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ABSTRACT

Graphics Processing Units (GPUs) have been predominantly accepted for various general pur-

pose applications due to a massive degree of parallelism. The demand for large-scale GPUs pro-

cessing an enormous volume of data with high throughput has been rising rapidly. However, the

performance of the massive parallelism workloads usually suffer from multiple constraints such

as memory bandwidth, high memory latency, and power/energy cost. Also a bandwidth efficient

network design is challenging in large-scale GPUs.

In this research, we focus on mitigating network bottlenecks by effectively reducing the size

of packets transferring through an interconnect network so that the overall system performance

improves.

The unused fraction of each L1 data cache block across a variety of benchmark suits is initially

investigated to see inefficient cache usage. Then, categorizing memory access patterns into several

types we introduce essential micro-architectural enhancements to support filtering out unnecessary

words in packets throughout the reply path. A compression scheme (Dual Pattern Compression)

adequate for packet compression is exploited to effectively reduce the size of reply packets. We

demonstrate that our scheme effectively improves system performance. Our approach yields 39%

IPC improvement across heterogeneous computing and text processing benchmarks over the base-

line cooperating with DPC. Comparing this work with DPC, we achieved 5% IPC improvement

for the overall benchmark suits and 20% IPC increase for favorable workloads to this scheme.
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1. INTRODUCTION

1.1 The Characteristics of GPUs

GPUs have been extensively utilized in a variety of general purpose applications due to their

powerful computing capability. Recent applications require an even more powerful computation

ability to deal with a huge volume of data with higher throughput. The rising demands have been

satisfied by the continuing development of GPUs. In fact, an NVIDIA Fermi GPU (GTX480)

released in 2010 started with 480 cores and the recently released NVIDIA Titan-XP incorporates

3840 cores. Even these GPUs are not enough for rapidly evolving AI applications that tackle large

datasets, so multiple GPUs are often used together to facilitate faster processing. Therefore, it is

paramount to design a large-scale GPU to support higher degrees of parallelism. However, the

performance of the massive parallelism workloads usually suffer from multiple constraints such as

architectural imbalanced design, memory bandwidth (bandwidth wall [1]), high memory latency

[2], and power/energy cost.

1.1.1 Execution Model of GPU

Contemporary GPUs architecture contains a scalable array of multithreaded Streaming Multi-

processors(SMs in NVIDIA terminology) [3]. A GPU program is invoked by the host CPU and the

launched program on a GPU device is called a kernel. The host refers to the CPU and its memory.

The device denotes the GPU and its memory.

A thread is defined as a sequential execution unit. In GPU programming, all threads execute

the same sequential program and they run in parallel. SMs are developed to run numerous threads

concurrently. The Single Instruction, Multiple Threads(SIMT) architectural model is applied to

manage such a large amount of threads. A group of threads is known as a threads block. Threads

within a block can cooperate to exchange data with light-weight synchronization. SMs create,

schedule, and execute threads in groups of 32 parallel threads known as warps. An array of thread

blocks are also named as a grid. When a grid is given to an SM, it makes them into several warps.
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Warps are scheduled by a warp scheduler to be executed in each SM.

1.1.2 Programming Model of GPU

CUDA is a parallel computing platform and application programming interface(API) model

developed by NVIDIA [3]. It enables NVIDIA GPUs to implement programs written with C, C++,

and other languages. The CUDA threads are executed by a physically separate device. Both the

host and the device have their own memory spaces in DRAM. The host initiates a data transaction

to store necessary data for a parallel program in the device. Once the transaction is finished the

host launches a kernel, then in turn the device begins computations in parallel with the execution

model. After the host finishes the kernel execution, it copies the computed results back to the host.

In this way, CUDA application codes execute on the host while the parallel code executes on the

device.

1.1.3 Many-to-few-to-many Traffic Pattern

In GPU architecture, many SMs typically communicate with fewer MCs. Over the previous

decades the computational units significantly scale up and MCs are still fewer than SMs due to

on-chip pin bandwidth limitations [4].

There are two types of request categories, read requests and write requests. While write re-

quests need to get the reply back with only an acknowledgement message, read requests require

the heavier replies with the requested data coming from lower memory. It creates a traffic imbal-

ance between requests and replies [5, 6]. From the traffic imbalance property, a higher volume of

read replies creates bottlenecks in the reply network by stalling MCs.

2



Figure 1.1: Overview of Many-to-few-to-many Property

Figure 1.1 depicts the Many-to-few-to-many properties in GPUs. Both architectural and traffic

asymmetry cause overall system performance degradation. Thus, it is necessary to put a special

treatment in this design.

1.1.4 On-chip Memory Types

Each shader core (SM) in GPUs has a load-store unit consisting of 4 different memory regions

: data, texture, shared, constant. The L1 data cache deals with global memory that has a global

scope and lifetime of an allocated program and local memory that has a local scope to each SM.

Shared memory is utilized for efficiently managing global memory data between threads and its

size can be dynamically partitioned with L1 data cache. For example, L1 data cache takes 16KB

while shared memory is reserved 48KB, and vice versa. Constant memory is used for constants

that cannot be compiled into the program. Texture memory is for general purpose computation to

handle special cases such as fast interpolation on multi-dimensional arrays. Since global memory

is primarily considered main memory, global memory requests transmitted through an interconnect

3



network are chiefly discussed in this work.

1.1.5 Inefficient Usage of L1 Data Cache

While some application types, such as image processing workloads, can naturally benefit from

the existing architecture due to regular memory access patterns, other types, irregular workloads,

need a more sophisticated approach to address frequent branches and memory divergences that

access memory irregularly [7].

The irregular access patterns to a L1 data cache block lead to the inefficient usage of the cache

since a miss brings the entire range of data without being fully utilized until the eviction of a cache

block. If replies transferring through an interconnect network have a synthetically reduced size

such that partial necessary portion of 128 bytes that is really requested data from a SM instead of

the entire cache block the traffic volume on the reply path can be alleviated.

1.2 Compression Techniques

Data compression techniques have been widely adopted as an instrumental way for improving

network bandwidth and they show drawbacks depending on where they are applied. Most hardware

compression algorithms fall into two types of schemes, dictionary-based compression schemes,

and pattern-based compression schemes.

The dictionary-based compression schemes encode data words into the corresponding short

ones in the dictionary. Such algorithms are effective in encoding large data blocks and files, but the

complex synchronization and significant overheads for managing dictionary limits the applicability

for packet compression.

For the pattern-based compression schemes, data is compressed based solely on the occur-

rences of predefined patterns. This simple characteristic is inherently suitable for packet compres-

sion.

1.3 Approach

Given these observations, the goal of this work is to mitigate the network bottlenecks so that

the overall system performance improves by effectively reducing the size of packets transferring

4



through an interconnect network between many SMs and fewer MCs.

First, we observe how L1 cache blocks are inefficiently accessed at runtime according to multi-

ple application scopes (e.g., heterogeneous computing, and text processing workloads) and charac-

terize such memory access patterns into several types according to accessing size and consistency.

Second, we propose essential micro-architectural enhancements to support filtering out unnec-

essary portions of each reply from the L2 cache. Our filtering mechanism mainly considers L1

data cache read misses.

Third, we introduce and compare two different techniques for reducing reply packet size. The

size of a criticality aware reply packet is reduced by one of two data reduction methods collaborat-

ing with a simple but powerful compressor DPC.

Fourth, we design a memory request prediction technique to carefully determine whether the

entire data or the partial critical data should be delivered from the lower memory.

Finally, we evaluate and analyze the proposed scheme across various applications in terms of

performance, NoC traffics on the way of reply, ,compression ratio, and the impact of the request

controller.
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2. REQUEST PATTERN CHARACTERIZATION

2.1 Actual Usage of L1 Data Cache

In regular memory access pattern applications, a warp typically demands a single wide 128-

byte memory request to the L1 data cache. This request smoothly accesses 32 consecutive 32-bit

data exploiting the coalescing hardware in each SM if the accessing cache block is valid. However,

heterogeneous applications with irregular memory access patterns can behave differently compared

to traditional memory access pattern applications as a result of powerful massive thread level paral-

lelism capabilities. We characterize two aspects of memory requests. First, the entire 128 byte data

in a L1D cache block is not fully utilized until the block is evicted. We categorize memory access

patterns into two types according to memory request size: partial data request (PDR) and full data

request (FDR). Second, we classify multiple memory requests on the same cache block into two

types depending if memory accesses are consistent on a region of a block: consistent access (CA)

and inconsistent access (ICA).

Figure 2.1: Averaged Percentage of Actual L1D Cache Block Usage until Eviction.

Figure 2.1 shows that the portion of cache block used on average across heterogeneous comput-

ing and text processing type applications. We simulate a large-scale GPGPUs which has 56 SMs,
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8 MCs, and a 2D mesh topology interconnect. This scheme is implemented by a cycle-accurate

GPU simulator, GPGPU-Sim 3.2.2 [8]. We take Rodinia benchmark [9], Graph benchmark suits

for heterogeneous computing applications and Mars benchmark suits [10] for text processing ap-

plications. The benchmark leukocyte in Rodinia is intentionally not evaluated because global read

memory requests are not observed although other types of memory requests occur. As the figure

depicts, cache blocks are not efficiently used while they are serving in general. Only a portion of

each cache block is utilized until eviction. On average, 40 percent of each cache block is used

until eviction across all benchmarks. While R.HYS, R.NN, R.SRAD present a relatively efficient

serving ratio of L1D cache (more than 90 percent actual usage), R.CFD, R.GSN, R.MYC, M.II,

M.SM, M.SS and others (the left group workloads of the figure) present a remarkably poor level

of L1D cache usage. This observation motivates the light weighted replies throughout the course

of an interconnect if the unnecessary fraction of data is ignored just before they are injected into

the interconnect.

2.2 Memory Access Patterns

We view memory access patterns on the L1D cache according to 32-byte granularity for more

investigation. Accordingly, a sub-block of a cache block is defined 32-byte size (4 sub-blocks of

each cache block in total). For instance, if a memory request on an L1D cache block needs only 4

byte size out of 128 bytes, we consider that the corresponding one sub-block (32 bytes) is accessed.

While the cache block is still serving (not evicted), another memory request less than 32 bytes

demands a different region of the block, then two sub-blocks (64-byte size) are acknowledged.

Figure 2.2 plots how this memory access pattern measurement operates.

Figure 2.2: An Illustration of Memory Access Pattern Measurement.
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In the following requests on the same block (the block is still not evicted), if one of the already

accessed sub-blocks which is not exactly accessed is requested we acknowledge the same memory

region access of the request.

We explore L1D cache block access patterns in detail at runtime in sub-blocks as well. Figure

2.3 shows the averaged percentage of accessed L1D cache blocks region while cache blocks are on

the line. 32 byte access implies that only 1 sub-block is accessed until its eviction. 64 byte access,

likewise, explains that two sub-blocks are used. 96 bytes are three sub-blocks, and 128 bytes are

the entire usage of cache blocks.

Figure 2.3: Averaged Percentage of L1D Cache Accessed Region until Eviction.

Some heterogeneous computing applications such as R.GSN, R.MYC, , R.PARTF, and G.GCO,

show one sub-block memory access pattern until their eviction is dominant. In text processing ap-

plications, most applications except M.PVC, and M.PVR consist of 32-byte-size memory access

on the L1D cache. This phenomenon is mainly because the necessary data requested by a warp

is sparse. Heterogeneous computing applications often incur frequent branches and memory di-

vergences [11] [12] and text processing applications are often interested in the data region around

keywords.

While some applications showing the partial memory access pattern can benefit from a filtering
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critical data mechanism, other applications indicating full memory access patterns cannot take the

advantage. Therefore, we need to further investigate the memory access patterns beneficial to us

in order to develop a deeper insight. Memory accesses can be grouped into two types : consistent

access (CA), and inconsistent access (ICA). With the CA type, multiple memory accesses on a

same memory address are always contiguous regardless of access sizes. For the CA example, a

memory request by a warp needs 2 sub-blocks (64 byte request). The corresponding reply from

either L2 or DRAM is completed through the interconnect and is successfully filled with the data

to that block. Over time, the cache block is accessed (cache hits) multiple times demanding only

the filled partial data of the cache block until the cache is evicted.

Figure 2.4: CA Type Examples

Figure 2.4 illustrates the CA types according to a memory access degree. Depending on the

uniformly accessed size of a cache block by multiple memory requests, the CA can be classified

into 4 subtypes, 32 bytes, 64 bytes, 96 bytes, and 128 bytes. On the other hand, the ICA can have
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3 subtypes, 64 bytes, 96 bytes, and 128 bytes. 32 byte size is not contemplated for ICA because

accessing only 32 bytes on a cache line until its eviction implies it is contiguously accessed only

by one sub-block. Unlike the CA type, the ICA requests memory region irregularly. Once a cache

line is filled with a portion of 128 bytes, another access to the cache block needs another region

other than the filled area of the cache. Figure 2.5 illustrates the ICA type examples.

Figure 2.5: ICA (Inconsistent Access) Type Examples
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Figure 2.6: Memory Access Pattern According to CA, ICA

Figure 2.6 denotes the ratio of each CA and ICA across the introduced applications. High-

lighted with bold represents partial CAs (32B, 64B, 96B). We can benefit only from favorable

benchmarks to partial CAs. Since using cache blocks fully signifies cache blocks are used effi-

ciently we cannot take advantage of the 128B CA type. Also, it is almost impossible to expect

in advance a memory access behavior with ICA types. Therefore, we categorize the benchmarks

into two groups according to partial CA patterns. The workloads in the left of the figure show

a promising potential to improve performance. They present on average 90 percentage of partial

CAs. Thus, it is reasonable if a mechanism is employed that fetches only partial data supposed to

be utilized from the on-chip L2 cache it can alleviate the network bottleneck of the interconnect so

that the overall system performance improves.
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3. DATA FILTERING

Figure 3.1: Illustration of Noncritical Words Detection and Data Filtering Mechanism

A global memory miss on the L1 data cache is sent to an MC. The packet is de-packetized

into flits to be transferred through an on-chip network interface. The request is stored in a request

queue when the queue has an free space. When the data request is completed by the L2 cache or

DRAM, the data is stored in a reply queue and its reply packet is returned back to the requesting

SM through the network interface. Our non-critical words detection and data filtering scheme

consists of 3 main components as Figure 3.1 shows: Request Analyzer, Critical Data Tracker, and

Packet Data Filter. Request Analyzer captures critical words and resides in the memory coalescing

unit. Critical words are defined as requested data by a warp in this work. Critical Data Tracker
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keeps track of the existing data in a cache block by referring to its bitmap extension. Packet Data

Filter is incorporated between MCs and an interconnect to refine reply packets creating smaller

sized packets with an already developed compressor, DPC.

3.1 Request Analyzer

Figure 3.2: Illustration of Request Analyzer

In this data filtering mechanism, a memory request stores not only an accessing cache block

address but also the N-bitmap where the ith bit indicates whether the ith data region (32-Byte

granularity is used by default) is needed by a warp. The N-bitmap is computed based on the

accessing byte information from the memory coalescing unit in an SM. The N-bitmap makes sure

that the data region corresponding to ones of the N-bitmap are critical. Since 32 byte granularity

is taken into account, a 4-bitmap setter is introduced in each memory coalescing unit. A 4-bitmap

setter is situated as Figure 3.2 shows. Therefore, the output of the coalescing unit is a 128 byte
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coalesced memory request and a 4-bit critical requested memory region.

3.2 Critical Data Tracker

Figure 3.3: Illustration of Critical Data Tracker

Each cache block has an extension 4-bitmap. A tag of each cache block contains the 4-bitmap

as a field so that it can distinguish which data regions are requested. When the system is initialized,

all data of cache blocks are empty (valid bits are set to 0). When data is loaded into a particular

block the corresponding valid bit is set to 1. If a memory request tries to fetch the data in a cache

block it looks up the corresponding index in the cache array then compares the tag to make sure the

appropriate block is found. When the status of a valid bit in the found cache block is set at 1, the

data can be read successfully (cache hit). The critical data tracker takes one more step to make sure
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the finding data is in the cache block before checking validity of a cache block. It is depicted with

blue lines in Figure 3.3. After the tag matching process, the 4-bitmap field needs to be checked

to see whether the requested data is in the cache block. The incoming 4-bitmap information from

the memory coalescing unit is compared with the 4-bitmap in the found cache block. If the two

have the same value, and the valid bit in the block is set at 1 the memory request is verified as a

cache hit. If one of those multiple steps(indexing, tag matching, 4-bitmap comparison, valid bit

checking) fails, the memory request is a cache miss.

3.3 Newer Definition of Cache Miss

Type Description

Miss
First Miss (FM) misses that fail indexing or tag matching in cache ar-

ray.(normal miss)
Subsequent Miss (SM) following misses on the already requested block by prior

misses demanding insufficient data.
Hit Hit but Invalid (HI) cache block found but containing insufficient data.

Table 3.1: Newer Definition of Cache Miss

While from the baseline architecture subsequent requests on the same cache block do not need

to be taken into account, our proposed scheme requires sending multiple requests even on the

already requested cache block. For instance, if a request needs partial data of a cache block,

subsequent requests on the same cache block may need another partial data. As a result, we newly

define cache miss as Table 3.1 plots.

For a First Miss(FM) case, they behave in the exactly same way as the baseline cache misses.

However, subsequent requests possibly occur on the same cache block when the foremost cache

miss requires insufficient data while the corresponding reply of the first is coming. Following

memory requests on the same address while the first is being completed are defined as Subsequent

Miss (SM).

15



We can also define another type of miss stemming from a cache hit. A cache block is success-

fully found, but there is a possibility the block has not enough data since we only filled a fraction

of the block ahead of time. A memory request hitting the cache block realizes the necessary data

is not in the block. Therefore, the request also needs to be sent to the lower memory as the orig-

inal miss despite the existence of the cache. This type of miss is defined as Hit but Invalid (HI).

Although HI cases can also have subsequent requests on the already accessed cache block, it is

not taken into account since subsequent requests on HI can create significant system performance

degradation.

Figure 3.4: Example of Newer Definition of Cache Miss.

Figure 3.4 shows an example of a newer definition of cache miss. The first memory request

(FM) initially looks up the cache array and it is turned out as a cache miss. The demanded data by

that FM is the first 32 bytes (1 sub-block). The FM request registers an entry in the corresponding

MSHR. Prior to filling the data from the first request, if another memory request on the same
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address with the first (SM) needs a different region of the FM it also needs to be sent through the

interconnect to bring the demanded data since the first requested only the first 32 bytes while the

second requires the last 32 bytes. Therefore, it is required to have a special treatment to support

multiple requests on the already requested address.

3.3.1 Cache-Miss Case

To support cache miss case, we add a 4-bitmap field to each MSHR as cache blocks. When an

FM request is stored in an MSHR, its 4-bitmap is stored in the allocated entry. When a subsequent

memory request accesses a data region not set by the 4-bitmap in the entry, the request is sent to

an MC unlike the baseline where subsequent requests are always blocked. The bit value related to

the new accessing regions in the 4-bitmap are set to ones.

We make sure that two possible SM cases are properly handled by the data filtering mecha-

nism, these occur according to the temporal locality between multiple requests. First, a subsequent

request can arrive in an MC before the reply packet of the prior request is sent to the interconnect.

The request is merged into the first request in the data-filtering table by ORing its 4-bitmap to the

4-bitmap created by the first request. Second, a sub-request may arrive in an MC, whereas the reply

packet of the first request is already delivered through the interconnect. Since the entry created by

the first request is already de-allocated in the table, our data filtering mechanism naturally consid-

ers the request as if it is the first request. When a reply packet arrives in an SM, the corresponding

bit value of the 4-bitmap field in the MSHR entry is flipped. All 0s of the 4-bitmap implies there

is no pending requests. Finally, a filling to a cache block is made. If there are pending requests

by SMs, the filled data in the cache block is not valid until all SMs being processed fill the cache

block. Otherwise, the cache block turns to the valid status to serve.

3.3.2 Cache-Hit Case

Although a memory request may hit a cache block, the block may not actually contain the

necessary data incurred by a warp. Our mechanism detects this case when the 4-bitmap is not a

subset of the 4-bitmap in the accessed tag. Then, it is necessary to re-access the cache block from
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the L2 cache. We consider this as a cache miss case by registering it to the MSHR and sending a

request to an MC. Its reply is handled as discussed in Cache-Miss Case.

3.4 Packet Data Filter

Figure 3.5: Illustration of Packet Data Filter

Our filtering mechanism is integrated between an MC and an interconnect as illustrated in

Figure 3.5. When a global read request is sent to the L2 cache, the PDR detector determines

whether the request needs full bytes or partial bytes. If the 4-bitmap in the request is set to all ones,

the detector classifies it as an FDR, and otherwise a PDR. A PDR is registered in the data-filtering

table where an SM id and accessing address are used as a key and the 4-bitmap information in the

request is stored as data. When a reply data comes from the L2 cache with its corresponding index,

the data filtering mechanism takes the 4-bitmap from the table entry pointed by the index. Finally,
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the mechanism reduces the reply packet size by compressing only the critical data region.

3.4.1 Data Reduction

3.4.1.1 Packet Compression

The requested critical portion of each request can be identified by the 4-bitmap of the table after

being processed from L2 Cache. In order to effectively reduce the reply packet size it is essential

to employ a compressor before replies are sent back through the interconnect. We first studied sev-

eral compression algorithms. Subsequently, we studied the simple and appropriate compression

scheme for packet compression, DPC. Then DPC is applied to the Data Filtering mechanism. Data

compression is an instrumental approach for improving effective network bandwidth by reducing

the size of packets (i.e. payload) before they are sent through an interconnect. Although a number

of compression schemes have been introduced, they entail limitations on their applicability to the

packet compression. The dictionary-based compression schemes encode data words into the corre-

sponding short codes in a dictionary [13, 14, 15]. By compacting frequently appearing data words,

they obtain high compressibility but are not suitable for packet compression due to deficient scal-

ability, complex dictionary synchronization issues between compressors and decompressors, and

high latency overhead. In packet compression, all N nodes in a network compress packets and each

receiver node decompresses the packets coming from other N-1 nodes. To neatly restore them, a

decompressor in each receiver node needs to maintain N-1 dictionaries. Synchronizing dictionaries

between a compressor and a decompressor also requires an expensive hardware cost. The bulk data

transfer for a dictionary created at the training phase is necessary from a compressor to a decom-

pressor [13, 14] or synchronization protocols for a dictionary updated during runtime should be

introduced [15, 16]. The hardware dependency on a dictionary in compressor and decompressor

inherently creates a serialized process for each input. In particular, a compressor with long latency

overhead adversely becomes a bottleneck for the next waiting packets in a highly dense network.

On the other hand, the pattern-based compression schemes encode data purely based on the

occurrences of predefined patterns on the data words. Due to this simplicity, they are inherently
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suitable for packet compression by reducing latency overhead [17, 18]. Thus, we take pattern-based

algorithm, Dual Pattern Compression, for our packet compression. We make the compressed data

after the data filtering transparent to SMs by compressing and decompressing.

3.4.1.2 Dual Pattern Compression Algorithm

Figure 3.6: Illustration of DPC Pipeline.

DPC exploits data redundancy in a cache block size input. Figure 3.6 shows the DPC pipeline.

The lightweight but powerful algorithm accepts by default a cache block (128 Byte size) as inputs.

An input is decomposed into 32 segments (4 Byte granularity) and the 32 segments are compressed

into a smaller format after preprocessing to reduce possible redundancy in the compression course.

The remap function in the DPC reorganizes previously decomposed 32 segments as a list of group

i that takes a sequence of a bit value at the bit position i of all the elements. Then, it creates two

compressible patterns, consecutive all zeros or ones. The compressible patterns signifies that if all

elements of the 32 segments at the same bit position are either zero or one they are compressible

from 4 bytes (32 bits) to 1 bit. Otherwise, the data is situated as the original in the compressed

format. Figure 3.7 plots an example of the data remap function and encoding with 32 byte input.

20



Figure 3.7: Illustration of DPC Remapping and Encoding.

Once a cache block is preprocessed by the remap function, the DPC compressor encodes the

remapped data into a smaller form represented as a compression flag (C), a sequence of encoding

status (ES), and a sequence of encoded data (ED). The compression flag is for recognizing if the

output is encoded (1) or not (0). If the compression bit of input data is set at 0, it restores the

remaining data without the bit as an output. Otherwise, it begins to decompress into individual

segments by referring to each encoding status bit. If an encoding status bit is one, a segment is

recovered as 4 bytes, consecutive zeros, or ones depending on its encoded data. Otherwise, the

segments are restored as its original data. All the segments are rebuilt in the same manner.
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3.4.1.3 Applying DPC to Data Filtering Mechanism

Figure 3.8: Illustration of DF-TRUC and DF-MAN

The non-critical part of each reply from the L2 cache can be detected by the data filtering

mechanism. The table situated between MCs and an interconnect retains the information in which

the SM id, memory address, critical sub-block information can be identified by an entry index.

As illustrated in Figure 3.5, we employ DPC in the data filtering mechanism. A reply from

the L2 cache is to be an input for DPC. The criticality-awared reply needs to be manipulated by

either removing or substituting the non-critical part of the reply. While removing the unnecessary

fraction of a reply packet is simple, subsequently producing a smaller sized packet, manipulating

the unwanted portion favorable to The DPC entails additional steps. First is to directly remove all

unnecessary data where the corresponding packet size naturally decreases for PDRs. For example,

if an entry of the table contains 4-bitmap as "1000" it means the first 32 bytes of the request are

the critical data and eliminate the remaining 96 byte unnecessary part. In turn, the reply packet

is transformed into a reduced size form (32 bytes) compared to the primitive 128 byte size form.

This method is defined as Data Filtering with Truncation (DF-TRUC). The second option is to
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manipulate the non-critical portion by putting dummy data to increase compressibility for the DPC.

From the discussed example for DF-TRUNC, the last 96 bytes are alternatively filled with dummy

data. It is defined as Data Filtering with Manipulation (DF-MAN). Figure 3.8 shows both DF-

TRUC and DF-MAN. For simplicity, DF-MAN sets all zeros in the unnecessary parts and critical

regions remain as original where the basic 128 size form is kept.

Figure 3.9: Illustration of DPC Extension

3.4.1.3.1 Data Filtering With Truncation The DF-TRUC is implemented by simply truncating

a piece of a reply data. To make the truncation effective, DPC needs to take critical information

from the data filtering table in addition to the reply data, then the remap function and the encoding

module consider only a critical part of the data as illustrated in Figure 3.9. The sub-block identifier

extended in DPC provides both the data remap function and the encoding module with critical

the data information. If a request is required to fetch a fractional part, the unnecessary part is

ignored creating an impact of the truncation. When decompressing a reply in an SM, the DPC

decompressor restores data by referring to the critical data information held in the reply. To support

the case that multiple requests merged in the data filtering mechanism, the critical information of

an outgoing reply from the data reduction module needs to be updated as the corresponding entry

information in the table. For instance, if a memory request has "1000" for the critical data and this

request is still being processed by an MC, another request in the same address has "0100" and it
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is just ejected from the interconnect to the MC (the same MC with the first request). These two

requests are merged by the data filtering mechanism and the table has "1100" in the corresponding

entry. The merged reply should contain "1100" for the 4-bitmap to successfully restore data from

the DPC decompressor.

3.4.1.3.2 Data Filtering With Manipulation. To enhance compressibility for the DPC, the un-

necessary part is filled with all 0s considering the DPC takes advantage of bit level redundancy.

However, putting all 0s in the unnecessary part cannot alway be beneficial to all reply data be-

cause the DPC exploits a dual pattern (0 or 1 value) in the bit-plain (a sequence of bit-value at the

vertically same bit position). As a result, the DF-MAN compares the original input data and the

manipulated data. The copy that exhibits more bit level redundancy is selected as the input for

DPC. Therefore, this technique can use DPC as the original.

3.5 Cache Fill

Figure 3.10: Illustration of Data Flow
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A Request Analyzer and a Critical Data Tracker are employed in the SMs and a Packet Data

Filter is incorporated between an interconnect and an MC to support filtering critical data. The

data flow of the request track throughout the data filtering is depicted with blue lines in Figure

3.10. Now, reduced size packets are de-packetized into a smaller number of flits to be injected

into the interconnect. Reply packets successfully arrive at the MSHR in an SM traveling over the

interconnect and a DPC decompressor. The corresponding bits of a 4-bitmap of an MSHR is set as

0s by the 4-bitmap of a reply. For example, if the 4-bitmap of a reply is "1000" and the 4-bitmap of

an MSHR is "1111", the bitmap in the MSHR turns into "0111." Then the restored data of a reply

fills the cache block. However, cache blocks can be valid only when all SMs bring their data. The

validation is made by the 4-bitmap in an MSHR. if a 4-bitmap is all set at 0s, it tells that the cache

block can finally be valid. Therefore, when an entry in an MSHR is deallocated the corresponding

cache block becomes valid.
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4. REQUEST PREDICTION

We have studied the data filtering mechanism with two options for data reduction. We are aware

that both MSHRs and cache blocks have extensions storing critical data information of requests.

From the working combination of these, we expect to decrease the traffic volume of replies to

be delivered through an interconnect where the overall network bandwidth burden is alleviated.

However, naively exploiting the scheme can create a serious problem. Figure 4.1 describes one of

the worst scenarios when the data filtering scheme is simply applied.

Figure 4.1: A Worst Case Example

A warp requests a memory read and it is determined that 32 byte data is needed from the

request analyzer (the extended memory coalescing unit). Neither an existing entry in the cache

array nor appropriate data in a found cache block makes the read request a cache miss. The
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cache miss requires getting the data from the L2 cache or DRAM by traversing through the data

filtering mechanism. The successfully restored data fills the corresponding block with the critical

part. A subsequent request from another warp to the same cache block hits in which necessary

data is not resided. As a result, the request causes extra stalls to obtain the data from the lower

memory. The reply of the sub-request replaces the previous data with the newer critical one on the

block. If another request demands another sub-block or the sub-block requested by the first request

rather than the one filled by the second request, these multiple requests on the same cache block

significantly harm performance by going back and forth to the interconnect multiple times. Thus,

our mechanism requires a gear to smartly manage multiple requests on the same cache block by

feasibly controlling the number of requests.

One might think of appending the data brought by the SMs through OR operation with the

existing data. Although it could be a possible solution to deal with the shown example above, it

has a drawback as well as Figure 4.2 plots.

Figure 4.2: An Example of Drawback For Appending Cache
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Figure 4.2 shows 4 times increase of the additional overheads in case we apply an appending

technique for cache blocks as opposed to the baseline that sends a request only one time. In

this example it is more efficient to request the entire data than a partial critical portion if multiple

requests to a cache block are ICA patterns. In addition, a higher traffic volume of requests from the

SMs to the MCs leads to system performance degradation due to the corresponding larger replies.

Therefore, it is essential to smartly control the number of requests to alleviate the burden of the

request path.

4.1 Request Controller and Windows Manager

Figure 4.3: Architectural Overview of RC included Data Filtering
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Given the observations, we propose a Request Controller(RC) as well as a Windows Manager

(WM) as illustrated in Figure 4.3. The goal of this prediction mechanism is not to improve system

performance but to prevent performance degradation of workloads showing ICA patterns. Each

SM has an RC and a WM to determine whether a memory request needs to bring the entire block

or partial critical data from an MC. The more RC requires the FDRs, it becomes the similar to

the DPC because the data filtering mechanism cannot be activated with the FDRs. For the RC’s

decision, the WM maintains 3 ICA ratio check windows (64B, 96B, and 128B size) and 1 FDR ratio

check window. Each window retains the most recent information of memory accesses according

to memory access size in an FIFO fashion. The recent information preserves the number of CA

and ICA for the ICA ratio check windows and the number of PDRs and FDRs for the FDR check

window within an assigned window size.

Figure 4.4: Flowchart of WM
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Each global read reply from an interconnect and L1D evicted cache block are inspected by

the WM in an SM to see whether they are CA or ICA and FDR or PDR as Figure 4.4 elaborates.

To support the auditing of consistency, cache blocks and MSHRs have an extra bit containing

consistent status of multiple memory accesses. If multiple requests on the same memory address

are inconsistently accessed, the consistent status bit, either in a cache block or an MSHR is turned

on. Inconsistent multiple memory requests before the foremost request fills the cache block flip

the consistent status bit in an MSHR. If the consistent status bit in an MSHR is set on when a reply

comes to the MSHR, a bit pointing inconsistent status is pushed back to the corresponding size

consistent check window. Otherwise the other bit is pushed back to the window.

To check if a reply or an evicted block is FDR or PDR, the 4-bitmap in an MSHR or a cache

block is exploited. If the bitmap is set to all 1s, it is considered FDR, otherwise PDR. In the case

of multiple requests sent, only the last request is considered to push back a value in a FDR ratio

check window.
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Figure 4.5: Flowchart of RC

Figure 4.5 plots the flow of RC. RC takes an L1D cache read miss as an input and then de-

termines whether to demand the entire data or partial critical data. Since bringing only a critical

fractional part, it is risky to create another memory request, even on the already filled cache. RC

conservatively and pessimistically makes a decision.

First, the RC checks the FDR ratio check window. If the ratio of the entire data requests exceeds

a threshold in a given time, the RC decides to bring all data regardless of its criticality. Second,

supposing the ratio of the entire data requests is not over a threshold, if the MSHR is hit and the

prior memory request did not call for sufficient data for the current request, we also demand the

entire data because it signifies that the request patterns are inconsistent. Finally, also assuming a

request does not hit the MSHR, if the ratio of ICA requests in the corresponding size window does

not surpass a threshold it is the appropriate time to demand the partial memory request.
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5. EVALUATION

5.1 Evaluation Methodology

We implement our data filtering mechanism with a cycle-accurate GPU simulator, GPGPU-

Sim 3.2.2 [8]. We modify the GPGPU-sim to model a GPUs architecture supporting this scheme.

The detailed configurations are summarized in Table 5.1

System Parameters 56 SMs, 8 MCs
Shader Core 1.4Ghz, Greedy-then-oldest (GTO) Scheduler
L1 Cache L1I(2KB), L1D(16KB), L1T(12KB), L1C(8KB)
L2 Cache 128KB per MC
Interconnect 8 x 8 Mesh, 1.4Ghz, 2- Cycle Router, Wormhole, Credit-based Flow-control
ICA threshold 25%, 50%(default), 75%
FDR threshold 30%, 60%, 90%(default)
Windows size 8, 16(default), 32
Table size 32, 256(default), 1024

Table 5.1: System Configuration Parameters

It is configurable to dynamically partition between the L1 cache and shared memory which

means the L1 cache can take 16KB, whereas shared memory can take 48KB, and vice versa. We

take 16 KB L1 cache size for this evaluation. For the NoC, we use a 2D mesh topology due to

its scalability, simplicity, and regularity [19, 20, 21]. To prevent a protocol deadlock, we built a

single network with two separate virtual channels (VCs) for the request network from SMs to MCs

and the reply network from MCs to SMs. We use heterogeneous 33 benchmarks from Rodinia

[9], Graph, Mars [10] benchmark suites. Table 5.2 summarizes their characteristics. We evaluated

them either up to one billion instructions implemented or finished before one billion instructions

was reached.

We set threshold values for the Windows Manager of the Request Prediction technique and set

the size of the table for PDRs. By default, the window size is set at 16 (heuristic approach), each
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Benchmark Acronym Benchmark Acronym Benchmark Acronym
Backprop R.BP BFS R.BFS CFD R.CFD
DWT2D R.DWT2D Gaussian R.GSN Heartwall R.HW
Hotspot R.HS Hybridsort R.HYS Kmeans R.KM
LavaMD R.LMD LUD R.LUD Mummergpu R.MUM
Myocyte R.MYC NN R.NN NW R.NW

ParticleFileter R.PARTF PathFinder R.PATHF Srad R.SRAD
StreamCluster R.SC

APSP G.APSP CCL G.CCL GCO G.GCO
GCU G.GCU

II M.II KM M.KM MM M.MM
PVC M.PVC PVR M.PVR SM M.SM
SS M.SS WC M.WC

Table 5.2: Benchmarks

of the 4 windows has 50% as a threshold and the turning point of requiring entire data regardless

of criticality is 90 %. Namely, if the ICAs ratio exceed 50 percent or the FDR ratio is more than

90 percent within the most recent 16 requests of the corresponding window, it demands the entire

data rather than a partial critical one. Otherwise, it fetches only the critical part data. For the table,

we set 256 entries for PDRs.
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5.2 Effect on Performance

Figure 5.1: Normalized IPC Over Baseline

Figure 5.1 shows the normalized IPC across all benchmarks over the baseline. The blue bar in-

dicates DF-MAN and the red bar presents DF-TRUC. We make two major observations on system

performance in this analysis.

First, the data filtering mechanism generally works well without consideration of data reduction

methods.On average, the proposed mechanism provides 39% IPC improvement across all bench-

marks. The workloads of the left group from the dotted line shows a better performance result than

the right because they mostly have partial CA patterns. Although the right group is not does not

have sufficient partial CA patterns, performance is not degraded showing at least the same result

with the baseline.

Second, one method for data reduction does not outperform the other. In general, the DF-

TRUC shows a slightly better performance such as R.CFD, R.LUD, M.II, M.SS, and R.HS, but the

overall performance difference is subtle.
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Figure 5.2: Normalized IPC Over DPC

Figure 5.2 denotes the normalized IPC over DPC. DF-MAN is compared with DPC. Normally,

the data filtering improves IPC 5% across all benchmarks. Since DF-MAN and DF-TRUC give

almost the same performance whichever scheme we choose, they show a similar result. We make

two conclusions from this result.

First, although the data filtering mechanism can achieve better IPC improvement over DPC for

workloads in favor of partial CA patterns, some benchmarks favorable to partial CA patterns don’t

increase IPC. The leftward ones from the red dotted line are the workloads preferable to partial

CA patterns. They had a promising potential to improve performance showing mostly partial CA

patterns, but only those benchmarks after the black dotted line to the left can benefit from the

scheme. Benchmarks towards the left after the black dotted line provide 20% IPC improvement.

On the other hand, benchmarks between the red and black dotted line show on average the same

performance result with DPC. The reason is discussed with the compression ratio in a following

section.

Second, several applications such as M.KM, M.MM, R.BP, R.SRAD, and G.APSP exhibit

performance degradation compared to DPC. The following sections explain why such workloads

bring worse performance results by analyzing in terms of traffic ratio, space savings, and enhanced

requests.
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5.3 Network Bandwidth Analysis

5.3.1 Traffic Reduction on Reply

Figure 5.3: Reduced Traffic Ratio From MC to Interconnect

Figure 5.3 plots the reduced traffic volume on reply paths. The reduction ratio is measured

with the number of flits returning to the corresponding SM at interconnect injection queues. On

average, 48.3% is saved against the baseline and 17.7% is lowered over DPC. Interestingly, while

applications in favor of partial CA patterns show higher traffic savings even over DPC, others

hardly yield traffic reductions to DPC.

We observe that the group having better IPC than DPC achieves a larger traffic reduction ratio

as compared to DPC (on average 44.2%), whereas the applications providing favorable memory

access patterns but not performance improvement have only a 19.5% reduced traffic ratio over

DPC.

36



5.3.2 Space Savings

Figure 5.4: Compression Ratio

Figure 5.4 compares the space savings ratios between DPC and DF-MAN across all bench-

marks. The first group of applications from the left shows the highest ratio difference between

the two (67.04% for DF-MAN and 28.38% for DPC). This is the main reason why the scheme

can gain better performance results over DPC. Since DF-MAN saves the network bandwidth more

effectively than DPC for the first group, system performance increases for them. However, the

middle group or the rightmost group, show only show a little savings ratio gap between the two

scheme. It implies DPC itself achieves the performance benefit at most for those workloads.
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5.4 Cache Miss Rate

Figure 5.5: Miss Rate in L1D Cache

Figure 5.6: Miss Distribution According to The Newly Defined Misses

The L1D cache miss rate is shown in Figure 5.5. Also, the miss distribution of DF-MAN

according to 3 different miss types is presented in Figure 5.6. DF-MAN improves system perfor-

mance by reducing the traffic volume of replies at the cost of increased cache misses.
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The group not favorable to the partial CA patterns has very few increased miss penalties. In

Figure 5.5 we see only 1% difference compared to the baseline, and in Figure 5.6 we hardly find

HI type misses. From the result, we conclude the request prediction mechanism satisfactorily

understands memory access patterns at runtime. It prevents from fetching partial critical data if

memory access patterns do not show a inclination to partial CAs.

HIs are considered as a traffic overhead creator. While SMs can be merged by the data filtering

table at an MC, there is no possibility for multiple requests on the same cache block to merge when

a cache block is hit. As a result, HIs brings about more requests overhead.

Although HIs are relatively higher in applications in favor of this scheme, they attain perfor-

mance improvement. This is mainly because the increased number of requests is reimbursed by

the decreased number of flits injected into the interconnect from MCs.
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6. SUMMARY AND CONCLUSIONS

In this work, we initially explore the inefficient usage of the L1D cache in various applica-

tions. We study memory access patterns according to consistency and categorize them. Essential

micro-architectural enhancements are proposed to support filtering critical data. The key idea is to

design the mechanism to relieve the reply traffic while being aware of the critical information that

the SMs exactly need rather than full byte cache data. At the same time, it does not augment traffic

volume of the request side so that reduced traffic on the reply path efficiently improves the perfor-

mance. Discussions include two data reduction methods and a request prediction mechanism. Our

evaluation shows that the critical data filtering mechanism coupled with DPC achieves on average

39% IPC improvement and 23% network bandwidth saving on the reply path across heterogeneous

and text processing workloads. Also, comparing our scheme with DPC 5% IPC improvement for

overall benchmark suits and 20% increase for workloads favor our mechanism.
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