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ABSTRACT 

Solar concentrating photovoltaic (CPV) systems have the potential to achieve 

higher efficiency and reduce total system cost. The main idea of (CPV) technology is to 

use cheaper optics such as lenses and mirrors to concentrate the sunlight onto a tiny area 

of photovoltaic (PV) cells. In this case, the required PV cell area is reduced with a given 

amount collection of incident power.  There are several advantages of CPV systems. 

First, the cost of the PV system can be reduced by replacing a large area of expensive 

PV cells with less expensive optical elements, which allows to use the most efficient 

multijunction (MJ) tandem designed cells which is also the most expensive cells. Also, 

the efficiency of PV cells can be significant increased under concentrating system. CPV 

system can be more cost competitive with other PV and electricity generation 

technologies because of its high efficiency. 

However, traditional CPV systems have the problems of the high temperature 

and non-uniform irradiance on the solar cell at high concentration ratio, which can 

reduce the performance of the PV cell. Because of these disadvantages of the 

conventional CPV system, planar waveguides which are used as the secondary optics 

have been developed for CPV system since 2010. The advantage of the use of the 

waveguides as the secondary optics is that it can provide uniform illumination on PV 

cell and may have additional concentration. 

Our designed lens-to-channel waveguiding concentrator contains channel 

waveguides array, a lens array and MJ cells. Compared with the single Fresnel lens, 
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using a lens array as the primary concentrator can not only collect a large amount of 

solar radiation, but also reduce the thickness and weight of the whole system. In this 

system, any decoupling loss in the waveguide can be avoided.  

The simulation and experiment results of three designed system are presented in 

this thesis. The concentration ratio can be increased to 920x if using tapered waveguide. 

A system efficiency of 86% can be achieved by using low loss material as the 

waveguide. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Renewable energy 

Energy plays the most significant role in the world and sustained energy supply 

is important for all countries today. Most of the electrical power is generated using fossil 

fuels, which also produce air pollution every second and will run out eventually. In 

recent decades, the increased demands for energy result in environment and health 

problems such as air pollution, global warming and water quality [1, 2]. The burning of 

coal which is one of the essential fuel generates both CO2 and particulates, which 

produces a greenhouse effect and increases the temperature of the Earth. Figure 1 shows 

the evidence of global warming that the arctic sea ice is melting [3].  

 

Figure 1. The evidence of global warming that the arctic sea ice is melting. Reprint from 

[3]. 
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Unlike fossil fuels, renewable energy is clean and cause less harm to the 

environment. More importantly, renewable energy is essentially inexhaustible. Figure 2 

shows the estimated global energy consumption in 2013, 78.3% of the energy 

consumption comes from fossil fuels such as coal and oil, 19.1% of the energy is 

generated by renewable energy and only 1.3% of energy is developed by wind, solar, 

biomass and geothermal power [4]. Thus, it is critical to develop an affordable and 

environmentally friendly energy for human living and meet energy needs in future. 

Figure 2. Estimated global energy consumption in 2013. Reprint from [4]. 

As we all known, solar energy is inexhaustible, free and clean. Also, sun light is 

the most plentiful energy source for the Earth, which does not emit carbon dioxide. All 

nations can receive the solar radiation equally and fairly. There is no expense and 

investment for collecting sunlight. Moreover, solar energy has great potential to meet 



 

3 

 

huge energy demands for the future, which is shown in Figure 3 [2]. All the solar energy 

received on the Earth in one day can make people live for more than 20 years [2]. 

 

 

Figure 3. The potential for renewable energy sources. Reprint from [2]. 

 

1.2 Solar radiation 

If the Earth is used as the reference, the sun moves around the Earth in a slightly 

elliptical path. The sun’s path is called the ecliptic, which is shown in Figure 4. The tilt 

angle between the Earth’s spin axis and the Earth solar orbit is around 23.5˚. The tilted 

rotation axis causes the daily changes of the sun’s path and the changes of the seasonal 

weather [5]. 
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Figure 4. Diagram of ecliptic plane. Reprint from [6]. 

 

The mean distance between sun and Earth is called one astronomical unit which 

is: 

 1 AU = 1.496 × 108 km (1.1) 

The minimum distance between sun and Earth is around 0.983 AU and happens around 

the first week in January; the maximum distance is about 1.017 AU and happens around 

the first week of July [5, 7]. The total of solar radiation that can reach the Earth is 

inversely proportional to the square of the distance between the sun and the Earth. 

 The sun path and solar location of sunrise and sunset vary for different location 

because of the tilted rotation angle. Solar elevation and azimuth angle are usually used to 

determine the solar position, which is shown in Figure 5. The altitude angle or elevation 

angle are obtained from the horizontal to the height of the sun. The zenith angle is also 
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used to locate sun’s position, which is measured from vertical to the height of the sun. 

The azimuth angle is the compass angle, which is obtained in clockwise from north.  

 

 

Figure 5. Azimuth, zenith and altitude angle. Reprint from [8]. 

 

 The angle between the ecliptic plane and the equatorial plane of the Earth is 

called the declination angle which also varies with different season because of the tiled 

rotation angle of the Earth. The declination angle δ can be calculated as [9]: 

 
   1 360

sin sin 23.45 sin 81
365

d    
     

  
 (1.2) 

where d is the day of the year. For example, d is 1 for January 1st. The declination angle 

of the sun varies from -23.45˚ to +23.45˚, since the tilted angle of the Earth is 23.45˚. 

Most of the solar radiation that can reach to the Earth is in the thermal radiation 

range which is shown in Figure 6. Thermal radiation is commonly called light and heat, 
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which is emitted by bodies in the form of electromagnetic waves. Frequency of an 

electromagnetic wave is defined as 

0

vac

c



 (1.3) 

where co is the speed of the electromagnetic wave in vacuum which is 2.998 × 108 m/s; λ 

is wavelength of the electromagnetic wave. The speed of an electromagnetic wave in a 

medium is defined as 

0c
c

n
 (1.4) 

where n is the refractive index of the medium. The wave number or wave vector k is 

defined as: 

1
k


 (1.5) 

Thus, the solar radiation can travel from the sun to Earth in about 8 minutes. 

Figure 6. Electromagnetic spectrum. Reprint from [10]. 
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Solar radiation spectrum can be divided into three sections based on the 

wavelength and photon energy, such as ultraviolet, visible and infrared radiation. The 

relationship between the photon energy E and wavelength λ is defined as: 

 
( )

hc
E J


  (1.6) 

where h is Planck’s constant and the unit is Joule. Another usually used unit of energy is 

eV (electron-volt), which is defined as: 

 1.24
( )

( )
E eV

m 
  (1.7) 

The wavelength of ultraviolet radiation is between 100 nm to 400 nm, which is 

about 10% of total energy that can reach the Earth from the sun. Most of the ultraviolet 

radiation is absorbed by the Earth’s atmosphere. Most of the sun light that can reach the 

Earth is the radiation in visible range. The visible spectrum is between 400 nm to 800 

nm, which consists of different colors. Also, this part of the spectrum is mainly collected 

by PV equipment and used to generate electricity. The infrared spectrum can be divided 

into two portions: near infrared and far infrared, which is useful to generate heat and 

electricity [7, 11].  

The surface temperature of the sun is around 5777K. If the sun is considered as a 

black body which absorbs all electromagnetic waves in all directions and all wavelength 

and emits energy at all wavelength of the electromagnetic wave, most of the energy of 

the sun would be in the short wavelength range. The range of solar radiation is mainly 

within the wavelength from 300 nm to 4000 nm [7]. 
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Power density or intensity are used to define the solar radiation, and the unit is 

watts per square meter of area (W/m2) [5]. The highest intensity of sunlight that is 

measured at the top of the Earth’s atmosphere is around 1367 W/m2 [11], which is called 

solar constant. Solar constant is defined as the mean solar irradiance on a unit area that is 

perpendicular to the rays of the sun at a distance of one astronomical unit (AU) from the 

sun [7]. The solar constant includes the solar energy at all wavelength and varies by 

3.4% [12].  

However, when sun light arrives on the ground of the Earth, it is attenuated by 

the scattering and absorption in the atmosphere of the Earth which can be divided into 

two types: atmosphere with clouds and atmosphere without clouds. The maximum solar 

radiation can be collected under clear and cloudless skies which consists of about 78% 

nitrogen, 21% oxygen,  1% argon and 0.33% carbon dioxide [7]. Except for air 

molecules, the clean air also contains water vapor and aerosols. 

When sun light passes through the atmosphere of the Earth, the light intensity is 

reduced to around 900-1100 W/m2by scattering and absorption, which is shown in 

Figure 7. The scattered light by particles and molecules in the atmosphere which arrives 

on the ground is called diffuse radiation or diffuse horizontal irradiance (DHI). The light 

that arrives on the ground on a straight line from the sun is called beam radiation, also 

called direct radiation or direct normal irradiance (DNI). The total solar irradiance 

including diffuse horizontal irradiance (DHI) and direct normal irradiance (DNI) is 

called global horizontal irradiance (GHI). The relationship between DNI, DHI and GHI 

can be expressed by the equation [5]: 



9 

 cosGHI DNI DHI   (1.8) 

where θ is the angle of the incident light which is measured from the vertical. 

Figure 7. Diffuse, direct, and absorbed sun light. 

When the position of the sun is very high in the sky, direct and diffuse solar 

radiation are about 85% and 15% of the total radiation that received by the ground. 

When the sun is lower in the sky, the maximum percentage of the diffuse radiation is 

around 40% [13]. Also, the percentage of the diffuse radiation is higher in the places 

with high latitude and more cloud. 

Diffuse  

Scattered to ground 

Direct or beam 

radiation 

Absorbed 

Diffuse  

Scattered back to space 
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The “air mass” is defined as the shortest path length that light takes through the 

atmosphere and reach to the ground [5]: 

 

   
1 1

cos sin
AM

z e
   (1.9) 

where z is the zenith angle which is obtained from vertical, e is the elevation angle. AM 

1.5 Direct (AM1.5D) and AM 1.5 Global are used as the standard terrestrial solar 

spectral irradiance for all standardized testing or rating solar cells or modules by the 

American Society for Testing and Materials (ASTM) [14]. AM 1.5 spectral irradiance is 

obtained at a zenith angle of 48.2˚. The reason that AM 1.5 spectra was chosen as the 

standard spectral irradiance is that AM 1.5 is studied to be the average conditions for the 

48 contiguous states of the United States of America over a period of one year [14]. AM 

0 means there is no atmosphere, which is the solar spectrum in space. Figure 8 shows the 

spectrum of AM 1.5D and AM1.5G. 

 

Figure 8. Solar spectrum of AM0, AM1.5G and AM1.5D. 
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CHAPTER II 

SOLAR PHOTOVOLTAIC TECHNOLOGY 

2.1 Introduction to photovoltaic technology 

Photovoltaic (PV) technology is the most important and effective method to 

convert solar energy to electricity. Photovoltaic effect was first time observed by Henri 

Becquerel in 1839 [15, 16]. In 1954, the first silicon PV cell was established by Chapin 

et al, which had an efficiency of 6% [16, 17]. 

Compared with other technology for generating electricity, the advantage of PV 

technology is that it can direct convert solar energy into electricity with no noise, no 

pollution, low temperature and long lifetime. 

2.2 Physics of PV cells 

Figure 9 shows the typical solar PV cell structure which consists of a contact 

layer, an antireflection (AR) layer, an emitter and a base layer. Solar PV cell is generally 

made from semiconductor materials. The most critical component of the PV cell is p-n 

junction which can absorb photons and generate electron-hole pair and current. For 

silicon solar cell, n type semiconductor is usually produced by doping silicon with 

phosphorus (P) which has five electrons in its outer shell. Phosphorus is called donor in 

silicon. Since silicon has a valance of four, the extra electron creating by doping 

phosphorus is easily to be excited to the conduction band. In this case, negatively 

charged electrons are the dominant carrier for the current. In the opposite way, p type 
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semiconductor can be made by doping Boron (B) to silicon. Boron has three electrons in 

the outer shell and is called acceptor in silicon. Positively charged holes are the 

dominant current carrier of p type semiconductor. P-n junction can be created by 

combining n type and p type semiconductor material into contact [18]. 

When the incident sunlight hit on the solar cell surface, semiconductor material 

will absorb incident photons to generate heat and electron. If the energy of the incident 

photon is larger than the energy band gap of the semiconductor material, electron-hole 

pairs will be created. The generated electron-pairs are divided by the flow to the external 

circuit and electric field of the p-n junction [16, 18]. 

Figure 9. Basic solar cell structure. 

Base 

Emitter 

AR layer 

Load RL 

Front metal contact 

Back metal contact 
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The energy gap Eg of a semiconductor material is the minimum energy required 

to excite an electron from the valence band Ev to the conduction band Ec [18], which is 

defined as: 

g c vE E E   (2.10) 

So as to excite an electron from valence band to the conduction band, it is 

required that the incident photon energy is larger than the energy of the band gap. The 

relationship between the wavelength and the energy of the band gap is given by: 

g

h c

E



 (2.2) 

where h is Planck’s constant and c is the speed of light. For example, the energy band 

gap of silicon is 1.12 eV, the maximum wavelength of the light that silicon can absorb is 

around 1100 nm. Table 1 shows the energy band gap of some semiconductor materials. 
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Table 1. The energy band gap of some semiconductor materials at 300K [18, 19]. 

Material Symbol Band gap Eg (eV) 

Silicon Si 1.12 

Gallium arsenide GaAs 1.43 

Germanium Ge 0.67 

Gallium phosphide GaP 2.25 

Indium phosphide InP 1.35 

Silicon carbide SiC 2.2 

Gallium antimonide GaSb 0.7 

Silicon dioxide SiO2 9 

Cadmium telluride CdTe 1.44 

Generally, there are two kinds of energy band gap: indirect band gap and direct 

band gap, which is shown in Figure 10. The minimum energy required to generate 

electron-hole pairs of a semiconductor material with direct energy band gap is the energy 

gap itself, such as Gallium Arsenide (GaAs). In the case of indirect energy band gap 

such as Silicon (Si), since the maximum of the valence band and the minimum of the 

conduction band are not at the same momentum, more energy is required to generate 

electrons from valence band to conduction band. Therefore, the absorption efficiency of 

the semiconductor material with indirect band gap is lower than the material with direct 
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band gap. In this case, optical devices such as LEDs and semiconductor lasers are 

usually made from the semiconductor material with direct band gap such as GaAs. 

Figure 10. Direct and indirect energy band gap. Reprint from [20]. 

2.3 Theory of solar cells 

In electrical circuit, a PV cell can be described by a current source which is 

connected with a diode in parallel. The equivalent electrical circuit of a PV cell is shown 

in Figure 11. The current can be calculated by Shockley PV cell equation [18]: 

1B

qV

k T

ph oI I I e
 

   
 
 

 (2.3) 

Where Iph is the photogenerated current which is related to the incident photon flux, Io is 

the diode saturation current which is the sum of injection current and generation 
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recombination current, T is the absolute temperature, kB is the Boltzmann constant, V is 

the voltage of the cell and q is the electron charge [21]. 

Figure 11. The equivalent electrical circuit of an idea PV cell. Reprint from [21]. 

In Figure 11, Rp and Rs are shunt resistance and series resistance, respectively. 

Series resistance consists of three parts: the resistance between the semiconductor 

material and the metal contact, the resistance of the front and back metal contacts and 

the movement of the current from base and emitter material. The fill factor can be 

reduced due to the large series resistance and the current becomes as: 

 
exp

s

ph o

B

q V I R
I I I

k T

   
    

 
 (2.4) 

The shunt resistance which is mainly due to the manufacturing defects can reduce the 

current passing through the PV cell junction and have power losses in PV cells, 
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particularly severe at low light levels. Considering the effect of a shunt resistance, the 

current becomes as: 

expph o

B p

q V V
I I I

k T R

 
    

 
 (2.5) 

In the equivalent electrical circuit of an actual PV cell, the current is given with series 

resistance and shunt resistance: 

 
exp

s s
ph o

B p

q V I R V I R
I I I

k T R

     
    

 
 (2.6) 

The short-circuit current of a PV cell is defined as the maximum current passing 

through the PV cell when the voltage of the cell is zero or the cell is short circuited. The 

short circuit current depends on several factors, such as the number of incident photons, 

the intensity of the incident light or the PV cell area, the spectrum of the incident light 

and the collection probability of generated carriers. For an ideal PV cell, the short circuit 

current is same with the photogenerated current. Anther common used parameter is 

current density, which is a function of Eg and can be calculated by solar photon flux   

and electronic charge e [22]: 

phJ e    (2.7) 

The maximum current density of silicon solar cell is around 46 mA/cm2 under an 

AM1.5D spectrum. Commercially, the short circuit current of a PV cell is around 28 

mA/cm2 to 35 mA/cm2 [23]. 

The open circuit voltage is defined as the maximum voltage of a PV cell when 

the current of the cell is zero, which is given by [18] 
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ln 1
phB
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o

Ik T
V

q I

 
  

 
 (2.8) 

From the equation, the open circuit voltage is a function of photogenerated 

current and dark current of solar cell which depends on generation recombination 

current. Large dark current can reduce the signal to noise ratio, so it must be minimized 

[18]. The open circuit voltage also can be expressed by the carrier concentration [24]: 

 
2

ln
AB

oc

i

N n nk T
V

q n

   
  

 
 (2.9) 

where 
Bk T

q
 is the thermal voltage, in  is the intrinsic carrier concentration, n  is the

excess carrier concentration and Na is the doping concentration. 

The I-V characteristic of the solar cell is shown in Figure 12. The maximum 

power is calculated by: 

mIm mP V   (2.10) 

and is described by the rectangle within the dashed line in the figure. There is a key 

factor in evaluating the performance of the PV cell, which is called fill factor (FF). The 

fill factor is defined as the ratio of the actual maximum power of the solar cell to the 

product of the open circuit voltage and the short circuit current of a PV cell [18]: 

mI m

sc oc

V
FF

I V





(2.11) 

High fill factor means that the solar cell has a high equivalent shunt resistance, a low 

equivalent series resistance, and more electric power generated by the PV cell is 
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transmitted to the external load. The maximum theoretical fill factor can be determined 

by the expression [21, 25]: 

 ln 0.72

1

oc oc

oc

v v
FF

v

 



(2.12) 

where ocv  is defined as:

oc
oc

B

V
v

k T
 (2.13) 

The power efficiency of a PV cell   is defined as ratio of the output electrical power 

produced by the PV cell to the incident optical power: 

100%out

in

P

P
   (2.14) 

The efficiency can also be expressed with fill factor: 

sc oc

in

I V
FF

P



  (2.15) 

The efficiency of a solar cell depends on different parameters such as the spectrum of the 

input sunlight, absorption coefficient, carrier lifetime, temperature and the energy band 

gap of the semiconductor material. 
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Figure 12. (a) I-V characteristic of a solar cell and (b) the power generated by the cell. 

Reprint from [21]. 

 

2.4 Types of solar cell 

Silicon solar cell is the first generation PV cell, which is also the most widely 

used PV cell. Silicon is the second most abundant element in the Earth’s crust, which is 

around 27.7% by weight [26].  Also, silicon is the most popular material for making 

solar cell, but silicon is not the ideal material for the PV application because of its 

(b) 

(a) 
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indirect band gap and low absorption efficiency for solar radiation. The energy band gap 

of silicon is 1.12 eV, which leads to the cut off wavelength around 1100 nm.  

Silicon solar cell can be separated into three categories: single crystalline silicon, 

multicrystalline silicon, and amorphous silicon. The highest efficiencies of single 

crystalline, multicrystalline and amorphous silicon solar cells  are around 25.6%, 20.8% 

and 10.2%, respectively,  which was obtained under the global AM1.5 spectrum at 25˚C 

[27]. However, the cost of generating crystalline silicon solar cell is much more 

expensive than the cost of multicrystalline and amorphous silicon solar cell, since the 

required purity of silicon is very high, which leads to the complicated fabrication process 

with high temperature. The cost of multicrystalline and amorphous silicon solar is 

cheaper than single crystalline silicon solar cell, since they do not request very high 

purity of the silicon, but the efficiency is lower than single crystalline silicon solar cell. 

Due to the fact that silicon supply is abundant in Earth, silicon solar cells have a 

relatively high efficiency and there is almost no degradation in crystalline silicon, solar 

cell that is based on crystalline silicon covers more than 80% of today’s PV market and 

it will continue in the near future. However, because of the complicated fabrication 

process and the high cost of crystalline silicon solar cell, thin film solar cell and new 

technology solar cell are growing rapidly. The market share of solar cell materials is 

shown in Figure 13. 
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Figure 13. Market share of solar cell production in 2014. Reprint from [28]. 

 

Second generation PV cell is called thin film solar cell which is based on 

cadmium telluride (CdTe), copper indium gallium diselenide (CIGS) and amorphous 

silicon (a-Si). The main advantage of thin film solar cell is the cost, since the expensive 

high purity silicon wafer is not required, which accounts for around 50% of total 

manufacturing cost [29].  

The strength of the thin film solar cell based on a-Si is its simple fabrication 

process by using nontoxic and abundant silicon material and with relatively low 

temperature, but it has degradation problems and low efficiency which is around 12% 

[27, 29].  

CdTe solar cell can have an efficiency of 21% because of its high absorption 

coefficient and an ideal direct band gap which is around 1.45 eV [21, 27]. Based on the 
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Shockley-Queisser limit, the maximum conversion efficiency of a single junction solar 

cell is around 33% and happens when the band gap is around 1.4 eV [16, 30]. Also, 

cadmium is abundant in Earth. Figure 14 shows the typical structure of CdTe PV cell 

which is composed of a glass substrate, ITO/ZnO absorber, CdTe p-n junction and back 

contact [31].  The main problem of CdTe solar cell is the environment issues since 

cadmium is toxic and Tellurium is an extremely rare element in Earth.  

 

 

Figure 14. Typical structure of CdTe solar cell. Reprint from [21]. 

 

CIGS solar cells are based on materials CuInSe2 and CuGaSe2 which are from I-

III-VI2 from the periodic table.  Figure 15 shows the structure of a 

ZnO/CdS/Cu(In,Ga)Se2 thin film PV cell. The maximum efficiency of CIGS is around 

21% and the band gap energy is from 1.04 eV in CuInSe2 up to 2.4 eV in CuGaSe2 with 

modification [21]. The limitation of CIGS solar cell is its low open circuit voltage and 

material supply since indium and gallium are rare elements. 
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Figure 15 .The structure of a ZnO/CdS/Cu(In,Ga)Se2 thin film PV cell. Reprint from 

[21]. 

 

The third generation solar cell technology includes multi-junction solar cell 

which is also called tandem cell, organic solar cell and dye-sensitized cell. Both dye-

sensitized and organic solar cell are using new technology to generate electrons and 

current, which is quite different from the first two generation PV cells that are based on 

p-n junction. 

The principle of dye-sensitized solar cells is based on photoelectrochemistry 

which use the dye to absorb photons and directly inject electrons which are obtained 

from absorption into semiconductor material such as zinc oxide (ZnO) and titanium 

dioxide (TiO2) with a wide band gap [16, 21, 29]. The cost of producing dye-sensitized 

solar cells is lower than the cost of the first two generation PV cell. The highest 
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efficiency of dye-sensitized solar cell is reported around 12% [27]. The main problem of 

this new technology is the stability and degradation of the cell. 

Organic solar cells use organic molecules and conjugated polymers as the active 

layer to absorb photons, separate electron and holes and transport charges [21]. The 

advantages of organic solar cell are its mechanical flexibility and very low cost, since the 

thickness of the cell is far below 1 µm which needs only a small amounts of material 

[16, 29]. The efficiency of organic solar cell is around 11% [27]. The main challenges 

for future development of organic solar cell technology are to improve its long term 

stability, device encapsulation and material degradation. Also, producing a compatible 

and flexible substrate for organic solar cell is another critical issue for future [21]. 

 

2.5 Multijunction solar cell 

Multijunction (MJ) solar cells are based on semiconductor materials in group III 

and V from the periodic table, and they have the highest solar cell efficiencies so far. 

The common materials that are used in MJ cells are gallium indium arsenide (GaInAs), 

gallium indium phosphide (GaInP), gallium antimonide (GaSb), indium phosphide (InP) 

and gallium arsenide (GaAs). To achieve high efficiency, MJ solar cells combine several 

cells or p-n junctions with different band gaps into multijunction structure, which can 

absorb sunlight in a different part of the solar spectrum. Figure 16 shows the typical 

triple junction structure of MJ solar cell, which consists of GaInP, GaInAs and Ge from 

top to the bottom. The top cell is side that points toward the sun. The cells in the 

multijunction structure are electrically connected in series and assembled with low 



 

26 

 

resistive tunnel diodes. The subcell on the top position has the highest band gap energy, 

which can absorb photons with the highest energy and shortest wavelength in the solar 

spectrum. Also, the top subcell transmits photons with the energy that is lower than the 

energy band gap of the top cell to the cells in lower position, which can absorb the lower 

energy photons [32]. Thus, the broad solar spectrum is separated into several parts with 

different wavelength, which is absorbed by subcells with different band gap. Each 

subcell can absorb photons with the energy that is close to its energy band gap, so that 

the wide band gap combinations can be realized and thermalisation losses can be 

reduced [21]. The maximum theoretical efficiency of two cells which are connected in 

series is reported to be 41.9%, and a efficiency of 50% can be expected if using more 

cells connected in series [16]. 

 

Figure 16. Schematic structure of a typical three junction PV cell with related solar 

spectrum. Reprint from [16]. 
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The main challenge of MJ solar cell is the material combination to achieve the 

optimal band gap and current matching of the subcells. In order to grow semiconductor 

materials with high quality, lattice constant of each material is required to be matched. 

Figure 17 shows the energy lattice constant and energy band gap for semiconductor 

materials which are used for MJ cells. Growing semiconductor materials with different 

lattice constant can have the problem of dislocation, which reduces the quality of the 

device. Another problem of MJ cell is the current balance of the subcell materials. Since 

the subcells are connected in series, the total current of the MJ cell is determined by the 

minimum current generated by the subcell. For an ideal three junction PV cell on Ge, the 

band gap energy is around 1.7 eV/1.1 eV/0.67 eV from top to Ge substrate, but the real 

GaInP/GaAs/Ge cell is limited to 1.9 to 1.8 eV/1.4 eV/0.67 eV, which leads to a large 

current generated by Ge subcell. Since Ge is the lowest band gap in the structure, some 

of the photons with higher energy can be turned to heat. Since the subcells are connected 

in series, there are tunnel junctions between subcells. When the light passes through the 

top subcell to the bottom subcell, the tunnel junctions are required to be highly 

transparent and electrically conducting. In order to have high transparency, materials that 

have higher band gap energy than the upper subcell can be used to produce tunnel 

junction [32]. 
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Figure 17. Band gap and lattice constant of semiconductor materials. Reprint from [21]. 

 

The maximum efficiency of a triple junction cell which is made of GaInP (1.8-

1.9 eV)/GaAs (1,3-1,4 eV)/Ge (0.7eV) is around 41.6% under concentrated sunlight 

[33], but the device performance of this type of PV cell is limited by the large excess 

current produced by the Ge bottom junction. To improve the efficiency of the device, 

dilute nitride semiconductor material GaInNAs or inverted metamorphic GaInAs can be 

used as the bottom junction instead of Ge, which has an energy band gap of around 1.0 

eV and an efficiency of around 44.4% at a concentration ratio of 302 [33-36]. Another 

method to improve the performance is adding more junctions. Today’s champion 

efficiency of MJ cell is reported to be 44.7% at a concentration of 297x under the AM 

1.5D by using GaInP/GaAs//GaInAsP/GaInAs four junction. This type of MJ cell has a 

band gap energy that is close to the theoretical optimum band gap combination for a four 
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junction cell [33]. Table 2 shows the maximum efficiency of different types of solar cell 

so far. Concentration ratio can be described using “suns”. One sun represents the light 

intensity of 1000 W/m2. For example, 300 suns means the concentration ratio is 300x. 

 

Table 2. Confirmed solar cell efficiencies [27]. 

Classification Efficiency (%) Intensity (suns) 

Si (crystalline) 25.6 ± 0.5 1 

Si (multicrystalline) 20.8 ± 0.6 1 

Si (amorphous) 10.2 ± 0.3 1 

GaAs (thin film) 28.8 ± 0.9 1 

CIGS (cell) 20.5 ± 0.6 1 

CdTe (cell) 21.0 ± 0.4 1 

Dye 11.9 ± 0.4 1 

Organic thin-film 11.0 ± 0.3 1 

GaInP/GaAs; GaInAsP/GaInAs 46.0 ± 2.2 508 

GaInP/GaInAs/Ge 40.4 ± 2.8 365 

GaInP/GaAs//GaInAsP/GaInAs 44.7 297 
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It is critical to know the behavior of PV cells with different cell temperature, 

since temperature can vary from 288K to 323K in terrestrial applications and go up to 

higher temperature with concentrator system and space applications [37].  Several 

reports show that temperature is an important parameter that can have significant impact 

on PV cell efficiency [37-39]. Increasing the temperature of solar cells can cause 

increasing photogenerated current and short circuit current, which is mainly due to the 

increase in absorption coefficient and the decrease in band gap energy [39]. Also, 

increasing the temperature of PV cells can decrease open circuit voltage, the maximum 

current and maximum voltage. Figure 18 shows the measurement result from Erdem 

Cuce et al. [39]. Therefore, the efficiency of PV cells can be reduced with the increase of 

temperature, which leads to the fact that a cooling system is necessary for the solar cell 

system to keep it at high efficiency[40].  
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Figure 18. Temperature dependency of current and voltage of polycrystalline silicon 

solar cell. Reprint from [39]. 

 

 Dust is another factor that can have impact on solar cell efficiency, since it may 

reduce the incident light intensity [38]. It is reported that the efficiency of PV cells 

decreases with the increase of dust deposition density in a linear relationship, because 

(a) 

(b) 
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the dust will reduce the short circuit current [41, 42]. The efficiency reduction of silicon 

solar cells increases to 26% with 22 g/m2 of dust deposition density [41]. 

 

2.6 The cost of PV cell 

In order to have renewable energy replace traditional energy source to generate 

electricity, the cost is an important factor that has to be taken into consideration. The 

costs of PV cell materials decrease year by year due to the improvement in cell 

efficiency by the new technology in materials and manufacturing, and the increasing of 

PV production [38]. The symbol $/Wp which is Watts of peak power is often used to 

represent the cost of PV cells. The cost of polysilicon solar cell and module are around 

$0.31 and $0.72, respectively [43]. Figure 19 shows the average price of PV cell and 

modules from 2003 to 2012 [44]. Another usually used measure for the cost of energy 

generating technology is called levelized cost of electricity (LCOE), which is the 

average cost of the energy. LCOE equals to the cost of installing a system divided by its 

expected life time energy output. For example, if the cost of an energy system is $10,000 

and the electricity it can provide is 100,000 kWh, the LCOE of this system is 

$10,000/100,000 kWh = $0.10 per kWh. In 2010, it is reported that the LCOE of c-Si 

solar system and amorphous Si thin film PV cell are around $0.25-0.65/kWh and $0.26-

0.59/kWh, respectively [45]. 
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Figure 19. Average price of PV cell and modules from 2003 to 2012. Reprint from [44]. 

 

 

 

 

 

 

 

 

 

  



 

34 

 

CHAPTER III 

CONCENTRATING PHOTOVOLTAIC TECHNOLOGY 

 

3.1 Overview 

The main idea of concentrating photovoltaic (CPV) technology is to use cheaper 

optics such as lenses and mirrors to focal sunlight onto a tiny area of PV cells. In this 

case, the required PV cell area is reduced with a given amount collection of incident 

power.  There are several advantages of CPV system. First, the cost of the PV system is 

reduced by replacing a large area of expensive PV cells with less expensive optical 

elements, which allows to use the most efficient multijunction tandem designed cells 

which is also the most expensive cells. Also, the efficiency of solar cells can be 

significant increased under concentrating system. High efficiency is one of the key point 

to make CPV more cost competitive with other PV and electricity generation 

technologies [46]. Figure 20 shows the development of efficiencies of MJ cell, CPV 

modules and system. Today’s champion efficiency of multijunction cell is around 46% 

with optical concentrators. Another advantage of CPV system is that it can be made of 

small high efficient individual cells since it is more difficult to make large area and high 

efficient cells than small cells.  
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Figure 20. Development of efficiencies of MJ cell, CPV modules and system. Reprint 

from [46]. 

 

However, due to the high concentration ratio, CPV system requires high accurate 

and reliable tracking systems that track the sun throughout the day and year. Also, the 

high temperature of PV cells at high concentration is another challenge for CPV 

technology [47, 48].  

 

3.2 Types of concentrator 

Based on the primary concentrating elements, CPV system can be divided into 

two categories: refractive and reflective, which is shown in Figure 21 [49].  Reflective 
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systems usually use reflective lenses or mirrors as the primary concentrator. Refractive 

systems always use Fresnel lens as the concentrator.  

 

 

Figure 21. (a) Refractive and (b) reflective concentrators. Reprint from [49]. 

 

The reflective surface of reflector always has a shape of a parabola which can 

have a point focus configuration such as parabolic dish reflector or line focus 

configuration such as parabolic trough. Another type of reflector is the compound 

parabolic concentrator (CPC), which can provide the maximum possible concentration 

for a given maximum acceptance angle. It is also nonimaging concentrator which is not 

related to the image of the sun. However, CPC needs to be tall and thin to achieve high 

concentration, which is usually used in low concentration applications or used as a 

secondary concentrator. Figure 22 shows the structure of parabolic dish, parabolic trough 

and CPC reflector [47]. 

  

  

(a

) 

(b) 
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Figure 22. Schematic structure of (a) parabolic dish, (b) parabolic trough and (c) CPC 

reflector. Reprint from [49]. 

 

Refractive system usually use Fresnel lens as the primary concentrator, since it is 

light weight and cost effective. The surface of a Fresnel lens is actually a chain of prisms 

which is different with the conventional lens. An example of a typical Fresnel lens is 

shown in Figure 23. In this case, Fresnel lens can reduce the required material for 

traditional lens and can be made thinner and lighter. The disadvantage of using Fresnel 

lens with grooves is the light loss on the draft facet, which is called draft-loss. In order to 

keep high transmission efficiency, the loss can be minimized by make the facet perfectly 

(a

) 

(b) 

(c) 
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vertical [50]. The early Fresnel lenses was made of glass which is highly transparent in 

visible and infrared region and can be used at high temperatures or for glazing 

applications. In 1951, the first plastic Fresnel lens was made by Miller et al. [51]. After 

that, polymethylmethacrylate (PMMA) is used as a suitable material to fabricate Fresnel 

lens, since it is light weight, low cost in manufacturing, thermally stable up to at least 

80˚C and highly transparent in visible region.  [47, 52]. 

 

 

Figure 23. Cross-section of a typical Fresnel lens. Reprint from [53]. 

 

Based on different purposes of solar energy applications, Fresnel lens system can 

be divided into two fields: imaging Fresnel system and nonimaging system. The imaging 

Fresnel lens can refract the sunlight and form a sun image in the focal plane, which 

requires accurate two axis tracking system. On the other hand, nonimaging system try to 
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optimize the light radiation transfer from a source to a target, but no attempt to form an 

image of the source [52]. Nonimaging Fresnel lens can have wide acceptance angle and 

high tolerance with less precise tracking system, which make it suitable for 

concentrating solar power technology [53]. 

 

3.3 Optics of Fresnel lens 

Since Fresnel lens has one plat surface and one surface with periodic prism 

structure, it is important to know the transmission efficiency based on the direction that 

the Fresnel lens face. The direction of Fresnel can be defined as grooves out and grooves 

in. A grooves-out lens means the lens facets points to the incident light and a grooves-in 

lens is the lens that towards the focal point. Figure 24 shows the transmission efficiency 

based on the facing direction of the grooves [50]. In the figure, collimating means that a 

point light source is converted to parallel light by the lens and concentrating means the 

lens focus the light to a point. 
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Figure 24. Transmission efficiency of Fresnel verse f-number based on the facing 

direction of the grooves. Reprint from [50]. 

 

The distance between the lens surfaces to the focal plane is called focal length 

(f). Another usually used parameter which is called f-number (f/# or N) is defined as the 

ratio of focal length to the clear aperture diameter (D) of the lens, which is given by 

 f
N

D
  (3.1) 

The aperture diameter would be the diagonal if the shape of lens is a square. Lens with 

large f-number can have small convergence cone angle of light rays. Oppositely, lens 

with small f-number can have large convergence angle, which can reduce the costs of 

tracking and mechanical support. However, chromatic aberration problem is an issue 

with a lens at small f-number. Figure 25 shows the relationship between transmission 
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efficiency of lens with f-number. The transmission efficiency is decreased when the f-

number is below 1 [53]. 

 

 

Figure 25. Lens efficiency verse f-number. Reprint from [53]. 

 

The main losses of Fresnel lens can be divided into three parts: Fresnel reflection 

loss, material absorption loss, efficiency loss due to geometric and manufacturing 

limitations. 

Fresnel reflection loss is the transmission loss when the light comes from one 

medium to another medium with different refractive index. Figure 26 shows the Fresnel 

loss on the surface between the air and PMMA material based on different incident 

angle. When the light is normally incident on the Fresnel lens surface, the transmission 
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loss is around 8%. Also, it is reported that the Fresnel loss increases with increasing 

radial distance [53]. 

 

 

Figure 26. Fresnel loss on the surface between the air (n=1) and PMMA (n=1.49) based 

on different incident angle. 

 

Fresnel lens is usually made from PMMA which is highly transparent in the 

wavelength of 400-1000 nm. Most of the solar spectral irradiance is in this visible 

region. However, PMMA has strong absorption in near infrared and infrared light. Glass 

is the best material with high transmission from visible to infrared, but the Fresnel lens 

made from glass is heavy and fragile. 

Base on the geometric structure of the Fresnel lens, the ideal designed Fresnel 

lens has 0˚ draft angle and 0 radius sharp facet corner, which can have the maximum 

transmission efficiency. However, due to the manufacturing constraint, the transmission 
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efficiency drops around 2% with 4˚ draft angle and around 4% with 10 µm radius facet 

corner [53]. 

Another essential loss of Fresnel lens is chromatic dispersion. Since sunlight can 

be treated as a white light source, when sunlight passes through the prism structure of 

the Fresnel lens, it can get separated with different wavelength or color, which is called 

chromatic dispersion. Also, chromatic dispersion increases when the refraction angle 

increases [54]. Thus, when sunlight passes through the Fresnel lens, the maximum 

chromatic dispersion happens at the outermost portion of the lens and the minimum 

chromatic dispersion occurs around the center of the lens. It is possible that some of the 

rays cannot reach to the focal point when using large size Fresnel lens. In addition, the 

sunlight is not perfectly parallel, the sun subtends an angle about 0.52˚C to an observer 

on the Earth [55], which leads to the fact that the light passing through the lens is not 

perfectly parallel and the outermost portion of the lens has the maximum deviation. Both 

chromatic dispersion and sunlight deviation can reduce the transmission efficiency and 

have larger focal spot than desired. Figure 27 shows the schematic of chromatic 

dispersion and deviation of incident sunlight.  
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Figure 27. Schematic of chromatic dispersion and deviation of incident sunlight. Reprint 

from [53]. 

 

3.4 Basic characteristics of CPV system 

In concentrating optics, an important metric is the concentration ratio which 

usually is defined in two ways: optical concentration ratio oC  and geometric 

concentration ratio gC  [56, 57]. The geometric concentration ratio gC  is defined as the 

ratio of collector entry aperture area EA  to receiver area rA : 

 
E

g

r

A
C

A
  (3.2) 

 The optical concentration ratio oC  is defined as the ratio of the light intensity 

(irradiance) at focal point or receiver rG surface to the incident light intensity 

(irradiance) iG at the surface of optical concentrating element: 

 
r

o

i

G
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G
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Also, optical concentration can be expressed with geometric concentration and optical 

efficiency: 

 
o g optC C    (3.4) 

The optical efficiency of the system is defined as the percentage of light that passes 

through the optical system and reach the solar cell, which is the output power at the solar 

cell surface to the incident power of the lens or mirror: 

 
out

opt

in

P

P
   (3.5) 

“Suns” is usually used to represent the geometrical concentration ratio: 1000 suns 

represents the geometrical concentration ratio of 1000. At 1000 W/m2 DNI, the intensity 

at the focal point would be 1 MW/m2  [57]. 

The maximum concentration ratio is limited by the incident angle. From the 

etendue conservation theorem of geometrical optics, the maximum concentration is 

given by [56, 57]: 

 2 2

2

sin

sin

out
g

in

n
C




  (3.6) 

where in  is the maximum incident angle which is also the acceptance angle of the 

concentrator and out  is the maximum angle of the light rays at the receiver, as shown in 

Figure 28.  
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Figure 28. Description of acceptance angle and concentration ratio. 

 

For a solar concentrator with the receiver in air and with the output angle of 90˚, 

the theoretical maximum geometric concentration becomes as: 

 
max 2

1

sin
g

in

C


  (3.7) 

From the equation, the geometric concentration mainly depends on the incident angle or 

acceptance angle of the concentrator. Very high concentration ratio of a concentrator can 

be made by reducing the acceptance angle, but the collector can only collect a small 

portion of solar radiation. A wide acceptance angle concentrator can be used for non-
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tracking system but with low concentration ratio. The acceptance angle is typically made 

close to the angular size of the sun [57]. 

 

3.5 Types of CPV system 

Based on the concentration ratio and light intensity at the solar cell surface, CPV 

system can be roughly classified to two types: low concentration system (LCPV) which 

has a concentration ratio less than 300 and high concentration system (HCPV) which has 

a concentration ratio from 300-1000 [46]. Also, CPV system can be divided into three 

types: LCPV, HCPV and medium concentration system (MCPV) which has a 

concentration ratio between LCPV and HCPV [58]. 

HCPV system is a point focus system which requires a two axis tracking system 

to track the sun in both azimuth and elevation. The tracking system can be more accurate 

with smaller acceptance angle [57]. HCPV system with accurate tracking can significant 

increase the solar cell efficiency. The maximum solar cell efficiency is around 46% 

using multijunction solar cell under 508 suns. Another advantage of HCPV with MJ cell 

is that it can be used in hot climates such as desert conditions with daytime temperatures 

over 50 ˚C, since the efficiency of MJ solar cells does not decline severely at high 

temperatures [46, 57]. MJ cell can have a coefficient of around -0.07 %/C and 

conventional c-Si cell have a coefficient of around -0.4 %/C [57]. 

LCPV can use concentrators with lower concentration ratio such as parabolic 

troughs, linear Fresnel reflectors and compound parabolic concentrator. Also, LCPV has 

larger acceptance angle than HCPV system and does not require two-axis tracking 
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system with high accuracy. Thin film and c-Si solar cells can be used with LCPV to 

make it low cost. 

 

3.6 Losses in CPV system 

An idea CPV system will have 100% efficiency, however, there are several 

losses in CPV system. Figure 29 shows the estimated losses in CPV system [58]. As 

discussed previously, due to the manufacturing limited, Fresnel cannot be made with 

perfect sharp draft angle and periodic prism structures which leads to the reflection and 

dispersion loss. HCPV system will have non-uniform illumination on the cell surface 

which can increase the cell temperature and resistance. Other losses include material 

absorption, cell stringing and tracking issues. The total efficiency will drop around 40% 

during these losses in CPV system. 
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Figure 29. Estimated losses in CPV system. Reprint from [58]. 

 

The performance of CPV system reduces initially by Fresnel reflection loss on 

the surface of concentrators and solar cell. Fresnel reflection loss on the surface between 

the air and PMMA (n=1.49) is around 4%, which is shown in chapter 3.3. When sunlight 

passes through a Fresnel lens, both front and back surfaces have Fresnel reflection, 

which will reduce the transmission to around 92%. Materials with large difference of 

refractive index will have large Fresnel reflection loss. Antireflection layer can be coated 

on the front surface where the light will pass through to reduce the Fresnel reflection, but 

the back surface of a medium still has Fresnel reflection loss. 

Ideally, the sunlight can be collected by the concentrator and focused onto a solar 

cell with uniform flux distribution. However, in real life, some parts of the PV cell get 
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more exposed and some parts get less exposed which leads to the non-uniform 

illumination on PV cell. Because of the non-uniform irradiance on a PV cell, the 

temperature of the PV cell is non-uniform, which results in hotspots in some area of the 

solar cell. For example, this phenomenon of a CPV system using Fresnel lens can be 

described by Figure 30. Thus, some of the solar energy that collected by the concentrator 

are converted to heat which reduces the performance of the PV cell. Also, with higher 

concentration ratio, it is more difficult to have uniform irradiance on solar cell. The 

performance of the PV cell is limited by the non-uniform temperature on solar cell, 

which is due to the increasing series resistance. 

 

 

Figure 30. Hot spot on a PV cell because of the non-uniform irradiance in a Fresnel lens 

system. Reprint from [58]. 
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 In a concentrating photovoltaic system, the problem of non-uniform distribution 

can be separated into two cases: non-uniform irradiance on single cell surface and on a 

series of cells that are connected together. For non-uniform irradiance on single cell 

case, some regions of the cell have excessive irradiance which generates more current 

and heat, and some regions have less irradiance and does not operate. The electrical 

output power decreases due to the dissipation of power by heat.  For the case of a series 

of cells, the performance of solar cells is limited by shadow effect. The generated current 

of each cell might be different based the shading area on cell. The current passing 

through the cells is confined by the cell with the least irradiance, since the current has to 

be the same in a series of solar cells. The power is dissipated by heat in the cell which 

has less irradiance [58, 59]. For example, a multijunction solar cell (GaInP/GaAs/Ge) 

which has an efficiency of 37% has around 63% of the energy that absorbed from the 

cell dissipated in heat [58, 60]. 

Non-uniformity of a CPV system can be caused by several factors, such as 

concentrator optics, shape errors in concentrator profile, tracking errors, misalignment of 

concentrator, impurities in optical elements, mechanical failures and spectral response of 

the solar cell [58]. For concentrator optics, non-uniform irradiance happens in all kinds 

of CPV systems including Fresnel system, CPC system and dish concentrator. Improper 

tracking can enhance the effect of non-uniform irradiance. Impurities on optical 

elements can change the property of reflective or refractive concentrators, which non-

uniform flux on solar cell [61-67]. 
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Non-uniform illumination on solar cells can have several problems in a CPV 

system, which include electrical and thermal impact. Some of the thermal effects that are 

caused by non-uniform illumination can lead to the changes of some electrical 

parameters, which reduces the system performance.  

In a CPV system, non-uniform irradiance can reduce the efficiency and 

performance of fill factor, open circuit voltage, short circuit current and total generated 

photocurrent. The open circuit voltage of the solar cell is affected mainly by the cell area 

and the sheet resistivity [58]. Non-uniform illumination can result in non-uniform charge 

carrier density and have current passing through the emitter, which reduces the open 

circuit voltage. Figure 31 shows the experiment result of I-V curve of multijunction PV 

cells under non-uniform irradiance by R. Herrero et al [68]. The parameter peak-to-

average ratio (PAR) which is defined as the peak irradiance to the average irradiance is 

used to describe the non-uniform light. It is reported that the increasing of non-

uniformity will increase the sheet resistance and series resistance, which therefore 

decreases the fill factor and reduces the PV cell efficiency.  
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Figure 31.(a) I-V curve of multijunction PV cell under non-uniform irradiance and (b) 

examples of non-uniform light patterns on solar cells. Reprint from [68]. 

 

In thermal area, non-uniformity can lead non-uniform temperature distribution on 

the cell surface. Also, in MJ solar cell, there is a temperature distribution based on its 

depth as well as the temperature distribution on its surface, since MJ solar cell can 

collect different portion of solar spectrum with different layer subcell. Part of absorbed 

solar energy can convert to electricity, the rest of them will convert to heat. It is critical 

(a) 

(b) 
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to know the behavior of PV cell with different temperature and concentration ratio, 

which is the key point to determine the solar cell performance. In the study of crystalline 

silicon solar cell, the reverse saturation current is the most sensitive factor to 

temperature. Also, it is found that series resistance can be increased by almost 65% and 

shunt resistance can be reduced by over 30% when temperature changes from 25˚C to 

70˚C [69]. For multijunction solar cell, the efficiency decreases with increasing 

temperature and increases with increasing concentration ratio because of the increasing 

open circuit voltage. With the increase in concentration, it is found that the generated 

photocurrent and reversed saturated current increase, and series resistance and shunt 

resistance decrease. With the increase in temperature, the generated photocurrent, 

reversed saturated current and series resistance increase, and shunt resistance decreases 

[70]. The temperature dependent coefficient of a triple junction solar cell 

(InGaP/InGaAs/Ge) is -0.248%/˚C without concentration and -0.098%/ ˚C at a 

concentration of 200, and other temperature dependent factors are shown in Figure 32 

[71]. Therefore, CPV system has more benefit at high temperature. 
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Figure 32. Temperature dependence of (a) open circuit voltage, (b) short circuit current, 

(c) fill factor and (d) efficiency of InGaP/InGaAs/Ge PV cell. Reprint from [71]. 
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CHAPTER IV 

 INTEGRATED PHOTONICS 

 

4.1 Overview 

The basic idea of integrated photonics is to integrate various optical and photonic 

devices on a common planar substrate. The key component of integrated photonic is 

optical waveguide. The optical signals can be guided, coupled and split by optical 

waveguide. Thus, optical waveguide can be combined with other technologies, such as 

non-linear optics, optoelectronics and other photonic technologies (Figure 33) [72]. 

 

 

Figure 33. Integrated photonics: combining waveguide technology to several other 

technologies. 

Waveguide  

Non-linear optics Fiber optics 

Optical filter Laser 

Integrated photonics 
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In 1960, S. E. Miller introduced planar optical circuit technology to the world, 

which was the first time to use the term “integrated photonics” [72]. The goal of 

integrated photonics is to use of optical technology or photons to create an integrated 

optical circuit which is similar to the integrated electronic circuit.  

The advantage of using integrated photonic circuit instead of traditional electrical 

circuit is the high frequency of light which can have large bandwidth and transmit a 

large amount of information. When an electrical signal with high frequency propagates 

through a conductor, the conductor will have large impedance which leads to a high 

attenuation. At a transmission rate of around 100 MHz, the attenuation of a coaxial cable 

is around 5 dB/km [72], which can only be used in applications with short distances. On 

the other hand, optical signal can propagate in a non-conducting dielectric media with a 

wavelength in transparent window of the media material. The common used transparent 

window in optical communication is in the visible and near-infrared range, in which the 

frequency is 106 times larger than the frequency used in electrical signal. In addition, 

since the wavelength range used in optical signal is 0.5-2 µm, it allows to use the 

waveguide with a dimension of micro level to confine the light.  

The common used waveguide can be separated into three categories: planar 

waveguide, channel waveguide and optical fiber, as shown in Figure 34. The channel 

waveguide is the best choice for integrated optical devices [72]. In order to confine the 

light in the waveguide, the refractive index of the channel is larger than that of the 

substrate and upper medium. Integrated optical circuits with channel waveguides is also 

called planar lightwave circuits (PLC) [72]. 
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Figure 34. Common used waveguide: (a) planar waveguide, (b) channel waveguide and 

(c) optical fiber. Reprint from [72]. 

 

4.2 Electromagnetic theory of light 

Light is the flow of electromagnetic (EM) radiation which propagates through 

free space or through a medium in the form of electrical field and the magnetic field. 

Both electrical filed and magnetic field depend on the position and time. The electrical 

field and magnetic field in free space can be given by Maxwell’s equation [72]: 

 0E   (4.1) 

 0H   (4.2) 
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where  ,E r t  is the electric field,  ,H r t  is the magnetic field, 0 is the magnetic 

permeability of free space which is 4π×10-7 mkgs-2A-2, 0  is the dielectric permittivity 

(b) (a) (c) 
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of free space which is 8.85× 10-12 m-3kg-1s4A2. Maxwell’s equations in a material 

medium is expressed as: 

 D    (4.5) 

 0B   (4.6) 
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where  ,D r t  is the electric displacement vector,  ,B r t  is the magnetic flux density 

vector,  ,r t  is the charge density and  ,J r t  is the current density vector. The 

relationships between the vector  ,D r t  and  ,E r t ,  ,J r t  and  ,E r t , and  ,H r t  

and  ,B r t  are called constitutive relations which are given by: 

 D E  (4.9) 

 B H  (4.10) 

 J E  (4.11) 

where  is the magnetic permeability,   is the dielectric permittivity and   is the 

conductivity of the medium. The wave equations are obtained by combining Maxwell’s 

equation, which can be expressed as: 
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In a perfect dielectric medium, the conductivity   is 0. The electrical field of an 

incident wave is given by: 

  expi ioE E i nkr t   (4.14) 

where k is the wave vector and   is the angular frequency. The speed of light in free 

space and in a medium are given by: 

 8
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The refractive index n is related to the optical constant of the medium and the dielectric 

permittivity and the magnetic permeability of the free space, which is given by: 
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where r  is called dielectric constant. 

 

4.3 Optic waveguide 

The basic idea in optical integrated circuits is the use of waveguide to confine the 

light. Light can propagate in a medium with higher refractive index than that of 

surrounded medium and light cannot escape from this medium due to the total internal 

reflection, which is shown in Figure 35 [73]. From the Snell’s law, the relationship 

between the incident angle and refraction angle is given by: 
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1 1 2 2sin sinn n     (4.18) 

where 1  is the angle of incidence and 1  is the angle of refraction. If the refractive 

index n1 is larger than n2 and the incident angle is larger than the critical angle, the total 

internal reflection occurs. The critical angle can be calculated by: 
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Figure 35. Refraction of light and total internal reflection. Reprint from [73]. 

 

When the light propagates in an absorption medium, the refractive index of the 

medium material is given by 

 
cn n i   (4.20) 

where nc is called the complex refractive index, n is the real refractive index and   is 

called the absorption index. The attenuation or loss in waveguide can be divided into 

three different mechanisms: scattering, absorption and radiation loss. Scattering loss is 

mainly due to the imperfections such as voids, contaminant atoms and crystalline defects 
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[74]. Absorption loss is important in semiconductor materials. Radiation loss happens 

when waveguides are bent. 

Optical loss can be described by the attenuation coefficient or absorption 

coefficient   which is given by [74]: 

   0

zI z I e   (4.21) 

where I0 is the intensity at the position z=0. The unit of   is cm-1. Optical loss is also 

use dB/cm to determine the attention, which is given by: 

 
  0

1010log 4.3
I

Loss dB d
I


 

    
 

 (4.22) 

where d is the length of the waveguide. 

 

4.4 Measurement of waveguide losses 

One of the simplest method to determine the loss of the waveguide is called end-

coupling method or end-fire coupling, which is shown in Figure 36. In this method, the 

light at the certain wavelength is focused onto a polished face of a waveguide sample 

and then is coupled to a detector which can measure the total power transmitted. In order 

to measure the waveguide loss accurately, this method is usually repeated several times 

with different length of the waveguide sample. The waveguide can be shortened by 

cleaving, cutting and polishing. A good polishing can reduce the coupling loss of the 

waveguide. For example, a waveguide sample is shortened five times and can be 

measured five times. Based on the length of waveguide and the measured power at each 

length, the loss at each waveguide length can be calculated and the loss data can be 
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drawn in a straight line based on different length of waveguide. The slop of the line 

represents the propagation loss which can be described as [75]: 

  0 1

0 1

ln /P P

L L
 


 (4.23) 

where 0L , 1L  are two different lengths of the waveguide, and 0P , 1P  are transmitted 

powers of two different lengths of the waveguide. Also, in the graph of loss versus 

length of the waveguide, the intersection with y axis represents the coupling loss of the 

waveguide.  

 

 

Figure 36. Experiment setup for waveguide loss measurement by the end-coupling 

method. Reprint from [75]. 

 

The accuracy of this method depends on the alignment and polishing which are 

two important factors to this method. Since the waveguide is required to be cut for each 

measurement, it is critical to keep the alignment and polishing quality in consistent. 

Otherwise, the data points will be scattered and it is difficult to obtain accurate slop of 

the loss versus length curve [74]. 
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CHAPTER V 

DESIGN OF LENS-TO-CHANNEL WAVEGUIDING CONCENTRATOR SYSTEM 

 

5.1 Overview 

A traditional CPV system use optical element to concentrate the sunlight directly 

onto a PV cell. At this point, it may have the problems of the high temperature and non-

uniform illumination on the PV cell at high concentration ratio, which can reduce the 

performance of the PV cell. Due to these disadvantages of conventional CPV system, 

planar waveguides which are used as the secondary optics have been developed for CPV 

system since 2010 [76-81]. The advantage of the use of the waveguides as the secondary 

optics is that it can provide uniform illumination on PV cell and may have additional 

concentration. 

 

5.2 Structure of lens-to-channel waveguiding concentrator system 

The designed lens-to-channel waveguiding concentrator contains a lens array 

which acts as the primary concentrator, channel waveguides and MJ cells, as shown in 

Figure 37 [82, 83]. Compared with the single Fresnel lens, the use of a lens array as the 

primary concentrator can not only collect a large amount of sunlight, but also reduce the 

thickness of the whole system. For example, a Fresnel lens with a dimension of 1 m × 1 

m can collect 1000 W of sunlight under normal DNI. If the f number is 1, the total 

thickness of the system is at least 1 m. However, if using a lens array instead of the 

single lens, the thickness of the system can be significantly reduced. Consider that if the 
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dimension of each lens is 1 cm × 1 cm and the dimension of the lens array is 1 m × 1 m, 

the total sunlight power collected by the lens array is the same with the single lens, but 

the total thickness can be reduced to 1 cm if the lens array have a f number of 1. 

 

 

Figure 37. The top side of the lens-to-channel waveguiding concentrator system. Reprint 

from [82, 83]. 

 

In the designed CPV system, the sunlight can be absorbed by a lens array and 

concentrated onto the waveguide by a 45˚ coupler that is made in the waveguide. The 

45˚ coupler is positioned at the focal point of each lens. The collected sunlight can 

propagate by total internal reflection (TIR) in the waveguide and hit the PV cell at the 

end of the waveguide.  



 

66 

 

In Figure 37, a lens array can have M x N lenses, where M can be any number 

and N is given by: 

 2

2
1

D
N

w
   (5.1) 

where w is the width of the waveguide and D is the diameter of the lens. In order to 

achieve the maximum concentration, the width of the waveguide is designed as the same 

size as the spot size d0 of each lens, and the minimum thickness of waveguide is the 

same with the spot size. Therefore, the geometric concentration of the lens can be 

expressed as: 
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where t is the thickness of the waveguide. Also, the waveguides can be tapered to 

provide additional concentration, which is shown in Figure 38. The total geometric 

concentration becomes as: 

 
l wC C C   (5.3) 

where wC  is the concentration of the waveguide and can be expressed as: 

 

2 tan
w

W
C

W l 


  
 (5.4) 

where W is the total width of the waveguide array, l is the length of the tapered 

waveguide and   is the tapered angle. 
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Figure 38. The schematic structure of tapered waveguide concentrator. 

 

Since the maximum geometric concentration of the lens depends on the diameter 

of the lens and spot size at the focal point. It is important to know the factors that can 

have impact on the spot size. The spot size d can be described with focal length of the 

lens and the incident angle, which is shown as: 

 2 tand f     (5.5) 

where f is the focal length of the lens and   is the half angle of the incident light. The 

geometric concentration ratio of the lens becomes as: 
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where /f D  is the f number of the lens. The maximum angle after the lens or the 

marginal ray angle can be calculated by: 
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which is shown in Figure 39. Therefore, the maximum of the marginal ray angle is 

determined by the maximum half angle of the incident light and the f number of the lens. 

 

 

 

Figure 39. The relationship between the spot size, the incident angle and the marginal 

ray angle. 

 

5.3 Simulaton and discussion 

The use of waveguide as the secondary optical element can provide uniform 

illumination to the solar cell. Also, using the tapered waveguide instead of straight 

waveguide can have additional concentration. The uniform output at the end of 

waveguide is shown in Figure 40. To evaluate the importance of having a uniform 

M
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output, the peak-to-average ratio (PAR) is defined. As discussed previously, the fill 

factor for MJ cells under uniform illumination (PAR = 1) is 0.867, but it reduces to 

0.828 for PAR=4.01 [68].  The efficiency of the MJPV cell will decrease 4.5% which 

translates to a 2% degradation. 

 

 

 

Figure 40. Simulation result of the intensity distribution at the waveguide output. 

 

Material absorption losses for waveguides and lens are critical for the designed 

system. Table 3 and Table 4 summarize the spectral loss for a three junction PV cell and 

a four junction PV cell, respectively. The simulation compare the spectral loss of a 10 

cm-long waveguide made from PMMA and low OH glass, and 3 mm thick Fresnel lens 

made from PMMA. The AM1.5 direct spectrum is used in the simulation. The relative 

power and photon flux in each sub-band for a three junction PV cell and a four junction 
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PV cell is calculated. The average transmission is calculated in each band as well as the 

ratio of output to input photon flux. For silica, the transmission is greater than 99.5% for 

both three junction and four junction PV cell, but the short wavelength band sees more 

loss compared to the other bands. Due to the absorption, PMMA material has a 

transmission of above 80% in visible region and 50% or less in near infrared region. For 

four junction PV cell, the transmission of PMMA waveguide in the bottom cell is around 

15%, which may have a significant impact on the current generation of the cell and the 

cell efficiency, since the cell current is limited by the minimum current generated from 

the subcell. The thickness of the Fresnel lens is assumed to be 3 mm in the simulation. 

The transmission of PMMA lens is above 99% in the visible region. 
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Table 3. Spectral loss calculation for three junction PV cell 

  BB SR1 SR2 SR3 

  AM1.5D InGaP GaAs InGaAsNSb 

Wavelength (nm) 

280-4000 

nm 280-655 nm 

656nm-

880nm 881-1240nm 

Input power (W/m2) 887.65 381.91 229.57 176.92 

%Power-Relative to BB 88.8% 43.0% 25.9% 19.9% 

Input photons flux 

(#/m2) 3.55E+21 9.72E+20 8.77E+20 9.25E+20 

%Photons-Relative to 

BB 78.2% 27.4% 24.7% 26.1% 

Low OH silica 

waveguide   357-655 nm 656-880 nm 

881-1240 

nm 

 Power T(L=10 cm)   99.83% 99.99% 99.99% 

Photons T(L=10 cm)   99.86% 99.99% 99.99% 

PMMA waveguide   357-655 nm 656-880 nm 

881-1240 

nm 

 Power T(L=10 cm)   80.51% 85.13% 51.42% 

Photons T(L=10 cm)   81.36% 85.05% 49.36% 

 Power T(L=3 mm)   99.34% 99.52% 95.56% 

Photons T(L=3 mm)   99.38% 99.51% 95.07% 
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Table 4. Spectral loss calculation for four junction PV cell 

  BB SR1 SR2 SR3 SR4 

  AM1.5D GaInP GaAs GaInAsP GaInAs 

Wavelength (nm) 

280-4000 

nm 

280-689 

nm 

690nm-

886nm 

887-

1240nm 

1241-

1771nm 

Input power (W/m2) 887.65 423.76 192.89 171.75 90.83 

%Power-Relative to 

BB 99.0% 47.7% 21.7% 19.4% 10.2% 

Input photons flux 

(#/m2) 3.55E+21 1.08E+21 7.59E+20 9.02E+20 6.71E+20 

%Photons-Relative 

to BB 96.1% 30.4% 21.4% 25.4% 18.9% 

Low OH silica 

waveguide   

357-689 

nm 

690nm-

886nm 

887-

1240nm 

1241-

1770nm 

 Power T(L=10 cm)   99.85% 99.99% 99.99% 99.99% 

Photons T 

(L=10 cm)   99.88% 99.99% 99.99% 99.99% 

PMMA waveguide   

357-689 

nm 

690nm-

886nm 

887-

1240nm 

1241-

1770nm 

 Power T(L=10 cm)   81.09% 84.79% 50.57% 14.78% 

Photons T 

(L=10 cm)   81.98% 84.71% 48.58% 13.14% 

 Power T(L=3 mm)   99.36% 99.50% 95.45% 54.28% 

Photons T(L=3 mm)   99.40% 99.50% 94.97% 50.01% 
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Based on the structure, the transmission losses in the designed system can be 

divided into three categories: Fresnel reflection loss, propagation loss and coupling loss. 

Fresnel reflection loss happens at all the interfaces between two different materials with 

different refractive index, which includes the lens surface, waveguide surface and MJ 

cell surface. Propagation loss mainly depends on the waveguide material and fabrication 

process. Coupling loss occurs at the coupler surface.  

The coupler angle is the most important factor for the coupling loss. In designed 

structure, the incident light is collected and concentrated onto the waveguide surface, 

and then it is refracted to the coupler surface. Ideally, all the light that hit on the coupler 

surface can be reflected to the waveguide by the coupler which acts as a turning mirror. 

However, based on Snell’s law, total internal reflection happens when the angle of the 

incident light is larger than the critical angle, which means that the light with an incident 

angle smaller than the critical angle is impossible reflected to the waveguide by the 

coupler surface. Therefore, the coupling efficiency of the system depends on the angle of 

the incident light and the refractive index of the waveguide materials. 

To reduce the coupling loss, the coupler angle has to be optimized. Figure 41 

shows the simulation to find the best coupler angle. The incident light with an incident 

angle 
M M      can be expressed as: 

  sin cos ,cos ,sin sinink k        (5.8) 

The light is incident on the top of the waveguide surface first, and then refracted to the 

coupler surface. The relationship between the incident angle   and the refracted angle 

  can be given by Snell’s law: 
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 sin sinair wn n     (5.9) 

where nair is the refractive index of the air and nw is the refractive index of the 

waveguide. At the coupler surface, the light with an incident angle that is larger than the 

critical angle can be reflected to the waveguide by total internal reflection. The reflected 

light can be expressed as: 

  2 2 2 2sin cos ,cos 1 sin cos ,sin 1 sin cosr y yk k             (5.10) 

where  2 arctan tan siny      .  Figure 39 (c) shows that when the coupler angle 

is 45°, the angle of reflected light in both the XZ plane ∅x0 and YZ plane ∅y0  reach the 

minimum value, which leads to minimum coupling loss to the waveguide. 
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Figure 41. (a) The incident light with an incident angle; Simulation of (b) ray traces in 

waveguide and (c) the angle of the reflected light at the coupler surface based on 

different coupler angle. 
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CHAPTER VI 

DEMONSTRATION OF A MICRO WAVEGUIDING SOLAR CONCENTRATOR 

 

6.1 Overview 

The main advantage of the CPV system and the use of the lens array is to reduce 

the area of the solar cell as well as the thickness and the weight of the system. In order to 

make a compact CPV system, photolithography technique is used to fabricate micro 

leveled waveguide system.  

SU-8 photoresist is used as the waveguide material since polymer planar 

waveguide technology is reported to be one of the cost effective technology for 

fabrication of large cross sectional multimode devices. SU -8 photoresist has some 

interesting properties, which make it a very attractive material for a wide range of 

applications including micro-machining, micro-optics and packaging. Moreover, SU-8 

photoresist is highly transparent for wavelengths that is greater than 600 nm, and it is 

chemically and mechanically stable. Also. It has shown a good heat resistance. The 

operating temperature is around 200 °C. It can be spin coated at a thickness ranging from 

a few microns to a millimeter [84]. 
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6.2 Fabrication process of SU-8 waveguide 

Since the feature size of the designed waveguide is in micron level, wafer 

fabrication technique is used to fabricate SU-8 waveguide on silicon wafer. In the 

fabrication process, patterning or photolithography is one of the most critical operations. 

The goal of photolithography is to create or transfer a pattern with the dimensions 

established in the design in and on the wafer surface. 

The fabrication process starts with a pattern and photomask design that can be 

transferred to the wafer. L-Edit is the software that is used to design the pattern in the 

mask. The waveguide pattern in the photomask is shown in Figure 42. Then, the pattern 

on the photomask can be transferred into a layer of photoresist. Photoresist is a light-

sensitive material. When the photoresist is exposed to the light at certain wavelength, the 

structure and properties can be changed. Basically, there are two types of photoresist: 

positive photoresist and negative photoresist. Negative photoresist can be changed from 

a soluble condition to an insoluble after exposure. This chemical change is called 

polymerization. The soluble part can be removed by developer and the exposure area is 

remained on the wafer. On the other hand, the exposure area of positive photoresist can 

be removed after development. 
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Figure 42. Mask design of straight waveguide and tapered waveguide. 

 

Transferring the image from the mask onto the wafer surface layer usually have 

ten steps, which includes surface preparation, photoresist apply, soft bake, alignment and 

exposure, development, hard bake, develop inspect, etch, photoresist removal and final 

inspection. Since SU-8 photoresist is used as the waveguide material, there is no etch 

step in our fabrication process. The photolithography process for making SU-8 

waveguide is shown in Figure 43. 
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Figure 43. Photolithography process for making SU-8 waveguide. 
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The light can be guided in the waveguide by total internal reflection, which 

requires a core material with higher refractive index than that of the covered layer. The 

goal of thermal oxidation is to grown a SiO2 layer between the waveguide and silicon 

wafer as the covered layer, because the refractive index of SiO2 and SU-8 are around 

1.45 and 1.69, respectively. Thermal oxidation is based on a simple chemical reaction 

and can be separated into two methods: dry oxidation and wet oxidation: 

      2 2Si solid O gas SiO Solid   (6.1) 

        2 2 22Si solid H O gas SiO Solid H gas     (6.2) 

The oxidation growth rate in wet oxidation is faster than the dry oxidation, but the 

quality in wet oxidation is not as good as dry oxidation. Oxidation temperatures are 

between 900 ˚C and 1200 ˚C. In our fabrication process, the temperature is set to be 

1100 ˚C. 

The thickness of SU-8 photoresist is determined by the spin coating speed, as 

shown in Figure 44. In our case, the thickness of designed waveguide is around 100 µm, 

which requires a spin coating speed of around 2000 rpm. After the spin coating, the 

thickness of the edge is higher than the thickness in the center of the wafer due to the 

strong air turbulences. Edge bead may cause sticking to the mask as well as an undesired 

gap during exposure. In order to have uniform surface and reduce the edge bead, Q-tips 

can be used to remove the photoresist on the edge after the spin coating. Also, a solvent 

can be dispensed onto the edge of the rotating substrate to lower the edge bead. Figure 

45 shows the picture of the sample after the spin coating. 
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Figure 44. SU-8 spin speed versus thickness. 

 

 

Figure 45. The picture of the sample after the spin coating. The photoresist on the edge 

is removed by Q-tips. 
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Soft bake is to evaporate solvents from the resist. Soft bake temperature and time 

are determined by the thickness of the resist. Underbaking can have incomplete image 

formation at exposure and poor adhesion. Overbaking can cause the polymers not 

sensitive to exposure. For a thickness of 100 µm resist, soft bake time is round 5 minutes 

at 65˚C and 10-20 minutes at 95 ˚C. A hotplate or a convection oven can be used for soft 

bake. In our case, a level hotplate is used for soft bake procedure. A level hotplate has 

good thermal control and uniformity. Using convection oven may from a skin on the 

resist, which can inhibit the evolution of solvent and results in incomplete drying of the 

film.  

In order to obtain vertical sidewalls of the resist, a 350 nm UV light source is 

used for exposure process. The exposure energy required for a 100 µm resist is around 

230 mJ/cm2. Based on the type of substrate, it may require another 50% exposure doses. 

With optimal exposure, a visible image can be seen in the film within 5-15 seconds after 

being placed on the post exposure bake (PEB) hotplate.  

Development processes are aimed to form a pattern with the same dimension of 

the design. Underdevelopment can have coved sidewall in the resist. Overdevelopment 

will remove too much resist from the edge and top surface. The development time of a 

100 µm resist is around 8 minutes.  

Hard bake is the last step in our lithography process. The purpose is to evaporate 

solvents in the resist and harden the resist. The recommend temperature is in the range of 

150 ˚C to 250 ˚C for a time between 5 and 30 minutes. 
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The 45˚ angle coupler is also made in SU-8 waveguide by lithography 

technology. Based on Snell’s law, the coupler angle can be calculated by: 

 
  1

2

90 arcsin sin 90
n

n
 

 
    

 
 (6.3) 

where   is the coupler angle,   is the tilt angle of the sample, 
1n  is the refractive index 

of incident medium and 
2n  is the refractive index of SU-8. The minimum coupler angle 

can be achieved in the air is around 53˚. In order to make a 45˚ coupler, the sample and 

film photomask are immersed in the water. Figure 46 shows the fabrication process of 

the waveguide with 45˚ coupler and photograph of the tilt stage and coupler. 
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Figure 46. Key procedures of fabrication process for SU-8 waveguide with 45˚ coupler: 

(a) thermal oxidation, (b) photoresist spin coating, (c) exposure in the water and (d) 

development and photograph of (e) the tilt stage and (f) coupler. 

 

(e) (f) 

(a) (b) 

(c) (d) 
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After lithography, the sample is diced by a diamond saw to match the size of the 

measurement setup. So as to reduce the coupling loss, the cross section surface is 

polished by the polishing pad with different grain size. The sample is first polished by 

the polishing pad with a grain size of 5 µm, and followed by 3 µm and 0.5 µm polishing 

pad. Figure 47 shows the photograph of the cross section of the polished SU-8 

waveguide. 

 

 

Figure 47. Photograph of the cross section of the polished SU-8. 

 

6.3 Measurement setup and results 

Figure 48 shows the experimental setup for measuring the optical loss of the 

waveguide. The Ocean optics high power white light and Ocean optics spectrometer are 

used as the light source and detector, respectively. A multimode fiber with a diameter of 

62.5 µm is connected to light source and a multimode fiber with a diameter of 200 µm is 

connected to the detector.  The numerical aperture NA determines the range of angles of 

the light that the optical system can accept or emit, which is given by: [85] 
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 sinNA n   (6.4) 

where n is the refractive index of the medium, θ is the maximum half angle of the light 

that can enter or exit the optical system. In the measurement setup, the NA of the input 

fiber is smaller than the waveguide and output fiber which reduces the coupling loss of 

the waveguide. Also, a refractive index matching gel is used to attach the fiber and 

waveguide sample to reduce the coupling loss. The measured spectrum of fiber to fiber 

is used as the reference. The transmission of the waveguide can be calculated by the 

ration of the sample spectrum to the reference spectrum. 

 

 

Figure 48. Experimental setup for measuring the optical loss of the waveguide. 

 

The measurement results of the transmission, propagation loss and coupling loss 

are shown in Figure 49. The photograph and the transmission spectrum indicate that SU-

8 material has a high absorption in visible range and the waveguide has strong scattering 
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loss. The coupling loss of the waveguide is around 7 dB and the propagation loss is 

around 6 dB/cm at the wavelength of 650 nm, which is obtained by cut back method. 

 

 

Figure 49. The measurement results of (a) the transmission spectrum, (b) propagation 

loss and coupling loss, and (c) the picture of the waveguide during the measurement. 

 

In order to reduce the scattering loss, the surface roughness and uniformity are 

characterized by DekTak surface profiler. Two samples are used in this measurement: 

one sample has a thickness of around 70 µm and the other has a thickness of around 50 

µm. The results shows that the difference of the waveguide thickness from center to the 

edge is around 5-10 µm. There are several reasons that can lead to non-uniform 

(a) (b) 

(c) 
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thickness. One reason is the edge bead. After the spin coating, the thickness of the edge 

will be higher than the center, and this effect will be more critical for small wafers even 

if we removed the photoresist on the edge after spin coating. The temperature and time 

of soft bake process are also important to control the surface uniformity and surface 

roughness. The recommended soft bake time of SU-8 resist with a thickness of 100 µm 

from the manufacture data sheet is around 5 min at 65 ˚C and 20 min at 95 ˚C. The 

increase of the soft bake time can reduce the roughness of the surface and make the 

surface more uniform. In the experiment, the soft bake time is increased to 24 hours. The 

fabrication parameters and surface profile of two samples are shown in Table 5 and 

Figure 50.  

 

Table 5. Fabrication parameters of two samples. 

2 inch wafer Sample 1 Sample 2 

Spin coating speed 500/3000/6000rpm 500/4000/6000rpm 

Soft bake 
24 hours at 65°C 

ramp to 95°C 

24 hours at 65°C 

ramp to 95°C 

Exposure 230×1.5 mJ/cm² 220×1.5 mJ/cm² 

thickness 70-79 µm 51-56 µm 
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Figure 50. Surface uniformity and surface roughness measurement using DekTak surface 

profiler. 

 

Figure 51 shows the experiment setup for the waveguide with a 45˚ coupler. A 

Xe arc lamp is used as the light source, which has an intensity over 1000 W/m2. Since 

the light source is not a perfect collimated light, two mirrors with 45˚ angle are used to 

reflected the light and make the light collimated by keeping a long distance between two 

mirrors. 

 

(a) 

(b) 
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Figure 51. (a) Experiment setup for the waveguide with a 45˚ coupler and (b) the picture 

of the measurement. 

 

6.4 Conclusion 

A micro-level solar concentrator waveguide is made using SU-8 photoresist. In 

order to make 45˚ coupler in the waveguide, the sample is positioned on a tilted stage 

and immersed in the water during the exposure procedure. Surface roughness and 
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uniformity are important to the performance of the waveguide. The propagation loss of 

the SU-8 waveguide is around 8 dB/cm at the wavelength of 650 nm, which is primarily 

due to the scattering in the waveguide and absorption of the material.  

 

  



CHAPTER VII 

DEMONSTRATION OF A 2D-WAVEGUIDING SOLAR CONCENTRATOR* 

7.1 Overview 

This chapter will show an experimental demonstration results for a novel, two-

dimensional waveguiding solar concentrator consisting of a lens array which is used as 

the essential concentrator and a multimode waveguides as the secondary concentrator. 

The lens array collects the incident sun light and focuses it onto a 45˚ coupler which acts 

as a turning mirror. The turning mirror couples the light into the multimode waveguide, 

which alleviates connection, cooling and uniformity issues associated with conventional 

solar concentrating systems. Therefore, a large amount of sunlight can be efficiently 

focal to a small waveguide cross-section and reach to an array of PV cells with high 

optical efficiency. To achieve the maximum coupling efficiency of the light to the 

waveguide, the design of the turning mirror and waveguides are optimized to eliminate 

any inherent coupling loss in the waveguide propagation. Experimental results indicate 

that a 38 mm diameter lens with a multimode waveguide that is 3 mm × 3 mm × 10 cm 

can achieve 126x concentration with 62.8% optical efficiency by using total internal 

reflection. A critical requirement for this design is maintaining low waveguide  

_________________________ 

* Part of this chapter is reprinted by the permission from “First demonstration of a novel 
2D-waveguiding solar concentrator” by R. Huang, Y. Liu, C. K. Madsen, SPIE Optics + 
Photonics 2014, 19-21 August 2014, San Diego, California. Copyright 2014 SPIE.
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propagation losses, which as we demonstrate can be less than 0.1 dB/cm. Considering 

100% TIR coupling and the use of antireflection layers, the theoretical efficiency limit 

for this particular system is  around 88%. 

7.2 Simulation results of the 2d-waveguiding solar concentrator 

Table 6 shows the simulation results of the designed system by ZEMAX. The 

lens that has a diameter of 38 mm and a focal distance of 123 mm is used as the 

concentrator. A 3 mm × 3 mm PMMA waveguide is used in the simulation. In this 

structure, the concentration ratio of the lens is around 126x. The incident light angle on 

the lens is assumed as ±0.5° in this simulation. The optical efficiency η is defined as the 

ratio of the output power at the end of waveguide to the power of the incident light on 

the lens. The simulation results shows that the optical efficiency of the system is 69.6%, 

which is mainly due to the Fresnel loss and TIR coupling loss. Since the refractive index 

of PMMA is around 1.49, the critical angle of the PMMA waveguide is 42°, which leads 

to the fact that all the light can be reflected to the waveguide by TIR at the coupler 

surface, if the maximum incident angle at the top surface of the waveguide is around 

±5°. The angle of light after the lens, however, is approximately ±8.8°, which means that 

the efficiency is reduced due to the coupling loss and part of the light leaks at the coupler 

surface [86].  

In order to improve the coupling efficiency, a lens with larger f-number could be 

used to have zero TIR loss at the coupler surface, in trade for a larger spot size which 

reduces the concentration ratio of the system. Moreover, there are a total of four 
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interfaces suffering Fresnel reflections, which are the front and back side of the lens, the 

air/waveguide interface and the output end of the waveguide. Antireflection layers can 

be coated at the lens surfaces, as well as the end of the waveguide surface, effectively 

reducing the total Fresnel loss to around 12%. 

Thus, considering 100% TIR coupling efficiency and the use of antireflection 

layers to reduce the Fresnel loss, the theoretical efficiency limit for this particular system 

is around 88%. 

Table 6. Simulation results of lens-to-waveguide system. 

Relative Percent 

Fresnel loss Lens 6.1% 

Waveguide top 3.8% 

Waveguide end 4.2% 

Total 14.1% 

Absolute Percent 

Propagation Loss For L=50mm straight 

waveguide 

0.1% 

Coupling Loss Spot Size 0.3% 

TIR 19.0% 

Total Efficiency 69.6% 

In order to reach the maximum concentration, the simulation in Figure 52 shows 

the maximum achievable waveguide concentration for the system presented above. It 

shows that the upper limit is 7.3x before the efficiency drops, which indicates that the 
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total concentration of the system can be 126x*7.3x=920x by using the tapered 

waveguide. 

Figure 52. The maximum achievable waveguide concentration for the system. 

7.3 Experiment results of the 2d-waveguiding solar concentrator 

We selected PMMA as our waveguide material, since this material has been 

studied previously and reported to be transparent and low loss in the visible range[87]. 

The PMMA waveguide, shown in Figure 53, is made using Full Spectrum H-Series 

20×12 CO2 laser cutter. The full power of the laser cutter is 40 W. With a precise focal 

length, the minimum feature size is around 1 mm.  
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Figure 53. A PMMA waveguide is made by CO2 laser cutter. 

In order to have the smooth surface and reduce the scattering loss of the 

waveguide, the parameter of the laser cutter is optimized. The waveguide structure can 

be designed in laser cutter software RetinaEngrave3D. There are three important 

parameters in the laser cutter software: power, speed and pass. The parameters can be 

adjusted based on the thickness of the waveguide material. The laser beam is reflected 

by three mirrors and focal to the target by a 2” lens. The focal point of the laser beam is 

set at the middle of the material thickness to minimize beam divergence. The coaxial gas 

jet can remove the cutting debris and protect the lens from contamination. The gas 

pressure is adjusted depending on the cutting speed and the thickness of the material. A 

protective masking layer can be used to avoid buildup of vapor residue on cut surfaces. 

Figure 54 shows the laser cutter and design in RetinaEngrave3D. 
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Figure 54. (a) Full Spectrum H-Series 20×12 CO2 laser cutter and (b) the control panel 

of RetinaEngrave3D. 

End coupling method or cut back method is used to measure the coupling loss of 

the 45° coupler and propagation loss of a straight PMMA waveguide. In the 

measurement, a 532 nm laser is used as the light source, and PM320E power meter with 

a Si photodiode power sensor is used as the detector to measure the output power of the 

waveguide. In this case, the 8 cm straight waveguide is shortened 6 times in order to 

have accurate data to calculate the loss. The loss versus waveguide curve shows in 

Figure 55, in which the slope and y axis intercept represent the propagation loss and the 

coupling loss, respectively. Thus, the measured propagation loss is less than 0.1 dB/cm 

and the coupling loss is 0.8 dB, which indicates that 17% of the light escapes from the 

waveguide due to the incident angle and TIR. 

(b)(a) 
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Figure 55. (a) The waveguide loss is measured by cut back method with a 532 nm laser. 

(b) The loss versus waveguide curve is obtained by shorten the waveguide.

Figure 56 shows the experimental setup for measuring the optical efficiency of 

the designed system, which contains a high power white light source, two mirrors and 

power meter. The high power white light source is used to mimic the sun light. In order 

to have a collimated light, the distance between the first mirror and the second mirror is 

(a) 

(b)
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around two meters. Then, the light is made normal to the lens by the second mirror 

which is a 45° turning mirror. The light collected by the lens is concentrated to the 

coupler and coupler into the waveguide. The lens diameter is 38 mm and the dimension 

of the PMMA waveguide used in this experiment is 3 mm × 3 mm × 10 cm. No tapered 

waveguide is measured in this demonstration. 

Figure 56. Experiment setup for measuring optical efficiency of the system. 

The experimental results are shown in Table 7, which indicates that a geometric 

concentration ratio of 126x and an optical concentration ratio of 72x can be achieved by 

a straight waveguide concentrator system. According to the simulation results, the 

maximum waveguide concentration is 7.3x, which leads to 920x geometric 

concentration and 525x optical concentration when using a tapered waveguide instead of 

the straight waveguide as the secondary concentrator. The measured optical efficiency is 
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62.8% which is a difference of 6.6% from the simulation result of 69.4%. One possible 

reason is that the incident light angle before the lens is larger than our expected angle of 

±0.5°. As discussed in the simulation results, all the light can be reflected to the 

waveguide by TIR at the coupler surface if the incident angle on the top of the 

waveguide surface is less than 5°. However, the divergence angle of this lens (38 mm 

diameter, f = 123 mm) is 8.8° which is larger than the maximum angle of the light that 

can be coupled to the waveguide. Based on Snell’s law, a material with higher refractive 

index can have a smaller critical angle, which means the light with large incident angle 

on the waveguide can be reflected to the waveguide by TIR at the coupler surface if 

using the material with higher refractive index as the waveguide material. Another 

possible reason is the surface roughness of the waveguide. Undesired reflection of the 

light would happen at a rough coupler surface, which will increase the angle of the 

reflected light, part of the light may escape from the waveguide surface and cannot be 

constricted by total internal reflection. 
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Table 7. The experiment results of lens-to-channel waveguide system. 

Parameter 38 mm diameter lens 

Focal length 12.3 cm 

Optical efficiency 62.8% 

Geometric concentration 126 

Optical concentration 72 

The device demonstration is shown in Figure 57, which contains a 1×3 lens array 

and waveguide array. The holder of the concentrator system is made by a 3D printer. 

The light is concentrated to the waveguides by a lens array, and reflected to the 

waveguides by a 45° coupler. The light is finally guided to the edge of waveguide by 

total internal reflection. 
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Figure 57. The demonstration of 1×3 lens-to-channel waveguiding concentrator system. 

7.4 Conclusion 

The designed waveguide concentrator system contains a lens array and a channel 

waveguide array. In this system, any decoupling loss in the waveguide can be avoided. 

An optical efficiency of 69.6% and 7.3x waveguide concentration can be achieved by 

ZEMAX simulation based on 38 mm diameter lens and PMMA waveguide. 

Experimental results show that the system can have 62.8% optical efficiency at 126x 

concentration for the straight waveguide. Overall, 920x concentration can be reached if 

using a tapered waveguide instead of the straight waveguide. 
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CHAPTER VIII 

DEMONSTRATION OF AN INTERMEDIATE-SCALE LENS-TO-CHANNEL 

WAVEGUIDE SOLAR CONCENTRATOR* 

8.1 Overview 

Solar concentrating photovoltaic systems have the potential to reduce total 

system cost and achieve higher efficiency by replacing a large solar cell surface with 

cheap optical elements, in which a large area of light can be efficiently collected and 

concentrated onto a small optical device and guided to an array of co-located 

photovoltaic cells with high optical efficiency. In this work, a 60 mm by 60 mm lens to 

channel waveguide system is used for demonstration. A separate, aluminum-coated 45˚ 

coupler is fabricated and attached to the waveguide to improve the coupling efficiency 

and to avoid any inherent decoupling loss.  

8.2 Structure of the designed system 

Previously we proposed a lens-to-channel waveguide system which consists of a 

primary concentrator (a Fresnel lens array) and a secondary optic (PMMA multimode 

waveguide).  The sunlight is collected by the lens array and coupled to the waveguide by 

_________________________ 

* Part of this chapter is reprinted by the permission from “Demonstration of an

intermediate-scale lens-to-channel waveguide solar concentrator” by R. Huang, Y. Liu,

C. K. Madsen, SPIE Optics + Photonics 2015, 9-13 August 2015, San Diego, California.

Copyright 2015 SPIE
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a 45° coupler which is fabricated in the PMMA waveguide and is aligned at the focal 

point of each lens. The light can propagate in the waveguide by total internal reflection 

(TIR) and reach the PV cell at the edge of the waveguide [88]. 

The measured optical efficiency of previous experiment demonstration is 62.8%, 

which is mainly due to the TIR loss at the coupler surface in the PMMA waveguide and 

Fresnel losses. Since the 45° coupler is made in the waveguide, the maximum incident 

angle is limited by the waveguide material. Figure 58 shows the calculation of the 

relationship between the incident angle, coupler angle and efficiency for PMMA 

waveguide. Since the critical angle of PMMA material is around 42˚, only the light with 

an incident angle larger than the critical angle can be reflected to the waveguide by TIR. 

When the coupler angle is 45˚, the increase of the incident angle can reduce the TIR 

efficiency at the coupler surface. Also, part of the light than is coupled to the waveguide 

cannot be confined in the waveguide by TIR if the coupler angle increases to above 70˚. 

In order to keep high coupling efficiency, the incident angle must be small enough by 

using large f-number lens, which increases the thickness and weight of the whole 

system. 
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Figure 58. The relationship between the incident angle, coupler angle and efficiency for 

PMMA waveguide. 

 

In order to reduce the decoupling loss and improve the performance of the 

waveguide solar concentrator system, a separate coupler with an attached aluminum 

mirror is used to couple to the waveguide in the new system, as shown in Figure 59. The 

sunlight can be reflected to the waveguide by the aluminum coated turning mirror and 

reach the PV cell at the end of the waveguide. In this case, there is no TIR coupling loss 

at the coupler surface and the coupling efficiency at the coupler surface will only depend 

on the reflectance of the coated metal. Also, the maximum incident angle at the coupler 

surface will depend on the critical angle of the waveguide material, which allows a large 

f-number Fresnel lens to attach to the system. Therefore, the system efficiency is 

increased due to the high reflectance turning mirror and the system can be more compact 

with a large f-number Fresnel lens array. 
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Figure 59. (a) A 3D view of lens-to-channel waveguide system with separated 45˚ 

coupler. (b) Side view and (c) top view of the system. 

 

8.3 Experiment method 

Figure 60 is a photograph of the CPV module used in this experiment. An 8 × 8 

PMMA Fresnel lens array is used as the primary concentrator and is installed with an 

aluminum frame. The clear aperture of each lens is 60 mm × 60 mm. The f-number of 

the Fresnel lens is 1, which results in a 26.6° divergence angle at the coupler surface and 

the output of waveguide. The 45˚ aluminum coated coupler is aligned at the focal point 

of each lens and attached to the waveguide. A 5.5 mm × 6 mm PMMA waveguide array 

is used as the secondary optics to provide uniform irradiance, which is made by CO2 

laser cutting. All of the waveguides and couplers are positioned on an acrylic plate by 

low refractive index optical adhesive to reduce the TIR loss at the contact surface 

between the waveguide and holder. The bottom aluminum plate and the waveguide 

Waveguide 

45˚ coupler 

Solar cell 

Lens array 

(a) (b) 

(c) 
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holder stage which is shown in Figure 50 (c) can be moved in horizontal and vertical 

direction. In this case, the coupler and waveguide can be aligned at the focal point of the 

lens array by adjusting the stage and bottom plate. 

Figure 60. Photograph of (a) 8 × 8 Fresnel lens array, (b) waveguide holder stage and (c) 

the output of waveguide. 

In order to test optical efficiency of the concentrator system, two photodiodes 

and an Apogee pyranometer are used as the detectors to measure the intensity of the 

(a) (b) 

(c) 

45˚ coupler 

Waveguide 
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input sunlight and the output of the waveguide. Figure 61 shows the diagram and 

photograph of the measurement setup. The geometric concentration of the system is 

defined as the ratio of the area of the collected incident sunlight to the area of the output 

of the waveguide: 

 
in

geo

out

A
C

A
  (8.1) 

Thus, the geometric concentration of the system is around 109x and the intensity at the 

output of the waveguide will be more than 100, 000 W/m2 under 100% efficiency 

condition, which leads to the fact that the current of photodiode will saturate at the 

output of the waveguide. A reflective neutral density (ND) filter is fixed at the top 

surface of the photodiode to provide uniform attenuation over the broad spectral range 

from 350 – 1200 nm. This ND filter has optical density 2.0, which allows 1% of the light 

reach to the photodiode from the output of the waveguide. The optical density d for an 

ND filter is defined as the logarithm of the ratio of the intensity after the filter to the 

intensity of the incident light: 

 
10log out

in

I
d

I
   (8.2) 

The diameter of the ND filter is 12.7 mm and the radiant sensitive area of photodiode is 

1 mm × 1 mm. At the same time, another photodiode and an Apogee pyranometer are 

installed to the other side of the aluminum plate to measure the intensity of the input 

sunlight. 



 

109 

 

 

Figure 61. Optical measurement setup for measuring (a) the intensity of the waveguide 

output and (b) the incident sunlight. 

 

Since the f-number of the Fresnel lens is 1, the divergence angle of the lens is 

26.6° which is smaller than the critical angle of the waveguide, all the light can 

propagate in waveguide by TIR. Also, the maximum angle of the light at the output of 

waveguide is 26.6°. In order to get a more accurate measurement result, Figure 62 

compares the angular response of the photodiode with an ideal cosine response and 

shows the linearity response of photodiode. This type of photodiode can collect around 

90% of the light at 26.6° and have a linear relationship with light intensity up to 2200 

W/m2. 

 

Photodiode is inside the holder 

ND filter 

Photodiode pyranometer 

(a) (b) 
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Figure 62. Angular response of photodiode and ideal cosine response. (b) Linearity 

response of photodiode. 

 

Finally, a 6 mm × 6 mm MJ cell is positioned at the output of the waveguide, as 

shown in Figure 63. Since the waveguide dimension is 6 mm × 5.5 mm, the size of MJ 

cell is sufficient to collect all the irradiance from the waveguide if butt coupled with no 

(a) 

(b) 
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intervening gap. A Keithley sourcemeter is used to measure the current and voltage of 

the MJ cell. 

 

 

Figure 63. Measurement setup of the lens-to-channel waveguide system with a MJ cell. 

 

8.4 Results and discussion 

Table 8, Table 9 and Figure 64 show the ZEMAX simulation results of a 60 mm 

× 60 mm lens (f-number is 1) to a 6 mm × 5.5 mm PMMA straight waveguide with a 

separate aluminum coated coupler. Due to the Fresnel reflection loss the maximum 

transmission of the Fresnel lens is around 88%. Then, the transmission drops to 81% at 

the coupler surface, which mainly depends on the reflection of the coated surface. The 

reflection efficiency of an Al coated mirror is typically around 94%. Since the size of the 

mirror is 6 mm × 10 mm, which does not exactly match the size of the waveguide, 

MJ cell 
Waveguide Coupler 
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1.64% of the light cannot be coupled to the waveguide from the coupler. The refractive 

index difference between the air and waveguide material leads to the Fresnel reflection 

loss at the front and back surface of waveguide. Therefore, the maximum theoretical 

optical efficiency of this system is 75.4%. Since there is a divergence angle at the output 

of the waveguide, the position of the detector is also important to measure the output 

power. The detected power will reduce to less than 40% if the distance between the 

waveguide output and detector is larger than 1 mm. 

 

 

Figure 64. The simulation model in ZEMAX. 
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Table 8. ZEMAX simulation results of the system. 

 Interface Transmission Loss Source 

0 Start 100%  

1 Lens front/back 88.25% Fresnel reflection 

2 Coupler 81.68% ~1.64% misses 

waveguide input 

94.1% reflection 

from Al 

3 Waveguide (front) 78.49% Fresnel reflection 

4 Waveguide 

(output) 

75.40% Fresnel reflection 

 

Table 9. Detected power verse distance from waveguide output. 

Distance from waveguide output Percentage of detected power 

0 mm 100% 

1 mm 40.5% 

2 mm 33.3% 

 

Figure 65 compares the V-I result of MJ cell with system concentration and 

without concentration. The experiment setup is shown in Figure 63, in which the MJ cell 

is attached to the output of the waveguide and is measured by Keithley sourcemeter. A 

10 cm long PMMA waveguide is used in this measurement. The maximum power 

generated by MJ cell is 600 mW under Fresnel lens concentration and 288 mW with lens 

and waveguide system. The maximum transmission of an ideal 10 cm long PMMA 

waveguide is 78.89% at 400 nm to 1100 nm, based on absorption coefficient calculations 

[89]. 
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Figure 65. Measurement result of MJ cell V-I curve. 

 

Table 10 compares the transmission and efficiency of the current system with the 

ideal system which has low loss components. In the measurement of the current system, 

the transmission of the lens and the reflection efficiency of the aluminum coated mirror 

are around 70% and 83.49%, respectively. The transmission of the waveguide and 

coupler is 54% which is measured in the lab. The transmission of the waveguide can be 

found using the transmission of the waveguide and coupler divided by the reflection 

efficiency of the coupler, which is around 65.3%. Therefore, the whole system efficiency 

is around 38.5%. The low efficiency of the waveguide is mainly due to absorption loss 

and scattering loss. Low loss waveguide materials and advanced fabrication processes 

are required to improve the waveguide transmission and system efficiency. The 

transmission would be close to 99% if using low OH silica as the waveguide material. 
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Alignment and tracking are also important to the designed system. The coupling 

efficiency at the coupler surface and waveguide depends on the accuracy of the tracking 

and alignment. In order to have low coupling loss, the focal point of the Fresnel lens has 

to be positioned at the center of the 45˚ coupler, which requires ±0.5˚ tolerance in 

tracking and alignment. For a system with better components, whose transmission is 

noted in Table 10, a system efficiency of 86% should be achievable. 

 

Table 10. Measurement results of current system and estimated efficiency of the system 

with better components [53]. 

 Transmission of 

the lens 

Transmission of the 

waveguide and 

coupler 

Efficiency of the 

system 

Measurement in the 

lab 

70.59% 54.52% 38% 

Measurement 

outside 

70.18% 40.98% 29% 

System with better 

components 

92% 94% 86% 

 

8.5 Conclusion 

The designed a lens-to-channel waveguide concentrator system which consists of 

a Fresnel lens array, 45˚ coupler and channel waveguide. In this system, an 8 × 8 square 

lens array which has a dimension of 60 mm × 60 mm and a PMMA multimode 
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waveguide are used as the primary concentrator and the secondary concentrator, 

respectively.  No further decoupling losses are encountered in the waveguide. An optical 

efficiency of 75.4% can be achieved according to our ZEMAX simulation. Experimental 

results based on 60 mm × 60 mm lens to one PMMA waveguide and MJ cell are also 

presented in Table 10. With better components and low loss material as the waveguide, a 

system efficiency of 86% can be achieved. 
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CHAPTER IX 

CONCLUSION 

 

CPV technology is of most interest for power generation in sun-rich regions with 

high efficiency. The idea of CPV technology is to use cheap optics such as lenses and 

mirrors to focal sunlight onto a tiny area of a PV cell. In this case, the cost of the PV 

system is reduced by replacing a large area of expensive PV cells with less expensive 

optical elements. 

Our designed lens-to-channel waveguiding CPV system contains a lens array 

which is used as the essential concentrator, a channel waveguide array and MJ cells. 

Compared with the single Fresnel lens, the use of a lens array as the primary 

concentrator can absorb a large area of sunlight, but also reduce the thickness and weight 

of the whole system. Using waveguide as the secondary concentrator can reduce the 

connection problem of solar cell and further increase the concentration ratio by tapering 

the waveguide. Also, waveguide concentrator can provide uniform illumination on solar 

cell. 

The designed CPV system with integrated 45˚ couplers inside the waveguide 

consists of a lens array with a diameter of 38 mm and a multimode waveguide array. The 

system have a concentration ratio of 126x and can be increased to 920x if using tapered 

glass waveguides instead of straight PMMA waveguides. The theoretical efficiency and 

experiment efficiency are 69.6% and 62.8%, respectively. The main losses are Fresnel 

loss, coupling loss and propagation loss.  
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The system with separated 45˚ couplers can significantly reduce the coupling loss 

at the coupling surface. The use of the aluminum or silver coated mirror as the separated 

coupler can increase the coupling efficiency due to the high reflectance of aluminum and 

silver. With better components and low loss material as the waveguide, a system 

efficiency of 86% can be achieved. 
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