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ABSTRACT

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is working

towards developing a virtual reactor called the Virtual Environment for Reactor Applica-

tion (VERA). As part of this work, computational fluid dynamics (CFD) simulations are

being made to inform lower fidelity models to predict heat transfer and fluid flow through

a light water reactor core. A 5x5 fuel rod assembly with mixing vanes was chosen to

represent a 17x17 fuel rod assembly. Even with this simplified geometry, it is estimated

that hundreds of millions of cells are needed for a solution to be close to the asymptotic

region. The large number of cells is an issue when completing solution verification studies

because of computational cost.

Solution verification studies traditionally involve the use of Roache’s grid convergence

index (GCI) to estimate the error, but require the solution to be in the asymptotic region.

This is a severely limiting restriction for simulations with large range of length scales as is

the case with the 5x5 fuel rod assembly with mixing vanes. Unfortunately, GCI does not

perform well when the solution is outside the asymptotic region. However, a new method

called the robust multi-regression (RMR) solution verification method has the potential to

produce good results, even when the solution is outside the asymptotic region.

This study builds a software framework that improves the RMR solution verification

analysis by improving the error model used to estimate the discretization error. Previous

RMR work used a power function to model the error, which was the same function used

in the Richardson extrapolation. The power function form is a result of a Taylor series

expansion on a uniform grid for simple numerical schemes and physics. It can be improved

by completing a Taylor series expansion for the numerical scheme, boundary conditions,

and physics that are being employed in the simulation of interest. This framework was
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shown to improve the ability for the error model to estimate the discretization error and

uncertainty. The improved error model was able to predict error on a refined grid within

the uncertainty bounds, while the standard error model did not. In addition, the method

of manufactured modified equation analysis solutions (MMMEAS) was developed and

applied to justify the use of a down selection method for terms in the error model.
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NOMENCLATURE

Abbreviations

CASL Consortium for Advanced Simulation of Light Water
Reactors

CFD Computational Fluid Dynamics

GCI Grid Convergence Index

LASSO Least Absolute Shrinkage and Selection Operator

MAD Median Absolute Difference

MEA Modified Equation Analysis

MMMEAS Method of Manufactured Modified Equation Analysis
Solutions

MMS Method of Manufactured Solutions

MSE Mean Squared Error

QoI Quantity of Interest

Re Reynold’s Number

RMR Robust Multi-Regression

SQA Software Quality Assurance

VERA Virtual Environment for Reactor Applications

Parameter Notation

A Channel Area

Ak QoI on the kth Grid
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Fs Factor of Safety

H Half Channel Height

L Channel Length

N Total Number of LASSO Variables

Nc Total Number of Cells in the Domain of Interest

U Velocity

V Total Volume

W Channel Width

b Base Size

c Coefficient of Leading Error Term

f Solution on a Particular Grid

h Average Cell Size Estimate

hk Average Cell Size Estimate on the kth Grid

i Index in the X Direction

j Index in the Y Direction

m LASSO Cross-Validation Reference Index

n LASSO Variable Index

p Pressure

pobs Observed Order of Accuracy

pth Formal Order of Accuracy

r Refinement Factor

t Time

u X Velocity

v Y Velocity
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α Vector Differencing Method Iteration

β LASSO Variable Coefficient

∆x1 First Cell in Domain

λ LASSO Coefficients

φ Arbitrary CFD Output Variable

ρ Density

τ Shear Stress

µ Viscosity

ix



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . vi

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Roache’s Grid Convergence Index . . . . . . . . . . . . . . . . . 3
1.1.2 Robust Multi-Regression Solution Verification . . . . . . . . . . . 3
1.1.3 Modified Equation Analysis . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Generation Error Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Generation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Geometric Sensitivities . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Derivation of Analytic Solution . . . . . . . . . . . . . . . . . . . 7

2.3 LASSO Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Expert Opinion Check . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Homogeneity Check . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Coefficient Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 12

x



2.7 Comparison Between Solution Verification Methods . . . . . . . . . . . . 12
2.8 Teacher-Student Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8.1 One Dimensional MEA . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.2 Solution Form and Local Error Equation . . . . . . . . . . . . . . 13
2.8.3 Grid Refinement Methods . . . . . . . . . . . . . . . . . . . . . 13
2.8.4 Grid Comparison and LASSO Analysis . . . . . . . . . . . . . . 14
2.8.5 Teacher-Student Error Comparison . . . . . . . . . . . . . . . . . 14

3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 STAR-CCM+ Verification Case Setup . . . . . . . . . . . . . . . . . . . 15
3.1.1 Geometry and Boundary Conditions . . . . . . . . . . . . . . . . 15
3.1.2 STAR-CCM+ Grid . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Flow Description . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Geometric Sensitivities . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Generation of Error Terms . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Continuity MEA . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Conservation of Momentum MEA . . . . . . . . . . . . . . . . . 25
3.2.3 Cell Size Estimation Terms . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Grid Quality Terms . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 LASSO Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Expert Opinion Check . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Homogeneity Check . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 LASSO Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Coefficient Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Coefficient Optimization Results . . . . . . . . . . . . . . . . . . 43

3.5 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Computational Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Comparison Between Solution Verification Methods . . . . . . . . . . . . 45
3.8 Teacher-Student Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.1 One Dimensional MEA for Steady Continuity Equation . . . . . . 47
3.8.2 Solution Equation and Local Error Equation (Teacher Equation) . 49
3.8.3 Grid Refinement Methods . . . . . . . . . . . . . . . . . . . . . 51
3.8.4 Grid Comparison and LASSO Analysis - Local Error . . . . . . . 52
3.8.5 Grid Comparison and LASSO Analysis - Global Error . . . . . . 58
3.8.6 Teacher-Student Data Comparison . . . . . . . . . . . . . . . . . 58

4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 STAR-CCM+ Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Teacher-Student Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



LIST OF FIGURES

FIGURE Page

3.1 Test Case Geometry with Boundary Conditions . . . . . . . . . . . . . . 16

3.2 Section View of Grid Detail at the Inlet . . . . . . . . . . . . . . . . . . . 17

3.3 Top View of Section Geometry with Probe Locations . . . . . . . . . . . 18

3.4 Indexing Used for MEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Cell Aspect Ratio Example . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Face Validity Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Cell Quality Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Volume Change Example . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Cell Skewness Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Chevron Cell Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Least Squares Quality Example . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Cell Warpage Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 Raw Data with Large Iterations . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Error Prediction Using LASSO Coefficients . . . . . . . . . . . . . . . . 42

3.15 Error Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.16 Uncertainty Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.17 Uncertainty Due to Sample Size . . . . . . . . . . . . . . . . . . . . . . 46

3.18 Uncertainty Estimate Comparison . . . . . . . . . . . . . . . . . . . . . 46

3.19 Teacher-Student Study 1 Grid 1 Local Error Comparison Plot . . . . . . . 60

3.20 Teacher-Student Study 1 Grid 2 Local Error Comparison Plot . . . . . . . 60

xiii



3.21 Teacher-Student Study 1 Grid 3 Local Error Comparison Plot . . . . . . . 61

3.22 Teacher-Student Study 1 Grid 4 Local Error Comparison Plot . . . . . . . 61

3.23 Teacher-Student Study 2 Grid 1 Local Error Comparison Plot . . . . . . . 62

3.24 Teacher-Student Study 2 Grid 2 Local Error Comparison Plot . . . . . . . 62

3.25 Teacher-Student Study 2 Grid 3 Local Error Comparison Plot . . . . . . . 63

3.26 Teacher-Student Study 2 Grid 4 Local Error Comparison Plot . . . . . . . 63

3.27 Teacher-Student Study 3 Grid 1 Local Error Comparison Plot . . . . . . . 64

3.28 Teacher-Student Study 3 Grid 2 Local Error Comparison Plot . . . . . . . 64

3.29 Teacher-Student Study 3 Grid 3 Local Error Comparison Plot . . . . . . . 65

3.30 Teacher-Student Study 3 Grid 4 Local Error Comparison Plot . . . . . . . 65

3.31 Teacher-Student Study 4 Grid 1 Local Error Comparison Plot . . . . . . . 66

3.32 Teacher-Student Study 4 Grid 2 Local Error Comparison Plot . . . . . . . 66

3.33 Teacher-Student Study 4 Grid 3 Local Error Comparison Plot . . . . . . . 67

3.34 Teacher-Student Study 4 Grid 4 Local Error Comparison Plot . . . . . . . 67

3.35 Teacher-Student Study 1 Grid 1 Global Error Comparison Plot . . . . . . 68

3.36 Teacher-Student Study 1 Grid 2 Global Error Comparison Plot . . . . . . 68

3.37 Teacher-Student Study 1 Grid 3 Global Error Comparison Plot . . . . . . 69

3.38 Teacher-Student Study 1 Grid 4 Global Error Comparison Plot . . . . . . 69

xiv



LIST OF TABLES

TABLE Page

3.1 Fully-Developed Sensitivity Results . . . . . . . . . . . . . . . . . . . . 18

3.2 Symmetry Sensitivity Results . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 LASSO Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Optimization and Residual Data . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Teacher Equation Coefficients . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Teacher-Student Local LASSO Results (Study 1) . . . . . . . . . . . . . 54

3.7 Teacher-Student Local LASSO Results (Study 2) . . . . . . . . . . . . . 55

3.8 Teacher-Student Local LASSO Results (Study 3) . . . . . . . . . . . . . 56

3.9 Teacher-Student Local LASSO Results (Study 4) . . . . . . . . . . . . . 57

3.10 Teacher-Student Global LASSO Results . . . . . . . . . . . . . . . . . . 59

xv



1. INTRODUCTION

In the last few decades, the amount of computational power available to scientists

and engineers has drastically increased the use of computational fluid dynamics (CFD)

simulation to solve engineering problems. As CFD simulations grow in complexity, the

ability to determine if the CFD simulation is functioning properly becomes even harder.

As a result, a subset within the CFD community has pushed for more rigorous methods to

check if the equations in the CFD software are solved correctly and if the equations being

solved were correctly chosen for the problem the CFD user was trying to solve [1]. This

is the primary purpose of the verification and validation (V&V) community.

1.1 Verification and Validation

During the 1960’s and the 1970’s, the V&V community began from the modeling and

simulation researchers who dealt with extremely complex industrial production models,

business or government organizations, marketing models, economic models, and military

models [2]. These researchers were the first to define some of the terminology within the

V&V field. One of the main advancements was to define the methods for checking if the

equations in the model were being solved correctly, which was referred to as verification,

and if the equations were the correctly represented reality, which was referred to as vali-

dation. One of the other advancements was the order of the two. The V&V community

identified that validation methods would be useless if there was an error in the equations.

Therefore, verification methods were required to be performed first.

Verification methods are split up into two different parts: code verification and solu-

tion verification. Code verification methods are methods that aim to reduce the number of

coding errors that effect either the solution or the order of accuracy. Examples of this are

method of exact solution [3], method of manufactured solutions (MMS) [3][4], method
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of manufactured universes [5], and formal order of accuracy calculations [3]. In addi-

tion, software quality assurance (SQA) procedures are also part of code verification [2].

Solution verification methods are methods that aim to estimate the error for a particu-

lar simulation of interest. Errors of concern fall under the following categories: iterative

error, round off error, statistical sampling error, and discretization error. Discretization

error is impacted by the conservation equations, boundary conditions, and source terms.

Most CFD users that perform solution verification estimate discretization error either using

a priori or a posteriori methods.

a priori discretization error estimation methods, such as recovery-based methods and

residual-based methods, estimate the error during the course of the simulation. By adding

error equations to the solution matrix, the CFD solver can accurately estimate the dis-

cretization error. Unfortunately, these methods require source code changes and are often

difficult to devise for an industrial CFD code. Because of their complexity and recent

development, these methods are not available in current commercial CFD codes.

a posteriori discretization error estimation methods are methods that estimate the er-

ror after the simulation has completed. For finite volume solvers, extrapolation methods

are almost exclusively used. Extrapolation methods are either H method, which exam-

ines QoIs as the grid size changes, or P method, which examines QoIs as the order of

the numerical scheme changes. Since higher-order finite volume numerical schemes are

difficult to program, H methods are typically used. H methods have been performed ever

since Lewis Richardson performed his Richardson extrapolation to predict stresses on a

dam [6]. While using the Richardson extrapolation is convenient to predict the error, there

is inherent uncertainty in the calculation. In the mid-1990’s, Patrick Roach developed a

method called the Grid Convergence Index (GCI) that accounts for the uncertainty within

the discretization error estimation.
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1.1.1 Roache’s Grid Convergence Index

GCI was a method developed to capture the uncertainties within the discretization

error estimation by making the assumption that the Richardson extrapolation is the 50th

percentile estimate. By multiplying a factor of safety to the extrapolated solution, the

resultant would give the 95th percentile estimate. Eq. 1.1 is formulation of the standard

GCI

GCI =
Fs

rp − 1
|f2 − f1| (1.1)

where p is the order of accuracy, f2 is the QoI calculated on the coarse grid, and f1 is the

QoI calculated on the fine grid. Two different factor of safeties are available to use. When

solutions are available on three different grids and the observed order of accuracy matches

the formal order of accuracy, Fs is 1.25 and p is the observed order of accuracy, but when

solutions are only available on two different grids or the observed order of accuracy does

not match the formal order of accuracy, Fs is 3.0 and p is the formal order of accuracy.

When simulations are not in the asymptotic range, the factor of safety is large and QoIs

have been know to be unpredictable [2]. A major current research topic in the V&V field

is discretization error estimation methods that work outside the asymptotic range, where

the asymptotic range is defined as the range of δx where the leading error term dominates

all higher order error terms. One method that has the potential to work slightly outside the

asymptotic range is the RMR solution verification method.

1.1.2 Robust Multi-Regression Solution Verification

The RMR solution verification method is a method that uses expert judgment as well

as robust statistics to determine optimal coefficients of an error model to estimate dis-

cretization error [7]. This method shares the same form of the discretization error as GCI,

but differs in the calculation of the model coefficients. GCI uses QoI calculated on three
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grids, while the RMR method uses QoI calculated on more than three grids to compute the

observed order of accuracy. This means that GCI is a fully-determined system of equa-

tions, while the RMR method is an overly-determined system of equations. By taking

the median of all observed order of accuracy values, outlier data points have less impact.

This provides a robust method to calculate the error model coefficients, which is benefi-

cial in the non-asymptotic region. One improvement to the RMR method is to use a more

complex error model by completing a modified equation analysis (MEA).

1.1.3 Modified Equation Analysis

MEA was first used as a stability analyzer to determine the point at which a numerical

scheme is guaranteed to be stable. Work completed by C. Hirt [8] and R.F. Warming and

B.J. Hyett [9] were some of the first to use MEA on a finite difference problem to analyze

the stability of a numerical scheme. While a stability analysis was not in the scope of

this project, the method used to complete the stability analysis was used to analytically

calculate the local error.

1.2 Objectives

The primary objective of this research is to improve discretization error and uncertainty

estimation for three dimensional CFD simulations slightly outside the asymptotic region.

Traditional discretization error and uncertainty estimation methods, such as GCI, require

the simulation to be in the asymptotic region because they only account for the leading

error term. A new method called the RMR solution verification has shown the potential to

perform better than GCI when the data is not refined uniformly [7], but improvements will

be made to the assumed form of the error for better performance.

The RMR solution verification method with an improved error model was imple-

mented for this study. Since the current method relies on a simple form of the error,

complex error terms cannot be represented. By performing a semi-rigorous MEA, the

4



form of the error will be better understood. The term "semi-rigorous" is used because the

unique terms are important to calculate correctly, while the coefficients are considered not

important. To accomplish this objective, a list of possible error terms will be generated

to describe the form of the error. Next, a least absolute shrinkage and selection operator

(LASSO) analysis will reduce the number of possible error terms. QoI data will be cal-

culated on a large number of coarse grids and the optimization routine will use the QoI

data to generate optimal values of the error model coefficients. This will produce an error

model that has the potential to work slightly outside the asymptotic range and with poor

grid refinement data.
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2. METHODOLOGY

This chapter outlines the methods and equations used to obtain the results. The chap-

ter is split into seven parts: generation of error terms, generation of QoI data (including

analytic solution derivation), LASSO analysis for down selection of terms, coefficient op-

timization method, uncertainty quantification, computational efficiency, and the teacher-

student equation analysis. All analyses were completed using STAR-CCM+ as the CFD

software, Python for data generation, Mathematica for symbolic manipulation of the MEA,

Dakota for the optimization tool, and MATLAB for data analysis and data visualization.

2.1 Generation Error Terms

Since a complete MEA was not possible for even simple three dimensional simula-

tions, a semi-rigorous MEA was able to determine most terms that were part of the trun-

cation error. There were two error terms this study focused on: terms that appeared from

a MEA of the conservation equations as discretized in STAR-CCM+ using Mathematica

and STAR-CCM+’s internal grid metric terms to describe less-than-ideal grid.

2.2 Generation of Data

To determine if the new method of estimating discretization error was viable, a problem

which avoids added complexities that would hinder a comparison between the numerical

solution and analytical derivation was required. A simple flow problem is one where

the physics of the simulation avoids added complexities that would hinder a comparison

between the numerical solution and the analytic derivation. Examples of added simulation

complexities include turbulence modeling and heat transfer. One of the simplest CFD

simulations to compute is laminar flow between two infinitely long plates. This was used

as a test case for the study because the simulation did not have to model turbulence or heat
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transfer.

The QoI was maximum velocity. Maximum velocity was chosen because of its com-

mon use in engineering applications and the ease of calculating an analytic solution. In

addition, maximum velocity was not a system variable, which was solved to be within

iteration error and was not affected by the discretization of the fluid domain. To make

sure that the geometry or boundary conditions were not influencing the simulation, sensi-

tivity analyses were completed, which are detailed in 2.2.1. In addition, the derivation of

maximum velocity using a Reynold’s number (Re) of 500 is detailed in Section 2.2.2.

2.2.1 Geometric Sensitivities

Two different geometric sensitivities were evaluated to verify that the geometry had

no impact on the results: if the flow was fully developed and if the location between the

symmetric wall had no impact on the flow profile, the geometry did not impact the results.

If either conditions were not met, the geometry was modified until there was no impact.

2.2.2 Derivation of Analytic Solution

It is important to be able to compare the estimate of the discretization error with the

exact discretization error. This test case is simple enough to have an analytic solution for

the velocity profile assuming fully-developed conditions. An analytic solution provided a

measure of how well the error model performed and was not directly used to aid in error

model development.

Velocity Profile

The analytic incompressible, steady state, fully-developed velocity profile was derived

using the steady state continuity equation, which is shown in Eq. 2.1 and conservation of

momentum in Eq. 2.2 [10].
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5 · (ρU) = 0 (2.1)

5 · (ρUU) = −5 p−5 · τ + ρg (2.2)

Eq. 2.3 and Eq. 2.4 arose from assuming incompressibility, negligible effect of gravity,

and steady state for Eq. 2.1 and Eq. 2.2.

5 · U = 0 (2.3)

ρ5 · (UU) = −5 p−5 · τ (2.4)

Substituting Eq. 2.1 into the convective term in Eq. 2.4, lead to Eq. 2.5.

5p = −5 ·τ (2.5)

For laminar flow between two plates in the x (downstream) direction, the right hand

side became Eq. 2.6.

5 · τ = −µ∂
2u

∂y2
(2.6)

Eq. 2.7 was made by substituting Eq. 2.6 into Eq. 2.5, which shows the relationship

between the second derivative of velocity in the downstream direction and the pressure

gradient. With integration and the boundary conditions of zero velocity at both sides of the

plate, the velocity profile equation was determined to have a dependence on the pressure

gradient and the distance between the plates. This is shown in Eq. 2.8.
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5p = µ
∂2u

∂y2
(2.7)

u (y) = −H
2

2µ

dp

dx

[
1−

( y
H

)2
]

(2.8)

Using conservation of mass, the pressure gradient term was replaced with the mean

velocity by making sure the mass flow rate is conserved, which is shown in Eq. 2.9.

uave =
1

ρA

∫
A

ρudA =
1

ρ (2H)W

W∫
0

H∫
−H

ρudydz =
1

H

H∫
0

H2

2µ

dp

dx

[( y
H

)2

− 1

]
dy (2.9)

Integrating Eq. 2.9 with respect to y produces Eq. 2.10.

uave =
H2

2µ

dp

dx

(
1

3
− 1

)
= −H

2

3µ

dp

dx
(2.10)

Eq. 2.10 was rearranged for the pressure gradient term as a function of mean velocity

as seen in Eq. 2.11, which was substituted into Eq. 2.8 to form Eq. 2.12.

dp

dx
= − 3µ

H2
uave (2.11)

u (y) =
3

2
uave

[
1−

( y
H

)2
]

(2.12)

2.3 LASSO Analysis

To reduce the computational cost of the optimization study, a LASSO analysis was

used as a down selection method [11]. The LASSO function is able to calculate coeffi-

cients that relate the predictor to the response. When doing this, it uses the lowest number
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of predictors to fully represent the response. When the predictor and response values are

normalized, the coefficients represent the relative importance of the terms. This was used

to determine the dominant terms in the error model. LASSO does this by minimizing Eq.

2.13 [12]

minβ0,β

(
1

2N

N∑
i=1

(
yi − β0 − xTi β

)2
+ λ

P∑
j=1

|βj|

)
(2.13)

where N is the number of observations, yi is the response at observation i, xi is a vector of

data of P values at observation i, λ is a non-negative regularization parameter correspond-

ing to one value of λ, and β0 and β are a scalar and a vector of length p. The coefficients

of interest was the β values when λ was within one standard error of the minimum mean

squared error (MSE).

2.3.1 Data Normalization

As stated before, the predictor and the response data were normalized. This was to

avoid different units associated with the coefficients. It also guarantees that the LASSO-

created coefficients share the first data point. The normalization was done in a way that

scales the data between zero and one, which is shown in Eq. 2.14.

φnorm =
φ−min(φ)

max(φ)−min(φ)
(2.14)

2.3.2 Expert Opinion Check

To avoid using poor quality data, plotting the MEA-identified variables as a function

of QoI provided visual correlation feedback. Poor data often is found on grids with poor

grid metrics and large cell sizes. If this step is quantified, using a rank correlation such as

Pearson, Kendall’s tau, or Spearman quantifies the correlation between the predictor and

the response.
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2.3.3 Homogeneity Check

To make sure there was enough QoI data, a Homogeneity check was completed. This

verified that the LASSO algorithm has enough data to produce the same results within an

acceptable tolerance, even if more QoI data was added or replaced. If the data produced

by STAR-CCM+ was heterogeneous, then the variability was quantified as an uncertainty.

2.4 Coefficient Optimization

The optimization scheme was designed to work with potentially non-smooth solution

space, while being computational efficient. A hybrid method using both sampling and

gradient methods was implemented to obtain optimization characteristics that sampled the

solution space well and was computationally efficient. The optimization method chosen

optimized the coefficients within each term in Eq. 2.15

arg mink|∆Ak,k+1 + Term (hk)i − Term (hk+1)i ...| (2.15)

where k is the kth grid, ∆Ak,k+1 is the difference between the QoI on the kth and kth + 1

grid, and i is the ith term in the error model.

2.5 Uncertainty Quantification

When determining the uncertainties within the coefficient optimization, calculations

that provided slightly different results by using a different normalization method or data

sets were quantified as uncertainties. An example of this was using multiple differencing

methods for determining the optimized coefficient. Using many differencing methods as

part of the optimization scheme provided slightly different optimized coefficients without

a clear way of knowing which differencing method provided the best coefficients. By

quantifying the variability in the data, not only were coefficient estimates produced, but

the uncertainty of the coefficients were produced. This provided an uncertainty estimate
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of the discretization error.

2.6 Computational Efficiency

Since a variety of grids were used, it was important to weigh the accuracy of the error

estimate with computational power necessary to achieve the error estimate. Since calcu-

lating QoI on fine grids were more computationally expensive than on a coarse grids, it

was beneficial to exclusively use coarse grids. Error model estimates using a set of QoI

data from fine and coarse grids and QoI data from exclusively coarse grids using the same

computational power were compared to determine if coarse grids were a better use of

computational power.

2.7 Comparison Between Solution Verification Methods

To determine if the improved error model improved estimation capabilities, error es-

timation results from RMR with the improved error model were compared to the results

from RMR with the standard error model. This comparison was used as justification for

continued work with improving the error model.

2.8 Teacher-Student Analysis

A teacher-student equation analysis is a method to recover the coefficient of the terms

in the teacher equation by only using a generic form of the teacher equation (the student

equation) and data generated by the teacher equation. The teacher equation represents

the analytic error equation that the CFD software produces, which for this analysis was

the error equation and solution form from a method of manufactured modified equation

analysis solutions (MMMEAS) of the one dimensional steady continuity equation using

an upwind discretization scheme. MMMEAS is an analysis, similar to MMS, that uses

the MEA to generate synthetic data and produces an exact error equation. In addition

to knowing the analytic error equation, the analytic equations for QoI were known so an
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exact error at each cell location can be calculated. Using the teacher equations with grids

of different refinement levels, grid comparison data were generated in a similar fashion

as with STAR-CCM+. A LASSO analysis in combination with the student equation was

then able to determine the coefficient values of the teacher equation. While using STAR-

CCM+ for the creation of data is the end goal, a teacher-student equation analysis was of

benefit to confirm that the framework is working correctly. In addition, the teacher-student

equation analysis showed a clear origin of local error, how the local error is analyzed in a

global manner, and how the coefficients of the error terms are recovered.

2.8.1 One Dimensional MEA

The one dimensional steady continuity equation with constant velocity was chosen as a

simplification of the full three dimensional unsteady continuity equation. Since the process

was the same as with the MEA for the STAR-CCM+ analysis, the simplification from

three dimensions to one dimension was valid and made the explanation of the MMMEAS

process easier to follow.

2.8.2 Solution Form and Local Error Equation

Once the local error equation was known, an assumed solution was chosen for use

with MMMEAS. For this particular analysis, the form of the solution was an equation that

had a length scale attributed to it. This allows for a study inside, around, and outside the

asymptotic range to be completed. Next, derivatives of the solution equation were taken.

Using the local error equation determined from the MEA and the solution equation and

it’s derivatives, local error were calculated on a grid compatible with the MEA.

2.8.3 Grid Refinement Methods

Four different grid refinement methods were implemented to show the effect on global

error as a function of refinement for each refinement method. For a one dimensional grid
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and allowing a constant gradient in the grid size, the variables that control the grid spacing

were number of cells in the domain, first cell size, and the value of the constant grid

refinement gradient. For the grid sizing of Eq. 2.16, the variables relationship are given in

Eq. 2.17 [13] .

L = ∆x1 + ∆x1r + ∆x1r
2 + ...+ ∆x1r

Nc−1 (2.16)

∆x1r
Nc − rL−∆x1 + L = 0 (2.17)

The four refinement methods were different combinations of varying two parameters

and solving for the third. Note that since Nc is an integer, the permutation of solving for

Nc is much more complex and was avoided.

2.8.4 Grid Comparison and LASSO Analysis

The grid comparison data was collected by solving the teacher equation on each grid,

calculating both the local error at each cell and the global error norm for each grid, and

calculating a ∆error in the same way as calculating ∆Ak,k−1 for the STAR-CCM+ data.

The ∆error along with the input parameters and the student equation were then used with

the LASSO algorithm to predict the coefficient of the teacher equation.

2.8.5 Teacher-Student Error Comparison

The last portion of the teacher student analysis was to compare the exact error of the

teacher equation to the error determined by the student equation calculated by the LASSO

algorithm. If the LASSO algorithm was able to determine the error within 30% of the

actual value, the LASSO algorithm has shown that it is sufficient to down select parameters

for future studies and provide a guide for future studies using STAR-CCM+ instead of the

teacher equation and the known QoI function.
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3. RESULTS

To improve the form of the error model, dominant truncation error terms were taken

into account. A method to determine the truncation error terms was to perform an MEA

on the discrete conservation equations. The MEA was performed on the discrete equa-

tions implemented within STAR-CCM+ [14], a commercial CFD code. Additional terms

arise from low quality grids. STAR-CCM+ provides various metrics to determine if the

generated grid was of low quality.

3.1 STAR-CCM+ Verification Case Setup

Verification cases were used to test the adequacy of the error model, which was based

on the unique terms found in the truncation error analysis of the conservation equations

and grid metrics. Simulating flow between infinite parallel plates was used as a test case

to ensure RMR with the improved error model was implemented correctly. Below is a

description of the simulation setup.

3.1.1 Geometry and Boundary Conditions

To model two infinite plates, the infinite domain was simulated by using symmetric

boundary conditions. The section was 50 hydraulic diameters long (6.666 meters) to create

fully-developed conditions and the width was 1.5 hydraulic diameters wide (0.2 meters) to

make sure the symmetric boundaries were implemented correctly. The distance between

the plates was 0.75 hydraulic diameters high (0.1 meters). Sensitivity analyses were also

used to ensure the length and width used did not violate the fully developed and infinite

plate assumptions, which is detailed below. The boundary conditions used for the primary

inlet and outlet surface were uniform velocity inlet and a uniform pressure outlet. The

velocity inlet was set so the Reynolds number was 500 (where the hydraulic diameter was
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the characteristic length) and the pressure outlet was set to 0.0 Pascals. Gravity was not

included in the simulation to simplify the velocity profile derivation. Figure 3.1 shows the

dimensions and boundary conditions used for the simulation.

Figure 3.1: Test Case Geometry with Dimensions and Boundary Conditions

3.1.2 STAR-CCM+ Grid

Three hundred sixty six STAR-CCM+ grids were built by specifying the average cell

size to be between one tenth and one half the distance between the plates (0.01 meters

and 0.05 meters respectively), which is near the start of the asymptotic range (see Figure

3.2). In addition to being near or outside of the asymptotic range, the simulations were

relatively short. Total CPU time ranged from 18 seconds to 28 mins. 166 grids with large

iterations for the cell size were removed from the data set. A detailed description of the

data removal is described in Section 3.3.2.
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Figure 3.2: Section View of Grid Detail at the Inlet

3.1.3 Flow Description

The three-dimensional channel flow simulation was set up to be steady (derivatives in

time are zero), constant density (derivatives of density are zero), and laminar.

3.1.4 Numerical Scheme

The momentum and continuity equations were solved using a second-order upwind

SIMPLE algorithm [15]. Gradients were calculated using a second-order hybrid Gauss

least squares method. Initial conditions for pressure and velocity were 0.0 Pascals and 0.0

meters per second, respectively.

3.1.5 Geometric Sensitivities

To make sure the results from STAR-CCM+ were not being influenced by the modeling

assumptions (domain width and length), two different sensitivities were analyzed. The first

was to confirm that the flow was fully developed where the data was being collected and

the second was to confirm that the symmetric boundary conditions were not influencing

the results. To do this, probes were placed upstream and towards the symmetry wall and

compared to the probe in the center and end of the domain. The probe locations are shown

in Fig. 3.3.
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Figure 3.3: Top View of Section Geometry with Probe Locations

Fully-Developed Sensitivity

Since there is a transition in the channel between uniform and fully-developed flow

and the need to collect data in the fully-developed region, a fully-developed sensitivity

study was completed. Line probes were placed in the center of the flow domain at various

points downstream to extract the velocity profile. The difference between the velocity

profiles at different line probe locations were calculated and normalized. Eq. 3.1 shows

the calculation of the data and Table 3.1 shows the data collected on the coarsest grid (0.5

m).

V elocitynormalized =
mean( ~VX − ~VY )

Vave
(3.1)

where ~V is a vector of velocity values along a probe line and X and Y are different

combinations of 15 Dh Downstream (probe 1), 26.25 Dh Downstream (probe 2), and 30

Dh Downstream (probe 3), which are shown in Fig 3.3.

Table 3.1: Fully-Developed Sensitivity Results

Simulation
Base Size

Normalized
Average
Between

Probe 1 and
2

Normalized
Average
Between

Probe 1 and
3

Normalized
Average
Between

Probe 2 and
3

0.5m 6.987 ∗ 10−4 7.915 ∗ 10−4 8.2811 ∗ 0−5
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The comparison between probe 2 and probe 3, which was the difference between the

velocity profiles near the outlet was about four magnitudes less than the average velocity.

This shows that the velocity profile was effectively constant and therefore the flow was

fully-developed at probe 3’s location.

Symmetric Wall Sensitivity

To model the infinite plate, symmetry boundary conditions were used. To make sure

the geometry used was wide enough that the symmetry boundary conditions did not in-

fluence the results in the center of the channel, three different probes were used. One in

the center of the flow (probe 3), one halfway between probe 3 and the side (probe 4), and

one between probe 3 and probe 4 (probe 5), which are shown in Fig 3.3. The results were

normalized using Eq. 3.1 where X and Y are different combinations of probe 3, probe 4,

and probe 5. The results of the velocity profile comparisons are shown in Table 3.2.

Table 3.2: Symmetry Sensitivity Results

Simulation
Base Size

Normalized
Average

Between Probe
3 and 4

Normalized
Average
Between

Probe 3 and
5

Normalized
Average
Between

Probe 4 and
5

0.5m −3.096 ∗ 10−5 −9.234 ∗
10−6 2.172 ∗ 10−5

The comparison between probe 3, probe 4, and probe 5 are all relatively small. This

confirms that the effect of the symmetry was negligible and that the geometry used was

wide enough.

3.2 Generation of Error Terms

The list of error terms used in this study includes terms from an MEA of the discrete

conservation equation as implemented in STAR-CCM+ and grid quality metrics that were
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internally calculated by STAR-CCM+. While not used in this study, additional functions

could be added to this list based on engineering judgment. The MEA was performed on a

first-order upwind discretization of the conservation equations, even though the numerical

scheme chosen in STAR-CCM+ was second-order upwind. This provided sufficient gen-

eration of terms that were applicable to both first or second-order schemes. Since this was

an isothermal study, conservation of energy was not included in the MEA.

The approach used in this study was to calculate the local error between the discretized

equations and the exact equations as a Taylor series. When the Taylor series is in the

asymptotic region (i.e. the grid is resolving the dominant flow physics), the leading term

in the Taylor series is approximately the local error. For this analysis, the form of the

local error was used as a global error estimator. It is also important to note that when the

Taylor series is not in the asymptotic region (i.e. the grid isn’t resolving the dominant

flow physics), higher order terms are necessary to describe the local error. Therefore, the

LASSO analysis included one higher order term than the leading term in the Taylor series

in case the grid does not produce a solution in the asymptotic range. Below is the MEA

for continuity and conservation of momentum. The symbolic manipulation was completed

using Mathematica to avoid mistakes.

3.2.1 Continuity MEA

An MEA of the two dimensional, steady, constant velocity continuity equation with

non-constant cell sizing was used. The terms found in this analysis aided in determining

the error terms that were used in the LASSO analysis. The derivation used the notation in

Figure 3.4 for indexing.

To start, Eq. 3.2 is the 2D continuity equation and Eq. 3.3 is the upwind discretization

of the 2D continuity equation with non-constant cell size. Eq. 3.3’s terms are replaced by

Taylor series expansions.
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Figure 3.4: Indexing used for MEA

5ρu = 0 = u

(
∂ρ

∂x
+
∂ρ

∂y

)
+ ρ

(
∂u

∂x
+
∂u

∂y

)
(3.2)

(3.3)ui,j

(
ρi,j − ρi−1,j

∆xi
+
ρi,j − ρi,j−1

∆yj

)
+ ρi,j

 ui,j − ui−1,j(
∆xi+∆xi−1

2

) +
ui,j − ui,j−1(

∆yj+∆yj−1

2

)
 = 0

where: ui,j = 1
2

(
ui+ 1

2
,j + ui− 1

2
,j

)
ui−1,j = 1

2

(
ui− 1

2
,j + ui− 3

2
,j

)
ui,j−1 = 1

2

(
ui+ 1

2
,j−1 + ui− 1

2
,j−1

)
∆xi = xi+ 1

2
− xi− 1

2

∆xi−1 = xi− 1
2
− xi− 3

2

∆yj = yj+ 1
2
− yj− 1

2

∆yj−1 = yj− 1
2
− yj− 3

2

The density terms will be expanded around ρi,j , which is shown in Eq. 3.4 and Eq. 3.5.
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ρi−1,j = ρi,j +

(
−∆xi−∆xi−1

2

)
1!

∂ρ

∂x

∣∣∣∣
i,j

+

(
−∆xi−∆xi−1

2

)2

2!

∂2ρ

∂x2

∣∣∣∣
i,j

+HOT (3.4)

ρi,j−1 = ρi,j +

(
−∆yj−∆yj−1
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)
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∂ρ
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i,j
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(
−∆yj−∆yj−1
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)2

2!

∂2ρ
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i,j

+HOT (3.5)

The velocity in the x direction terms are expanded around ui,j , which is shown in Eq.

3.6 though Eq. 3.10.

ui+ 1
2
,j = ui,j +

(
∆xi

2

)
1!

∂u

∂x

∣∣∣∣
i,j

+

(
∆xi

2

)2

2!

∂2u

∂x2

∣∣∣∣
i,j

+HOT (3.6)
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2
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(−∆xi
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)
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The averaged terms from Eq. 3.3 are calculated in Eq. 3.11 through Eq. 3.13.
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Next, Eq. 3.4, Eq. 3.5, and Eq. 3.11 through 3.13 are substituted back into Eq. 3.3,

which is shown in Eq. 3.14.
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+HOT

)
−

(
ui,j −

1

2
∆xi

∂u

∂x

∣∣∣∣
i,j

− 1

2
∆xi−1

∂u

∂x

∣∣∣∣
i,j

+
1

8
∆x2

i

∂2u

∂x2

∣∣∣∣
i,j

+
1

4
∆xi∆xi−1

∂2u

∂x2

∣∣∣∣
i,j

+
1

4
∆x2

i−1

∂2u

∂x2

∣∣∣∣
i,j

+HOT
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+
ρi,j(

∆yj+∆yj−1

2

) [(ui,j+ 1

8
∆x2

i

∂2u

∂x2

∣∣∣∣
i,j

+HOT

)
−

(
ui,j−

1

2
∆yj

∂u

∂y

∣∣∣∣
i,j

− 1

2
∆yj−1

∂u

∂y

∣∣∣∣
i,j

+
1

8
∆y2

j

∂2u

∂y2

∣∣∣∣
i,j

+
1

4
∆yj∆yj−1

∂2u

∂y2

∣∣∣∣
i,j

+
1

4
∆y2

j−1

∂2u

∂y2

∣∣∣∣
i,j

+
1

8
∆x2

i

∂2u

∂x2

∣∣∣∣
i,j

+HOT

)]
= 0

(3.14)

Eq. 3.15 simplifies and reorganizes Eq. 3.14 into the original PDE terms and the error

terms. Eq. 3.16 shows the relationship between ∆xi and ∆xi−1 (and ∆yj and ∆yj−1) in

terms of r, which is the same r used in Eq. 2.16 and Eq. 2.17. Eq. 3.17 removes the PDEs

from 3.15 and substitutes Eq. 3.16 to simplify the equation. The terms in square brackets

are assumed to be constant as a function of the grid spacing and outside the square brackets

are the error terms.
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(3.15)

ui,j

(
∂ρ

∂y

∣∣∣∣
i,j

+
∂ρ

∂x

∣∣∣∣
i,j

)
+ ui,j

(
1

2

(
∆yj−1

yj
− 1

)
∂u

∂y

∣∣∣∣
i,j

+
1

2

(
∆xi−1

xi
−1

)
∂u

∂x

∣∣∣∣
i,j

−
(

1

8
∆yj+

1

4
∆yj−1 +

1

8
∆yj−1

∆yj−1

∆yj

)
∂2u

∂y2

∣∣∣∣
i,j

+

(
1

8
∆xi +

1

4
∆xi−1 +

1

8
∆xi−1

∆xi−1

∆xi

)
∂2u

∂x2

∣∣∣∣
i,j

)

+ ρi,j

(
∂u

∂y

∣∣∣∣
i,j

+
∂u

∂y

∣∣∣∣
i,j

)

− ρi,j

(
1

4
(∆yj + ∆yj−1)

∂2u

∂y2

∣∣∣∣
i,j

+
1

2
(∆xi−1)

∂2u

∂x2

∣∣∣∣
i,j

)
= 0

r =
∆xi

∆xi−1

or ∆xi = r∆xi−1 (3.16)

(3.17)

(
1

r
−1

)[
ui,j
2

∂u

∂y

∣∣∣∣
i,j

+
ui,j
2

∂u

∂x

∣∣∣∣
i,j

]
−(∆yj−1)

(
(r + 1)2

r

)[
ui,j
8

∂2u

∂y2

∣∣∣∣
i,j

]

− (∆xi−1)

(
(r + 1)2

r

)[
ui,j
8

∂2u

∂x2

∣∣∣∣
i,j

]

− (∆yj−1) (r + 1)

[
ρi,j
4

∂2u

∂y2

∣∣∣∣
i,j

]
− (∆xi−1)

[
ρi,j
2

∂2u

∂x2

∣∣∣∣
i,j

]

There are five unique terms in Eq. 3.17: one cell size ratio term, one ∆xi−1 term, and

three combination terms that are made up between a ∆yj−1 or ∆xi−1 term and a ratio term.

3.2.2 Conservation of Momentum MEA

An MEA of the two dimensional, steady, constant density conservation of momentum

equation in the x direction with non-constant cell sizing was used. An MEA using a non-

uniform grid was necessary to complete because the grid generated in STAR-CCM+ was

not guaranteed to be uniform. The conservative inviscid 2D momentum equation in the x
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direction is shown in Eq. 3.18. Assuming a constant pressure drop and density, Eq. 3.18

turns into Eq. 3.19 and the general discretized form of Eq. 3.19 is shown in Eq. 3.20.

(3.18)
∂ρu2

∂x
+
∂ρuv

∂y
= −∂P

∂x
.

∂u2

∂x
+
∂uv

∂y
= −1

ρ

∂P

∂x
= const. (3.19)

(ui+1,j − ui,j)2

∆xi
+

(
ui+ 1

2
,j+ 1

2
− ui+ 1

2
,j− 1

2

)(
vi+ 1

2
,j+ 1

2
− vi+ 1

2
,j− 1

2

)
1
2

(∆yj + ∆yj+1)
= const. (3.20)

Eq. 3.21 is the upwinded discretization of Eq. 3.18. Note: the first velocity in the

x direction upwinds the second velocity in the x direction term and the velocity in the y

direction upwinds the velocity in the x direction term.(
ui+ 1

2
,j − ui− 1

2
,j

)
(ui+1,j − ui,j)

∆xi
+

(
ui+ 1

2
,j − ui+ 1

2
,j−1

)(
vi+ 1

2
,j+ 1

2
− vi+ 1

2
,j− 1

2

)
1
2

(∆yj + ∆yj+1)
= const.

(3.21)

where:

ui+1,j ≈ 1
2

(
ui+ 3

2
,j + ui+ 1

2
,j

)
ui,j ≈ 1

2

(
ui+ 1

2
,j + ui− 1

2
,j

)
vi+ 1

2
,j+ 1

2
≈ 1

2

(
vi,j+ 1

2
+ vi+1,j+ 1

2

)
vi+ 1

2
,j− 1

2
≈ 1

2

(
vi,j− 1

2
+ vi+1,j− 1

2

)
∆xi = xi+ 1

2
− xi− 1

2

∆xi+1 = xi+ 3
2
− xi+ 1

2

∆yj = yj− 1
2
− yj− 3

2

∆yj+1 = yj+ 1
2
− yj− 1

2
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Next, the Taylor series is computed around i + 1
2
, j for both the x and y direction. Eq.

3.22 through Eq. 3.25 are the Taylor series for velocity in the x direction and Eq. 3.26

through Eq. 3.29 are the Taylor series for velocity in the y direction.

(3.22)ui+ 1
2
,j = ui+ 1

2
,j

(3.23)ui− 1
2
,j = ui+ 1

2
,j +

(−∆xi)

1!

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
(−∆xi)

2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.24)ui+ 3
2
,j = ui+ 1

2
,j +

(∆xi+1)

1!

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
(∆xi+1)2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.25)

ui+ 1
2
,j−1 = ui+ 1

2
,j +

(
−1

2
(∆yj + ∆yj+1)

)
1!

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+

(
−1

2
(∆yj + ∆yj+1)

)2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.26)

vi,j+ 1
2

= vi+ 1
2
,j +

(−∆xi
2

)
1!

∂v

∂x

∣∣∣∣
i+ 1

2
,j

+

(−∆xi
2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)
1!

(−∆xi
2

)
1!

∂

∂y

(
∂v

∂x

)∣∣∣∣
i+ 1

2
,j

+HOT

(3.27)

vi,j− 1
2

= vi+ 1
2
,j +

(−∆xi
2

)
1!

∂v

∂x

∣∣∣∣
i+ 1

2
,j

+

(−∆xi
2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)
1!

(−∆xi
2

)
1!

∂

∂y

(
∂v

∂x

)∣∣∣∣
i+ 1

2
,j

+HOT

(3.28)

vi+1,j+ 1
2

= vi+ 1
2
,j +

(
∆xi

2

)
1!

∂v

∂x

∣∣∣∣
i+ 1

2
,j

+

(
∆xi

2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)
1!

(
∆xi

2

)
1!

∂

∂y

(
∂v

∂x

)∣∣∣∣
i+ 1

2
,j

+HOT
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(3.29)

vi+1,j− 1
2

= vi+ 1
2
,j +

(
∆xi

2

)
1!

∂v

∂x

∣∣∣∣
i+ 1

2
,j

+

(
∆xi

2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)
1!

(
∆xi

2

)
1!

∂

∂y

(
∂v

∂x

)∣∣∣∣
i+ 1

2
,j

+HOT

Next, velocity averages in the x direction from Eq. 3.21 are calculated in Eq. 3.30 and

Eq. 3.31.

1

2

(
ui+ 3

2
,j + ui+ 1

2
,j

)
= ui+ 1

2
,j +

1

2

(∆xi+1)

1!

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
1

2

(∆xi+1)2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.30)

1

2

(
ui+ 1

2
,j + ui− 1

2
,j

)
= ui+ 1

2
,j +

1

2

(−∆xi)

1!

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
1

2

(−∆xi)
2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.31)

Next, velocity averages in the y direction from Eq. 3.21 are calculated in Eq. 3.32 and

Eq. 3.33.

(3.32)

1

2

(
vi,j+ 1

2
+ vi+1,j+ 1

2

)
= vi+ 1

2
,j +

(−∆xi
2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+HOT

(3.33)

1

2

(
vi,j− 1

2
+ vi+1,j− 1

2

)
= vi+ 1

2
,j +

(−∆xi
2

)2

2!

∂2v

∂x2

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)
1!

∂v

∂y

∣∣∣∣
i+ 1

2
,j

+

(
−∆yj+1

2

)2

2!

∂2v

∂y2

∣∣∣∣
i+ 1

2
,j

+HOT

The error term from the ∂u2

∂x
term is computed next. The Taylor series from Eq. 3.22

and Eq. 3.23 and the averaged terms in Eq. 3.30 and Eq. 3.31 are substituted into the
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upwind discretized ∂u2

∂x
term (Eq. 3.34). Eq. 3.35 simplifies and rearranges Eq. 3.34 in its

original PDE form plus the error term.

(3.34)

(
ui+ 1

2
,jui+1,j − ui− 1

2
,jui,j

)
∆xi

=

(
u2
i+ 1

2
,j

+ 1
2

(∆xi+1) ∂u
∂x

∣∣
i+ 1

2
,j
ui+ 1

2
,j + 1

2
(∆xi+1)2

2!
∂2u
∂x2

∣∣∣
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2
,j
ui+ 1

2
,j +HOT

)
∆xi

− 1
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(
u2
i+ 1

2
,j

+
3

2
(−∆xi)

∂u

∂x

∣∣∣∣
i+ 1

2
,j

ui+ 1
2
,j +
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2

(−∆xi)
2

2!

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

ui+ 1
2
,j

+
1

2
(−∆xi)

2 ∂u

∂x

∣∣∣∣2
i+ 1

2
,j

+HOT

)

(3.35)

2ui+ 1
2
,j

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
1

2

(
∆xi+1

∆xi
− 1
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ui+ 1

2
,j

∂u

∂x

∣∣∣∣
i+ 1

2
,j

+
1

4

(
∆x2

i+1

∆xi
− 3∆xi

)
∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

ui+ 1
2
,j −

∆xi
2

∂u

∂x

∣∣∣∣2
i+ 1

2
,j

+HOT

Eq. 3.35 removes the PDE terms, Eq. 3.16 is substituted in, and is rewritten as a

function of ∆x terms. This helped inform which grid metrics were used in the LASSO

analysis. The terms in square brackets of Eq. 3.36 were assumed to be constant as a

function of the grid spacing and outside the square brackets are the error terms.(
1

r
−1

)[
1

2
ui+ 1

2
,j

∂u

∂x

∣∣∣∣
i+ 1

2
,j

]
−(∆xi+1)

(
1

r

)[
1

2

∂2u

∂x2

∣∣∣∣
i+ 1

2
,j

ui+ 1
2
,j+

1

2

∂u

∂x

∣∣∣∣2
i+ 1

2
,j

]
+HOT

(3.36)

There are 2 unique error terms in Eq. 3.36: one is a ∆x ratio term and a ∆x term

divided by a ∆x ratio term.

The error term from the ∂uv
∂y

term is computed next. The Taylor series from Eq. 3.22

and Eq. 3.25 and the averaged terms from Eq. 3.32 and Eq. 3.33 are substituted into the

upwind discretized ∂uv
∂y

term (Eq. 3.37). Eq. 3.38 simplified and Eq. 3.39 rearranged Eq.

3.37 in its original PDE form plus the error term.
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(3.37)
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(3.38)
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(3.39)
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Eq. 3.40 removes the PDE terms, Eq. 3.16 is substituted in, and is rewritten as a

function of ∆x and ∆y terms. This helped inform which grid metrics were used in the

LASSO analysis. The terms in square brackets of Eq. 3.40 were assumed to be constant

as a function of the grid spacing and outside the square brackets are the error terms.

(3.40)

(
1
r
− 1
)(

1
r

+ 1
) [ ∂v

∂y

∣∣∣∣
i+ 1

2
,j

ui+ 1
2
,j

]
− (∆yj+1)

[
1

2

∂u

∂y

∣∣∣∣
i+ 1

2
,j

∂v

∂y

∣∣∣∣
i+ 1

2
,j

]

− (∆yj+1)

(
1

r
+ 1

)[
1

4

∂2u

∂y2

∣∣∣∣
i+ 1

2
,j

vi+ 1
2
,j

]
+HOT

There are three unique error terms in Eq. 3.40: one ∆y ratio term, one ∆yj−1 term,

and one combination term between a ∆yj−1 term and a ∆y ratio term.

3.2.3 Cell Size Estimation Terms

The terms from the above MEA were all functions of the cell size. There were two

main ways to estimate the cell size: the cell size specification used during grid generation

or the number of cells. Both were implemented in the LASSO analysis to determine which

was a better cell size estimator. The next two sections describe calculation of the two cell

size estimators.

Cell Size Estimation Term - Cell Size Specification

The user defined cell size method is a method to estimate the average cell size by using

the user defined cell size "b" used by the grid generator to build the grid. For fine grids

without local refinements, this method typically estimates the average cell size well. For
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coarse grids, a small change to the cell size input does not guarantee a change in the grid.

Therefore, other terms were necessary to characterize the average cell size.

Cell Size Estimation Term - Number of Cells

The number of cells method is a method to estimate the average cell size based on

the number of cells and the volume of the domain. Eq. 3.41 shows the calculation of the

average cell size. Using this metric improved the calculation of the average cell size for

coarse grids

h =

(
V

Nc

) 1
3

(3.41)

where V is the volume of the domain and Nc is the total number of cells.

Summary of Error Terms from the Numerical Scheme

After reviewing the terms that are in Eq. 3.17, Eq. 3.36, and Eq. 3.40, the unique

terms were classified into three categories: grid spacing, grid spacing ratio, and a combi-

nation of grid spacing terms. The grid spacing was a function of the cell size (h), the grid

spacing ratio was a function of how the cell size changes, and the combination term were

a function of both. The grid spacing ratio was described using grid quality metrics, which

are described in the following section.

3.2.4 Grid Quality Terms

In addition to error terms due to the numerical scheme used, grid quality terms were

used to describe error due to poor grid quality. The grid quality metrics that were cal-

culated by STAR-CCM+ were used to describe errors due to a low quality grid. Figures

3.5 through 3.12 and paraphrased grid metric definitions are from the STAR-CCM+ user

manual [14] to provide completeness.
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Cell Aspect Ratio

Cell aspect ratio is a metric that describes the length of the cell in one direction is to

another direction. Values can be between 0.0 and 1.0. Perfect hexahedral cells are cube

and have an aspect ratio of 1.0. As one direction becomes larger, the aspect ratio becomes

less than 1.0. This parameter was not added to the error model because it is more useful to

be used as a screening method by accepting or rejecting individual grids. A less than ideal

cell aspect ratio is shown in Figure 3.5.

Figure 3.5: Cell Aspect Ratio Example. Reprinted from [14].

Face Validity

Face validity is an area-weighted measure of the correctness of the face normal. The

face validity is good when the face normal is pointing outward away from the cell and is

bad when the face normal is pointing inwards towards the cell. Values between 0.5 and

1.0 are considered good, while values below 0.5 are bad. This parameter was not added to

the error model because it is more useful to be used as a screening method by accepting or

rejecting individual grids. An example of a good cell and a bad cell are shown in Figure

3.6.
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Figure 3.6: Face Validity Example. Reprinted from [14].

Cell Quality

The cell quality is a hybrid Gauss and least-squares method for cell gradients. When

the cell have large gradients between the cell centroids of nearby cell centroids, the cell

is considered to have a poor cell quality. Values between 1.0e−5 and 1.0 are considered

good, while values below 1.0e−5 are bad. This parameter was not added to the error model

because it is more useful to be used as a screening method for accepting or rejecting

individual grids. An example of a good cell and a bad cell are shown in Figure 3.7

Figure 3.7: Cell Quality Example. Reprinted from [14].
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Volume Change

Volume change is a metric that quantifies the volume change between the cell of in-

terest and the largest neighbor. Large changes in the volume between cells can cause

inaccuracies. Volume changes between 0.01 and 1.0 are acceptable, but volume changes

below 0.01 are considered bad cells. An example of a good cell and a bad cell are shown

in Figure 3.8.

Figure 3.8: Volume Change Example. Reprinted from [14].

Cell Skewness Angle

The cell skewness angle is the angle between the face normal and the line connecting

the two centroids. For a structured hexahedral, this is typically not a problem, but should

be included for future studies. Skewness angles between 0°and 85°are considered accept-

able and angles above 85°are considered bad. This parameter was not added to the error

model because it is more useful to be used as a screening method by accepting or rejecting

individual grids. Figure 3.9 shows how the cell skewness angle is calculated.
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Figure 3.9: Cell Skewness Example. Reprinted from [14].

Chevron Quality Indicator

Chevron quality indicators identify slender cells that the line connecting the cell cen-

troid does not pass through the connecting face. Values are either one or zero, where

Chevron cells are marked as one and all other cells are zero. This metric was not added to

the error model because it is more useful to be used as a screening method by accepting or

rejecting individual grids. An example of a good cell and a bad cell are shown in Figure

3.10.

Figure 3.10: Chevron Cell Example. Reprinted from [14].
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Least Squares Quality

The least squares quality is an indication of the quality of the cell by using the least

squares of the location of a cell centroid to the cell centroid of its face-neighbors. This

metric was not added to the error model because it is more useful to be used as a screening

method by accepting or rejecting individual grids. An example of the least squares quality

calculation is shown in Figure 3.11

Figure 3.11: Least Squares Quality Example. Reprinted from [14].

Cell Warpage Quality

Cell warpage quality is to identify thin or warped cells in the grid, which is shown

in Figure 3.12. Cell warpage is between 0.0 and 1.0 where values between 0.15 and 1.0

are considered acceptable and values below 0.15 are considered bad. This metric was not

added to the error model because it is more useful to be used as a screening method by

accepting or rejecting individual grids.

Summary of Error Terms from Grid Quality

Based on the grid metric definitions above, some grid metrics are similar to the MEA

terms, while others are not. The grid metric that was similar to the MEA terms (volume

change) was used to describe the grid spacing ratio term. The rest of the grid metrics

were used to eliminate poor grids. The volume change grid metric term was included in a
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Figure 3.12: Cell Warpage Example. Reprinted from [14].

LASSO analysis and shown in Eq. 3.42

Error= c1

(
1

G1

−1

)
+c2h

p+c3h
p

(
1
G1
− 1

1
G1

+ 1

)
+c4h

p

(
(G1 + 1)2

G1

)
+c5h

pG1 +c6h
p 1

G1

(3.42)

where G1 is the normalized volume change.

3.3 LASSO Analysis

A LASSO analysis was performed with some of the parameters listed in the previous

section in addition to two different ways to calculate cell sizes. Four different powers of

the terms that estimate the cell size were implemented, which is shown in Eq. 3.43. Since

non-linear terms cannot be implemented into LASSO, having different powers of the terms

aided in determining a rough estimate of the order of accuracy, which helped inform the

range of the order of accuracy for later studies.
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where hCSSM is the cell size estimated by the Cell Size Specification Method, hNoCM is

the cell size estimated by the Number of Cell Method, G1 is the volume change value,

and the βi coefficients are represented in a matrix as beta. The beta coefficients were used

as importance metrics that reduced the number of terms that were implemented in the er-

ror model. This reduces the computation power required for coefficient optimization. The

LASSO function in MATLAB was used to calculate the beta coefficients including remov-

ing redundant terms by using cross-validated fits. The coefficients were post-processed

and presented as a weighted percentage of the total coefficient. This calculation is shown

in Eq. 3.44

βweight =
βm,n∑N
1 βm,n

(3.44)

3.3.1 Data Normalization

Normalization of the variables before the LASSO analysis started simplified the prob-

lem. Since the cell size used was so small, fitting the data was difficult. To avoid this
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problem, the variables were normalized between zero and one. This allows LASSO to fit

the data in a range that reduced the chance of an ill-conditioned problem.

3.3.2 Expert Opinion Check

Both the data and the results of LASSO were reviewed for outlying data or results

that did not make sense for the problem at hand. For example, 166 coarse grids were

removed because they had an abnormally large number of iterations to reach steady state,

which is shown in Fig. 3.13. The number of iterations required to run simulations with a

normalized base size of 0.6 or larger were considered to be badly built grids that wouldn’t

produce useful results.

Figure 3.13: Raw Data with Large Iterations

These grids did not produce quality QoI or computationally efficacy data, so they were

removed from the data set. Allowing an expert to review the data before the LASSO

analysis or the results after the LASSO analysis reduces the chances of abnormal data

affecting the results.
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3.3.3 Homogeneity Check

The homogeneity check was performed using the cross-validation feature of LASSO

in MATLAB [12]. Out of 200 remaining data points, 190 random data points were as

LASSO model training while the other 10 were used as model testing. This makes sure

that the data was fairly similar to each other. Heterogeneous data would have produced

an error model that was over constrained and not useful for predictive capabilities. The

results in the next section include the cross-validation feature.

3.3.4 LASSO Results

Table 3.3 shows the beta coefficients that were calculated as well as terms that pass the

cross-validated fit reduction. It is important to note that switching the order of the terms

influences the results, but the magnitudes of the coefficients were approximately the same.

Therefore, the positions of the terms were switched randomly for 100 iterations and the

median coefficients were used.

Table 3.3: LASSO Coefficients

Terms
Beta

Coefficient
Percent
Weight

Implemented
in the Error

Model?[(
V
Nc

) 1
3

]1

0.533 52.76% Yes[(
V
Nc

) 1
3

]1.5

0.422 41.76% Yes[(
V
Nc

) 1
3

]1 (
1

G1
−1

)
(

1
G1

+1
) -0.0554 5.48% Yes

Based on the weight of error values in Table 3.3, the most influential term was the

average cell size to the power of 1 followed by the average cell size to the power of 1.5.

In addition, the average cell size multiplied by a grid ratio term had a non-zero beta value.
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The resulting error model is shown in Eq. 3.45. Using the calculated β coefficients, the

error data had an L2 norm of 0.0041 (normalized by the number of data points) and the

average error was 0.038. The actual error and predicted error can be seen in Fig. 3.14. Eq.

3.45 was the error model used for further coefficient calculations, which will be described

in the next section.

Figure 3.14: Error Prediction Using LASSO Coefficients

(3.45)Error Model = c1

[(
V

Nc

) 1
3

]pobs
+ c2

[(
V

Nc

) 1
3

]pobs ( 1
G1
− 1

1
G1

+ 1

)

3.4 Coefficient Optimization

The coefficients in Eq. 3.46 were minimized using a hybrid optimization method in

Dakota. The hybrid method allows for multiple optimization routines. The first routine

was a genetic algorithm, which is a global sampling optimization method. The second

routine was a mesh adaptive search, which is a local sampling method, and the third routine

was a non-linear Fletcher-Reeves conjugate gradient optimizer, which is a local gradient
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method [16]. The combination of these optimization methods were able to search the

parameter space adequately in a short amount of time.

(3.46)

arg mink
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3.4.1 Coefficient Optimization Results

Using the hybrid optimization method in Dakota, multiple optimizations were per-

formed on Eq. 3.46 with different vector differencing methods, which selected optimal

c1, c2, and pobs values. Table 3.4 shows the optimal c1, c2, and pobs values for the data set

produced using STAR-CCM+ as well as the difference between the estimated error and the

actual error on a refined grid. The median case was calculated in addition to median abso-

lute difference (MAD) in order to propagate the uncertainty due to the vector differencing

fit.

Table 3.4: Optimization and Residual Data
Norms c1 c2 pobs Error Difference
L1 0.527 3.5*10−2 1.60 4.4*10−3

L2 0.501 0.118 1.48 6*10−3

L4 0.490 0.194 1.37 8*10−3

L8 0.487 0.195 1.18 1.4*10−2

L inf 0.490 0.173 1.07 2.0*10−2

Median 0.490± 9.3*10−3 0.173 ± 6.67*10−2 1.37 ± 0.563 8*10−3

To determine if the model was suitable for predicting the exact discretization error, the

error model was compared against the exact error which is shown in Figure 3.15. The L1

and L2 norms were close to the exact discretization data, but with a spread of predictions,
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it is probable that the exact discretization data will be within the uncertainty bound of the

error model.

Figure 3.15: Error Model Results

3.5 Uncertainty Quantification

In addition to determining the best estimate error from the median coefficient value the

vector differencing methods produced, 95% and 5% error bounds were calculated. The

uncertainty was quantified by the spread of optimized coefficient values from different

vector differencing methods. From the spread of values, the MAD was calculated, which

produces a robust metric to describe the uncertainty bounds. RMR results using the opti-

mized error model was compared against the exact discretization error and shown in Fig.

3.16.

The exact discretization error of a simulation with the grid one order of magnitude

smaller than the training data was between the error model uncertainty bounds. This proves

that improving the error model for RMR can predict discretization error.
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Figure 3.16: Uncertainty Estimate

3.6 Computational Effectiveness

The computational effectiveness was a way of quantifying the uncertainty due to a

small data set. With a smaller data set, an outlier data point would have had a larger influ-

ence on the median predicted error and an even larger impact on the uncertainty bounds

of the error prediction. This was shown by taking 200 data points, removing a randomly

selected, but constant number of data points, and then using the remaining data points to

make an error prediction. This was repeated 200 times to get a spread of predicted error

values. As the number of samples increased, the less uncertainty there was in the predicted

error value. This trend is shown in Fig. 3.17.

3.7 Comparison Between Solution Verification Methods

To determine if the improved error model provided better results than the standard chp

error model, the two methods were compared to each other using the STAR-CCM+ data,

which is shown in Figure 3.18.
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Figure 3.17: Uncertainty Due to Sample Size

Figure 3.18: Uncertainty Estimate Comparison
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Using the terms identified by LASSO produced an uncertainty bound that captured

the error on a refined grid and was roughly twice as better than using the standard chpobs

error model. In addition, the standard error model was not able to capture the error on a

refined grid within its uncertainty bound. This is because the error was both a function of

average cell size and rate of refinement. When the error is a function of something other

than average cell size, it degrades the order of accuracy, which was the case for this data

set.

3.8 Teacher-Student Analysis

A teacher-student analysis was performed as a more rigorous test of the framework

used with STAR-CCM+ data. A major downfall of using a full CFD code to test out the

methodology was that full control of the solution shape and the exact form of the error was

not possible to obtain. The strength of using the teacher-student analysis was that the so-

lution shape and the exact error equation were known and able to be manipulated through

the use of MMMEAS. The next few sections use the MMMEAS to generate artificial data

points, which were used to test LASSO’s error predictive capabilities.

3.8.1 One Dimensional MEA for Steady Continuity Equation

A one-dimensional steady state continuity equation with constant velocity and non-

constant cell sizing was used for the teacher-student study. The equation used to represent

the solution was complex enough to provide a realistic number of terms in the exact error

equation, but was simple enough to test and complete sensitivity analyses. In addition,

the teacher equation included one more higher-order term than the student equation, so the

start of the asymptotic region could be determined. Eq. 3.47 is the one-dimensional steady

state continuity equation and Eq. 3.48 is the upwind discretization with non-constant cell

size of Eq. 3.47.
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u05 ρ = u0
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The density terms were expanded around ρi using a Taylor series, which is shown in

Eq. 3.49.
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(3.49)

Eq. 3.49 was then substituted back into Eq. 3.48, which is shown in Eq. 3.50. Next,

Eq. 3.50 was rearranged in terms of the original PDE plus error terms, which is shown in

Eq. 3.51. Eq. 3.52 shows the exact local error equation, Eq. 3.53 simplifies and substitutes

Eq. 3.16 into Eq. 3.52, and Eq. 3.54 shows the exact global error equation using an L2

norm of the local error.
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(3.51)
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i=1

(Local Errori)
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3.8.2 Solution Equation and Local Error Equation (Teacher Equation)

Now that the error equation is known up to the third order term, the function of density

was chosen. To identify how well LASSO works in the asymptotic range, a function with
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a known start to the asymptotic region was chosen. A polynomial function was a viable

function because of the ability to analytically calculate the derivatives. Two polynomials

were used to evaluate the teacher equation. A linear equation (Eq. 3.55) was used to verify

LASSO would zero out the first-order error term because the second derivative was zero

(and therefore the MEA coefficient for the first-order error term would be zero). A second-

order polynomial (Eq. 3.56) was used to verify LASSO would be able to identify the MEA

coefficients for both the zeroth and first-order term. The second-order polynomial study

was completed three times with three different coefficient sizes. The first study used a

zeroth-order coefficient that was relatively large compared to the first-order coefficient.

The second study used a zeroth-order coefficient that was relatively similar to the first-

order coefficient. The third study used a zeroth-order coefficient that was relatively small

compared to the first-order coefficient. Table 3.5 lists the coefficients used for all four

studies.

(3.55)ρfirst (x) = ρ0 + ρ1x

(3.56)ρsecond (x) = ρ0 + ρ1x+ ρ2x
2

Now that two functional forms of density are known, the derivatives were computed for

each polynomial to be substituted back into the Eq. 3.52. For the first-order polynomial,

the first derivative density function is shown in Eq. 3.57, the second derivative density

function is shown in Eq. 3.58, and the third derivative density function is shown in Eq.

3.59. For the second-order polynomial, the first derivative density function is shown in Eq.

3.60, the second derivative density function is shown in Eq. 3.61, and the third derivative

density function is shown in Eq. 3.62.

(3.57)
∂ρfirst (x)

∂x
= ρ1

(3.58)
∂2ρfirst (x)

∂x2
= 0
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Table 3.5: Teacher Equation Coefficients
Study

Number
Functional
Form of ρ

Relative
Coefficient Size

ρ0 ρ1 ρ2
Length of
Domain

1 ρfirst

First Term
Coefficient is

non-zero
1000 20 0 π

2 ρsecond

First Term
Coefficient »
Second Term
Coefficient

1000 20 0.1 π

3 ρsecond

First Term
Coefficient ≈
Second Term
Coefficient

1000 10 20 π

4 ρsecond

First Term
Coefficient «
Second Term
Coefficient

1000 2.0 20 π

(3.59)
∂3ρfirst (x)

∂x3
= 0

(3.60)
∂ρsecond (x)

∂x
= ρ1 + 2ρ2x

(3.61)
∂2ρsecond (x)

∂x2
= 2ρ2

(3.62)
∂3ρsecond (x)

∂x3
= 0

The exact local and global error were used as a benchmark for LASSO to be able to

calculate the error estimate based on the LASSO coefficients when the form of Eq. 3.52

was known.

3.8.3 Grid Refinement Methods

Using Eq. 2.17, the four different families of grids were built analytically. Each family

was refined in a unique way, as described in the methodology section. This allowed for
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studying how the error decreased as the grids were refined. Each family of grids decreased

in error at different rates, which was expected. The student equation needs to have enough

terms in the equation to describe each grid family’s refinement trend to be able to predict

the error.

This procedure represents possible refinement strategies within the STAR-CCM+’s

grid generator. When a CFD user tries to complete a uniform refinement of a grid using

STAR-CCM+’s grid generator, it is possible that the refinement is not a uniform refinement

of the cell size, but a mix of refining the cell size and the grid refinement ratio. Identifying

different refinement possibilities allowed for studying of LASSO’s ability to determine

which terms in the student equation are dominant and which terms are non-dominant.

3.8.4 Grid Comparison and LASSO Analysis - Local Error

Once the four family of grids were generated, the exact local error was quantified for

all cells on all grid of a particular grid family. The cell errors were then compared to

determine the ∆local error of two cells on a given grid. This was completed for the four

different density equations. This represents the same process as the STAR-CCM+ analysis,

which used STAR-CCM+ grids and simulations to calculate the ∆QoI for two different

simulations, but avoids the assumption that the local error model is a good global error

model. Since each grid had a few hundred cells, the number of ∆local error data points

was on the order of 1,000,000+. To reduce the computational demand for the LASSO

algorithm, cells were randomly removed so that the number of ∆local error data points

was on the order of 100,000+. This drastically reduced the computational cost, while still

providing the LASSO algorithm a large amount of data. The ∆local error was then used

with the input grid variables to complete a LASSO analysis using the student equation (Eq.

3.63). Eq. 3.63 is derived from Eq. 3.53, but does not include the second-order error term

and replaces the derivatives and fractions with unknown coefficients. The terms between
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brackets in Eq. 3.53 were approximated as constants because the value of the derivative

are approximately constant as the grid is refined.

(3.63)Errorstudent = c0

(
1

r
− 1

)
− c1 (∆xi−1)

(
(r + 1)2

r

)

LASSO was able to determine the exact coefficient within 30%, which is sufficient to

determine the importance of the term. Table 3.6 shows the LASSO coefficients and percent

weight of each term for the four different grid families for Study 1, Table 3.7 for Study 2,

Table 3.8 for Study 3, and Table 3.9 for Study 4. For Study 3 and 4, it was challenging

to achieve the correct magnitude of the coefficients without introducing large variability

in the coefficients due to the first derivative being a function of space. Therefore, the

derivative was changed to a constant to avoid the variability causing problems with the

LASSO predicted coefficients. In addition, the error from the last cell in the grid was

removed because it effectively was used a ghost cell to properly calculate the previous

cell’s error.
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Table 3.6: Teacher-Student Local LASSO Results (Study 1)

Grid Family
Number

Terms
β

Coefficient
Percent
Weight

Mean Analytic
Coefficient

1
First Term
Coefficient

9.71 100.00% 10.00

1
Second Term
Coefficient

0.00 0.00% 0.00

2
First Term
Coefficient

9.72 100.00% 10.00

2
Second Term
Coefficient

0.00 0.00% 0.00

3
First Term
Coefficient

9.71 100.00% 10.00

3
Second Term
Coefficient

0.00 0.00% 0.00

4
First Term
Coefficient

9.71 100.00% 10.00

4
Second Term
Coefficient

0.00 0.00% 0.00
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Table 3.7: Teacher-Student Local LASSO Results (Study 2)

Grid Family
Number

Terms
β

Coefficient
Percent
Weight

Mean Analytic
Coefficient

1
First Term
Coefficient

10.01 99.67% 10.04

1
Second Term
Coefficient

0.033 0.33% 0.025

2
First Term
Coefficient

9.79 99.73% 10.04

2
Second Term
Coefficient

0.027 0.27% 0.025

3
First Term
Coefficient

9.93 99.76% 10.04

3
Second Term
Coefficient

0.024 0.24% 0.025

4
First Term
Coefficient

9.99 99.69% 10.04

4
Second Term
Coefficient

0.031 0.31% 0.025
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Table 3.8: Teacher-Student Local LASSO Results (Study 3)

Grid Family
Number

Terms
β

Coefficient
Percent
Weight

Mean Analytic
Coefficient

1
First Term
Coefficient

5.85 49.99% 5.00

1
Second Term
Coefficient

5.85 50.01% 5.00

2
First Term
Coefficient

5.07 49.31% 5.00

2
Second Term
Coefficient

5.22 50.69% 5.00

3
First Term
Coefficient

5.17 49.23% 5.00

3
Second Term
Coefficient

5.33 50.77% 5.00

4
First Term
Coefficient

4.50 46.18% 5.00

4
Second Term
Coefficient

5.24 53.82% 5.00
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Table 3.9: Teacher-Student Local LASSO Results (Study 4)

Grid Family
Number

Terms
β

Coefficient
Percent
Weight

Mean Analytic
Coefficient

1
First Term
Coefficient

1.04 16.54% 1.00

1
Second Term
Coefficient

5.27 83.46% 5.00

2
First Term
Coefficient

0.75 12.72% 1.00

2
Second Term
Coefficient

5.12 87.28% 5.00

3
First Term
Coefficient

0.71 11.80% 1.00

3
Second Term
Coefficient

5.30 88.20% 5.00

4
First Term
Coefficient

1.22 17.52% 1.00

4
Second Term
Coefficient

5.73 82.48% 5.00
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3.8.5 Grid Comparison and LASSO Analysis - Global Error

Since the four families of grids have already been generated, the global error was

quantified on all grids. Then the grids were compared to determine the ∆global error of

the two grids. This represents the same process as the local error analysis, but uses the

global error on two grids to calculate the ∆global error instead of the local error on two

cells to calculate the ∆local error. The ∆global error was then used with the input grid

variables to complete a LASSO analysis using the student equation (Eq. 3.63). Eq. 3.63

is derived from Eq. 3.53, but does not include the second-order error term. The terms

between brackets in Eq. 3.53 were approximated as constants because the value of the

derivative are approximately constant as the grid is refined. This was able to determine

which terms in the student equation were dominant in each of the families of grids. Table

3.10 shows the LASSO coefficients and percent weight of each term for the four different

grid families.

The global error coefficients were within 3% of the local coefficients. This shows that

relationship between local and global error can be determined. It also shows that a good

local error model makes a good global error model.

3.8.6 Teacher-Student Data Comparison

Using the β coefficients from Table 3.6 through Table 3.9, local error models were built

for each specific grid for a given study. Using the β coefficients from Table 3.10, global

error models for each grid family were built. To determine how well LASSO performed,

both types of error models were compared to the actual error, which are shown in Fig. 3.19

through Fig. 3.34 for local error and Fig. 3.35 through Fig. 3.38 for global error.
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Table 3.10: Teacher-Student Global LASSO Results
Grid Family

Number
Terms

β
Coefficient

Percent
Weight

Mean Analytic
Coefficient

1
First Term
Coefficient

9.21 100.00% 10.00

1
Second Term
Coefficient

0.00 0.00% 0.00

2
First Term
Coefficient

9.84 100.00% 10.00

2
Second Term
Coefficient

0.00 0.00% 0.00

3
First Term
Coefficient

9.73 100.00% 10.00

3
Second Term
Coefficient

0.00 0.00% 0.00

4
First Term
Coefficient

9.73 100.00% 10.00

4
Second Term
Coefficient

0.00 0.00% 0.00
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Figure 3.19: Teacher-Student Study 1 Grid 1 Local Error Comparison Plot

Figure 3.20: Teacher-Student Study 1 Grid 2 Local Error Comparison Plot
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Figure 3.21: Teacher-Student Study 1 Grid 3 Local Error Comparison Plot

Figure 3.22: Teacher-Student Study 1 Grid 4 Local Error Comparison Plot
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Figure 3.23: Teacher-Student Study 2 Grid 1 Local Error Comparison Plot

Figure 3.24: Teacher-Student Study 2 Grid 2 Local Error Comparison Plot
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Figure 3.25: Teacher-Student Study 2 Grid 3 Local Error Comparison Plot

Figure 3.26: Teacher-Student Study 2 Grid 4 Local Error Comparison Plot
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Figure 3.27: Teacher-Student Study 3 Grid 1 Local Error Comparison Plot

Figure 3.28: Teacher-Student Study 3 Grid 2 Local Error Comparison Plot
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Figure 3.29: Teacher-Student Study 3 Grid 3 Local Error Comparison Plot

Figure 3.30: Teacher-Student Study 3 Grid 4 Local Error Comparison Plot
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Figure 3.31: Teacher-Student Study 4 Grid 1 Local Error Comparison Plot

Figure 3.32: Teacher-Student Study 4 Grid 2 Local Error Comparison Plot
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Figure 3.33: Teacher-Student Study 4 Grid 3 Local Error Comparison Plot

Figure 3.34: Teacher-Student Study 4 Grid 4 Local Error Comparison Plot
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Figure 3.35: Teacher-Student Study 1 Grid 1 Global Error Comparison Plot

Figure 3.36: Teacher-Student Study 1 Grid 2 Global Error Comparison Plot
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Figure 3.37: Teacher-Student Study 1 Grid 3 Global Error Comparison Plot

Figure 3.38: Teacher-Student Study 1 Grid 4 Global Error Comparison Plot
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The local and global error models reproduced the exact error fairly well, which suffi-

ciently proves that LASSO has the ability to determine the dominant terms in the Teacher

equation for the four types of grid refinement.
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4. CONCLUSION

Even after a few decades of work, solution verification methods are still evolving.

Currently, RMR solution verification method shows promise to be able to predict dis-

cretization error with simulations close to and outside the asymptotic range. With the use

of more generic error models than the historical power law model, the error estimate is

closer to the exact error with smaller uncertainty bounds and approximately the same or

less computational power.

4.1 STAR-CCM+ Analysis

While using STAR-CCM+ data is more difficult and time consuming to generate, the

framework was able to automatically generate a grid, run the simulation, and extract QoI

data from the simulation. The MEA was difficult to generate, so symbolic manipulation

software was used to confirm the results. The LASSO analysis was able to identify the

most dominant terms and reconstruct the error fairly well. The coefficient optimization

and uncertainty quantification analyses were able to predict the discretization error on a

grid that was generated approximately one order of magnitude more refined than the cali-

bration data. RMR with the improved error model was able to correctly estimate error on

a refined grid, while RMR with the standard error model was not. In addition, a qualitative

relationship between computational power and uncertainty was developed.

4.2 Teacher-Student Analysis

The teacher-student analysis was able to test the same procedure as the STAR-CCM+

analysis, but the teacher-student analysis had more control variables. Since the solution

shape, error function, and grid generation were all known, a more precise analysis was pos-

sible. The result was a more reliable justification test which shows that LASSO was able
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to identify the dominant terms to one significant figure in an error model. The MMMEAS

tests helped justify applying this problem in complex solution verification problems when

the exact solution is not known.

4.3 Future Work

While this analysis tested the framework, many improvements could be made. Some

uncertainties that were not quantified were the uncertainty due to sample size and un-

certainty due to extrapolation. In addition to quantifying the new sources of uncertainty,

quantifying the computational power required to reduce the uncertainty would also aid in

solution verification efforts. Another useful exercise would be to compare other widely

used solution verification methods, such as GCI, least-square GCI, and the factor of safety

method, to RMR methods on classic solution verification problems. This would aid in

RMR’s reputation as a valid solution verification technique for grids with a large amount

of cells. This would involve completing a more complex MEA to represent second-order

terms. Additional ways to aid in robust verification’s credibility would be to complete

a teacher-student analysis on fully coupled equations and apply the analysis on multi-

physics and multi-mesh problems. These types of analyses would help show strengths and

weaknesses of the robust verification method.
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