
A FRAMEWORK FOR PARALLELIZING SAMPLING-BASED MOTION

PLANNING ALGORITHMS

A Thesis

by

MATTHEW JAMES BULLUCK

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nancy Amato
Committee Members, Lawrence Rauchwerger

Suman Chakravorty
Head of Department, Dilma De Silva

December 2017

Major Subject: Computer Science

Copyright 2017 Matthew James Bulluck

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/187121002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Motion planning is the problem of finding a valid path for a robot from a start position

to a goal position. It has many uses such as protein folding and animation. However,

motion planning can be slow and take a long time in difficult environments. Paralleliza-

tion can be used to speed up this process. This research focused on the implementation of

a framework for the implementation and testing of Parallel Motion Planning algorithms.

Additionally, two methods were implemented to test this framework. The results showed a

reasonable amount of speed-up and coverage and connectivity similar to sequential meth-

ods.

ii

DEDICATION

To my mother and father, who’ve helped me through all of this.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Nancy Amato

and Lawrence Rauchwerger of the Department of Computer Science and Professor Suman

Chakravorty of the Department of Aerospace Engineering.

This was also supported by the work of Shawna Thomas, Timmie Smith, Samuel Ja-

cobs, Jory Denny, Adam Fidel, and Read Sandstrom.

All other work conducted for the thesis was completed by the student independently.

No funding was recieved for this research.

iv

NOMENCLATURE

MP Motion Planning

C-SPACE Configuration Space

DOF Degrees of Freedom

kNN k-Nearest Neighbors

PRM Probabilistic Roadmap

RRT Rapidly Exploring Random Tree

STAPL Standard Template Adaptive Parallel Library

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

CONTRIBUTORS AND FUNDING SOURCES iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

2. PRELIMINARIES AND RELATED WORK 2

2.1 Motion Planning . 2
2.2 Parallel Motion Planning . 4
2.3 STAPL . 7

3. METHODS . 9

3.1 Parallel Motion Planning Framework . 9
3.2 Parallel PRM . 10
3.3 Parallel PRM using Subdivision . 10

4. EXPERIMENTAL RESULTS . 13

4.1 Experimental Setup . 13
4.2 Parallel Performance . 14

4.2.1 Parallel PRM Results . 14
4.2.2 Subdivision Results . 17

4.3 Motion Planning Performance . 23
4.3.1 Parallel PRM Results . 24
4.3.2 Subdivision Results . 25

vi

5. CONCLUSION . 26

REFERENCES . 27

vii

LIST OF FIGURES

FIGURE Page

2.1 Diagram of STAPL Framework . 7

3.1 Diagram of Parallel MP Framework . 9

4.1 3D Cluttered Environment . 13

4.2 Scalability of Sampling in Parallel PRM 14

4.3 Scalability of Neighborhood Finding in Parallel PRM 15

4.4 Scalability of Local Planning in Parallel PRM 16

4.5 Overall Scalability of Parallel PRM . 16

4.6 Scalability of the BasicPRM in each region 17

4.7 Scalability of Intra-Region Neighborhood Finding 18

4.8 Scalability for Intra-Region Connection Time 19

4.9 Scalability for Node Generation . 19

4.10 Scalability for Node Generation using the average time between processors 20

4.11 Runtime for Neighborhood Finding between regions 21

4.12 Runtime for Local Planning between regions 22

4.13 Runtime for Region connection overall 22

4.14 Scalability of the Entire Subdivision Method 23

4.15 3D Grid Maze Environment . 24

viii

LIST OF TABLES

TABLE Page

4.1 Parallel PRM Connectivity and Coverage 24

4.2 Regular Subdivision Connectivity and Coverage 25

ix

1. INTRODUCTION

Motion planning attempts to solve the problem of getting a body from one point to

another while avoiding a series of obstacles. Robotic motion planning algorithms are used

to compute paths between a given start configuration and a goal configuration in a given

environment. Motion planning can be used for a variety of uses such as graphics [1],

protein folding [2], and surgical planning [3]. However, for many of these problems the

environment can be large and complicated. Additionally, the robot itself can be complex

with many degrees of freedom. This leads to problems, which can take a long time for

motion planning strategies to solve.

One of the ways to speed this up is to parallelize it. This allows for motion planning

algorithms to be on a large number of processors and get more done. As with many of

these methods though there are cases of relatively poor scaling due to the overhead of

interprocessor communication, bottlenecks within the algorithm itself, or processor load

imbalance. Also, these can be very difficult to implement and optimize.

For my thesis, I created a framework from which future Parallel Motion Planning Al-

gorithms can be implemented, run, and tested. This allows for the creation of motion

planning strategies, which can compute paths for complex environments quickly given

enough processors. To do this, I created a standardized versions of existing algorithms

developed in the Parasol Laboratory at Texas A&M which fully utilize the parallelization

library, STAPL [4], to allow for efficient parallelization.

1

2. PRELIMINARIES AND RELATED WORK

2.1 Motion Planning

The robotic motion planning problem can be described as finding a series of configu-

rations between a start and a goal such that these configurations are collision-free. These

configurations will form the path which can be used to get from start to goal. To help

represent the workspace environment we utilize the concept of C-Space, C-Space is a d

dimensional geometric space. Points within space can be classified into two sets Cfree and

Cobs. Cfree represents all configurations within C-space which are considered valid. While

Cobs represents all configurations which are invalid. Each configuration within this space

is represented through a series of d numbers which indicate the entire robot’s placement/-

pose.

Probabilistic Roadmap(PRM) based Motion planning algorithms can be divided into

generating nodes, connecting those nodes, and evaluating the overall roadmap. [5] It is

described below in Algorithm 1. The configurations are contained in a graph where each of

the nodes is a valid configuration and each edge indicates that there is a valid path between

the two configurations. Sampling methods are techniques used to sample the Cspace. These

can be as simple as initially creating a single random sample or can be more complex and

take the Cspace into account to place additional samples. The connection step is made up

of two smaller steps neighborhood finding and local planning. The local planner is used

to find whether a valid path exists between two given nodes in the environment. It also,

can for some implementations, add additional intermediate nodes. Neighborhood finding

methods use information about the generated nodes to figure out, between which nodes

should local planning be attempted. For this work I’m using a method known as the k

nearest neighbors(knn) method. For this, each node will attempt to connect with its k

2

nearest nodes according to some distance metric where k is defined by the user. Lastly

is the evaluation step this is a condition used to figure out whether the algorithm should

terminate. Typically, the evaluator will be checking whether there exists a path between

some start configuration and the goal configuration. If that condition isn’t met the sampling

and connections steps will be rerun until it has been met.

Algorithm 1 Probabilistic Roadmap algorithm
procedure PRM_METHOD(E, k, n, sampling_method(),

local_planning_method())
G⇐ {, }
done← evaluate(G)
while ¬done do

G.add_verticies(sampling_method(E))
for vi ∈ G.verticies do

Neighbors← knn(k, vi, G.vertices)
for vj ∈ Neighbors do

local_planning_method(vi, vj)
end for

end for
done← evaluate(G)

end while
end procedure

Rapidly-exploring Random Tree(RRT) is another major strategy for solving motion

planning problems. [6] This strategy can be divided into the steps of sampling, neighbor-

hood finding, and extending/local planning. This strategy works by initially having some

start configuration. Then the planner will generate a random sample within the C-space.

The planner will use this sample to steer the direction the tree is generated in.

3

Algorithm 2 Rapidly Expanding Random Tree(RRT) algorithm
procedure RRT_METHOD(cfginit, dist, num_iter)

G⇐ {{cfginit}, }
done← evaluate(G)
while ¬done do

cfgrand ← RandomCfg()
cfgnear ← Nearest(cfgrand, G)
cfgnew ← Extend(cfgnear, cfgrand, dist)
G.add_vertex(cfgnew)
G.add_edge(cfgnear, cfgnew)

end while
end procedure

2.2 Parallel Motion Planning

Parallel motion planning algorithms attempt to distribute tasks between each of the

processors. There are multiple steps which can easily be parallelized. [7] Firstly is the

node sampling step. Since all of the sampling attempts are independent, this step can be

parallelized by distributing each of the sampling attempts between the processors. The

next step is parallelizing the neighborhood finding methods. Finding the neighbors of

each of the nodes in the roadmap can be done in parallel for the knn method through the

use of a map reduce function. Where the map function takes in the node your trying to

find the nearest neighbors and another node in the graph, and returns a list containing the

distance between the two nodes. The reduce function will then take in two lists of nearest

neighbors and return a list of at most length k.

While this can scale well, there is a massive piece of overhead. That overhead is

due to inter-processor communication. This is when additional time needs to be spent to

have the processors communicate information. The amount of time this eats up can vary

heavily between steps and is based off of how much data needs to be communicated and

the locality of that data.

4

Algorithm 3 Parallel PRM algorithm
procedure BASICPARALLELPRM(E, k, sampling_method(),

connection_method())
G⇐ {, }
done← evaluate(G)
while ¬done do

parfor k ← 1..p do
G.add_verticies(sampling_method(E))

end parfor
parfor vi ∈ G.verticies do

Neighbors← parallel_knn(k, vi)
for vj ∈ Neighbors do

connection_method(vi, vj)
end for

end parfor
done← evaluate(G)

end while
end procedure

Now let’s look through the Parallel PRM method to illustrate some of the sources of

this interprocessor communication. This is small in the sampling phase, since the only

thing that needs to be communicated is how many samples need to be attempted. In the

neighborhood finding phase the finding the distance between a single point and each other

point in the graph is done in parallel. However; those distances need to be shared between

the processors in order to figure out the k nearest neighbors.

Bialkowski et.al goes over a strategy for parallel RRT motion planning. [8] This is

done by having some of the most computationally expensive operations, the neighborhood

finding and the connection methods, done in parallel. For neighborhood finding this uses

a map reduce approach like the one used in the Parallel PRM implementation. However

there are some deficiencies in the algorithm. The main thing is that there graphs for mea-

suring the scalability begin when the graph has already had 2000 nodes added to it. This

hides what the scalability is like in the beginning of roadmap construction. Unlike the

5

Parallel PRM approach where a typically large number of nodes are generated via the

easily parallelized sampling operation, in each iteration of RRT only one or two nodes

gets added. This leads to a situation where in order to achieve full parallelism for the

neighborhood finding, at least p iterations must have been run.

Devaurs et.al takes a different approach describing three different schemes which make

use of message passing between processors to construct the RRT. The first has each pro-

cessor generate an RRT until one of the processors reaches a stop condition then it outputs

the valid tree. While this does have little interprocessor communication, none of the actual

work gets distributed between the processors making it scale poorly. The second method

has each of the processors collaboratively construct an RRT. This does distribute the work,

but it has a high degree of interprocessor communication. This is since it has each proces-

sor communicate node data to each of the processors. This means meaning that the entire

tree must be updated on each processor each time a node is added. The third method uses

a Manager-work approach to things. The tree is stored exclusively on the manager proces-

sor. The manager will generate samples and find the nearest neighbors, while the workers

will extend the tree in the direction of the samples. This does distribute work done for

extending the graph however the neighborhood finding and sampling step don’t scale.

One of the advantages, of using things like parallel neighborhood finding with Radial

RRT subdivsion [9] methods, is that since there are numRegions RRTs being created at

each iteration numRegions nodes are being created. This means to achieve full paral-

lelism it only takes p/numRegions iterations. However, there’s an issue with utilizing

subdivision. Firstly, it’s necessary to take the structure of the RRT into account. Since the

RRT algorithm starts from a single start state the structure of the tree must be taken into

account. This is what led to the creation of Radial RRT algorithm. Secondly there are

cases where within a region there is a subset of free space which is reachable within the

overall roadmap, but isn’t reachable within the region. This means that the RRT generated

6

in that region can’t cover that space. This can lead to situations where a path can’t be found

between the start and goal configurations. Which means the algorithm is probabilistically

incomplete. This issue is what led to the creation of the Blind Radial RRT algorithm[10].

2.3 STAPL

These algorithms make use of Parasol’s Standard Template Adaptive Parallel Library

(STAPL). [11] STAPL is a C++ framework used to provide and create efficient parallel

algorithms which are relatively easy to create. It is meant to be a library of Standard C++

components which are similar to the regular STL. This library can also be extended to

allow for further functionality. These algorithms can be run on both shared and distributed

memory systems. The user frontend is made up of a series of distributed Containers, a set

of important Parallel Algorithms, and a set of Views which are used as interfaces for the

containers. This relationship is shown in Figure 2.1.

Figure 2.1: Diagram of STAPL Framework

7

STAPL creates distributed Containers. The main data structure PMPL uses from

STAPL is its distributed graph data structure[12]. These graphs are made up of a series of

vertex and edge descriptors. These allow STAPL to abstract the user from the details of

container implementation and focus more on the algorithm development.

In parallel there are two common types of memory management systems, shared and

distributed memory systems. In shared memory systems all the processors are able to read

and write to the same physical memory. In distributed systems each of the processors has

their own memory and in order to share information they need to communicate with one

another. For larger clusters of memory distributed memory systems become a necessity

due to memory access contention. Because of this most of these tests were run on a

distributed memory system.

Interprocessor communication can be reduced using hierarchical graphs. The hierar-

chical graphs were originally intended for processor networks which have hub node pro-

cessors which are processors able to connect to a large number of other nodes. This was

used to define a data hierarchy within a distributed graph. This hierarchy is used to allow

for locale based inter-processor communication where the hub node distributes data to the

other processors.

8

3. METHODS

3.1 Parallel Motion Planning Framework

This project focuses on creating a Parallel Motion Planning Framework that would

allow for various methods to be developed, to study performance for those methods, and

to find improvements for those methods. To demonstrate the framework’s flexibility, I

implemented two parallel Motion Planning algorithms for it. These are Parallel PRM

and Subdivision-based PRM. For this I have modified parts of the Probabilistic Motion

Planning Library (PMPL) and STAPL. This is shown in Figure 3.1, which shows a diagram

of the Parallel Framework along with the two implemented methods.

Figure 3.1: Diagram of Parallel MP Framework

9

3.2 Parallel PRM

For PMPL I added a functional Parallel PRM method as described in Algorithm 3.

However, the version used here is slightly different. To limit duplicate work, after generat-

ing samples the algorithm will now collect all the new node information and limit connec-

tion attempts to those newly added nodes. This massively decreases unnecessary work.

However, it does increase interprocessor communication by a significant degree. While

there was a previous implementation, it didn’t have any parallelization in the connection

function and wasn’t fully utilizing STAPLs feature set.

I also made a parallel query function which makes use of STAPL’s parallel Breadth-

First Search algorithm to check for paths from some start to goal in parallel. To do this I

had to make some small modifications to the BFS algorithm. Previously the parallel MP

strategies only were only able to use a conditional evaluator which terminated the strategy

when a certain number of nodes or edges had been generated. Now it can check whether

there is a path between start and goal.

3.3 Parallel PRM using Subdivision

I designed and implemented subdivision based methods similar in spirit to methods

which were originally designed by Sam Jacobs[13] [9]. This is described below in Al-

gorithm 4. Subdivision works by first having the program divide the environment into a

number of self-contained regions. Each of these regions have their own samples and mo-

tion planning methods. They will each run that methods within their respective region.

Once this is done the planner will connect samples between adjacent regions in parallel.

The purpose of this is to lower the necessary amount of interprocessor communication by

utilizing locality information to lower the number of nodes checked against for neighbor-

hood finding. One of the main considerations is how to divide the environment. This can

massively effect the runtime of the algorithms, since a poor division of the environment

10

can lead to work being distributed unevenly. This can lead to significant bottlenecks. Cur-

rently we have the algorithm evenly divide the environment into a user specified number

of regions on a grid. Other subdivision methods are possible, but they aren’t implemented

here.

Originally this method was somewhat restrictive and only allowed for a single proces-

sor to do work for each of the regions. I make use of a Hierarchical Graph View to manage

subdivision. This Hierarchical graph will be a set of super vertices indicating the rela-

tive location of each of the regions to be sampled in. These super vertices are connected

according to region adjacency. While implementing this multiple neighborhood finding

methods were tested to the best for inter-region connection. The best one that was found

was the k-closest pairs method.

11

Algorithm 4 Regular Subdivision Algorithm
procedure REGULARSUBDIVISION(E, num_regions, sampling_method(),

connection_method1(), connection_method2())
RegionMap← Decompose(E, num_regions)
G← {, }
G′ ← HierarchicalPartition(G,RegionMap)
done← evaluate(G)
while ¬done do

parfor r ∈ RegionMap.verticies do
g′ ← G′.get_super_vertex(r)
S ← Sample(r.boundary, sampling_method())
g′.Add(S)
Connect(S, g′.descriptors, connection_method1())

end parfor
parfor edge(g′i, g

′
j) ∈ G′.SuperGraphEdges do

Si ← g′i.descriptors
Sj ← g′j.descriptors
Connect(Si, Sj, connection_method2())

end parfor
done← evaluate(G)

end while
end procedure

12

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

The library was compiled using the gcc c++ compiler version 4.9.2. Each of the runs

were performed on a Cray Super Computer at Texas A&M University. These runs used up

to 512 processors in counts increasing exponentially by powers of 2. For each processor

count 10 runs were found. The environment the robot planned on was a 3-d cluttered en-

vironment. These used uniform random sampling and k-nearest neighbors neighborhood

finding with k=5. The inter-region connection used by the regular subdivision method was

k-closest pairs with k=10. These were run for a fixed number of nodes. These methods

Figure 4.1: 3D Cluttered Environment

were run in the environment shown in Figure 4.1. It is a large cluttered environment with

1000 obstacles placed randomly throughout the environment.

13

Figure 4.2: Scalability of Sampling in Parallel PRM

4.2 Parallel Performance

These tests will be measuring the speedup for generating samples, neighborhood find-

ing and connecting nodes. They will be performed on the Parallel PRM and Regular

Subdivision motion planning methods.

4.2.1 Parallel PRM Results

Figure 4.2 shows how well the Sampling function scales with increasing numbers of

processors. It demonstrates that the sampling function of the Parallel PRM method doesn’t

appear to scale well. The main reason for that has to do with the way in which the sampling

function works. To save on unnecessary work, in each iteration of the PRM algorithm,

connection is only performed on the nodes which have most recently been added to the

parallel graph. The sampling function needs to communicate the ids of the most recently

14

Figure 4.3: Scalability of Neighborhood Finding in Parallel PRM

added vertices to each of the functions. So that additional interprocessor communication

is what is causing the poor scalability.

Figure 4.3 shows the scalability of the Neighborhood Finding method in Parallel PRM.

As you can see put the scalability is poor. However, that expected considering the amount

of interprocessor communication necessary.

Figure 4.4 shows how well the Local Planning scales in Parallel PRM. Overall it scales

fairly well. However not perfectly. This is because before Local Planning, the method

checks whether the two nodes are already connected. If they are then attempting Local

Planning is unnecessary so it isn’t performed. However, whether that connection exists or

not may not be processor local and as such inter processor communication is necessary.

This is optimized so that the time spent waiting is lessened. However, it still influenced

the performance and is why the scalability is suboptimal.

15

Figure 4.4: Scalability of Local Planning in Parallel PRM

Figure 4.5: Overall Scalability of Parallel PRM

16

Figure 4.6: Scalability of the BasicPRM in each region

Figure 4.5 shows the how well Parallel PRM scales overall. It scales well all things

considered. It’s being hindered by the overhead of neighborhood finding. However; there’s

not much that can be done about it considering the high amount of interprocessor commu-

nication in the Neighborhood Finding method.

4.2.2 Subdivision Results

Figure 4.6 shows how the intra-region sequential PRM algorithm, that is run at each

iteration of the Regular Subdivision, scales. Overall it scales fairly well. While it’s not

perfect this is because while the number of nodes does get evenly divided that doesn’t

necessarily mean that the work gets evenly divided. This is because certain regions require

more work than other regions.

Figure 4.7 shows that the neighborhood finding within the region scales at a quadratic

rate. This is because whenever the regions are divided in half there are half as many nodes

17

Figure 4.7: Scalability of Intra-Region Neighborhood Finding

in the region. This means half as many nodes to check against when finding neighbors and

also, half as many calls to the neighborhood finder.

Figure 4.8 shows the speedup in Connection time. This shows very good speedup.

Which is good because it takes up the most runtime. The reason for this is because the

number of nodes it must attempt connections for scales with the number of processors.

Figure 4.9 the scalability for generating nodes within the region is poor. That might

seem odd at first because the number of nodes generated is evenly divided between each of

the processors. However, the reason for this is because even though the nodes themselves

are evenly divided this doesn’t necessarily mean that the work winds up being divided.

This is because specific node generations require a greater number of attempts than others.

This means that certain processors will take more time generating samples than others.

Since this is measuring the processor with the longest node generation time there will be

18

Figure 4.8: Scalability for Intra-Region Connection Time

Figure 4.9: Scalability for Node Generation

19

Figure 4.10: Scalability for Node Generation using the average time between processors

some processors that take longer. Figure 4.10 helps illustrate this issue. As you can see that

average between the processors does scale well. Meaning that yes, the nodes generated

does get distributed, but the work to generate these nodes doesn’t. Also, there are some

cases where entire region is in Cobstacle space meaning that it will attempt to generate more

nodes than the other processors until it terminates. However; that was never the case with

these results at least. Luckily this doesn’t have a major effect on the overall runtime of the

BasicPRM method because of how relatively little time Generating nodes takes.

Both Figures 4.11 and 4.12 show the runtime of the methods as opposed to the scala-

bility for them the reason for this is because these are never used for single processor runs.

This means that it’s a better idea to show the runtime. Figure 4.11 shows the interestingly

the time for this decreases as the number. The reason for this is that much like the intra-

region neighborhood finding as the number of nodes decreases both the number of calls

20

Figure 4.11: Runtime for Neighborhood Finding between regions

and the number of nodes to check against for those calls decreases. This would normally

give a quadratic speedup; however due to the high degree of inter-processor communica-

tion necessary for this step the speedup is heavily limited.

Figure 4.12 shows the amount of time for local planning between regions. Interestingly

it doesn’t seem to scale as well as it should. After all most of the inter-region communi-

cation is obtained during the Neighborhood Finding attempts. That means that this should

speed up. However, the reason it doesn’t scale is because there is one major piece of inter-

processor communication that happens here. And that is adding the edges between the

non-processor local vertex and the processor local vertex.

Lastly, Figure 4.13 shows the overall runtime of the region connection. This is just a

combination of the previous two graphs so there’s not much to say about this. Just that

there appears to be a sweet spot where the runtime is minimized at around 16 processors.

21

Figure 4.12: Runtime for Local Planning between regions

Figure 4.13: Runtime for Region connection overall

22

Figure 4.14: Scalability of the Entire Subdivision Method

Lastly Figure 4.14 shows the overall scalability of the entire subdivision method. As

you can see this is scaling poorly. It’s better scalability than Parallel PRM, but the method

still has room for improvement. The reason for this can be seen if you look back at the

inter-region connection time. The inter-region connection time doesn’t scale and because

the overall time necessary for it is relatively high. This limits the amount of scalability

that can be achieved for this method.

4.3 Motion Planning Performance

This will measure the coverage by generating samples within the environment and

finding the percentage of those that can be connected to the roadmap. This is important

because it demonstrates how much of an effect using these methods has on the generated

roadmap. These tests also make use of the Grid Maze Environment shown in figure 4.3 in

order to verify their results.

23

Figure 4.15: 3D Grid Maze Environment

4.3.1 Parallel PRM Results

Table 4.1: Parallel PRM Connectivity and Coverage
Test Coverage Connectivity
Sequential PRM in Cluttered Env 100% 100%
Basic Parallel PRM in Cluttered Env 100% 100%
Sequential PRM in 3D Grid Maze Env 95.5% 91.18%
Basic Parallel PRM in 3D Grid Maze Env 94.23% 91.28%

Table 4.1 compares the coverage and connectivity between Basic Parallel PRM and

Sequential PRM. Each of the runs on the cluttered environment had a 100% coverage

and connectivity rate for all processor counts. However, this could just be due to the

24

high number of samples or it could be that my environment is too simple. To check the

performance, additional tests were run which, compared the results of 10 64 processor

runs on the 3D Grid Maze environment versus 10 sequential runs on the same environment.

Additionally, the number of samples was lowered to only be 1000. The sequential runs had

an average coverage of 95.5% and a connectivity rate of 91.18%. The 64 processor runs

had an average coverage of 94.23% and an average connectivity rate of 91.28%. As you

can see these are incredibly close. This makes sense considering Parallel PRM performs

all the same steps of regular PRM it just performs those steps in parallel.

4.3.2 Subdivision Results

Table 4.2: Regular Subdivision Connectivity and Coverage
Test Coverage Connectivity
Sequential PRM in Cluttered Env 100% 100%
Subdivision PRM in Cluttered Env 100% 100%
Sequential PRM in 3D Grid Maze Env 95.5% 91.18%
Subdivision PRM in 3D Grid Maze Env 94.9% 90.08%

Table 4.2 compares the coverage and connectivity between Subdivision PRM and Se-

quential PRM. Much like the previous results there was 100% coverage and connectivity

so like last time additional tests were performed on the more complex 3D maze environ-

ment. Like the previous section there were tests comprised of 10 sequential runs and 10 64

Processor runs. For the 64 processor runs the environment was divided into a set of 4x4x4

boxes. On average the single processor runs had a coverage rate of 95.5% and a connectiv-

ity rate of 91.18%. Meanwhile; the 64 processor count runs had an average Coverage rate

of 94.9% and an average Connectivity rate of 90.08%. While the subdivision method had

worse connectivity and coverage, it’s still comparable and within some margin of error.

25

5. CONCLUSION

This project created a framework which allows for making Parallel sampling based mo-

tion planning algorithms. It will allow for the creation of scalable parallel motion planning

strategies. This will be made up of a series of standardized existing algorithms including,

Parallel PRM, Regular Subdivision, Radial RRT, and Radial Blind RRT. This will also

include parallel neighborhood finding, connection, and roadmap evaluation components

which future algorithms can make use of.

Future work for this work would largely focus on improvements to the Subdivision

Method. Currently the subdivision method is dividing the environment arbitrarily. For

these a different method would have to be set up to measure the effects of these changes.

This is because while they wouldn’t necessarily improve scalability or Coverage/Connec-

tivity. They would reduce the amount of time necessary to get good Coverage and Connec-

tivity, while at least maintaining scalability if not improving it. Also, currently the Subdi-

vision method checks for collisions with each obstacle in the environment. This includes

irrelevant obstacles, such as ones the robot couldn’t possibly collide with while being

within the region. While I originally planned on implementing the RadialRRT method,

I didn’t have enough time to do so. However, with the framework I’ve set up doing so

won’t be too difficult. Many of the steps, such as region division and connection can be

repurposed or are already included in the Regular Subdivision method.

26

REFERENCES

[1] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Roadmap-based flocking for complex

environments,” in Computer Graphics and Applications, 2002. Proceedings. 10th

Pacific Conference on, pp. 104–113, IEEE, 2002.

[2] N. M. Amato and G. Song, “Using motion planning to study protein folding path-

ways,” Journal of Computational Biology, vol. 9, no. 2, pp. 149–168, 2002.

[3] J.-C. Latombe, “Motion planning: A journey of robots, molecules, digital actors,

and other artifacts,” The International Journal of Robotics Research, vol. 18, no. 11,

pp. 1119–1128, 1999.

[4] L. Rauchwerger, F. Arzu, and K. Ouchi, “Standard templates adaptive parallel library

(stapl),” in Selected Papers from the 4th International Workshop on Languages, Com-

pilers, and Run-Time Systems for Scalable Computers, LCR ’98, (London, UK, UK),

pp. 402–409, Springer-Verlag, 1998.

[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE trans-

actions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” tech.

rep., Iowa State University, Department of Computer Science, 1998.

[7] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrassingly

parallel,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, vol. 1, pp. 688–694, IEEE, 1999.

[8] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the rrt and the

rrt,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,

27

pp. 3513–3518, Sept 2011.

[9] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, “A scalable

distributed rrt for motion planning,” in Robotics and Automation (ICRA), 2013 IEEE

International Conference on, pp. 5088–5095, IEEE, 2013.

[10] C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato, “Blind rrt: A

probabilistically complete distributed rrt,” in 2013 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 1758–1765, IEEE, 2013.

[11] G. Tanase, A. Buss, A. Fidel, I. Papadopoulos, O. Pearce, T. Smith, N. Thomas,

X. Xu, N. Mourad, J. Vu, et al., The STAPL parallel container framework, vol. 46.

ACM, 2011.

[12] A. Fidel, N. M. Amato, L. Rauchwerger, et al., “The stapl parallel graph library,”

in International Workshop on Languages and Compilers for Parallel Computing,

pp. 46–60, Springer, 2012.

[13] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Amato, “A

scalable method for parallelizing sampling-based motion planning algorithms,” in In

Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 2529–2536, 2012.

28

