CONTROLLING MELTING PHASE CHANGE SIMULATIONS

A Thesis
by
RUSHIL SHASHANK KEKRE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Frederic Parke
Committee Members, John Keyser
Philip Galanter

Head of Department, Tim McLaughlin

December 2017

Major Subject: Visualization

Copyright 2017 Rushil Shashank Kekre

ABSTRACT

I have developed a set of Houdini Digital Assets (HDA) to control phase change in
materials that melt. Examples of real world materials that exhibit these phenomena include
melting candles, molten steel, etc. The purpose of this tool is to provide artistic user
control when animating these materials. The user can provide an object model as an input
to the HDA, which can then be split into multiple sections as per the user’s needs. The
user can then specify attributes such as temperature, viscosity, and a melting rate for each
section. The object is then filled with particles to resemble a particle based fluid object,
with each particle inheriting the attributes of the section it belongs to. When the simulation
is run, two conditions control the behavior of the phase change at each timestep. First, the
particles melt only at the rate specified for their section. Second, the particles from one
section do not mix with those from another section. These conditions are implemented
using custom digital assets in Houdini that I developed. Once the simulation is complete,
the user is able to combine the deformed meshes of each section into a unified animated

mesh and proceed with shading, lighting, and rendering.

i

DEDICATION

To my parents, without whom none of my successes would be possible. Their love,

support, and belief in my wild and unrealistic dreams is the reason I am here today.

1l

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Frederic Parke, for his constant support,
patience, advice, and timely feedback in completing this thesis. I would also like to thank
my committee members, Dr. John Keyser and Philip Galanter, for helping me understand
key concepts and providing valuable insights into my research topic. Without the guidance
of my committee, this work would not have been possible.

I would like to express my gratitude to Ryan Goldade and Luca Pataracchia of SideFX
Software for their help in dealing with implementation issues, despite their busy schedules.

Finally, thank you to all my friends, old and new, who have shared in my highs and

lows. Their support and encouragement has meant a lot.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Frederic Parke (chair)
and Philip Galanter of the Department of Visualization and Dr. John Keyser of the Depart-
ment of Computer Science.

All other work conducted for the thesis was completed independently by the student,

with edits made to the paper by Dr. Frederic Parke.
Funding Sources

There are no funding sources to acknowledge related to the research and completion

of this work.

3D
CFD
DOP
FLIP
FX
HDA
POP
ROP
SOP
SPH
Ul
VEX

VOP

NOMENCLATURE

Three-Dimensional
Computational Fluid Dynamics
Dynamics Operators

Fluid Implicit Particle

Effects

Houdini Digital Asset

Particle Operators

Render Operators

Surface Operators

Smoothed Particle Hydrodynamics
User Interface

Vector Expression

VEX Operators

vi

TABLE OF CONTENTS

Page

ABSTRACT . il
DEDICATIONottt iii
ACKNOWLEDGMENTS .. v
CONTRIBUTORS AND FUNDING SOURCES ...t v
NOMENCLATUREo vi
TABLE OF CONTENTS ...ttt vii
LIST OF FIGURES ... X
LIST OF TABLESo xi
1. INTRODUCTION. ...ttt 1
2. BACKGROUND AND PREVIOUS WORK ... 3
3. DEVELOPMENT PLATFORMooiiiiiiiii e 7
1 T80 N 07T 1 7
3.2 Houdini OPerators.ovviitttititiitti ittt ieeeeeeeaaeaann. 7

3.3 Houdini Digital Asset (HDA) ... 8
B VX 9

3.5 MDA .« e 9

4. GOALS AND OBJECTIVES 10
5. METHODOLOGY ...ttt e 11
6. SIMULATION APPROACHooiiiiiiiiiiii e 12
6.1 Model Preparation.oooeiiuiiiieie i 13
6.2 SIMulationoooiiiiiiiii 14
6.2.1 FLIP SOIVET ...ttt 14

6.3 Inputand OULPULeit it 15

Vil

7. IMPLEMENTATION ...t 16

7 BN 15T 5 103 4 5 (X 1< 17
7.1.1 Inside the Section Create HDAccoiiiiiiiiiiiiiii . 20

7.2 Heat Source HDA ... o o 23
7.2.1 Inside the Heat Source HDA ..., 26

7.3 SIMulation SEtUPttt 30
7.3.1 FLIP Simulationouuiiiieiiiiiiiiie e iiiiiiee e eeaaanns 30

7.3.2 ColliSion ODJECES ...ttt 33

7.3.3 Custom Digital Assets Developedooooooiiiiiiiiiit. 34

7.4 Temperature Control ...ttt 34
7.4.1 Inside the Temperature Control HDA ...t 35

7.5 Temperature Blend ... 37
7.5.1 Inside the Temperature Blend HDA ..., 38

7.6 Running The Simulation..............ooooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie . 40

8. RESULT S .. 41
9. CONCLUSIONS .. e 47
ST B 1 11 L () 47
0.2 Future WOrk ..o 48
REFERENCES ... e 49

viil

LIST OF FIGURES

FIGURE Page

1.1 A gold statue of a dwarf king from The Hobbit: Desolation of Smaug

(2013) before it MEItSviei e e e e 1
1.2 Lava simulation from Disney’s Moana (2016)...........ccccooiiiiiiiiinnnn.. 2
6.1 Workflow for achieving controllable phase change 12
6.2 Model preparation StAZEScuuuuunee ettt 13
6.3 Simulation approachoiiiiiiiii 14
7.1 Collection of SOPs and DOPs createdccovviiiiiiiiiiiiiin... 16
7.2 Input model with slicing planescooviiiiiiiiiiiiiii .. 18
7.3 Section Create HDA (green) in the node network 18
7.4 Section Create user CONLIOLSvvviiiiiiiiiiiiiiiiie e, 19

7.5 The sections created by the Section Create HDA (left) and the resulting

particle filled representation (right) ..o, 20
7.6 Collection of SOP nodes used to build the Section Create HDA 21
7.7 Heat Source HDA in the node network ..., 24
7.8 Heat Source HDA controls ..., 24
7.9 The collection of SOP nodes used to build the Heat Source HDA 25
7.10 Finding the centroid of the input object modeloo .. 26
7.11 VEX code to set the melting rate for each section............................. 27

7.12 The For-Each loop responsible for performing operations on each section .. 28
7.13 VEX code to set the temperature value for each heat source 29

7.14 Copying polygonal spheres onto the heat source points....................... 30

1X

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

8.1

8.2

8.3

8.4

8.5

FLIP simulation setup using Houdini’s preset toolscoovvuiin. 31

Visualization settings for the FLIP object to show changes in temperature

during sSiMulation.ttt e 32
Updated network with ground plane collision geometry. 33
Simulation network with custom digital assets (blue)......................... 34
Temperature Control HDA controls ..., 35
Nodes responsible for controlling the simulation.............................. 36
VEX code to change viscosity according to temperature 37
Temperature Blend controls ... 38
Inside the Temperature Blend HDA ..., 39
Inside the "attribute_transfer" SOP Solver shown in Figure 7.23............. 39
Gravity force and its cONditionsScooveeeiiiiiiiiiie et 40
Melting a section of the Stanford Bunny....................ooooiiiiiiiiii 41
Melting all sections of the Stanford Bunnycoooiiiiiiii. 43
Melting all sections of a toy soldieroooiiiiiiiiiiiiiiii i, 44
Melting the legs at different rates.ccooiiiiiiiiiiiiiiiine . 45
Original model (left) and with the base melted (right) 46

LIST OF TABLES

TABLE Page
8.1 SImulation SELHINES ... vvute ettt ettt ettt iee e e e e iiaaaeeeaaas 42
8.2 Simulation settings for Figure 8.2 ... 43
8.3 Simulation settings for Figure 8.3o 45

X1

1. INTRODUCTION

Fluid animation has come a long way from its debut in the 1998 film Antz, which fea-
tured computer generated water, to the visual effects fueled movies of recent years such as
Life of Pi (2012) and The Hobbit: Desolation of Smaug (2013). Over the decades, there
have been many technological advances in rendering techniques, better simulation meth-
ods, and more robust 3D software, which have resulted in highly realistic simulation and
rendering of fluids. Many fluid behaviors can be accurately modeled today. For example,
The Hobbit: Desolation of Smaug (2013) features a scene where a giant gold statue melts,
drowning the movie’s main antagonist Smaug in a flood of molten gold, as seen in Figure
1.1. Disney’s Moana (2016), also features extensive fluid simulations such as oceans and

lava, as seen in Figure 1.2.

Figure 1.1: A gold statue of a dwarf king from The Hobbit: Desolation of Smaug (2013)
before it melts

The area of fluid behavior I have focused on is phase change. Phase change, otherwise

known as phase transition, is most commonly used to describe transitions between solid,

liquid and gaseous states of matter. In this work, the term fluid is used to encompass the
motion of liquids (water) and not gases (smoke, fire). The state change that I have focused
on is melting (gold, chocolate, wax, etc.). I have developed a set of Houdini Digital Assets
(HDA) that will help effects artists manipulate these changes in state, thus providing user
control when animating objects that exhibit melting phenomena. In my work, a Houdini
digital asset is also called an asset or a tool, for short. For this asset, I treat objects as

particle fluids with variable viscosity [1] for the duration of the simulation.

Figure 1.2: Lava simulation from Disney’s Moana (2016)

2. BACKGROUND AND PREVIOUS WORK

Fluid simulation has been handled in many ways in computer graphics literature and
in Computational Fluid Dynamics (CFD) for engineering purposes. Abbott and Basco
cover some basic principles without being too mathematically dense [2]. Phase transition
represents a complex subset of CFD.

The basis for my tool is similar to the approach taken by Carlson et al. based on the
incompressible viscous Navier-Stokes equations. By considering objects that undergo this
phenomenon to initially be a fluid with high viscosity, a change in phase is achieved by
altering the viscosity of the fluid in accordance with factors such as temperature and water
content. A benefit of this method, the authors state, is the elimination of arbitrary threshold
conditions needed to determine when the object should be treated as a solid or a liquid [1].
This approach is carried out at a particle level.

Miller and Pearce handle viscous fluids by treating each particle as a globule in a
connected particle system. Each globule has characteristics such as mass, temperature,
radius, position and velocity. By simulating soft collisions between these globules, the
authors have eliminated spatial stacking issues that can arise from rigid collisions. The
movement of the globules is a coarse approximation of molecular movement within the
liquid. This connected particle system deforms over time which leads to a dynamically
changing geometry [3]. The approach is based on the concept of flocks and their behavior
as outlined by Reynolds [4] where each particle interacts with neighboring particles within
a radius.

Terzopoulos et al. approach the simulation of melting deformable solids by modeling
thermoelastic objects that conduct heat and exhibit thermodynamic phenomena. These

thermoelastic simulations are based on the Lagrange equations of nonrigid motion cou-

pled with a heat equation to describe the diffusion of heat within the objects. During the
simulation, when objects come into contact with surfaces of higher temperatures, they
conduct heat into their interiors. As the temperature increases, the objects deform, and
as the temperature exceeds the melting point, the objects melt into liquids. A molecular
dynamics approach, where each particle represents a molecule, is taken to simulate the lig-
uid state, as pairs of particles interact with each other by exhibiting attractive and repulsive
forces based on their distance from each other [5].

Based on this thermodynamic approach at a molecular level, Tonnesen constructed a
single temperature dependent model to model changes in geometry between solids and
liquids [6]. Depending on the temperature, the objects exhibit fluid-like behavior with
changing geometry. Cooler objects are more rigid, thus exhibiting characteristics found in
solids, whereas hot objects deform as the temperature increases.

Desbrun and Gascuel adapted the Smoothed Particle Hydrodynamics (SPH) approach,
used by physicists, to simulate fluids in computer graphics [7]. By defining matter as a
collection of sample points, or particles, in a restricted space, it was possible for the authors
to carry out computations of physical quantities such as pressure, density, temperature,
velocity, etc. in a stable manner. While traditional techniques used an Eulerian approach
- which involved dividing space into a fixed grid of voxels and tracking the motion of
the fluid in and out of the voxel - the authors considered these to be counterintuitive for
flows. SPH relies on a Lagrangian approach, which involves tracking the fluid elements
over space and time. It was also possible for the authors to define surfaces using a level set
of the mass density function which indicate where and how mass is distributed in space.

Using the SPH concept, Stora et al. animated lava flows by varying viscosity with
changes in temperature [8]. As the temperature of the lava cools, its viscosity increases. By
linking the temperature to the viscosity for each particle and simulating heat transfers, the

authors could generate realistic motion and rendering of the lava. During the simulation,

4

heat transfers at the surface of the lava and the interior particles, resulted in the temperature
decreasing, thus enabling a transition from a low viscous behavior to a highly viscous one.

Foster and Metaxas provide an approach to animate liquids to make them look realistic.
It is based on the Navier-Stokes equations which couple momentum with mass conserva-
tion to completely describe fluid motion [9]. The authors achieve realistic motion through
a finite difference approximation to the incompressible Navier-Stokes equations. This re-
sults in the creation of a pressure and velocity profile for the simulation environment. This
profile is then used to determine the behavior of surfaces. The simulation region is divided
into a Cartesian coordinate grid and at the center of each grid cell the velocities along
all three axes as well as pressure are defined. The authors create the surface profile by
assuming the walls of the object are always aligned with the grid cells. When the fluid
particles pass through these cells, boundary velocity and pressure are used. The fluid sur-
face is determined using a height field. This approach provided a physically accurate and
stable method to develop a general fluid control tool for animators. The authors claim
this allows animators to specify and control three-dimensional fluid flow without having
to think about the underlying representation [10]. The authors also claim that by solving
the three-dimensional Navier-Stokes equation over a voxel representation of the surround-
ing environment, boundary conditions could be calculated and applied much faster. This
in turn makes the simulation faster compared to traditional methods, while preserving the
accurate behavior of the Navier-Stokes equations.

Stam developed a modified approach to solve for fluid flow by replacing the finite
difference scheme with a Lagrangian method [11]. While this method works well for
fluids such as gas or smoke, it isn’t a good model for simulating liquid flow as it results in
mass dissipation.

Foster and Fedkiw improved this method by using a combination of inertia-less par-

ticles and level sets to track the motion of a liquid surface. The level set prevents mass

dissipation while the particles allow splashing [12]. The authors also developed a tech-
nique to account for the movement of polygonal objects within the liquid. By focusing
on modeling the liquid volume, the authors could achieve more realistic simulation and
rendering of fluid surfaces.

Based on Stam’s work, Enright, Marschner, and Fedkiw proposed a technique that
relied on surface modeling instead of volume modeling [13]. By extrapolating surface
velocities into the nearby regions occupied by air, the authors could generate more accurate
results that were visually appealing and physically plausible. In doing so, the authors could
add a degree of control to the behavior of the fluid surface such as dampening effects to
reduce or increase splashing.

Goktekin, Bargteil, and O’Brien further extended this approach to demonstrate the
behavior of viscoelastic fluids [14]. By introducing a new term to the Navier-Stokes equa-
tions to handle elastic strain, the authors were able to model viscoelastic fluids that would
deform when subjected to external forces.

Rasmussen et. al. developed an efficient method for the directable animation of photo-
realistic liquids in a visual effects production [15]. By coupling the particle level set tech-
nique of Enright, Marschner, Fedkiw with the control methodology introduced by Foster
and Metaxas, they created a system that allowed directable control of fluids. Control par-
ticles are used to provide the desired degree of directed behavior. Associated with each
control particle is a control shape which defines the region of influence of the particle, and
within this region a falloff curve is used to determine the amount of control applied to the
liquid. A soft, or blended, control mixes between the animators desired value and the value
currently being used by the simulation. This control can be applied to any controllable lig-
uid property, such as viscosity. A precise degree of control, known as a hard control, is
used for values such as velocity that remain constant within the region of influence of the

control particle, for the directed movement and visual appearance of the liquid surface.

3. DEVELOPMENT PLATFORM

3.1 Houdini

Houdini is a 3D animation software developed by SideFX Software [16]. It is an
industry standard for FX development. It allows artists to construct node networks using
operators to create a wide range of simulations including fluids, cloth, rigid bodies, and
soft bodies. The variety of operators within Houdini allow artists to focus on the creative
aspects of production rather than the technical aspects. Houdini has been used in various
feature films, recently in Disney’s Zootopia (2016), Pixar’s Finding Dory (2016), and
Disney’s Moana (2016).

3.2 Houdini Operators

Houdini’s tools are mostly implemented as operators. There are several benefits to this
approach. It allows highly detailed objects to be constructed with very few steps, it en-
courages a non-linear workflow, and it allows the creation of new operators by combining

existing operators [16]. This operator based structure is divided into several main groups:

1. OBJs - These are nodes that pass transform information, certain material and render
settings, etc. and are traditionally composed of one or more SOPs. A collection of

such nodes is known as an Object network, otherwise known as the "Scene level".

2. SOPs (Surface Operators) - can be used to deal with geometric structure by influ-
encing surfaces, vertices, points, normals, etc. and provide capabilities to deal with
static volumes, object velocities, etc. These operators play a big role in procedural

modeling.

3. POPs (Particle Operators) - used to manipulate particle systems by providing func-

tionality to introduce, or control, forces, noise, collisions, etc.

7

4. DOPs (Dynamic Operators) - for dynamic simulation of fluids, cloth, rigid body in-
teraction, etc. A collection of DOPs forms a DOP simulation, which in turn provides

controls such as caching options, timestep controls, etc.

5. CHOPs (Channel Operators) - for manipulating time-based channel data such as

animation curves or audio information.

6. SHOPs (Shading Operators) - can be used to create shading networks to represent

different shaders.

7. COPs (Composite operators) - used to manipulate 2D pixel data. Like other main-
stream compositing packages, there is functionality to composite images such as

render passes, depth maps, etc.

8. ROPs (Render Operators) - for building networks to represent different render passes
and render dependencies. Different nodes can also represent different render jobs or

launch different renderers.

9. VOPs - VEX operators - for building nodes of any of the above types using a graph-

ical representation of VEX. (See Section 3.4)

3.3 Houdini Digital Asset (HDA)

A Houdini Digital Asset (HDA) is a collection of connected operators that perform
specific functions packaged into a single node. A HDA is a reusable tool which can be
used by artists in various scenes and simultaneously across various workstations in the
Houdini environment. The interface for HDA’s can also be customized by different artists
as per their needs. HDA’s are especially useful to FX Technical Directors since they can
create complex operator networks and condense them into single nodes to be used by

animators.

34 VEX

Vector Expression (VEX) is Houdini’s internal language. It bears similarities to Ren-
derman Shading Language (RSL) and its language syntax is C-like [16]. Using VEX,

users can develop custom SOPs, POPs, shaders, etc.
3.5 Mantra

Mantra is the renderer bundled with Houdini. It has many similarities to Photorealistic
Renderman in its scope and application. Shaders are scriptable and are composed using
VEX, or by using VOPs. VOPs are a node based approach to VEX, and are similar to the

visual scripting workflows found in other 3D packages and game engines.

4. GOALS AND OBJECTIVES

The main goal of this research was to create a set of Houdini Digital Assets to provide

user control when performing melting simulations. These assets accomplish the following:

1. Provide a method for users to create sections from the object they intend to simulate,

and to provide user control of section attributes.

2. Develop a method to group particles in accordance with the user defined sections

and to inherit the section attributes.

3. Develop custom operators in Houdini to ensure that particles are simulated in accor-

dance with their section attributes.

4. Provide a controlled animated deforming mesh of the melting object as the result of

the simulation.

10

5. METHODOLOGY

The methodology of this research is to develop a Houdini Digital Asset that demon-
strates the proposed control approach to simulating and animating melting phase change
of 3D objects. The focus has been on creating a prototype using Houdini that allows the

user to create a melting simulation and animation in a controlled manner.

11

6. SIMULATION APPROACH

A two-step approach is employed to achieve controllable melting in an object model.
The first step involves preparing the model for simulation and assigning section attributes.
The second step involves specifying simulation parameters for the heating and cooling of

the fluid. The workflow for achieving controllable phase change is shown in Figure 6.1.

INPUT:
Object model and
slicing planes

4

Step 1:
Creating sections and
assigning attributes

4

Step 2:
Simulation

OUTPUT:
Animated deforming
mesh

Figure 6.1: Workflow for achieving controllable phase change

12

6.1 Model Preparation

There are many ways in which an object model may be split into sections, such as
Voronoi fracturing, using noise patterns, painting parts of the model, etc. The method I
chose to create sections is by slicing. This eliminates the randomness of Voronoi and noise
patterns and allows the user to slice the model accurately as it offers more control. A user
can position multiple planes to create boundaries for each desired section of the model.

Once the model has been sliced into sections, the user can specify section attribute
values such as temperature and melting rate. If the user chooses not to specify attribute
values for a particular section, default values will be used. The default value for viscosity
is set to 5000. This value was determined by many test simulations. This allows the section
to melt quickly when subjected to heat. If a section is not subjected to heat, it maintains its
shape. The default values for temperature and melting rate are set to zero, to ensure that
there is no heat transfer within the section.

Figure 6.2 shows the general workflow of this stage.

Object Model Planes for slicing

Split into sections

\ 4

Assign attribute
values

Figure 6.2: Model preparation stages

13

6.2 Simulation

The simulation is run using the attributes from the model preparation stage. At this
stage, the user can specify attributes such as threshold temperature, cooling rate, minimum-
maximum viscosity, and control temperature flow through the fluid. At each timestep, the
HDA ensures that particles are simulated in accordance with their section values only.

This HDA is connected to Houdini’s in-built FLIP fluid solver which is the basis of the

simulation. This is shown in Figure 6.3

Viscosity
manipulation

Heat transfer

FLIP simulation

\ 4

Output animated
mesh

Figure 6.3: Simulation approach

6.2.1 FLIP Solver

The FLIP solver is a DOP that allows the user to control liquid simulations. It is a
hybrid between particle based and volume based fluid simulation. The advantage of the
FLIP solver, when compared to SPH, is that fewer timesteps per frame are required to run

the simulation. FLIP requires 2 to 4 timesteps per frame, whereas SPH requires from 7 to

14

20 timesteps per frame for stable simulation results.
The FLIP solver is responsible for other simulation aspects such as collision behavior,

and handling multiple fluid sources and sinks.
6.3 Input and Output

The user provides a polygonal object model for simulation. It is the user’s responsi-
bility to make sure the model has no holes in the surface geometry, and that all surface
normals are pointing outward. Once the simulation is complete, the output will be an
animated, deforming surface mesh which can then be used for lighting, shading, and ren-

dering.

15

7. IMPLEMENTATION

Multiple HDA’s have been created, each with its own function in controlling melting

phase change. These are:

1. Section Create - Allows the user to create model sections using slicing planes

2. Heat Sources - Allows the user to specify attributes such as viscosity, temperature,
and melting rate for each object section. Also specifies starting points on the model

for heat propagation.

3. Temperature Control - Allows the user to control the viscosity based on temperature

values.

4. Temperature Blend - Provides user control of heat propagation through the fluid.

Temperature

Section Create
Control

Temperature
Heat Sources

Figure 7.1: Collection of SOPs and DOPs created

16

The Section Create and Heat Sources digital assets work at the SOP level as this is
where operations responsible for manipulating geometry are carried out. At the DOP level,
dynamic operations such as simulation of particles are performed. Temperature Control

and Temperature Blend work at the DOP level. This is shown in Figure 7.1.
7.1 Section Create

The first step of the implementation involves creating sections from the input object
model and assigning attributes. A custom digital asset, called Section Create, was devel-
oped to handle the creation of sections on the model. It requires two inputs - a polygonal
object model and the slicing geometry. As mentioned in the Simulation Approach chapter,
it is the user’s responsibility to make sure the model being used has no holes in its surface
geometry, and that all surface normals are pointing outward.

A variety of sectioning geometry might be used to slice the object. Geometry such as
spheres, cubes, or geometry of higher complexity could have been implemented as slicing
geometry.

However, for this thesis, I have used planes as the slicing geometry as they are easy to
place in the scene, do not obstruct the view of the input model when creating additional
sections, and reduce the risk of creating unwanted sections when intersecting with other
slicing geometry. The slicing planes can be positioned as the user wishes to create sections
of the model. An example sliced object is shown in Figure 7.2.

Figure 7.3 shows the operator node network for the Section Create HDA and its input.

17

Figure 7.2: Input model with slicing planes

Input model Slicing planes

HIERE) meting_sections1
L = L.

Figure 7.3: Section Create HDA (green) in the node network

18

The parameters and attributes used by Section Create are made accessible to the user,
and these collectively form the user interface as shown in Figure 7.4. The user can set var-
ious parameter values such as particle separation, assign seed values to randomize color,
and set attribute values for viscosity, temperature, and melting rate. The values assigned
to these parameters are applied to the particles as a whole, and not to individual sections.

The particle separation describes the density of points packed within the input model.
A lower particle separation value results in a higher number of particles packed in the
object model. If temperature is assigned a default value greater than zero, this will act
as the initial value for temperature for the whole input model during simulation. Color is
used to visualize the sections created.

The output of this HDA is a particle filled representation of the model split into sec-

tions, as shown in Figure 7.5. Each section has its own identifier to be used in later stages.

Default Attr

Figure 7.4: Section Create user controls

19

Figure 7.5: The sections created by the Section Create HDA (left) and the resulting particle
filled representation (right)

7.1.1 Inside the Section Create HDA

The detailed node structure used within Section Create is as shown in Figure 7.6. At-
tributes required for simulation such as temperature, viscosity, and melting rate are created
and initialized to their default values as specified by the user. This ensures that all particles
within the geometry possess these attributes. This is done using an Attribute Create SOP.
The values for these attributes are set by the user using the Section Create Ul as shown in

Figure 7.4.

20

Figure 7.6: Collection of SOP nodes used to build the Section Create HDA

21

The polygon model is one of the inputs for the Boolean SOP. The other input is the
planes used for slicing. The Boolean SOP settings are set to Shatter. This node is re-
sponsible for creating sections on the model. While it was originally used in destruction
simulation to create fractured objects, it can be used to perform a variety of operations
such as finding the Intersection or Union of objects, seams, etc. This operation will fail, or
lead to inaccurate results, if the input model has holes or does not have outward pointing
normals. A Polyfill SOP is used to fill any holes in the geometry once the sections are
created.

There are two output streams from the Polyfill operation. The first output stream is an
input to the Points from Volume SOP. This operator is used to fill the object model with
particles. The particle separation, jitter values, and seed value for noise can be adjusted
using its UL

The second output stream is passed to a Connectivity SOP which assigns a reference
name to each section, along with an integer ID value. Each section is assigned a random
color to distinguish it from the other.

With the exception of the Points from Volume SOP, these SOPs have been created at
a Primitive class level. A Primitive in Houdini is a unit of geometry that is lower in level
than objects, but higher than points and vertices. For these attributes to be accessible at a
Point class level, we use the Attribute Promote SOP to change the class from Primitive to
Points.

The Attribute Transfer SOP is used to transfer attributes from one geometry to another.
The first input is the destination geometry to which attributes are transferred. The second
input is the source geometry which provides the attributes to be transferred. The attributes
transferred are the Section ID and color. These attributes are transferred to the points cre-
ated using Points from Volume SOP. This ensures that all points created possess a Section

ID and color attribute.

22

7.2 Heat Source HDA

The approach used here is one way to locate heat sources. Other method to locate
heat sources could also be used. This asset is used with the Section Create HDA. While
Section Create is used to assign attribute values to the particles as a whole, Heat Source
assets are used to assign attribute values to individual sections. The other purpose of this
asset is to determine points on the input model to be used as heat sources. Since there are
no external heat sources, it is important to find points from where heat propagates into the
fluid. These points can be selected automatically by the asset or manually by the user. For
manual selection, the user selects a point and enters the corresponding point number into
the UL. When the automatic method is used, the point in each section that is furthest away
from the centroid of the input model is used as a heat source. This selection usually allows
parts of the input model that have less mass and are structurally weak to start melting first.

A heat source point is created for each section and assigned a temperature and melting
rate for simulation. Each heat source points is also assigned a heat source ID. To mimic
heat wave fronts passing through the liquid, polygonal spheres are placed at each heat
source point. These spheres are assigned the temperature and melting rate specified by the
user. The spheres grow in size over time in accordance with their assigned melting rate.
These spheres are the output of the Heat Sources asset, and are used in the simulation to
propagate heat through the particle fluid.

Figure 7.7 shows the usage of the Heat Source digital asset in the node network.

23

transform1

polyfilll

® o

OUT_PARTICLE_MODEL

¥ Heat Sources heat_s

Figure 7.8: Heat Source HDA controls

24

As seen in Figure 7.8, the user can assign values for temperature and melting rate to
each section. The user adds attributes to a section by specifying its section number. The
user may assign attribute values to sections as needed. When attribute values for a section
are not explicitly assigned, default values are used. The user can assign values for sections

in any order.

Figure 7.9: The collection of SOP nodes used to build the Heat Source HDA

25

7.2.1 Inside the Heat Source HDA

A detailed node network for the Heat Source HDA is shown in Figure 7.9.
The Attribute Wrangle SOP is a powerful, versatile, low-level node that allows the user
to manipulate geometry using VEX code. This SOP is used to add a single point at the

centroid of the object model, as shown in Figure 7.10.

23 Attribute Wrangle Tind_centroid

Code Bindings

int {(@,@ptnum) 3
ent = chv("centroid"}s
(8,cent);

| inicon

Attributes to Create

Centroid centroid(™../OUT_MODEL_ centroid("../OUT_MODEL_ centroid("../OUT_MODEL _

Figure 7.10: Finding the centroid of the input object model

The Attribute Wrangle SOP is used again to set the melting rates for each section using
the values provided by the user, as shown in Figure 7.11. The user input is parsed from the

Ul by the Attribute Wrangle and assigned to all points belonging to that particular section.

26

<% Attribute Wrangle setting_melt_rate
Bindings
Group
om Group
Paints
int attrib_limit = chi("attrib_num")j

for(int 1 = @ 3 1 < attrib_limit 5 i++) {
string section_channel = sprintf("../:
string group_section = chs(section_channel);
int section_num = atodi(group_section);

if(@section == section_num) {
1ig melt_channel = sprintf("../melt_rate_%d", i+l):
flo melt_wvalue = ch({melt_channel);
Emelt_rate = melt_value;

Attribute Num 3

Figure 7.11: VEX code to set the melting rate for each section

Once the melting rate for each section is assigned to all the points, the data is then
run through a for-each loop. This loop iterates through each section based on the section
number. The operations performed in the for-each loop are as shown below in Figure 7.12.

The first task performed within the for-each loop is to sort the points of each section
based on their distance from the centroid of the object model. The sorting is performed
by the Sort SOP. This sorting is done in descending order; points further away from the
centroid have lower point numbers. This ensures that the point furthest from the centroid
always has a point number of zero. This is essential in finding the points to use as heat

Sources.

27

The Delete SOP isolates points from each section that have a point number equal to

zero. These points are then assigned a new attribute known as a Heat Source ID.

foreach_beginl_metadatal

keeping_farthest_point_from_centroid
init_pscale

assign_heat_source_id

assign_grow_rate

foreach_end1

Figure 7.12: The For-Each loop responsible for performing operations on each section

28

.3'_, Attribute Wrangle = temperature
Bindings
Group
Group Type G rom Group
Run Owver Paints
int attrib_limit = chi("attrib_num")3
for (int 1 =8 3 1 < attrib_Llimit 3 di++) {
string section_channel = sprintf("../

string group_section = s(section_channel);
int sectien_num = atoi(group_section);

if(@heat_source_id == section_num) {
5 g temp_channel = sprintf(".. /tem
temp_value = ch(temp_channel);
@temperature = temp_value;

Attrib Mum 3

Figure 7.13: VEX code to set the temperature value for each heat source

Upon completion of the for-each loop, each section will have a dedicated heat source
point. Using an Attribute Wrangle, the temperature values are then assigned to the corre-
sponding heat sources using a method similar to setting the melting rates for all the points.
This is shown in Figure 7.13. Polygonal spheres are copied to each of these heat source
points using the Copy to Points SOP, as shown in Figure 7.14. As these spheres grow for
each simulation frame, they will act as heat wavefronts to simulate the propagation of heat

through the section.

29

sphere2 animate_pscale
[@

[t]

attribdeletel

OUT_HEAT_SOURCES

Figure 7.14: Copying polygonal spheres onto the heat source points

7.3 Simulation Setup

The built-in Houdini FLIP solver is used as the basis for the melting simulation. Two

DOP digital assets have been created to work with this solver.
7.3.1 FLIP Simulation

When a FLIP fluid is created using the FLIP tool, a default DOP network is created
with the FLIP simulation operators as shown in Figure 7.15.

The FLIP Solver is responsible for collecting all the data from the input nodes and
simulating the particles accordingly. The FLIP solver has four nodes which accept input.

These are:

1. Fluid To Solve: Objects to undergo simulation are connected here.

30

2. Particle Velocity: DOPs that manipulate particle attributes are connected to this

input.
3. Volume Velocity: Field affecting operators are added to this node.

4. Sourcing: This input is for adding or removing particles, and adding forces after the

main simulation steps are completed.

\Iﬁﬁij‘”gﬂl flipfluidobjectl

édeo o e

”.’ flipsolverl

I
mesime,

m mergel

gravityl

" output

Figure 7.15: FLIP simulation setup using Houdini’s preset tools

31

The user can configure the Flip Object DOP by setting the SOP path to the output of
the Section Create DOP and changing the input type from Surface SOP to Particle Field.
This is needed since we are passing point data to the Flip Object, not Surface data. Figure

7.16 shows the visualization settings used.

Visualization Attrib temperature

ic zation Ranee
Visualization Range

Figure 7.16: Visualization settings for the FLIP object to show changes in temperature
during simulation

The user can modify the visualization parameters to display changes in temperature
or viscosity rather than velocity, if desired. For this simulation, the settings have been
changed to display temperature in a range of 0 to 1500. The visualization type has been
changed from Speed to Value to represent changes in temperature. A color ramp is used to
visualize the temperature values. These settings are shown in Figure 7.16

The viscosity attribute needs to be enabled in the FLIP Solver, as it is disabled by

32

default. Finally, the Gravity DOP is deleted, as gravity is handled by the Temperature
Blend HDA. If this DOP were left intact, gravity would act on all the particles and cause
the object particles to collapse. The Temperature Blend HDA implements a gravity force

taking into account changes in temperature and viscosity.
7.3.2 Collision Objects

For this simulation, a ground plane has been created to act as collision geometry. This
simulation network is shown in Figure 7.17. Using additional Static Object DOPs, the user

could add additional collision geometry.

@'Img groundplanel
®

merge2

B flipfluidobject1

staticsolverl
(L N N

// / flipsolverl

mergel

Figure 7.17: Updated network with ground plane collision geometry.

33

7.3.3 Custom Digital Assets Developed

The two custom digital assets created to control melting simulations are Temperature
Control and Temperature Blend. The Temperature Control HDA deals with particle at-
tributes such as temperature and viscosity. It is connected to the second input on the FLIP
Solver. The Temperature Blend is connected to the sourcing FLIP input. It imports heat
source spheres as surface geometry and applies a gravity force. Figure 7.18 shows the

simulation network with these two custom digital assets added.

undplanel

) merge2

I ripfuid
L]
el temperature_controll

temperataure_blendl

mergel

outpur

NE
T
(=)

Figure 7.18: Simulation network with custom digital assets (blue)

7.4 Temperature Control

This asset is responsible for performing two tasks - checking simulation conditions
and also manipulating viscosity based on temperature. If a heat source wavefront passes

through particles from another section, their temperature remains unchanged. If the heat

34

source passes through particles from its own section, its temperature is transferred to those
particles. The viscosity of the fluid changes in accordance with the temperature value of
its particles.

Figure 7.19 shows the controllable parameters of this asset. The user can specify min-
imum and maximum values for viscosity. Increasing the minimum viscosity will result in
a "thicker" fluid at its highest temperature.

Temperature parameters such as a threshold temperature and cooling rate can also be
controlled by the user. The threshold temperature is the value at which the high viscosity
fluid begins to melt. The cooling rate specifies the amount by which temperature will be
reduced at each time step. A value of 0.99 reduces the temperature by 1% at each time

step. Similarly, a value of 0.9 reduces the temperature by 10%, and so on.

& Temperature Contrel temperature_controll

108
¥ Cooling?

Figure 7.19: Temperature Control HDA controls

7.4.1 Inside the Temperature Control HDA

As seen in Figure 7.20, two Attribute Wrangle operators control the particle attributes

responsible for simulating melting.

35

®
_ heat_check

[]

Figure 7.20: Nodes responsible for controlling the simulation

As heat propagates through the fluid, Heat Check compares each heat source ID to the
section number of each particle at each time step to make sure that only particles from that
particular section are being assigned a temperature value.

The Viscosity Change wrangle checks if cooling is enabled and then reduces the tem-
perature by the cooling rate at each time step. This temperature is then mapped to a
viscosity scale ranging from a minimum and maximum values to set the viscosity of the

particles at that time step.

36

POP Wrangle

Actiy

Data Bindings puts | Bindings

t activate_cooling = ch("activ
t cooling;

t threshold

t min_visc

t max_visc

if { activate_cooling == 0)
cooling = 1;

cooling = ch("«

{@temperature *= cooling;
@viscosity = fit{@temperature,threshold,f,min_visc, max visc):

ln1,Coll

ch("..factivate_cooling")
ch("../cooling_rate")

ch(".. /temperature_threshold
ch("../min_viscosity")

ch{"../max_viscosity")

Figure 7.21: VEX code to change viscosity according to temperature

Figure 7.21 shows the code snippet used to change viscosity based on the temperature
at that time step. At the bottom of the figure, the values for cooling rate, minimum and
maximum viscosity, temperature threshold, and cooling activation are shown referencing

the values from the Temperature Control UI shown in Figure 7.19.
7.5 Temperature Blend

This digital asset is responsible for importing the temperature values from the Heat

Sources asset to the FLIP simulation and transferring them to the points to be simulated.

37

It provides users with two controls on heat propagation from the heat sources. These
are shown in Figure 7.22 as the Distance Threshold and the Blend Width. The Distance
Threshold parameter sets the offset ahead of the heat sources where the temperature being
applied to the particles will be constant. All particles within this range will have constant
temperature, which in this case is the maximum temperature of that heat source. The
Blend Width parameter is an additional offset parameter ahead of the Distance Threshold
that applies the temperature gradually as the heat propagates through the fluid.

A second task of this HDA is to apply a gravity force to the particles. Gravity force

only acts on particles that have temperature transferred to them during the simulation.

=.‘_ Temperataure Blend temperataure_blendl

Figure 7.22: Temperature Blend controls

7.5.1 Inside the Temperature Blend HDA

SOP Solvers, as shown in Figure 7.23, allows the user to import SOP geometry data to
be used in a DOP simulation. Inside the SOP Solver the Object Merge operator is respon-
sible for importing the heat source geometry from the Heat Source HDA. The Attribute
Transfer SOP transfers the temperature attribute from the imported SOP geometry to the

DOP simulation. This setup is shown in Figure 7.24

38

m merge3
®

®
% OUT_BLEND
[

Figure 7.23: Inside the Temperature Blend HDA

m object_mergel

[]

attribtransferl

Figure 7.24: Inside the "attribute_transfer" SOP Solver shown in Figure 7.23

39

The POP Force operator, as shown in Figure 7.25, is responsible for simulating gravity.
For each particle, if its Section ID matches the Heat Source ID, it experiences a gravita-

tional force. If not, the particle does not experience gravity.

¥ Ignore Mass
¥ Use VEXpressions

if((@heat_source_-id == @section) && (@melt_rate!=0))
force=force}

else
force=083;

Figure 7.25: Gravity force and its conditions

7.6 Running The Simulation

Once the custom digital assets are set up in the simulation network, the user can change
parameters within the FLIP Object and FLIP Solver nodes as desired. Changes can be
made to the parameters of the four custom digital assets to achieve different results. The
user can then run the simulation.

When the FLIP tool is used to create a fluid simulation, a node network of operators to
generate a deforming polygonal mesh from the simulation is also created. This mesh can

be used for lighting, shading, rendering, or exporting to other 3D animation packages.

40

8. RESULTS

The control approach was tested on three object models - the Stanford Bunny, a statue
of Venus, and a toy soldier. Multiple simulations were carried out with variations in
base viscosity, minimum-maximum viscosity, temperature, cooling rates, melting rates,
the number of sections created and the number of sections set to melt.

For each test case, images of the simulation were rendered using Mantra. Surface

materials such as chocolate, plastic, and clay from Houdini’s built-in library were used.

Houdini Houdini

Houdini

Houdini Houdini

Figure 8.1: Melting a section of the Stanford Bunny

41

To achieve the melting shown in Figure 8.1, the Stanford Bunny is split into three
sections - the head, the middle, and the rear. Default values are used for the head and rear
sections so they would not melt. The middle was simulated using the values shown in
Table 8.1. The head and the rear don’t melt as they are not subjected to any heat transfer
from the middle section heat source. As a result their viscosity values remains constant

and they maintain their shape.

Property Value
Section 0 (middle)
Point Separation 0.01
Viscosity 5000
Temperature 1000
Melting Rate 0.4

Min-Max Viscosity | 10 - 10000

Threshold Temp 100
Cooling Rate 0.98
Frame Range 1-240

Table 8.1: Simulation settings

To melt the entire model, section attribute values were set for all sections. Figure 8.2
shows the resulting melting when the sections are assigned varying temperature and melt-
ing rate values. The varying values used by each section are shown in Table 8.2. Remain-
ing values such as point separation, min-max viscosity, threshold temperature, cooling rate

are the same as in Table 8.1.

42

Houdini

Houdini

Figure 8.2: Melting all sections of the Stanford Bunny

Section | Viscosity | Temperature | Melting Rate
middle 5000 800 0.25
head 5000 1000 0.5
rear 5000 1200 0.9

Table 8.2: Simulation settings for Figure 8.2

Melting was also carried out on a 3D model of a toy soldier. This model was split into
four sections - the head, the middle, and two legs. Similar to the previous test, each section

was assigned a different temperature and melting rate. Figure 8.3 shows the resulting

simulation and Table 8.3 shows the settings used.

43

Figure 8.3: Melting all sections of a toy soldier

44

Section | Viscosity | Temperature | Melting Rate | Cooling Rate
head 8000 800 0.9 0.99
middle 8000 1400 0.6 0.99
leg (1) 8000 1000 0.2 0.99
leg (1) 8000 1000 0.3 0.99

To demonstrate how different sections can melt at different rates, a simulation was
carried out on the legs of the toy soldier with a different melting rate assigned to each.
Viscosity, temperature and cooling rate values were kept the same as before. The melting

rates assigned to the right and left leg were 0.2 and 0.8 respectively. Figure 8.4 shows the

Table 8.3: Simulation settings for Figure 8.3

melting progress on the legs at frame 48 of the simulation.

Figure 8.4: Melting the legs at different rates.

45

By changing the minimum viscosity in Temperature Control, it is possible to demon-
strate that the simulation results in a thicker melted fluid as shown in Figure 8.5. Previous
simulations had a minimum viscosity value of 10, which resulted in the melted fluid having

a very low viscosity. For this test, the minimum viscosity value was increased to 1000.

Figure 8.5: Original model (left) and with the base melted (right)

46

9. CONCLUSIONS

The developed Houdini Digital Assets work as outlined in the Goals chapter. They
provide the user with a straightforward workflow to control object melting. Users expe-
rienced with creating FLIP simulations in Houdini will find these assets easy to use and
integrate into their node networks.

At the geometry level, Section Create provides the user with a simple way to create ob-
ject sections and their attributes, while Heat Source provides a straightforward method to
control those attributes. Using these assets reduces the time needed to set up the model for
simulation. This approach should be effective in real production environments, especially
if melting effects have to be generated over many shots or on different models.

At the simulation level, Temperature Control manipulates the viscosity over time de-
pending on changes in temperature. The user can set different values for parameters such
as threshold temperature, cooling rate, and minimum and maximum viscosity to achieve
different melting results. Temperature Blend can be used to control the propagation of

heat through the object model based on the Distance and Blend parameters.
9.1 Limitations

Using the developed assets relies on some prior Houdini knowledge on the part of the
user. A basic competency in creating FLIP simulations is assumed.

Only polygonal mesh models, more specifically triangle mesh models, can be simu-
lated using these assets in their current state. A single mesh is also the only acceptable
input for Section Create. Models with different geometry groups pose a problem when
using the Boolean operator to create the split geometry, as this could lead to more sections
being created than desired.

There is also no easy way to find out which sections the section ID’s represent. The

47

user must rely on VEX expressions or other operators to determine each sections ID, or to

view them individually.
9.2 Future Work

The developed tool set deals with one phase transition, namely melting. It might be
further developed to handle another state transition such as hardening. Phase change phe-
nomena involving gases such as evaporation and condensation could be investigated. An-
other functionality that might be added to the simulation is the use of water content along
with temperature and viscosity attributes.

Since each of the assets developed in this thesis work has a specific function, they
could be used to create other HDAs if desired.

The assets might also be modified to simulate other materials or phenomena, such as
the behavior of wet sand or mud. These assets could also be used with Houdini’s Grain

Solver to control viscosity, or any other attribute, in mud simulations.

48

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

M. Carlson, P. J. Mucha, R. B. Van Horn III, and G. Turk, “Melting and flowing,” in
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pp. 167-174, ACM, 2002.

M. B. Abbott and D. R. Basco, “Computational fluid dynamics - An introduction for

engineers,” NASA STI/Recon Technical Report A, vol. 90, 1989.

G. Miller and A. Pearce, “Globular dynamics: A connected particle system for ani-
mating viscous fluids,” Computers & Graphics, vol. 13, no. 3, pp. 305-309, 1989.
C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM

SIGGRAPH computer graphics, vol. 21, no. 4, pp. 25-34, 1987.

D. Terzopoulos, J. Platt, and K. Fleischer, “Heating and melting deformable models,”
Computer Animation and Virtual Worlds, vol. 2, no. 2, pp. 68-73, 1991.

D. Tonnesen, “Modeling liquids and solids using thermal particles,” in Graphics In-

terface, vol. 91, pp. 255-262, 1991.

M. Desbrun, M.-P. Cani, et al., “Smoothed particles: A new paradigm for animating
highly deformable bodies,” in Proceedings of the Eurographics workshop on Com-
puter animation and simulation, vol. 96, pp. 61-76, Springer, 1996.

D. Stora, P.-O. Agliati, M.-P. Cani, F. Neyret, and J.-D. Gascuel, “Animating lava
flows,” in Graphics Interface (GI’99) Proceedings, pp. 203-210, 1999.

N. Foster and D. Metaxas, “Realistic animation of liquids,” Graphical models and

image processing, vol. 58, no. 5, pp. 471-483, 1996.

N. Foster and D. Metaxas, “Controlling fluid animation,” in Computer Graphics In-

ternational, 1997. Proceedings, pp. 178—188, IEEE, 1997.

49

[11]

[12]

[13]

[14]

[15]

[16]

J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pp. 121-128, ACM Press/Addison-Wesley Pub-
lishing Co., 1999.

N. Foster and R. Fedkiw, “Practical animation of liquids,” in Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pp. 23—

30, ACM, 2001.

D. Enright, S. Marschner, and R. Fedkiw, “Animation and rendering of complex
water surfaces,” in ACM Transactions on Graphics (TOG), vol. 21, pp. 736744,
ACM, 2002.

T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien, “A method for animating vis-
coelastic fluids,” in ACM Transactions on Graphics (TOG), vol. 23, pp. 463-468,

ACM, 2004.

N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon,
and R. Fedkiw, “Directable photorealistic liquids,” in Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp. 193-202, Euro-

graphics Association, 2004.

Wikipedia, “Houdini (software) — wikipedia, the free encyclopedia,” 2017. [Online;
accessed 17-September-2017].

50

