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ABSTRACT 

Navigation in Radio Frequency Landscapes Using Autonomous Vehicles and Multiple Antenna 

Systems 

 

 

Kendra Andersen 

Department of Electrical & Computer Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Gregory Huff 

Department of Electrical & Computer Engineering 

Texas A&M University 

 

 

 Autonomous, or self-driving, vehicles have been making headlines in recent years as new 

technologies develop. While they are increasingly used for human transportation, it frequently 

remains important for autonomous rovers to maximize connectivity as they move. There have 

been recent developments in antenna technologies, called reconfigurable antennas, which allow 

reconfiguration of the radiation pattern through electromagnetic, rather than physical, means. 

This project focuses on engineering a control strategy which decides how to use omnidirectional, 

directional, and reconfigurable antenna systems while navigating an autonomous rover. We start 

with a path-planning algorithm optimizing signal strength by selecting the best path, then expand 

the algorithm to evaluate possible antenna configurations and choose when to use the appropriate 

configuration while traversing the optimal path. After running a series of tests using a number of 

metrics to make decisions in the control strategy, a control strategy has been developed with 

multiple optimization functions which would apply best to differing scenarios.  
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NOMENCLATURE  

 

dB  Decibel 

GHz  Gigahertz 

GPS  Global Positioning System 

MHz  Megahertz 

RF  Radio Frequency 

RSS  Received Signal Strength 

RSSI  Received Signal Strength Indication 

SNR  Signal-to-Noise Ratio 

TAMU  Texas A&M University  
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SECTION I 

INTRODUCTION 

 

Antenna Radiation Patterns 

There are a number of antenna technologies in use today. Three configurations which will 

be discussed here are omnidirectional, directional, and reconfigurable antenna systems. 

Omnidirectional antennas have a radiation pattern which distributes signal strength equally in all 

directions on a flat plane. They are widely used in systems where it’s difficult to tell where the 

receiver will be, so signals could be expected from any direction. In these types of systems, it is 

easy to observe basic properties of electromagnetic signals, such as how proximity to the 

transmitter will greatly increase the signal strength. Similarly, high frequency signals will 

attenuate faster than low frequency signals and so overall have a lower signal strength.  

Directional, or horn, antennas have a highly directed radiation pattern, where the signal is 

much stronger in the direction the antenna is pointing and weaker elsewhere. Orientation 

awareness is critical for these types of antennas to understand sensor input of communication 

systems on mobile platforms. This process integrates physical characteristics of the device into 

the information processing algorithms [1]. 

As reconfigurable antenna systems develop, they become a more viable technology for 

mobile computing devices such as smartphones and laptops. These antennas allow for 

modifications to their radiation patterns, thus changing the communication channels they use. As 

seen in [2], there is evidence to support the idea that this type of antenna can improve 

communication system performance. 
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Decision-Making Algorithms for Autonomous Vehicles 

Antenna systems are used on a number of different platforms, such as cell phones and 

vehicles. We will focus on antenna systems for autonomous rovers as they investigate their 

environment. These types of vehicles are useful as a mechanism for collecting data and to test 

various innovations. There are examples of autonomous robots being used to measure the radio 

signal strength of an area. One such example in [3] demonstrates a technique used to get data in 

real time, showing that a robot can make a precise RF map of an environment. 

The purpose of this project is to use an autonomous robot to study the propagation of 

electromagnetic waves through complex environments and to engineer the controls for an 

autonomous system which can optimize its received signal. The groundwork has been laid for 

the development of an autonomous robot which can measure the radio signal environment and 

for the establishment of a reconfigurable antenna system. This project will go on to develop a 

control strategy to examine current RSS at different frequencies for a given location and 

determine what configuration an antenna system should be in to maximize RSS of the vehicle 

while navigating through a path. 

 Before developing a path planning algorithm, previously created strategies must be 

considered. This project will implement a path planning algorithm which uses the average RSS 

over various paths to evaluate which path will be optimal. Dijkstra’s Algorithm [4] is frequently 

used to find the shortest path between two nodes. The “k shortest paths” [5] algorithm could also 

be useful to find multiple solutions to analyze to determine the optimal path. For these 

algorithms, the function determining the length (weight) of the path between nodes can be 

modified to represent other factors, instead. For example, instead of looking for the shortest path, 
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the path with the highest average speed or strongest average received signal strength indication 

(RSSI) could be found.   

 These two algorithms will be used in the development of the path planning algorithm 

which navigates an autonomous vehicle in such a way as to maximize RSS along a given path. 

The strategy will then be further modified to develop a control system using prior data for a 

given GPS location to determine which configuration of an antenna system should be selected to 

optimize RSS. The data will be collected to establish a RF map of a complex environment for 

omnidirectional, directional, and reconfigurable antennas, allowing the control system to analyze 

signal strength at various frequencies and antenna configurations during its navigation of the 

vehicle.   
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SECTION II 

METHODS 

 

The necessary materials to complete this project were provided through the Huff 

Research Group laboratory, including autonomous vehicles, various antennas, computing 

resources, and simulation models. The overall strategy used was to first collect or generate data 

for signal strength in complex environments. Next began development of a path planning 

algorithm maximizing signal strength while considering a number of other factors. Finally, a 

control strategy which examines GPS-tagged data and configures the system as appropriate was 

determined for the autonomous vehicles.  

Collecting and Generating Data 

Data is required to develop the path planning algorithm, as both a proof-of-concept and 

for further testing. This project uses data from a number of sources.  

Generated Data using Friis Transmission Equation 

The Friis Transmission Equation, in decibel (dB) form, describes the power of an antenna 

in space as a function of a number of antenna characteristics, such as antenna directivity and 

wavelength. Equation 1 can be used to generate data sets for omnidirectional antennas, allowing 

for simple test cases to be used in the development of the path planning algorithm.  

𝑃𝑟 =  𝑃𝑡  +  𝐷𝑡  +  𝐷𝑟 + 20 log10 (
𝜆

4𝜋𝑑
)                                                                     Equation 1 

When using Equation 1 to generate data for the omnidirectional antennas, we assumed 

that the directivity, Dt and Dr, of the transmitter and receiver could be ignored since on the 

horizontal plane of interest, the antenna will radiate evenly in all directions.  
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Simulated Data 

A fellow Undergraduate Research Scholar in Huff Research Group, Sarah Raines, used a 

simulation software called Wireless InSite (Remcom) to generate data for simple use cases and 

to simulate propagation in complex environments, such as the engineering buildings on Texas 

A&M University’s campus. The simulated models are used to generate an understanding of how 

radiation patterns should exist on campus, allowing for the path planning algorithm and 

autonomous rover control strategy to fill in the gaps where collected information may not exist. 

The software has been verified to have similar results to a real-time setup [6].  

Path Planning Algorithm 

The data generated in the previous steps contributes to the development of the path 

planning algorithm for the autonomous rovers, which performs an analysis on the data to 

determine which route is optimal under a set of constraints. The algorithm is based off Dijkstra’s 

Algorithm, which finds the shortest path between two nodes.  

The path planning algorithm determines a series of transfer functions between possible 

start and end points, allowing for the optimal path to be chosen once the primary constraints are 

considered. A graph approach is required due to the nature of the problem, which represents the 

environment as a series of nodes connected by path segments, each with its own properties [7].      

Autonomous Rover Control Strategy 

Once the path planning algorithm is complete, it may be expanded to accommodate the 

possibility of controlling the antenna systems of the autonomous rover. This means it becomes 

possible to change antenna configurations while travelling along the path, thus changing the 

costs associated with traversing each path. This portion of the algorithm determines the optimal 
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antenna configuration to maximize connectivity at each point, and its end goal is to provide a 

series of configuration commands for the autonomous rover.  

It is possible to use various cost functions while optimizing the antenna setup, so four 

different metrics were employed. Different purposes for operation of the autonomous rover 

might find more use from one metric than another.   
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SECTION III 

RESULTS 

 

This project required the completion of a number of technical tasks in succession. First, 

the data from the Friis Transmission Equation was used to develop the path planning algorithm 

optimizing signal strength. Then, the data from the simulation software was used for the creation 

and optimization of the autonomous rover control strategy. Various metrics were used to 

compare the antenna configurations, and these have been evaluated for overall effectiveness.  

Development of the Path Planning Algorithm 

To begin this project, the Friis Transmission Equation was used to generate a data set for 

simple test cases of the path planning algorithm. A heat map was developed, as seen in Figure 1, 

and multiple path segments evaluated to determine their signal strength.   

 

Figure 1. Simulated Dataset from the Friis Transmission Equation 
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Figure 1 shows a series of three possible paths from point 1 to 10, each going through 

areas of varying signal strength. The black points show the locations of omnidirectional 

transmitters in the field of interest. All of the transmitters use the same frequency. When 

choosing routes with this heat map, a higher received power value is desired. This means that the 

green and yellow end of the spectrum is preferred over the red and purple areas.  

Another consideration for the early path planning algorithm was maximizing the Signal-

to-Noise Ratio (SNR), which is a factor which remains important in actual data collection and 

evaluation. Figure 2 shows an example with three transmitters, one which interferes with signal 

received from the other two. For this heat map, the green areas are preferred over the red because 

it means that the signal from the noisy transmitter is much weaker than the other signals.  

 

Figure 2. Simulated SNR Dataset from the Friis Transmission Equation 

The path planning algorithm itself developed as a modification to Dijkstra’s Algorithm, 

which determines the shortest path using a cost function measuring the length of each path 
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segment. Instead of using a length-based cost function, the modified algorithm sums the signal 

power values in dB along the path, thus evaluating both signal strength and path length in the 

same metric. Figure 3 shows the simulated data which would be integrated over to compare the 

paths. When evaluating the SNR, the modified algorithm instead sums the SNR values along 

each path segment, again evaluating both SNR and path length with the same metric. For the 

simulated data, SNR would be computed by comparing one transmitter against another.  

 

Figure 3. Received Power Data Simulated by Friis Transmission Equation  

Implementation of Dijkstra’s Algorithm requires the description of the problem as a 

graph with a series of nodes connected by segments with directionalities, called edges. Each 
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segment can have a set of characteristics, such as a series of coordinates describing the route, or 

single values of parameters like the frequency used for the segment. The cost function identifies 

which edge is being queried, allowing for the return of a value which is summed with the other 

edges to determine the optimal path. In the end, the algorithm decides which path is best for the 

rover to take.  

Development of the Autonomous Rover Control Strategy 

After developing the path planning algorithm using the generated test data sets, data from 

simulation software was used to further develop the algorithm into a control strategy for the 

rover. The data was modelled at the Engineering Quad at Texas A&M University (TAMU) using 

Wireless InSite (Remcom) software, over three paths as described in Figure 4.  

 

Figure 4. Simulated Routes across the TAMU Engineering Quad 

Note: This image was generated by Sarah Raines as mentioned in Acknowledgements. 
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The simulated data included three path sets, each with multiple antenna types, transmitter 

radiation frequencies, and transmitters. These data sets were used in the development and 

evaluation of the rover control strategy, where both the path and antenna configurations were 

chosen by the algorithm. 

The path planning algorithm grows into a control strategy when considerations are added 

to evaluate the best antenna configuration at each point along the path, then allowing a path to be 

chosen. This updated algorithm essentially provides a control setting to the rover, instructing it 

on which antenna configuration to use at each point. Implementation of this strategy requires 

analyzing the data for each path using a metric to decide which antenna configuration is optimal 

at each point. A number of metrics were used in the development of this algorithm. Figure 5 

shows the resulting control waveform over the paths when four different metrics are used. 
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Figure 5. Antenna Configuration Selection at each point along Engineering Quad Paths 
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The numbers at the end of the labels on the vertical axis represent the frequency of the 

selected antenna configurations, while the horizontal axis represents the length of the paths. The 

four subplots each correspond to a different evaluation metric.  

The first evaluation metric used is the same employed in the development of the 

preliminary path planning algorithm: the strongest signal. However, since the strength of the 

signal is inversely proportional to its frequency, it was found that this metric highly favored 

signals at lower frequencies around 300 MHz. This comparison method does not consider the 

bandwidth of signals, so the signals chosen may not be able to communicate data very 

efficiently.  

The second evaluation metric shown in Figure 5 chose the antenna with the highest 

bandwidth, as long as the signal strength was over a minimum threshold. In the case shown, a 

middling threshold was chosen so the results didn’t significantly favor either low or high 

frequency antennas. If the signal strength was required to be higher, the control waveform would 

choose more low-bandwidth antennas. The opposite applied for lax signal strength requirements. 

This metric is useful to ensure that the signal chosen has a relatively high SNR if we assume a 

certain level of background noise.  

The third evaluation metric multiplies the received signal power, converted from dB, with 

the bandwidth of the antenna. The bandwidths increase with the signal frequency, meaning that 

antennas at 2.4 GHz can communicate more data at the same time than antennas at lower 

frequencies. This metric seems to prioritize signal strength over bandwidth more than the 

previous comparison method.  

The fourth and final evaluation metric computes the capacity of each antenna at each 

point along the path using Shannon’s Capacity Formula, shown in Equation 2. The bandwidths 
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used for this computation are derived from the allowed channel bandwidths of common 

communication protocols using each of the provided antenna frequencies. A constant noise value 

of -100 dB was assumed for the calculations, which computed the SNR using the signal power of 

the data sets.  

𝐶 = 𝐵 log2(1 + 𝑆𝑁𝑅)                                                                                                     Equation 2 

This final metric was found to strongly favor high-bandwidth signals over the signal 

strength of the various transmission frequencies. Table 1 shows the average wait time if the rover 

stopped at each point along the path until it transmitted 1 Megabit of data. The values were 

computed using the formula in Equation 3.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 =  
∑

1 𝑀𝑏𝑖𝑡
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ [𝑀𝑏𝑖𝑡/𝑠]𝑝𝑎𝑡ℎ

𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
                                                      Equation 3 

Table 1. Average Time Required to Transmit 1 Megabit of Data by Four Metrics 

 
Strongest 

Signal (sec) 

Highest Bandwidth 

with Threshold (sec) 

 Highest Power * 

Bandwidth (sec) 

Highest 

Capacity (sec) 

Path 1 0.549  0.0132 0.171 0.00679 

Path 2 0.547 0.0136 0.169 0.00681 

Path 3 0.565  0.0249 0.126 0.00680 

 

The results demonstrate how strongly each metric prioritizes choosing high-bandwidth 

antenna configurations, with average times for each metric frequently an order of magnitude 

different from one another. It is clear to see that the metric prioritizing signal strength would 

have the slowest connections, while the final metric prioritizing capacity would have the fastest.   
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SECTION IV 

CONCLUSION 

 

Over the course of this project, two algorithms were developed to determine the path 

planning and antenna configuration of an autonomous rover as it transmits data in the RF 

environment. Dijkstra’s algorithm proved to be an effective method of implementing path 

planning when the cost function of each segment of the path can be modified to accommodate 

prioritization of connectivity.  

Four metrics for comparing antenna configurations in the control strategy were evaluated, 

showing that each one has varying results and thus would be applicable to different use cases. 

The metric prioritizing signal strength would be useful for applications where the autonomous 

rover needs to transmit small amounts of data over long distances as it moves. On the other hand, 

the metric prioritizing capacity would be more useful if the rover needed a high bandwidth for 

something like streaming video as it drives around.  

The control strategy developed could be used for a wide range of scenarios, from testing 

of reconfigurable antennas or other antenna systems to evaluate their effectiveness to collection 

of real-time data. Future steps to consider are implementing an expansion of the algorithm to 

both consider historical data for the location and current data from the antennas in its 

configuration decisions. This way, the control strategy would have feedback and would be a 

closed-loop control scheme, rather than the current open-loop implementation.  
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