 

CNT films were prepared by spraying SWCNT, DWCNT, and MWCNT solution 

onto glass substrates, as described in section 4.2.1. UV-vis-NIR spectra of SWCNT, 

DWCNT, and MWCNT films were obtained using a UV-vis-IR spectrophotometer 

(Hitachi U-4100). For optical bandgap determination by Tauc plot, with the 

equation:[110] 

)()( gph

n

ph EEBE   

where Eph is the photon energy, Eg is the optical bandgap, α is the absorption coefficient, 

which is equal to absorbance divided by film thickness, B is a constant, and n = 2 for 

direct allowed transition, the (αEph)
2 - Eph plot can be made. By finding the crossover 
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point of the extrapolation line of Tauc plot and the x-axis, the optical bandgap of CNTs 

can be determined. 

 

4.2.5 Ultraviolet photoelectron spectroscopy (UPS)  

UPS results were obtained using Omicron XPS/UPS system. HIS 13 emitting 

at 21.2 eV (He I radiation) was used as the UV source. Electron analysis was done with 

Omicron’s 124 mm mean radius electrostatic hemisperical dispersive energy analyzer 

with the 128-channel micro-channelplate Argus detector with 0.8 eV resolution. A gold 

foil (99.95 %, 0.05 mm thickness, Alfar Aesar) was used as a reference.  

 

4.2.6 Kelvin probe force microscopy (KPFM) measurement 

Bruker Dimension Icon atomic force microscope (AFM) was used with a Pt/Ir-

coated AFM tip (SCM-PIT model, Bruker). The location of the Fermi energy level was 

determined by measuring the contact potential difference (CPD), which is the work 

function (WF) difference between a probe and a sample, in ambient conditions. Since the 

WF of a probe tip may be affected by humidity and other contaminants in air, the WF of 

the Pt-coated tip was calibrated by a gold foil (99.95 %, 0.05 mm thickness, Alfar 

Aesar). The CPD of the gold foil was measured to be -0.37 V. The work function (WF) 

of the gold foil was estimated to be 5.43 eV with respect to vacuum according to UPS 

results. Then, the WF of the tip was calculated to be 5.06 eV using the following 

relation: 

AuAutip CPDWFWF   
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Note that WF in this relation is a positive number. With WFtip information, WF values of 

PEDOT and CNTs were estimated using the following relation. 

sampletipsample CPDWFWF   

 

4.2.7 Fabricating PEDOT-CNT multi-junction samples by lift-off processes 

For fabricating PEDOT/CNT multi-junction samples by lift-off processes, CNT 

films were prepared by spraying SWCNT solution onto glass substrates, as described in 

section 4.2.1. The CNT film thickness was measured to be 158 nm. Photoresist (Shipley 

1818) was spun coated onto the CNT-sprayed substrates at 1600 rpm for 1 min, and the 

samples were dried on hotplate at 120 °C for 5 min. Subsequently, 1 to 5 narrow gaps 

were created in parallel on photoresist/CNT films by scratching the films with razor 

blade. The gap width was measured to be 70 μm. Then the samples were treated with 

UV-ozone cleaner (Bioforce Nanosciences) for 30 min for improving film adhesion 

deposited in the following step. PEDOT:PSS films doped with 5 wt% DMSO was spun 

coated onto the samples at 2400 rpm for 1 min and the samples were dried at 120 °C for 

20 min. Part of the PEDOT film was lifted-off by immersing the samples into acetone 

for dissolving the photoresist film for 4 hours. The PEDOT was reduced by treating it 

with hydrazine (99+%, Alfa Aesar) vapor in a sealed box for 2.5 min. After drying 120 

°C for 20 min, the samples of CNT films with 1 - 5 gaps filled with PEDOT:PSS were 

completed. The schematic fabrication steps for a sample with one junction, as an 

example, is shown in Figure 14.   
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Figure 14. Fabrication steps of PEDOT-CNT multi-junction samples by lift-off 

processes. One junction sample is shown as an example. 

 

4.2.8 Fabricating PEDOT-CNT multi-junction samples by layered processes 

For fabricating PEDOT/CNT multi-junction samples by layered processes, CNT 

films were prepared by spraying SWCNT solution onto glass substrates masked with 

tape. The CNT film thickness was measured to be 158 nm. PEDOT:PSS films doped 

with 5 wt% DMSO was sprayed onto the sample through a shadow mask to overlap the 

as-deposited CNT film. The PEDOT film thickness was measured to be 55 nm. The 

PEDOT film was then reduced by treating it with hydrazine vapor in a sealed box for 2.5 

min. Then again a CNT film was sprayed on top of the as-deposited PEDOT film to 

overlap it, and then PEDOT film was sprayed and reduced. The steps were repeated until 

desired number (1-8) of PEDOT-CNT junctions were reached. The schematic fabrication 

steps is shown in Figure 15. 
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Figure 15. Fabrication steps of PEDOT-CNT multi-junction samples by layered 

processes. 

 

4.3 Organic electrochemical transistor (OECT) – design, operation, and analysis 

Figure 16 shows the design of the OECT device. The source, drain, and gate 

electrodes were formed by sprayed conductive CNT films, with the gap between source 

and drain bridged by PEDOT:PSS. The overlap between CNT and PEDOT films was 

narrow (300 μm). Poly(4-styrenesulfonic acid) (PSSH), as a solid electrolyte, formed on 

top of the PEDOT region and bridged the gate area. Three kinds of CNTs (single-wall 

CNT, double-wall CNT, and multi-wall CNT) with different bandgaps and electrical 

properties were used in this study.  In the device, it was designed such that there was a 

much longer CNT region (60 mm) compared to PEDOT region (3 mm) along the 

direction of CNT-PEDOT-CNT junction. In this way, when energy levels of PEDOT are 

modulated by gate voltage, the junction serves as a “switch” of charge carrier flow, 

controlling thermoelectric properties of the system, and the overall conductivity is not 

going to be much affected because the PEDOT region is narrow. 
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Figure 16. The design of organic electrochemical transistor (OECT) device in this study. 

 

The working principle of the OECT can be described as follows: when operated, 

the carrier concentration of PEDOT is controlled by the voltage applied to the gate 

area.[111] As a positive voltage is applied to the gate, positive ion in the polyelectrolyte 

(H+ in PSSH) is repulsed by the voltage and can enter the PEDOT film, coupling with 

the negatively charged PSS-. The originally positively charged PEDOT is thus reduced 

and carrier concentration on the PEDOT backbone diminished. In this way, carrier 

concentration, and thus energy levels of PEDOT can be modulated by the applied gate 

voltage. The reaction can be expressed by the following equation:[112] 

  PSSMPEDOTeMPSSPEDOT 0
 

where PEDOT+PSS- is the intrinsically doped conductive PEDOT:PSS with high carrier 

concentration, M+ is the counter ion (H+ in PSSH) from the electrolyte, PEDOT0 is the 

de-doped PEDOT:PSS with low carrier concentration, and M+PSS- is the PSS molecule 

coupled with the counter ion.  
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The OECT containing CNT-PEDOT-CNT junction has several advantages over 

the PEDOT/CNT composites we previously studied as we investigate the effect of 

energy level modulation. Firstly, the application of gate voltage with a transistor 

configuration offers a highly controllable and reversible way for energy level modulation 

as compared to alternative routes such as chemical doping/de-doping. As compared to 

traditional transistors, OECT device can be fabricated by much easier solution processes. 

Gate, source, and drain electrodes can be patterned from a single film.[111] More 

importantly, as the gate voltage of traditional transistor affects only the material that is in 

close proximity to the dielectric layer, the gate voltage of the OECT affects bulk material 

in the channel, ensuring the modulation of energy level to be uniform across the entire 

PEDOT film.[111] Secondly, the CNT-PEDOT-CNT structure in our OECT device is 

well defined in terms of dimension and geometry as compared to the randomly oriented 

CNTs in the CNT/PEDOT composite. Moreover, in the OECT device, the properties of 

CNT and PEDOT are easy to be fine-tuned and analyzed individually and independently. 

These advantages render the OECT containing CNT-PEDOT-CNT junction a simple and 

viable way for studying the effect of energy level modulation in our system. 

When positive gate voltage is applied to the OECT, two major factors that lead to 

thermoelectric properties change should be taken into consideration: change of PEDOT 

doping level, and change of barrier height between CNT and PEDOT. Considering the 

first factor, the positive gate voltage will make PEDOT n-doped. Thus, a reduced carrier 

concentration (and electrical conductivity) and increased thermopower can be expected 

as long as the material is still p-type (polarity not inverted).[109] For the second factor, 
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the positive gate voltage alters Fermi level of PEDOT and changes the energy barrier 

height between CNT and PEDOT, leading to thermoelectric properties change. Barrier 

height between CNT and PEDOT can be estimated by the geometry of the band diagram, 

as shown in Figure 17. To transport across the junction, charge carrier (holes) needs to 

transport from Fermi level (for metallic CNT) or highest occupied molecular orbital 

(HOMO) (for semiconducting CNT) of CNTs to HOMO level of polymer. If a junction 

between metallic CNT and PEDOT is considered (Figure 17(a)), given that work 

function of CNT is larger than the work function of PEDOT (which is mostly the case 

according to literature, and this will be experimentally verified later), the barrier height 

between CNT and PEDOT can be expressed as:  

ppgpEB    

where B is the barrier height, Egp is polymer bandgap, φp is the work function of 

polymer, and χp is the electron affinity of polymer. On the other hand, if a junction 

between semiconducting CNT and PEDOT is considered (Figure 17(b)), and, again, 

work function of CNT is larger than the work function of PEDOT, the barrier height can 

be expressed as 

CNTppCNTgCNTgp EEB    

where EgCNT is CNT bandgap, φCNT is the work function of CNT, and χCNT is the electron 

affinity of CNT. When a positive gate voltage is applied, Fermi level of PEDOT shifts 

upward, and φp is reduced. As other factors in the barrier height expression remain 

relatively unchanged (this will be experimentally verified), the barrier height will 
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increase, leading to reduced electrical conductivity and increased thermopower. Since 

both factors (change of PEDOT doping level, and change of barrier height) lead to 

reduced electrical conductivity and increased thermopower as positive gate voltage is 

applied, relative contribution of the two factors to thermoelectric property change will 

need to be analyzed to see how energy filtering contributes to thermoelectric properties 

improvement.   

 

 

Figure 17. Energy band diagrams showing the barrier height between CNT and PEDOT 

at different scenarios. For a contact between metallic CNT and PEDOT, given that work 

function of CNT is larger than that of PEDOT, the barrier height can be expressed as Egp 

– φp + χp. For a contact between metallic CNT and PEDOT, given that work function of 

CNT is larger than that of PEDOT, the barrier height can be expressed as Egp – EgCNT + 

φCNT – φp + χp – χCNT. 
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In this study, the Fermi level and carrier concentration of PEDOT in the PEDOT-

CNT junction was controlled by applying gate voltage. The energy levels of highest 

occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and 

the Fermi levels of CNTs and PEDOT with different gate voltage were determined by 

Kelvin probe force microscopy (KPFM), UV-vis spectroscopy, cyclic voltammetry 

(CV), and ultraviolet photoelectron spectroscopy (UPS). The band diagrams of the 

PEDOT-CNT were constructed accordingly and the energy barrier between CNT and 

PEDOT as a function of applied gate voltage can be estimated. The correlation between 

energy barrier height and thermoelectric properties was established, and finally, the 

improvement of thermoelectric properties due to energy filtering was analyzed.  

 

4.4 Results and discussion 

4.4.1 Thermoelectric properties of PEDOT-CNT junction in OECT 

Figure 18(a) shows the electrical conductivity and thermopower of single wall 

CNT-PEDOT-CNT device as the function of gate voltage. Power factor as the function 

of gate voltage is also shown in Figure 18(b). When no gate voltage was applied, the 

device shows electrical conductivity of 760 S/cm, thermopower of 77.9 μV/K, and 

power factor of 461 μW/m-K2
. The thermoelectric performance of the CNT-PEDOT-

CNT junction is superior to either of the two components (for SWCNT, the electrical 

conductivity is 952 S/cm, the thermopower is 63.7 μV/K, and the power factor is 386 

μW/m-K2; for PEDOT, the electrical conductivity is 655 S/cm, the thermopower is 29.9 

μV/K, and the power factor is 58.6 μW/m-K2). This is an indication that energy barrier 
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plays a role in thermoelectric properties improvement. When positive gate voltage was 

applied, because of the PEDOT was n-doped (decreased carrier concentration), same as 

our expectation, the electrical conductivity dropped monotonically from 760 S/cm as Vg 

= 0 V to 579 S/cm as Vg = 20 V. This accompanied monotonic thermopower increase 

from 77.9 μV/K as Vg = 0 V to 128.2 μV/K as Vg = 20 V. The power factor, benefited by 

the enhanced thermopower with not-so-much decreased conductivity, peaked at 1047 

μW/m-K2 as Vg = 15 V. This is one of the most decent values achieved by organic 

thermoelectric materials. For OECTs made of DWCNT and MWCNT, a similar trend of 

electrical conductivity and thermopower with gate voltage was observed (Figure 

18(c),(d),(e),(f)). The notable difference in electrical conductivity of devices made of 

different kinds of CNTs was due to the largely distinct electrical conductivity of CNT 

films: the electrical conductivity of SWCNT, DWCNT, and MWCNT films were 

measured to be 952 S/cm, 2730 S/cm, and 17.3 S/cm, respectively. The huge difference 

in electrical conductivity of CNT films could originate from different extent of de-

bundling when solution processed as well as varied packing density.[108] 
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Figure 18. Electrical conductivity, thermopower, and power factor of CNT-PEDOT-

CNT junction when SWCNT ((a), (b)), DWCNT ((c), (d)), and MWCNT ((e), (f)) was 

used for the CNT region. 

 

4.4.2 Band diagram construction 

In order to identify the major contributing factor of thermoelectric performance 

improvement, band diagrams of the PEDOT-CNT junctions were constructed by 

measuring all the energy levels of respective materials. Taking SWCNT as an example, 

Figure 19(a) shows the CV curve for HOMO/LUMO determination. HOMO and LUMO 
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of SWCNT were determined to be 5.02 eV and 4.40 eV, respectively. Figure 19(b) 

shows Tauc plot: (αEph)
2 as a function of Eph calculated from UV-vis-NIR absorption 

spectrum of SWCNT, where α is the absorption coefficient, and Eph is photon energy. 

The optical bandgap of SWCNT, determined by the crossover point of the extrapolation 

line of Tauc plot and the x-axis, was determined to be 0.53 eV, which is smaller than the 

electrical bandgap (0.62 eV) determined by CV. Figure 19(c) and Figure 19(d) show the 

cut-off and onset regions of the UPS spectra of SWCNT, respectively. The Fermi level 

and HOMO level of SWCNT can be determined by the cut-off and onset regions, 

respectively, of the spectra with the following equations: 

hEE BEF  max  

BEonsetBE EEhHOMO  max  

where EF is the Fermi level, EBEmax is the crossover point of the extrapolation of the 

spectra with x-axis, EBEonset is the onset binding energy of the spectra, hν is the energy of 

the incident photon. The Fermi level and HOMO from UPS were found to be 5.02 eV 

and 5.00 eV, respectively. Note that the HOMO level found from CV (5.02 eV) and UPS 

(5.00 eV) were fairly close. HOMO, LUMO, and Fermi level of DWCNT, MWCNT, 

and PEDOT were determined by the same methods. The CV curves for PEDOT:PSS and 

DWCNT are shown in Figure 20.  The Tauc plot of DWCNT is shown in Figure 21. The 

UPS spectra of PEDOT, DWCNT and MWCNT are shown in Figure 22. 
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Figure 19. (a) CV curve of SWCNT. The red crosses show the onset potential of 

oxidation and reduction peaks. (b) Tauc plot: (αEph)
2 as a function of Eph calculated from 

UV-vis-NIR absorption spectrum of SWCNT. The optical bandgap of SWCNT is 

determined by the extrapolation line to be 0.53 eV. (c) Cut-off and (d) onset region of 

the UPS spectra of SWCNT. The Fermi level and HOMO can be found to be 5.02 eV 

and 5.00 eV, respectively. 
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Figure 20. CV curve of PEDOT (a) and DWCNT (b). For PEDOT, HOMO and LUMO 

are determined to be 4.83 eV and 3.98 eV, respectively. For DWCNT, HOMO and 

LUMO are determined to be 4.89 eV and 4.51 eV, respectively. 

 

 
Figure 21. Tauc plot of DWCNT. The optical bandgap of DWCNT is determined by the 

extrapolation line to be 0.48 eV. 
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Figure 22. Cut-off and onset region of the UPS spectra of PEDOT ((a), (b)), DWCNT 

((c), (d)), and MWCNT ((e), (f)). The Fermi level and HOMO of PEDOT are 4.67 eV 

and 4.81 eV, respectively. The Fermi level and HOMO of DWCNT are 4.67 eV and 4.81 

eV, respectively. The Fermi level and HOMO of MWCNT are both 4.78 eV. 
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The measured bandgaps of SWCNT and DWCNT are summarized in Table 5 

and compared with theoretical values calculated from the formula Egap = (4ħvF/3dCNT). 

We can see that both electrical and optical bandgaps become smaller as the diameter of 

CNT increases. 

 

Table 5. Electrical bandgap (obtained from CV), optical bandgap (obtained from UV-

vis), and theoretical bandgap of SWCNT and DWCNT. 

Material Electrical bandgap 

(eV) 

Optical bandgap 

(eV) 

Theoretical 

bandgap 

(eV) 

SWCNT 0.62 0.53 0.56 

DWCNT 0.38 0.48 0.37 

  

 

The Fermi level can also be determined by KPFM with gold foil as a reference 

and by the following equations: 

AuAutip CPDWFWF   

sampletipsample CPDWFWF   

where WFtip, WFAu, and WFsample are work functions of the KPFM tip, gold reference, 

and sample, respectively. CPDAu and CPDsample are the contact potential differences 

between the tip and gold foil, and between the tip and the sample, respectively. Figure 

23(a) shows the CPD profile of PEDOT, SWCNT, DWCNT, and MWCNT obtained 

from KPFM.  Figure 23(b) shows the CPD profile of PEDOT as gate voltages of 0, 5, 

https://www.imperialcollegeunion.org/food-drink/h-bar
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10, 15, and 20 V were applied. It can be seen that the CPD of PEDOT was increased as 

larger gate voltage was applied. As a double check, Fermi levels obtained by KPFM 

were quite similar to that obtained by UPS. 

 

 

Figure 23. (a) CPD profile of PEDOT, SWCNT, DWCNT, and MWCNT obtained from 

KPFM. (b) CPD profile of PEDOT as gate voltages of 0, 5, 10, 15, and 20 V were 

applied. 
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Energy levels of PEDOT, SWCNT, DWCNT, MWCNT obtained from CV, UPS, 

and KPFM are summarized in Figure 24. It can be seen that from the HOMO and 

LUMO levels of CNTs, the electrical bandgap decreases with increased CNT diameter. 

This matches the trend predicted by the equation: Egap = 4ħVF/3dCNT, where Egap is the 

bandgap of CNT, ħ is Planck constant, VF is the Fermi velocity, dCNT is the diameter of 

CNT. The electrical bandgap of SWCNT and DWCNT estimated by CV are 0.62 eV and 

0.38 eV, respectively, which are close to the values (0.56 eV for SWCNT and 0.37 eV 

for DWCNT) predicted by the equation. Note that metallic MWCNT does not have 

bandgap. The Fermi level of SWCNT is very close to its HOMO. For DWCNT the 

Fermi level is larger than the HOMO level and is inside the band, showing that it is a 

degenerate semiconductor. This is one of the reasons that DWCNT film showed very 

high electrical conductivity as compared to other kinds of CNT films. The Fermi level 

obtained for PEDOT was inside the bandgap and was closer to its HOMO, showing that 

PEDOT used here is a p-type material with holes being the major charge carrier. Note 

that no matter what kind of CNT is under consideration, the work function of CNT is 

larger than the work function of PEDOT. Thus our previous assumption for the 

estimation of barrier height holds true. As positive gate voltage was applied to PEDOT, 

its Fermi level shifted upward, from 4.68 eV as Vg = 0 V to 4.52 eV as Vg = 20 V, 

showing that PEDOT is n-doped (but still a p-type material) and the carrier 

concentration was lowered.   
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Figure 24. HOMO, LUMO, and Fermi levels of PEDOT, SWCNT, DWCNT, and 

MWCNT determined by CV, UPS, and KPDM. The Fermi levels of PEDOT measured 

as gate voltage of 0, 5, 10, 15, and 20 V were applied are also shown. 
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4.4.3 Barrier height analysis 

With all the energy levels analyzed, we can now construct band diagrams for 

PEDOT-CNT junctions made with SWCNT, DWCNT, and MWCNT and estimate the 

barrier heights. Figure 25(a) shows the band diagram made of PEDOT-SWCNT junction 

as Vg = 0 V and Vg = 20 V. When Vg = 0 V, the barrier height for hole as the major 

carrier at the PEDOT-CNT junction was estimated to be 0.14 eV. Because of the barrier 

height, the thermopower and power factor of the junction device was superior to its 

component materials, CNT, and PEDOT. As Vg increased to 20 V, the barrier height 

increased to 0.3 eV. Thermopower was improved due to the increased barrier height. 

Similarly, the barrier height increased from 0.15 eV (Vg = 0 V) to 0.31 eV (Vg = 20 V) 

for double-wall and multi-wall CNT-PEDOT-CNT junctions (Figure 25(b),(c)). As a 

comparison, according to literatures, energy barriers leading to power factor 

improvement could range from 0.08 eV to 0.88 eV.[50-51]  
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Figure 25. Band diagram of CNT-PEDOT-CNT junction made of SWCNT (a), 

DWCNT (b), and MWCNT (c) when no gate voltage (left) and gate voltage of 20 V are 

applied. Increase of barrier height for charge carrier can be seen as gate voltage is 

applied.  
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As discussed previously, change of PEDOT doping level and change of barrier 

height can both lead to thermopower improvement as gate voltage is applied. We tried to 

estimate the relative contribution of the two factors with the following analysis: 

)()()( int gbarriergrinsicgtotal VSVSVS   

where Stotal is the thermopower as a function of gate voltage, Sintrinsic is the thermopower 

of the junction device without the effect of energy filtering, and Sbarrier is the 

improvement of thermopower due to the effect of energy filtering. Sintrinsic can be 

calculated by the sum of thermoelectric voltage generated by component materials (CNT 

and PEDOT) divided by total temperature difference across the junction: 

totalpolymergpolymerCNTCNTginstrinsic TTVSTSVS  /))(()(  

where SCNT is the intrinsic thermopower of CNT, ∆TCNT is the temperature difference 

across CNT region, Spolymer(Vg) is the thermopower of PEDOT as the function of gate 

voltage, and  ∆Tpolymer is the temperature difference across the PEDOT region. Figure 26 

shows a schematic diagram of an OECT device bridged between hot side and cold side 

with ∆TCNT and ∆Tpolymer indicated. 

 

 

Figure 26. Schematic diagram showing an OECT device bridged between hot side and 

cold side. ∆TCNT (the temperature difference across CNT region) and ∆Tpolymer (the 

temperature difference across the PEDOT region) are indicated. 



 

78 

 

The intrinsic and gate voltage dependent thermoelectric properties of CNTs and 

PEDOT are measured and shown in Figure 27.  

 

 

Figure 27. (a) Electrical conductivity, thermopower and (b) power factor of intrinsic 

PEDOT, SWCNT, DWCNT, and MWCNT. Gate voltage dependent thermoelectric 

properties of PEDOT are also shown in (c) and (d). 

 

The improvement of thermopower due to the effect of energy filtering can be 

calculated as follows:  

totalpolymergpolymerCNTCNTgtotalginstrinsicgtotalgbarrier TTVSTSVSVSVSVS  /))(()()()()(

 

 The relative contribution of Sintrinsic and Sbarrier is summarized in Figure 28. It can 

be seen that with increased gate voltage, the increase of Sintrinsic is limited due to the 
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length of the PEDOT area is much shorter than that of the CNT area. It is clear that the 

improvement of overall thermopower majorly comes from the effect of energy barrier. 

Higher gate voltage leads to larger barrier at the junction, which filters out low energy 

barrier, leading to enhanced thermopower. Overall thermoelectric properties were 

optimized as a proper barrier height was present such that the negative effect of 

electrical conductivity reduction due to filtered out carrier was overcome by 

thermopower improvement. 

 

 

Figure 28. The relative contribution of thermopower from intrinsic property change and 

energy barrier filtering for devices made of SWCNT (a), DWCNT (b), and MWCNT (c). 

The percentages of thermopower improvement (Stotal/Sintrinsic) due to energy filtering for 

devices made of different kinds of CNTs as a function of gate voltage are shown in (d). 
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4.4.4 PEDOT-CNT multi-junction device fabrication 

In order to apply the obtained energy barrier height between PEDOT and CNT 

that lead to optimized thermoelectric properties to actual devices, we fabricated devices 

with multiple PEDOT-CNT junctions with controlled barrier height. We expect that with 

controlled barrier height, the thermopower would increase with number of junctions, 

leading to improved power factor. We firstly fabricated the devices with lift-off method: 

on photoresist coated CNT films we created multiple narrow gaps (~70 μm in width) by 

scratching the films with a razor blade. PEDOT:PSS film was then formed by spin 

coating on top of the sample to bridge the gaps. Subsequently, PEDOT film was lifted-

off except for the part at the gap. The multi-junction devices were thus made. The 

PEDOT parts were reduced by hydrazine with the reduction time controlled such that the 

electrical conductivity of PEDOT is similar to that of PEDOT as Vg =15 V in the OECT. 

The thermoelectric properties of devices made of lift-off method is shown in Figure 29. 

From the results we only see marginal thermopower improvement, presumably because 

of the large PEDOT width in the charge transport path.  
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Figure 29. (a) Electrical conductivity and thermopower and (b) power factor of devices 

with 1 to 5 PEDOT-CNT junctions fabricated by lift-off method. 

 

To reduce the transport path length of PEDOT, we further fabricated PEDOT-

CNT multi-junction samples with layered method. CNT and PEDOT films were sprayed 

in sequence to overlap each other so that charges can transport from CNT film to a thin 

PEDOT film and then another CNT film, and so on. The PEDOT layers were controlled 

to be thin (55 nm). The thermoelectric properties of devices made of layered method is 
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shown in Figure 30.  The trend that thermopower increased with the number of the 

junction was observed before it saturated at the junction number of 6. The reason for the 

increased trend of thermopower as the junction number is less than 6 is the tunneling of 

low energy charge carriers through the thin PEDOT film. As the junction number 

increased to be larger than 6, most of the tunneled charge carriers were filtered out, and 

the thermopower was maximized. On the other hand, electrical conductivity of the 

devices dropped as the number of junction increased due to the lower conductivity of 

PEDOT. The optimized power factor of up to 1299 μW/m-K2 with the 6-junction 

sample, which is a decent value among organic thermoelectric materials. 
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Figure 30. (a) Electrical conductivity and thermopower and (b) power factor of devices 

with 1 to 10 PEDOT-CNT junctions fabricated by layered method. 
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4.5 Conclusions 

As a concluding remark, in this work energy filtering effect was, for the first 

time, demonstrated with quantitative barrier height analysis by electrochemical 

transistor. With our OECT, the Fermi level difference between CNT and PEDOT, and 

thus energy barrier height between them, can be readily adjustable by applying gate 

voltage. Power factor can be improved from 461 μW/m-K2 to 1047 μW/m-K2 as a gate 

voltage of 15 V was applied to the SWCNT device. To verify the effect of energy barrier 

on thermoelectric properties improvement, HOMO, LUMO, and Fermi level of CNT and 

PEDOT were obtained through CV, UV-vis, KPFM, and CV measurements. Energy 

band diagram at PEDOT-CNT junction was constructed with energy barrier height at 

different gate voltages estimated. The barrier height was 0.14 eV as Vg = 0 V, 0.30 eV as 

Vg = 20 V, and 0.27 eV as the power factor was optimized at Vg = 15 V. The 

improvement of thermoelectric properties was mainly attributed to energy filtering effect 

at the junction instead of electrical property change due to the application of gate 

voltage, according to our calculation. We further apply the finding by fabricating devices 

with multiple PEDOT-CNT junctions with the barrier height between PEDOT and CNT 

adjusted to be 0.27 eV. A promising power factor of 1299 μW/m-K2 was obtained. The 

power factor was found to be increase with the number of junctions before thermopower 

saturated at the junction number of 6. This study provides a pioneered investigation of 

energy filtering effect in organic thermoelectric materials and demonstrates an effective 

way for thermoelectric properties improvement. 
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CHAPTER V 

SUMMARY 

 

This dissertation aims to provide a better understanding of electronic and 

thermoelectric properties of organic thermoelectric composites. The ultimate goal is to 

suggest and demonstrate viable routes to thermoelectric performance improvement. To 

date, researches have been focused on fundamental understanding on conjugated 

polymers and carbon nanotubes and their respective physical and thermoelectric 

properties. However, the complicated interactions between them as they are made into 

composite are not clearly unveiled. These aspects, once clarified, could further boost up 

the efficiency of thermoelectric energy conversion.  

In this dissertation, taking composites made of PEDOT:PSS and CNT as the 

system of study, I combined the strategies of hybridization and solvent treatment to form 

nanocomposites. As filler (CNTs) content and solvent treatment conditions were fine-

tuned and optimized, the optimized power factor of 464 and 407 μW/m-K2 was obtained 

for DMSO and FA treated samples, respectively. Three intriguing behaviors exhibited by 

the composite are identified and further explored, including the origin of largely 

increased electrical conductivity and the unchanged thermopower after solvent/acid 

treatment, as well as the maximized thermopower at intermediate CNT concentration. 

Through compositional and morphological investigations, amount of filler inclusion and 

the effect of solvent treatment are correlated to electrical conductivity, carrier 

concentration, mobility, and thermopower in an attempt to elucidate the origin of the 
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aforementioned behaviors. Compositional and morphological study showed that the PSS 

removal and morphology change for the composites treated with polar solvents were 

suggested as important factors for the unusual electrical transport. The results indicate 

that the DMSO/FA treatment mainly removes insulating PSS, improving the carrier 

mobility and thereby electrical conductivity. However, this PSS removal did not 

noticeably change thermopower because thermopower is an intrinsic property that does 

not depend on volume. The energy filtering effect may play a role in maximizing 

thermopower at an intermediate level of CNT concentration because a moderate level of 

CNT percolation makes the PEDOT:PSS-CNT junction effect prominent. The highest 

power factor was observed at an intermediate CNT concentration, which can be mainly 

attributed to the unchanged or even increased thermopower despite large increase in 

electrical conductivity. 

Identified as a crucial factor affecting thermoelectric behaviors of organic 

composites, the roles of material junctions and energy barrier are not sufficiently 

investigated by existing literatures, though. Here, experimental measurement of 

materials energetics is provided to quantitatively estimate barrier height. Also, the 

comparison of thermoelectric properties of a composite with that of pristine component 

materials is given to further clarify the effect of energy filtering. Organic 

electrochemical transistor was employed as a vehicle to tune energy barrier height at the 

junction and quantitatively correlate barrier height to electrical conductivity and 

thermopower. Band diagrams at the junction were constructed by measuring HOMO, 

LUMO, and Fermi levels determined by CV, KPFM, and UPS with and without 
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applying gate voltage. I observed an optimized power factor of 1047 μW/m-K2 with a 15 

V gate voltage and 0.27 eV energy barrier. The 2.3 times improvement of power factor 

compared to 0 gate voltage situation was mainly due to the enhancement of 

thermopower. From the calculation, thermopower improvement was majorly originated 

from the barrier effect. Actual multi-junction device fabrication showed the relation of 

thermopower with the number of junctions. Devices with multiple PEDOT-CNT 

junctions were fabricated with barrier height fine-tuned through hydrazine reduction to 

the optimized condition (0.27 eV). Thermopower increased with the number of junctions 

until it saturated at the junction number of 6. Correspondingly, a promising power factor 

of up to 1299 μW/m-K2 was obtained. With a better understanding of charge carrier 

transport at the junction of thermoelectric materials, this study demonstrates a viable 

way for thermoelectric properties improvement. 
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