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ABSTRACT 

RNA sequence analysis and structure prediction are classical topics of computational biology and 

a powerful tool to examine complex genomic data. Over the decades, various tools have been 

developed to predict RNA secondary structures and sequence alignments, a majority of which 

utilize one of the two characteristic approaches: (a) thermodynamic minimum free energy or (b) 

probabilistic maximum likelihood prediction. However, despite numerous takes on modeling these 

approaches, the computational complexity of the developed algorithms hasn’t seen significant 

improvements. Most algorithms still operate with a polynomial time complexity of 𝑂(𝑁$). This 

cost is significantly large while processing large RNA sequences with hundreds of bases. 

 

In this thesis, a constrained structure prediction algorithm is presented that aims to diminish the 

computational overhead of traditional RNA structure prediction methods to 𝑂(𝑁&). The proposed 

algorithm employs pattern recognition methods to devise rules for constructing a confined space 

of possible secondary structures. This confined structure space is then searched to find a secondary 

structure that satisfies the optimality criterion. Through this document, we present the design 

details of the proposed algorithm implemented using the minimum free energy (MFE) model. 

Later, we compare its performance to Zuker’s algorithm which is the conventional dynamic 

programming equivalent of the MFE model. The proposed algorithm provides a significant 

reduction in CPU time to process longer sequences which can be attributed to its lower 

computational complexity.  
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CHAPTER 1 

INTRODUCTION 

Studies have ascertained that nucleic acids (DNA & RNA) are the central stimulant of the flow of 

genetic information within a biological system [10]. This developed a lot of interest in nucleic acid 

research among biologists and computer scientists leading to the assembly of an abundance of 

genetic information to process. 

 

In this document, we explore a sub-problem of nucleic acid analysis – RNA secondary structure 

prediction. RNA is a polymer composed of four nucleotides: adenine, cytosine, guanine, and 

uracil, abbreviated as A, C, G, and U respectively. RNA molecules often fold into complex 

secondary and tertiary structures [11] due to the formation of hydrogen bonds between these 

nucleotides called complementary base-pairs. Two classes of widely modeled base-pairs are: 

canonical Watson-Creek A-U and G-C pairs [11], Wobble pairs G-U pairs [11]. 

 

The Secondary structure of an RNA molecule can be determined through x-ray crystallography, 

which is expensive and time-consuming. Moreover, many RNA molecules cannot be crystallized. 

These limitations paved the need for mathematical models that perform efficient RNA secondary 

structure prediction based solely on the knowledge of its primary sequence. The computational 

methods developed so far use different approaches, mainly: energy minimization methods [2], 

probabilistic models [1] which search the structure space for optimal secondary structures and 

comparative sequence analysis methods. These widely used algorithms, given a sequence of length 

N, predict the structure in 𝑂(𝑁$) time. Since their introduction, extensions to these methods have 

been proposed to curb their polynomial time complexity [12]. However, while some enhancements 
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come at the expense of accuracy or a worst-case time-complexity of  𝑂(𝑁$), some information 

theory based algorithms [13] require additional data for the prediction task. 

 

In this document, we propose a constrained structure prediction algorithm developed within the 

principles of existing structure prediction algorithms that instead locates optimal substructure-

motifs from the RNA sequence and iteratively stitches them to form the final secondary structure. 

This approach restricts the search space of the prediction algorithm to the one spanned by the 

motifs, thereby improving the time complexity involved with the structure prediction to 𝑂(𝑁&). 

 

The following chapters will detail the concepts and terminology involved with RNA secondary 

structures, dynamic programming [1][2] algorithms for structure prediction, stem detection 

methodology, and the proposed constrained prediction algorithm developed using the 

thermodynamic principles of the Zuker algorithm. Finally, we provide a comparative performance 

analysis of our constrained prediction model against Zuker’s conventional structure prediction 

algorithm.  
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CHAPTER 2 

BACKGROUND 

2.1 RIBONUCLEIC ACIDS & STRUCTURES 

Ribonucleic Acids (RNA) is a linear macromolecule made up of nucleotide bases: adenine (A), 

cytosine (C), guanine (G), and uracil (U). RNA is one of the three major polymers that facilitates 

encoding and decoding of genetic information in all life forms. Unlike the other major polymer, 

DNA which is a double-stranded paired molecule, RNA occurs as a single-strand that folds onto 

itself due to interactions between its nucleotides. These interactions occur at different factions 

leading to complex multi-dimensional structure of the RNA. 

 

1. Primary Structure: The primary structure is simply the complete sequence of nucleotide 

bases arranged in 5’-3’ order. 

 
2. Secondary Structure: Secondary structure of an RNA is the set of all interactions between 

the bases in the primary structure located in different sub-strands of the molecule. 

 
3. Tertiary Structure: RNA’s tertiary structure is a dimension higher than its secondary 

structure. It is a representation of the arrangement of the atoms of the molecule in a three-

dimensional space. 

 

The primary sequence of an RNA determines the covalent structure of RNA and is the basis for 

determining how the RNA folds into its secondary and tertiary structures [11]. Figure 1 illustrates 

the primary, secondary and tertiary structures of a t-RNA molecule. Primary structure is illustrated 
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in Figure 1(a) as a linear strand of nucleotides arranged in 5’-3’ direction. Interactions between 

nucleotides forming secondary and tertiary structures are subsequently illustrated in Figure 1(b) 

and 1(c). 

 

Figure 1: (a) Primary, (b) Secondary and (c) Tertiary structures of RNA molecules. 

 

Base-pairs refer to the set of hydrogen-linked nucleotides connecting the complementary strands 

of a molecule of DNA or RNA and consisting of a purine linked to a pyrimidine by hydrogen 

bonds. Certain nucleotides in the RNA sequence associate to form base-pairs. In DNA, base 

pairing occurs between the two parallel strands to produce the helix. However, due to the single 

stranded structure of RNA, it loops onto itself forming intramolecular base-pairs among its sub-

strands. Different types of base-pairs occur in RNA including the canonical Watson-Crick pairs 

(A-U & G-C) often observed in DNA [14]. However, unlike DNA, RNAs also have the ability to 

form non-canonical base-pairs, like the Wobble pairs: G-U. 



 

 
5 

 

 

2.2 RNA SECONDARY STRUCTURE PREDICTION 

RNA secondary structure is a schematic representation of its base-pairs. Various computational 

biologists have addressed this problem with different models. Nussinov et al. [4], proposed a 

dynamic programming algorithm which maximized the number of base-pairs in the secondary 

structure. In 1981, Zuker et al. [2], proposed a refined dynamic programming approach that models 

the nearest neighbor energy interactions. This algorithm took a minimum free-energy approach 

that identifies the secondary structure with the least free-energy. However, the drawback of such 

an approach was its profound sensitivity towards the utilized thermodynamic parameters [15]. 

 

Subsequently, Stochastic Context-Free Grammars (SCFGs) [3] based probabilistic models were 

introduced to overcome this limitation. Probabilistic prediction models find the most likely 

structure of an RNA using stochastic parameters extracted from pre-computed secondary 

structures. Despite the improved parametric independence, SCFG models were slow to beat the 

accuracy of their thermodynamic counterparts. Decades later, SCFG models have caught up to the 

accuracy and reliability of free-energy algorithms owing to the use of advanced learning models 

like Hidden Markov Models (HMMs) [1] and sophisticated grammars. 

 

Recent advances have seen a surge in the use of machine learning models to solve the structure 

prediction problem significantly – statistical sampling [16], back-propagation neural networks and 

deep learning frameworks [17]. Although some of the recent RNA modeling techniques have 

worked towards improving the accuracy of the predictions, none have significantly addressed the 

polynomial 𝑂(𝑁$) time complexity involved with this problem. 
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2.2.1 STRUCTURE MODEL 

Structure prediction algorithms share a common set of norms and notations while modeling RNA 

secondary structures. Consider a sequence S with 𝑛 characters belonging to the finite set 

{𝐴, 𝐶, 𝐺, 𝑈}, each representing a nucleotide in the RNA primary structure. A base-pair between 

two nucleotides 𝑆4 and 𝑆5 is denoted by 𝑆4. 𝑆5 or simply (𝑖. 𝑗). The secondary structure is the set of 

all base-pairs 𝐾 = {	𝑖. 𝑗	|	1 ≤ 𝑖 < 𝑗 ≤ 𝑛} that satisfy the following rules: 

 
• A base can only be associated with one pair in the structure, i.e., if (𝑖. 𝑗) ∈ 𝐾 and (𝑖′. 𝑗′) ∈

𝐾, then 𝑖 = 𝑖′ iff 𝑗 = 𝑗′ and vice versa. 

• If (𝑖. 𝑗) ∈ 𝐾, then 𝑗 − 𝑖 > 𝑑 where 𝑑 is an optional parameter that indicates the minimum 

hairpin loop size. 

• All base-pairs in the secondary structure are nested i.e., if (𝑖. 𝑗)	&	(𝑖′. 𝑗′) ∈ 𝐾, then both 

pairs follow 𝑖 < 𝑖F < 𝑗F < 𝑗, if 𝑖 < 𝑖′, and 𝑖′ < 𝑖 < 𝑗 < 𝑗′ otherwise. Secondary structures 

that violate this rule are termed ‘pseudoknots’ and are known to occur often. 

 

2.2.2 MOTIFS 

Depending on how the base-pairing occurs, the secondary structure consists of various commonly 

recurring sub-structure motifs – hairpin-loops, stems, bulges, internal-loops, multi-loops and 

pseudoknots [1]. 

 
1. Stem 

The structure motif resulting from a contiguous set of multiple base-pairs that form a 

double-helix type structure is known as a stem, Figure 2(a). Stems are the key building 
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blocks of all secondary structures. Therefore, our constrained structure prediction 

algorithm introduced in the following chapters utilizes stems as the primary motif for 

modeling secondary structures. 

 

2. Hairpin-loop 

Stem structures that culminate in a sequence of unpaired bases that form a hairpin like loop 

are called hairpin-loops or simply H-loops, as illustrated in Figure 2(b). The formation of 

a hairpin-loop depends on the stability of the resulting stem and loop sub-structures.  

 

3. Bulge or Internal Loop 

Another class of commonly observed structure motif are internal loops which is an 

imperfection or an unpaired section of the stem. Therefore, I-loops appear between two 

sections of the stem and span a certain set of bases on the 5F and 3F ends of the sequence. 

I-loops that have the same number of unpaired bases on the 5F end ( 𝑛I ) and 3F end ( 𝑛& ), 

i.e., 𝑛I = 𝑛& are called symmetric I-loops as shown in Figure 3(b) and those that violate 

this property, 𝑛I ≠ 𝑛& are called asymmetric I-loops. 

 

Figure 2: Base-pairs in (a) stem structures and (b) hairpin-loops. 

(a) (b) 
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Bulges are a special case of internal-loops where the loop occurs only on one end of the 

folded structure. For example, 𝑛I > 0, 𝑛& = 0 or 𝑛& > 0, 𝑛I = 0 as shown in Figure 3(a). 

 

 

 

 

 

 

 

 

 

4. Multi-loop 

Multi-loop structures are the most complicated common structure motif. M-loop structures 

occur when bases in the hairpin-loop of a stem also close other hairpin-loops forming a 

nested series of stems. This nested secondary structure is called the M-loop, shown in 

Figure 4, and occurs often in structure prediction. 

Figure 3: Illustration of stem structures with (a) a bulge on the right strand and (b) a 

symmetric internal loop. 

Figure 4: A multi-loop structure with three stem branches. 
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5. Pseudoknot (PK) 

Pseudoknots are structures where there are interactions between bases from different stem 

or loops, as illustrated in Figure 5. They violate the third rule of secondary structure 

formation and accurate modeling of pseudoknots is quite difficult. Therefore, in this 

document, we restrict the study to the analysis of nested secondary structures, avoiding the 

possibility of a pseudoknot formation altogether. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Example of a pseudoknot between two hairpin-loop structures sharing a 

common strand. 
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CHAPTER 3 

DYNAMIC PROGRAMMING ALGORITHMS 

Nussinov et al. [4] first introduced a rudimentary dynamic programming algorithm with an 

approach to maximize the base-pairs in the predicted secondary structure. This algorithm was 

weighed down by its simplicity, but its mechanism was carried forward or extended in the more 

sophisticated energy minimization or probabilistic SCFG based algorithms. 

  

3.1 NUSSINOV ALGORITHM 

Nussinov’s algorithm calculates the optimal structure of subsequences recursively by finding 

optimal structures for smaller subsequences and working its way up to larger ones. Formally, given 

an RNA sequence 𝑥 of length 𝐿, let 𝛿(𝑖, 𝑗) be an indicator function for complementary base-pairs 

𝑥4 and 𝑥5 (	𝑖 < 𝑗	). The recursion populates a score matrix 𝛾(𝑖, 𝑗) that records the maximum 

number of base pairs in the 𝑥4…𝑥5 subsequence. 

 

Algorithm 

1. Initialization  𝛾(𝑖, 𝑗) = 0,  ∀	𝑖, 𝑗		 ∈ (1, 𝐿) 

 

2. Recursion: For all subsequence, starting with length 2 to 𝐿, 

𝛾(𝑖, 𝑗) = 	𝑚𝑖𝑛

⎩
⎪
⎨

⎪
⎧ 𝛾(𝑖 + 1, 𝑗)

𝛾(𝑖, 𝑗 − 1)
𝛾(𝑖 + 1, 𝑗 − 1) + 	𝛿(𝑖, 𝑗)

	 max
[	∈(4,5)

	[	𝛾(𝑖, 𝑘) + 	𝛾(𝑘, 𝑗)	]	
 

 
3. Traceback 
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 Initialize – 𝑝𝑢𝑠ℎ(1, 𝐿) onto the stack 

 Recursion – while the stack is not empty 

  𝑝𝑜𝑝(𝑖, 𝑗) 

  𝑖𝑓	𝑖 ≥ 𝑗, 𝑏𝑟𝑒𝑎𝑘; 

  𝑒𝑙𝑠𝑒	𝑖𝑓	𝛾(𝑖 + 1, 𝑗) = 	𝛾(𝑖, 𝑗), 𝑝𝑢𝑠ℎ	(𝑖 + 1, 𝑗)  

  𝑒𝑙𝑠𝑒	𝑖𝑓	𝛾(𝑖, 𝑗 − 1) = 	𝛾(𝑖, 𝑗), 𝑝𝑢𝑠ℎ	(𝑖, 𝑗 − 1) 

  𝑒𝑙𝑠𝑒	𝑖𝑓	𝛾(𝑖 + 1, 𝑗 − 1) + 𝛿(𝑖, 𝑗) = 	𝛾(𝑖, 𝑗) 

   𝑟𝑒𝑐𝑜𝑟𝑑	(𝑖, 𝑗)	𝑝𝑎𝑖𝑟 

   𝑝𝑢𝑠ℎ	(𝑖 + 1, 𝑗 − 1)  

  𝑒𝑙𝑠𝑒	𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗, 𝑖𝑓	𝛾(𝑖, 𝑘) + 𝛾(𝑘, 𝑗) = 	𝛾(𝑖, 𝑗) 

   𝑝𝑢𝑠ℎ	(𝑖, 𝑘) 

   𝑝𝑢𝑠ℎ	(𝑘, 𝑗) 

 

The drawbacks of the Nussinov algorithm are that the underlying principle assumption that the 

optimal secondary structure is the structure with the maximum possible base pairs is not always 

true and its uniform scoring scheme for all base-pairs. Many algorithms have thus addressed these 

drawbacks using different approaches. 

 

3.2 ENERGY MINIMIZATION 

Much of the secondary structure prediction’s literate contains various revisions of the free energy 

minimization method, aka the thermodynamic approach. Zuker et al. [2] first introduced the 

dynamic programming approach to energy minimization. This design sought to find the secondary 

structure with the least total free energy by iteratively calculating free energies of substructures 

such as stems, bulges and loops. 
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Despite nearly three decades of research, these energy minimization algorithms still have a long 

journey to efficacy and reduced time complexity. The deficiency of such break-throughs in this 

realm can be attributed to its parametric limitations and the role of external agents in the RNA 

folding process that is neglected by the approach. However, many packages have been developed 

using such energy minimization algorithms – Mfold and RNAFold [2].  We discuss Zuker’s 

folding algorithm here as our implementation of our constrained prediction algorithm retains most 

of the principles laid down by this algorithm. 

 

3.2.1 FREE ENERGY MODEL OF RNA 

Let 𝑥 be an RNA sequence of length 𝐿 and 𝐾 be the set of base-pairs representing its secondary 

structure. A base 1 ≤ 𝑖 ≤ 𝐿 is unpaired in 𝐾 if there is no complimentary base 𝑗, such that 

(𝑖, 𝑗)	&	(𝑗, 𝑖) ∉ 𝐾. Based on the enclosing structure, closing base-pairs in 𝐾 are subdivided further 

 
1. The base pair (𝑖, 𝑗) closes a hairpin-loop if the subsequence it encloses doesn’t have a base-

pair;  ∀	𝑖 < 𝑘 < 𝑗, 𝑘 is unpaired in 𝐾. 

2. Pair (𝑖, 𝑗) closes a stem if it encloses its immediate base-pair i.e., (𝑖 + 1, 𝑗 − 1) ∈ 𝐾. 

3. The set of base pairs (𝑖, 𝑗)	&	(𝑖F, 𝑗F) 	 ∈ 𝐾 close an internal loop iff 𝑖 < 𝑖F < 𝑗F < 𝑗, (𝑖, 𝑗) 

doesn’t close a stacking loop and 𝑖 … 𝑖F, 𝑗F … 𝑗 are all unpaired bases. 

4. A set of 𝑀 base pairs comprise a 𝑚-multiloop if it contains 𝑚	(> 1) base-pairs 

(𝑖I, 𝑗I)… (𝑖p … 𝑗p) that individually enclose different loops and a closing pair (𝑖, 𝑗). All 

bases that occurs between the base-pairs and the closing pair should be unpaired i.e.,	𝑖 +

1… 𝑖I − 1; 𝑗I + 1… 𝑖& − 1;… . 𝑗p + 1… 𝑗 − 1 are unpaired. 
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3.2.2 ZUKER FOLDING ALGORITHM 

The Zuker folding algorithm adapts the energy minimization approach to search for the secondary 

structure with the lowest equilibrium free energy, ∆𝐺. It is analogous to Nussinov’s base-pair 

maximization approach, using dynamic programming recursion to compute minimum free 

energies of substructures and iteratively extending this to estimate minimum free energy of the 

entire sequence. The traceback algorithm then identifies base-pairs which contribute to the 

secondary structure with least free energy. 

 

Consider an RNA sequence 𝑥 of length 𝐿, four matrices 𝑊,𝑉, 𝑉𝐵𝐼 and 𝑉𝑀 are defined to hold 

computed minimal free energies of various types of substructures. These energies are calculated 

by means of experimentally determined free energy parameters − 𝑒𝐻, 𝑒𝑆, 𝑒𝐵𝐼 and 𝑒𝑀, for hairpin-

loops, stacks, internal-loops and multi-loops respectively [2]. 

 

The Zuker recursion [2] matrices capturing contributions from different loop structures are defined 

below ∀1 ≤ 𝑖 < 𝑗 ≤ 𝐿. 

• 𝑊	holds the energy of the optimal substructure (1, 𝑖). 

	𝑊(𝑖) 	= min	 x
𝑊(𝑖 − 1)

		min
Iy5z4

	[	𝑊(𝑗 − 1) + 𝑉(𝑗, 𝑖)	]	 

• 𝑉	identifies the free energy of the substructure 𝑠,  spanned between (𝑖, 𝑗), with the 

constraint that (𝑖, 𝑗) is the closing base-pair for 𝑠. 

	𝑉(𝑖, 𝑗) 	= min	

⎩
⎨

⎧
𝑒𝐻(𝑖, 𝑗)

𝑒𝑆(𝑖, 𝑗) + 𝑉(𝑖 + 1, 𝑗 − 1)
𝑉𝐵𝐼(𝑖, 𝑗)
𝑉𝑀(𝑖, 𝑗)
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Here, 𝑒𝐻(𝑖, 𝑗) is the hairpin-loop energy for a closing pair (𝑖, 𝑗). 𝑒𝑆(𝑖, 𝑗) is the stacking 

energy of stacking (𝑖, 𝑗) and (𝑖 + 1, 𝑗 − 1). 

• 𝑉𝐵𝐼 defines the energy of the internal loop or bulge closed by the (𝑖, 𝑗) base-pair. 

𝑉𝐵𝐼(𝑖, 𝑗) = min
4{|4}5|5{~	&
4y4{y5{y5

{	𝑒𝐵𝐼(𝑖, 𝑖F, 𝑗, 𝑗F) + 𝑉(𝑖F, 𝑗′)}	 

Where 𝑒𝐵𝐼(𝑖, 𝑗, 𝑖F, 𝑗′) is the energy of a bulge or an internal loop for the base pairs (𝑖F, 𝑗′) 

closing a stacking stem structure 𝑠. 

• 𝑉𝑀 hold the energy of the optimal multi-loop structure closed by the base pair (𝑖, 𝑗) at 

𝑉𝑀(𝑖, 𝑗). Therefore, it can be computed using − 

𝑉𝑀(𝑖, 𝑗) = min
4y4�y5�y⋯
…y5�y5

{	𝑒𝑀(𝑖, 𝑗, 𝑖I, 𝑖I, … , 𝑖[, 𝑖[) +�𝑉(𝑖�, 𝑖�)
[

��I

	} 

Where 𝑒𝑀 is the energy of the multi-loop consisting of closing base-pairs 

{(𝑖I, 𝑗I), (𝑖&, 𝑗&),… , (𝑖[, 𝑗[)	&	(𝑖, 𝑗)}. Most implementations of the Zuker algorithm simplify the 

multi-loop recursion to use an approximation of the multi-loop energy as a linear function of the 

number of unpaired bases in the loop like below, 

 

𝑒𝑀(𝑖, 𝑗, 𝑖I, 𝑖I, … , 𝑖[, 𝑖[) = 𝑎 + 𝑏𝑘 + 𝑐(	𝑖I − 𝑖 − 1 + 𝑗 − 𝑗[ − 1	 +	�[	𝑖�}I − 𝑗� − 1	]	
[|I

��I

) 

 
Where 𝑎, 𝑏, 𝑐 are constants. This enables the algorithm to introduce a multi-loop energy matrix 

𝑊𝑀 for the subsequence (𝑖, 𝑗) such that 

𝑊𝑀(𝑖, 𝑗) = min

⎩
⎪
⎨

⎪
⎧ 𝑉(𝑖, 𝑗) + 𝑏

𝑊𝑀(𝑖, 𝑗 − 1) + 𝑐
𝑊𝑀(𝑖 + 1, 𝑗) + 𝑐

min
4y[z5

𝑊𝑀(𝑖, 𝑘 − 1) +𝑊𝑀(𝑘, 𝑗)
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The calculation of multi-loop energy can then be restated as 

 
𝑉𝑀 = min

4}Iy[y5|I
{𝑊𝑀(𝑖 + 1, 𝑘 − 1) +𝑊𝑀(𝑘, 𝑗 − 1) + 𝑎} 

 
After the recursion terminates, the optimal minimum free energy of the RNA structure is 𝑊(𝐿). 

The secondary structure corresponding to this optimal energy is found by tracking back the steps 

taken to calculate it. 

 

3.2.3 TIME COMPLEXITY 

The 𝑊 −𝑉 recursion takes 𝑂(𝐿&), 𝑉𝐵𝐼 recursion completes in 𝑂(𝐿�) and the linear approximation 

of the multi-loop energy function reduces VM’s time complexity to 𝑂(𝐿$). Another constraint, 

which is often imposed, restricts the maximum internal loop size to a constant 𝑑 (usually 30), 

dropping the complexity of the 𝑉𝐵𝐼 recursion to 𝑂(𝐿$). Therefore, the overall time complexity of 

the algorithm is 𝑂(𝐿$) [2][1]. 

 
3.3 PROBABILISTIC STRUCTURE ANALYSIS 

 

Transformational grammars [3] are a generative set of rules governing the production of sequences 

in a formal language. These grammars have been extensively used in natural language processing 

and have subsequently found their application in RNA sequence analysis. Chomsky sub-

categorized transformational grammars into: regular, context-free, context sensitive and 

unrestricted [1] based on the amount of restrictions placed on the generating rules, illustrated in 

Figure 6. 
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Figure 6: Chomsky hierarchy of transformational grammars, nested according to 

the amount of restrictions placed on the production rules by the grammar, 

reprinted from [1]. 

 
 
3.3.1 STOCHASTIC CONTEXT-FREE GRAMMARS 

Context-free grammars are a subclass of transformational grammars suitable for modeling 

palindromic languages [3]. They differ from regular grammars due to their ability to produce two 

symbols simultaneously.  

 

Formally, a context-free grammar 𝐺, is characterized by three distinctive sets – (1) alphabet set Σ, 

a finite set of terminal symbols observed in generated sequences. For RNA sequences, it is simply 

the set of four nucleotides {𝐴, 𝐶, 𝐺, 𝑈}. (2) a non-terminal set 𝑁, containing 𝑛 non-terminal 

symbols 𝑊I …𝑊� and a start symbol 𝑆�. (3) production set 𝑃 defining rules of generating 

subsequences from non-terminals. A sequence 𝑠 generated by 𝐺 can be associated a specific 

derivation 𝐷, which is the set of sequentially applied production rules (starting from the 

nonterminal 𝑆�) to obtain 𝑠. Parse-tree [1] is a tree structured representation of the derivation, with 

𝑆� as its root node and leaf nodes representing terminal emissions. Grammars that have more than 

one legal derivation for any sequence belonging to the language are called ambiguous [3] and are a 

particularly difficult to model. Therefore, unambiguous grammars are predominantly used in RNA 
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sequence analysis which maintain a one-to-one relationship between a sequence and its derivation. 

Therefore, in RNA analysis, the derivation of an RNA sequence, more particularly, its parse-tree 

represents its secondary structure derived by the associated grammar.  

 

3.3.2 PROBABILISTIC STRUCTURE PREDICTION MODEL 

Stochastic context-free grammars (SCFGs) [3][1] that represent RNA sequences primarily utilize 

three types of production rules: (1) 𝑆 → 𝑎𝑆𝑎� pair-emission rules emitting a complementary base-

pair (𝑎, 𝑎�) towards opposite ends of the sequence and a non-terminal symbol. (2) 𝑆 → 𝑎𝑆	|	𝑆 →

𝑆𝑎 single emission rules used to emit unpaired bases in the sequence. (3) 𝑆 → 𝑆𝑆	|	𝑆 → 𝑆 rules 

emitting non-terminal symbols to model branched secondary structures. Facilitating algorithm 

design, Chomsky designed a restrained form of SCFGs called Chomsky normal form (CNF) [1]. 

Any SCFG can be rewritten in CNF by modifying its production rules to only have two forms 

−	𝑊� → 𝑊�𝑊� and 𝑊� → 𝑎. 

 

SCFGs define a probability distribution over all possible sequences by associating production rules 

with a probability. For a given RNA sequence 𝑥 and a SCFG 𝐺 that models RNA sequences, the 

most likely secondary structure of 𝑥 is essentially the most probable parse-tree for 𝑥 under 𝐺. 

 

3.3.3 COCKE–YOUNGER–KASAMI (CYK) ALGORITHM 

The Cocke–Younger–Kasami (CYK) [1] algorithm is used to find the most likely parse-tree for an 

RNA sequence 𝑥. Assuming the grammar 𝐺 is in CNF and has a non-terminal set 𝑊 = 

{𝑊I,… ,𝑊�} with 𝑊I being the start non-terminal. Let 𝑢, 𝑣, 𝑦	and 𝑧 represent indices 
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corresponding to the non-terminal set 𝑊. The probabilistic parameters for the grammar 𝐺 are 

categorized into: transition probability 𝑡�(𝑦, 𝑧) associated with the production rule 𝑊� →	𝑊�𝑊� 

and emission probability 𝑒�(𝑎) for the production rule 𝑊� → 𝑎, where 𝑎 ∈ Σ.  

 

CYK is a dynamic programming algorithm operating on the variable 𝛾(𝑖, 𝑗, 𝑢) which is the 

maximum likelihood measure of a parse subtree rooted at 𝑊� non-terminal and generating the 

subsequence 𝑥4, … , 𝑥5 ∀	𝑖, 𝑗	 ∈ (1, 𝐿) and ∀	𝑢	 ∈ (1,𝑁). The initialization and recursion steps for 

𝛾 are given below. 

 
 1. Initialization: ∀	𝑖 ∈ (1, 𝐿)	and	𝑢	 ∈ (1,𝑁) 

  𝛾(𝑖, 𝑖, 𝑢) = 𝑒�(𝑥4) 

 2. Recursion: ∀	𝑖 ∈ (1, 𝐿 − 1), 𝑗 ∈ (𝑖 + 1, 𝐿)	and	𝑢	 ∈ (1,𝑁) 

  𝛾(𝑖, 𝑗, 𝑢) = 	max
�,�

max
[�4…5|I

{	𝛾(𝑖, 𝑘, 𝑦) + 	𝛾(𝑘 + 1, 𝑗, 𝑧) +	𝑡�(𝑦, 𝑧)	} 

 

Once the recursion is complete, 𝛾(1, 𝐿, 1) corresponds to the likelihood of the most probable parse-

tree of the sequence 𝑥. The most likely parse-tree can be obtained by incorporating a traceback 

variable into the recursion step that notes all the non-terminal transitions and terminal emissions 

belonging to the derivation of 𝑥.  
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CHAPTER 4 

STEM DETECTION 

In retrospect, all nested RNA secondary structures are an amalgamation of stem structures, some 

contributing to hairpin-loops and some culminating in a multi-loop structure. Stems, as described 

earlier, are a contiguous set of multiple base-pairs resembling a double-helix. These helix 

structures exert a large influence on the stability and formation of RNA secondary structures. The 

stability of a helix is determined by factors such as its length, presence of bulges or internal loops 

and base-pair compositions. Naturally, stems are the most important motifs in RNA structure 

analysis. Accurate estimation of stem motifs can constrain the search space for prediction 

algorithms and reduce their polynomial time complexity.  

 

Aldwairi et al. [18] developed a search heuristic to identify hairpin-loop motifs using sequence 

alignments, but this heuristic doesn’t extend its approach to find the secondary structure of an 

isolated RNA sequence. In this chapter, we propose a classifier design routine to detect stem motifs 

from their primary sequences. The proposed workflow is overlaid in Figure 8.  

 

Machine learning based pattern recognition methods are widely used to identify patterns and 

regularities in data. The design of a supervised learning model to detect stem motifs can be 

segmented into four steps: sequence/data acquisition, feature extraction, feature selection and 

model training. The overview of the design methodology is presented in Figure 7. Since we are 

only interested in stem structures, primary sub-sequences that fold into stems are extracted from 

RNA sequences along with sub-sequences that don’t contain a contiguous stack of base-pairs. 

These sequences are extracted from various RNA families in the Rfam database [20]. A maximum 
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of four unpaired bases are arbitrarily concatenated at each end to add randomness to the obtained 

samples.  
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Figure 7: Overview of the workflow of designing the stem detection classifier. 
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The labeled dataset thus curated is denoted by, 𝑋 = {𝑥I�, … , 𝑥��, 𝑥II,… , 𝑥�I}, where 𝑥4�;	∀𝑖 ∈ (1, 𝑛) 

is an extracted primary sequence that folds into a stem for 𝑐 = 1 (positive) and doesn’t form a stem 

for 𝑐 = 0 (negative). The dataset has 2𝑛 data points and a uniform class distribution. It is further 

segmented into training and test sets, consisting of 2𝑛/3 and 4𝑛/3 samples respectively, retaining 

the uniform distributed of class in both the subsets. 

 

4.1 STEM FEATURE EXTRACTION 

Curated primary stem sub-sequences are not characteristic to their folding structures and cannot 

be directly used to train classification models. So, features that are deterministic to stem motifs are 

extracted from the primary sequence data. Given an RNA primary sequence 𝑠 of length |𝑠|,  divide 

the sequence into two equal halves 𝑠I and 𝑠& corresponding to 5’-to-3’ and 3’-to-5’ directional 

branches of the helix respectively such that 𝑠 = (𝑠I, 𝑠&). Subsequently, the following factors are 

computed for each sequence sample. 

 

4.1.1 THE COMPOSITIONAL FACTOR 

The compositional factor [21] is a single strand operator quantifying the proportion of 

nucleotides {𝐴, 𝐶, 𝐺,𝑈} in the sample sequence 𝑠. For nucleotide 𝑎, let 𝑛(𝑎) denote the 

number of instances of this nucleotide in the sample sequence 𝑠. The nucleotide’s 

compositional factor is therefore the ratio of the count of 𝑎 to the total length of 𝑠 given 

by |𝑠|. 

𝐶𝐹 =
𝑛(𝑎)
|𝑠| 	; 𝑎 ∈ {𝐴, 𝐶, 𝐺, 𝑈} 
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The compositional factor is four elements long as RNA sequences are made up of four 

different nucleotides.  

 

4.1.2 THE TRI-TRANSITIONAL FACTOR 

Analogous to the compositional factor, the tri-transitional factor [21] is also a single 

strand operator specifying the transition and composition of triplets in the sample 

sequence 𝑠. Let 𝑛(𝑎, 𝑏, 𝑐) denote the number of occurrences of the triplet ′𝑎𝑏𝑐′ in 𝑠 

with consecutive transitions between 𝑎, 𝑏 and 𝑐 respsectively. The tri-transitional factor 

is computed as below. 

𝑇𝑇𝐹 =
𝑛(𝑎, 𝑏, 𝑐)
|𝑠| − 2 	; 𝑎, 𝑏, 𝑐 ∈ {𝐴, 𝐶, 𝐺,𝑈} 

𝑎, 𝑏 and 𝑐 can represent 4 different nucleotides. Therefore, the total length of the tri-

transitional factor is 64, considering all possible combinations of (𝑎, 𝑏, 𝑐). 

 

4.1.3 THE POTENTIAL BASE-PAIR FACTOR 

The potential base-pairing factor [21] is a measure of the probability of occurrence of 

the Watson-Creek and Wobble base-pairs; (𝐴, 𝑈), (𝐶, 𝐺)	and (𝐺,𝑈) between both the 

strands. It is a coarse estimate of the maximum length of the sample sequences’ stem 

structures. For all pairs −	(𝑎, 𝑎�), the factor is computed by counting the number of 

instances of nucleotide 𝑎 in strands 𝑠I and 𝑎� in strand 𝑠& and dividing the minimum of 

these counts with half the length of 𝑠. The potential base-pair factor for the pair (𝑎, 𝑎�) 

is given by, 
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𝐵𝑃𝐹 =
min{	𝑛I(𝑎), 𝑛&(𝑎�)}

|𝑠|/2 	, 

where 𝑛4(. ) is a counting function operating on strand 𝑠4 and min	(𝑥, 𝑦) is the 

minimum operator between the two numbers 𝑥 and 𝑦. Since the pairs (𝑎, 𝑎�) and (𝑎�, 𝑎) 

are treated to be identical, the total number of elements in this factor is 3. 

 

4.1.4 THE LARGEST STACK SIZE FACTOR 

The largest stack-size factor is a stability estimate of the stem motif. Large stacks of 

contiguous base-pairs add stability to the stem and therefore are a good testament to 

the presumed stem structure. Let 𝑎4, … , 𝑎4}p|I denote a segment of strand 𝑠I such that 

there exists a complementary segment 𝑎�5,… , 𝑎�5}p|I within strand 𝑠& i.e., 

{�𝑎4, 𝑎�5�,… (𝑎4}p|I, 𝑎�5}p|I)} are all valid base-pairs. The largest stack size factor is 

thus the maximum value of 𝑚, for which the aforementioned segments exist. 

𝐿𝑆𝐹 =
1

|𝑠|/2 	argmaxp
	∃	 (𝑎�5, … , 𝑎�5}p|I

∶ 	 𝐼�(	[𝑎4, … , 𝑎4}p|I], [𝑎�5,… , 𝑎�5}p|I]	);	∀𝑖, 𝑗	 

where 𝐼�(𝑋, 𝑌) is an indicator function which takes the value of 1 if 𝑌 is a compliment 

of 𝑋 and 0 otherwise. 

 

4.1.5 THE NUCLEOTIDE RATIO FACTOR 

The nucleotide ratio factor [21] inspects the effects of different ratios of nucleotides in 

strands 𝑠I and 𝑠& on the folded stem structure. This factor is always computed as a ratio 
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between the count of nucleotide 𝑎 in 𝑠I; 	𝑛I(𝑎) to the count of nucleotide 𝑏 in 𝑠&; 𝑛&(𝑏). 

This factor comprises of 12 ratios based on the constraints on 𝑎 and 𝑏 described above.  

𝑁𝑅𝐹 = ��(¦)
�§(¨)

	 ; ∀𝑎, 𝑏 ∈ {𝐴, 𝐶, 𝐺,𝑈} and 𝑎	 ≠ 𝑏 

 

The composition of the feature set constructed using these factors is give in Table 1. However, not 

all the features are strongly correlated to the stem classification label 𝑐 as some of these features 

are either weak attributes of stem motifs or are redundant features. The most characterizing subset 

of features is selected from this set to minimize the classification error. 

 

Identifier Factor Name Size 

𝐶𝐹 Compositional factor 4 
𝑇𝑇𝐹 Tri-transitional factor 64 
𝐵𝑃𝐹 Potential base-pair factor 3 
𝐿𝑆𝐹 Largest stack size factor 1 
𝑁𝑅𝐹 Nucleotide ratio factor 12 

Total 84 
 

Table 1: Complete feature set composition and factor sizes used in the design of stem detector. 

 
 

4.2. MRMR FEATURE SELECTION 

Feature selection methods are essentially a search algorithm operating under an optimization 

criterion, on the set of all spaces spanned by the features under scrutiny. Given a data set 𝐷 

consisting of 𝑁 samples of 𝑀 features 𝑋© = {	𝑥4	; 𝑖 ∈ (1,𝑀)	} and classification label 𝑐, the 

feature selection problem finds an subspace of 𝑚 features 𝑅p from the observational space 𝑅© 

such that 𝑋p = {	𝑥[	; 𝑘 ∈ (1,𝑚)	} optimally characterize 𝑐. 
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Most algorithms ignore the relationship between features and solely select features that are 

maximally relevant based on F-scores or mutual information metrics. Overcoming this limitation, 

we employ the minimal-redundancy-maximal-relevance (mRMR) algorithm [22] which is a two-

stage feature selection technique that accommodates both relevance to target label and dependency 

among features. The correlation between two random variables 𝑥 and 𝑦 can be captured using their 

mutual information which is defined in terms of the probability densities 𝑝(𝑥), 𝑝(𝑦) and joint 

density 𝑝(𝑥, 𝑦) as: 

𝐼(𝑥; 𝑦) = ª𝑝(𝑥, 𝑦)	log
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦) 	𝑑𝑥	𝑑𝑦 

The maximal relevance (dependency) criteria to select a feature subset 𝑋p which captures the 

maximum mutual information between the selected features and class label 𝑐 is given by: 

𝐷(𝑋p) =
1
𝑚	 � 𝐼(𝑥[; 𝑐)

�	∈	®¯

 

where 𝑥[ represents a feature in the selected feature set 𝑋p containing 𝑚 features. Analogous to 

the maximal relevance criteria, the minimal redundancy criteria can be defined for any two features 

−	(𝑥4, 𝑥5)	in the selected feature set 𝑋p as 

𝑅(𝑋p) =
1
𝑚& � 𝐼(𝑥4;	𝑥5)

°	;	±∈	®¯

 

Combining these constraints, the MRMR operator is defined as Φ(𝑋p) = 𝐷(𝑋p) − 𝑅(𝑋p) and 

the optimization criterion to find the optimal subset 𝑋p is given by 

argmaxΦ(𝑋p)	; 	Φ(𝑋p) = 𝐷(𝑋p) − 𝑅(𝑋p) 



 

 
26 

 

 

However, to reduce the complexity involved in the exhaustive search for feature subset 𝑋p, an 

incremental search method is used to find the near-optimal features defined by Φ. In principle, 

assuming a feature subset of 𝑚 − 1 features is already selected in 𝑋p|I, the search algorithm’s 

task is to find the 𝑚³´ feature from the set {𝑋 − 𝑋p|I}. The incremental search’s [21] optimization 

criteria given a selected set 𝑋p|I is 

𝑥p =	 argmax
�	∈	{®|®¯µ�}

¶	𝐼(𝑥[; 	𝑐) −	
1

𝑚 − 1 � 𝐼(𝑥[;	𝑥4)	
°	∈	®¯µ�

· 

 
The optimal feature subset selected for stem detection is illustrated in Table 2. We used these 

features to design the classification model from the training samples. 

 

Identifier Factor Name Selected Features Effective Size 

𝐶𝐹 Compositional factor G 1 

𝑇𝑇𝐹 Tri-transitional factor 
GGG, GGC, CCC, 
AAA, GGA, UUU, 
AUA 

7 

𝐵𝑃𝐹 Potential base-pair factor GC, AU, GU 3 
𝐿𝑆𝐹 Largest stack size factor - 1 

𝑁𝑅𝐹 Nucleotide ratio factor G/C, U/C, G/U, 
A/G 4 

 
Table 2: Selected optimal feature subset composition and effective factor sizes. 

 

4.3 SUPPORT VECTOR MACHINES 

The selected training set is handed down to train a binary support vector machine (SVM) classifier. 

SVMs are a widely used class of supervised learning models and have a well-established literature 

for data classification and regression. In principle, for a 𝑝-dimensional dataset, the SVM classifier 
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locates a 𝑝 − 1 dimensional hyperplane which separates the two classes such that margin between 

the plane and the nearest training data point (functional margins) is maximized. The optimal 

hyperplane known as the maximum-margin hyperplane is linear in p-dimensional space and the 

training samples which lie on its margins are called support vectors. Non-linear classification 

boundaries can be obtained through a kernel function that implicitly maps the data into a higher 

dimensional space where it is linearly separable. Once the classifier is trained, a new data sample 

is assigned a class label based on which side of the plane it falls.  

 

In our classifier design, we used a non-linear gaussian kernel function as it produced the least 

classification error. The accuracy of the designed classifier and its cross-validation metrics are 

shared in Table 3. 

 

Metric Value  Class Predictions 0 1 

Sensitivity  0.934  0 451 49 

PPV 0.905  1 33 467 
 

Table 3: Classification accuracy and confusion matrix of the designed stem detector. 

 
 
In the next chapter, we demonstrate how the designed stem detection model can be used to predict 

the complete secondary structure of an RNA sequence and illustrate why this method is 

computationally much less expensive. 
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CHAPTER 5 

CONSTRAINED STRUCTURE PREDICTION 

Machine learning models have slowly begun to gain an impetus in RNA sequence analysis. Neural 

network-based structure prediction algorithms were introduced by Steeg et al [23] and extended by 

Liu et al [17] subsequently. Bindewald and Shapiro et al [13] developed KNetFold that utilizes a 

network of K-nearest neighbor classifiers to predict RNA structures using sequence alignment 

information. In this document, we introduce a hybrid constrained space algorithm; which retains 

the principles of traditional dynamic programming structure prediction methods while reducing 

their time complexity through pattern (motif) recognition. The ability of machine learning models 

to identify RNA structural motifs [18] can be used to construct a restricted search space for existing 

prediction algorithms. Imposing restrictions on the search space based on the identified motifs will 

improve computational efficiency due to fewer secondary structures to process. This chapter 

details the methodology and strictures enforced in our constrained approach which constructs a 

confined search space and the algorithm used to predict the final secondary structure. 

 

5.1 CONSTRAINED SEARCH SPACE 

Conventional dynamic programming algorithms, as discussed in Chapter 3, predict optimal 

secondary structures by modeling a search space spanned by all possible secondary structures of 

the RNA sequence 𝑥 and choosing the structure that satisfies the optimality criterion. Therefore, 

for each subsequence 𝑥45 = ¸	𝑥4 … 𝑥5	¹; 𝑖, 𝑗 ∈ (1, 𝐿) where 𝐿 is the length of sequence 𝑥, these 

algorithms presume that 𝑥45 could fold into any of the commonly known motifs described in 

Section 2.2.2. The dynamic programming recursion evaluates the scoring metrics for all these 
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substructure motifs, but indeed selects the substructure that contributes to the optimal state. Such 

an exhaustive search usually comes at the cost of a large computational overhead as seen in the 

case of Zuker [2] and CYK [1] algorithms, which exhibit polynomial time complexity of the third 

order 𝑂(𝐿$). Constrained structure prediction overcomes this computational overhead by 

constructing a restricted search space which confines parts of the sequence to only fold into a 

single type of motif – Stems, called the primary motif. 

 

Therefore, the first step towards constructing a reduced search space 𝑆º is to identify all the 

subsequences that comply with the primary motif constraint. The stem detector designed in 

Chapter 4 is plugged into this phase to identify such qualifying subsequences. Although, for any 

given RNA sequence, subsequences could range from a few bases in length to the complete set of 

𝐿 bases, transforming the stem detector’s job into an exhaustive search operation. However, our 

algorithm avoids such exhaustive computations by employing a sliding window-based search 

heuristic. The window search approach is feasible due to a distinctive property of stem structures 

– given a stem formed by the contiguous set of base-pairs ¸�𝑥4, 𝑥5�, �𝑥4}I, 𝑥5|I�,… �𝑥4}�, 𝑥5|��¹, 

any contiguous subset of these pairs can also be called a stem structure. Therefore, stems that 

contain a large enough number of base-pairs can be broken down into a series of smaller individual 

stems. This property is the substantial incentive behind selecting stems as the primary motif.  

 

5.1.1 SLIDING WINDOW SEARCH 

The sliding window search heuristic is a frequently used tool in pattern recognition to process 

contiguous datasets. The principle involved in this approach is to slide a window 𝑊 of fixed-size 
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across different portions of the RNA sequence, determining whether the subsequence masked by 

the window satisfies the primary motif criteria at each iteration. 

 

Formally, given an RNA sequence 𝑥 of length 𝐿, let 𝑊4  and 𝑊5 denote equally sized 5’-to-3’ and 

3’-to-5’ directional strands of the window starting at 𝑖 and 𝑗 respectively, such that |𝑊| = 2𝑤 =

	|𝑊4| + ¼𝑊5¼ and |𝑊4| = ¼𝑊5¼ = 𝑤, where |	. | denotes the length of the window strand. The search 

proceeds by sliding the window strands across different portions of the RNA sequence, at 

increments of 𝑤, as shown in Figure 8. For each (𝑊4,𝑊5) configuration, optimal stem features 

(Table 2) are extracted from the spanned subsequence and the constructed feature vector	𝑓45  is 

classified using the stem detector and subsequently the window is added to 𝑆º. 

 

 

 

 

 

 

 

 

Algorithm 

For 𝑖 = (1,𝑤 + 1, 2𝑤 + 1…𝐿 − 2𝑤) and 𝑗 = (𝑖 + 𝑤, 𝑖 + 2𝑤…𝐿 − 𝑤) 

Define 𝑊4 = 𝑥(𝑖, 𝑖 + 𝑤), 𝑊5 = 𝑥(𝑗, 𝑗 + 𝑤) and 𝑊 = (𝑊4,𝑊5	) 

	𝑓45 	← 𝑋¾p(	𝑊) 

5 3’ 

	𝑊4 
(5F − 3F	𝑠𝑡𝑟𝑎𝑛𝑑) 

	𝑊5 
(3F − 5F	𝑠𝑡𝑟𝑎𝑛𝑑) 

𝑖 𝑖 + 𝑤 𝑗 𝑗 + 𝑤 

Figure 8: The sliding window search heuristic demonstrated on an RNA sequence for the 

window configuration (𝑾𝒊,𝑾𝒋) starting at 𝒊 and 𝒋 respectively. 
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𝑆º 	← 	 x	
𝑆º ∪𝑊									,								𝑖𝑓	Φ�𝑓45� 	= 1
𝑆º																		,							𝑖𝑓	Φ�𝑓45� = 0

 

Where, 𝑋¾p is the optimal features used to train the stem detector and Φ(𝑓) 

denotes the decision function of the SVM stem classifier.  

 

5.1.2 OPTIMAL WINDOW SIZE 

The fundamental parameter in the design of the sliding window search heuristic is the length of 

each window slice – 	𝑤. Selecting a small window size 𝑤 adds to the computational complexity 

and increases the number of incorrectly classified motifs due to the lack of adequate bases in the 

subsequence to conjure a strong prediction. On the opposing end, very large windows produce 

ambiguous results as the window might not fit a stem properly, inevitably leading to poor 

prediction outcomes. Therefore, selection of the optimal window size becomes a highly sensitive 

design decision which should accommodate most bulges, internal-loops and hairpin-loops sizes.  

 

In order to come up with a practically optimum window size, we derived the size distributions of 

hairpin-loops, stems, bulges and internal-loops [18] from a dataset of 1000 RNA substructures 

randomly extracted from sequences pertaining to 150 different Rfam families. Inspecting these 

density estimates, illustrated in Figure 9, we noticed that hairpin-loop sizes mostly range from 

3–11; stems are sized anywhere between 2–12 base-pairs long; bulges and internal loops are often 

not more than 8 bases in length.   
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Figure 9: Distribution of the sizes of (a) hairpin-loops, (b) stems, (c) bulges and (d) internal loop 

structures. 

 

The chosen optimal window size should overlap a majority of the stem portion while at the same 

time accommodating for loops and bulges that are usually not longer than 10 bases. Naturally, 

based on the inside provided from these distributional factors, a good choice of the window size 

would then be 𝑤 = 10. This choice of 𝑤, checks all constraints discussed above while still 

remaining computationally efficient. Figure 10 plots the execution times of the sliding window 

search algorithm for a sequence of 300 bases at different window sizes. This execution time 

captures time taken in feature extraction and classification for every possible window 

configuration. 
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Figure 10: Effects of the window size parameter ‘w’, on CPU search time for a fixed RNA 

sequence.  

 

5.2 STRUCTURE PREDICTION USING MESSAGE PASSING 

Once a constrained structure space 𝑆º is identified through the window search technique, the 

constrained prediction algorithm employs a message passing scheme over a graphical network of 

constrained subsequences to search for the optimal secondary structure in 𝑆º.  This section 

provides the network construction methodology and subsequently details its message passing 

infrastructure for structure prediction. In this document, we present an implementation of our 

constrained prediction method using a message passing algorithm [5][6] that utilizes the underlying 

principles of the energy minimization model. Interestingly, our method can also be constructed 

using a probabilistic model and the network can be configured as per the maximum likelihood 

principles. 
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5.2.1 NETWORK TOPOLOGY 

Consider an RNA sequence 𝑥 of size 𝐿, the constrained structure space 𝑆º is defined by the set of 

𝑁 pairs of qualified window strand configurations (𝑖I, 𝑗I), (𝑖&, 𝑗&), … , (𝑖�, 𝑗�), where 𝑖[ and 𝑗[  

denote the starting indices of the 5’-to-3’ directional window strand 𝑊4  and 3’-to-5’ directional 

window strand 𝑊5 respectively ∀𝑘 ∈ (1,𝑁). Each window configuration (𝑖[, 𝑗[) is regarded as a 

node in the graphical network 𝐺. The nodes in the network are connected to each other following 

a series of inheritance rules: 

1. Node 𝐴 = (𝑖¦, 𝑗¦) inherits from node 𝐵 = (𝑖¨, 𝑗¨), 𝐴 ← 𝐵, if its window configuration is 

enclosed by that of 𝐵 i.e., 𝑖¨ < 	 𝑖¦ < 𝑗¦ < 𝑗¨, where 𝑎 ∈ (1,𝑁) and 𝑏 ∈ (1,𝑁) − {𝑎}.  

2. If this inheritance holds, then there exists a directed edge in 𝐺 following the direction of 

inheritance 𝐵 → 𝐴 and 𝐴 is called a child of parent 𝐵. 

3. Each child node in 𝐺 may inherit from more than one parent node, which in turn can have 

multiple child nodes. 

4. 𝐺 is a directed acyclic graph (𝐷𝐴𝐺), which implies no two nodes can inherit from each 

other; either directly i.e., if 𝐴 ← 𝐵 then 𝐵 ↚ 𝐴; or through cyclic inheritance i.e., if 𝐴 ←

𝐵 ←. . . ← 𝐶 ← 𝐷, then 𝐷 ↚ 𝐴. 

 

Interpretation of the network topology: For any graphical structure 𝐺, following the inheritance 

rules described above, the nodes of its network can be classified into three types: 

 
1. H-loop Node: Hairpin-loop nodes, as the name suggests, model hairpin-loop sub-

structures. These nodes do not have any child nodes associated and often contain a 
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consecutive window configuration i.e., considering the node has a window configuration  

(𝑖[, 𝑗[), with each window slice of length 𝑤, its configuration satisfies the equality: 

𝑗[ = 𝑖[ + 𝑤 

 
2. Stem Nodes: These nodes model stem sub-structures and must have at least one child node 

in 𝐺. If a stem node has multiple child nodes, then all pairs of child nodes should have 

overlapping window configurations. So, for any two child nodes 𝐴 and 𝐵 of stem node 𝐶, 

with window configurations (𝑖¦, 𝑗¦) and (𝑖¨, 𝑗¨) respectively, 𝑖¦ < 𝑖¨ < 𝑗¦ < 𝑗¨ provided 

𝑖¦ < 𝑖¨. 

 
3. M-loop Nodes: Multi-loop nodes are used to model multi-branched loop structures. An m-

loop node should always have more than one child node. The principle difference between 

m-loop and stem nodes are that, unlike stem nodes, m-loop nodes have at least one pair of 

non-overlapping child nodes. If 𝐶 is a m-loop node, then there exists at least one pair of 𝐴 

and 𝐵 child nodes which (provided 𝑖¦ < 	𝑖¨) satisfy the non-overlapping criteria 

𝑖¦ < 𝑗¦ < 𝑖¨ < 𝑗¨ 

where (𝑖¦, 	𝑗¦) and (𝑖¨, 	𝑗¨) denote the window configurations of nodes 𝐴 and 𝐵 

respectively. 

 

Let us consider the network topology 𝐺 illustrated in Figure 11, which models a constrained 

structure space 𝑆º defined by the set of 6 constrained subsequences represented as the nodes of 

𝐺 = {	𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹	}. The edges in the graph symbolize the influence of child substructure on 

that of its parent. In 𝐺, 𝐴 and 𝐵 are the children of 𝐶 (𝐶 → 𝐴;𝐶 → 𝐵)  which inherits from 𝐸  (𝐸 →

𝐶); 𝐴 is also a child of 𝐷 (𝐷 → 𝐴) and 𝐹 inherits from 𝐸 (𝐸 → 𝐹). 
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Consequently, 𝐴, 𝐵 and 𝐹 are h-loop nodes and the substructures spanned by their window slices 

have stem structures which culminate in hairpin-loops whereas 𝐷 is a stem node as it only has a 

single child node 𝐴. 𝐶 and 𝐸 could either be stem nodes or m-loop nodes based on their children’s 

window configurations. If 𝐴 and 𝐵 have a non-overlapping window configuration, 𝐶 is a m-loop 

node, else it is considered to be a stem node. Similarly, 𝐸 is considered a m-loop node if 𝐶 and 𝐹 

are non-overlapping and a stem node if they are. The behavior and role of each node in the structure 

prediction task is dictated by their kin. 

 

5.2.2 MESSAGE PASSING SCHEME 

This section introduces a novel scheme for searching the constrained search space 𝑆º based on a 

simple message-passing approach, where messages are exchanged between the child and parent 

nodes of the graphical model 𝐺 which describes the structure space 𝑆º. Given a fully constructed 

network 𝐺 whose edges corroborate the inheritance pattern between its nodes, the message passing 

scheme solves for the minimum free energy structure using the constraints established in 𝑆º. 

A B 

C 

E 

F D 

Figure 11: An example graphical parse network consisting of six nodes each corresponding to 

one of the identified stem motifs during window search. 
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Messages in the network are sent opposite to the direction of inheritance [6], i.e., from children to 

parents as shown in Figure 12. Every node in the graphical model spans a certain sub-section of 

the RNA sequence which is presumed to contain a stem structure. Therefore, each node in 𝐺 

computes a corresponding sub-section of the energy matrix 𝑉 that holds the minimum free energy 

of the substructures modeled by network 𝐺. Each h-loop node in the network initializes its own 

copy of the energy matrix 𝑉 and populates its corresponding sub-matrix 𝑉45 . Subsequently, this 

copy of 𝑉 is sent across to respective parent nodes, which utilize the local sub-optimal energy 

calculations to put together the free energy of their subsequences. This exchange of messages 

across the graph is terminates when the energy matrix is passed over to the root nodes, which don’t 

inherit from any other node in the graph. 

 

In this message passing approach, nodes of the graphical model exhibit different behavioral and 

energy modeling patterns based on the class of nodes that they belong to. For an RNA sequence 𝑥 

of length 𝐿, the behavioral patterns of the three kinds of nodes introduced in the previous section 

is described henceforth. 

 
1. H-Loop Nodes 

This class of nodes model hairpin-loop structures using free energy parameters 𝑒𝐻, 𝑒𝑆 and 

𝑒𝐵𝐼 defined by the Zuker algorithm. Let (𝑖, 𝑗) denotes the window configuration of the h-

loop node 𝐻, then the free energy matrix 𝑉 is initialized and updated using: 

• Initialization: ∀	𝑚 ∈ (1, 𝐿)	and 𝑛 ∈ (1, 𝐿); 		𝑉(𝑚, 𝑛) 	= ∞ 	 

• Recursion: ∀	𝑚 ∈ (𝑖, 𝑖 + 𝑤) and 𝑛 ∈ (𝑗, 𝑗 + 𝑤) 
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𝑉(𝑚, 𝑛) 	= minÆ
	𝑒𝐻(𝑚, 𝑛)

		𝑒𝑆(𝑚, 𝑛) + 𝑉(𝑚 + 1, 𝑛 − 1)
𝑉𝐵𝐼(𝑚, 𝑛)

	 	 

𝑉𝐵𝐼(𝑚, 𝑛) = min
&Ç|&	~	p{|p}�|�{~	&

pyp{y�{y�

{	𝑒𝐵𝐼(𝑚,𝑚F, 𝑛, 𝑛F) + 𝑉(𝑚F, 𝑛F)}	 

where, 𝑒𝐻(𝑚, 𝑛) is the hairpin-loop energy for the closing pair (𝑚, 𝑛). 

𝑒𝑆(𝑚, 𝑛) is the energy of stacking base-pairs (𝑚, 𝑛) and (𝑚 + 1, 𝑛 − 1). 𝑉𝐵𝐼 

models the energy of the internal loop or bulge closed by the (𝑚, 𝑛) base-pair 

using 𝑒𝐵𝐼(𝑚, 𝑛,𝑚F, 𝑛′), which describes the energy of a bulge or internal loop 

between the base pairs (𝑚, 𝑛) and (𝑚′, 𝑛′). 

 

At the end of the recursion, the h-loop node modeling the substructure ℎ, constructs the 

message comprising of 1) the energy matrix 𝑉, 2) the least free energy of ℎ, 𝑒pÈ��  3) 

corresponding closing base-pair (𝑚È, 𝑛�). 

 

2. Stem Nodes 

Nodes that belong to the stem class extend their children’s stem structures. A stem node 𝑆, 

receives the sparsely computed energy matrix 𝑉, least free energy of child substructure 

𝑒pÈ��  and corresponding base-pair (𝑚È, 𝑛�) after which it computes the free energy of the 

substructure 𝑠 spanned by its window configuration (𝑖, 𝑗). The recursion equation is 

defined ∀	𝑚 ∈ (𝑖, 𝑖 + 𝑤) and 𝑛 ∈ (𝑗, 𝑗 + 𝑤) by 

 

𝑉(𝑚, 𝑛) 	= min	 É	𝑒𝑆
(𝑚, 𝑛) + 𝑉(𝑚 + 1, 𝑛 − 1)

𝑉𝐵𝐼(𝑚, 𝑛) 	 	 
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Where, 

𝑉𝐵𝐼(𝑚, 𝑛) = 	 min
pyp{y�{y�

{	𝑒𝐵𝐼(𝑚,𝑚F, 𝑛, 𝑛F) + 𝑉(𝑚F, 𝑛F)}		 

∀	𝑚F ∈ (𝑖, 𝑖 + 𝑤) + {𝑚È} − {𝑚};	∀𝑛F ∈ (𝑗, 𝑗 + 𝑤) + {𝑛�} − {𝑛} 

holds the free energy of the base-pair (𝑚, 𝑛) which closes a bulge or an internal loop. 

𝑒𝐵𝐼(𝑚,𝑚F, 𝑛, 𝑛′) is the energy of the internal loop between base-pairs (𝑚, 𝑛) and (𝑚′, 𝑛′) 

and 𝑒𝑆(𝑚, 𝑛) is the energy of stacking base-pairs (𝑚, 𝑛) and (𝑚 + 1, 𝑛 − 1).  

 

If the stem node has multiple children, it repeats this computation each time it receives a 

message from one of its children. If the minimum free energy of the modeled substructure 

ℎ is lower than that computes previously, 𝑆 updates the energy matrix 𝑉 and constructs the 

message containing 𝑉, minimum free energy of ℎ, 𝑒pÈ��  and corresponding closing base-

pair (𝑚È, 𝑛�). 

 

3. M-Loop Nodes 

Multi-loop nodes	𝑀 have two or more non-overlapping children and therefore receive 

multiple messages from its children. For all possible combinations of non-overlapping 

child nodes, 𝑀 computes the multi-loop energy of the loop consisting of stems modeled by 

its children. Let (𝑚I, 𝑛I),… , (𝑚[, 𝑛[) denote the set of 𝑘 base-pair messages received from 

non-overlapping children set 𝑋 = {𝑋I …	𝑋[}, the recursion equation to compute the free 

energy of the multi-loop stem structure is given below.  

 

For window configuration (𝑖, 𝑗) of 𝑀, then ∀	𝑚 ∈ (𝑖, 𝑖 + 𝑤) and 𝑛 ∈ (𝑗, 𝑗 + 𝑤),  
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𝑉(𝑚, 𝑛) 	= min	 Æ		
𝑒𝑆(𝑚, 𝑛) + 𝑉(𝑚 + 1, 𝑛 − 1)

𝑉𝐵𝐼(𝑚, 𝑛)
𝑉𝑀(𝑚, 𝑛)

	 	 

Where, 

𝑉𝐵𝐼(𝑚, 𝑛) = 	 min
pyp{y�{y�

{	𝑒𝐵𝐼(𝑚,𝑚F, 𝑛, 𝑛F) + 𝑉(𝑚F, 𝑛F)}		 

∀	𝑚F ∈ (𝑖, 𝑖 + 𝑤) − {𝑚};	∀𝑛F ∈ (𝑗, 𝑗 + 𝑤) − {𝑛} 

is internal-loop energy for base-pair (𝑚, 𝑛), 𝑒𝑆(𝑚, 𝑛) is its stacking energy and 

the multi-loop energy for the non-overlapping children set 𝑋 is given by defining 

𝑊𝑀 matrix for linear multi-loop energy function: 

𝑒𝑀(𝑚, 𝑛,𝑚I, 𝑛I,… ,𝑚[, 𝑛[)

= 𝑎 + 𝑏𝑘 + 𝑐(	𝑚I − 𝑚 − 1 + 𝑛 − 𝑛[ − 1	

+	�[	𝑚Ê}I − 𝑛Ê − 1	]	
[|I

Ê�I

) 

𝑉𝑀(𝑚, 𝑛) = min
�∈{p�…��,…,p�…��}

{𝑊(𝑚 + 1, 𝑢 − 1) +𝑊(𝑢, 𝑛 − 1) + 𝑎} 

 

Where the 𝑊 recursion matrix holds the minimum free energy of the subsequence (𝑚, 𝑛) 

updated by each node correspondingly. 

𝑊(𝑚, 𝑛) = min 	

⎩
⎪
⎨

⎪
⎧

	

𝑊(𝑚 + 1, 𝑛)
𝑊(𝑚, 𝑛 − 1)
𝑉(𝑚, 𝑛)

min
py�y�

	[	𝑊(𝑚, 𝑢) +𝑊(𝑢 + 1, 𝑛)	]	
	

 

The recursion is repeated for all possible sets of non-overlapping child nodes. The 

computed energy matrix 𝑉 is the one corresponding to the least minimum free energy of 

the multi-loop stem modeled by 𝑀. M-loop nodes construct the message to be passed along 
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to its ancestors by combining the energy matrix 𝑉, minimum free energy of the multi-loop 

stem 𝑒pÈ��  and corresponding closing base-pair (𝑚È, 𝑛�). 

 

Once the message passing algorithm is executed on 𝐺, the optimal energy matrix is selected from 

the set of its root nodes 𝑟(𝐺) which do not inherit from any of the nodes in 𝐺. 

𝐸 = min
Ë	∈	º(Ì)

𝑉(𝑅) 

where 𝑉(𝑅) denotes the energy-matrix calculated by the node 𝑅. 

 

The minimum free energy of the total RNA sequence is captured in 𝑊(1, 𝐿) and the optimal 

secondary structure is obtained by employing a traceback algorithm which incorporates auxiliary 

tracking variables which log the steps taken to compute 𝑊(1, 𝐿).  

 

 

 

 

 

 

 

 

 

Consider the example network illustrated in Figure 12. For h-loop nodes 𝐴, 𝐵 and 𝐹, the message 

passing scheme initializes three individual energy matrices 𝑉(𝐴), 𝑉(𝐵) and 𝑉(𝐹). These nodes 

Figure 12: Message passing scheme demonstrated on the synthetic network G. Messages are 

exchanged opposite the direction of inheritance starting at h-loop nodes and terminating at 

stem/m-loop nodes. 
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populate the sub-section of corresponding matrices and send these matrices to 𝐷, 𝐶 and 𝐸. 𝐶 

computes the energy of its substructure based on what type of node it is and passes a message to 

𝐸. 𝐸 and 𝐷 are root nodes and the message passing scheme terminates after they have completed 

populating their corresponding energy matrices. At the end of the message passing process, the 

secondary structure which exhibits the least free energy among the root nodes 𝐷 and 𝐸 is selected. 
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CHAPTER 6 

PRACTICAL EXPERIMENTS 

The focus of our work was to develop a fast RNA secondary structure prediction method with a 

lower computational complexity in comparison to conventional methods. As described in Chapter 

3, dynamic programming algorithms have polynomial time complexity in the order of 𝑂(𝑁$) for 

an RNA sequence of length 𝑁. This chapter discusses the time and space complexity of the 

constrained structure prediction model and presents a comparative analysis of the performance of 

Zuker’s algorithm and our constrained MFE algorithm based on the experiments conducted. 

 

6.1 COMPLEXITY 

The complexity of an algorithm is a measure of its scalability and the resources it requires. The 

time complexity of our constrained method can be analyzed piecewise. The window search 

algorithm to detect possible stem structures takes 𝑂(𝑁&𝑤) time to complete, where the 𝑁& factor 

is to iterate over the RNA sequence for different combinations of the window slices and the 𝑤 

factor is added due to the feature extraction aspect of classifying the subsequence. Similarly, the 

construction of the graphical network and the execution of the message passing scheme takes 

𝑂(𝑁&𝑤$	), since the maximum number of nodes in the network structure is 𝑁&, which is how long 

it takes for the message passing scheme to execute and the energy calculations [2] at each node 

(which are similar to the Zuker recursion equations) adds the 𝑤$ factor. 

 

Therefore, the overall time complexity of the algorithm adds up to 𝑂(𝑁&𝑤$	). Since the window 

strand parameter is a fixed constant, the true complexity of the algorithm is 𝑂(𝑁&	). Similarly, the 
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space complexity of the constrained prediction algorithm is 𝑂(𝑁&𝑤&	), and for constant 𝑤, it is 

𝑂(𝑁&). Each node in the constructed network utilizes 𝑤& space to compute the local energy matrix. 

Worst case, the 𝑁& nodes in the network end up using 𝑁&𝑤& memory.   

 

6.2 PERFORMANCE MEASURES 

The accuracy of a secondary structure prediction is estimated by calculating the number of base-

pairs that it correctly identified and those that it did not. Therefore, Sensitivity (SN) and precision 

(PPV) are good statistical metrics used to analyze the performance of a structure prediction 

method. The 𝑆𝑁 and PPV of a prediction are given by 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	; 	𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

where 𝑇𝑃 denotes the number of correctly predicted base-pairs, 𝐹𝑃 denotes the number of bases 

that are incorrectly paired together and 𝐹𝑁 denotes the number of base-pairs which were present 

in the true secondary structure but are not predicted in the estimated structure. 

 

6.3 RESULTS 

The performance comparison between our constrained algorithm and other structure prediction 

algorithms can be made by computing the sensitivity and PPV of each algorithm’s structure 

prediction and averaging these metrics over the set of all test sequences. To accomplish such a 

task, we put together a benchmark dataset comprising of all the seeded RNA sequences from 150 

Rfam families [20]. The energy parameters shared by both the algorithms are obtained from the 

Vienna RNA structure prediction package [24]. For each family, the performance, both in terms of 

the accuracy of the prediction model and the execution time are recorded and averaged across the 
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members of the family. These family average sensitivities and PPV for a subset of the participating 

families comparing the constrained approach and Zuker algorithm are listed in Table 4. The overall 

performance measures averaging the sensitivity and PPV across all the participating families is 

given in Table 5. 

 

ID Rfam ID Constrained Prediction Zuker’s Algorithm 

Sensitivity PPV Sensitivity PPV 

1 RF00001 0.445 0.561 0.424 0.401 

2 RF00005 0.713 0.739 0.685 0.655 

3 RF00007 0.621 0.598 0.577 0.501 

4 RF00014 0.508 0.610 0.520 0.593 

5 RF00023 0.231 0.267 0.233 0.171 

6 RF00037 0.659 0.903 0.666 0.843 

7 RF00057 0.649 0.682 0.674 0.569 

8 RF00059 0.597 0.618 0.612 0.442 

9 RF00106 0.584 0.623 0.586 0.657 

10 RF00109 0.411 0.400 0.269 0.296 

11 RF00162 0.637 0.655 0.645 0.523 

12 RF00168 0.496 0.648 0.500 0.466 

13 RF00515 0.522 0.580 0.517 0.527 

14 RF00560 0.241 0.359 0.227 0.256 

15 RF01067 0.801 0.849 0.794 0.821 

16 RF01701 0.566 0.598 0.572 0.435 

17 RF01739 0.747 0.703 0.699 0.631 

18 RF01852 0.790 0.787 0.739 0.714 

19 RF01855 0.315 0.425 0.332 0.408 

20 RF02680 0.592 0.551 0.537 0.470 

21 RF02683 0.675 0.635 0.688 0.551 
 

Table 4: Average Sensitivity and PPV of Constrained Prediction and Zuker's algorithm for a 

subset of the benchmarked Rfam family datasets. 
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Constrained Prediction Zuker Algorithm 

Sensitivity PPV Sensitivity PPV 

0.584     0.609     0.590     0.521 
 

Table 5: Average performance of constrained prediction and Zuker algorithm across the 

complete Rfam dataset. 

 
 
6.4 DISCUSSION 

 

Sequence GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA 

True Structure (((((((..((((.......)))).(((((.......))))).....(((((.......)))))))))))). 

Zuker (((((((.........((((.....(((((((...))))))).))))(((((.......)))))))))))). 

Constrained 
Prediction (((((((..((((.......)))).(((((((...))))))).....(((((.......)))))))))))). 

 

(a) 

(b) 

(c) 

Figure 13: Case study of a t-RNA structure prediction that benefits from modelling locally sub-

optimal structures. Illustrated above are (a) Zuker prediction, (b) constrained prediction, and (c) 

true structure. 
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In close assessment, we can characterize our constrained structure prediction process as a 

combination of local and global optimality. The method looks for locally optimal stem structures 

that best stitch together to produce a globally least free energy structure. The search for the global 

optimal structure is carried out under the local optimum criteria set by the stem detection step. This 

can lead to more accurate predictions as compared to the Zuker’s algorithm [2] which only models 

globally optimal structures. However, sometimes this may also lead the prediction to be highly 

inaccurate when it is largely influenced by the local structures. This can be illustrated by looking 

at the following two t-RNA sequences which were both parsed using Zuker’s algorithm and the 

constrained prediction model. 

 

Consider the t-RNA structure depicted in Figure 13, Zuker’s algorithm predicted a two stemmed 

multi-loop structure whereas the true structure has three stems. However, constrained prediction 

is more accurate as it caters to all local optima accurately. This ensures that all three stems of the 

multi-loop structure are selected while stitching the final optimal structure. This modularity in the 

constrained algorithm design can also be a bane. Consider the structure predictions shown in 

Figure 14, here the algorithm makes an inaccurate local optimum prediction and this affects the 

global structure prediction which can’t discredit this false stem prediction. 

 

Despite these discrepancies, the experimental results we obtained depict that the overall 

performance of our constrained prediction model is closely comparable to that of conventional 

MFE Zuker’s algorithm, indicating that the algorithm more often than not overcomes the ill-effects 

of local optima. This aligns with the theoretical expectations, as constrained prediction algorithm 

implements the same underlying principle as Zuker’s algorithm. 
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However, Figure 15 plots the average CPU time of both methods as a function of the average 

sequence length of the family. This comparison clearly depicts the advantage of using constrained 

models over traditional methods. The difference in the order of polynomial time complexity 

between the algorithms translates appropriately into the large amount of time taken by Zuker’s 

algorithm for very large RNA sequences. In comparison, our constrained model is significantly 

faster for long sequences. However, as expected, this difference is not quite staggering for 

sequences of smaller length. 

Sequence GCCGAAAUAGCUCAAUCGGUAGAGCAACUGAUUUGUAAUCAGUAGGUUGCGGGUUCAAUUCCUGUUUUCGGCA 

True Structure (((((((..((((........)))).(((((.......))))).....(((((.......)))))))))))). 

Zuker (((((((..((((........)))).(((((((...))))))).....(((((.......)))))))))))). 

Constrained 
Prediction ...((((((((((........))))....(((((((((((....))))))))))).......))))))..... 

 

(a) 
(b) 

(c) 

Figure 14: Case study of a t-RNA structure prediction that is affected due to larger influence of 

locally sub-optimal structures. Illustrated above are (a) Zuker prediction, (b) constrained 

prediction, and (c) true structure. 
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Figure 15: Average CPU time comparison of constrained prediction method and Zuker 

algorithm. 

 

All experiments required to gather these performance metrics were performed using Matlab on a 

Macbook Pro computer with 2.4 GHz dual-core Intel Core i5 processor coupled with 8GB of 

internal memory. 
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CHAPTER 7 

CONCLUSIONS 

The material presented so far corroborates the efficiency of the constrained structure prediction 

algorithm and its superior computational complexity over conventional structure prediction 

algorithms. In this document, we presented a case study of the performance improvements when 

the constrained algorithm is developed using the minimum free energy model. However, our 

approach can also be extended to probabilistic models. Most probabilistic models operate on the 

set of all possible secondary structures to select its maximum likelihood estimate. Therefore, 

confining the search space could bore similar results and reduce the algorithm’s time complexity. 

 

Efficient structure prediction is an important aspect of RNA sequence analysis and our approach 

accounts for significant improvements in the prediction performance. The use of constrained 

models to analyze huge strands of RNA data could see significant reductions in processing time.  

 

In general, even though the performance of our constrained prediction algorithm is comparable to 

conventional methods, the accuracy of the predictions is far from ideal as seen in the sensitivity 

measures tabulated in the previous chapter. Complex structure prediction algorithms have been 

developed over the past decade which significantly improve the prediction accuracy like the 

Hopfield Neural Network method developed by Steeg et al [23]. However, they have been slow to 

adapt either due to their complicated model or the lack of open-source implementations. These 

factors have been a major reason for the extensive use of thermodynamic and probabilistic models. 

Open source implementation of dynamic programming algorithms like RNAfold and Mfold [2] 

have been popular due to their robust implementation and frequent performance enhancements. 
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Therefore, an immediate strategy would be to improve the overall prediction accuracy by adapting 

the constrained prediction approach to work with advanced probabilistic models like Hidden 

Markov Models [1][8] (HMMs) and Covariance Models [1] (CM). We also plan to extend of the 

confined structure prediction model to estimate sequence alignments [5], which suffers from a 

larger computational overhead. 
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