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ABSTRACT

To address the evolving needs of dry storage, this research developed an opti-

mization methodology to identify loading configurations to minimize the number of

casks, their heat load, and the time when they meet transportation requirements.

The motivation was to investigate strategies that balance and reduce risk over the

lifetime of a site’s reactor(s).

The dry cask loading problem was formulated as an adaptable dynamic bin

packing problem, accommodating different site and cask limits in broadly-defined

constraints. A new method was developed to address its complexities, named the

GRASP-enabled adaptive multiobjective memetic algorithm with partial clustering

(GAMMA-PC). This method embeds greedy randomized adaptive search procedures

in a multiobjective evolutionary algorithm with local search techniques and partial

decomposition of the objective space during crossover.

GAMMA-PC was demonstrated through integration with the unified database

from the Used Fuel Systems group at Oak Ridge National Laboratory to optimize

simulated loading configurations for Vermont Yankee, Comanche Peak, and Zion

Nuclear Power Stations. Its performance was evaluated through comparisons to test

solutions and to the real Zion loading configuration. GAMMA-PC produced diverse

solutions that dominated the testing sets. The improvement was concentrated in

the average heat load, and the third objective function was shown to be sensitive to

individual assembly characteristics.

The results suggested the usefulness of GAMMA-PC for utilities considering long-

term goals. They showed that more diverse cask loadings and strategic placements

of empty positions can be used to reduce initial heat loads. Moving to a higher
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capacity cask increases loading flexibility but can result in transportation delays.

Long-term planning enables a more thorough consideration of the trade-offs involved

in any decision.

This research contributes one of the first in-depth studies of the dry cask loading

problem. It expands the current treatment of assembly selection over longer time-

frames and meets user-defined requirements. It is also one of the first tri-objective

dynamic bin packing problems, and the first to pack items with time-dependent

characteristics. Future work should focus on refining the objectives and incorpo-

rating uncertainty. With its adaptable structure, GAMMA-PC is a promising new

metaheuristic for this task and for dynamic bin packing problems in general.
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NOMENCLATURE

ALARA as low as reasonably achievable

BWR Boiling Water Reactor

C Celsius

CoC Certificate of Compliance

DBPP dynamic bin packing problem

GAMMA-PC GRASP-enabled adaptive multiobjective memetic

algorithm with partial clustering

GRASP greedy randomized adaptive seach procedure

GWd gigawatt-days

IAEA International Atomic Energy Agency

ISFSI Independent Spent Fuel Storage Installation

kW kilowatt

LLC Limited Liability Corporation

MOEA multiobjective evolutionary algorithm

MOEA/D multiobjective evolutionary algorithm with

decomposition

MOEPSO multiobjective evolutionary particle swarm optimization

MOMA multiobjective memetic algorithm

MOMAD memetic algorithm based on decomposition

MPa megapascal, the SI unit of pressure

MPC multipurpose canister

MTU metric tonne of uranium

NRC Nuclear Regulatory Commission
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NSGA-II nondominated sorting genetic algorithm II

OC oldest, coldest

PWR Pressurized Water Reactor

RCL restricted candidate list

SI International System of Units

SQL structured query language

Sv sievert, the SI unit of ionizing radiation

U.S. United States

UNF-ST&DARDS Used Nuclear Fuel - Storage, Transportation &

Disposal Analysis Resource and Data System

Variables & Mathematical Notation:

x Decision vector

i Index used to correspond to bin number

j Index used to correspond to item number

x Packing matrix

y Array denoting the bins in use

tfill Array denoting the time at which each bin is packed

F(x) Objective vector

Ω Feasible region

u � v Objective vector u dominates vector v

N Number of items to be packed

M Theoretical maximum number of bins to pack items

β Cardinality restriction

BUs,max Maximum allowable assembly average burnup for a

storage cask
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BUt,max Maximum allowable assembly average burnup for a

transport cask

Ccask Capacity of the cask used to pack the assemblies

Cpool Capacity of the spent fuel pool

Fp Maximum number of casks allowed to be filled within one

period

Hs,max Maximum allowable total decay heat for a storage cask

Ht,max Maximum allowable total decay heat for a transport cask

m Number of objective functions contained in the objective

vector

P Set of solutions to be sent to genetic operators

PEA External archive of nondominated solutions

Q Set of solutions produced by genetic operators and found

through local search

ttrans,min Array containing the time at which each cask meets the

transportation guidelines
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1. INTRODUCTION

Nuclear reactors produce large amounts of clean, reliable power and leave behind

relatively little waste, which remains highly radioactive and thermally hot for many

years. When the majority of the current reactor fleet was built, it was envisioned that

either reprocessing or a long-term repository would be operational before spent fuel

pools reached capacity, so pools were not designed to hold used fuel generated over

the entire reactor lifetime [104]. However, these assumptions proved to be incorrect.

Used fuel has remained on-site and in increasingly crowded pools, making additional

storage capacity necessary.

The majority of nuclear power plants in the United States (U.S.) have already

established an Independent Spent Fuel Storage Installation (ISFSI). Six more are

currently pursuing a general license for one [105], and only three have not declared

their intention to use dry storage, each of which only operates a single reactor.1

Regardless of future policy decisions about U.S. nuclear waste management, dry

storage will continue to be used for decades. As evidence, the Nuclear Regulatory

Commission (NRC) considered the environmental impact of on-site dry storage for

an indefinite amount of time beyond a reactor’s licensed life in making the Continued

Storage Rule [106].

While utilities are focused on their immediate storage needs, all on-site fuel will

eventually need to be safely transported to a new location(s) for future disposition.

To plan for both the possibility of long-term storage as well as transportation, care-

takers of used fuel would benefit from considering the competing and cooperating

aspects of these pathways. The International Atomic Energy Agency (IAEA) identi-

1These three plants are listed in NRC document ML16286A019: Three Mile Island, Wolf Creek,
and Shearon Harris.
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fied a number of areas in which dry storage could be optimized with respect to long

term storage, such as selecting better cask materials, reducing uncertainties and

conservatisms, and increasing the burnup/age acceptability of assemblies [107]. One

area in particular would impact both dry storage and transportation: the selection

of assemblies to be moved into dry storage. The IAEA recommended that utilities

move away from a coldest/oldest-first loading strategy and toward a more diverse

mixture of assemblies. The research discussed in this dissertation explores this rec-

ommendation and develops a methodology to determine loading patterns that would

be optimal for metrics relevant to worker safety and transportation, accounting for

current and future inventory.

1.1 Dry Storage

The U.S. does not have a standardized dry cask design. Instead, a few companies

offer an array of dry storage systems from which utilities can chose. Major differences

between models include cask material, orientation, and purpose [108]. The NRC

regulates dry storage designs in the U.S. and issues a Certificate of Compliance (CoC)

for each specific model. The CoC describes the uses, surveillance requirements, and

administrative controls needed to safely utilize the dry cask system.

The NRC has granted CoCs for eighteen dry storage systems, fourteen of which

are still active [109]:

1. the VSC-24 system (CoC 1007),

2. the FuelSolutions spent fuel management system (CoC 1026),

3. the NUHOMS horizontal modular system (CoC 1004),

4. the Advanced NUHOMS horizontal modular storage system (CoC 1029),

5. the NUHOMS HD horizontal modular storage system (CoC 1030),
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6. the HI-STAR 100 cask system (CoC 1008),

7. the HI-STORM 100 cask system (CoC 1014),

8. the HI-STORM FW system (CoC 1032),

9. the HI-STORM UMAX canister storage system (CoC 1040),

10. the TN-32 dry storage cask (CoC 1021),

11. the TN-68 dry storage cask (CoC 1027),

12. the NAC-UMS universal storage system (CoC 1015),

13. the NAC-MPC system (CoC 1025),

14. the MAGNASTOR system (CoC 1031).

Excluding the variations of the NUHOMS design, all of the approved cask systems

are stored vertically [110]. The standard cask size holds 24 pressurized water reactor

(PWR) or 68 boiling water reactor (BWR) assemblies, but in the past decade, com-

panies have moved toward higher capacity casks holding 32 assemblies or more [111].

The highest capacity designs, the HI-STORM FW and the MAGNASTOR systems,

can accomodate 37 PWR assemblies or 89 and 87 BWR assemblies, respectively [112].

Companies have also moved toward more flexibility in their models. Earlier mod-

els, such as the VSC-24, were only designed for storage, while newer models have been

designed for both storage and transportation, such as the NAC-MPC system [110].

Most of the dual-purpose designs incorporate more flexibility into the design by sep-

arating an inner container, or canister, that holds the fuel together from the outer

boundary layer. This allows the canister to be placed into either a storage overpack

or a transport cask, both of which have been certified by the NRC for their intended

purpose. Alternatively, the HI-STAR 100 system stores the fuel “directly in the

transportation package” [110].
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The CoCs establish the requirements for acceptable assemblies in each cask sys-

tem. Before 2002, the NRC only allowed enrichment limits to be set using the

conservative assumption of fresh fuel during the criticality safety analysis. This is

not a problem for lower-capacity casks that include flux traps or increased fixed-

poison concentrations, but higher-capacity casks made room for more fuel at the

expense of neutron absorbers [113]. For storage, this is not a limitation. The NRC

does not consider the possibility of fresh-water ingress into sealed storage casks to

be credible, so the storage cask would be in its most critical state during loading

procedures [114]. Therefore, applicants are allowed to take credit for the boron in

the spent fuel pool water to calculate the criticality of the cask. However, the NRC

does consider the fresh water ingress of a transport cask to be a significant risk,

so the fresh fuel assumption disqualified most used fuel from being transported in

high-capacity casks.

CoC requirements for assembly selection have evolved with improvements in the

technical understanding of actinide and fission product behavior in used fuel [115].

The agency updated the transportability of assemblies by allowing for the use of

burnup credit in PWR safety analyses, which takes into account the reactivity re-

duction from fuel depletion [116]. The NRC approved the use of actinide-only burnup

credit in 2002 and extended their recommendations to include some fission products

in 2012 [111]. This change increased the percentage of acceptable assemblies for

loading into transportation casks from less than 20% to about 90% [117].

1.2 Dry Cask Planning Efforts

With the evolution of dry cask systems, the need for the selection of “a sensible

mixture” of used fuel assemblies is even more important [107]. The guidelines to

accept assemblies are more nuanced than they were in the 20th century. While CoCs
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for storage casks have not incorporated burnup credit yet, CoCs for transportation

casks have started to replace enrichment limits with loading curves of the minimum

burnup as a function of initial enrichment and cooling time [111]. Most dry casks

have only been loaded with storage in mind, which might make transporting used

fuel more complicated in the future. Even if burnup credit were applied to those

that have already been loaded, only 90% of the assemblies would meet the loading

criteria [117]. Given the large number of PWR assemblies already in storage, a

substantial number might have to be moved into lower-capacity or more heavily

engineered casks. BWR assemblies could face the same predicament since they have

more complex power histories and less validated data to support the use of burnup

credit. While ISFSI license holders can apply for an exemption, and regulations and

analyses will continue to evolve, employing a dry cask loading strategy now that

mitigates the need for either will help alleviate financial risk. With about 3/4 of

used fuel sitting in pools [118] and the inventory possibly doubling before the end of

U.S. reactors’ licensed lives [119], many more assemblies will need to be moved into

dry storage. It is important to move them wisely.

To aid in the intelligent transfer of used fuel into dry storage, this research de-

velops an algorithm to optimize the loading of the casks. Little work has been

published in this area. Table 1.1 lists the four programs that are currently available

and shows that existing dry cask loading programs are limited. All of the programs

only select used fuel from the current pool inventory. None of the papers published

about Studsvik’s MARLA [120] or about the Electric Power Research Institute’s

CASKLOADER [122] disclose the method used to perform their optimization. While

the other two do describe their method, neither uses a state-of-the-art optimization

methodology that would enable efficient computation in such a large search space.

Moreover, they do not include regulatory requirements as constraints, so their meth-
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Table 1.1: Previous Dry Cask Loading Pattern Optimization Studies.

Reference Objective Decision Space Method
Studsvik’s
MARLA [120]

Clear space in spent
fuel pool & meet
CoC requirements.

Loading pattern of
dry casks for a num-
ber of given dates –
available fuel only.

Unstated.

EPRI’s
CASKLOADER [121],
[122], [123]

Minimize cost
based on schedule
constraints.

Loading pattern of
individual dry casks
– available fuel only.

Unstated.

Joẑef Stefan Insti-
tute [61]

Minimize number of
canisters and time
in interim storage.

Loading of dry can-
isters in deep geo-
logical repository.

Heuristic sorting al-
gorithm with “re-
move and reinsert”
local search.

KAERI [124] Decrease bore hole
spacing.

Loading of dry can-
isters in deep geo-
logical repository.

Regression analysis
and manual evalua-
tion.

ods are not useful for real world application. MARLA and CASKLOADER are the

only choices in Table 1.1 that help utilities pick assemblies that meet the CoC re-

quirements, but they focus on short-term goals, and it is uncertain how flexible their

algorithms can be.

1.3 Research Motivation

This research is motivated to develop a methodology that is more robust and

adaptable than the current dry cask loading programs. It takes a more compre-

hensive and long-term view than those listed in Table 1.1 as it considers used fuel

generated over the entire core lifetime. It is also the first to optimize based on

long-term transportation needs. The algorithm finds optimal loading patterns that

balance the competing goals of dry storage: higher capacities and lower dose rates

for both workers and the environment. Finally, the dry cask loading problem is

treated more formally here than in previous research, both in describing the problem
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mathematically and in developing a state-of-the-art optimization method to solve

the problem.

This work should benefit the nuclear industry and society. The optimization of

assembly selection should improve the efficiency of operations at a nuclear power

plant. Even if a plant is doing better than the “coldest/oldest-first loading” men-

tioned by the IAEA [107], the best tools right now only plan for the next several

loadings and are limited to the assemblies currently stored in the spent fuel pool.

Finding better loading patterns should decrease the cumulative dose rate due to

transfer procedures over the reactor lifetime and should remove a few more of the

hotter assemblies from the pool on a regular basis, reducing thermal stresses in wet

storage.

Optimization now will also make it easier to transport the casks to a central stor-

age facility in the future. The decommissioning of Zion Nuclear Power Station can

be used as an example. ZionSolutions, LLC, began restoring the site in 2010 [123].

The company developed its own semi-manual optimization strategy to load 2226 fuel

assemblies into 61 MAGNASTOR casks. They used CASKLOADER to ensure that

each cask met CoC requirements, but it was only able to load a single basket at a

time. To achieve their goal of limiting off-site dose rates, they established heuris-

tic rules about the location of source terms on the dry cask pad and synchronized

CASKLOADER with additional calculations to define the loading configuration. If

casks are loaded according to an optimal pattern during operation, much less effort

should be needed at the end of a reactor’s life.

Finally, the optimization of dry cask loading patterns can have a positive impact

on a future interim storage facility or repository with regard to the distribution of

heat. By including some hotter assemblies in casks loaded during the reactor lifetime,

the backlog of the hottest assemblies at the beginning of decommissioning would

7



be mitigated to an extent controlled by the structure of the objective vectors. The

research presented here is more focused on finding better solutions for transportation,

but constraints and objectives could be modified in the future to represent repository-

specific needs. In any case, a better distribution of heat would help lower peak

temperatures, allowing for a tighter spacing of waste packages [125].

1.4 The Used Nuclear Fuel Data System

The optimization tool produced in this research was integrated into the Used Nu-

clear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System

(UNF-ST&DARDS) [126]. UNF-ST&DARDS is a comprehensive data and analy-

sis tool that provides the most accurate information about U.S. used fuel available.

Fig. 1.1 shows its organizational structure. The data portion of the tool is contained

in a unified database and can be split into five main categories:

1. fuel assembly discharge information,

2. fuel assembly design data,

3. reactor-specific operation data,

4. cask design and loading data,

5. infrastructure and logistics-related data.

This information is organized using relational structured query language (SQL) data

tables within a MySQL database and is maintained by the Used Fuel Systems group

at Oak Ridge National Laboratory for the Department of Energy’s Office of Nuclear

Energy [1].

UNF-ST&DARDS is the foundation of the accuracy and specificity of the op-

timization discussed in this dissertation. It includes data for over 150,000 used

fuel assemblies as a function of decay and several hundred currently loaded cask
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Figure 1.1: Structure of UNF-ST&DARDS. Reprinted courtesy of Oak Ridge Na-
tional Laboratory, US Dept. of Energy [1].
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systems [126]. The optimization problem presented here cannot be solved using

representative assemblies because a few representative models cannot give a clear

picture of the significant variation found in historical fuel assemblies [127]. There-

fore, detailed assembly-specific data is a prerequisite to find optimal loading patterns.

UNF-ST&DARDS also includes the ability to integrate with other codes and can be

interfaced via the command line, so the optimization algorithm can pull the necessary

information from the database to populate loading patterns for an ISFSI.

1.5 The Dry Cask Loading Problem

The dry cask loading problem is a hard combinatorial multiobjective optimization

problem. Any algorithm used to solve it must handle the task of sorting thousands

of individual assemblies into a set of casks based on a combination of simple and

complex constraints. This is also a dynamic problem since the casks would not

all be loaded simultaneously. It is an uncertain problem, both from uncertain fuel

assembly characteristics and from uncertain future projections. The search space is

large, and multiple solutions exist. These features have been difficult for traditional

optimization methods to handle and emphasize the need to use a state-of-the-art

optimization algorithm to solve the problem.

The problem can be visualized as shown in Fig. 1.2. The algorithm selects assem-

blies from a dictionary of used fuel assemblies specific to a given pool. The dictionary

includes the fuel currently in the pool and the projected discharges that will enter it

throughout the lifetime of the reactor. The algorithm finds feasible combinations of

assemblies in casks and promotes solutions that minimize the objectives. Since the

entire core lifetime is considered, the algorithm also determines the time at which

transfer procedures are performed for each cask.

10
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Figure 1.2: Illustration of dry cask loading pattern defining the problem search space.

1.6 Dissertation Objectives

The primary goal of this research was to develop a novel method to determine

optimal loading patterns of used fuel assemblies in dry cask storage, accounting for

current and future inventory and optimizing over metrics relevant to worker safety

and transportation of used fuel. The method was implemented in a computational

tool for demonstration and analysis.

This research can be broken into four main tasks:

1. Formulation of the mathematical structure and parameterization of the dry

cask loading problem.

2. Development of a new optimization methodology to solve the multiobjective

dry cask loading problem.

3. Implementation of the optimization methodology into a computational tool for

integration with UNF-ST&DARDS.

4. Demonstration and analysis of the methodology in dry cask loading test cases.
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The computational tool was implemented using Python, which is useful for an object-

oriented problem and has an established interface to work with MySQL. The tool was

developed to ensure that its code would be adaptable, maintainable, extensible, and

modular. These features will allow future users to optimize different objectives, add

new constraints or heuristic rules, and maintain the tool in connection with updates

to UNF-ST&DARDS. It also separates the optimization algorithm from the problem

being solved so that as needs evolve, the updates can be managed independently of

improvements in the underlying algorithmic framework.

1.7 Dissertation Organization

Section 2 describes the approach used in this work. It provides background

on combinatorial problems, gives an overview of algorithms used to solve them, and

defines fundamental optimization terms that will be used throughout the dissertation.

The mathematical structure for the dry cask loading problem is then developed in

detail, formulating the decision variables, the objectives, and the constraints used to

bound the search space.

Section 3 presents the new methodology developed in this research. It gives an

outline of the algorithmic framework and presents detailed descriptions of novel steps

included in the method. It also discusses the development of specific modules in the

optimization tool used to demonstrate the new method.

Section 4 demonstrates the performance of the new method and presents an

analysis of test cases used to evaluate the effectiveness of the tool.

Finally, Sec. 5 summarizes new and significant contributions by this work and

suggests areas for improvement in the future.

12



2. METHODOLOGY

The dry cask loading problem is a mixed-variable multiobjective, combinatorial

optimization problem. It features the competing goals of minimizing the number of

casks needed, reducing initial heat loads, and minimizing the storage time required

before transport. Section 2 discusses previous approaches to similar problems, defines

necessary terms, and develops the mathematical formulation of the dry cask loading

problem.

2.1 Optimization of Combinatorial Problems

With three objectives, the dry cask loading problem follows the general format

of the 3-dimensional minimization problem given in Eq. 2.1.

minimize F(x) = (f1(x), f2(x), f3(x)),

s.t. x ∈ Ω.

(2.1)

Here, fθ(x) denotes objective θ, which is a function of the decision variable x. The

decision variable x belongs to the feasible region Ω, which bounds the search

space to values that satisfy a set of constraints. The function F translates x into the

objective space, and the value of a single objective fθ is called a fitness value.

Multiobjective problems are characterized by competing objectives, so a single

solution cannot minimize (or maximize) all of the objective functions simultaneously.

Consequently, the best solutions involve trade-offs between the different objectives.

This set of solutions is called the Pareto set, and the image of the Pareto set in the

objective space is called the Pareto front. A feasible solution is proven to be part

of the Pareto set by showing that it is not dominated by any other feasible solution,
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Figure 2.1: Illustration of bin packing.

defined formally in Def. 2.1 [128].

Definition 2.1. In a multiobjective problem with m objectives, an objective vector

u = (u1, ..., um)T dominates another vector v = (v1, ..., vm)T iff ∀θ ∈ {1, ...,m},

uθ ≤ vθ and u 6= v, written u � v .

An optimization algorithm may not reach the true Pareto front during its finite

computation. Consquently, the computed set of nondominated feasible solutions is

called an approximation set [129].

The dry cask loading problem falls within the general category of bin packing

problems. These are combinatorial problems that pack a number of items N into as

few bins as possible within constraints such as weight or size limits. Fig. 2.1 presents

an illustration of this type of problem. To represent this mathematically, the decision

variables for a bin packing problem use binary forms, shown in Eqs. 2.2 and 2.3.

xij ∈ {0, 1}, ∀ i = {1, ...,M}, j = {1, ..., N} (2.2)

14



yi ∈ {0, 1}, ∀ i ∈ {1, ...,M} (2.3)

Here, if item j is assigned to bin i, then xij = 1. Otherwise, the variable is set to 0.

The matrix x is complemented by the array y that indicates which bins are in use

(yi = 1) and which are closed (yi = 0). The constant M represents the theoretical

maximum number of bins and is usually set at M = N in the literature [103,130].

The first mathematical formulation of a multiobjective bin packing problem was

published in 2007 with the objectives of minimizing both the number of bins and

the average deviation from the center of gravity in the bins [130]. Since then, many

bi-objective bin packing problems have been studied. Given the flexible nature of

bin packing problems, they have represented subjects as concrete as packing boxes

for transport and as abstract as cloud computing [131].

2.1.1 Optimization Algorithms

Traditionally, bin packing problems have been solved using approximate algo-

rithms, such as the First-Fit and Best-Fit methods [132]. Exact algorithms exist

for very small problems but become too costly as the problem size increases from

medium to large packing problems. Approximate algorithms, on the other hand,

produce near-optimal solutions in O(n log n) time, significantly reducing the compu-

tational burden.

The loading study performed by Z̆erovnik et. al. used this type of approach

to pack spent fuel assemblies from the Krs̆ko nuclear power plant into canisters for

deep geological disposition. The inventory data for the optimization was generated

using the CORD-2 package for burnup, mass, and initial material composition and

the ORIGEN 2.1 code for thermal power as a function of cooling time [61]. The

assemblies were then packed into canisters using variations of a largest-fit heuristic

constrained by a maximum thermal limit. The study compared the heuristic re-
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sults to a theoretical minimum number of canisters and showed that the heuristic

achieved solutions within 5% of the theoretical minimum. However, for multiob-

jective problems with more complex constraints, approximate algorithms work best

when combined with a method suited for the multidimensional objective space.

Since the available literature on dry cask loading optimization is limited, other

nuclear-related combinatorial optimization studies were reviewed. The majority of

this research focused on core reload and shuffling schemes [12, 15, 21, 23, 25, 33, 39,

44, 47, 49, 66, 69, 74, 77, 78, 80, 82, 83, 86–88, 94], although other areas such as fuel

cycle optimization [76, 84] and maintenance planning [99] were explored. Many of

the studies did not elaborate on why one algorithm was chosen over another, so

statistics about their choices are used here to describe how the nuclear field has

approached combinatorial optimization problems.

To get a better understanding of the trends, 100 optimization papers in the nu-

clear field were sampled [2–101]. Fig. 2.2 shows a bar chart separating the sample

into different types of optimization methodologies. Evolutionary algorithms are the

most popular choice, followed by simulated annealing and particle swarm-based ap-

proaches. Each of the categories in the graph have strengths and weaknesses. For

example, evolutionary algorithms are robust and have good exploration abilities,

meaning that their search for feasible solutions avoids getting trapped in local min-

ima (or maxima). However, they tend to have poor exploitation abilities, meaning

that the search has trouble finding the precise global minimum (or maximum). On

the other hand, particle swarm optimization approaches tend to have powerful ex-

ploitative abilities but poor exploration abilities [78]. Simulated annealing can vary

between these extremes based on a set of sensitive parameter settings [66].

It is possible to combine the advantages of different algorithms by utilizing en-

semble learning in which decision-making strategies or learning algorithms work
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together to improve performance [133]. Fig. 2.3 shows that most of the surveyed

sample only used individual methods, and less than 20% used ensemble approaches.

Almost all of the studies using ensemble approaches have been published in the past

five years, and it is likely that this trend will continue to grow.

2.1.2 Ensemble Approaches to Multiobjective Packing Problems

Beyond the nuclear field, multiobjective evolutionary algorithms (MOEAs) have

been the most popular method for solving multiobjective optimization problems [128].

This is largely due to their population-based nature, allowing them to quickly gener-

ate an approximation to the Pareto front. However, as an extension of evolutionary

algorithms, MOEAs suffer from a weak exploitation ability and can be slow to con-

verge. Using an ensemble approach can greatly improve this limitation.

For multiobjective bin backing problems, a common ensemble is to combine the

heuristics of approximate algorithms with MOEAs, allowing the heuristic to perform

the packing and the MOEA to perform the search. Given the nature of each type of

method, the two use different forms of the decision variable, requiring a translation

whenever the mode of operation is changed.

Three decision variable formats are useful here:

• the matrix representation,

• the chromosome representation,

• and the variable length bin representation.

The matrix representation was defined in Eqs. 2.2 and 2.3 and is used whenever a

fitness value is calculated. The chromosome representation is a real-valued permu-

18



tation of item indices. An example is given in Eq. 2.4.

genes = [3, 8, · · · , 64, 23, · · · , N ] (2.4)

Each number genes is associated with a specific item j and therefore with column

j in the x-matrix. The MOEA uses this representation to search for new solutions.

The variable length representation is a real-valued list of sublists containing item

indices. An example is given in Eq. 2.5.

v.l.rep. =

[1, 2, 3, 7, 8],

[9, 14, 56],

...

[86, 123, 185, N ]

(2.5)

The variable length representation contains as many lists as there are open bins,

indicated by yi = 1. Each sublist in the list corresponds to one bin and contains the

indices of the items located in that bin, indicated by xij = 1. Depending on how the

approximate algorithm is designed, it can use either the matrix representation or the

variable length representation to pack the items into bins.

One example of this type of ensemble is the combination of the nondominated

sorting genetic algorithm II (NSGA-II) with the least loaded heuristic presented

in [103]. NSGA-II is one of the most successful MOEAs [128]. It is particularly known

for its fast-non-dominated-sort procedure and its crowding-distance-assignment, re-

produced in Tables 2.1 and 2.2, respectively [102]. To adapt the algorithm for a bin

packing problem, NSGA-II is combined with the least loaded heuristic, reproduced

in Table 2.3 [103]. This heuristic takes the chromosome representations produced

by the genetic operations in NSGA-II and performs the packing with a strategy to
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Table 2.1: The fast-non-dominated-sort algorithm described in [102]. This procedure
sorts solutions into fronts, where F1 represents the approximate set, and each sub-
sequent front contains nondominated solutions in relation to higher-number fronts.

1 for each p ∈ P :
2 Sp = ∅
3 np = 0 domination counter
4 for each q ∈ P :
5 if (p ≺ q):
6 Sp = Sp ∪ {q}
7 else if (q ≺ p):
8 np = np + 1
9 if np = 0: p belongs to F1

10 prank = 1
11 F1 = F1 ∪ {p}
12 i = 1 Initialize the front counter
13 while Fi 6= ∅:
14 Q = ∅
15 for each p ∈ Fi:
16 for each q ∈ Sp:
17 nq = nq − 1
18 if nq = 0: q belongs to Fi+1

19 qrank = i+ 1
20 Q = Q ∪ {q}
21 i = i+ 1
22 Fi = Q

Table 2.2: The crowding-distance-assignment algorithm described in [102]. This
operator calculates the distance among the solutions in the objective space. The
crowding distance is used as a secondary parameter during binary selection to prior-
itize solutions with larger distance values and thereby improve diversity.

1 l = |I| number of solutions in I
2 for each k, set I[i]distance = 0
3 for each objective m:
4 I = sort(I,m) Sort I by objective m
5 I[1]distance = I[l]distance =∞
6 for k = 2 to (l − 1):
7 I[k]distance = I[k]distance + (I[k + 1].m− I[k − 1].m) /

(fmaxm − fminm )

20



Table 2.3: The least loaded heuristic described in [103].

Input: A permutation of items σ = (1, ..., N), lower bound LB
Output: A packing solution

1 m = LB
2 for j = 1 to N :
3 for i = 1 to m:
4 Try to pack item j into the least loaded bin
5 if Packable:
6 Add item j to the bin i
7 break
8 if j = m+ 1:
9 m = m+ 1
10 Add item j to the new bin m
11 Update the order of the bins to keep the list sorted.
12 end

balance the load between the bins.

Recent work has focused on combining MOEAs with local search methods, the

combination of which is called a memetic algorithm. This type of ensemble offers

better convergence and better accuracy than the evolutionary approach alone [128].

Most of the work in this area has focused on continuous problems, but memetic

algorithms have been applied to combinatorial problems as well. One study combined

NSGA-II with hill-climbing local search techniques to solve a multiobjective knapsack

problem, a cousin of the bin packing problem [134]. Their findings showed drastic

improvements in performance with the addition of local search techniques but only

when the local search was built upon problem-specific knowledge.

2.2 Defining the Dry Cask Loading Optimization Paradigm

Using the basic format of a bin packing problem, the dry cask loading problem

can be formulated. This section describes the decision variables used in this work,

formulates the objective vector, and discusses the constraints used to ensure that the

loading algorithm produces solutions that meet user-defined requirements.
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2.2.1 Decision Variables

This work expands on the standard bin packing problem decision vector format

to include time as a decision variable. Equation 2.6 presents the general form of the

decision vector x used in this research, comprised of three distinct decision variables.

x =

[
x y tfill

]
(2.6)

These variables are expanded in Eq. 2.7. Variables x and y are the same matrix form

as was established in Sec. 2.1. Variable tfill is a new, continuous variable indicating

the time each cask is loaded with used fuel assemblies.

x =



x1,1 x1,2 · · · x1,j · · · x1,N

x2,1 x2,2 · · · x2,j · · · x2,N

...
...

. . .
...

...

xi,1 xi,2 · · · xi,j · · · xi,N
...

...
...

. . .
...

xM,1 xM,2 · · · xM,j · · · xM,N


, y =



y1

y2

...

yi
...

yM


, tfill =



tfill,1

tfill,2
...

tfill,i
...

tfill,M


(2.7)

The index i is used to identify the dry cask number, and j is used to identify the

assembly number. The index ranges are given in Eq. 2.8.

i ∈ {1, ...,M}, j ∈ {1, ..., N} (2.8)

Here, M represents the theoretical maximum number of casks, and N represents the

number of used fuel assemblies to be sorted. While many bin packing problems set

the theoretical maximum at N , this research uses a smaller value. Loading used

nuclear fuel into dry cask storage is a complex, intensive process, so it is beneficial
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to avoid solutions that include mostly empty casks. The ideal scenario for plant

operations would be to fill every cask to capacity, although there may be situations

that call for leaving empty spaces in a canister. Therefore, M is set to allow for

each cask to be a quarter empty if the assemblies were spread evenly throughout the

canisters, given by Eq. 2.9.

M =

⌈
N

0.75Ccask

⌉
(2.9)

The variable Ccask represents the capacity of one canister. When more than one

cask type is used during the optimization, the smallest capacity is used for Ccask in

Eq. 2.9.

2.2.2 Objective Vector

In taking a long-term view of used fuel storage systems, three objective metrics

were used to improve worker safety and the future transportability of dry casks:

1. minimize the number of casks needed to store the fuel,

2. minimize the average initial heat load in each cask, and

3. minimize the length of time for casks to meet transportation dose limits.

These three objectives reflect economic, safety, and social concerns. The combined

objective vector is formulated mathematically in Eq. 2.10.

F(x) =



M∑
i=1

yi

1
c

c∑
i=1

wr,iQi

max(ttrans,min,i, i = {1, ..., c})


(2.10)

Here, wr,i is a weighting factor for the initial heat in cask i, Qi (kW). The variable

ttrans,min,i represents the earliest date that cask i would meet transportation dose
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limits, and c is the number of casks in use. Its value is equal to the fitness value of

the first objective, as shown in Eq. 2.11.

c = f1(x) =
M∑
i=1

yi (2.11)

This is the standard objective function for all bin packing problems.

Beyond the structure of a standard bin packing problem, the first objective func-

tion has economic implications for the utility. Each cask has costs associated with

it, from its purchase to its maintenance and surveillance. While the number of casks

needed is not necessarily linearly related to the total cost of dry storage [135], it

does serve as a simple metric to gauge the resources needed for each solution found

by the algorithm. The number of casks in an ISFSI also helps determine how many

shipments are needed to move the fuel off-site.

2.2.2.1 Minimizing Initial Cask Heat Loads

The second objective function seeks to minimize the average initial heat load of

the casks and is reiterated in Eq. 2.12.

f2(x) =
1

c

c∑
i=1

wr,iQi (2.12)

The initial heat in each cask Qi is a linear sum of the decay heat values H for each

used fuel assembly in the cask at time tfill,i, as shown in Eq. 2.13.

Qi =
N∑
j=1

xij · aj.H(tfill,i) (2.13)

The decay heat H is retrieved from variable aj, which is called from a dictionary

containing assembly-specific information imported from UNF-ST&DARDS, such as
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initial enrichment values (wt.%) and burnup levels (MWd/MTU). To improve the

computational efficiency of the algorithm, the decay heat is found by linear interpo-

lation of a table of projected values from UNF-ST&DARDS for aj.

The weighting factor wr,i in Eq. 2.12 reduces the impact of casks loaded in the

future compared to those loaded in the near term when evaluating this objective. It

does this through the economic idea of a social discount rate rf and is formulated in

Eq. 2.14.

wr,i =

(
1

1 + rf

)(tfill,i−t0)

(2.14)

The exponential in Eq. 2.14 is the difference in years between the time cask i is filled

and the beginning of the timeline t0. The optimization timeline is initialized at the

discharge date of the last currently existing batch of assemblies added to the spent

fuel pool unless otherwise instructed.

The use of a discount weighting factor in a bin packing problem is unique to this

research. It is employed for two main reasons. The first is that the cask loadings

toward the end of the reactor lifetime are less certain than those in the near future,

so the discount rate puts more emphasis on near-term loadings. The second is that

it is assumed that technology and operations will continue to improve as they have

over the past few decades.

Setting the rate of discount can be sensitive. An rf value of 2.0% per year has been

used in economic analyses of nuclear waste management, which is more conservative

than in public infrastructure analyses due to the need to ensure resources for proper

waste management [136, 137]. The Swedish Radiation Safety Authority has even

suggested rates as low as 0.5% to 1.0% to mirror the risk management of the Swedish

bond market [137]. Considering the generally conservative nature of nuclear utilities,

an rf value of 0.5% was used in this research.
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While the main goal of this objective is to reduce the average heat load and

thereby improve thermal performance of the casks, it also serves as a convenient

proxy for the dose that workers receive during transfer procedures. Both the de-

cay heat and the radioactivity of the fuel are functions of nuclide decay, and their

magnitudes tend to decrease together [138]. While it is not a perfect proxy, the

improvement in computational efficiency for such a large multiobjective optimiza-

tion problem makes decay heat a practical subsitute for dose. Therefore, the second

objective helps align solutions with the industry practice of keeping its radiological

impact as low as reasonably achievable (ALARA) during transfer procedures, which

is especially important since it represents the back-end process where nuclear plant

workers receive the single highest dose [121].

2.2.2.2 Reducing the Storage Time Before Transport

The third objective function works to minimize the length of time until the casks

meet transportation CoC limits. This is represented in Eq. 2.15.

f3(x) = max(ttrans,min,i, i = {1, ..., c}) (2.15)

The vector trail,min contains the times at which each open cask meets the transporta-

tion limits, and the maximum value in the array determines the value for the third

objective. This is similar to the way many multiobjective bin packing problems have

a secondary objective to minimize the tallest bin height, although calculating trail,min

is more complicated.

Three different transportation CoC constraints are used to find the required stor-

age time for each cask: dose, total decay heat, and per assembly decay heat limits.

The maximum time required to meet all the limits is the earliest time that a cask
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would be ready for transport, as shown in Eq. 2.16.

ttrans,min,i = max(tLC,i, tHT,i, tHA,i) (2.16)

The time values compared in Eq. 2.16 represent the time that cask i meets the

transportation loading curve, the total decay heat limit, and the per assembly decay

heat limits, respectively.

The time to meet the transportation loading curve is found first with Eq. 2.17.

tLC,i =


max(aj.tcool), if aj.(enr,BU) ∈ LCcask,∀ j ∈ vlrep[i]

tdose,i otherwise

(2.17)

Here, tcool is the cooling time required by the transporation loading curve LCcask

for the unique enrichment (enr) - burnup (BU) combination of assembly j. The

(enr,BU) tuple must fall above the enrichment and below the burnup curves within

LCcask to be acceptable [139]. The LCcask curve was developed to ensure that the

cask meets applicable federal regulations for shielding during transport, such as a

dose rate limit of 0.1 mSv/hr at 2 meters from the cask [140]. Therefore, the variable

tLC,i is set by the first line in Eq. 2.17 if all the assemblies in bin i fall within this

region. Otherwise, tLC,i is set by solving Eq. 2.18.

Ḋtarget −

N∑
j=1

xij · aj.Ḋ(tdose,i)∑N
j=1 xij

= 0 (2.18)

In Eq. 2.18, the time tdose,i is found when the average dose rate of the assemblies

in the bin is equal to the target dose rate Ḋtarget, found through comparison to

the LCcask. The dose rate for each individual assembly is calculated through linear
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interpolation of a table of projected dose rates imported from UNF-ST&DARDS.

The modified regula-falsi method was used to find tdose,i [141].

The time to meet the total decay heat limit is found using Eq. 2.19.

Ht,max −
N∑
j=1

xij · aj.H(tHT,i) = 0 (2.19)

Here, Ht,max is the total decay heat limit for the cask during transportation. Initially,

the left hand side of Eq. 2.19 is evaluated using tLC,i, and if the result is positive,

finding the true tHT,i is avoided since the limit is respected. However, if the result

is negative, the root of Eq. 2.19 must be found, again using the modified regula-falsi

method.

Finally, the time to meet the assembly-specific decay heat limits is found with

Eq. 2.20.

Ht,(k) − aj.H(tHA,i)(k) = 0 for k = {Ccask, ..., 2, 1}, j ∈ vlrep[i] (2.20)

Here, Ht,(k) represents the transportation decay heat limit per assembly. Some cask

designs use a uniform limit, and some are licensed for zoned loading, where each zone

specifies the maximum decay heat per assembly in an area of the basket. Therefore,

the comparisons are made by order statistics, where the hottest assembly in cask

i at time tHA,i is constrained by the hottest position in the cask, the second hottest

assembly is constrained by the second hottest position, and so on. This method

allows for flexibility to handle either the flat or zoned limits since optimizing the

placement of the assemblies inside each cask is beyond the scope of this research.

Again, the time values for tLC,i and tHT,i are used first to evaluate the left hand side

of each comparison, and if negative, the time required to reduce the decay heat to
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the limit Ht,(k) is found using linear interpolation.

The third objective incorporates the long-term goal of transportability into the

solution search. By including it in the initial loading of the casks, it should aid in the

future management of the fuel during decommissioning, which positively correlates

with personnel dose, public exposure, and accident risks [142].

2.2.3 Constraints

The decision variables x, y, and tfill are bound by a host of constraints to meet

NRC regulatory requirements. The feasible region Ω can be seen as the intersection

of general categories of constraints, as shown in Eq. 2.21.

x ∈ Ω = Ωbpp ∩ Ωlc ∩ Ωpool ∩ Ωoper (2.21)

The subregions are bound by physical bin packing constraints (Ωbpp), loading con-

straints (Ωlc), spent fuel pool constraints (Ωpool), and operational constraints (Ωoper).

The union of these subregions establish the safe and secure operation of an ISFSI.

This section describes how each region was defined mathematically for the optimiza-

tion.

2.2.3.1 Bin Packing Constraints

Two bin packing constraints were implemented to ensure physicality of the dry

cask loadings. The first constraint given in Eq. 2.22(a) verifies that each assembly is

only assigned to one cask, which is also known as the “no replacement” constraint.

Ωbpp =


∑M

i=1 xij = 1, ∀ j ∈ {1, ..., N} (a)∑N
j=1 xij ≤ Ccaskyi,∀ i ∈ {1, ...,M} (b)

(2.22)
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The second constraint Eq. 2.22(b) ensures that casks are not packed beyond their

given capacity Ccask. When more than one cask type is used during the optimization,

the variable Ccask will change based on which cask is used for bin i. The bin packing

constraints used in this research are similar to the forms used in other bin packing

studies [103,130].

2.2.3.2 Cask Loading Constraints

Three cask loading constraints were implemented to ensure that the optimized

selection of assemblies does not violate NRC regulatory requirements. These are

shown in Eq. 2.23.

Ωlc =



aj.BU ≤ BUmax,∀ j ∈ {1, ..., N} (a)∑N
j=1 xij · aj.H(tfill,i) ≤ Hs,max,∀ i ∈ {1, ...,M} (b)

{aj.H(tfill,i) : xi,j = 1}(k) ≤ Hs,(k) for k = {Ccask, ..., 2, 1}, (c)

∀ i ∈ {1, ...,M}, j ∈ {1, ..., N}

(2.23)

In the first constraint, the burnup BU of each assembly is compared to the maximum

burnup BUmax specified in the CoC. The next two constraints ensure that the selected

assemblies meet the decay heat limits for the cask and thereby protect its thermal

performance. In Eq. 2.23(b), the combined heat load is constrained by the maximum

heat load Hs,max for storage listed by the CoC, and in (c), the individual decay heat

values are compared to the per-assembly decay heat limits for storage Hs,(k) using

order statistics.

2.2.3.3 Pool Constraints

Two spent fuel pool constraints were implemented to ensure that the selected

loading strategies would not negatively impact the operation of the pool. These
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are shown in Eq. 2.24. The first constraint ensures that the power plant can be

decommissioned in a timely fashion, and the second maintains the inventory of the

pool below a given threshold.

Ωpool =


tfill,i ≤ tpool,close,∀ i ∈ {1, ...,M} (a)∑N

j=1 xij ·W (i, j, t) ≤ Cpool,∀ t ∈ R+ (b)

(2.24)

In Eq. 2.24(a), the variable tpool,close represents when the spent fuel pool is assumed

to have completed decommissioning. For this research, it is assumed that the pool

will close 5 years after the last projected discharge from all reactors feeding into it.

The last discharge date is assumed to coincide with reactor retirement. For sites

with multiple pools, the assemblies loaded into cask i are required to originate in the

same pool, and tpool,close would correspond to that pool’s shutdown date.

In Eq. 2.24(b), the variable Cpool represents the available capacity of the spent

fuel pool. It is standard practice to leave enough space in spent fuel pools that they

could accommodate the discharge of one full reactor core, known as the “Full Core

Reserve” [135]. Therefore, the value for Cpool is set as the installed capacity minus

the number of assemblies in one full core. The inventory of the pool is kept below

this limit throughout the reactor lifetime and is confirmed by the mutliplication of

xij with the time-dependent boolean W (i, j, t), defined in Eq. 2.25.

W (i, j, t) =


1 : aj.discharge-date ≤ t < tfill,i

0 : otherwise

(2.25)

Here, the boolean W returns 1 if assembly j is located in the pool at time t and

0 otherwise. A True value is assumed if t is located between the discharge date of
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assembly j and the time at which it is loaded into cask i. The variable aj retrieves

the discharge date for assembly j from the library of assembly characteristics. The

value of W (i, j, t) is only computed when xij is equal to 1 to reduce the compu-

tational overhead, although the constraint is checked over the entire timeframe of

the optimization. This is accomplished by evaluating Eq. 2.24(b) at every projected

discharge date.

2.2.3.4 Operations Constraints

Two operational constraints were used to define the subregion Ωoper. The first

operational constraint limits the number of casks filled in a certain timeframe to a

reasonable number. The second ensures that each cask is filled with enough used fuel

assemblies to make the transfer worth performing for the utility. These constraints

are formulated in Eq. 2.26.

Ωoper =


∑

i∈Lp
yi ≤ Fp, ∀ p ∈ {1, · · · , np} (a)∑N

j=1 xij ≥ bη(t)Ccaskyic ,∀ i ∈ {1, ...,M} (b)

(2.26)

In Eq. 2.26(a), the number of casks filled in every “loading period” p is less

than or equal to the operational limit Fp. This reflects the operational reality that

limits the number of casks that can be loaded in any given campaign. Utilities avoid

transfer procedures during refueling outages, and sites with multiple pools usually

only have one set of cask handling equipment [135]. For this research, Fp is assumed

to be 10 casks per year unless the chosen site for optimization has a proven history

of larger campaign sizes, in which case the maximum historical value is used. The

optimization timeline is segmented into np periods from the beginning of the timeline

to the end of decommissioning. Within each period p, the casks’ yi values are summed
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over all of the casks belonging to the set Lp defined in Eq. 2.27.

Lp = {i : tp ≤ tfill,i < tp + 1yr} (2.27)

In the second constraint, Eq. 2.26(b), the contents of each cask are compared to

a minimum fill level η(t)Ccask. The time-dependent variable η is the fraction of the

capacity that must be filled, shown in Eq. 2.28.

η(t) =


1.0 : t < tpool,decom

0.75 : t ≥ tpool,decom

(2.28)

The variable tpool,decom is the date of the beginning of decommissioning for a pool and

is assumed to coincide with the last projected discharge unless otherwise instructed.

This is related to tpool,close by a difference of 5 years. Before decommissioning, the

casks must be completely filled for a utility to spend resources on transfer procedures.

During decommissioning, it is assumed that a higher priority would be given to

closing the pool and that more resources would be available for transfer. Therefore,

the minimum fill level is reduced to 75% to allow for more flexibility during this

period.

2.2.4 Approach

A new metaheuristic algorithm is developed in this research to solve the dry cask

loading problem. While its specifics are discussed in Section 3, Fig. 2.4 shows the

basic modes of operation it shares with other successful memetic algorithms. The

new algorithm uses a packing heuristic to assign assemblies to individual casks and

thereby find new instances of the decision variable x. The feasibility of new solu-

tions is ensured through solution repair methods, and new nondominated solutions

33



Packing 
Heuristic

Solution 
Repair & 

Evaluation

Local 
Search

Genetic 
Operations

GAMMA-PC

Archive
Solutions

𝒇(𝒙) 𝒓

𝒙

Figure 2.4: General optimization operators used to solve the dry cask loading prob-
lem. The details of the algorithm are discussed in Sec. 3.

are saved to an archive. During search phases, the new algorithm alternates be-

tween genetic operations and local search methods to balance the exploration and

exploitation of the search space.

With this method, solutions are composed of three essential components: the

decision variable x, the objective vector f , and residual tracking arrays r. The

latter is an addition to help guide the packing heuristic toward better solutions. For

example, in [103] the residual matrix is a two-column array that tracks the remaining

available weight and height for the bins to help the packing heuristic avoid overfilling

them. In this research, r represents multiple arrays to guide the heuristic:

• r, a two column array tracking the open capacity and heat margin of each bin,
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• casksused, an array identifying the dry cask type used for each bin,

• poolpulled, an array denoting the pool from which assemblies in each bin came,

• and caskinfo, a list containing a small dictionary of the available and filled

positions by decay heat for each bin.

These tracking structures help guide the algorithm toward bins with available ca-

pacity and decay heat margins, while ensuring that items from the same pool are

packed together.

The new method incorporates constraint handling in every phase except for the

genetic operations, which only operate on the chromosome representation of the

packing. The majority of the constraints are treated as “hard” constraints, meaning

that solutions outside the feasible region are not explored. For example, assemblies

are not packed into casks that cannot accomodate their decay heat at the time of

transfer procedures, and a new bin can only be opened if the campaign has room to

include it. However, the minimum fill requirement is treated as a “soft” constraint,

and the heurisitics in the algorithm explore cask combinations without regard to

maintaining this boundary.

While it could be evaluated simultaneously with the maximum capacity con-

straint during the solution evaluation step, the minimum fill constraint was handled

separately to enable a more random exploration of the search space. The benefit

of this separation is that the packing heuristic has more choices for where to place

an assembly, allowing the algorithm to take advantage of the different strategies em-

ployed. If it were treated as a hard constraint, the overall flow of the algorithm would

lean too heavily toward the First Fit strategy, which might favor one region of the

objective space over another. Repair mechanisms return any infeasible solution back

to the feasible region, which will be discussed more in Section 3.
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3. DEVELOPMENT OF OPTIMIZATION ALGORITHM

Based on the complexities of the dry cask loading problem, a new metaheuristic

algorithm was developed in this research, combining promising features to address

various aspects of the dynamic bin packing problem. The new algorithm is similar

to previous ensemble approaches for multiobjective bin packing problems. The gen-

eral framework is based on NSGA-II [102] combined with local search techniques.

A greedy randomized adaptive search procedure (GRASP) governs the packing and

local search operators, based on previous research showing that GRASP-embedded

approximate algorithms perform better for problems with special packing require-

ments [143]. The new ensemble is named the GRASP-enabled adaptive multiobjec-

tive memetic algorithm with partial clustering (GAMMA-PC). Section 3 presents

a detailed view of GAMMA-PC and discusses how specific packing heuristics were

adapted for the dry cask loading problem.

3.1 Algorithm Outline

As a population-based metaheuristic, GAMMA-PC maintains three sets of solu-

tions throughout the computation: P , Q, and PEA. The solutions in P represent

those selected to be used as progenitors in the genetic operations, and the solutions

in Q are their offspring as well as new solutions found by local search procedures.

The set PEA is the external archive of nondominated solutions and is updated every

generation.

The general outline of GAMMA-PC is illustrated in Fig. 3.1. The algorithm is

initialized by creating random packing solutions with the GRASP-DBPP operator.

The GRASP wrapper is presented in Table 3.1 and contains various packing strategies

for the dynamic bin packing problem (DBPP) within the Construct-New-Solution
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Figure 3.1: General schematic for the algorithmic flow of GAMMA-PC. The loop is
repeated until the ending criteria is met.
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Table 3.1: GRASP procedure for creating a new solution.

Algorithm: GRASP-DBPP
Input: j = {1, ...N}, optional: genetic information
Output: Solution

1 x := Construct-New-Solution(input)
2 Create Solution from x and evaluate F
3 Find a Neighbor using LocalSearch(Solution)
4 return BestSolution(Solution, Neighbor).

operator. The resulting decision vector x is then repaired and evaluated, which is

discussed more in Sec. 3.4. A neighbor of the new solution is found, and then the

best solution of the two is added to set Q. This procedure is repeated until the set

contains enough solutions to fill the initial parent population.

While the GRASP wrapper is relatively unchanged from the greedy procedure

in [144], the Construct-New-Solution operator is modified to address the dry cask

loading problem. Its pseudocode is shown in Table 3.2. It can be called with or with-

out genetic information, which consists of a real-valued chromosome representation

of the items chrom and a list of suggested tfill dates, tbank. Items are assigned to

bins in the order defined by queue based on a randomly chosen packing heuristic θb

from a set of m options, where m represents the number of objective functions. The

selected heuristic returns a restricted candidate list of bin options using a cardinal-

ity restriction, in which the list only contains the best β candidates [144]. Whenever

a new bin is opened, a tfill,i value is chosen from a special continuous greedy func-

tion that is presented in Sec. 3.3. The packing layout is stored using variable length

representation during the procedure, which is translated into the x loading matrix

after all the items have been packed.

After creating a new solution, GRASP-DBPP finds one neighbor using a ran-

domly selected local search operator. GAMMA-PC uses m+1 local search operators,
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Table 3.2: Pseudocode for the GRASP-DBPP heuristic to construct new solution.

Algorithm: Construct-New-Solution
Input: items j = {1, ...N}

optional: genetic information chrom & tbank
Output: vlrep, x, y, tfill, r

1 Create empty y, tfill, and r arrays of length M
2 queue := chrom if chrom else range(N)
3 RCLt = InitializeGreedyFunction()

4 Select θb at random from range(m)
5 for j ∈ queue do
6 Construct RCLi based on mode θb
7 Select i at random from RCLi
8 if yi = 0:
9 Append [j] to vlrep
10 Select θt at random from range(m− 1)
11 Construct RCLt based on mode θt
12 Select tfill,i from RCLt or from tbank
13 AdaptGreedyFunction(tfill)
14 yi = 1
15 else:
16 Append j to vlrepi
17 AdaptGreedyFunction(vlrep)
18 end if
19 end for
20 Construct x based on vlrep
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where each operator explores a carefully selected local neighborhood to minimize one

of the objective functions. Two operators represent the first objective of bin packing:

minimizing the number of bins. One search operator moves a solution toward having

fewer bins, while the other repacks bins to find new nondominated solutions. The

latter is chosen if a solution has already reached the theoretical minimum number of

bins.

The parent population P is selected every generation using NSGA-II-styled binary

selection. Sets P and Q are combined and sent through the fast-non-dominated-

sort procedure described in [102]. Then, the top solutions by nondomination levels

and crowding distance assignments are sent to the Crowded-Comparison-Operator to

select a new set P , as described in Sec. 2.1.2.

In Steps 4 and 5 of GAMMA-PC, the solutions in P are sent through the ge-

netic operators of Crossover-PC and Mixed-Variable-Genetic-Mutation. The genetic

operations in both are modified from their traditional form to account for the mixed-

variable environment. Both steps handle the chromosome representation of the pack-

ing and the tfill decision variable separately. The crossover operator performs sepa-

rate single-point crossovers on the chromosome representation and on the tfill array.

The modification to the genetic mutation operator is more complicated. The muta-

tion first performs a two-point swap in the chromosome representation as it would

before mixed-variables were introduced. Then, the tfill array is modified using a new

technique for a bin packing problem.

Previous research with mixed-variable optimization has advised the mutation of

a continuous variable using a normal distribution based on the variability present

for that characteristic in the population members [145]. The function to perform

this mutation, translated into the particulars of the dynamic problem, is shown in
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Eq. 3.1.

tfill,i,g+1 = tfill,i,g +N (0, σi,g), ∀ i ∈ {1, ...,M} (3.1)

Here, g represents the generation, and σi,g is the standard deviation of the values

for tfill,i. Because the dynamic bin packing problem uses a variable number of bins

and the bins are not necessarily sorted by their fill time, performing the mutation

based on the bin number i can lead to errors. To ensure that the mutation produces

a usable tfill matrix, the function was modified for this research to the form given

in Eq. 3.2.

tfill,i,g+1 = tfill,i,g +N (0, σcat), ∀ i ∈ {1, ...,M} (3.2)

Here, the normal distribution is based on the standard deviation of time values within

a particular category. To find these values, all of the fill times used by the solutions

in set P are filtered and analyzed based on the Bin-Packing-Time-Sequencing al-

gorithm, shown in Table 3.3. The values are grouped together within the specified

interval range ∆t. This algorithm returns a list Tsd of standard deviations along

with the temporal boundaries for each category so that when mutation occurs, each

tfill,i can be mutated with the standard deviation in its own time category. The new

genetic information is then sent to GRASP-DBPP in Step 6 to be decoded into real

solutions.

In Step 7 of GAMMA-PC, local search is performed on the new solutions in

Q with probabilities that are updated every generation. The same m + 1 local

search operations used in GRASP-DBPP are called here, searching for NLS neighbors

instead of only one. On even generation numbers, the solutions in PEA are clustered

into groups based on the number of bins used, and a random solution in each cluster

is sent to a randomly chosen local search operator. The solutions at the extremes

are always included, searching near one of the solutions in PEA with an ideal value
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Table 3.3: Pseudocode of the Bin-Packing-Time-Sequencing algorithm to produce
categorical standard deviations for mutation of tfill matrices.

Algorithm: Bin-Packing-Time-Sequencing

Input: ∆t, S = {tfill,i 6= 0.0, ∀ i ∈ {1, ...,M}, tfill ∈ {t1fill, t2fill, ..., t
pop
fill}g}

Ouput: Tsd
1 tmin = tlow = minimum time in S
2 tmax = maximum time in S
3 ncat = (tmax - tmin)/∆t

5 thigh = tlow + ∆t

6 Tsd := ∅
7 for cat in range(ncat) do
8 tcat = {t ∈ S : tlow ≤ t < thigh}
9 σcat ← Calculate the standard deviation of tcat
10 Add (tlow, thigh, σcat) to Tsd
11 tlow = thigh
12 thigh += ∆t

13 end

in their fitness vector. Finally, every four generations, local search is performed

across PEA according to the same probabilities used for the local search of Q. Any

neighbor found to be nondominated to the input solution during local search is added

to Q. After every ntrc generations, PEA is truncated based on the crowded distance

assignment value to keep the size of the archive below a preset level.

3.2 Packing Heuristics

During the creation of a new solution, four main packing heuristics are employed:

• the Maximum Move strategy,

• the Least Loaded strategy,

• the Dot Product strategy,

• and the First Fit-T strategy.

These approximate algorithms are employed to guide the packing process toward

better regions of the objective space than a random loading alone. However, with
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Table 3.4: Pseudocode to construct RCLi for the Construct-New-Solution algorithm.

Algorithm: Construct RCLi
Input: r, j, θb, β
Ouput: RCLi

1 bins← Sort the bin indices using r and the priority set by θb
2 RCLi := ∅
3 for i in bins do:
4 if packable(i, j):
5 Add i to RCLi
6 if |RCLi| = β:
7 break
8 end
9 if includenewbin(j, θb):
10 Add i = |bins|+ 1 to RCLi

the exception of the First Fit-T strategy, some randomization is incorporated in each

procedure through the use of restricted candidated lists to promote diversity.

The first three packing strategies follow the template set in Table 3.4. The bin

indices are sorted using the residual matrix r and the priority set by mode θb. With

the Maximum Move strategy, the order is set from the most filled to the emptiest by

capacity, and with the Least Loaded strategy, it is set from the lowest to the highest

heat load to find better distributions of decay heat. Under the Dot Product strategy,

the order is set from the highest to the lowest value of the metric in Eq. 3.3, which

was modified from [103].

dpi = Ccask · ri,0 +Hs,max · ri,1 (3.3)

In this equation, the residual capacity for bin i is multiplied by the cask capacity,

and the residual heat load is multiplied by the cask thermal limit. By including

both, the largest dpi value balances the available physical space with the available

heat capacity.

The restricted candidate list is composed of the first β bins that would be able
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to accomodate item j as determined by the packable boolean. With the dry cask

loading problem, packable determines if assembly j was located in the spent fuel pool

when cask i was loaded, if it would be cool enough to meet storage thermal limits,

and if cask i had a available spot to store the assembly. After constructing RCLi,

the boolean includenewbin is evaluated to determine if opening a new bin should be

available as an option. This value is True if RCLi is empty and the number of bins

is below M or if the number of open bins is below a given threshold. However, under

the Maximum Move strategy, it is only True when the restricted candidate list is

empty to encourage a lower number of bins.

The First Fit-T strategy modifies the template in Table 3.4 by restricting RCLi

to the first bin in which item j is packable. The bins are evaluated in chronological

order of their tfill,i values to encourage earlier loading times and thereby alleviate

thermal stresses in the spent fuel pool. The procedural loop is also modified to both

check if bin i can accept item j and, if not, to check if tfill,i could be modified so

that item j would be packable. The latter evaluation verifies that the new tfill,i value

would not adversely affect the items already packed in bin i before making the change

and returning i. If the change would cause any item to be too hot or unavailable

at the new loading time, bin i is passed, and the next bin is considered. New tfill,i

values are generated using the continuous greedy function RCLt.

3.3 Continuous Greedy Function for Selecting Fill Times

The continuous greedy function to generate tfill,i values combines the idea of

Monte Carlo selection with that of a restricted candidate list. The function RCLt

used in GRASP-DBPP (see Table 3.2) maintains the timeline and keeps track of

the available space in the intermediate holding area, i.e. the spent fuel pool, as a

function of time. It also keeps track of the number of bins filled within each period.
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Table 3.5: Algorithm to initialize tfill restricted candidate list.

Algorithm: InitializeGreedyFunction
Input: Fp, Cpool, tclose, {(ta, nbatch,a) ∀ a ∈ {1, ..., bn}},

optional: vlrep, tfill
Ouput: RCLt

1 trange = {ta} for a ∈ {1, ..., bn}
2 space = {sa = sa−1 − nbatch,a} for a ∈ {1, ..., bn} with s0 = Cpool
3 Append tclose to trange, sbn to space
4 periods = {year(t1), ..., year(tclose)}
5 rfill = {Fp} for p ∈ periods

6 if optional arguments given:
7 for every bin i in vlrep do
8 AdaptGreedyFunction(vlrep[i], tfill,i)

When the function is called upon to generate a new fill time, RCLt restricts the

timeline and returns a randomly selected time from within that range.

Table 3.5 presents the algorithm used to initialize RCLt. The function begins

as a list of arrival times associated with batches of items. The ta values in the list

plus the tclose date define the timeline of possible tfill,i values. The space list keeps

track of the available space in the holding area, which is reduced by nbatch,a at ta.

The rfill list keeps track of the number of bins filled per period and is initialized at

full capacity Fp. If RCLt is initialized from an existing solution, the variable length

representation and the tfill array are used to adapt the greedy function, increasing

the space values to match the removal of items from the holding area and reducing

the rfill values for every bin filled.

When RCLt is used to generate a new fill time, the trange and space arrays are

converted into a probability density function. While the space list is allowed to hold

negative values, these are converted to 0% probability in the probability density func-

tion. The probability density function in turn defines a cumulative density function.

A new tfill,i value is chosen by randomly selecting a percentile within a given range
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Figure 3.2: Illustration of the continuous greedy function. The top plot presents an
example of how the greedy function restricts the timeline when moving an assembly
from one cask to another, while the bottom presents the restriction for opening a
new cask.
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and inserting it into the inverse cumulative density function.

Fig. 3.2 presents two different examples of how the cumulative density function

operates for the dry cask loading problem. The timeline is first restricted by setting

a minimum value at the arrival time of the item under consideration. To move an

item from one bin to another, the maximum time value in the plot is set at the

end of the timeline, although if the spent fuel pool were ever filled beyond capacity,

tmax would be set to the time when the overflow occured. Corresponding percentiles

are found for the minimum and maximum time values, cmin and cmax respectively,

and a random percentile is chosen within that range. The chosen percentile is then

converted back into a new time value using an inverse cumulative density function.

There are two different continuous greedy functions shown in Fig. 3.2 to emphasize

that the new time generator for RCLt can be adjusted to the problem at hand. The

top figure shows the restriction of the cumulative density function when moving an

item, and the bottom figure shows the restriction when opening a new bin with an

item. The restriction adapts to the type of movement. In the top figure, the greedy

function restricts the timeline based only on the arrival time of the item to the spent

fuel pool and space constraints in the pool. The corresponding cmax is set at 1.0.

In the bottom, it also restricts the timeline based on available positions in loading

campaigns, resulting in a much lower cmax. In both cases, cmin is set to correspond

to the discharge date of the assembly from the reactor.

3.4 Solution Repair Methods

After a new solution is decoded in GRASP-DBPP or found through local search

methods, it undergoes a three step process before being added to set Q, as shown in

Fig. 3.3. In the first step, the solution is evaluated to determine if it is in the feasible

region or not. If the solution violates a soft constraint, it is repaired in Step 2 before
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Figure 3.3: Steps to check and evaluate a new solution.

having its objective vector evaluated in Step 3. The first and the last steps in this

process happen according to the mathematical paradigm laid out in Section 2.2. The

intermediate step is discussed here.

Soft constraint violations are repaired in GAMMA-PC using four main tech-

niques:

• Add-to-bin,

• Empty-bin,

• Fill-bin-later,

• and Fill-bin-earlier.

The first two methods move items from one bin to another, and the second two focus

on moving bins along the optimization timeline. During the repair of a solution, an

action is called based on the characteristics of the solution with some randomness in
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Table 3.6: Pseudocode for the greedy Add-to-bin technique.

Algorithm: Add-to-bin
Input: i, rgoal, Solution
Ouput: Solution

1 Make RCLpull
2 Retrieve vlrep and r from Solution
3 for k in range(c) do:
4 Select i2 at random from RCLpull
5 Select random j from vlrep[i2] that is packable(i, j)
6 if j found:
7 Move j from i2 to i
8 break if ri,0 = rgoal
9 Remove i2 from RCLpull if j could not be found or

ri2,0 meets the minimum fill requirement during decommissioning
10 Refill RCLpull if needed

the method selection. For example, if one of the bins i is too empty before decom-

missioning of the pool but meets the minimum fill limit during the decommissioning

period, Fill-bin-later is selected. However, if it is too empty in either period, Add-to-

bin or Empty-bin is selected randomly instead. The probability of Empty-bin being

chosen increases for emptier bins and decreases for bins with more items in them.

Finally, Fill-bin-earlier is employed if the loading campaigns during decommissioning

are full, and some of the bins loaded during that period are filled to capacity.

The Add-to-bin and Empty-bin techniques incorporate restricted candidate lists

as a way to increase the likelihood of making better decisions. The pseudocode for

Add-to-bin is shown in Table 3.6. The restricted candidate list RCLpull is formed by

prioritizing bins that either can feasibly be filled during the decommissioning period

or also violate the minimum fill constraint. When these types of bins contribute

items to the target bin i, the movements either do no harm or speed up the process

of bringing the solution back into the feasible region. The Empty-bin technique uses

a procedure similar to the First Fit-T strategy to remove items to other bins and

forms the RCLi list for each item based on the dot product evaluation in Eq. 3.3.
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The Fill-bin-later and Fill-bin-earlier techniques use the continuous greedy time

function RCLt to find new tfill,i values. Before making a change to the loading time,

the binadjustable boolean is evaluated. This boolean determines if the time change

would negatively impact any of the items in the bin or the inventory in the spent

fuel pool, and if it would, the boolean is set to False. The tfill,i value is only changed

if binadjustable is shown to be True.

The repair techniques are performed on the solution until all of its bins have been

brought back into the feasible region. In the process, they also move the solution

toward one region of the objective space or another. The Empty-bin technique re-

duces the number of open bins, thereby moving the solution closer to the ideal value

for the first objective function. The Add-to-bin technique preferentially pulls from

later-filled bins, which tend to contain hotter assemblies from later future core dis-

charge projections. This can move the bins as a whole toward lower average initial

heat loads or lower cask-average dose rates. Therefore, these techniques are also

included in the local search methods with a slightly different emphasis depending on

the focus.

3.5 Crossover with Partial Clustering

The standard genetic crossover used in NSGA-II is modified in GAMMA-PC to

include partial clustering with the goal of balancing exploration and exploitation of

the objective space. The pseudocode for the Crossover-PC operator is shown in

Table 3.7. It first sends a fraction fran of P straight to the crossover operator to be

randomly paired and mixed. Then, it carefully sorts the remaining solutions into Nc

clusters before sending each cluster to the crossover operator. In this research, Nc

was set at 2m. All of the solutions produced by the multiple crossovers are combined

to make up Q.
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Table 3.7: Crossover operator with partial clustering.

Algorithm: Crossover-PC
Input: P , fran
Ouput: Q

1 Split P into Pran and Pc based on fran
2 Qran ← Mixed-Variable-Genetic-Crossover(Pran)
3 Update ideal values z∗ using PEA
4 Sort solutions from Pc into Nc Tchebycheff clusters
5 Qc := ∅
6 for c in range(Nc) do
7 if cluster c is not empty:
8 New solutions ← Mixed-Variable-Genetic-Crossover(cluster c)
9 Add New solutions to Qc
10 else:
11 Update-Mutation-Rate
12 end if
13 end for
14 Q = Qran +Qc

Crossover-PC performs the grouping of the clusters using the Tchebycheff ap-

proach [146]. To support the use of this approach without knowledge of the Pareto

front, the ideal values z∗ are updated every generation to reflect the most ideal

points found in the objective space for every objective θ. The m× 1 array z∗ is set

using (3.4).

z∗θ = min
x∈Ω

fθ(x) (3.4)

To perform the sorting, Nc random weight vectors of the form λ = (λ1, ..., λm)T are

produced such that
∑m

θ=1 λθ = 1 and λθ ≥ 0 for all θ = 1, ...,m [146]. Then, the

objective vectors for each solution in Pc are transformed into single objective fitness

values through (3.5) with the random weight vectors.

gte(x|λ) = max
1≤θ≤m

{
λθ
wθ

(fθ(x)− z∗θ)
}

(3.5)

This procedure is similar to the process of decomposition in MOEA/D-type algo-
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rithms but is only applied during the crossover operation.

The form of (3.5) is also modified from the Tchebycheff approach generally used

by MOEA/D [146] to reflect the purpose of the weight in the Tchebycheff norm,

which is to normalize various criteria [147]. The λ weight vector is still included

in (3.5), but it is divided by the vector w. This is calculated in similar manner as

z∗ in (3.4), except finding the maximum value present for each objective among the

solutions in PEA. The inclusion of w ensures that the clusters are formed throughout

the objective space, even if one objective function explores a much larger range than

the others. After the single objective fitness values are calculated for a solution, it is

placed in the cluster with the weight vector resulting in the smallest single objective

value.

3.6 Updating Operator Probabilities

The first “A” in GAMMA-PC refers to the adaptation performed every generation

to move the operator probabilities toward areas of need during calculations. The first

change is made during Crossover-PC in Step 4. For every empty cluster found, the

mutation rate increases by a small amount. This change occurs because the single

objective fitness values represent different areas of the objective space, so if a cluster

is empty, the area governed by that weight vector has not been explored well. The

increase is made in the mutation rate to encourage more random exploration.

The local search probabilities are also updated every generation to encourage

search in one area or another based on the solutions present in PEA. GAMMA-PC

maintains m local search probabilities: the probability of local search overall pls and

the probabilities of objective-specific local search operators pls,θ for the first m − 1

objectives. The probability of local search for the last objective is implicit because

the total probablity of the objective-specific operators sums to 1.0.
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Table 3.8: Algorithm to update local search probabilites.

Algorithm: Update-Operator-Probabilities
Input: PEA, pgls, p

g
ls,θ for θ = 1,...,m− 1

Ouput: pg+1
ls , pg+1

ls,θ for θ = 1,...,m− 1

1 N∗
size := m× 1 array of zeros

2 for θ in range(m) do
3 IdealNeighbors = {u ∈ PEA : uθ − z∗θ ≤ 0.10(zmax,θ − z∗θ )}
4 N∗

size,θ = |IdealNeighbors|
5 end for

6 pg+1
ls ← Update-Local-Search-Rate(pgls, N

∗
size)

7 pg+1
ls,θ ← Redistribute-Sub-Local-Search-Rates(pgls,θ, N

∗
size)

The algorithm to update the local search probablities is given in Table 3.8.

First, the number of solutions in PEA in the local neighborhood of each ideal value

are counted, found using the relationship shown in Step 3 of Update-Operator-

Probabilities. The size of each neighborhood is stored in the m×1 array N∗size. Then,

the sizes of the ideal neighborhoods are used to update the local search probabilities.

The N∗size array is sent to the Update-Local-Search-Rate operator first, which

adjusts the overall probability pls. The operator increases pls if any value in N∗size

falls below a preset minimum value or decreases it if all of the values are above a preset

maximum, stopping at a minimum boundary of pls = 0.1. The preset minimum and

maximum neighborhood size values were set at 5 and 20 in this research, respectively.

Next, the probabilities for the individual local search operators are updated in

Redistribute-Sub-Local-Search-Rates based on the variation in N∗size. The probability

of the local search operator for the objective with the largest ideal neighborhood

is reduced by a fraction determined by the size of the smallest ideal neighborhood.

The portion it loses pmove is redistributed fairly among the probabilities for the other

objectives. The value for pmove is calculated using Eq. 3.6.

pmove =

(
1− min(N∗

size)

max(N∗
size)

)
pgls,θ(max) (3.6)
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Here, pgls,θ(max) is the probability of local search using the operator for the objective

with the largest ideal neighborhood. The portion pmove is split and added to the

probabilities for the other operators based on their ideal neighborhood sizes.

For example, if the probabilities at the end of generation g were pgls,1 = 0.25,

pgls,2 = 0.25, and pgls,3 = 0.50 and if N∗size were found to be (2, 4, 8), then pls,3 would

lose (1 − 2/8)0.50 from its share, or pmove = 0.375. A fair way to redistribute this

between the search operators for the first and second objectives would be to give pls,1

a larger chunk of pmove since its neighborhood is smaller. Therefore, the probabilities

would be updated to pg+1
ls,1 = 0.50, pg+1

ls,2 = 0.375, and pg+1
ls,3 = 0.125 in the next

generation. Whatever redistribution scheme is used, though, it must be ensured that∑m
θ=1 p

g+1
ls,θ = 1. Moreover, the redistribution only takes place if pgls,θ(max) is above 0.1

to prevent the removal of one type of local search altogether.

3.7 Connecting GAMMA-PC with UNF-ST&DARDS

GAMMA-PC was implemented in a Python package for demonstration and dis-

tribution. It was designed to be adaptable, maintainable, extensible, and modular,

and its structure is shown in Fig. 3.4. Each class within the package includes mod-

ules to support its technical function. For example, the assembly class includes decay

heat and dose modules, and the evolutionary framework includes modules to main-

tain the external archive and to update the operator probabilities. The package also

includes unit testing modules for each class to ensure that new changes to either the

multiobjective problem or the algorithmic structure of GAMMA-PC do not cause

errors in the rest of the code.

GAMMA-PC draws information from the UNF-ST&DARDS database during its

initialization phase. Figure 3.5 lists the information that is saved. GAMMA-PC pulls

data about the site being optimized, the dry cask type(s) being used, and the current
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Figure 3.4: Schematic of the modular architecture of the Python package for
GAMMA-PC.
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• UNF-ST&DARDS ID number
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• Spent fuel pool(s) capacity and licensed fuel type
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• Capacity; maximum burnup and total heat load values
• The transportation loading curve and target dose rate
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• Projected decay heat values
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Projected 
Assemblies

• The date and number of assemblies per projected discharge
• Projected enrichment and burnup
• Projected decay heat values
• Projected dose rate values

Figure 3.5: Information pulled from UNF-ST&DARDS.

and future assemblies in the spent fuel pool(s). This data is saved by the algorithm

into the correct variable assignments and is used throughout the calculations as

described in Section 2.2.

A few assumptions are made while the problem is constructed. The first is that

the spent fuel pool(s) begins decommissioning in conjunction with the last projected

discharge to the pool. The value saved for the number of casks loaded in a period

Fp is also assumed to be either the maximum historical campaign size or 10 casks,

whichever is greater. Finally, the value saved for the pool capacity Cpool is set to be

one reactor core size smaller than the value imported from UNF-ST&DARDS.

The methodological performance of GAMMA-PC was evaluated during the course
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of this research and is discussed in Appendices A and B. Through this analysis, it

was shown that GAMMA-PC performs as well as other metaheuristic algorithms at

solving the dynamic bin packing problem. It also produced more diverse solutions

that better approximated the best-known Pareto front for a small example prob-

lem. To further demonstrate its performance, Section 4 describes the application of

GAMMA-PC to the dry cask loading problem for a couple of different ISFSIs and

analyzes the results.
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4. DEMONSTRATION CASES

GAMMA-PC was designed to be a robust and adaptable multiobjective meta-

heuristic specially made to handle the complexities of the dry cask loading problem

outlined in Sec. 2. To demonstrate its performance in this capacity, the new algo-

rithm was applied to ISFSIs at Vermont Yankee, Comanche Peak, and Zion nuclear

power plants. These three sites reflect the diversity of the broader U.S. nuclear

fleet. Their algorithmic parameters are shown in Table 4.1. This section presents

the results of applying GAMMA-PC to each case and evaluates its performance as

a loading metaheuristic.

4.1 Vermont Yankee

The Vermont Yankee Nuclear Power Station was a single BWR that began op-

eration in 1972 and was permanently shutdown in 2014 [148]. Transfer procedures

to remove assemblies from the spent fuel pool commenced in the summer of 2017

and are expected to finish in 2018 [149]. The used fuel transfers are being conducted

using ALARA strategies, but further information about the loading objectives is

currently unavailable.

GAMMA-PC performed the optimization of the Vermont Yankee assembly se-

lection according to the paradigm developed in Sec. 2. The number of assemblies

Table 4.1: Nuclear power plant characteristics for the demonstration cases.

Site Reactors N GAMMA-PC t0 tpool,close Fp
Comanche Peak 2 PWRs 7239 2013 Mar. 30 2058 Feb. 2 10 casks/year
Vermont Yankee 1 BWR 2993 2017 July 1 2018 Dec. 30 5 casks/month
Zion 2 PWRs 2226 2014 Jan. 1 2015 Jan. 31 7 casks/month

2005 Jan. 31 2015 Jan. 31 10 casks/year
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Table 4.2: Dry system characteristics for the Vermont Yankee Nuclear Power Plant.

Vermont Yankee
Cask System HI-STORM 100 MPC-68
Ccask 68
Hs,max [kW] 34.0
Ht,max [kW] 18.5
BUs,max [GWd/MTU] 60.0
No. of Casks Needed:

Lower Bound 45
Maximum M 59

Function Evaluations 15,000
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Figure 4.1: Scatter matrix showing objective vectors for GAMMA-PC and for OC
solutions in the Vermont Yankee dry cask loading problem. This figure plots the
evolution of the solutions found by GAMMA-PC with the initial generation (0),
an intermediate generation (80), and the approximate set, found in generation 166.
Only the top 40% best solutions are depicted from sets OC, 0, and 80.
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Figure 4.2: Scatter plot showing objective vectors for GAMMA-PC and OC solutions
in the Vermont Yankee dry cask loading problem. This figure plots the evolution
of solutions found by GAMMA-PC with the initial generation (0), an intermediate
generation (80), and the approximate set, found in generation 166. Only the top
40% best solutions are depicted from sets OC, 0, and 80.

N included in the packing problem was limited to the fuel present in the spent fuel

pool at the beginning of 2017. One adjustment was made to the Fp limit defined in

Eq. 2.26 to ensure the completion of transfer procedures within the small timeframe

shown in Table 4.1. The “bin” used to pack the assemblies was the HI-STORM 100,

MPC-68 [149], whose characteristics are given in Table 4.2. The minimum number

of casks to store the fuel is 45, and the upper bound for GAMMA-PC was set at 59

casks based on the decommissioning minimum fill level.

To evaluate the solutions produced by GAMMA-PC, a set of solutions was gen-

erated using the oldest, coldest (OC) strategy discussed in Sec. 1. These solutions

were created using the First Fit-T packing heuristic and a schedule of loading dates.

60



Due to the unknown nature of the true loading plan, multiple schedules were used

to generate the OC solutions. It was assumed that the dominant solution generated

in the set would be similar to the oldest, coldest strategy used by industry.

GAMMA-PC performed well in relation to the OC solutions. Figures 4.1 and 4.2

presents the objective space of the Vermont Yankee problem and show the approx-

imate set produced by GAMMA-PC after 166 generations in relation to solutions

belonging to the OC set, the initial generation, and the 80th generation. Each dot

represents the objective vector for one solution, and the histograms along the diag-

onal show the distribution of values for each objective function. The OC, 0, and

80 sets are each filtered to show only approximately 40% of the best solutions to

avoid presenting too much information in the scatter plots. These plots show that

GAMMA-PC began the search for nondominated solutions in the same area of the

objective space as the OC solutions, which makes sense given that the First Fit-t

packing strategy is one of the four main packing heuristics used in GAMMA-PC.

The algorithm moved toward lower heat loads and lower transportation dates in set

80, and by the 166th generation, GAMMA-PC had found a diverse approximate set

that dominates the oldest and coldest approach to dry cask loading.

Figure 4.1 also illustrates the relationship of the objective functions within F . The

first and second objective functions have an indirect relationship that is almost linear.

This makes sense given that the heat in each cask is a summation of the heat from

the assemblies. The third objective does not exhibit variation. The maximum year

to transport of 2039 is determined by the time required to meet the transportation

decay heat limit of 0.272 kW per assembly, which cannot be improved regardless of

the loading configuration. The OC solutions with f3 in 2040 or later include casks

with a concentration of higher burnup fuel and are determined by the time required

to satisfy Eq. 2.18.
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Figure 4.3: Violin plots comparing the cask characteristics of solutions for the Ver-
mont Yankee dry cask loading problem. The OC solutions are compared to solutions
found by GAMMA-PC during initialization, in generation 80, and for the approx-
imate set (G166). The top plot shows the initial cask heat loads, and the bottom
shows the time to transport for each cask.
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Since the objective vector reduces the components of the dry cask loading problem

to three simplified metrics, it is interesting to consider the details behind the vector.

The first objective function is a straightforward sum of 0’s and 1’s, so the range

shown in Figs. 4.1 and 4.2 gives a complete view of the number of casks in use. The

other two functions collapse more data together.

Figure 4.3 presents that data in violin plots of cask initial heat loads and the

time to transportation. A violin plot is similar to a box-and-whisker plot but

uses a kernel density estimate distribution to form its sides instead of a box. The

quartiles for each set in Fig. 4.3 are plotted on the violin, with the smaller dashed

lines representing the 25% and 75% quartiles and the larger dashed line representing

the median. Each violin represents the distribution of the characteristic for all of the

casks in a solution, for all of the solutions within the given set. The top plot shows

a reduction in the variability of the initial heat loads, although the median is not

signficantly different from one distribution to another. The bottom plot shows that

the median transport date of the approximate set is substantially later than for the

OC set as a direct result of the reduction in the maximum.

Figure 4.4 filters the information in Fig. 4.3 to only show the dominant solution

from the OC set (F = [45, 13.70, 2041]), the recommended GAMMA-PC solution,

and its alternate. The recommended solution from the approximate set uses the min-

imum number of casks to anticipate the preferred plan for an ISFSI and is located at

F = [45, 13.48, 2039]. The alternate solution includes one additional cask for every six

months of transfer procedures for this scenario and is located at F = [49, 12.42, 2039].

The distributions of the initial heat load show similar medians for the sets, and the

two GAMMA-PC solutions cover smaller ranges. The bottom plot shows the same

trend as was present in Fig. 4.3, with the median time to transport much later for

the GAMMA-PC solutions while the latest time is earlier. The alternate solution
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Figure 4.5: Scatter plots comparing the cask heat loads of the recommended Vermont
Yankee loading plan and its alternate to an OC solution.

also has a later median compared to the recommended solution, although the 75%

quartile is somewhat lower.

The top and bottom plots in Fig. 4.4 are replotted as functions of the tfill,i time

in Figs. 4.5 and 4.7, respectively. All of the solutions plotted tend to fill hotter

casks later, which is a reasonable strategy to allow for more nuclide decay in the

most sensitive casks while loading those that are easier to handle. The trendlines

for the GAMMA-PC solutions also end at lower heat levels than the OC trendline,

mainly due to a reduction in the hottest casks. Figure 4.6 presents heat maps for the

hottest cask in the OC solution and the recommended GAMMA-PC solution. The

OC cask was loaded only two months before the GAMMA-PC cask, but its heat load

is more than 2kW hotter. The GAMMA-PC cask features a more diverse mixture of

assemblies and includes two open positions. Even though the OC cask holds more

65



2
2013
41.8

2
2013
40.0

2
2013
46.0

2
2013
46.2

2
2013
46.2

2
2013
46.0

2
2013
46.7

2
2013
47.6

2
2013
44.9

2
2013
39.7

2
2013
41.7

2
2013
44.4

1
2014
29.3

2
2013
43.0

2
2013
43.0

1
2014
29.3

1
2014
29.3

1
2014
29.3

2
2013
42.9

2
2013
45.6

2
2013
42.4

2
2013
42.5

2
2013
42.5

2
2013
44.1

2
2013
45.0

2
2013
43.6

2
2013
41.8

1
2014
29.3

2
2013
43.3

1
2014
29.3

1
2014
29.3

1
2014
29.3

2
2013
41.8

2
2013
42.8

2
2013
44.8

2
2013
45.0

1
2014
29.3

2
2013
43.6

1
2014
29.3

1
2014
27.0

1
2014
27.0

1
2014
29.3

1
2014
29.3

2
2013
45.8

1
2014
29.3

2
2013
43.6

1
2014
29.3

1
2014
27.0

1
2014
27.0

1
2014
29.3

1
2014
29.3

2
2013
45.7

1
2014
27.0

2
2013
43.2

1
2014
29.3

1
2014
27.0 

1
2014
27.0

1
2014
27.0

1
2014
29.3 

2
2013
45.7

1
2014
29.3

2
2013
43.8

1
2014
29.3

1
2014
29.3

1
2014
27.0

1
2014
29.3

1
2014
29.3

2
2013
44.9

2
2014
47.2

2
2014
47.2

2
2014
50.5

2
2014
50.5

2
2014
50.5

2
2014
50.5

2
2014
50.5

2
2014
50.5

2
2014
47.2

2
2014
47.2

2
2014
47.2

2
2014
47.2

1
2008
45.6

2
2014
47.2

2
2010
45.4

1
2010
41.7

1
2008
45.1

1
2008
45.1

2
2010
44.6

2
2014
50.5

2
2014
47.2

2
2014
47.2

2
2010
47.1

2
2014
47.2

2
2014
47.2

2
2014
47.2

2
2010
44.6

1
2008
41.6

2
2014
47.2

1
2008
42.6

1
2008
43.0

1
2008
43.0

2
2014
47.2

2
2008
45.6

2
2014
50.5

2
2014
47.2

1
2008
41.0

2
2014
47.2

1
2008
41.5

1
2008
41.0

1
2007
43.0

1
2008
40.2

1
2010
41.0

2
2014
50.5

1
2007
39.3

2
2014
47.2

1
2008
41.9

1
2007
37.9

1
2008
40.1

1
2008
43.5

2
2014
50.5

1
2007
38.5

2
2014
47.2

1
2008
41.4

1
1984
26.8

1
2008
40.0

1
2010
40.2

2
2014
50.5

1
2008
38.4

2
2014
47.2

1
2008
41.5

1
2008
38.5

1
2008
38.7

1
2008
38.8

1
2010
40.0

2
2014
50.5

OC
𝑡"#$$ = 𝑂𝑐𝑡.2018
𝑞. = 30.7	𝑘𝑊

GAMMA-PC
𝑡"#$$ = 𝐷𝑒𝑐. 2018
𝑞. = 28.0	𝑘𝑊

Region
Discharge Year
Burnup
[GWd/MTU]

1
2014
29.3

Assembly Thermal Limits
Region 1: 0.355 kW
Region 2: 0.710 kW

Legend

0.0

0.3

0.7

In
iti

al
 A

ss
em

bl
y 

H
ea

t L
oa

d [
kW

]

Figure 4.6: Heat maps for the hottest casks in the OC solution and in the recom-
mended GAMMA-PC solution for the Vermont Yankee problem. Both casks are
shown using the MPC-68 two-zone BWR preferential loading pattern. Note that
the assemblies in this graph have only been optimized to the regional loading, and
specific placements within the regions are arbitrary.
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Figure 4.7: Scatter plots comparing the time to transport for the recommended
Vermont Yankee loading plan and its alternate to an OC solution.

assemblies cooler than 0.3 kW, the GAMMA-PC cask achieves a much lower heat

load overall. This suggests that when it is not possible to completely fill every cask,

the empty positions should be strategically located. The additional casks used in

the alternate solution lower the hottest heat loads even more.

Figure 4.7 compares the transportation eligibility dates for the OC, the recom-

mended, and the alternate solutions. Many of the casks in all three solutions are

eligible as soon as they are loaded, which makes sense given the amount of older fuel

present at Vermont Yankee. Almost all of the eligibility dates after 2020 are deter-

mined by the cooling time required for individual assemblies to reach 0.272 kW. It

is impossible to find a configuration with a lower minimum date than 2039 in this

scenario, although it is possible to reduce the number of casks that become eligi-

ble in those years. However, concentrating hot assemblies into fewer casks has a
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detrimental effect on their initial heat load.

4.2 Comanche Peak

The Comanche Peak Nuclear Power Plant poses a more complex packing problem

than Vermont Yankee. The site operates two PWRs that came online in 1990 and

1993 and have operating licenses that expire in 2030 and 2033 [150,151]. The reactors

share a spent fuel pool, and UNF-ST&DARDS includes fuel projections for the pair

until 2053. It was assumed in this scenario that Comanche Peak would receive a

license extension to correspond with the fuel projections. Unlike Vermont Yankee,

the Comanche Peak spent fuel pool faces capacity constraints along the optimization

timeline, requiring a number of casks to be filled before certain dates. Altogether, the

Comanche Peak dry cask loading problem represents the most complete example in

this research of the constraints developed in Sec. 2 and demonstrates how GAMMA-

PC performs when applied to a long-term planning mission.

To better understand the effect of the constraints, the Comanche Peak problem

was optimized using two different “bin” types, described in Table 4.3. The first type

was the cask system currently used in the Comanche Peak ISFSI, the HI-STORM

100 MPC-32. This cask type holds 32 assemblies, and 227 casks would be required

to fully store all of the current and projected used fuel. The second cask type was

the HI-STORM FW MPC-37. This cask system would maintain the current utility-

vendor relationship and allow for a discussion of how the loading plan might change

based on a higher capacity cask. The minimum number of MPC-37 to hold the

assemblies would be about 30 fewer than in the MPC-32 scenario. The HI-STAR

190 transportation package for the MPC-37 has not received the final approval from

the NRC yet, so the parameters shown in Table 4.3 were taken from the submitted

Safety Analysis Report [152].
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Table 4.3: Dry system characteristics for the Comanche Peak Nuclear Power Plant
cases.

Comanche Peak
Cask System HI-STORM 100 HI-STORM FW

MPC- 32 MPC-37
Ccask 32 37
Hs,max [kW] 36.7 45.0
Ht,max [kW] 20.0 31.82
BUs,max [GWd/MTU] 68.2 68.2
BUt,max [GWd/MTU] 31.2 68.2
No. of Casks Needed:

Lower Bound 227 196
Maximum M 302 261

Function Evaluations 7500 7500

This section compares the GAMMA-PC results for each scenario with OC so-

lutions and then compares them to each other. Because of the greater restrictions

imposed on the problem by the constraints, significantly more computational time

was devoted by GAMMA-PC in these scenarios to finding packable bins and feasible

tfill,i values compared to either the Vermont Yankee or Zion problems. Therefore,

the results presented here were achieved after the completion of the lowest number

of function evaluations to ensure a reasonable runtime.

4.2.1 Using the HI-STORM MPC-32 Cask System

GAMMA-PC performed well compared to the OC solutions for the Comanche

Peak loading problem. Figures 4.8 and 4.9 show the approximate set produced after

46 generations in relation to the top 10 fronts from the initial generation (0), the

20th generation, and the OC solutions. Each dot represents an objective vector,

and the histograms along the diagonal of the scatter matrix show the distribution of

values within the four sets. As with Vermont Yankee, the initial generation began

in the same region of the objective space as the OC solutions. The intermediate

generation shows more progress in achieving lower heat loads and broader diversity,
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Figure 4.8: Scatter matrix showing objective vectors for GAMMA-PC and for OC so-
lutions in the Comanche Peak loading problem (MPC-32). This figure compares the
approximate set found by GAMMA-PC in generation 46 with the initial generation
(Gen. 0), an intermediate generation (Gen. 20), and OC solutions.

and the packing solutions in the approximate set are substantially cooler than the

OC solutions.

The scatter matrix in Fig. 4.8 also illustrates the relationship between the objec-

tives for the Comanche Peak problem. As expected, the initial heat load decreases

as the number of casks used increases. The latest year to become eligible for trans-

portation also shows a constant value for all of the solutions except a few in the

initial generation and the OC set. This date in 2078 is determined by the cooling

time required for some assemblies discharged in 2053 to reach the 0.625 kW per as-
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Figure 4.9: Scatter plot showing objective vectors for GAMMA-PC and for OC so-
lutions in the Comanche Peak loading problem (MPC-32). This figure compares the
approximate set found by GAMMA-PC in generation 46 with the initial generation
(Gen. 0), an intermediate generation (Gen. 20), and OC solutions.

sembly transportation decay heat limit. As with Vermont Yankee, this value cannot

be improved by the loading configuration with the MPC-32.

Figure 4.10 presents violin plots of the individual cask distributions in the solution

sets. The top plot shows that while the initial distribution of heat loads found by

GAMMA-PC covered a wider range than the OC solutions, the search narrowed to

solutions with lower maximum and lower medians heat loads. The distributions of

the time to transport also show a decrease in the variability for the GAMMA-PC

solutions. This indicates that as the algorithm searched for a way to lower the value

of f3, the earliest time to transport for GAMMA-PC was pushed back while the

median date was moved somewhat earlier in time. However, this increase did result

in both later minimums and medians compared to the OC distribution.
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Figure 4.10: Violin plots comparing the cask characteristics of solutions for the Co-
manche Peak dry cask loading problem (MPC-32). The OC solutions are compared
to solutions found by GAMMA-PC during initialization, in generation 20, and in
the approximate set (G46). The top plot shows the distributions of initial cask heat
loads, and the bottoms shows the eligibility dates for transportation.
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Figure 4.11: Violin plots comparing the cask-specific characteristics of the recom-
mended Comanche Peak loading plan (MPC-32) to the dominant OC solution. The
plot on the left compares the initial heat load for each cask, and the plot on the right
compares the time at which each cask meets the transportation requirements.

The information in Fig. 4.10 is filtered in Fig. 4.11 to only show the dominant so-

lution from the OC set (F = [227, 17.60, 2078]) and the recommended solution from

GAMMA-PC (F = [227, 16.84, 2078]). The recommended solution is the configura-

tion in the approximate set with the minimum number of casks in use. The median

initial cask heat load of the recommended solution is significantly cooler than for

the OC solution. While the coolest cask is much hotter, the top 50% hottest casks

are cooler by at least 2 kW. The width of the violins in the top quarter are also

wider than at the very bottom, indicating that more casks are cooler in the hottest

segment than are hotter in the coolest. On the other hand, the distributions of the

cask transportation eligibility dates share many of the same features, with equivalent

maximums and virtually equivalent medians.

The distributions of heat load and ttrans,min,i values are replotted as functions of
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Figure 4.12: Scatter plots comparing the time-dependent initial cask heat loads of
an OC solution with the recommended solution for Comanche Peak (MPC-32).

the tfill,i dates in Figs. 4.12 and 4.14. Figure 4.12 shows that the hottest casks are

loaded later, as discussed in the Vermont Yankee scenario, although the trend in this

scenario is not purely increasing. This change from Vermont Yankee makes sense

given the pool capacity issue and that only the last 5 years of the optimization time-

line allow for partially-filled casks, whereas the entire Vermont Yankee timeline was

within the decommissioning window. The trendline for the recommended GAMMA-

PC solution is shown to end approximately 3 kW lower than the trendline for the OC

solution, partly due to the decrease in the heat of the hottest casks. Additionally,
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Figure 4.13: Heat maps for the hottest casks loaded in 2029 in the OC solution and
in the recommended solution for Comanche Peak (MPC-32). Both casks are shown
using the uniform PWR loading pattern. Assemblies in this map were optimized to
the regional loading, and specific placements within the regions are arbitrary.

the casks filled before 2036 were much cooler than the OC casks loaded in the same

timeframe, although an increase in the spread of values after 2036 is observed, which

is due to a need to remove assemblies from the pool.

Figure 4.12 presents a prime example of the question posed in Sec. 1: how might

a more sensible mixture of used fuel assemblies impact the long-term aspects of dry

storage? The OC plot shows that a number of casks were filled at the beginning

of the timeline with heat loads lower than 15 kW, which suggests the immediate

short-term benefit to workers of much lower dose levels. However, the removal of

those cold assemblies from the pool resulted in uniformly hotter casks filled in the

long term.

This is further illustrated in Fig. 4.13 by considering the assembly-level heat in
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Figure 4.14: Scatter plots comparing the transportation eligibility dates of an OC so-
lution with the recommended GAMMA-PC solution for the Comanche Peak loading
problem (MPC-32).

the hottest cask loaded in 2029, the year before the older reactor’s current license

expiration. The hottest cask filled that year in the OC solution is much hotter than

the hottest cask for the recommended solution. While the GAMMA-PC cask does not

include assemblies as recently discharged as the OC cask, which gives the GAMMA-

PC an unequal advantage in this comparison, if it were filled with only assemblies

that were discharged in 2010, it could be up to 4 kW hotter. The diversity of the

assemblies in the GAMMA-PC cask help reduce its overall heat load, while the OC
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Figure 4.15: Scatter plot showing objective vectors for GAMMA-PC and for OC so-
lutions in the Comanche Peak loading problem (MPC-37). This figure compares the
approximate set found by GAMMA-PC in generation 39 with the initial generation
(Gen. 0), an intermediate generation (Gen. 20), and OC solutions.

cask is filled purely with the casks from the same discharge cycle.

Figure 4.14 compares the transportation elgibility dates for the OC and recom-

mended solutions. The trends are similar, and the distributions are not significantly

different. This coincides with the finding for the latest dates–this characteristic is

mainly assembly-determined rather than dependent on the loading configuration.

4.2.2 Using the HI-STORM MPC-37 Cask System

The Comanche Peak loading problem has a much more complex objective space

landscape when the MPC-37 is used to store the used fuel. Figures 4.15 and 4.16

illustrate the objective vectors for this problem. Some of the same trends under

the MPC-32 scenario are shown here. GAMMA-PC started its search for solutions

in approximately the same area of the objective space as the OC solutions and

77



195

198

201

204

207

210

N
o.

 o
f C

as
ks

20

22

24

26

28

A
vg

. I
ni

tia
l H

ea
t L

oa
d 

(k
W

)

19
5

19
8

20
1

20
4

20
7

21
0

No. of Casks

2075

2080

2085

2090

2095

2100

M
ax

. Y
ea

r t
o 

Tr
an

sp
or

t

20 22 24 26 28

Avg. Initial Heat Load (kW) 20
75

20
80

20
85

20
90

20
95

21
00

Max. Year to Transport

Gen.
OC
0
20
39

Figure 4.16: Scatter matrix showing objective vectors for GAMMA-PC and for OC
solutions in the Comanche Peak loading problem (MPC-37). This figure compares
the approximate set found by GAMMA-PC in generation 39 with the initial gener-
ation (Gen. 0), an intermediate generation (Gen. 20), and OC solutions.
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moved toward areas with lower weighted average initial heat loads with more diversity

along the x-axis. Notable differences include a shift upward in the heat load and a

substantial increase in the variability of f3. The increase in heat is expected given

the higher capacity of the MPC-37. The time to transport is more complicated.

The broad variability of f3 shown in Fig. 4.16 exhibits a slight pattern when

viewed in the 3-dimensional space of Fig. 4.15. The cloud of objective vectors may

look random, but the vectors in the lower area of the x-axis show some solutions

grouped together along invisible curves.

Based on this evidence, Figure 4.17 was created to investigate this area of the

objective space as planar slices along the x-axis from 196 to 199 casks in use. The

plots in this figure show a strong indirect relationship between the second and third

objective functions. Unlike Vermont Yankee and Comanche Peak (MPC-32), the

third objective value in this scenario is primarily determined by Eq. 2.18, meaning

that the time to transport is dependent on the loading configuration. While it

may seem counterintuitive that solutions with lower average initial heat loads would

have longer cooling periods before becoming eligible for transport, it is a reasonable

relationship considering the length of time between tfill,i and ttrans,min,i. With burnup

and mass held constant, the hotter an assembly is the higher the activity and thereby

the higher the rate of nuclide decay. Therefore, the assembly would have fewer

unstable nuclides after twenty years of cooling and a lower level of dose, while the

initially cooler assemblies would have more remaining. While the assemblies from

Comanche Peak do not have uniform burnup levels, this effect is seen in the hottest

and latest casks to be ready for transport.

While GAMMA-PC performed much better at finding solutions with lower objec-

tive vectors than the OC solutions in this scenario, the individual cask characteristics

behind the vectors do not show huge differences. Figure 4.18 presents the distribu-
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Figure 4.17: Scatter plots showing objective vectors for solutions from the GAMMA-
PC approximate set split out by f1 in the Comanche Peak loading problem (MPC-37).
Lines of regression show the indirect relationship of f2 and f3, and the translucent
bands show the 95%confidence interval.
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Figure 4.18: Violin plots comparing the cask characteristics of solutions for the Co-
manche Peak dry cask loading problem (MPC-37). The OC solutions are compared
to solutions found by GAMMA-PC during initialization, in generation 20, and in
the approximate set (G39). The top plot shows the distributions of initial cask heat
loads, and the bottoms shows the eligibility dates for transportation.
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tions of the cask heat loads and the eligibility dates for transportation. The distribu-

tion of the cask heat load for the initial generation starts off much broader than the

distribution for the OC set. However, the distribution of the intermediate generation

covers approximately the same range with a similar shape, and the approximate set

shows very few differences. The same pattern is seen in the distributions of ttrans,min.

The maximum for the approximate set is slightly earlier than for the OC set and the

median is slightly later. Overall, the plot shows that while GAMMA-PC achieved

better fitness values over time, the approximate set is not remarkably different than

the OC set in this regard.

Figure 4.19 filters this information to only show the dominant OC solution (F =

[196, 22.0, 2098]), the recommended solution, and its alternate from the approximate

set. In this case, the recommended and the alternate solutions both employ the

minimum number of casks, and the difference lies between their f2 and f3 values. At

a weighted average of 21.0 kW, the recommended solution has the lowest initial heat

of those with f1 = 196 but the latest time to transport (2094). The alternate solution

has the earliest time to transport (2075) but the hottest average initial cask heat load

at 22.7 kW. This is reflected in Fig. 4.19. The distributions for the recommended

solution are almost identical to the OC solution. The median heat load is slightly

cooler, and the 25% quartile in the time to transport is slightly later than the OC

statistics, but overall the difference is negligible. The alternate solution on the other

hand shows a wider range of initial heat loads with a much smaller range of eligible

dates. The median values for both of its distributions are subtly higher, but the

latest date to transport is about 20 years earlier.

These distributions are replotted as functions of tfill,i in Figs. 4.20 and 4.22.

Figure 4.20 shows the distributions of the initial heat load with trendlines overlaid.

The scatter plot for the recommended solution is similar to the OC solution, with a
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Figure 4.19: Violin plots comparing the cask-specific characteristics of the recom-
mended Comanche Peak loading plan (MPC-37) and its alternate to an OC solution.
The plot on top compares the initial heat load for each cask, and the plot on bottom
compares the time at which each cask meets the transportation requirements.
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Figure 4.20: Scatter plots comparing the time-dependent initial cask heat loads of an
OC solution with the recommended GAMMA-PC solution for the Comanche Peak
loading problem (MPC-37).

slight reduction in the trendline in 2057 due to an increased presence of cooler casks.

Figure 4.21 illustrates this similarity with the hottest casks packed during 2029 for

each solution. The GAMMA-PC cask is slightly cooler than the OC cask but shows

the same level of uniformity in assembly selection. The scatter plot in Fig. 4.22 for

the alternate solution is substantially different than the others, showing a decreasing

trendline with the hottest casks filled during the 2023 to 2036 timeframe.

Figure 4.22 shows the distributions of the transportation eligibility dates as a

function of tfill,i for the three solutions. The scatter plots of the OC and recom-

mended solutions again show similar patterns, although the latest date in the rec-

ommended loading is 4 years earlier than the latest date in the OC solution. Unlike

the other two plots, the scatter plot for the alternate solution shows that the casks

with the latest transportation dates are within the 2023 to 2036 timeframe, which
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Figure 4.21: Heat maps for the hottest casks loaded in 2029 in the OC solution and
in the recommended GAMMA-PC solution for the Comanche Peak problem (MPC-
37). Both casks are shown using the MPC-37 three-zone PWR preferential loading
pattern. Note that the assemblies in this graph have only been optimized to the
regional loading, and specific placements within the regions are arbitrary.
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Figure 4.22: Scatter plots comparing the transportation eligibility dates of an OC so-
lution with the recommended GAMMA-PC solution for the Comanche Peak loading
problem (MPC-37).

makes sense given that the casks loaded during this timeframe would be the most

active casks and would need more time to cool. Despite the longer cooling times up

front, these casks are ready for transport approximately two decades earlier than the

latest casks in the other two solutions.

4.2.3 Comparing Results for MPC-32 and MPC-37

The general relationships between the objective functions shown thus far can

be extended to the choice between the MPC-32 cask and the MPC-37 cask for the

Comanche Peak dry cask loading problem. The MPC-32 cask is the chosen system

by the Comanche Peak Nuclear Power Plant, and GAMMA-PC was able to find

loading configurations with it that significantly outperformed the traditional oldest

and coldest strategy. The second optimization of Comanche Peak with MPC-37

was performed to investigate if it would be possible to enable the faster removal of
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Figure 4.23: Comparison of the relationship between the number of casks and the av-
erage initial heat load for the approximate sets found by GAMMA-PC for Comanche
Peak using the HI-STORM MPC-32 and MPC-37 cask systems.

used fuel from the ISFSI assuming the existence of centralized storage location. The

results show that it would be possible given certain tradeoffs.

Figure 4.23 presents a comparison of the approximate sets found by GAMMA-

PC for both scenarios when only considering the relationship between the first and

second objective functions. This figure maintains the indirect relationship between

the number of casks and the initial heat load and even suggests that the two sets

might belong to the same trend if a regression curve for either were extrapolated.

The increase in average initial heat load for the MPC-37 is expected with the increase

in capacity, and this scatter plot illustrates the straightforward trade off between the

two systems. A smaller number of casks would be easier to move but would also

result in higher levels of heat and thereby higher activity during transfer procedures.
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Figure 4.24: Comparison of the relationship between the average initial heat load
and the maximum year to transport for the approximate sets found by GAMMA-PC
for Comanche Peak using the HI-STORM MPC-32 and MPC-37 cask systems.

Figure 4.24 shows the comparison through the relationship of the second and

third objective functions. The trade offs are more subtle here. For the MPC-32,

there is no correlation between the heat of the cask and the latest date of eligibility in

2078. The approximate set for the MPC-37, on the other hand, shows the possibility

of an earlier latest date if the configuration were carefully chosen. A number of

the MPC-37 solutions fall before 2078, but the majority are ready later than that.

The hottest solution in the group ready before 2078 is the alternate solution at

f = [196, 22.7kW, 2075], and the coldest is a solution at f = [209, 20.1kW, 2077]. The

tradeoff presented in this graph is that an earlier last transportation date is possible

with the MPC-37 in return for much higher heat loads, which can be mitigated

somewhat through the use of additional casks. If the utility were to consider the
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switch in cask types, it would need to decide if the tradeoff would be worth it to

remove the fuel one to four years faster.

4.3 Zion

The Zion dry cask loading problem presents a unique opportunity to test GAMMA-

PC. Zion Nuclear Power Station entered decommissioning in 1998 and began trans-

ferring used fuel assemblies to dry storage in December 2013 [123]. As discussed in

Sec. 1.3, the transfer project optimized the load plan to reduce the dose at the site

boundary, which required an iterative set of calculations between CASKLOADER,

storage dose classifications, and transport cask criticality assessments. The transfer

procedures concluded in January 2015, making it possible to evaluate GAMMA-PC

against a real world solution of the loading problem.

The optimization of the Zion assembly selection was performed twice with GAMMA-

PC. The first application of the algorithm maintained the original transfer timeline

of approximately one year and used the modified version of the Fp constraint listed

in Table 4.1 to more closely approximate the real transfer frequency. The second

run extended the transfer timeline to a 10 year horizon to examine the effect of

a more gradual loading strategy. Both scenarios used the NAC MAGNASTOR-

Table 4.4: Dry system characteristics for the Zion Nuclear Power Station.

Zion
Cask System NAC MAGNASTOR
Ccask 37
Hs,max [kW] 35.5
Ht,max [kW] 23.0
BUs,max [GWd/MTU] 60.0
BUt,max [GWd/MTU] 70.0
No. of Casks Needed:

Lower Bound 61
Maximum M 81

Function Evaluations 20,000
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MAGNATRAN system chosen by ZionSolutions as the cask model [123]. Table 4.4

lists its characteristics. This system uses an inner transportable storage canister that

can be placed within a storage overpack or a transfer cask [153]. The MAGNATRAN

transfer cask is currently under review, so the transport characteristics in Table 4.4

were copied from the submitted CoC [154].

The GAMMA-PC results for both scenarios are compared to the real loading

strategy, which will be referred to as the “basis” in this discussion. This solution

stores the fuel within 61 MAGNASTOR canisters, and the tfill,i value for each can-

ister is the date it was loaded. Since the canisters can hold 37 PWR used fuel

assemblies, the 61 containers used by ZionSolutions represent a loading configura-

tion with the least amount of open space possible [123]. Inserting the basis into the

objective vector F results in an average initial heat load slightly lower than 14.0 kW,

and the last cask would be ready to be transported in 2025.

4.3.1 Using the Original Timeline

GAMMA-PC performed well against the basis solution under the original trans-

fer timeline. Figure 4.25 shows the comparison in a two dimensional scatter matrix

of the objective space. Each dot represents the objective vector for one solution, and

the histograms along the diagonal show the distribution of values for each objective

function. Two sets of solutions from GAMMA-PC are plotted to show the evolution

of its exploration. The first is the first five fronts of the initial population of solu-

tions produced by GAMMA-PC, and the second is the approximate set saved after

GAMMA-PC reached its ending criteria in generation 178. The basis solution can

only be seen in the histograms due to overlapping with the GAMMA-PC results.

It is dominated by the GAMMA-PC results, although the distance to the nearest

solution in the approximate set (F = [61, 13.84, 2025]) is remarkably close given that
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Figure 4.25: Scatter matrix of the objective space for the Zion dry cask loading
problem using the original loading timeline. This plot shows the evolution of the
solutions found by GAMMA-PC from the initial generation to the approximate set,
found in generation 178. The basis solution is located at [61, 13.94, 2025].
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Figure 4.26: Scatter plot of the objective space for the Zion dry cask loading problem
using the original loading timeline. This plot shows the evolution of the solutions
found by GAMMA-PC from the initial generation to the approximate set, found in
generation 178. The basis solution is located at [61, 13.94, 2025].

the basis solution was optimized using a different objective.

Figure 4.25 also illustrates the relationship of the objective functions within F .

The first and second objective functions have an indirect relationship that is almost

linear. This makes sense given that the heat in each cask is a summation of the

heat from the assemblies. The third objective shows that the Zion loading problem

has one possible value and cannot be optimized to find a lower maximum time

to transport. The year 2025 is determined by an assembly-specific cooling time

requirement from the transportation loading curve and cannot be changed regardless

of the loading configuration. In this way, the Zion loading scenario reduces to a bi-

objective optimization problem. Figure 4.26 reiterates this, showing the approximate
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Figure 4.27: Violin plots comparing the cask characteristics of solutions for the Zion
dry cask loading problem under the original timeline. The basis solution is compared
to solutions found by GAMMA-PC during initialization, in generation 90, and in the
approximate set (G178). The top plot shows the distribution of the initial heat loads,
and the bottom shows the eligibility dates for transportation.
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set as a curve within the 2025 plane of objective three.

Figure 4.27 presents violin plots of cask initial heat loads and time to transporta-

tion. The GAMMA-PC violins show that the initial population started off with a

wide range of initial heat load values, and the algorithm gradually moved toward

areas of the feasible region with lower heat loads. The cask heat loads in the approx-

imate set are significantly lower than the basis solution, which makes sense given

that the distribution includes solutions with more than 70 casks in use. The distri-

bution of the time to transport is relatively unchanged through the progression of

the algorithm, and the violin of the basis and the approximate sets are similar.

Figure 4.28 filters the information shown in Fig. 4.27 to only include the recom-

mended and alternate loading plans from GAMMA-PC. The recommended loading

plan is the solution from the approximate set that uses the minimum number of casks.

This solution most closely corresponds to the setup of the basis. The alternate load-

ing plan is a solution from the approximate set that uses the minimum number of

casks plus one cask for every quarter of the transfer procedures. The initial heat

load distributions show that the recommended solution covers a wider range and has

a somewhat smaller median. While the top 50% hottest casks in the recommended

solution are hotter than the same set for the basis, the bottom 50% are much cooler.

The distribution for the alternate plan is lower overall. The distributions for the

time to transport are almost identical.

Figures 4.29 and 4.30 show the cask characteristics as a function of the tfill,i

dates. The former plot focuses on the initial heat load of the casks, and the latter

on the eligible date for transport. Both plots include trendlines. In Fig. 4.29, the

trendlines for the basis and the recommended solution are similar if slightly shifted

in time, and there is more variability in the solution found by GAMMA-PC. The

trendline for the alternate solution is lower overall. The shift in heat loads for the
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Figure 4.28: Violin plots comparing the cask-specific characteristics of the recom-
mended and alternate Zion loading plans to the basis solution. The plot on top
compares the initial heat load for each cask, and the plot on bottom compares the
time at which each cask meets the transportation requirements. The maximum value
of the cask availability dates for each distribution is in 2025.
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Figure 4.29: Scatter plots comparing the initial cask heat loads for the recommended
Zion loading plan and its alternate to the basis solution over the original timeline.

alternate plan happened almost entirely in the top half of the graph. The extra cask

loaded every quarter reduced the heat of the hottest casks but did not increase the

number of cooler casks below the trendline.

The transportation eligibility dates have fewer distictions among the basis, recom-

mended, and alternate solutions. The biggest difference in Fig. 4.30 is the location of

the casks along the tfill,i range. Most of the casks were available for transportation on

the transfer date, which makes sense given the number of old assemblies in the pool.

The casks with ttrans,min dates later than 2020 are governed by the MAGNATRAN

loading curve and the presence of higher burnup assemblies. The only difference the

loading configuration could make is by grouping the higher burnup assemblies into
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Figure 4.30: Scatter plots comparing the time to transport for the casks in the
recommended Zion loading plan and its alternate to the basis solution over the
original timeline.

fewer casks, which would adversely affect the second objective without improving

the value of the third.

In comparing the GAMMA-PC results to the basis solution, the heat load of the

casks has shown the most contrast. The recommended solution dominates the basis

using the paradigm developed in Sec. 2 and has a lower overall cask average initial

heat load, with and without the weighting system described in Eq. 2.14. However,

it also has higher individual initial heat loads than the basis solution.

Figure 4.31 presents heat maps of the hottest cask in the basis solution and

in the recommended solution to better illustrate this difference. The hottest cask

loaded in the recommended solution includes a wider range of decay heat levels,
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Figure 4.31: Heat maps for the hottest casks in the basis solution and in the rec-
ommended GAMMA-PC solution under the original timeline. Both casks are shown
using the MAGNASTOR four-zone PWR preferential loading pattern. Note that
the assemblies in this graph have only been optimized to the regional loading, and
specific placements within the regions are arbitrary.

with more assemblies falling on the higher end of the heat scale. The basis solution

features a more strategic mix of fuel with a wider range of discharge dates and

an empty position. After summing the decay heat in each cask, the hottest basis

cask is a full kW cooler than the hottest recommended cask. Under a different

optimization paradigm, these two solutions might be nondominated as they exhibit

tradeoffs between lowering the average and reducing the maximum initial heat load.

4.3.2 Using a Ten Year Timeframe

In the second optimization of the Zion scenario, the optimization timeline was

extended to a 10 year period. ZionSolutions loaded the used fuel in slightly more

than a year, which could be a difficult schedule to keep with every cask taking five to
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Figure 4.32: Scatter plots of the objective space for the Zion dry cask loading problem
using the 10 year timeframe. The solutions are plotted on a scatter matrix in (a) and
on 3D scatter plot in (b). These graphs show the evolution of the solutions found by
GAMMA-PC from the initial generation to the approximate set, found in generation
167. The basis solution is located at [61, 13.94, 2025].
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six days to load [123]. The purpose of the extended optimization was to investigate

how cask characteristics might change if the fuel had been loaded on a more relaxed

timeline. It will be shown that the earlier loading schedule would negatively impact

achievable values for the second objective.

Figure 4.32 illustrates the objective space for the Zion problem under the ex-

tended timeline. Each dot represents the objective vector for one solution, and the

histograms along the diagonal show the distribution of values for each objective func-

tion. These figures show the same general trends as was observed under the original

timeline: a universal value for the time to transport and an indirect relationship

between the number of casks and the average initial heat load. However, with more

casks being loaded on earlier dates, the approximate set produced by GAMMA-PC

shifted toward higher initial heat loads, which is the expected response given the

nature of radioactive decay. The basis solution now dominates the recommended so-

lution at F = [61, 14.04, 2025], although it does not dominate the entire approximate

set.

Figure 4.33 presents the distributions of the initial heat loads and the ttrans,min,i

values under the extended timeline. The GAMMA-PC violins show an evolution

toward loading configurations with lower initial heat loads and lower variability in

general. The approximate set produced by GAMMA-PC also exhibits a lower cumu-

lative median heat load and median time to transport than the basis solution. Even

though the recommended solution is dominated by the basis, the other solutions

found by GAMMA-PC might be reasonable alternatives.

Figure 4.34 filters the previous plot to only show the basis, the recommended

solution, and the alternate solution from GAMMA-PC. The alternate loading plan

in this scenario loads one additional cask for every year of transfer procedures, or 68

in total to cover the seven years corresponding to Fp = 10. The distribution for the
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Figure 4.33: Violin plot comparing the cask characteristics of solutions for the Zion
dry cask loading problem under the 10 year timeframe. The basis is compared to
solutions found by GAMMA-PC during initialization, in generation 85, and in the
approximate set (G167). The top plot shows the distribution of the heat loads, and
the bottom shows the time at which each cask meets the transportation requirements.
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Figure 4.34: Violin plots comparing the cask-specific characteristics of the recom-
mended 10-year Zion loading plan and its alternate to the basis solution. The plot
on top compares the distribution of initial cask heat loads, and the plot on bottom
compares the time at which each cask meets the transportation requirements.
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Figure 4.35: Scatter plots comparing the initial cask heat loads for the recommended
10-year Zion loading plan and its alternate to the basis solution over the extended
timeline.

heat load of the recommended solution has approximately the same median as the

basis, but its top quarter hottest casks are much hotter than the corresponding casks

for the basis. On the other hand, the alternate solution exhibits a tigher distribution

than the recommended solution and a lower median heat load than the basis. The

time to transport distributions for GAMMA-PC both extend earlier than the basis

and have lower medians.

Moving the transfer dates earlier in time has been shown to degrade the perfor-

mance of the recommended solution with respect to the basis. Figure 4.35 shows the

initial heat load of the casks as a function of tfill,i. The middle plot features hotter

casks that were loaded earlier than the original transfer schedule, which is expected
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Figure 4.36: Heat maps for the hottest casks loaded in May 2014 for the basis and
the recommended GAMMA-PC solutions under the extended timeline. Both casks
are shown using the MAGNASTOR four-zone PWR preferential loading pattern.
The heat scale does not encompass the maximum heat load limit due to a sizeable
margin, and specific placements within the regions are arbitrary.

since used fuel assemblies cool over time. However, it also indicates that a couple

of the casks filled within the original schedule are signficantly hotter than would be

expected. Figure 4.36 presents the heat map for one of these casks in comparison

to the hottest cask for the basis. The map shows a greater concentration of hotter

assemblies in the cask with only one assembly cooler than 0.3 kW. This suggests

that the recommended solution from GAMMA-PC did not achieve a well-balanced

loading configuration.

The variability of heat load values was also seen under the original timeline, albeit

to a lesser extent, which suggests that either the packing strategies in GAMMA-PC

have room for improvement in terms of balancing the load throughout the casks or
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Figure 4.37: Scatter plots comparing the time to transport for the casks in the
recommended 10-year Zion loading plan and its alternate to the basis solution over
the extended timeline.

the objectives set by the problem formulation do not include a proxy for this quality.

Since heat load balance was not an objective defined in the problem formulation, this

finding does not suggest that GAMMA-PC performed poorly. Rather GAMMA-PC

moved toward solutions that minimized the stated goals, and future optimization

studies may want to include balance as an objective. This could be achieved by

minimizing the difference between the hottest and coldest casks or by minimizing

the standard deviation from the average.

Figure 4.35 does show that the variability of the heat load decreased with an

increase in the number of casks. The alternate solution features lower cask heat

loads overall and exhibits a fairly uniform pattern throughout the loading schedule.
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However, this loading pattern would also leave approximately 10% of the positions

open, which could negatively impact the economics of decommissioning.

The impact of the loading configuration on the time to transport has a similar

relationship as it did under the original timeline, as shown in Fig. 4.37. Many casks

could be transported on the loading day, and the casks that are eligible after 2020

are dependent on the cooling time of the higher burnup assemblies. The low impact

on ttrans,min suggests that the third objective function is not universally applicable

to all ISFSI scenarios as a way to differentiate loading configurations.

4.4 General Trends in the Test Case Scenarios

The results of the optimization cases showed that GAMMA-PC performs well at

finding nondominated solutions for its stated objectives. In terms of its performance

as an optimization methodology, GAMMA-PC consistently produced a diverse set

of solutions that dominated the set of solutions used for comparison. The only case

in which the comparison set covered the approximate set produced by GAMMA-PC

was the Zion loading problem under the extended timeline, where the basis solution

dominated the solution with the minimum number of casks in use. The results of

that particular case were more negative for the extended loading schedule than for

the performance of GAMMA-PC.

Another consistent finding in the results were scenarios in which the fitness values

for the third objective function reduced to a single number independent of the other

two objective function values. This was the case when the time to transport was

determined on the assembly-level, in which case the loading configuration could not

find a lower f3 value. This may be evidence that future work in this area reframe

the third objective to handle the question of transportation differently.

Finally, the analysis of the individual cask characteristics highlighted the fact that
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the loading problem paradigm does not directly address balance among the casks.

This was particularly demonstrated in the Zion loading problem, where the external

solution had been so carefully tuned. Since this was not one of the objectives given

to GAMMA-PC, more variability was seen in its cask distributions. Future work

might incorporate this as a goal.
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5. CONCLUSIONS

To address the evolving needs of dry storage at U.S. nuclear power plants, a

new optimization methodology was developed in this research to identify optimal

loading configurations for competing objectives relevant to worker safety and long-

term transportability:

1. minimizing the number of casks needed to store current and future inventory,

2. minimizing the average initial heat load of those casks, and

3. minimizing the time for the casks to meet transportation guidelines.

The motivation behind this research was to move away from short-term planning

strategies, selecting the oldest and coldest used fuel for dry storage, and toward

strategies that balance and reduce risk over the lifetime of a site’s reactor(s).

The long-term dry cask loading problem was developed as an adaptable paradigm,

accomodating different site structures and different cask CoC limits in broadly-

defined constraints. It belongs to the class of bin packing problems, which seek

to minimize the number of bins used to store a set of items. It is a dynamic, combi-

natorial problem following the general optimization paradigm shown in Eq. 5.1.

minimize F(x) = (f1(x), f2(x), f3(x)),

s.t. x ∈ (Ωbpp ∩ Ωlc ∩ Ωpool ∩ Ωoper).

(5.1)

The decision vector x for the loading problem is composed of three arrays: the

packing matrix x, the bin array y, and the loading time array tfill. Each row in

these arrays correspond to an individual cask being filled, and each column in x

corresponds to an individual assembly being loaded. Feasible values for the decision
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vector are bounded by bin packing physicality constraints (Ωbpp), assembly selection

constraints (Ωlc), spent fuel pool constraints (Ωpool), and operational constraints

(Ωoper). Limitations within these general categories are dependent on the specific

site being optimized and the cask system chosen. Feasible solutions are evaluated

by their performance in each objective function and are compared to other solutions

based on their objective vector F(x, y, tfill).

Based on the complexities of the dry cask loading problem, a new metaheuris-

tic algorithm was developed in this research, named the GRASP-enabled adaptive

multiobjective memetic algorithm with partial clustering (GAMMA-PC). This novel

method embeds greedy randomized adaptive search procedures in the general frame-

work of a multiobjective evolutionary algorithm combined with local search tech-

niques. The packing of the assemblies into casks is handled by greedy heuristics, and

the search for new solutions is handled by genetic and local search operators. The

crossover operator performs a partial decomposition of the objective space, randomly

pairing half of the solutions and selectively pairing the other half based on their local

cluster. Application rates for mutation and local search are updated every genera-

tion, and the feasibility of new decision vectors is ensured through solution repair

methods.

GAMMA-PC was implemented within a Python package, which was useful for

the object-oriented nature of the problem. The tool was developed to ensure that its

code would be adaptable, maintainable, extensible, and modular. These features will

allow future users to optimize different objectives, add new constraints, and create

new local search routines. The modularity of the package enables updates to be

made separately based on the needed change. The tool also includes a unit testing

suite to verify that new changes do not negatively impact other areas of the package.

GAMMA-PC was demonstrated through integration with UNF-ST&DARDS, a
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unified database containing information for over 150,000 used fuel assemblies at nu-

clear facilities around the U.S. [1]. Three sites were optimized under a total of five

different scenarios:

• Vermont Yankee Nuclear Power Station using the same cask system and trans-

fer timeframe as the vendor in charge of decommissioning,

• Comanche Peak Nuclear Power Plant using the HI-STORM 100 MPC-32 cask,

• Comanche Peak Nuclear Power Plant using the HI-STORM FW MPC-37 cask,

• Zion Nuclear Power Station using the same cask system and transfer timeframe

as the vendor in charge of decommissioning, and

• Zion Nuclear Power Station using an extended ten year transfer timeline.

The performance of GAMMA-PC was evaluated through comparisons of its results

with other sets of solutions. For the Vermont Yankee and Comanche Peak scenarios,

the GAMMA-PC results were compared to solutions found using only the First Fit-

T heuristic, which represented oldest and coldest loading configurations. For the

Zion cases, the comparison was made against the real loading configuration used by

ZionSolutions, LLC.

GAMMA-PC performed well in the test cases, consistently producing a diverse set

of solutions that dominated the testing set. The improvement was mainly achieved in

the second objective function. For the sites in decommissioning, Vermont Yankee and

Zion, the recommended solution from GAMMA-PC reduced the weighted average

initial heat load by about 0.2 kW and by 0.1 kW, respectively, when loading fuel

over the real-world transfer timeframe. The highest reduction was found in the

Comanche Peak scenarios, where the recommended solution reduced the heat load
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by 0.76 kW (MPC-32) and by 1.0 kW (MPC-37) when compared to the solution

from the testing set with the lowest weighted average initial heat load. In these

cases, the higher levels of heat load reduction were the result of applying GAMMA-

PC to Comanche Peak’s long optimization timeline, compared to the relatively short

time frames for Vermont Yankee and Zion.

The results also showed room for improvement in the mathematical formulation

of the dry cask loading problem. In four of the five optimization cases, the fitness

values in the approximate set for the third objective function reduced to one value

independent of the other two objective functions. This single value was the result of

the third objective function being partly determined by individual assembly charac-

teristics and partly determined by the loading configuration. It was expected that the

values for the third objective would be determined by a mixture of the two aspects,

but the results did not support that hypothesis.

5.1 New and Significant Contributions

This research fills a gap in the current literature. Previous used fuel dry storage

loading studies have not revealed the mathematical formulation of the problem or

have not included the regulatory guidelines for assembly selection in the constraints.

This research provided a mathematical framework for the problem, covering longer

timeframes than previous programs, and incorporating regulatory limits within the

problem architecture. Future dry storage optimization studies can use the formula-

tion as a basis on which to make improvements.

Previous dry loading studies also have not revealed the algorithm used to perform

the optimization or have used methods that have limited ability to handle the large,

complex search space of the dry cask loading problem. In constrast, GAMMA-PC

was developed using suggestions from recent studies on multiobjective evolutionary
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algorithms and was validated against other state-of-the-art methods before being

applied to the dry cask loading problem (refer to Appendix B).

Finally, this research contributes to studies on bin packing problems. Among the

papers published since the first multiobjective bin packing problem, few have featured

objective vectors with three or more objectives [103,155]. The focus here was on the

practical application of the class to address an important issue in the field of nuclear

engineering, whereas most multiobjective bin packing studies handle ideal bins and

items. Moreover, a thorough search of relevant literature was unable to find another

study that formulated a dynamic bin packing problem in a similar manner. The

dry cask loading problem is different from previous dynamic bin packing problems

where items have arrival and departure times, such as those used to model cloud

computing [131]. Instead, the assemblies have time-dependent characteristics, wait

in the spent fuel pool for some time, and remain in the casks once loaded.

5.2 Recommendations

The results of the five optimization scenarios highlighted some findings for utilities

planning loading campaigns.

1. Consider using GAMMA-PC or another long-term optimization algorithm to

improve current loading strategies. The algorithm could be used as a supple-

ment to current planning procedures, to provide alternative loading configura-

tions for comparison and to evaluate the long-term impact of the chosen short-

term campaign plan. It could also be reconfigured as a wrapper or a learning

phase for a single-cask loading software, such as CASKLOADER. The results

of the optimization scenarios suggested that more diverse loading strategies

can improve cask heat loads, in which case identifying assemblies to be saved

for future loading cycles would be beneficial.
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2. When using an optimization algorithm such as GAMMA-PC, carefully formu-

late the objective functions. The results in Sec. 4 showed that GAMMA-PC

found solutions that performed well by the established objective metrics but

not as well for other characteristics, such as the variability of the cask heat

load. Aligning the objective functions with the planning goals would produce

better solutions for decision makers.

3. Empty positions in canisters should be chosen strategically. When the total

number of assemblies is not divisible by the capacity of the cask, the placement

of the empty positions can be used to reduce the heat load of the hottest casks.

This benefit was shown in both the Vermont Yankee and Zion cases.

5.3 Future Work

Future work in this area should focus on refining the loading problem statement.

The third objective function should be changed to a metric that is solely deter-

mined by the selection of assemblies within a cask. In its current form, the third

objective function was developed to closely align with the regulatory transportation

requirements, which had the unintended consequence of making it highly sensitive to

attributes that were independent of the decision vector. Future implementations of

the problem should perform preliminary sensitivity analyses on the objective func-

tions to ensure that the competing goals are dependent on the loading configuration.

Future development should also include an objective function focused on the bal-

ance of the heat load among the casks. The distributions of the cask initial heat

loads and transportation eligibility dates showed variability and was particularly

highlighted when compared to the distributions for the real loading of Zion Nu-

clear Power Station. This result suggests that in its current form, the optimization

paradigm did not place priority on this aspect or include a proxy for it in the ob-
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jective functions. One approach would be to include an objective to minimize the

maximum difference between the hottest and the coldest casks, and another would

be to minimize the standard deviation of the initial heat loads.

Any future modifications to the mathematical paradigm would need to be re-

flected in changes to local search techniques used by GAMMA-PC. Part of the suc-

cess of the method is that it is built on problem-specific knowledge that guides the

search toward more favorable areas of the objective space. Therefore, a new objective

function should coincide with the introduction of at least an updated neighborhood

structure and possibly a new type of cask modification module in addition to those

discussed in Sec. 3.4.

Future research in this area should also incorporate the uncertainty associated

with real used fuel systems. While the loading matrix x is binary, the characteris-

tics of the assemblies have some uncertainty associated with them, so the objective

functions and the constraints should be updated to deal with the inherent fuzziness

of these models. Aspects of GAMMA-PC should also updated to handle the uncer-

tainty. For example, the binary selection procedure would need to be modified to an

operator similar to the statistical selection procedure [156].

Core shuffling and reload patterns have been the focus of many optimization

studies over the past 20 years, and it is time for the dry cask loading problem to

be the subject of formal investigation as well. This research has contributed one of

the first in-depth studies in this area. The mathematical paradigm was developed

to expand the current treatment of assembly selection and to meet user-defined

expectations. GAMMA-PC is a promising new metaheuristic for this task and for

dynamic bin packing problems in general.

114



REFERENCES

[1] K. Banerjee, J. Scaglione, R. LeFebvre, G. Radulescu, and K. Robb, “Stream-

lining analysis capabilities for SNF management,” in Waste Manage. 2015.

WM Symposia, March 2015.

[2] R. K. Haling, “Operational strategy for maintaining an optimum power dis-

tribution throughout life,” in Amer. Nucl. Soc. Topical Meeting, Nucl. Perfor-

mance of Power-Reactor Cores. San Francisco, CA: American Nuclear Society,

September 1964.

[3] I. Wall and H. Fenech, “The application of dynamic programing to fuel man-

agement optimization,” Nucl. Sci. and Eng., vol. 22, no. 3, pp. 285 – 297,

1965.

[4] T. O. Sauar, “Application of linear programming to in-core fuel management

optimization in light water reactors,” Nucl. Sci. and Eng., vol. 46, no. 2, pp.

274 – 283, 1971.

[5] J. S. Miller and N. D. Eckhoff, “A linear programming fuel management model

for the HTGR,” Ann. of Nucl. Energy, vol. 2, no. 9-10, pp. 649 – 656, 1975.

[6] H. Motoda, J. Herczeg, and A. Sesonske, “Optimization of refueling schedule

for light-water reactors,” Nucl. Technology, vol. 25, no. 3, pp. 477 – 496, March

1975.

[7] S. A. Comes and P. J. Turinsky, “Out-of-core fuel cycle optimization for

nonequilibrium cycles,” Nucl. Technology, vol. 83, no. 1, pp. 31–48, 1988.

[8] K. C. Okafor and T. Aldemir, “Construction of linear empirical core models for

pressurized water reactor in-core fuel management,” Nucl. Technology, vol. 81,

115



no. 3, pp. 381 – 392, June 1988.

[9] J. A. Stillman, Y. A. Chao, and T. J. Downar, “The optimum fuel and power

distribution for a pressurized water reactor burnup cycle,” Nucl. Sci. and Eng.,

vol. 103, no. 4, pp. 321 – 333, December 1989.

[10] D. P. Burte and S. G. Vaidya, “Parametrization for optimization of reload

patterns for boiling water reactors,” Ann. of Nucl. Energy, vol. 20, no. 4, pp.

237 – 249, April 1993.

[11] Y. P. Mahlers, “Core loading pattern optimization for pressurized water reac-

tors,” Ann. of Nucl. Energy, vol. 21, no. 4, pp. 223 – 227, April 1994.
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[147] E. S. Nicoarǎ, “Performance measures for multi-objective optimization algo-
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APPENDIX A

BIN PACKING BENCHMARK DEVELOPMENT

During the development of GAMMA-PC, its performance was validated and im-

proved by the use of benchmark scenarios. Given the narrow range of previous

research into the optimization of dry cask loading patterns, a set of problem-specific

benchmark scenarios does not exist. Since the problem belongs to the general class

of bin packing problems, more idealized benchmarks were established to aid in de-

velopment. This section describes how the benchmarks mirror the dry cask load-

ing problem, the optimization methodologies used for comparison, and the lessons

learned from their performance in the first benchmark problem. The full evaluation

of GAMMA-PC in these benchmark scenarios is given in Appendix B.

A.1 Benchmark Problem Formulation

For the benchmarks to be successful, they needed to reflect the characteristics

of the dry cask loading problem while reducing its complexity. To achieve this, two

benchmark scenarios were developed: a static case and a dynamic case. Both were

formulated with three objectives to simulate similar objective spaces.

A.1.1 Static Problem Modifications

The static problem reduces the dry cask loading case to a standard bin packing

problem, sorting idealized objects into larger bins. Each object has a weight and a

height associated with it, and the bins are assigned weight and height limits. The goal

of this problem is to minimize the number of bins needed while also minimizing the

average weight and the maximum used height of the bins. The first objective function

Eq. 2.11 can be used without modification. The other two are simplified analogies
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of Eqs. 2.12 and 2.15 that test an algorithm’s handling of means and maximums in

the objective space.

The static problem is only constrained by physical reality. The “no replacement”

constraint applies here, and each bin must not be filled beyond the weight or height

capacities. The problem uses the standard bin packing problem decision variable

format.

A.1.2 Dynamic Problem Modifications

The dynamic benchmark scenario was developed to be a model of the dry cask

loading problem, sharing its unique characteristics on a much smaller scale. It uses

the same decision variable as the dry cask loading problem and uses the daily opera-

tion of a bakery as a metaphor. The problem focuses on baking a set of n cookies. It

is assumed that n is large enough that the oven can’t bake them all at the same time,

so the cookies come out of the oven in batches. Before being placed into bins, or

cookie boxes, the cookies must cool off to avoid moisture buildup. However, similar

to spent fuel pools, the cooling racks can only hold a limited amount of cookies.

Therefore, the boxes must start being filled before the end of the cookie baking ses-

sion. The characteristics of the assemblies also evolve over time, so not every cookie

cools down at the same rate, explained by the presence of flavor particles, such as

chocolate chips.

To mirror the cask loading problem, the cookies are sorted into boxes with three

goals:

1. minimizing the number of boxes used,

2. minimizing the average initial heat of a box,

3. and minimizing the maximum time until the containers can be moved into the

140



storefront.

The second objective was formulated by assuming that the cookies are placed in a

pattern that makes heat transfer interaction between them negligible. This enabled

the assumption that the heat in a box is a linear sum of the convective heat produced

by each cooling cookie. The cookies cool exponentially, which makes them a good

model for the radioactive decay of nuclides in used fuel assemblies. In the third

objective, it was assumed that the box is ready to be moved once the total heat is

equivalent to each cookie in a full box being within 5◦C of room temperature. The

time to move is calculated with the modified regula-falsi method, similar to Eq. 2.15.

The packing constraints were modified for time dependency. The“no replace-

ment” and box capacity constraints were applied, as well as a physicality constraint

representing the capacity of the cooling rack. The mathematical formulation of both

the static and dynamic benchmark problems are developed in Appendix B.

A.2 Optimization Methodologies for Comparison

Four optimization methodologies were chosen for comparison and validation of

GAMMA-PC:

• Nondominated Sorting Genetic Algorithm II (NSGA-II) [102],

• Multiobjective Evolutionary Particle Swarm Optimization (MOEPSO) [130],

• Multiobjective Memetic Algorithm (MOMA) [134],

• and Memetic Algorithm Based on Decomposition (MOMAD) [157].

These methodologies have previously been applied to combinatorial problems and

represent a variety of techniques. NSGA-II was chosen as one of the most popular

MOEAs used to validate new algorithms, such as in [158]. MOEPSO was chosen
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because it was specifically designed for multiobjective bin packing problems, and

MOMA was chosen to represent a memetic-version of NSGA-II. Finally, MOMAD

was chosen since it is one of the newest memetic algorithms and features a flexible

framework.

A.2.1 NSGA-II

NSGA-II was developed by Deb et. al. in 2002 to address criticisms of the

original NSGA approach, which were the high computational complexity, the lack

of elitism, and the need to specify a sharing parameter to ensure diversity [102].

To fix these issues, the authors implemented a fast sorting algorithm to select the

parent population of every generation based on Pareto dominance and developed a

more general niche operator to encourage diversity along the Pareto Front. Since its

publication, the algorithm has become the basis for the majority of MOEAs [128].

The general flow of NSGA-II is shown in Fig. A.1. The initial population is

generated randomly, and the first round of selection is performed using a standard

binary tournament with elitism [102]. For the bin packing problems developed here,

single-point crossover is performed for all generations, as well as a single mutation

that consists of swapping the order of two genes in the chromosome representation.

These evolutionary functions are performed at the rates listed in Table A.1. Any new

solution in the next generation is encoded into matrix representation before being

evaluated and archived.

After the initial generation, the breeding pool is selected based on the fast non-

dominated sorting algorithm laid out in [102]. This algorithm uses the current and

previous generations as candidates, sorts them into domination fronts, and then fills

the breeding population sequentially in order of nondomination rank. Once the algo-

rithm reaches a front that has more members than is required to reach completion,
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Figure A.1: High level flowchart of NSGA-II algorithm.

Table A.1: NSGA-II Benchmark Settings.

Generation Size 100

Function Evaluations 25,000

Crossover Probability 0.90

Mutation Probability 0.30
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the members within that front are added in reverse order to the breeding pool based

each solution’s niche value. This value is determined by the crowding distance as-

signment (cda). This niche operator indicates how close a solution is to the other

solutions in its domination front inside the objective space, so adding solutions with

higher cda values promotes diversity in the breeding pool.

A.2.2 MOEPSO

MOEPSO was developed by Liu et. al. in 2007 to solve multiobjective bin packing

problems [130]. Their paper was the first to present a mathematical formulation of a

bi-objective bin packing problem and the first to apply particle swarm optimization

(PSO) to a bin packing problem. PSO is a population-based stochastic optimization

method inspired by the behavior of swarming animals, such as birds or fish [128].

The general way it operates is that the particles in the population, or the swarm,

evolve over time, learning from their own history and from the swarm’s combined

knowledge. The authors chose to use PSO due to evidence of a higher convergence

speed for multiobjective optimization. They also incorporated a mutation operator

in their method to combine evolutionary computation with PSO concepts. Their

results showed that MOEPSO performed better in almost all of their tests than

either a standard MOEA or multiobjective PSO alone.

The algorithmic flow of MOEPSO is shown in Fig. A.2. The calculation initial-

izes the swarm by creating chromosome representations using a completely random,

a completely sorted, or a partially-random/partially-sorted combination of item in-

dices [130]. Table A.2 gives the swarm size and the probablities of the way each

particle’s chromosome representation is initialized. The solutions are encoded into

both matrix representation and the variable length representation before moving into

the main loop.
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Figure A.2: High level flowchart of MOEPSO algorithm.

Table A.2: MOEPSO Benchmark Settings.

Swarm Size 500

Function Evaluations 25,000

Fixed Size of Global Best Archive 50

Initialization: Probability of Random
Sequence

0.50

Initialization: Probability of Random
& Sorted Sequence

0.25

Initialization: Probability of Sorted
Sequence

0.25
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As a modified PSO, MOEPSO maintains two archives: the “personal best”

archive, which keeps track of each individual’s best solution, and the “global best”

archive, which keeps track of the nondominated solutions found by the swarm [130].

The solution evaluation and archiving step shown in Fig. A.2 performs this function.

The personal best solution is updated anytime the algorithm finds a solution for a

particle that dominates the previous personal best. The global best archive is up-

dated at every generation to include nondominated solutions and is truncated to the

pre-determined fixed size using the dynamic sharing scheme [159].

To adapt to the bin packing problem, the PSO operator in MOEPSO adds a best

bin into a particle’s solution and repacks the others [130]. The best bin is the most-

filled bin of a solution that is selected randomly between the particle’s personal best

or one of the solutions in the global best archive. The bin is added to the particle

using the variable length representation, and the other items not in the best bin are

gathered into a partial chromosome. The x- and y-matrices are then repacked using

the encoding strategy.

The mutation portion of MOEPSO randomly selects between three bin-specific

mutation functions [130]. The first operation is to partially swap the contents of

two random bins in a solution. The second merges the two least-filled bins together.

The third splits a random bin into two separate bins. The mutation operations are

limited enough in scope that the modifications to a solution happen in the variable

length and matrix representations without needing to use the encoding strategy.

However, after these changes have been made, the chromosome representation needs

to be updated for the next round. The solution encoding step in Fig. A.2 does this.
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Figure A.3: High level flowchart of MOMA algorithm.

A.2.3 MOMA

MOMA is a memetic version of NSGA-II that was developed by Ishibuchi et.

al. in 2009 to demonstrate the impact of varying certain parameters related to local

search [134]. They applied the algorithm to multiobjective knapsack problems, which

are another type of combinatorial problem. Their experiments considered aspects

such as the frequency of local search, the choice of initial solutions for local search,

the termination condition of local search, and the handling of infeasible solutions.

The results from the experiments showed that for hybridization with local search to

improve a method, the local search method needs to incorporate problem-specific

knowledge.

Figure A.3 shows the algorithmic flow of MOMA. As MOMA is based on NSGA-

II, it shares the same basic structure with the addition of the local search function.

The settings for MOMA are given in Table A.3. The additional decision function in
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Table A.3: MOMA Benchmark Settings.

Generation Size 100

Function Evaluations 25,000

Crossover Probability 0.80

Mutation Probability 0.30

Local Search Probability 0.0 to 0.2

Local Search Size 10

the figure indicates that the local search is only performed every 10 generations. This

incorporates the result that showed similar performance regardless if the frequency

were every one, five, or ten generations [134]. Local search is applied to solutions

in the breeding pool with a given probablity, and the search size determines the

number of neighbors that are identified during one search. The local search probablity

specified in Table A.3 shows a range of values because the authors found that MOMA

worked best when the probability increased linearly from 0 to 0.2. They also found

that it performed best when the product of the probability and the search size stayed

within the region from 1.0 to 2.0, so this adaptation used a search size of 10 neighbors.

A change from the original algorithm was that this version of MOMA uses Pareto

local search instead of the weighted sum fitness approach [134]. Therefore, if a neigh-

bor is nondominated by the original solution, it’s added to the next generation as

a potential member of the next parent population. The neighbors are identified

with the help of one function from a set of four: one that swaps the placement

of two items between bins and three similar to the MOEPSO mutation functions.

This modification incorporates the authors’ suggestion that local search should use

problem-specific information to be successful. In the case of a bin packing problem,
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Figure A.4: High level flowchart of MOMAD algorithm.

bins are more useful than the information contained in the chromosome representa-

tion.

A.2.4 MOMAD

MOMAD was developed by Ke et. al. in 2014 to combine aspects of evolutionary

algorithms, decomposition approaches, and Pareto local search methods [157]. It is

one of the latest memetic algorithms and presents a flexible framework for future

use. The authors applied MOMAD to a multiobjective traveling salesman problem

and a multiobjective knapsack problem. Their results showed promise for solving

combinatorial problems with MOMAD.

Figure A.4 presents a high-level view of MOMAD. Normal operations involving

the whole multiobjective problem are indicated by a solid pink outline, and decom-

posed operations are indicated by the double-lined purple outline. MOMAD is ini-

tialized by decomposing the multiobjective problem into a number of single-objective
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Table A.4: MOMAD Benchmark Settings with specifications for the single-objective
(SO) genetic algorithm.

Number of SO Functions N or 600 (if
N > 600)

Function Evaluations 25,000

SO Population Size 5

No. of SO Generations 5

SO Crossover Probability 0.90

SO Mutation Probability 0.30

Local Search Probability 1.0

Pareto Local Search Size 50

Subproblem Local Search Size 25

functions [157]. This is done by generating a set of random weight vectors whose size

is determined by the number of objectives and whose sum must equal 1. Then, each

single-objective function is defined by the cross product of the weight vector and

the multiobjective vector. A single-objective optimization method is applied to each

subproblem to find an ideal solution for the initial generation. In this application, a

genetic algorithm was used with characteristics listed in Table A.4. The population

size and the number of generations completed in this stage are small due to the many

single-objective functions considered and the limited number of function evaluations.

After the single-objective optimization finishes, the archives are initiated [157].

Three populations are maintained during calculations: PL, PP , and PE. The first

population keeps track of the current solutions to the single-objective subproblems,

and the second lists the solutions designated for Pareto local search. The PE popu-

lation keeps track of all of the nondominated solutions throughout the calculations.
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Set PL is initiated by solving the single-objective subproblems. Both PP and PE are

initiated by determining the nondominated solutions in PL.

The main loop of MOMAD consists of Pareto local searches followed by subprob-

lem local searches [157]. The Pareto local search is applied to each of the solutions

in PP with the search size given Table A.4. The PL and PE sets are updated as

necessary, and after each search, the solution is removed from PP . In the next step,

each solution in PL is perturbed to generate a new solution. Local search is applied

to that new solution, comparing it with one neighbor at a time until a better solu-

tion is found, then continuing the search with that solution until the search size is

reached. If the search results in a better solution to the subproblem, PL is updated.

If the new solution is nondominated and can be added to PE, then it is also added

to PP , removing all other solutions in the set that it dominates.

A.3 Method Modifications for Dynamic Problem

The four comparison algorithms were all designed for problems with one decision

variable type. However, the dynamic benchmark uses both binary and continuous

variables. Therefore, modifications were needed to some of the algorithmic functions.

The first modification was made during the initialization of the algorithm. In

addition to the packing chromosomes, random tfill arrays are generated. Figure A.5

shows a schematic of the algorithm developed to generate these arrays. The time

to fill the first box is randomly selected from a reasonable timeframe. In this case,

the range is between 700 seconds, shortly after the first batch of cookies is removed

from the oven, and 1200 seconds, when the next batch is removed. The next step

is to determine the number of bins to open in tfill. This value is selected randomly

either from the set of all possible values or from a set of values chosen with expert

guidance. For this problem, the expert set includes values such that each box would
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Figure A.5: Initialization scheme for the tfill array in the dynamic benchmark.

be at least 50% filled if a new one is not opened. The tfill array is set at evenly

spaced intervals between the first fill time and 600 seconds after the last batch exits

the oven.

The next modification adapted the bin packing heuristic discussed in [103] to the

dynamic framework. The first change was made to the residual matrix. Originally,

the residual matrix keeps track of how much weight and height could be added to

each open bin. In the dynamic problem, the physicality constraints of concern are

the number of cookies in each box and the difference in time between removal from

the oven and placement in the box.

A corresponding change was made in the Packable Boolean variable, which de-

termines if an item satisfies the capacity constraints of a bin using the residual

matrix [103]. Under the dynamic benchmark, the Packable variable signifies if a
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cookie both meets a bin’s capacity constraint and is taken out of the oven before the

bin is set to be filled. Therefore, when moving an item, the residual values for each

bin are updated using Eq. A.1 in the dynamic benchmark.

ri,1 = ri,1 − 1

ri,2 = tfill,i − (bk)j∆tbatch

(A.1)

The first residual value ri,1 relates to the available capacity in a box. When a new

box is opened, this value is initialized at the box capacity, and each time a cookie is

added, its residual capacity decreases by one. The second residual value ri,2 is related

to the availability of the cookie at the time box i is filled. Both residual values need

to be nonnegative for Packable to be true.

The dot product strategy was also changed. In the original heuristic, the weighted

dot product given in Eq. A.2 is calculated for every open bin, and the bin that

maximizes this value is chosen to store item j [103].

w1 · cj · ri,1 + w2 · hj · ri,2 (A.2)

In Eq. A.2, w1 and w2 represent weights used to normalize the dot product in each

dimension, which are set as the average weight and height of the items to be sorted.

The variables cj and hj represent the weight and height of an individual object. To

adapt this to the dynamic benchmark, the dot product becomes Eq. A.3.

w1 · ri,1 + w2 · T (tfill,i) · ri,2 (A.3)

To maintain the intent of the strategy, each of the dot products were related to the

physicality constraints. The first product focuses on the available capacity in a box.
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Figure A.6: Scatter plot of approximate sets found for Experiment 8 of the static
benchmark.

Therefore, w1 was set at 1, and cj was removed in the dynamic benchmark. The

second product focuses on the availability of a cookie to move into box i. The chances

of a cookie moving into a box are dependent on when it’s removed from the oven

and how hot it is, so w2 was set to be the average temperature of a cookie during

cooling, and the height was replaced with the temperature of the cookie when box i

is filled.

A.4 Static Benchmark Results

To gain insight into MOEAs, the four comparison algorithms were evaluated

on their performance in the static bin packing problem described in Section A.1.1.

2DCPackGen was used to generate twenty random instances of the general problem

to evaluate the algorithms under a variety of conditions [160]. This section describes

which algorithms performed better and discusses initial findings that were used to
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Figure A.7: Scatter matrix of approximate sets found for Experiment 8 of the static
benchmark.

develop GAMMA-PC in Appendix B.

Figures A.6 and A.7 present the objective space for one of the scenarios. The

results presented here are characteristic of many of the experiments in the static

benchmark. Figure A.6 is a 3D scatterplot of the objective space and shows that

the approximation set for MOMA spanned much more of the space than the other

three algorithms. The approximation sets for the other three clustered in a region

of the objective space with a low number of bins. This observation is reinforced by

Fig. A.7 as the approximation sets for NSGA-II and MOMAD are contained entirely

in the lowest bar for the number of bins. Consequently, the maximum bin height

and average bin weights achieved by these approximation sets were concentrated on

the higher end of the spectrum. The approximation set for MOEPSO showed a little
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Figure A.8: Binary coverage interpretation results for the twenty static benchmark
experiments.

more variation but not as much as MOMA’s. The approximation set for MOMA

exhibited the expected distribution between the average bin weight and the number

of bins, since these objectives are indirectly related.

Figures A.8 and A.9 presents of the binary interpretation function for IC(A,B)

and Iε(A,B) respectfully. (For more information about these functions, refer to Ap-

pendix B.4.3.) The most striking feature of these graphs is that for almost all of the

experiments, none of the algorithms could be proven to be better than another. For
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Figure A.9: Binary-ε indicator interpretation results for the twenty static benchmark
experiments.

the comparisons between NSGA-II and MOMAD, the approximation sets produced

by NSGA-II were better in roughly half of the experiments. MOMA also produced

a few approximation sets that proved to be better than MOMAD’s or MOEPSO’s.

However, with the large number of comparisons disproving A . B, it would be diffi-

cult to choose the appropriate scheme based on the static benchmark alone. Either

the static bin packing problem presented little difficulty, or the algorithms produce

similar levels of performance.
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Figure A.10: Normalized spread indicators for static benchmark experiments on
a log-scale. The indicators were normalized based on the largest spread in each
experiment.

When considering the diversity of the approximation sets, MOMA exhibited the

largest range. Figure A.10 presents the spread indicator for the approximation sets

in each of the static benchmark experiments. The indicators were normalized based

on the largest spread value, which was found to be MOMA’s in every experiment.

The spread of the approximation sets for MOMA were large enough that Fig. A.10

uses a log scale to show the differences between the other three algorithms. The

approximation sets for NSGA-II and MOMAD exhibited similar levels of diversity,

while those for MOEPSO were somewhat more diverse.

Based on the performance exhibited in the static benchmark problem, NSGA-II

and MOMA were selected to be used in the dynamic benchmark. The approximation

sets produced by NSGA-II proved to be better than MOMAD’s in approximately half
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of the experiments, and both exhibited similar levels of solution diversity. NSGA-II

could not be proven to be better than MOEPSO or MOMA, though. Since MOMA

produced a few better sets than MOEPSO and had much larger diversity in its

approximation sets, it was selected over MOEPSO.

The biggest lesson from these results was that problem-specific knowledge would

be important for optimization in the dynamic benchmark. Both MOMA and MO-

MAD included local search components, but the local search used in MOMA was

based on the variable length representation of the loading, whereas MOMAD used

the chromosome representation. For a bin packing problem, the information about

items in one bin is more useful than where the item is located in the chromosome.

Therefore, the diversity achieved using MOMA was much greater. Also, given the

number of subproblems MOMAD decomposed the bin packing problem into, there

was not a good balance between exploration and exploitation in MOMAD. These

lessons were used to develop GAMMA-PC in the dynamic benchmark discussed in

Appendix B.
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APPENDIX B

A GREEDY MEMETIC ALGORITHM FOR A MULTIOBJECTIVE DYNAMIC

BIN PACKING PROBLEM FOR STORING COOLING OBJECTS

The following text was submitted to Journal of Heuristics in support of the work

completed in this dissertation. It presents a mathematical treatment of GAMMA-PC

and compares the performance of the method to other state-of-the-art algorithms.

B.1 Abstract

In this paper, a multiobjective dynamic bin packing problem for storing cooling

objects is introduced along with a metaheuristic designed to work well in its mixed-

variable environment. The dynamic bin packing problem is based on the idea of

cookie production at a bakery, where cookies arrive in batches at a cooling rack

with limited capacity and are packed into boxes with the three competing goals.

The first goal is to minimize the number of boxes used. The second objective is to

minimize the initial heat of each box, and the third is to minimize the maximum

time until the boxes can be moved to the storefront. The metaheuristic developed

here incorporated greedy heuristics into an adaptive evolutionary framework with

partial decomposition into clusters of solutions for the crossover operator. The new

metaheuristic was applied to a variety benchmark bin packing problems and to a

small and large version of the dynamic bin packing problem. It performed as well as

other metaheuristics in the benchmark problems and produced more diverse solutions

in the dynamic problems. It performed better overall in the small dynamic problem,

but its performance could not be proven to be better or worse in the large dynamic

problem. keywords: Dynamic bin packing problem, Multiobjective combinatorial
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optimization, Metaheuristics

B.2 Introduction

The bin packing problem is a NP-hard combinatorial problem relevant to many

real-world systems [161]. Its primary goal is to fit a number of items into as few

bins as possible within given constraints. The general bin packing problem has

the flexibility to be abstracted to represent ideas such as cloud computing or to be

formulated to directly resolve physical space limitations, such as packing boxes for

transport.

In the past decade, more attention has been given to the multiobjective needs

of the systems that these problems represent. The first multiobjective bin packing

problem was extended to minimize both the number of bins and the average deviation

from the center of gravity in the bins [130]. Since then, many other studies have

included this “load-balancing” objective [162] as well as minimizing the maximum

length of a bin [103] and minimizing costs [163].

Traditionally, bin packing problems have been solved using approximate algo-

rithms, such as the First-Fit and Best-Fit methods [132]. While exact algorithms are

available for very small problems, approximate algorithms can produce near-optimal

solutions in O(n log n) time, an advantage for medium to large packing problems.

However, when more than one objective is present, approximate algorithms work

best when combined with a method suited for the multidimensional objective space.

Bin packing problems with multiple competing objectives are structured accord-

ing to the standard multiobjective problem format, given in (B.1).


minimize F(x) = (f1(x), ..., fm(x))T

s.t. x ∈ Ω

(B.1)
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In (B.1), the decision vector x belongs to the feasible region Ω. The objective vector

F translates x into the objective space through m objective functions. The decision

vector x for a bin packing problem with N items is typically represented by two

binary matrices such as those given in (B.2) and (B.3).

xij ∈ {0, 1}, ∀ i ∈ {1, ...,M}, j ∈ {1, ..., N} (B.2)

yi ∈ {0, 1}, ∀ i ∈ {1, ...,M} (B.3)

Here, x represents the loading matrix, and y is the open bins vector. The index i

is the counter for the bins, and j is the counter for the objects. The variable M

represents the theoretical maximum number of bins, so x is an N × N matrix, and

y is an array of length N .

The best solutions in Ω involve trade-offs among the competing objectives. To-

gether, these solutions are called the Pareto set, and their image in the objective

space is the Pareto front. A feasible solution is proven to belong to the Pareto set by

showing that it is not dominated by any other solution, defined formally below [128].

Definition B.1. In a multiobjective problem with m objectives, an objective vector

u = (u1, ..., um)T dominates another vector v = (v1, ..., vm)T iff ∀θ ∈ {1, ...,m},

uθ ≤ vθ and u 6= v, written u ≺ v .

An algorithm may not reach the true Pareto front during its finite computation, so

an instance of a set of nondominated feasible solutions is called an approximation

set [129].

Multiobjective evolutionary algorithms (MOEAs) have been the most popular

method for solving multiobjective optimization problems given their ability to quickly

find approximations to the Pareto front [128]. Consequently, for multiobjective bin
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backing problems, the heuristics of approximate algorithms have been combined

with MOEAs, such as the multiobjective evolutionary particle swarm optimization

(MOEPSO) [130] or the nondominated sorting genetic algorithm II (NSGA-II) [103].

However, as an extension of evolutionary algorithms, MOEAs suffer from a weak

exploitation ability and can be slow to converge. Using an ensemble approach can

greatly improve this limitation. Recent studies have found better speed and accuracy

with memetic algorithms [128], the ensemble of MOEAs and local search methods.

This study makes two main contributions. To the best of our knowledge, this

paper is the first to formulate a dynamic bin packing problem in this manner. It is

different from previous dynamic bin packing problems where items have an arrival

time and a departure time, such as those used to model cloud computing [131]. The

dynamic bin packing problem introduced here does not include a departure time.

Also, the items have time-varying characteristics, and an intermediate “holding”

area is available so that the arrival time does not necessarily coincide with when the

item is placed in a bin. Consequently, the bin packing decision vector includes a

continuous variable representing the time each bin is filled.

The second contribution is a metaheuristic algorithm, named the GRASP-enabled

adaptive multiobjective memetic algorithm with partial clustering (GAMMA-PC),

which is capable of performing in this mixed-variable environment. In this study,

GAMMA-PC was applied to standard bin packing problems as a basis for wider

comparison and then was applied to both a small version and a large version of the

dynamic bin packing problem introduced here. It will be shown that GAMMA-PC

performs as well as other state-of-the-art MOEAs on standard problems. It is also

better at exploring the objective space in a mixed-variable environment. However,

while it performs better overall in the small version of the dynamic problem, it will

be demonstrated that the right balance between exploitation and exploration has
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not been found yet, degrading its performance in the large dynamic problem.

This paper describes the algorithmic flow of GAMMA-PC and its features in

Sec. B.3. Section B.4 introduces the dynamic bin packing problem and the method-

ology to evaluate the performance of the algorithm. Section B.5 compares the perfor-

mance of GAMMA-PC to other state-of-the-art metaheuristics, and Sec. B.6 draws

conclusions.

B.3 Algorithm

GAMMA-PC combines approaches that have shown promising performance for

specific aspects of the dynamic bin packing problem. The general framework is based

on NSGA-II [102] combined with local search techniques. It has previously been

shown that embedding packing heurisitics in a greedy randomized adaptive search

procedure (GRASP) performs better than using approximate algorithms alone, es-

pecially for problems with special packing requirements [143]. Therefore, to handle

the additional complexity of the time requirements, GRASP is used to perform the

packing and to govern the local search procedures.

Throughout the calculations, three populations are maintained: P , Q, and PEA.

The solutions in P are the parent solutions selected to be used in the genetic oper-

ators, and the solutions in Q are those found by the genetic operators and the local

search procedures. The set PEA is the external archive of nondominated solutions

and is updated every generation. The general outline of GAMMA-PC is as follows.

1. Initialize set Q using ConstructDynamicBPP

2. While the stopping condition is not satisfied, do:

3. Select set P using NSGA-II-styled binary selection,

4. Update PEA,

164



Table B.1: GRASP procedure for creating a new solution.

Algorithm: GRASP-DBPP
Input: j = {1, ...N},

optional: chromosome representation
Ouput: Solution

1 if chromosome representation:
2 x := Construct-DBPP-Chrom(input)
3 else:
4 x := Construct-DBPP-New(input)
5 end if
6 Create Solution from x and evaluate F
7 Find a Neighbor using LocalSearch(Solution)
8 return BestSolution(Solution, Neighbor).

5. Update Q using Crossover-PC,

6. Update Q by Mixed-Variable-Genetic-Mutation,

7. Transform new solutions in Q using ConstructDynamicBPP,

8. Add solutions to Q using Adaptive-Local-Search,

9. Every g generations, Truncate-External-Archive,

10. Update-Operator-Probabilities,

11. End while, and return PEA.

In Step 1 of GAMMA-PC, Q is initialized using the algorithm GRASP-DBPP,

shown in Table B.1, to construct enough solutions to fill the initial parent popu-

lation. The GRASP-DBPP sequence can be called with a real-valued chromosome

representation of the items, but during the initialization step, all new solutions are

constructed from scratch. The decision vector x is constructed according to the

algorithm shown in Table B.2. With Construct-DBPP-New, items are assigned to

bins sequentially based on a randomly chosen packing heuristic θi from a set of m
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Table B.2: GRASP heuristic to construct new solution.

Algorithm: Construct-DBPP-New
Input: j = {1, ...N}
Ouput: vlrep, x, y, tfill

1 tfill := Nx1 array with tfill,i = 0 ∀ i ∈ {1, ..., N}
2 y := Nx1 array with yi = 0 ∀ i ∈ {1, ..., N}
3 RCLt = InitializeGreedyFunction()
4 Select tfill,1 at random from RCLt
5 vlrep := [[1]] and set y1 = 1
6 Select θi at random from range(m)
7 for j ∈ {2, ..., N} do
8 Construct RCLi based on mode θi
9 Select i at random from RCLi
10 if yi = 0:
11 Append [j] to vlrep
12 Select θt at random from range(m− 1)
13 Construct RCLt based on mode θt
14 Select tfill,i at random from RCLt
15 AdaptGreedyFunction(tfill)
16 yi = 1
17 else:
18 Append j to vlrepi
19 AdaptGreedyFunction(vlrep)
20 end if
21 end for
22 Construct x based on vlrep

options, each tailored to minimize an individual objective function. The selected

heuristic returns a restricted candidate list of bin options using a cardinality re-

striction, where the list only contains the best β candidates [144]. Whenever a new

bin is opened, a tfill,i value is chosen from a special continuous greedy function that

will be discussed later. The bin packing is stored in a variable length representation

during the procedure, which is translated into the x loading matrix after all the items

have been packed.

After creating a new solution, GRASP-DBPP finds one neighbor using a ran-

domly selected local search operator. GAMMA-PC uses m+1 local search operators,

where each operator explores a carefully selected local neighborhood to minimize one
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of the objective functions. Two operators represent the first objective of bin packing:

minimizing the number of bins. One search operator moves a solution toward having

fewer bins, while the other repacks bins to find new nondominated solutions. The

latter is chosen if a solution has already reached the theoretical minimum number of

bins. After finding a neighbor, the dominant solution is returned.

The parent population P is selected every generation using NSGA-II-styled binary

selection. Therefore, sets P and Q are combined and sent through the fast-non-

dominated-sort procedure described by [102]. Then, the best solutions are collected

based on nondomination levels and crowding distance assignments and sent to a

binary tournament called the Crowded-Comparison Operator to select a new set P .

More details about these procedures can be found in [102]. The solutions in P are

then used in the genetic operations of Crossover-PC and mutation.

The genetic operations in Steps 5 and 6 are modified from their traditional form

to account for the mixed-variable environment. Both genetic operators handle the

chromosome representation of the packing and the tfill decision variable separately.

The crossover operator performs a single-point crossover on the chromosome rep-

resentation and then on tfill in its matrix form. The modification to the genetic

mutation operator is more complicated. The mutation first performs a two-point

swap in the chromosome representation as it would before mixed-variables were in-

troduced. Then, the tfill array is modified using a new technique for a bin packing

problem.

Previous research with mixed-variable optimization has advised the mutation of

a continuous variable using a normal distribution based on the variability present in

the population members [145]. The function to perform this mutation, translated
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Table B.3: Algorithm to produce standard deviations for mutation of tfill matrices.

Algorithm: Bin-Packing-Time-Sequencing

Input: S = {tfill,i 6= 0.0, ∀ i ∈ {1, ...,M},
tfill ∈ {t1fill, t2fill, ..., t

pop
fill}g}

Ouput: Tsd
1 tmin = tlow = ∆tbatch
2 tmax = maximum time in S
3 ncat = (tmax - tmin) / ∆tbatch
5 thigh = tlow + ∆tbatch
6 Tsd := ∅
7 for cat in range(ncat) do
8 tcat = {t ∈ S : tlow ≤ t < thigh}
9 σcat ← Calculate the standard deviation of tcat
10 Add (tlow, thigh, σcat) to Tsd
11 tlow = thigh
12 thigh += ∆tbatch
13 end

into the particulars of the dynamic problem, is shown in (B.4).

tfill,i,g+1 = tfill,i,g +N (0, σi,g), ∀ i ∈ {1, ...,M} (B.4)

In (B.4), g represents the generation, and σi,g is the standard deviation of the values

for tfill,i. Because the dynamic bin packing problem uses a variable number of bins

and the bins are not necessarily sorted by their fill time, this can lead to errors.

To ensure that the mutation produces a usable tfill matrix, the function suggested

by [145] is modified to become (B.5).

tfill,i,g+1 = tfill,i,g +N (0, σcat), ∀ i ∈ {1, ...,M} (B.5)

Here, the normal distribution is based on the standard deviation of a category of

time values. To find these values, all of the fill times used by the solutions in set

P are gathered together and separated into categories based on the Bin-Packing-
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Table B.4: GRASP heuristic to decode a chromosome representation into a new
solution.

Algorithm: Construct-DBPP-Chrom
Input: chrom (chromosome representation of pack-
ing),

tfill,s (suggested by genetic operations)
Ouput: vlrep, x, y, tfill

1 tfill := Nx1 array with tfill,i = 0 ∀ i ∈ {1, ..., N}
2 y := Nx1 array with yi = 0 ∀ i ∈ {1, ..., N}
3 RCLt = InitializeGreedyFunction()
4 Select tfill,1 from tfill,s or at random from RCLt
5 vlrep, chrom = InitializeFirstBin(chrom, tfill)
6 yi = 1
7 Select θi at random from range(m)
8 for j in chrom do
9 Construct RCLi based on mode θi
10 Select i at random from RCLi
11 if yi = 0:
12 Append [j] to vlrep
13 Select θt at random from range(m− 1)
14 Construct RCLt based on mode θt
15 Select tfill,i from tfill,s or at random from

RCLt
16 AdaptGreedyFunction(tfill)
17 yi = 1
18 else:
19 Append j to vlrepi
20 AdaptGreedyFunction(vlrep)
21 end if
22 end for
23 Construct x based on vlrep

Time-Sequencing algorithm, shown in Table B.3. This algorithm returns a list of

standard deviations along with the temporal boundaries for each category so that

when mutation occurs, each tfill,i can be connected with the standard deviation in

its time category.

In Step 7, GAMMA-PC translates the chromosomes and tfill arrays into new

solutions. GRASP-DBPP sends the chromosome representation and tfill array to the

Construct-DBPP-Chrom algorithm shown in Table B.4, which performs the decoding

in a similar manner to Construct-DBPP-New. One difference is the order in which
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the items are considered. Each number in the chromosome corresponds to an item

to be packed, and the order listed in the chromosome determines the sequence of

items packed. Another difference is that the algorithm tries use tfill values from the

array produced by the genetic operations before finding a new feasible time value for

a bin. When initializing the first bin, each item is considered in sequence until one is

found that can be placed in that bin without violating time constraints. The index

number for this item is removed from the list, and then each item is packed in order

of the newly shortened chromosome.

In Step 8 of GAMMA-PC, local search is performed on the new solutions in Q

with probabilities that are updated every generation. The same m + 1 local search

operations used in GRASP-DBPP are called here, searching for NLS neighbors in-

stead of only one. On even generation numbers, the solutions in PEA are clustered

into groups based on the number of bins used, and a random solution in each cluster

is sent to a randomly chosen local search operator. The solutions at the extremes

are always included, searching near m solutions in PEA, where each solution has a

fitness value representing the minimum found for the corresponding objective func-

tion. Finally, every four generations, local search is performed across PEA according

to the same probabilities used for the local search of Q. Any neighbor found to be

nondominated to the input solution is added to Q. After every g generations, PEA

is truncated based on the crowded distance assignment value to keep the size of the

archive below a preset level.

B.3.1 Continuous Greedy Function for Selecting Fill Times

The continuous greedy function to select bin fill time values combines the idea of

Monte Carlo selection with that of a restricted candidate list. The function RCLt

maintains the timeline and keeps track of the available space in the intermediate
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Table B.5: Algorithm to initialize tfill restricted candidate list.

Algorithm: InitializeGreedyFunction
Input: R, N , nbatch, ∆tbatch

optional: vlrep, tfill
Ouput: RCLt

1 bn = N / nbatch
2 trange = {b∆tbatch} for b ∈ {1, ...bn + 1}
3 space = {R− bnbatch} for b ∈ {1, ...bn}
4 Append (R− bnnbatch) to space
5 if optional arguments given:
6 for every bin i in vlrep do
7 AdaptGreedyFunction(vlrep[i], tfill,i)

holding area as a function of time. When the function is called upon to generate

a new fill time, it restricts the timeline and returns a randomly selected time from

within that range.

Table B.5 presents the algorithm used to initialize RCLt. The timeline begins as

a list of arrival times for each batch of items with an additional period at the end.

The list generator shown for trange is based on the assumption of evenly spaced arrival

periods and can be easily modified for other regimes. The list generator for space

assumes standard group sizes moving into the holding area with capacity R, with the

last value added to space steady state with the previous. If RCLt is initialized from

an existing solution, the variable length representation and the tfill array would be

used to adapt the greedy function, increasing the space values to match the removal

of items from the holding area at given fill times.

When RCLt is used to generate a new fill time, the space and timeline are con-

verted into a probability density function. The space list in RCLt is allowed to hold

negative values, but these are converted to 0% probability in the probability density

function. The probability density function is transformed into a cumulative density

function, which is used to find a new time value.
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Figure B.1: Illustration of the continuous greedy function, with and without weights.
A new time value is chosen by randomly selecting a percentile within the open region
defined by cmin and cmax and inserting it into the inverse cumulative density function.

Fig. B.1 presents two different versions of the cumulative density function for a bin

packing case with a timeline from 600 to 3000 seconds. The timeline is first restricted

by setting a minimum value at the arrival time of the item under consideration. In

this case, the maximum time value is set at the end of the timeline, but if the holding

area were ever filled beyond capacity, the time when the overflow occured would be

set as the maximum time. Corresponding percentiles are found for the minimum

and maximum time values, and a random percentile is chosen within that range.

The chosen percentile is then converted back into a new time value using an inverse

cumulative density function.

There are two different continuous greedy functions shown in Fig. B.1 to empha-

size that the new time generator for RCLt can be adjusted to the problem at hand.

The top figure shows the cumulative density function without modification, so an
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Table B.6: Crossover operator with partial clustering.

Algorithm: Crossover-PC
Input: P , fran
Ouput: Q

1 Split P into Pran and Pc based on fran
2 Qran ← Mixed-Variable-Genetic-Crossover(Pran)
3 Update ideal values z∗ using PEA
4 Nc = 2m
5 Sort solutions from Pc into Nc Tchebycheff clusters
6 Qc := ∅
7 for c in range(Nc) do
8 if cluster c is not empty:
9 New solutions ← Mixed-Variable-Genetic-

Crossover(cluster c)
10 Add New solutions to Qc
11 else:
12 Update-Mutation-Rate
13 end if
14 end for
15 Q = Qran +Qc

item has the same probability of being chosen within any given period between trange

values. In the bottom figure, the probability is modified so that the total probability

in the period remains the same, but the probability of chosing a time value increases

linearly within that period. Therefore, the top and bottom continuous greedy func-

tions hit the same percentile values at the times listed in trange, but the shapes of

the functions between those points are different.

B.3.2 Crossover with Partial Clustering

The standard genetic crossover used in NSGA-II is modified in GAMMA-PC

to include partial clustering, as shown in Table B.6, with the goal of balancing

exploration and exploitation of the objective space. The Crossover-PC operator

first sends a fraction fran of P straight to the crossover operator to be randomly

paired and mixed. Then, it carefully sorts the remaining solutions into Nc clusters

before sending each cluster to the crossover operator. All of the solutions produced
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by the multiple crossovers are combined to make up Q.

Crossover-PC performs the grouping of the clusters using the Tchebycheff ap-

proach [146]. To support the use of this approach without knowledge of the Pareto

front, the ideal values z∗ are updated every generation to reflect the most ideal

points found in the objective space for every objective θ. The m× 1 array z∗ is set

using (B.6).

z∗θ = min
x∈Ω

fθ(x) (B.6)

To perform the sorting, Nc random weight vectors of the form λ = (λ1, ..., λm)T are

produced such that
∑m

θ=1 λθ = 1 and λθ ≥ 0 for all θ = 1, ...,m [146]. Then, the

objective vectors for each solution in Pc are transformed into Nc single objective

vectors through (B.7) with the random weight vectors.

gte(x|λ) = max
1≤θ≤m

{
λθ
wθ

(fθ(x)− z∗θ)
}

(B.7)

This procedure is similar to the process of decomposition in MOEA/D-type algo-

rithms but is only applied during the crossover operation. The form of (B.7) is also

modified from the Tchebycheff approach generally used by MOEA/D [146] to reflect

the purpose of the weight in the Tchebycheff norm, which is to normalize various

criteria [147]. The λ weight vector is still included in (B.7), but it is divided by

the vector w. This is calculated in similar manner as z∗ in (B.6), except finding the

maximum value present for each objective among the solutions in PEA. The inclusion

of w ensures that the clusters are formed throughout the objective space, even if one

objective function explores a much larger range than the others. After the single

objective fitness values are calculated for a solution, it is placed in the cluster with

the weight vector resulting in the smallest single objective value.
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Table B.7: Algorithm to update local search probabilites.

Algorithm: Update-Operator-Probabilities
Input: PEA, pgls, p

g
ls,θ for θ = 1,...,m− 1

Ouput: pg+1
ls , pg+1

ls,θ for θ = 1,...,m− 1

1 IdealNSize := m× 1 array of zeros
2 for θ in range(m) do
3 IdealNeighbors = {u ∈ PEA : uθ − z∗θ ≤ 0.10z∗θ}
4 IdealNSizeθ = |IdealNeighbors|
5 end for

6 pg+1
ls ← Update-Local-Search-Rate(pgls, IdealNSize)

7 a = min(IdealNSize)
8 b = max(IdealNSize)
9 pmove =

(
1− a/b

)
pgls,θ(b)

10 pg+1
ls,θ(b) = pgls,θ(b) − pmove

11 pg+1
ls,θ ← Redistribute pmove to other local search oper-

ators for θ = {1, ...,m} \ {θ(b)}
12 Ensure the sum of pg+1

ls,θ is 1.0 for θ = 1, ...,m

B.3.3 Updating Operator Probabilities

The first “A” in GAMMA-PC refers to the adaptation performed every generation

to move the operator probabilities toward areas of need during calculations. The first

change is made during Crossover-PC in Step 5. For every empty cluster found, the

mutation rate increases by a small amount. This change occurs because the single

objective fitness values represent different areas of the objective space, so if a cluster

is empty, the area governed by that weight vector has not been explored well. The

increase is made in the mutation rate to encourage more random exploration.

The local search probabilities are also updated every generation to encourage

search in one area or another based on the solutions present in PEA. During calcu-

lations, m local search probabilities are maintained: the probability of local search

overall pls and the probabilities of objective-specific local search operators pls,θ for

the first m − 1 objectives. The probability of local search for the last objective is

implicit because the total should sum to 1. The algorithm to update these prob-
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ablities is given in Table B.7. First, the number of solutions in PEA in the local

neighborhood of each ideal value are counted, found using the relationship shown in

Step 3 of Update-Operator-Probabilities. The size of each neighborhood is stored in

the m× 1 array IdealNSize. The overall probability pls is increased if any value in

IdealNSize falls below a preset minimum value or is decreased if all of the values

are above a preset maximum.

Next, the probabilities for the individual local search operators are updated based

on the variation in IdealNSize. The probability of the local search operator associ-

ated with the objective with the largest ideal neighborhood is reduced by a fraction

determined by the size of the smallest ideal neighborhood. The portion it loses pmove

is redistributed fairly among the probabilities for the other objectives. For exam-

ple, if the probabilities at the end of generation g were pgls,1 = 0.25, pgls,2 = 0.25,

and pgls,3 = 0.50 and if IdealNSize were found to be (2, 4, 8), then pls,3 would lose

(1−2/8)0.50 from its share, or pmove = 0.375. A fair way to redistribute this between

the search operators for the first and second objectives would be to give pls,1 a larger

chunk of pmove since its neighborhood is smaller. Therefore, the probabilities would

be updated to pg+1
ls,1 = 0.50, pg+1

ls,2 = 0.375, and pg+1
ls,3 = 0.125 in the next generation.

B.4 Simulation Methodology

This section describes the test problems and the performance metrics used to

evaluate the new method.

B.4.1 Static Test Problem

The static test problem is a general bin packing problem sorting idealized objects

into larger bins. It is included to demonstrate how GAMMA-PC performs under a

familiar packing problem format. Each object has a weight and a height, and the

bins are assigned weight and height limits, as illustrated in Fig. B.2. The objective
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Figure B.2: Illustration of the static benchmark problem setup. Each object has a
weight and a height and are sorted into bins with the goals of minimizing the number
of bins, the average weight of a bin, and the maximum used height.

of the problem is to minimize the number of bins in use while also minimizing the

average weight and the maximum used height of the bins. This is similar to the bin

packing problem described in [103].

B.4.1.1 Mathematical Formulation

The mathematical formulation of the static test problem is given from (B.8)

to (B.13).

min. z1(s) =
M∑
i=1

yi (B.8)

min. z2(s) =

∑M
i=1

∑N
j=1 cjxij∑M

i=1 yi
(B.9)

min. z3(s) = max

(
N∑
j=1

hjxij, i ∈ {1, ...,M}

)
(B.10)
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s.t.
M∑
i=1

xij = 1, ∀j ∈ {1, ..., N} (B.11)

N∑
j=1

cjxij ≤ Cyi, ∀i ∈ {1, ...,M} (B.12)

N∑
j=1

hjxij ≤ Hyi, ∀i ∈ {1, ...,M} (B.13)

Objective (B.8) minimizes the number of bins in use, (B.9) minimizes the average

weight of a bin, and (B.10) minimizes the maximum used height. The variable cj

represents the weight associated with object xij, and hj represents the height. These

objectives are bounded by the “no replacement” constraint (B.11), the bin weight

capacity constraint (B.12), and the bin maximum height constraint (B.13). The

weight and height limits are denoted C and H, respectively.

To generate items for the static problem, 2DCPackGen [160] was initiated using

the two-dimensional setting to produce height and weight values for the given number

of objects. The objects were made using the Single Bin Size Bin Packing Problem

selection. Table B.8 presents the other parameter settings used to generate the

problem characteristics. The shapes and sizes were chosen to ensure the benchmark

would cover a diverse range of possibilities, and the beta distribution was chosen so

that the characteristics would be roughly normal.

B.4.1.2 Statistical Setup

For the static problem, GAMMA-PC was evaluated against four other MOEAs:

• NSGA-II [102],

• multiobjective memetic algorithm (MOMA) [134],

• memetic algorithm based on decomposition (MOMAD) [157],
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Table B.8: Parameter selections to generate experimental samples for the static
benchmark problem using 2DCPackGen [160].

2DCPackGen Option Selection

Seed 85518

Number of instances 20

Minimum and maximum size dimension of
the large object

300 1000

Minimum and maximum size dimension of
the small items

10 100

Characteristic of the size and shape of the
large object

Average length and narrow or av-
erage length and tall

Characteristic of the size and shape of
small items

Small and square, short and tall,
long and narrow or big and square

Minimum and maximum number of differ-
ent item types

500 500

Characteristic of the generator for the
number of different item types

Beta distribution w/ α = 0.5 and
β = 0.5
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• and MOEPSO [130].

These methodologies have previously been applied to combinatorial problems and

represent a variety of techniques. NSGA-II was chosen as one of the most popular

MOEAs used to validate new algorithms, such as in [158]. MOEPSO was chosen

because it was specifically designed for multiobjective bin packing problems, and

MOMA was chosen to represent a memetic version of NSGA-II. Finally, MOMAD

was chosen as one of the newest memetic algorithms with a flexible framework.

To evaluate GAMMA-PC across of variety of specific instances, twenty cases were

generated with 2DCPackGen [160], and the algorithms were used to calculate solu-

tions to each experiment. The basis of the evaluation was 25,000 function evaluations,

and the metrics used for the evaluation are described in Section B.4.3.

B.4.2 Dynamic Test Problem

A real world example of a bin packing problem can be seen in the daily operation

of a bakery. Many cookies, muffins, or other items are baked and placed into boxes

throughout the day. Suppose a baker wanted to optimize their process to something

other than boxing the oldest and coldest cookies first. Then, the bin packing problem

for the baker would be much more complex than the general problem described in

Sect. B.4.1, and the new dynamics would introduce features into the bin packing

problem that are relevant to other real world problems, such as resource allocation.

The dynamic test problem established here concentrates on baking a set of n

cookies. It is assumed that n is larger than the capacity of the oven, so the cookies

bake in batches. Before being placed into bins, or cookie boxes, the cookies must cool

off to avoid moisture buildup. However, the cooling racks can only hold a limited

amount of cookies, so the baker must start filling the boxes before the end of the

cookie baking session. As illustrated in Fig. B.3, each box has a capacity of C cookies,
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Figure B.3: Illustration of dynamic benchmark problem setup. The cookies are
sorted into the containers with the goal of minimizing the number of bins used, the
average initial heat of a bin, and the maximum time until the bins can be moved
into the pantry.

and the cooling rack has a capacity of R. Also, not every cookie cools down at the

same rate due to the presence of flavor particles, such as nuts and chocolate [164],

which adds to the problem complexity.

B.4.2.1 Mathematical Formulation

Suppose the baker wants to move the cookies with three goals in mind:

1. minimizing the number of boxes used,

2. minimizing the average initial heat of a box,

3. and minimizing the maximum time until the boxes can be moved to the store-

front.

With this time-dependent setup, the dynamic bin packing problem can be formu-

lated. The decision vector shown in (B.14), (B.15), and (B.16) is similar to the
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general problem with the addition of the time variable tfill.

xij ∈ {0, 1}, ∀ i ∈ {1, ...,M}, j ∈ {1, ..., N} (B.14)

yi ∈ {0, 1}, ∀ i ∈ {1, ...,M} (B.15)

tfill,i ∈ R+, ∀i ∈ {1, ...,M} (B.16)

The defintions of the i and j indices remain the same, and tfill,i represents the time

in seconds at which box i is filled with cookies. However, unlike x and y, tfill is

a continuous variable, making the dynamic bin packing problem a mixed-variable

problem as well.

The mathematical formulation of the dynamic benchmark is given from (B.17)

to (B.22).

min. z1(s) =
M∑
i=1

yi (B.17)

min. z2(s) =
1∑M
i=1 yi

(∑M
i=1

1

(1+r)
tfill,i

∑N
j=1 hAs(Tj(tfill,i)− T∞)xij

)
(B.18)

min. z3(s) = max(tavailable,i, i ∈ {1, ...,M}) (B.19)

s.t.
M∑
i=1

xij = 1, ∀j ∈ {1, ..., N} (B.20)

N∑
j=1

xij ≤ Cyi, ∀i ∈ {1, ...,M} (B.21)

N∑
j=1

xij · rackij(t) ≤ R, ∀ t ∈ R+ (B.22)

∑
i∈Lp

yi ≤ Fp, ∀ p ∈ {1, ..., np} (B.23)
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xijbj∆tbatch < tfill,i, ∀i ∈ {1, ...,M},∀j ∈ {1, ..., N} (B.24)

The first objective (B.17) remains unchanged, but objectives (B.18) and (B.19) re-

flect the time-dependence of the cooling cookies. It is assumed that the cookies are

placed in a box in a pattern that makes heat transfer interaction between the cookies

negligible. Then, the heat in a box is a linear sum of the convective heat produced by

each cooling cookie: hAs(Tj(tfill,i)−T∞). In (B.18), Tj is the temperature of cookie j

at time tfill,i, r is a discount rate, and T∞ represents the ambient temperature of the

room. The discount rate is included in (B.18) to put higher weight on boxes filled

earlier to prioritize moving boxes to the storefront during an assumed high-traffic

period. It is set at 2.0E-6 for the dynamic test problem. In (B.19), tavailable,i is the

time at which box i is ready to be moved to the storefront.

These objectives are bounded by the “no replacement” constraint (B.20), the box

capacity constraint (B.21), the cooling rack capacity constraint (B.22), the period fill

limit constraint (B.23), and the “finished baking before boxing” constraint (B.24).

The variable Fp is the period fill limit, bj represents the batch number that cookie j

belongs to, and ∆tbatch is the time required to bake one batch of cookies. In (B.22),

rackij is a binary variable representing if cookie j is present on the cooling rack at a

given time, defined in (B.25).

rackij(t) =


1 : bj∆tbatch ≤ t < tfill,i

0 : otherwise

(B.25)

In constraint (B.23), the set Lp is defined by (B.26).

Lp =

{
i : tp ≤ tfill,i < tp +

∆tbatch
2

}
(B.26)
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Here, tp marks the beginning of a given time period, and the first set L0 is defined

such that t0 is equal to ∆tbatch. The total number of sets np depends on the number

of half-batch intervals are present until the last box is filled.

Because cookies are small, thin objects, their temperature variation can be mod-

eled using lumped system analysis [165]. Therefore, Tj(t) in (B.18) can be found

using (B.27) [166].

T (t) = (T0 − T∞)e−t/τ + T∞ (B.27)

where the time constant τ is defined by (B.28).

τ =
ρV cp
hAs

(B.28)

The temperature of the cookie begins at an initial temperature T0 upon removal from

the oven and cools down to the ambient temperature of the room. The time constant

is a combination of the cookie’s density ρ, volume V , heat capacity cp, and surface

area As and the ambient air’s heat transfer coefficient h. It is assumed that the

large-scale cookie production has achieved a uniform cookie shape from one batch to

the next, so the volume and surface area of each cookie remains constant. It is also

assumed that the bakery is operated at room temperature and that the presence of

the cookies does not cause variability in the ambient air heat coefficient. Table B.9

lists the values used for these variables. The cookie volume and surface area values

were found assuming a diameter of 50 mm and a height of 6 mm.

To find tavailable for (B.19), it is assumed that the boxes are ready to be moved

once the total heat is equivalent to each cookie in a full box being within 5◦C of room

temperature. The heat level in a box ready to be moved, Qready, is given in (B.29).

Qready = hAs((T∞ + 5)− T∞)C = 5ChAs (B.29)
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Table B.9: Thermophysical properties used in the dynamic benchmark.

Property Given Value

Ambient Air Heat Transfer Coefficient, h [W/m2 ·K] 8.0 [166]

Ambient Air Temperature, T∞ [◦C]/[K] 25.0 / 298

Cookie Volume, V [m3] 1.2E-5

Cookie Surface Area, As [m2] 4.9E-3

Cookie Density, ρ [kg/m3] 1252.3 ± 17.6 [167]

Cookie Specific Heat, cp [kJ/kg ·K] 2.94 ± 0.17 [167]

Baking Time, ∆tbatch[s] 600

The vector tavailable is found using (B.30) to search for the time at which each box i

is ready.
N∑
j=1

hAs(Tj(tavailable,i)− T∞)xij = Qready, ∀ i : yi = 1 (B.30)

The modified regula-falsi method is used to find tavailable,i [141].

To calculate the objectives and constraints in the dynamic problem, every cookie

needs to have three characteristics:

• a density ρ,

• a specific heat capacity cp,

• and a batch number bj.

As with the static test problem, 2DCPackGen [160] was used to generate the individ-

ual cookie characteristics using the settings given in Table B.10. It was assumed that

the density and specific heat capacity of an individual cookie were independent char-
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Table B.10: Parameter selections to generate experimental samples for the dynamic
benchmark problem using 2DCPackGen. When two options are given, the first was
set for the small test problem, and the second was set for the large test problem.
Only the first half of the output from 2DCPackGen for the small problem was used.

2DCPackGen Option Selection

Seed 75879 & 758

Number of instances 1

Minimum and maximum size of the large
object base

(1000, 2000)

Minimum and maximum size of the small
items base

(1, 100)

Minimum and maximum size of the large
object height

(1000, 2000)

Minimum and maximum size of the small
items height

(1, 1000)

Characteristic of the size and shape of the
large object

Big and square

Characteristic of the size and shape of
small items

Average size and square

Minimum and maximum number of differ-
ent item types

(48, 48) & (1000, 1000)

Characteristic of the generator for the
height of the large object

Beta distribution w/ α = 0.5 and
β = 0.5

Characteristic of the generator for the
height of the small items

Beta distribution w/ α = 1 and β
= 1

Characteristic of the generator for the
number of different item types

Beta distribution w/ α = 0.5 and
β = 0.5

186



acteristics, so 2DCPackGen was initiated using the three-dimensional setting. For

the cookie baking process, each box already has a set capacity, so the selections for

the large object are irrelevant and are reported here to ensure reproducibility. The

values for the small items listed in Table B.10 were carefully chosen for translation

into the needed characteristics.

Under the 3-dimensional setting of 2DCPackGen, the characteristic of the width

and depth of the small objects were assigned together, while the height was chosen

separately. This works well for generating the dynamic data because the density and

heat capacity are translated one way while the batch number is translated another

way. The batch number for each cookie was found using the generated height charac-

teristic, which was uniformly sampled between 1 and 1000. The generated data was

reordered based on this height value, from smallest to largest, and then the batch

numbers were assigned in batch-size increments.

To translate the width and depth into densities and heat capacities, it was as-

sumed that these characteristics vary according to a normal distribution. The char-

acteristic of their size and shape was chosen to be average size and square, generated

between 1 and 100. Then, the value generated for each of these categories was divided

by 100 to become a p-value, which was then translated into a z-value zj using the

normal distribution. From there, the desired characteristic was found using (B.31).

qj = qnom + zj ∗ σq (B.31)

In (B.31), qj represents the value of characteristic q for cookie j, nom signifies the

nominal value given in Table B.9, and σq represents the standard deviation. Table B.9

includes the experimental values for the density and specific heat capacity of cookie

dough that was used in the dynamic problem.
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Figure B.4: Example set of 1000 cookies generated for the dynamic benchmark
problem. The cookies come out of the oven in batches and cool by convective heat
transfer with the ambient air.

Figure B.4 shows a set of 1000 cookies generated using this method. The cookies

are created in batches over time and cool down exponentially, as described by (B.27).

Due to the variation in density and heat capacity, some cookies cool faster than

others, and some cool slower, which is shown in the figure by the broadening of the

temperatures during the cooling process.

B.4.2.2 Statistical Setup

To fully demonstrate the new test case, the dynamic bin packing problem was

evaluated for both a “toy” problem and a full-size problem. The settings for the levels

are given in Table B.11. The full-size problem is large enough to be representative of

real-world bin packing problems, and the toy problem is small enough that a brute

force investigation of the Pareto front is possible. The results from the toy problem

enable a more complete evaluation of the algorithms, and the results from the full
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Table B.11: Dynamic Bin Packing Problem settings.

Setting Toy Problem Full Problem

Total Number of Cookies N 24 1000

Cookies per Batch 6 100

Box Capacity C [No. of cookies] 8 24

Cooling Rack Capacity R [No. of
cookies]

15 300

Period Fill Limit Fp [No. of boxes] 2 8

Parent Population Size 50 100

Function Evaluations 750 25,000

problem illustrate how well the performance scales with problem size.

For the dynamic problem, GAMMA-PC was evaluated against NSGA-II and

MOMA. The number of algorithms for comparison was reduced from the static prob-

lem based on their performance and the time necessary to translate each algorithm

for the dynamic problem. One problem instance was generated for the toy problem,

and one for the full problem. The algorithms were run 5 times with different seed

values for the toy problem and 20 times with different seeds for the full problem. The

basis for the comparison was the number of function evaluations, given in Table B.11.

B.4.3 Performance Metrics

For multiobjective optimization, the task of characterizing the performance of one

algorithm over another is not straightforward. It is possible that one approximation

set might have higher quality solutions in one area while another is better in a

different region of the objective space. One approximation set might have reached

189



the Pareto set in a very concentrated area of the objective space, while another

has slightly lower quality solutions that span the entire Front. Two characteristics

highlight these complex differences: the quality of the solutions found and their

diversity.

There are many different performance indicators used to describe quality and

diversity, but the drawback of many of them is that they require a priori knowledge

of the Pareto front. With the test problems used here, the true Pareto front is

unknown. This makes it necessary to use indicators that can reliably discern if one

set is better than another without knowledge of the Pareto front. This is denoted

A . B and is formally defined in Def. B.2 [129].

Definition B.2. A . B if every z2 ∈ B is weakly dominated by at least one z1 ∈ A.

To prove that the indicator is reliable, it must be shown to be both .-complete

and .-compatible [129]. If an indicator is only .-complete, the indicator will always

produce a positive result if A.B but might produce a false positive when A 7 B. If

an indicator is only .-compatible, a positive result will always validate that A . B.

However, it could produce a false negative, missing cases where A . B. Therefore,

a reliable indicator will be both complete and compatible to avoid producing either

false positives or false negatives.

Three performance indicators were chosen to evaluate these characteristics. It

was previously proven that unary quality indicators cannot be both .-complete and

.-compatible [129], so two binary indicators were chosen to quantify the quality of

the approximation sets: the binary coverage indicator and the binary ε indicator.

The maximum spread indicator was chosen to quantify the diversity of the solutions.
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B.4.3.1 Binary Coverage Indicator

The first binary quality indicator is the coverage indicator introduced by Zitzler

et. al. [168]. This performance metric represents the fraction of one approximation

set that is “covered” by another. Equation (B.32) presents the formula to find the

coverage of set A over set B, denoted with the symbol IC(A,B).

IC(A,B) =
|v ∈ B : ∃ u ∈ A where u � v ∨ u = v|

|B|
(B.32)

In (B.32), u is an objective vector belonging to approximation set A, and v is an

objective vector belonging to B.

By itself, IC(A,B) shows if approximation set A weakly dominates B, but it needs

to be used more carefully to show that A is better than B. To be both .-complete

and .-compatible, the indicator needs to pass through interpretation function (B.33).

FC(A . B) := (IC(A,B) = 1 ∩ IC(B,A) < 1) (B.33)

This logic function is used to analyze the results in the experiments.

B.4.3.2 Binary-ε Indicator

The second quality metric is the binary-ε indicator introduced by Zitzler et.

al. [129]. This indicator is based on the idea quantifying how much one objective

vector dominates another, or ε-domination, which is defined in Def. B.3.

Definition B.3. In a multiobjective problem with m objectives, an objective vector

u = (u1, ..., um)T ε-dominates another vector v = (v1, ..., vm)T iff ∀θ ∈ {1, ...,m},

uθ ≤ ε · vθ for a given ε > 0, written u �ε v .

To apply this idea to approximation sets, a series of calculations are made [129].
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First, each solution belonging to approximation set A are compared to each solution

in B using (B.34).

εz1,z2 = max
1≤θ≤n

z1
θ

z2
θ

, ∀ z1 ∈ A, z2 ∈ B (B.34)

During the comparison, εz1,z2 is set as the maximum fraction among the objectives.

Since this is a minimization problem, the maximum fraction indicates the least dom-

inated objective and therefore the ε-domination of z1 to z2. Then, all of the εz1,z2

values for a particular solution belonging to set B are compared using (B.35).

εz2 = min
z1∈A

εz1,z2 , ∀ z2 ∈ B (B.35)

The variable εz2 indicates how well a particular solution in set B is dominated by set

A overall. Finally, the binary-ε indicator Iε(A,B) is set as the worst of these values,

as shown in (B.36).

Iε(A,B) = max
z2∈B

εz2 (B.36)

Combining these steps produces (B.37).

Iε(A,B) = max
z2∈B

min
z1∈A

max
1≤i≤n

z1
θ

z2
θ

(B.37)

As with the binary coverage indicator, Iε(A,B) must pass through an interpre-

tation function to be both .-complete and .-compatible. Function (B.38) shows the

logic used to prove that approximation set A is better than B.

Fε(A . B) := (Iε(A,B) ≤ 1 ∩ Iε(B,A) > 1) (B.38)
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B.4.3.3 Maximum Spread Indicator

The maximum spread indicator is used to compare the diversity of the approx-

imation sets [169]. This performance metric measures how far an approximation

set reaches in the objective space along the different objective vertices. It doesn’t

provide evidence that one set is better than another, but it does describe how well

an algorithm approximates the front. The spread D for one approximation set is

calculated using (B.39).

D =

[
m∑
θ=1

(
max
z∈A
{zθ} −min

z∈A
{zθ}

)2
]1/2

(B.39)

Adra and Flemin suggest normalizing D values by the spread of the true Pareto

front [169], but that is not possible here. Instead, the spread indicator values are

normalized using the largest D-value found every experiment.

B.4.3.4 Pareto Front Performance Metrics

When the Pareto front is known, more straightforward metrics may be used. The

absolute efficiency of each algorithm in finding solutions that belong to the Pareto

set is defined in (B.40) [147].

E =
|A ∩OP |
|OP |

(B.40)

Here, E is the proportion of approximate set A that belongs to the Pareto set OP ,

showing how well each algorithm has reached optimal solutions. However, this mea-

sure could return the same efficiency to two different approximate sets, even if one set

achieved a front that was much closer to the Pareto front than the other. Therefore,

it is useful to complement the efficiency with measures describing the distance from

an approximate set to the Pareto set.

The distance d(u, v) between two solutions is defined by the Tchebycheff norm,
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given in (B.41).

d(u, v) =
m∑
θ=1

λθ|fθ(u)− fθ(v)| (B.41)

Here, the distance is calculated in the objective space, summing the difference be-

tween the fitness values for each objective θ. The variable λθ is a parameter to

normalize each objective to the others. The distance between an individual solution

and the Pareto set is then the minimum distance to any solution belonging to the

Pareto set [147].

Three distance indicators can be combined with the absolute efficiency to evaluate

the algorithms with respect to the Pareto front [147]:

• the maximum distance between sets A and OP ,

• the average distance from set A to set OP ,

• and the pooled standard deviation σpool of the distance, defined in (B.42).

σpool =

√√√√∑S
f=1(nf − 1)sf∑S

f=1 nf
(B.42)

Here, nf is the size of sample f , sf is the unbiased sample standard deviation, and S

is the total number of samples collected. The pooled standard deviation is preferred

over considering the individual sample standard deviations due to a higher statistical

power.

B.4.3.5 Empirical Attainment Function

The empirical attainment function was used to show the objective space of the

dynamic problems. It is a generalization of the multivariate cumulative distribution

function and combines a number of approximate sets to form one function [170]. It

is defined as the probability that the combined sets will attain an arbitrary point in

the objective space, and the algorithm to calculate the 3-dimensional version of the
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function is given in [171]. The probability is denoted using “%-attainment surfaces,”

where each point along the surface has the given probability of existing in one of the

approximation sets produced by an algorithm.

The underlying structure of the 3-dimensional algorithm is a balanced binary

search tree to ensure that the empirical attainment function is calculated inO(n2m log(m))

time. The implementation of the balanced binary search tree to support the 3-

dimensional empirical attainment algorithm in this study was based on [172]. The

resulting graph can be used to explore how well each algorithm performs in specific

areas of the objective space.

B.5 Simulation Results

B.5.1 Static Problem Results

GAMMA-PC performed at least as well as the other state-of-the-art MOEAs in

the static bin packing problems. The static performance metrics are illustrated in

Figs. B.5, B.6, and B.7. Fig. B.5 presents box-and-whisker plots of the binary cov-

erage indicator IC(A,B), comparing the five algorithms in pairs. A higher coverage

value indicates a better outcome, so the box and whiskers for GAMMA-PC suggest

that it tends to cover more of the other approximation sets.

Table B.12 presents the statistical analysis of Fig. B.5, using an overall Type-I

error rate of 0.05% and Bonferroni’s Method [173] to evaluate if each comparison

meets the necessary condition of (IC(A,B) = 1 ∩ IC(B,A) < 1). This is determined

by two tests. The Wilcoxon-rank sum test is performed first to determine if the

samples in the comparison belong to the same distribution. If they are determined

to be different, the student-t difference test is then performed to determine if the

difference between the two is effectively the difference between 1 and the lower average

IC value, assuming similar standard deviations. Table B.12 shows that while the IC
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Figure B.5: Box plots of the binary coverage indicators comparing GAMMA-PC,
NSGA-II, MOMA, MOMAD, and MOEPSO, based on 20 experimental runs.
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Table B.12: Statistical evaluation if GAMMA-PC performs better than NSGA-
II, MOMA, MOMAD, or MOEPSO according to the IC(A,B) metric. First, the
Wilcoxon-rank sum test is used to determine if the samples belong to the same dis-
tribution, with the null hypothesis Hwr,0 : IC(A,B) = IC(B,A) and the alternative
hypothesis Hwr,1 : IC(A,B) 6= IC(B,A). Then, if Hwr,1 is accepted, the student-t
test is applied to determine if the difference between the samples corresponds to the
null hypothesis Hst,0 : IC(A,B) − IC(B,A) ≥ 1.0 − IC(B,A) or to the alternative
hypothesis Hst,1 : IC(A,B) − IC(B,A) < 1.0 − IC(B,A). The degrees of freedom
was 38, and the significance level for each test was set at 0.0125 to ensure an overall
Type I error rate of 5% for the comparisons.

Wilcoxon-Rank
Sum Test

Student-t Differ-
ence Test

A = GAMMA-PC, B = NSGA-II
test statistic -0.35 –

p-value 0.73 –

Accepted Hypothesis Hwr,0 –

A = GAMMA-PC, B = MOMA
test statistic 2.5 –

p-value 0.014 –

Accepted Hypothesis Hwr,0 –

A = GAMMA-PC, B = MOMAD
test statistic 3.2 -8.9

p-value 0.0012 <0.0001

Accepted Hypothesis Hwr,1 Hst,1

A = GAMMA-PC, B = MOEPSO
test statistic 5.4 -6.1

p-value <0.0001 <0.0001

Accepted Hypothesis Hwr,1 Hst,1
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values for GAMMA-PC were proven to be significantly different than the values

for MOMAD and MOEPSO, GAMMA-PC’s performance cannot be proven to be

significantly better (or worse) than NSGA-II, MOMA, MOMAD, or MOEPSO by

the binary coverage indicator.

Fig. B.6 presents box-and-whisker plots of the binary-ε indicator Iε(A,B). A

lower value indicates a better outcome, so the boxes for GAMMA-PC suggests that

it performs well by this metric. The comparison to MOMA in Fig. B.6(b) shows

approximately the same range of values for Iε, but GAMMA-PC’s range tightly hugs

a value of 1.0 for the other three comparisons. Table B.13 presents the statistical

analysis of Fig. B.6, using an overall Type I error rate of 0.05% and Bonferroni’s

Method to evaluate if each binary comparison meets the condition of (Iε(A,B) ≤

1 ∩ Iε(B,A) > 1). With this metric, GAMMA-PC is proven to perform better than

NSGA-II, MOMAD, and MOEPSO but not MOMA.

The comparisons between the other algorithms are also illustrated in Figs. B.5

and B.6, although they were not evaluated statistically. Fig. B.5(f) suggests that

NSGA-II likely performs better than MOMAD, and Fig. B.5(i) suggests that MOMA

likely performs better than MOEPSO. Figs. B.6(e), (h), and (i) also suggest that

MOMA performs better NSGA-II, MOMAD, and MOEPSO. However, the majority

of the binary comparisons do not indicate which algorithm performs better for the

static problem. This means either the static bin packing problem presented little

difficulty, or the algorithms produce similar levels of performance.

Fig. B.7 presents the normalized spread indicators for the five algorithms on a

logrithmic scale. A higher value indicates greater diversity, so this figure indicates

that GAMMA-PC produces the most diversity in its approximation sets, followed

closely by MOMA. The difference between the spread values for these two is small

but statistically significant (refer to Appendix). The approximation sets for NSGA-
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Figure B.6: Box plots of the binary-ε indicators comparing GAMMA-PC, NSGA-II,
MOMA, MOMAD, and MOEPSO, based on 20 experimental runs.
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Table B.13: Statistical evaluation if GAMMA-PC performs better than NSGA-
II, MOMA, MOMAD, or MOEPSO according to the Iε(A,B) metric. First, the
Wilcoxon-rank sum test is used to determine if the samples belong to the same dis-
tribution, with the null hypothesis Hwr,0 : Iε(A,B) = Iε(B,A) and the alternative
hypothesis Hwr,1 : Iε(A,B) 6= Iε(B,A). Then, if Hwr,1 is accepted, the student-t test
is applied to determine if the difference between the samples corresponds to the null
hypothesis Hst,0 : Iε(B,A)−Iε(A,B) ≥ Iε(B,A)−1.0 or to the alternative hypothesis
Hst,1 : Iε(B,A) − Iε(A,B) < Iε(B,A) − 1.0 . The degrees of freedom was 38, and
the significance level for each test was set at 0.0125 to ensure an overall Type I error
rate of 5% for the comparisons.

Wilcoxon-Rank
Sum Test

Student-t Differ-
ence Test

A = GAMMA-PC, B = NSGA-II
test statistic -5.4 -0.11

p-value <0.0001 0.46

Accepted Hypothesis Hwr,1 Hst,0

A = GAMMA-PC, B = MOMA
test statistic -0.54 –

p-value 0.59 –

Accepted Hypothesis Hwr,0 –

A = GAMMA-PC, B = MOMAD
test statistic -5.4 -0.08

p-value <0.0001 0.46

Accepted Hypothesis Hwr,1 Hst,0

A = GAMMA-PC, B = MOEPSO
test statistic -5.4 -0.09

p-value <0.0001 0.47

Accepted Hypothesis Hwr,1 Hst,0
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Figure B.7: Normalized spread indicators for static benchmark experiments on a log-
scale. The indicators were normalized based on the largest spread in each experiment.

II and MOMAD exhibit similar levels of diversity, while those for MOEPSO have a

somewhat higher spread.

While GAMMA-PC produced mainly highly diverse, quality solutions, it did not

perform as well in a few of the bin packing scenarios that 2DCPackGen [160] gen-

erated. Fig. B.8 illustrates a typical example of the approximation set produced by

GAMMA-PC. In the figure, the GAMMA-PC set extends across the objective space,

finding either similar or better solutions than the other algorithms. In constrast,

Fig. B.9 presents one of the aberrant results. In this second graph, GAMMA-PC

did not produce an approximation set as diverse as the set produced by MOMA and

produced inferior solutions above about 120 bins on the x-axis.

The illustrations of the objective space in Figs. (B.8) and (B.9) also give an indi-

cation of why GAMMA-PC was proven to perform better than NSGA-II, MOMAD,
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Figure B.8: Three-dimensional scatterplot of the approximate sets produced for ex-
periment 1 of the static problem.
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Figure B.9: Three-dimensional scatterplot of the approximate sets produced for ex-
periment 8 of the static problem.
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and MOEPSO using the binary Iε indicator but not with the IC indicator. While

the approximation sets for GAMMA-PC span the objective space, the solutions with

small numbers of bins in use were not as well exploited as they were by these three

algorithms. The solutions for NSGA-II, MOMAD, and MOEPSO were highly con-

centrated at this lower end in all of the experiments, suggesting that their algorithms

were stuck in this region. While this negatively impacted their diversity, the algo-

rithms were able to find better solutions in this region. The coverage of these sets

is therefore lower. The Iε indicator is found based proportions of individual fitness

values across the entire objective space, so GAMMA-PC performs better by this

metric.

B.5.2 Toy Dynamic Problem Results

Based on the poor performance of MOMAD and MOEPSO for the static problem,

only NSGA-II and MOMA were used to evaluate GAMMA-PC in the dynamic bin

packing problems. For the toy problem, the Pareto front was found by brute force

calculations, evaluating as many box combinations as possible. The Pareto front

shown in Fig. B.10 is the best-known front found for the toy dynamic bin packing

problem. It covers a range of solutions, from those with boxes filled to capacity

to those with nearly empty boxes. As the number of boxes increases, the average

initial heat decreases approximately exponentially, and the maximum time to move

decreases approximately linearly. The two latter objectives are not competing values,

although they are not purely directly correlated. As the initial box heat increases,

the maximum time to move curves upward, reducing its slope with higher heat levels.

This front was used to evaluate the algorithms by their absolute efficiency and the

distance to the front in the objective space.

Fig. B.11 presents the absolute efficiency of GAMMA-PC, NSGA-II, and MOMA
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Figure B.10: Best-known Pareto front found for the toy dynamic problem.
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Figure B.11: Box plot of the absolute efficiency of each algorithm compared to the
best-known Pareto front.

for the toy dynamic problem. All three algorithms present low levels of efficiency in

terms of the Pareto front. Although GAMMA-PC shows the largest range with an

outlier at 34%, its absolute efficiency is not significantly different from the other two

(refer to Appendix). This is due to the small sample size and the presence of two

poorly performing runs that overlapped the ranges for NSGA-II and MOMA.

Fig. B.12 shows box-and-whisker plots of the average distance to the Pareto

front on the left and the maximum distance on the right. The approximation sets

produced by GAMMA-PC are shown to be much closer to the Pareto front than those

for NSGA-II or MOMA. While the range of the maximum distance for GAMMA-

PC overlaps the lower part of the ranges for NSGA-II and MOMA, the decrease

in distance is statistically significant (refer to Appendix). The average distance

from approximation sets produced by GAMMA-PC to the Pareto front is also much

smaller than the distance for NSGA-II or MOMA.
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Figure B.12: Box plot of the average and maximum distance to the best-known
Pareto front for each algorithm, based on 5 experimental runs.
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Figure B.13: Bar graph of the pooled standard deviation of the distance to the
best-known Pareto front for each algorithm, pooled from results of 5 experimental
runs.
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Figure B.14: Box plots of the binary coverage indicators comparing (a) GAMMA-PC
to NSGA-II, (b) GAMMA-PC to MOMA, and (c) NSGA-II to MOMA, based on 5
experimental runs.

Fig. B.13 shows the pooled standard deviation of the distance to the Pareto front.

NSGA-II and MOMA produce approximation sets with about the same standard de-

viation, while the approximation sets produced by GAMMA-PC have a lower stan-

dard deviation. Since the GAMMA-PC approximation sets are also much closer to

the Pareto front, this suggests that the majority of the solutions found by GAMMA-

PC lay close to that average distance away.

Fig. B.14 presents box-and-whisker plots of the binary coverage indicator IC .

While only 5 experimental runs were completed for the toy problem, each box rep-

resents a sample of 25 IC values since all of the computations were done for the

same problem with different seed values. Therefore, each approximation set pro-

duced by one algorithm was compared to all of the approximation sets produced by
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Figure B.15: Box plots of the binary-ε indicators comparing (a) GAMMA-PC to
NSGA-II, (b) GAMMA-PC to MOMA, and (c) NSGA-II to MOMA, based on 5
experimental runs.

the other algorithm. NSGA-II and MOMA exhibit nearly indentical box plots of IC

values, but GAMMA-PC produced approximation sets with much higher coverage

values for the toy dynamic problem. Table B.14 presents the statistical evaluation

of the interpretation function for IC , using the same statistical analysis discussed

in Sec. B.5.1. While it is proven that the values for GAMMA-PC belong to sep-

arate distributions than its counterparts, it cannot be proven that (IC(GAMMA-

PC, B) = 1 ∩ IC(B,GAMMA-PC) < 1) for either NSGA-II or MOMA. Therefore,

even though GAMMA-PC approximation sets do cover more of the other sets, its

performance cannot be proven to be strictly better or worse than NSGA-II or MOMA

by the binary coverage indicator.

Fig. B.15 presents box-and-whiskers plots of the binary-ε indicator Iε. The values
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Table B.14: Statistical evaluation if GAMMA-PC performs better than NSGA-
II or MOMA according to the IC(A,B) metric. First, the Wilcoxon-rank sum
test is used to determine if the samples belong to the same distribution, with
the null hypothesis Hwr,0 : IC(A,B) = IC(B,A) and the alternative hypothesis
Hwr,1 : IC(A,B) 6= IC(B,A). Then, if Hwr,1 is accepted, the student-t test is applied
to determine if the difference between the samples corresponds to the null hypoth-
esis Hst,0 : IC(A,B) − IC(B,A) ≥ 1.0 − IC(B,A) or to the alternative hypothesis
Hst,1 : IC(A,B) − IC(B,A) < 1.0 − IC(B,A). The degrees of freedom was 48 for
each test, and the significance level for each test was set at 0.016 to ensure an overall
Type I error rate of 5% for the comparisons.

Wilcoxon-Rank Sum
Test

Student-t Difference
Test

A = GAMMA-PC, B = NSGA-II
test statistic 6.1 -7.5

p-value <1.0E-5 <1.0E-5

Accepted Hypothesis Hwr,1 Hst,1

A = GAMMA-PC, B = MOMA
test statistic 6.1 -8.8

p-value <1.0E-5 <1.0E-5

Accepted Hypothesis Hwr,1 Hst,1

A = MOMA, B = NSGA-II
test statistic -0.5 –

p-value 0.62 –

Accepted Hypothesis Hwr,0 –

209



GAMMA-PC NSGA-II MOMA
Method

0.0

0.2

0.4

0.6

0.8

1.0
S

pr
ea

d 
In

di
ca

to
r (

N
or

m
al

iz
ed

)

Figure B.16: Box plot of the maximum spread values for each algorithm over 5
experimental runs.

for the GAMMA-PC results show a much lower range than those for NSGA-II or

MOMA, closely hugging the 1.0 Iε value that suggests better performance. Again, the

Iε values for comparing NSGA-II and MOMA seem to show almost indentical ranges.

Table B.15 presents the statistical evaluation of Fig. B.15. The samples of Iε values

comparing GAMMA-PC to NSGA-II and MOMA were both proven to belong to

different distributions than their counterparts and to meet the necessary condition

of (Iε(GAMMA-PC, B) ≤ 1 ∩ Iε(B,GAMMA-PC) > 1). Comparing NSGA-II to

MOMA showed that the difference in their Iε values was statistically significant, but

neither met the necessary condition to show better performance.

The diversity of the solutions found by GAMMA-PC are more pronounced in the

toy dynamic problem than they were in the static problem. Fig. B.16 shows box-and-

whisker plots of the maximum spread indicator. The difference in the spread values
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Table B.15: Statistical evaluation if GAMMA-PC performs better than NSGA-
II or MOMA according to the Iε(A,B) metric. First, the Wilcoxon-rank sum
test is used to determine if the samples belong to the same distribution, with
the null hypothesis Hwr,0 : Iε(A,B) = Iε(B,A) and the alternative hypothesis
Hwr,1 : Iε(A,B) 6= Iε(B,A). Then, if Hwr,1 is accepted, the student-t test is ap-
plied to determine if the difference between the samples corresponds to the null
hypothesis Hst,0 : Iε(B,A)− Iε(A,B) ≥ Iε(B,A)− 1.0 or to the alternative hypoth-
esis Hst,1 : Iε(B,A)− Iε(A,B) < Iε(B,A)− 1.0 . The degrees of freedom was 48 for
each test, and the significance level for each test was set at 0.016 to ensure an overall
Type I error rate of 5% for both comparisons.

Wilcoxon-Rank Sum
Test

Student-t Difference
Test

A = GAMMA-PC, B = NSGA-II
test statistic -6.1 -0.28

p-value <1.0E-5 0.39

Accepted Hypothesis Hwr,1 Hst,0

A = GAMMA-PC, B = MOMA
test statistic -6.1 -0.24

p-value <1.0E-5 0.41

Accepted Hypothesis Hwr,1 Hst,0

A = MOMA, B = NSGA-II
test statistic -3.2 -4.5

p-value 1.4E-3 <1.0E-5

Accepted Hypothesis Hwr,1 Hst,1
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Figure B.17: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by GAMMA-PC for the toy dynamic problem.

shown here is statistically significant (refer to Appendix). The spread indicators

for GAMMA-PC are more than two times larger than those of NSGA-II or MOMA.

While the difference between GAMMA-PC and NSGA-II is smaller than in the static

problem, the difference between GAMMA-PC and MOMA grew. The ranges for the

maximum spread indicator for NSGA-II and MOMA are much more similar as well.

Overall, NSGA-II and MOMA behaved more similarly in the toy dynamic prob-

lem than in the static problem, while GAMMA-PC performed about as well as

before. A consideration of the objective space shows that NSGA-II and MOMA ex-

plored the same part of the map. A partial two-dimensional scatter matrix plot of the

empirical attainment function for GAMMA-PC, NSGA-II, and MOMA are shown
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Figure B.18: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by NSGA-II for the toy dynamic problem.
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Figure B.19: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by MOMA for the toy dynamic problem.
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in Figs. B.17, B.18, and B.19. Each plot shows points along the 20%, 40%, 60%,

80%, and 100% attainment surfaces of the empirical attainment function overlaid on

a kernel density estimate of all the nondominated solutions found by each algorithm.

The 20% surface indicates solutions found in only 20% of the experimental runs, the

40% surface indicates those found in 40% of the runs, and so on.

These plots show GAMMA-PC produced approximation sets that look much more

like the Pareto front in Fig. B.10 than NSGA-II or MOMA did. Fig. B.17 shows that

GAMMA-PC produced solutions in a much broader range along the x- and z-axis

(No. of Bins and Max. Time to Move, respectively). The range along the y-axis is

also shifted toward smaller values than is shown in Figs. B.18 and B.19. The figures

also indicate that NSGA-II and MOMA produced solutions with low numbers of bins

in use, so the shift in higher initial heat values is reasonable. However, the difference

in the maximum time to move to the storefront is not entirely explained by the

concentration at the low end of the x-axis, as the attainment surface for GAMMA-

PC shows much lower maximum time values above about 5 bins, which was an area

explored by both NSGA-II and GAMMA-PC.

As with the static problem, it makes sense that GAMMA-PC was proven to per-

form better by the binary Iε indicator but not by the binary IC indicator. Both

NSGA-II and MOMA produced solutions at the very low end of the x-axis that were

neither dominated or equal to the solutions produced by GAMMA-PC in this area.

The 20% attainment surface shown in Fig. B.17 includes a point x = 3 bins, y = 20

W, which matches the corresponding 20% attainment point in Fig. B.18 and is lower

than the 20% point in Fig. B.19. However, this point in the 40% attainment surface

for GAMMA-PC has a higher initial heat value than the corresponding 40% attain-

ment point for NSGA-II. While GAMMA-PC may have found solutions with lower

maximum time values, the solutions with lower average initial heat values found by
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Figure B.20: Box plots of the binary coverage indicators comparing (a) NSGA-II to
MOMA, (b) NSGA-II to GAMMA-PC, and (c) MOMA to GAMMA-PC, based on
20 experimental runs.

NSGA-II in this region are nondominated by GAMMA-PC. This relationship is also

seen with MOMA to a lesser extent. Therefore, the approximation sets produced by

GAMMA-PC do not completely cover the others in enough experiments to perform

better by the IC metric. At the same time, the solutions produced by GAMMA-

PC are much closer to the Pareto front along the entire objective space, so it does

perform better by the Iε metric.

B.5.3 Full Dynamic Problem Results

GAMMA-PC did not perform as well in the full dynamic problem as it did in

the toy dynamic problem. While it maintained a higher diversity of solutions, the

quality of those solutions were lower. Fig. B.20 shows the binary coverage indicators

IC for the three comparisons. Since 20 experimental runs were completed for each
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Figure B.21: Box plots of the binary-ε indicators comparing (a) NSGA-II to MOMA,
(b) NSGA-II to GAMMA-PC, and (c) MOMA to GAMMA-PC, based on 20 exper-
imental runs.

algorithm, there are 400 IC values in each box-and-whisker. GAMMA-PC is shown

to have lower coverage over the sets produced by NSGA-II and MOMA, although

Table B.16 proves that neither performs better than GAMMA-PC by this metric.

NSGA-II and MOMA have a similar relationship as in the toy dynamic problem,

although their average IC values are shown to be significantly different given the

degrees of freedom. NSGA-II has the higher average value, but it is not proven to

be better than MOMA for the full problem.

Fig. B.21 presents the box-and-whisker plots of the binary-ε Iε indicators for

the three comparisons. GAMMA-PC has lower Iε values than NSGA-II or MOMA,

but its boxes do not hug the 1.0 line here as it did in the toy dynamic problem.

Table B.17 shows the statistical analysis of Fig. B.21. It shows that the samples for
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Table B.16: Statistical evaluation if GAMMA-PC performs better than NSGA-
II or MOMA according to the IC(A,B) metric. First, the Wilcoxon-rank sum
test is used to determine if the samples belong to the same distribution, with
the null hypothesis Hwr,0 : IC(A,B) = IC(B,A) and the alternative hypothesis
Hwr,1 : IC(A,B) 6= IC(B,A). Then, if Hwr,1 is accepted, the student-t test is applied
to determine if the difference between the samples corresponds to the null hypoth-
esis Hst,0 : IC(A,B) − IC(B,A) ≥ 1.0 − IC(B,A) or to the alternative hypothesis
Hst,1 : IC(A,B) − IC(B,A) < 1.0 − IC(B,A). The degrees of freedom was 798 for
each test, and the significance level for each test was set at 0.016 to ensure an overall
Type I error rate of 5% for both comparisons.

Wilcoxon-Rank Sum
Test

Student-t Difference
Test

A = NSGA-II, B = GAMMA-PC
test statistic -24.2 -210.7

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1

A = MOMA, B = GAMMA-PC
test statistic -24.4 -184.3

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1

A = NSGA-II, B = MOMA
test statistic 6.25 -55.7

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1
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Figure B.22: Box plot of the maximum spread values for each algorithm over 20
experimental runs.

GAMMA-PC are statistically different than its counterparts, but it does not support

the hypothesis that GAMMA-PC performs better by this metric. MOMA is shown

to have a lower average Iε value than NSGA-II in Fig. B.21(c), but it also cannot be

proven to perform better.

The relationships of the alorithms with regards to diversity are similar to what was

shown for the toy dynamic problem. The maximum spread indicators for GAMMA-

PC, NSGA-II, and MOMA in the full dynamic problem are shown in Fig. B.22. The

difference in the diversity is statistically signficant (refer to Appendix). As in the toy

problem, GAMMA-PC produces solutions that are approximately twice as diverse

as NSGA-II or MOMA. The diversity of NSGA-II and MOMA are also similar.

In the full dynamic problem, GAMMA-PC produced the same level of diver-

sity but lower quality approximation sets than in the toy problem. Figs. B.23, B.24,
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Table B.17: Statistical evaluation if GAMMA-PC performs better than NSGA-
II or MOMA according to the Iε(A,B) metric. First, the Wilcoxon-rank sum
test is used to determine if the samples belong to the same distribution, with
the null hypothesis Hwr,0 : Iε(A,B) = Iε(B,A) and the alternative hypothesis
Hwr,1 : Iε(A,B) 6= Iε(B,A). Then, if Hwr,1 is accepted, the student-t test is ap-
plied to determine if the difference between the samples corresponds to the null
hypothesis Hst,0 : Iε(B,A)− Iε(A,B) ≥ Iε(B,A)− 1.0 or to the alternative hypoth-
esis Hst,1 : Iε(B,A) − Iε(A,B) < Iε(B,A) − 1.0 . The degrees of freedom was 798
for each test, and the significance level for each test was set at 0.016 to ensure an
overall Type I error rate of 5% for both comparisons.

Wilcoxon-Rank Sum
Test

Student-t Difference
Test

A = GAMMA-PC, B = NSGA-II
test statistic -24.5 -9.35

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1

A = GAMMA-PC, B = MOMA
test statistic -24.5 -11.3

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1

A = MOMA, B = NSGA-II
test statistic 17.5 -13.4

p-value < 0.00001 < 0.00001

Accepted Hypothesis H1 H1

219



20 40 60 80
100

120
140

160

No. of Bins

80

85

90

95

100

M
ax

. T
im

e 
to

 M
ov

e 
(1

00
 s

)

0 10 20 30 40 50

Avg. Initial Bin Heat (W)

0

10

20

30

40

50
Av

g.
 In

iti
al

 B
in

 H
ea

t (
W

)
SuperLevel t/n [%]

5
25
50
75
100

Figure B.23: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by GAMMA-PC for the full dynamic problem.
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Figure B.24: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by NSGA-II for the full dynamic problem.
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Figure B.25: Two-dimensional scatter matrix of the 3-dimensional empirical attain-
ment function produced by MOMA for the full dynamic problem.

and B.25 present the partial two-dimensional scatter matrices of the empirical attain-

ment functions for GAMMA-PC, NSGA-II, and MOMA, respectively. Once again,

GAMMA-PC has explored the objective space at a much higher level than NSGA-II

or MOMA. However, at the very low end of the x-axis (No. of Bins), GAMMA-PC

produced solutions with higher levels of initial bin heat and larger maximum time

values. Above about 60 bins, the initial heat levels of the GAMMA-PC solutions

fall in the same range as those from NSGA-II and MOMA, but the maximum time

values are still larger. GAMMA-PC did not demonstrate better performance in the

full dynamic problem because either its exploitation ability was weaker or the un-

derlying structure of the Pareto front was too complex to both explore and exploit

solutions.
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B.6 Conclusions

In this paper, we have introduced a new dynamic bin packing problem for stor-

ing cooling objects and a metaheuristic designed to work well in its mixed-variable

environment named GAMMA-PC. The dynamic bin packing problem was discussed

with the idea of cookie production at a bakery as a vehicle for explanation. The

cookies arrived in batches at a cooling rack with a limited capacity and were packed

into boxes with the competing goals of minimizing the number of boxes used, the

initial heat of each box, and the maximum time until the boxes could be moved to

the storefront. While a baker probably would not sell partially-full boxes to cus-

tomers, the problem is able to represent more complex real-world applications, such

as loading dry cask canisters with used nuclear fuel. To the best of our knowledge,

this paper is the first to formulate a dynamic bin packing problem in this manner.

GAMMA-PC was applied to twenty standard bin packing problems and to a small

and large version of the dynamic bin packing problem. GAMMA-PC performed as

well as NSGA-II, MOMA, MOMAD, and MOEPSO, and in some cases better than

NSGA-II, MOMAD, and MOEPSO, in the standard problems. It was also better at

exploring the objective space in the dynamic problems. However, while it performed

better overall in the small version of the dynamic problem, its performance was not

proven to be better or worse than that of NSGA-II or MOMA in the large dynamic

problem. The graphs of the empirical attainment functions suggest that the increase

in problem size exacerbated the weakness hinted at in the low end of the x-axis

in the static and toy problems. This suggests that GAMMA-PC may have a weak

exploitative ability or that the exploration has been overemphasized.

Future research will need to find a better balance between exploration and ex-

ploitation for GAMMA-PC to be helpful with larger packing problems. One sug-
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gestion would be to implement a more rigorous procedure for updating the operator

probabilities. Instead of basing new local search probablities on the size of the lo-

cal neighborhood around solutions in the approximation set with ideal values, the

update procedure could be based on the evolving performance of each local search

operator. An example of this would be the “compass” mechanism discussed in [174],

which would consider how each operator makes improvements in fitness values and

diversity as the calculation evolves. This mechanism could also be integrated with

the selection of the crossover operator. While it may use more memory during the

calculation, it is a promising avenue for better exploration and exploitation control.

B.7 Appendix

In [175], the authors advocate the use of the Kruskal-Wallis test to evaluate

unary quality indicators with three or more independent samples. The unary indica-

tors investigated here are the maximum spread indicators, the Pareto front absolute

effiency, and the distance measures. Therefore, the Kruskal-Wallis test was applied

to the samples to determine the presence of a signifcant difference before applying

the student-t difference tests. The degrees of freedom for the student-t tests were

found using the Satterthwaite approximation given in (B.43) [176].

df =

(
S2
1

n1
+

S2
2

n2

)2

(S2
1/n1)2

n1−1
+

(S2
2/n2)2

n2−1

(B.43)

Table B.18 presents the statistical evaluation of the maximum spread indicator

for the full dynamic problem. The Kruskal-Wallis test showed that there were sta-

tistically signficant differences in the maximum spread indicators for GAMMA-PC,

NSGA-II, MOMA, MOMAD, and MOEPSO (χ2(2) = 83.3, p < 0.00001). Based on

this evidence, student-t tests were applied to the differences in the spread values be-
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Table B.18: Statistical evaluation if GAMMA-PC produces more diverse solutions
than NSGA-II, MOMA, MOMAD, or MOEPSO by the maximum spread indicator
for the static problem. Each comparison was made using the student t-test for
the null hypothesis H0 : D(GAMMA-PC) ≤ D(B) and the alternative hypothesis
H1 : D(GAMMA-PC) > D(B). The degrees of freedom were determined using the
Satterthwaite method, and the significance level for each test was set at 0.0125 to
ensure an overall Type I error rate of 5% for both comparisons.

B = NSGA-II MOMA MOMAD MOEPSO

df 20 38 20 21

t-statistic 19.0 2.55 19.1 16.9

p-value <0.00001 0.0075 <0.00001 <0.00001

Accepted Hypothesis H1 H1 H1 H1

tween GAMMA-PC and the others. The alternative hypothesis was accepted for each

test, indicating that GAMMA-PC produces more diverse solutions at a statistically

significant level.

Table B.19 presents the statistical evaluation of the box plots shown in Figs. B.11

and B.12. The Kruskal-Wallis test showed that there were statistically significant

differences in the absolute efficiencies (χ2(2) = 7.89, p = 0.0194), the average dis-

tances (χ2(2) = 9.62, p = 0.0081), and the maximum distances (χ2(2) = 8.18, p =

0.0167) for GAMMA-PC, NSGA-II, and MOMA. While the absolute efficiency of

GAMMA-PC cannot be proven to be different, the difference between its distance

and the other two algorithms’ is statistically significant.

Table B.20 presents the statistical evaluation of the maximum spread indicator

for the toy dynamic problem. The Kruskal-Wallis test showed that there were sta-

tistically significant differences in the maximum spread indicators for GAMMA-PC,

NSGA-II, and MOMA (χ2(2) = 12.5, p = 0.0019). Based on this evidence, student-t
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Table B.19: Statistical evaluation if GAMMA-PC performs better than NSGA-II
or MOMA by the Pareto front measures. Each comparison was made using the
student-t test for the null hypothesis H0 : value(GAMMA-PC) ≤ value(B) (≥
for absolute efficiency) and the alternative hypothesis H1 : value(GAMMA-PC) >
value(B) (< for absolute efficiency). The degrees of freedom were determined using
the Satterthwaite method, and the significance level for each test was set at 0.025 to
ensure an overall Type I error rate of 5% for both comparisons.

Absolute Effi-
ciency

Avg. Distance Max. Distance

B = NSGA-II
df – 5 7

statistic – 6.57 3.57

p-value – 0.0006 0.0045

Accepted Hypothesis – H1 H1

B = MOMA
df 4 5 7

statistic 2.18 6.52 3.11

p-value 0.0474 0.0006 0.0085

Accepted Hypothesis H0 H1 H1
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Table B.20: Statistical evaluation if GAMMA-PC produces more diverse solutions
than NSGA-II or MOMA by the maximum spread indicator for the toy dynamic
problem. Each comparison was made using the student t-test for the null hypothesis
H0 : D(GAMMA-PC) ≤ D(B) and the alternative hypothesis H1 : D(GAMMA-
PC) > D(B). The degrees of freedom were determined using the Satterthwaite
method, and the significance level for each test was set at 0.025 to ensure an overall
Type I error rate of 5% for both comparisons.

B = NSGA-II MOMA

df 5 6

t-statistic 16.4 13.5

p-value <0.00001 <0.00001

Accepted Hypothesis H1 H1

tests were applied to the differences between the spread values for GAMMA-PC and

those for NSGA-II and MOMA. Table B.20 shows the results of these two tests, indi-

cating that GAMMA-PC produces more diverse solutions than NSGA-II or MOMA.

Table B.21 presents the statistical evaluation of the maximum spread indicator

for the full dynamic problem. The Kruskal-Wallis test showed that there were sta-

tistically signficant differences in the maximum spread indicators for GAMMA-PC,

NSGA-II, and MOMA (χ2(2) = 39.4, p < 0.00001). Based on this evidence, student-t

tests were applied to the differences in the spread values between GAMMA-PC and

NSGA-II and between GAMMA-PC and MOMA. The alternative hypothesis was

accepted for each test, indicating that GAMMA-PC produces more diverse solutions

at a statistically significant level.
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Table B.21: Statistical evaluation if GAMMA-PC produces more diverse solutions
than NSGA-II or MOMA by the maximum spread indicator for the full dynamic
problem. Each comparison was made using the student t-test for the null hypothesis
H0 : D(GAMMA-PC) ≤ D(B) and the alternative hypothesis H1 : D(GAMMA-
PC) > D(B). The degrees of freedom were determined using the Satterthwaite
method, and the significance level for each test was set at 0.025 to ensure an overall
Type I error rate of 5% for both comparisons.

B = NSGA-II MOMA

df 28 30

t-statistic 19.99 19.19

p-value <0.00001 <0.00001

Accepted Hypothesis H1 H1
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