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ABSTRACT

In order to find the first few unconstrained saddles of functionals with different types

of variational structures, a new local minimax method (LMM), based on a dynamics of

points on virtual geometric objects such as curves, surfaces, etc., is developed. Algorithm

stability and convergence are mathematically verified. The new algorithm is tested on

several benchmark examples commonly used in the literature to show its stability and

efficiency, then it is applied to numerically compute saddles of a semilinear elliptic PDE

of both M-type (focusing) and W-type (defocusing). The Newton’s method will also be

investigated and used to accelerate the local convergence and increase the accuracy.

The Nehari manifold is used in the algorithm to satisfy a crucial condition for conver-

gence. The numerical computation is also accelerated and a comparison of computation

speed between using the Nehari manifold and quadratic geometric objects on the same

semilinear elliptic PDEs is given, then a mixed M and W type case is solved by the LMM

with the Nehari manifold.

To solve the indefinite M-type problems, the generalized Nehari manifold is introduced

in detail, and a generalized dynamic system of points on it is given. The corresponding

LMM with a correction technique is also justified and a convergence analysis is presented,

then it is tested on an indefinite M-type case. A numerical investigation of bifurcation for

an indefinite problem will be given to provide numerical evidence for PDE analysts for

future study.
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NOMENCLATURE

LMM Local Minimax Method

PDE Partial Differential Equation

NLSE Nonlinear Schrödinger Equation

MI Morse Index

Lp(Ω) Space of p-Lebesgue-integrable functions u(x) on Ω,
i.e.,

∫
Ω
|u(x)|pdx <∞

W k,p(Ω) Space of functions u(x) in Lp(Ω)
s.t. ∀|α| ≤ k,Dαu ∈ Lp(Ω)

H1
0 (Ω) Space of functions in H1(Ω) = W 1,2 that vanish at the

boundary of Ω

NIt Iteration number in the algorithm

N Nehari manifold

M Generalized Nehari manifold

N+ Set of positive integers

R+ Set of non-negative real numbers
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1. INTRODUCTION AND MAIN PROBLEM

1.1 Introduction

Let H be a Hilbert space with its inner product 〈·, ·〉 and norm ‖ · ‖ and J : H → R

be a C1 functional, called a generic energy functional. Let u∗ ∈ H be a solution of

J ′(u) = 0, where J ′ is the Fréchet derivative of J , then u∗ is called a critical point of J .

For a critical point u∗, the number c = J(u∗) ∈ R is called a critical value. For a critical

value c, the set J−1(c) is called a critical level. The most well-studied critical points are

the local extrema of J , and the classical calculus of variations and numerical methods

focus on finding such stable solutions. Critical points u∗ which are not local extrema

are unstable and called saddles, i.e., in any neighborhood N(u∗) of u∗, there exists two

points v, w ∈ N(u∗) s.t. J(v) < J(u∗) < J(w). A k-saddle is a critical point which

is a local maximum of J in a k-dimensional subspace and a local minimum of J in the

corresponding k-co-dimensional subspace. Morse index (MI) is introduced to measure

the instability of saddles. Assume J ′′(u∗) is a self-adjoint Fredholm operator, then H has

an orthogonal spectral decomposition as H = H− ⊕ H0 ⊕ H+ where H−, H0, H+ are

respectively the maximum negative, null and maximum positive subspaces of the linear

operator J ′′(u∗) in H with dim(H0) < ∞. If H0 = {0}, u∗ is said to be non-degenerate

otherwise it is said to be degenerate. By the Morse theory, the dimension of H− is defined

as the Morse index of u∗, denoted by MI(u∗). In particular, a non-degenerate critical point

u∗ is a local minimizer and a stable solution if MI(u∗) = 0. If MI(u∗) = k > 0, u∗ is an

unstable k-saddle and a min-max type.

Excited states in a system, as unstable local equilibria, with various configurations and

performance indices at different energy levels exist in many excitation/reaction/transition

processes in physics, chemistry, biology, etc. Nowadays new (synchrotronic, laser, etc.)
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technologies can be developed to induce, reach or control some of those excited states so

that they become long-lived as to be stable for practical purposes. Such excited states are

called metastable. The phenomenon of metastability exists in many excitation, reaction

and transition process in physics, chemistry and biology, etc. For instance, in quantum

mechanics, various states are found in aggregated systems of subatomic particles. Some

of them are excited states. Among those excited states, some ones have lifetimes lasting

102 to 103 times longer than some short states, thus they are metastable. Although all

the excited states will decay to the stable state, metastable states are long-lived. Another

example about metastability is in optical vector solitons which arise in condensed matter

physics, the dynamics of biomolecules, and nonlinear optics, etc. [1], where a new type

of optical vector soliton was found in [2, 3], and called a dipole-mode vector soliton.

Compared to the previously found vortex-mode solitons, dipole-mode vector solitons are

much more stable and robust even though both of them are unstable. According to the

numerical results, unstable modes of a dipole vector soliton are very rare and hard to

excite, and "they have a typical lifetime of several hundred diffraction lengths and survive

a wide range of perturbations." [2]

Critical points correspond to local equilibrium states in a physical process. Physically,

a local minimum point is a ground state as a stable local equilibrium. Most conventional

numerical algorithms focus on finding such stable solutions. Saddles correspond to excited

states, and metastable states may exist among the first few saddles. The physical nature of

saddles is complicated since their instability behavior can be very different [4]. Comparing

to the local minimum computation, numerical search for saddles is much more challenging

due to their instability and multiplicity. Note that we are going to find multiple unstable

solutions instead of a single stable solution, as usual results presented in the literature.

Numerical methods for finding single stable solution and for finding multiple unstable

solutions are very different in functionality and complexity. For the latter, we need to use

2



the information obtained from previously found solutions to find a new solution at the next

critical level.

Many algorithms were proposed to find 1-saddles in computational physics,chemistry,

and biology [5–10]. However, most of them are lack of proper mathematical justifications,

including analysis on algorithm stability and convergence result. While in the mathemat-

ical area, a huge literature can be found on the mathematical analysis of multiple solution

problems. Most of them basically focus on the existence issue. Typically a minimax type

critical point is characterized by the Ljusternik-Schnirelman principle (LSP) [11]

min
A∈A

max
u∈A

J(u), (1.1)

where A is a collection of certain compact sets A. Note that the min and max in 1.1

are taken in the global sense. It is too expensive to do the numerical implementation, so

new approaches are needed. The Mountain Pass Lemma proven in 1973 by Ambrosetti-

Rabinowitz [12] sets a milestone in critical point analysis. Motivated by the Mountain Pass

Lemma, Choi-McKenna proposed the mountain pass algorithm in 1993 [13] for finding 1-

saddles. In 1999, Ding-Costa-Chen developed a numerical high linking method to find

2-saddles. Global max and a local min in LSP were used in their methods, but there

is a gap between their methods and LSP since LSP is a two-level global optimization

problem. Then the mathematical justification of their methods could be too difficult to

establish, as the theories in LSP are not applicable to them. Inspired by the numerical

works above, Li-Zhou developed a local minimax method (LMM) in 2001 [14]. In their

work, a critical point is characterized by a solution to a two-level local minimax problem.

Besides, a stronger energy dissipation law for algorithm stability and a convergence result

were established [15]. Their work does not only opens a new door for solving the multiple

solution problem numerically in the local sense, but also lays a mathematical foundation

3



for the local minimax method. Motivated by their LMM, this research is to develop a new

LMM to numerically compute multiple saddles in a stable way. Our new LMM unifies the

methods for solving M-type and W-type problems, which will be introduced below.

1.2 Main Problem

To motivate our research, let us consider one of the canonical models in physics, the

nonlinear Schrödinger equation (NLSE) of the form:

i
∂w(x, t)

∂t
= −∆w(x, t) + V (x)w(x, t) + κf(x, |w(x, t)|)w(x, t), (1.2)

where V (x) is the potential function, κ is a physical constant and f is a nonlinear function

satisfying certain regularity/growth condition. To study the solution pattern, instability

and other properties, soliton solutions of the form w(x, t) = u(x)e−iλt are investigated,

where λ is the wave frequency and u is the wave amplitude function. For simplicity we

assume V (x) = 0, then by the localized property, it leads to solving a non-autonomous

nonlinear elliptic PDE which is the main problem in the research:

−∆u(x)− λu(x) + κf(x, u(x)) = 0 (1.3)

in H = H1
0 (Ω) = W 1,2

0 (Ω), where Ω ⊂ RN is an open bounded domain and the notation

of f(x, ξ) = f(x, |ξ|)ξ is abused. Let

F (x, u) =

∫ u

0

f(x, s)ds, (1.4)

then we list the following assumptions AS for the main problem (1.3):

4



(AS.1) The function f : Ω× R 7→ R is a Carathéodory function, f(x, u) is C1 in u and

|f(x, u)| ≤ C(1 + |u|p)

for some C > 0 and p ∈ (1, 2∗), where 2∗ = (N + 2)(N − 2)−1 if N ≥ 3

and 2∗ =∞ if N = 1 or 2;

(AS.2) f(x, u) = o(u) uniformly in x as |u| → 0;

(AS.3) F (x, u)/u2 →∞ uniformly in x as |u| → ∞;

(AS.4) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and (0,∞);

(AS.5) There exists η > 2 such that

0 < ηF (x, u) ≤ f(x, u)u

for every u 6= 0;

(AS.6) There exists θ ∈ (0, 1) such that

0 < u−1f(x, u) ≤ θf ′u(x, u)

for every u 6= 0 and f ′u is a Carathéodory function with

|f ′u(x, u)| ≤ C(1 + |u|p−1)

for some C > 0 and p ∈ (1, 2∗);

The assumption (AS.5) is actually the standard Ambrosetti-Rabinowitz superlinear con-

dition and it implies (AS.3) and (AS.4) [16, 17], while the assumption (AS.6) is stronger

5



than the Ambrosetti-Rabinowitz superlinear condition (AS.5) [18], so only (AS.1), (AS.2)

and (AS.6) are sufficient for our research. However, we still use all these assumptions in

the research as some of them can lead to the expected results directly when we prove our

claims.

In most numerical examples of our research, we take

f(x, u) = |x|r |u(x)|p−1 u(x) and F (x, u) =

∫ u

0

f(x, s)ds =
1

p+ 1
|x|r |u(x)|p+1 ,

(1.5)

where p ∈ (1, 2∗) and r is a prescribed parameter. It is known that the nonlinear term f is

used in the Hénon equation modeling spherical stellar systems and 2∗ + 1 is the Sobolev

critical exponent for Sobolev embedding. [19–21] We can easily check that f satisfies all

the assumptions AS.

We obtain the model problem in the research which is a non-autonomous semilinear

elliptic PDE:

−∆u− λ(x)u+ κ |x|r |u(x)|p−1 u(x) = 0, (1.6)

The corresponding energy functional for the model problem is

J(u) =

∫
Ω

[
1

2
|∇u(x)|2 − 1

2
λ(x)u2(x) +

κ

p+ 1
|x|r |u(x)|p+1

]
dx. (1.7)

The critical points of (1.7) are the solutions of our model problem (1.6) and our objec-

tive is to find the first few saddles of J .

Let 0 < λ1 < λ2 < . . . be the eigenvalues of −∆ satisfying zero Dirichlet boundary

condition and {e1, e2, . . .} be their corresponding eigenfunctions. The sign of the physical

constant κ is significant since it gives us two physically and mathematically very different

cases. The system (1.6) is called focusing (M-type) if κ < 0 and λk < λ < λk+1 (k =

0, 1, 2, . . . , λ0 = −∞) and defocusing (W-type) if κ > 0 and λk < λ < λk+1 (k =
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1, 2, . . . ,). In addition, for M-type problems, if k = 0, i.e., λ < λ1, they are called definite

problems in the literature. If λ > λ1, they are called indefinite problems. The profiles of

these two types of functions are given in Figure 1.1. The shapes of these two types look

like upside-down to each other, but are actually not since they have a significant difference

in space dimensions, so they are very different not only in physical nature but also in

mathematical structure. If we consider the Morse indices for the non-trivial solutions, we

only have the ones with MI larger than k for M-type cases and smaller than k for W-type

cases. In particular, for the M-type with λ < λ1, J has a mountain pass structure and 0

is the only local minimum so the mountain pass/linking type approaches or methods can

be applied. However, for the W-type with k ≥ 1, J has two local minima but has no

mountain pass structure, thus the mountain pass/linking type approach or algorithms are

not applicable. In the literature, two very different types of variational methods were used

to treat those two cases respectively. While in our research, we will develop numerical

methods and their related theory for finding saddles for both the focusing and defocusing

problems.

k−saddle

(a)

k−saddle

(b)

Figure 1.1: Function profiles of M-type (left) where ∩-shape in [e1, . . . , ek], M-shape in
[e1, . . . , ek]

⊥ vs. W-type (right) where ∪-shape in [e1, . . . , ek]
⊥, W-shape in [e1, . . . , ek].

Even though the Newton-type or other local convergence based methods can be used

to converge very fast, an initial guess sufficiently close to a target solution is still needed.
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Thus these methods alone are not suitable for solving the problem, since it is known that for

an unknown target solution, finding such an initial guess can be very hard for an infinite-

dimensional highly nonlinear multiple solution problem. Thus we will not discuss more

about Newton-type or other locally convergent methods in our research. On the other hand,

they can be used after an approximating solution is computed as a proper initial guess to

speed up the convergence. Instead we focus on developing a new general stable local

min-max algorithm (LMM) for finding k-saddles using only J ′ in a Hilbert space, which

includes several very different types of variational methods in the literature as special

cases. It is known that energy dissipation law is crucial for an algorithm related dynamics

to be stable, but it alone is not enough for the algorithm to be convergent in an infinite-

dimensional space. In fact, we need the stepsize rule, a stronger energy dissipation law.

In our research, we will establish LMM’s mathematical justification including a solution

characterization, a stepsize rule and a convergence result. As for numerical examples, the

algorithms will be implemented and tested on our model problem with two very different

W-type and M-type variational structures. Virtual geometric objects will be used in our

algorithm, and we will show how easily they can be defined without knowing their explicit

expressions. This feature gives us a great flexibility to choose some particular geometric

objects to speed up algorithm convergence. Since all the nontrivial critical points stay on

the Nehari manifold, we use it as an auxiliary equation (a void constraint) to define the

geometric objects used in the algorithm to speed up the numerical computation. Such an

expectation is verified by the numerical results. Then this idea is modified and then imple-

mented on finding saddles of a mixed M and W type problem, which is hard to handle with

the methods in the literature. For the indefinite M-type problems, the generalized Nehari

manifold will be used since a crucial condition for establishing the algorithm convergence

result can be verified on it. It is discussed in detail, including its properties, a minimax

characterization, a stepsize rule and a convergence analysis. Then a numerical example is
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presented to illustrate the algorithm and its related theory.

In the M-type model problem (1.6), the term |x|r plays a significant role in the property

of the solution and r is usually called a bifurcation parameter. In detail, for the definite

problem with a convex domain Ω which is symmetric about the origin, when r is not

greater than certain value, the ground state solution is positive, symmetric and has one

peak centered at the origin. Bifurcation occurs when r goes beyond certain value. Then

the ground state solution bifurcates to multiple asymmetric positive solutions and the peak

moves further away from the origin as r increases if λ is a constant. Bifurcation for definite

problems has been investigated by many researchers, such as the discussion in [22]. In this

research, we will study the bifurcation of indefinite problems, where the phenomena are

more complicated.
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2. LOCAL MINIMAX METHOD WITH VIRTUAL GEOMETRIC OBJECTS

2.1 A Local Minimax Characterization of 1-saddle Based on Virtual Curves

Let P (t, s) be a t-parametrized family of smooth curves in variable s connecting ur to

upt where ur is a local minimum of J and upt can be another local minimum up or a fixed

or moving point with J(upt) ≤ J(ur) and ‖ur − upt‖ > δ > 0. Thus for each t ≥ 0,

P (t, s) is a smooth curve in the variable s. We may assume 0 ≤ s ≤ 1 with P (t, 0) = ur

and P (t, 1) = upt . Let s(t) ∈ (0, 1) be the first local maximum of J(P (t, s)) in s for each

t ≥ 0. Since ur is a local minimum of J(P (t, s)) in s and J(upt) ≤ J(ur), such an s(t)

always exists with 0 < δ < s(t) < 1 for some δ > 0 if ur is nondegenerate. We have

dJ(P (t, s))

ds
|s=s(t) = J ′(P (t, s(t)))P ′s(t, s(t)) = 0. (2.1)

Once the value s(t) and the direction P ′s(t, s(t)) are specified as in (2.1), for the

t-parametrized family of curves P (t, s) to evolve in t in a regular way or to avoid a sliding,

we need to assign a moving direction. Let Ht be the hyperplane normal to P ′s(t, s(t)) at

P (t, s(t)) and called the normal plane of the curve P (t, s) at P (t, s(t)). Since P ′t(t, s(t))

defines the direction of the t-parametrized family of curves P (t, s) moving away lo-

cally from the point P (t, s(t)), for this evolution in t to be regular or to avoid a slid-

ing, the moving direction should be on Ht. By (2.1), J ′(P (t, s(t))) ∈ Ht. Thus we set

P ′t(t, s(t)) = −J ′(P (t, s(t)))/Ct, where Ct = max{‖J ′(P (t, s(t)))‖, 1} and a negative

sign is used since we hope that the curves P (t, s) evolves in t along certain negative gra-

dient flow so that the value of J(P (t, s(t)) will be strictly decreasing (or obey the energy

dissipation law), and the scalar Ct is introduced to enhance the stability of this evolution
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in search for an unstable 1-saddle. We propose a 1-saddle search system:

〈J ′(P (t, s(t))), P ′s(t, s(t))〉 = 0, (2.2)

P ′t(t, s(t)) = −J ′(P (t, s(t)))/Ct, (2.3)

starting from an initial point P (0, s(0)) on a given initial smooth curve P (0, s).

For the dynamic system (2.2) - (2.3), we would like to give some important notes here:

(1) The system (2.2) - (2.3) is actually not a dynamics of t-parametrized family of

smooth curves P (t, s). In fact, it is a dynamics of t-parametrized points P (t, s(t)) starting

from an initial point P (0, s(0)). Thus we will concentrate on the evolution of the points

P (t, s(t));

(2) There are infinitely many smooth curves satisfying the dynamic system (2.2) - (2.3)

and we do not have to know their explicit expressions, so we call these curves P (t, s) vir-

tual. This feature gives us a great flexibility to choose preferred smooth curves for different

purposes or to satisfy certain constraints if exist. For instance, the Nehari manifold will be

used in our research to speed up the numerical computation and enable us to easily extend

the method for finding k-saddles. The method of the Nehari manifold will be discussed in

Section 3;

(3) We assume that the scalar function s(t) is locally Lipschitz continuous. Since for

each t ≥ 0, (2.2) can be used to solve for s(t), a local maximum of J(P (t, s))) in s, by

using the implicit function theorem, a condition can always be proposed to achieve this.

The locally Lipschitz continuity of s will be used in the convergence analysis.

Note that (2.2) is achieved by taking a local maximum of J along the curve P (t, s)

in s and (2.3) indicates that this system follows a negative gradient flow and leads to a

local minimum of J(P (t, s(t))) in t. Thus the system (2.2) - (2.3) is a new local minimax

principle for a 1-saddle. Modifications of the system (2.2) - (2.3) can be developed for
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other purposes. Different discrete realizations of the system in t may lead to different

numerical algorithms. Since a 1-saddle is unstable, we do not want to go too fast to lose

the algorithm stability in the search. The energy dissipation law is good for stability but

only itself is not enough, thus we need a stepsize rule, a stronger version of the energy

dissipation law.

Lemma 2.1.1. (Stepsize Rule) If P (t0, s(t0)) is not a critical point, then there exists s0 > 0

s.t. when 0 < t′ < s0, we have a stepsize rule

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 .

Furthermore, if P (tk, s(tk))→ P (t0, s(t0)) as tk → t0, then there exists N > 0 s.t. when

0 < t′ < s0/2, k > N , we have a uniform stepsize rule

J(P (tk + t′, s(tk + t′)))− J(P (tk, s(tk))) <
−t′

4
‖J ′(P (tk, s(tk)))‖2/Ctk .

Proof. We first note that

P (t0 + t′, s(t0 + t′))− P (t0, s(t0))

=P ′t(t0, s(t0))t′ + P ′s(t0, s(t0))(s(t0 + t′)− s(t0)) + o(t′ + |s(t0 + t′)− s(t0)|)

=− J ′(P (t0, s(t0)))t′/Ct0 + P ′s(t0, s(t0))(s(t0 + t′)− s(t0))

+ o(t′ + |s(t0 + t′)− s(t0)|).

Then we assume that s(t) is locally Lipschitz continuous, i.e., |s(t0 + t′) − s(t0)| ≤ `0t
′.
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It follows that o(‖P (t0 + t′, s(t0 + t′))− P (t0, s(t0))‖) = o(|t′|) and we have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0)))

=〈J ′(P (t0, s(t0))), P (t0 + t′, s(t0 + t′))− P (t0, s(t0))〉

+ o(‖P (t0 + t′, s(t0 + t′))− P (t0, s(t0))‖)

=〈J ′(P (t0, s(t0))), P ′t(t0, s(t0))t′ + P ′s(t0, s(t0))(s(t0 + t′)− s(t0))〉+ o(|t′|)

=− t′‖J ′(p(t0, s(t0)))‖2/Ct0 + o(|t′|) (by (2.2) and (2.3)).

Then it is easy to see there exist s0 > 0 such that when 0 < t′ < s0,

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 . (2.4)

Since J and J ′ both are continuous, the second conclusion follows directly from

P (tk, s(tk))→ P (t0, s(t0)) as tk → t0 and the stepsize rule in the first part.

Theorem 2.1.2. (Local Minimax Characterization) If t0 = arg loc- mint>0 J(P (t, s(t))).

Then P (t0, s(t0)) is a saddle point.

Proof. Arguing by contradiction, suppose P (t0, s(t0)) is not a saddle point, since it is a

local maximum of J along the smooth curve P (t0, s) in s, it cannot be a local minimum

of J either. Then by Lemma 2.1.1, there exists s0 > 0 s.t. when 0 < t′ < s0, we have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 , (2.5)

which yields a contradiction to t0 = arg loc- mint>0 J(P (t, s(t))).

Remark 2.1.1. When the local minimum in Theorem 2.1.2 is numerically approximated,

it leads to a local minimax method (LMM) for a 1-saddle. It is also interesting to indicate
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the significant differences between LMM (2.2)-(2.3) and the well-known minimax method

characterized by the mountain pass lemma [12]. In the latter, upt = up is fixed in an as-

sumed mountain pass structure and the minimum and maximum are all in the global sense,

in particular, the minimum must be taken over all possible continuous paths connecting ur

and up. Numerically this is impossible. While in our LMM, upt is flexible, it does not

assume a mountain pass structure, the minimum and maximum are all in the local sense,

and the paths P (t, s) can be any one-parameter family of smooth curves connecting ur

and upt . Thus LMM (2.2)-(2.3) has clear advantages in numerical algorithm design and

implementation. We present the following flowchart of the new local minimax method

(LMM).

2.2 Flowchart of the New LMM

Assume that ur is a local minimum of J and up0 is either another fixed local mini-

mum of J or any point with J(up0) ≤ J(ur). Given λ, ε, τk > 0 with τk → 0 as k →

∞,
∑∞

k=0 τk = +∞.

Step 1: Let P (0, s) be the straight line or a given smooth curve such that P (0, 0) =

ur, P (0, 1) = up0 and s(0) be the first local maximum of J(P (0, s)), namely,

s(0) = argmaxs>0J(P (0, s)). Set k = 0, t0 = 0, uk = P (tk, s(tk));

Step 2: Evaluate dk = J ′(uk). If ‖dk‖ < ε, then output uk and stop, otherwise continue;

Step 3: For t′ = λ
2m

, m = 1, 2, . . . , let uk(t′) = P (tk, s(tk)) − t′dk / Ck. Let upk,t′ be a

local minimum of J or chosen in a continuous way in t′ such that J(upk,t′) ≤ J(ur).

Construct a smooth curve P (tk + t′, s) passing through ur, uk(t′), upk,t′ . Use s(tk)

as an initial guess to solve for s(tk + t′) = arg maxs>0J(P (tk + t′, s)). Denote

t′k = max{t′ = λ

2m
≤ τk | m ∈ N+, J(P (tk + t′, s))− J(uk) ≤ −

t′

4
‖dk‖2 / Ctk},
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tk+1 = tk + t′k and uk+1 = P (tk+1, s(tk+1));

Step 4: Set k = k + 1 and go to Step 2.

Remark 2.2.1. (1) In Step 3, the first line is a discrete version of the condition (2.3),

namely, a finite difference in t-variable P (t + t′, s(t)) ≈ P (t, s(t)) − t′J ′(t, s(t)) is used

to approximate the condition (2.3)

−J ′(P (t, s(t))/Ct = P ′t(t, s(t)) = limt′→0
P (t+t′,s(t))−P (t,s(t))

t′
. Thus for algorithm stabil-

ity, we choose the approximation

u(t′) = P (t+ t′, s(t)) ≈ P (t, s(t))− t′J ′(t, s(t))/Ct.

The condition (2.2) is always satisfied at a local maximum J(P (tk + t′, s)) in s. Since

along a smooth path J(P (t, s)), there can be multiple selections of local maxima of J in

s. Each one is called a peak selection. An oscillation among different peak selections

will destroy the continuity of P in s. Our strategy is in Step 3 we use the previous peak

selection s(tk) as the initial guess to consistently trace a peak selection. Doing so will

help us avoid the unnecessary oscillation and hold the continuity of P (t, s(t)) in t. On the

other hand, in Step 1, by starting with s > 0 small, we intend to choose the peak selection

which is closest to the local minimum ur;

(2) In an extreme case, just like a negative gradient flow may be stuck at a saddle not

necessarily a local minimum (0-saddle), LMM may be stuck at a k-saddle u∗ (k > 1)

not necessarily a 1-saddle. In this rare case, we check J ′′(u∗). It will have at least two

negative eigenvalues. We may use their eigenfunctions, two decreasing directions of J

at u∗, to construct a decreasing direction v− orthogonal to P ′s(t
∗, s(t∗)), then move along

u∗+t′v− to stay away from u∗ and continue the algorithm iteration to search for a 1-saddle.

Since the algorithm is descending, it will not come back to u∗.
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2.3 Convergence Analysis

The following Palais-Smale (PS) condition is introduced before we prove the conver-

gence of the algorithm.

Definition 2.3.1. A functional J ∈ C1(H,R) is said to satisfy the Palais-Smale (PS) con-

dition if any sequence {uk} ⊂ H with {J(uk)} bounded and J ′(uk)→ 0 has a convergent

subsequence.

Theorem 2.3.1. Let tk+1 = tk + t′k where 0 < t′k ≤ τk, τk → 0,
∑∞

k=0 τk = +∞ and

uk = P (tk, s(tk)) be the sequence generated by the algorithm with ε = 0. Then

(a) lim
k→∞

t′kJ
′(uk)/Ctk = 0; Furthermore if J satisfies the PS condition, then

(b) there is a subsequence ukj → u∗, a saddle of J;

Denote K = {u ∈ H : J ′(u) = 0, J(u) = J(u∗)}, then

(c) any convergent subsequence of {uk} converges to a point of K;

(d) Let {uk} be all the limiting points of {uk}. If in addition, ‖P ′s(tk, s(tk))‖ is bounded

and the scalar function s(t) is Lipschitz continuous, then {uk} ∩K 6= ∅ is connected and

dis(uk, K)→ 0 as k →∞.

Proof. Since J(ur) < J(uk+1) < J(uk) by the stepsize rule, limk→∞ J(uk) exists and

J(ur)−J(u0) ≤ lim
k→∞

J(uk)−J(u0) =
∞∑
k=0

(J(uk+1)−J(uk)) < −
1

4

∞∑
k=0

t′k‖J ′(uk)‖2/Ctk ,

where Ctk = max{1, ‖J ′(uk)‖}. Thus t′k‖J ′(uk)‖2/Ctk → 0 and then t′kJ
′(uk)/Ctk → 0

since 0 < t′k < τk → 0. So (a) is verified.

To prove (b), there are totally two Cases for {uk}, (1) there is η > 0 s.t. ‖J ′(uk)‖ >

η, k = 1, 2, ..., or (2) there is a subsequence J ′(uki)→ 0.
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If Case (1) holds, we may assume η < 1
2
. Thus −‖J ′(uk)‖ < −η < −η2 and

J(ur)− J(u0) < −1

4

∞∑
k=0

t′k‖J ′(uk)‖2/Ctk ≤ −
η2

4

∞∑
k=0

t′k = −η
2

4

∞∑
k=0

|tk+1 − tk|. (2.6)

That is, {tk} is a Cauchy sequence. We obtain tk → t∗. By the continuity, we have

uk = P (tk, s(tk))→ u∗ = P (t∗, s(t∗)) and ‖J ′(P (t∗, s(t∗)))‖ ≥ η, i.e., u∗ is not a critical

point. Then Lemma 2.1.1 states that there exist s0 > 0, N > 0 s.t. when k > N , we

have s0
2
≤ t′k < τk → 0, a contradiction. Thus Case (2) must hold true. Since {J(uk)} is

bounded and J ′(ukj)→ 0, by the PS condition, (b) is proven.

To establish (c), let {ukj} ⊂ {uk} be any convergent subsequence with ukj → u′.

If J ′(u′) 6= 0, we can pass to a subsequence if necessary, then t′kJ
′(uk)/Ctk → 0 and

‖J ′(ukj)‖ > η > 0 lead to t′kj → 0, a contradiction to Lemma 2.1.1 under ukj → u′. Thus

J ′(u′) = 0 must hold. Since J(uk) is monotonically decreasing, we have J(u′) = J(u∗),

i.e., u′ ∈ K.

To prove (d), we have

uk+1 − uk = P (tk+1, s(tk+1))− P (tk, s(tk))

= P ′t(tk, s(tk))t
′
k + P ′s(tk, s(tk))(s(tk+1)− s(tk))

+ o(|t′k|+ |s(tk+1)− s(tk)|)

= −J ′(uk)t′k/Ctk + P ′s(tk, s(tk))(s(tk+1)− s(tk))

+ o(|t′k|+ |s(tk+1)− s(tk)|).

Note that the scalar function s(t) is Lipschitz continuous, as k → ∞ we have 0 < t′k ≤

τk → 0,

‖J ′(uk)/Ctk‖ ≤ 1, ‖P ′s(tk, s(tk))‖ ≤M, |s(tk+1)− s(tk))| ≤ `(t′k)→ 0.
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Thus there is an `1 > 0 s.t.

‖uk+1 − uk‖ = ‖P (tk+1, s(tk+1))− P (tk, s(tk))‖ ≤ `1(t′k)→ 0 as k →∞. (2.7)

From (b), we have u∗ ∈ K 6= ∅. Let I ⊂ N+ = {1, 2, ...} and call
∑

i∈I ‖ui+1−ui‖ the

total distance traveled by the subsequence {ui}i∈I . For any given η > 0, let i ∈ I ⊂ N+

denote the whole index set in N+ with ‖J ′(ui)‖ > η. Since J(ur) < J(uk+1) < J(uk),

similar to (2.6), we have

−∞ < J(ur)− J(u0) ≤
∞∑
k=1

[J(uk+1)− J(uk)] ≤
∑
i∈I

[J(ui+1)− J(ui)]

< −1

4

∑
i∈I

t′i‖J ′(ui)‖2/Cti ≤ −
η2

4

∑
i∈I

t′i. (2.8)

By (2.7), it leads to ∑
i∈I

‖ui+1 − ui‖ ≤ `1

∑
i∈I

t′i < +∞, (2.9)

i.e., the total distance traveled by {ui}i∈I is finite.

K
u

uk i

δ

δ

1

2

Figure 2.1: Three regions around K.

Suppose there is δ2 > 0 s.t. there are infinitely many points u in {uk}with dis(u,K) >

δ2. By the inequality (2.7), for any 0 < δ1 < δ2, there is M > 0 s.t. when k > M ,

‖uk+1−uk‖ < 1
4
(δ2−δ1). Without loss of generality we may simply assume suchM = 1.
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It is clear from (b) that u∗ ∈ {uk} ∩ K 6= ∅. Then {uk} has to go into each one of the

three regions for infinitely many times, see Figure 2.1. There should be infinitely many

points {uki} ⊂ {uk} satisfying uki ∈ R = {u ∈ H : δ1 < dis(u,K) < δ2}. Thus

every time the subsequence {uki} enters the region R from one region, it has to travel for

at least 1
2
(δ2 − δ1) distance to pass the region R into another region. Therefore the total

distance traveled by {uki} is infinite. However by (2.9), for any η > 0, the total distance

traveled by all the points u ∈ {ui} with ‖J ′(u)‖ > η is finite. Thus there must be a

subsequence {uki′} ⊂ {uki} s.t. J ′(uki′ )→ 0 and J(uki′ )→ J(u∗). By the PS condition,

there is a subsequence, denoted by {uki′} again, s.t. uki′ → u′ with J ′(u′) = 0 and

J(u′) = J(u∗). Thus u′ ∈ K and δ1 ≤ dis(u′, K) ≤ δ2. It leads to a contradiction. Thus

for any δ2 > 0, there are at most a finite number of points u ∈ {uk} s.t. dis(u,K) > δ2,

i.e., dis(uk, K)→ 0 as k →∞.

Next we let u∗ be any limit point of {uk} by (b) or (c) and ū be another limiting point

of {uk} if exists. Then u∗, ū ∈ K. For any 0 < δ2 < ‖u∗ − ū‖, there are infinitely many

points u ∈ {uk} s.t. δ2 < ‖u∗ − u‖. Replacing K by u∗ and repeating the above proof

after (2.7), we obtain u′ ∈ K s.t. δ1 ≤ ‖u∗− u′‖ ≤ δ2. Since 0 < δ1 < δ2 can be any such

numbers, {uk} ∩K must be connected. Finally (d) is verified.

Remark 2.3.1. To obtain a sequence convergence (d) from a subsequence convergence (b)

in Theorem 2.3.1, it is reasonable to assume the bounded scalar function s(t) to be Lips-

chitz continuous. Observe that if s(t) ∈ (0, 1) is only continuous with unbounded |s′(tk)|,

it must oscillate infinitely many times. Then there could be subsequences of {s(tk)} con-

verging to different points in [0, 1]. Consequently we can have only the subsequence con-

vergence (b) but not the sequence convergence (d). The boundedness of ‖P ′s(tk, s(tk))‖

will also be checked when we discuss about the numerical implementations. Conclusion

(d) implies uk → u∗ if u∗ is isolated. It is clear that this convergent result can be easily
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extended for k-saddles and actually covers several different variational methods since the

algorithm setting is general.

The above LMM can be easily extended to numerically find 2-saddles or saddles with

higher MI if they are interested. The convergence results for them can be easily proven in

a similar way.

2.4 Finding 2-saddles with Virtual Surfaces

Let P (t, s1, s2) be a t-parametrized family of smooth 2D-surfaces in variables s1, s2

connecting ur, upt , us where ur, upt are the same as before and us is a previously found

proper 1-saddle of J but it is not a local maximum of J on P (t, s1, s2). Such a structure

is necessary for a 2-saddle to exist and to be numerically computable. We may assume

P (t, 0, 0) = ur, P (t, 1, 0) = upt , P (t, 0, 1) = us. Denote s = (s1, s2) and P (t, s(t)) =

P (t, s1(t), s2(t)) where s(t) = (s1(t), s2(t)) is a local maximum point of J on the surface

P (t, s) closest to us. By the chain rule, we have

J ′(P (t, s1(t), s2(t)))P ′s1(t, s(t)) = 0, J ′(P (t, s1(t), s2(t)))P ′s2(t, s(t)) = 0. (2.10)

Let Ht be the normal space of the surface P (t, s) at P (t, s(t)), i.e., Ht = {v ∈ H :

v⊥P ′s1(t, s(t)), v⊥P
′
s2

(t, s(t))}. Since P ′t(t, s(t)) is the direction of this t-parametrized

family of surfaces moving away locally from the point P (t, s(t)) and we want this evolu-

tion to be nonsliding and also to follow a negative gradient flow, we choose P ′t(t, s(t)) =

−J ′(P (t, s(t)))/Ct ∈ Ht. Thus we propose the following 2-saddle search system

J ′(P (t, s(t)))P ′s1(t, s(t)) = 0, J ′(P (t, s(t)))P ′s2(t, s(t)) = 0, (2.11)

P ′t(t, s(t)) = −J ′(P (t, s(t)))/Ct (2.12)
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starting from an initial point P (0, s(0)) on an initial surface P (0, s). Again the sys-

tem (2.12)-(2.12) is not a system of surfaces P (t, s) but a system of points P (t, s(t)).

There are infinitely many surfaces satisfying the system and we do not have to know their

expressions. For this reason, we call those surfaces virtual. We denote P ′s(t, s(t)) =

(P ′s1(t, s(t)), P
′
s2

(t, s(t))) and assume s(t) to be locally Lipschitz continuous in t, since

for each t ≥ 0, the equations in (2.11) can be used to solve for s(t). By the implicit

function theorem, conditions can always be proposed so that s(t) is locally C1.

We give a similar result of stepsize rule and minimax characterization in the following

but omit the proofs of them which can be proven in the same way as the ones for Lemma

2.1.1 and Theorem 2.1.2.

Lemma 2.4.1. (Stepsize Rule) If P (t0, s(t0)) is not a critical point of J , then there exists

s0 > 0 s.t. when 0 < t′ < s0, we have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 .

Furthermore, if P (tk, s(tk))→ P (t0, s(t0)), then there exists s0 > 0 and N > 0 s.t. when

0 < t′ < s0, k > N , we have the uniform stepsize rule

J(P (tk + t′, s(tk + t′k)))− J(P (tk, s(tk))) <
−t′

4
‖J ′(P (tk, s(tk)))‖2/Ctk .

Proof. Similar to that of Lemma 2.1.1.

Theorem 2.4.2. (Index-2 Saddle Characterization). Let t0 = arg loc-min
t≥0

J(P (t, s(t))).

Then P (t0, s(t0)) is a saddle point.

Proof. By Lemma 2.4.1 and follow a proof similar to that of Theorem 2.1.2.

A convergence result similar to Theorem 2.3.1 can be proven.
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LMM for finding 2-saddles. Let us be a previously found 1-saddle, following the

algorithm described in Section 2.2: In Step 1, let P (0, s) where s = (s1, s2), be a preferred

initial smooth surface s.t. P (0, (0, 0)) = ur, P (0, (0, 1)) = up0 , P (0, (1, 0)) = us. Find

a local maximum P (0, s(0)) of J on P (t, s) closest to us; In Step 3, u(t′) is the same.

Instead of using ur, uk(t′) and upk,t′ to construct a new preferred smooth curve, this time

we use ur, us, uk(t′) and upk,t′ to construct a new preferred surface. Then use s(tk) as an

initial guess to solve for s(tk + t′)..... Other parts in LMM remain the same.

LMM can be further modified to find higher index saddles in a similar way if needed.

2.5 Numerical Implementation

Since those geometric objects are virtual, there are infinitely many ways to implement

the new LMM.

2.5.1 Using lines and planes for M-type problems

For the M-type functional (1.7) with λ < λ1, there is only one local minimum at

ur = 0 with J(0) = 0. However due to its M-type structure lims→∞ J(sut) = −∞

along each direction ut, we always have J(stut) < J(0) = 0 when st > 0 is large. So

to find a 1-saddle, instead of using upt = stut, we can use a straight line P (t, s) = sut

where ‖P ′s(t, s(t))‖ = ‖ut‖ = 1 is bounded and find the first local maximum s(t) >

0 of J(sut) in s. Once a 1-saddle us is found, to find a 2-saddle, for each direction

ut⊥us, we can use the three points ur, us and ut to construct a plane P (t, s1, s2) where

‖P ′s(t, s(t))‖2 = ‖(P ′s1(t, s(t)), P
′
s2

(t, s(t)))‖2 = ‖us‖2 + ‖ut‖2 = ‖us‖2 + 1 is bounded,

and find a local maximum of J on this plane closest to us. Due to the M-type structure, a

point upt = stut on the plane P (t, s1, s2) with J(upt) < J(ur) can always be easily found.

But such an information is already contained in the plane P (t, s1, s2) on which we find a

local maximum closest to us. Such a strategy using straight lines and planes, etc., leads

to the local minimax method successfully developed for finding saddles of many M-type
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problems [13, 23, 24]. Also since the term P ′s(t, s(t)) is always bounded in this case, the

convergence result Theorem 2.3.1 can be applied.

2.5.2 Using quadratic curves or surfaces

2.5.2.1 Using quadratic curves for 1-saddles

To use quadratic curves for finding 1-saddles, in Step 3 of the algorithm, we let

L(tk, t
′, x, y) = ur + x(uk(t

′)− ur) + y(upk,t′ − ur) (2.13)

be an xy-plane passing through the points ur, uk(t′), upk,t′ and then let x = c1(s), y = c2(s)

be the parametrized equations of a quadratic curve in the xy-plane s.t. (c1(0), c2(0)) =

(0, 0), (c1(1), c2(1)) = (0, 1) and (c1(s), c2(s)) = (1, 0) for some 0 ≤ s ≤ 1. There are

many ways to do so, e.g., in our numerical computation, we take

(x− 1

2
)2 + (y − 1

2
)2 =

1

2
, (2.14)

which leads to

c1(s) =
1√
2

cos(
3π

4
(2s− 1)) +

1

2
, c2(s) =

1√
2

sin(
3π

4
(2s− 1)) +

1

2
(2.15)

and we obtain an explicit expression for the curve

P (tk + t′, s) = ur + c1(s)(uk(t
′)− ur) + c2(s)(upk,t′ − ur). (2.16)

Thus the term P ′s(tk + t′, s) = c′1(s)(uk(t
′) − ur) + c′2(s)(upk,t′ − ur) is bounded if the

two terms uk(t′), upk,t′ are bounded. The term upk,t′ can be selected bounded while the

term uk(t
′) = P (tk, s(tk)) − t′dk/Ck, where t′dk/Ck is always bounded. Thus the term
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P ′s(t, s(t)) is bounded if and only P (tk, s(tk)) is bounded. By LMM, we have the prop-

erty J(ur) < J(P (tk, s(tk))) < J(P (t0, s(t0))) which for many problems implies that

P (tk, s(tk)) is bounded, e.g., let J(u) = 1
2
‖u‖2

H1
0
− λ

2
‖u‖2

L2 + 1
p+1
‖u‖p+1

Lp+1 , (p > 1) be a

W-type functional. For ‖u‖H1
0

= 1 and −M = J(ur) < J(tu) < 0, t > 0, we have

λ

2
‖u‖2

L2 −Mt−2 <
1

2
+

tp−1

p+ 1
‖u‖p+1

Lp+1 <
λ

2
‖u‖2

L2 <
λ

2
λ−1

1 ,

where the last inequality is due to the Poincare inequality and λ1 is the minimal pos-

itive eigenvalue of −∆ in the space H1
0 (Ω). It implies that such t must be bounded

since ‖u‖L2 ≤ |Ω|
1
2
− 1
p+1‖u‖Lp+1 by the Hölder’s inequality. It is interesting to note that

(c1(0), c2(0)) = (0, 0), (c1(1
3
), c2(1

3
)) = (1, 0), (c1(1), c2(1)) = (0, 1), i.e., (2.15) re-

mains the same for different points ur, uk(t′), upk,t′ . A local maximum of the function

g(s) = J(P (tk + t′, s)) for 0 ≤ s ≤ 1 can be easily computed by many 1-D optimization

methods, e.g., in our numerical computation, it is done by calling the Matlab subroutine

"fminunc" with the initial guess s = 1
3
. To consistently trace the local maxima of such

g, we should always use the s-value s(tk) stored from the previous iteration as an initial

guess to find a local maximum of a new g.

2.5.2.2 Using quadratic surfaces for 2-saddles

To use quadratic surfaces for finding 2-saddles, in Step 3 of LMM, we let

L(tk, t
′, x, y, z) = ur + x(uk(t

′)− ur) + y(upk,t′ − ur) + z(us − ur) (2.17)

be a xyz-space passing through the points ur, uk(t′), upk,t′ , us and then let s = (s1, s2), x =

c1(s), y = c2(s), z = c3(s) be the parametrized equations of a quadratic surface in xyz-

space passing through the four points (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). There are
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many ways to do so, e.g., in our numerical computation, we take

(x− 1

2
)2 + (y − 1

2
)2 + (z − 1

2
)2 =

3

4
, (2.18)

which leads to spherical coordinates

c1(s) =
1

2
+

√
3

2
sin(s1) cos(s2), c2(s) =

1

2
+

√
3

2
sin(s1) sin(s2), c3(s) =

1

2
+

√
3

2
cos(s1)

(2.19)

passing through the four points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and we obtain an ex-

plicit expression for the surface

P (tk + t′, s) = ur + c1(s)(uk(t
′)− ur) + c2(s)(upk,t′ − ur) + c3(s)(us − ur). (2.20)

Note that (2.19) remains the same for different points ur, upk,t′ , uk(t
′), us. A local maxi-

mum of g(s) = J(P (tk + t′, s)) in s = (s1, s2) can be easily computed by many finite-

dimensional unconstrained optimization methods, e.g., in our numerical computation, it

is done by calling the Matlab subroutine "fminunc" with the initial guess s = (s1, s2) =

(cos−1(−
√

3
3

), −π
4

). To consistently trace local maxima of such g, we should always use the

s-value s(tk) saved from the previous iteration as an initial guess to find a local maximum

of a new g.

2.6 Numerical Examples

2.6.1 Tests on finite-dimensional benchmark problems

We now test LMM on some benchmark problems that are commonly used by finite-

dimensional algorithms in the literature.
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Example 2.6.1. Consider finding 1-saddles of a W-type function

J(x, y) = (1− x2 − y2)2 + y2/(x2 + y2), (2.21)

with two local minima ur = (−1, 0) and up = (1, 0), two 1-saddles (0, 1) and (0,−1),

and a local maximum (0, 0). We choose an initial guess (x0, y0) with −1 < x0 < 1 and

construct a quadratic curve P (0, s) connecting ur, (x0, y0), up. Since J is symmetric about

the y-axis, P (0, s(0)) = (0, y∗0) for some y∗0 . If y0 > 0 is selected, LMM finds the 1-saddle

(0, 1) and if y0 < 0 is selected, LMM yields another 1-saddle (0,−1). See Figure 2.2 and

Table 2.1, where and below NIt denotes the iteration number.

−2 −1 0 1 2
−2

−1

0

1

2

Figure 2.2: Contours of the function (2.21) with two local minima (�) at (−1, 0), (1, 0),
two 1-saddles (*) at (0,−1), (0, 1) and one local maximum (O) at (0, 0).

Example 2.6.2. Find 1-saddles of a W-type function with a triple-well potential function

J(x, y)=3e−x
2−(y− 1

3
)2− 3e−x

2−(y− 5
3

)2− 5e−(x−1)2−y2− 5e−(x+1)2−y2+ 0.2x4+ 0.2(y − 1

3
)4.

(2.22)
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NIt Saddle ‖J ′(·)‖
1 (1.2104e-07,0.718750000000) 1.389770507813
2 (8.101e-08,0.968750000000) 0.238403320313
3 (-2.603e-08,0.998550415039) 0.011571476313
4 (-2.603e-08,0.999996849578) 2.520325611e-05
5 (-2.603e-08,0.999999999985) 5.207054057e-09

Table 2.1: Numerical results on (2.21) by LMM in the nth iteration.

J has three minima at (1.048054984,−0.0420936582),

(−1.0480549862,−0.0420936637), (−6.0e-08, 1.5370819624), a local maximum at

(−4.94e-07, 0.5191867341), and three 1-saddles as shown in Figure 2.3 (left) and Ta-

ble 2.2.

Numerical Solution ‖J ′(·)‖ ε NIt

1-Saddle 1 (0.000000016,-0.315828508) 9.623269e-06 1e-05 36
1-Saddle 2 (0.617273601,1.1027353229) 9.555707e-06 1e-05 27
1-Saddle 3 (-0.6172852268,1.1027945717) 3.630596e-04 4e-04 18

Table 2.2: Numerical results of (2.22) by LMM with the stepsize s = 0.05.
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(b)

Figure 2.3: (left) Contours of the function (2.22) with three local minima (�), a local
maximum (+) and three 1-saddles (∗) and (right) contours of the Muller potential (2.23)
with three local minima A, B, C and two 1-saddles SP1 and SP2.

Example 2.6.3. We compute 1-saddles of the Muller function

J(x, y) =
4∑
i=1

Kie
[ai(x−x0i )2+bi(x−x0i )(y−y0i )+ci(y−y0i )2] (2.23)

where the vectors K = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), y0 = (0, 0.5, 1.5, 1).

Three local minima A = (−0.55822363677964, 1.44172582715450),

B = (0.62349936799644, 0.02803774112374),

C = (−0.05001028122511, 0.46669409222955) are found by the Matlab subroutine "fmi-

nunc" and then two 1-saddles SP1 = (0.212486571139517, 0.292988327843969) and

SP2 = (−0.822001541054890, 0.624312898567439) are found by LMM in 12 and 432

iterations, respectively, with ‖J ′(·)‖ < 10−4 as shown in Figure 2.3 (right).

Remark 2.6.1. In our numerical computation, if ur = B and up = C are used, LMM

produces the 1-saddle SP1; if ur = A and up = C are assigned, then LMM yields the

1-saddle SP2. However, if we set ur = A and up = B, LMM may find the 1-saddle
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SP1 or SP2 depending on the initial guess selected. By comparison, it is much harder to

find 1-saddles of the Muller function than other benchmark problems. Except the rough

solutions in [25], we have not seen any more precise results in the literature.

Example 2.6.4. As the last benchmark test, we consider finding 1-saddles and 2-saddles

of a 3D M-type function for given r 6= 0,

J(x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3 − r2(x2

1 + x2
2 + x2

3 − 1)2. (2.24)

By a direct computation, J has a local minimum at A = (0, 0, 0), two local maxima at

B = (0, 0, ( 3
2r2

+ 1)1/2), C = (0, 0,−( 3
2r2

+ 1)1/2), two 1-saddles at (±( 1
2r2

+ 1)1/2, 0, 0),

and two 2-saddles at (0,±( 1
r2

+ 1)1/2, 0). Let r2 = 0.5. We take ur = (0, 0, 0), up =

(±3, 0, 0) since J(0, 0, 0) = −0.5 > J(±3, 0, 0) = −23.

Finding 1-saddles: Let v0 be an initial point and P (0, s(0)) be the local maximum of J

along an initial curve P (0, s) connecting ur, v0, up. If we take the advantage of knowing

the local maxima at B = (0, 0, 2), C = (0, 0,−2), and directly set v0 = P (0, s(0)) = B

or C, then LMM will be stuck at B or C. Thus we follow Remark 2.2.1 (2) and use the

eigenvector corresponding to the second eigenvalue of J ′′(B) or J ′′(C) to stay away from

B or C. LMM will continue and find two 1-saddles us11 , us21 shown in Table 2.3.

Finding 2-saddles: Once 1-saddles us11 , us21 are found, we process to find 2-saddles. Let us

be one of the 1-saddles. Choose an initial guess v0 and construct an initial surface P (t, s)

connecting ur, up, us, v0. Again we may take the advantage of knowing the local maxima

at B = (0, 0, ( 3
2r2

+ 1)1/2), C = (0, 0,−( 3
2r2

+ 1)1/2) and directly set P (0, s(0)) = B or

C. Then LMM will be stuck at B or C. Thus we follow Remark 2.2.1 (2) and use the

eigenvector corresponding to the third eigenvalue of J ′′(B) or J ′′(C) to stay away from B

or C. LMM will continue and find two 2-saddles us12 , us22 shown in Table 2.3.

In all the above numerical examples, if LMM with ε = 10−4 is followed by a Newton
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Numerical Solution ‖J ′(·)‖ NIt

1-Saddle 1 (1.41421356,0,-0.000000146) 5.84614e-07 18
1-Saddle 2 (-1.41421356,0,-0.000000172) 6.90673e-07 21
2-Saddle 1 (0.0000000076,1.73205081,0) 1.19898e-07 6
2-Saddle 2 (0.0000000076,-1.73205081,0) 1.19898e-07 6

Table 2.3: Numerical data of saddles of (2.24) by LMM with ε = 10−6.

method for one iteration, we will get ‖J ′(·)‖ < 10−8.

2.6.2 Solving infinite-dimensional W/M-type problems

When we solve the model problem (1.6), the steps are the same as those in the algo-

rithm description except a significant difference in evaluating the gradient ∇J(·). If H

is finite-dimensional, e.g., H = Rn, we simply take a partial derivative with respect to

each variable of J to get ∇J(x) = J ′(x) = (J ′x1(x), ..., J ′xn(x)) ∈ Rn. However, if H is

infinite-dimensional, e.g., H = W 1,2(Ω), since J : W 1,2
0 (Ω)→ R,

J ′(u) = −∆u(x)− λu(x) + κ|x|r|u(x)|p−1u(x) ∈ W−1,2(Ω).

It cannot be used as a search direction in W 1,2(Ω). Thus we use the Riesz representation

theorem to find its canonical dual d = ∇J(u) ∈ W 1,2
0 (Ω) of J ′(u) by solving

−∆d(x) + d(x) = J ′(u), (2.25)

a linear elliptic PDE. It can be solved by many numerical solvers, such as using a finite-

difference method (FDM), a finite-element method (FEM) or a boundary element method

(BEM), etc. Since the main effort in this research is to develop a new algorithm, its mathe-

matical justification and implementation in an infinite-dimensional space, when numerical

solvers are available for solving a linear sub-problem, we simply apply those solvers hand-
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ily available without deliberating their CPU time or other computation cost here. In the

following examples, we choose p = 3 and Ω = (−1, 1)2 wherein 82944 triangle elements

are generated by the Matlab subroutine "initmesh" and (2.25) is solved by calling the Mat-

lab subroutine "assempde". However, in order to clearly see the mesh grids and contours

of a solution in one figure, a coarse mesh is used to redraw the profile and its contours.

If interested, one may also zoom-in the upper portion of each figure below to find more

numerical data on each solution.

In our numerical computation, we can also use the Newton’s method to accelerate the

local convergence if needed [26], so we can first use LMM until ε < 10−2, then follow it

by the Newton’s method. The reason we use LMM to decrease the error to a low level is

that the Newton’s method strongly relies on the initial guess even though the convergence

is very fast. Actually the Newton’s method does not assume any variational structure [27]

and it can not recognize the order of saddles. When the initial guess is not sufficiently

close to the target solution, the Newton’s method could fail to converge and is likely to

produce an unexpected solution. In addition, the invariance of the Newton’s method to

symmetry is insensitive to numerical errors [21, 26]. Thus we first use LMM to get closer

to the target solution slowly, once the error is fairly small, we stop the LMM and switch

to the Newton’s method in order to speed up the convergence. In this way, we could find

the target critical point with high accuracy (error is usually less than 10−6). Further details

related to symmetry invariance and some expressive numerical examples of the Newton’s

method can be found in [28].

When an initial direction v0 is selected, we use an initial guess u0 = sv0 where the

scalar s is chosen so that 〈J ′(sv0), v0〉 = 0 or otherwise as indicated.

For the W-type problem.We assume 0 < λk < λ < λk+1, then 0 is a k-saddle of J and all

other saddles u∗ will have J(u∗) < J(0) = 0. In the first place, we use a negative gradient

method to find a local minimum ur where the initial guess is the first eigenfunction e1 of
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−∆. Computing the eigenfunctions of −∆ can be easily done by hand when the domain

is a square/disk or by a numerical solver otherwise. Since the following implementations

are conducted on the square Ω = (−1, 1)2, we simply present the detailed computation

of eigenfunctions in the end of this section. When the domain is symmetric about the

origin, the problem is even-symmetric. Thus we simply take up = −ur, another local

minimum. Then the first step of our algorithm leads to u0 = P (0, s(0)) a saddle. However,

J ′(u0) = 0 ⇒ d0 = ∇J(u0) = 0, so the algorithm gets stuck. Thus we follow Remark

2.2.1 (2) and check the eigenvalue of the linear operator J ′′(0) = (−∆ − λI). If J ′′(0)

has only one negative eigenvalue, i.e., λ1 < λ ≤ λ2, then 0 is a 1-saddle. The algorithm

terminates. Otherwise, i.e., λ > λ2, J ′′(0) has at least two negative eigenvalues and the

second one is doubled. The first one actually corresponds to the first eigenfunction e1 and it

is useless since it has the same direction as up−ur. To solve the two 1-saddles, we replace

d0, respectively, by the two linearly independent eigenfunctions e1
2 and e2

2 corresponding

to the second double eigenvalue λ2, which are orthogonal to the direction up−ur. Then we

obtain u0(t′) = −t′d0/Ck and construct the curve P (t′, s) connecting ur, up and u0(t′) and

the rest of the algorithm follows the steps stated in Section 2.2. In this way, the algorithm

produces two 1-saddles.

After we solve the two 1-saddles us1 and us2 , we can pick either of them, which is

denoted by us, to construct a new preferred surface to find the 2-saddle. For u0(t′), the

eigenfunction corresponding to the third eigenvalue of−∆ is used. The method of finding

a local maximum of J on P is similar to what we did in finding the 1-saddles.

Case 1. In (1.6), we set p = 3, κ = 1, λ = 20, r = 0, 1, 4 respectively, and the domain

Ω = (−1, 1)2. Since λ3 < λ < λ4, where λ3 = 2π2 and λ4 = 5
2
π2 are the 3rd and 4th

Dirichlet eigenvalue in H1
0 (Ω),we only have saddles with MI < 3. A local minimum, two

1-saddles and a 2-saddle are found and shown in Table 2.4 and Figure 2.4.

Case 2. In (1.6), we set p = 3, κ = 1, λ(x) = 20e|x|
2

, r = 0, 1, 4 respectively, and the
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domain Ω = (−1, 1)2. A local minimum, two 1-saddles and a 2-saddle are found and

shown in Table 2.5 and Figure 2.5.

Remark 2.6.2. We consider the eigenfunctions of −∆ in the space H = H1
0 (Ω) where

Ω = (−1, 1)2, so the equation we are going to solve is a homogeneous Helmholtz Equa-

tion:

∆v + λv = 0 (2.26)

in H1
0 (Ω).

Separation of variables yields us the eigenfunctions:

emn(x, y) = sin

(
mπ(x+ 1)

2

)
sin

(
nπ(y + 1)

2

)
for m,n ∈ N+, (2.27)

which have the corresponding eigenvalues

λmn =
(mπ

2

)2

+
(nπ

2

)2

for m,n ∈ N+, (2.28)

where N+ is the set of positive integers. Note thatm and n can be any integers theoretically

but we could only get 0 if at least one of m and n is zero and negative m or n will just

produce the eigenfunctions with the same or the opposite sign as the sine function is an

odd function.

In the implementation, we firstly let m = n = 1 and obtain the first eigenfunction

e1 = e11 = sin
(
π(x+1)

2

)
sin
(
π(y+1)

2

)
and the first eigenvalue λ1 = π2

2
. We set the initial

guess to be e1 in the negative gradient method in order to find the local minimum in

the W-type problems. Then we let m = 2, n = 1 to get one of the eigenfunctions e1
2

corresponding to the second eigenvalue λ2 = 5
4
π2. Another eigenfunction of λ2 can be

easily obtained if we let m = 1, n = 2, but it makes no difference since this eigenfunction

is just a rotation of e1
2 on a square domain. In the numerical implementation, we can obtain
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a new eigenfunction e2
2 = e21 + e12 of λ2, and e2

2 has a different geometric symmetry with

e1
2 and is also orthogonal to e1. Using e1

2 and e2
2 respectively, we can solve two 1-saddles in

the W-type problems. If we continue to solve the saddles with higher MI, the initial guess

u0(t′) could be e22, e31 or other eigenfunctions defined in (2.27) with increased m and n.

LMM Newton (‖d‖ <1e-6) Refer
r ‖d‖ ε ‖J ′(·)‖∞ J NIt ‖J ′(·)‖∞ NIt Fig. 2.4

A 0-saddle 0 2.9211e-4 3e-4 0.0010 -125.7119 39 1.7290e-6 6 (a)
1-saddle 1 0 4.9457e-4 5e-4 0.0055 -28.5317 22 4.8296e-6 7 (b)
1-saddle 2 0 8.7338e-4 1e-3 0.0111 -24.3412 24 9.7744e-6 7 (c)
A 2-saddle 0 1.6851e-4 2e-4 0.0018 -0.0303 8 4.3677e-6 6 (d)
A 0-saddle 1 4.6356e-4 5e-4 0.0079 -295.4949 24 6.9170e-6 7 (e)
1-saddle 1 1 1.7927e-4 2e-4 0.0024 -48.7268 25 5.7109e-6 6 (f)
1-saddle 2 1 3.6374e-4 4e-4 0.0032 -41.9067 26 7.8076e-6 6 (g)
A 2-saddle 1 2.5209e-4 3e-4 0.0024 -0.0420 9 5.7883e-6 6 (h)
A 0-saddle 4 0.0010 2e-3 0.0286 -4016.9 175 2.2333e-5 8 (i)
1-saddle 1 4 8.0420e-4 9e-4 0.0115 -203.9178 41 1.0105e-5 7 (j)
1-saddle 2 4 6.5449e-4 7e-4 0.0064 -180.1026 58 5.6744e-6 7 (k)
A 2-saddle 4 6.7800e-4 7e-4 0.0048 -0.0904 12 4.2186e-6 7 (l)

Table 2.4: Numerical data of Case 1 using quadratic curves/surfaces.
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(a)J= −125.71, ‖u‖∞=4.40

at (−0.0005,−0.0032), r=0

(b) J=−28.533, ‖u‖∞=3.44

at (−0.5002,−0.0023), r = 0

(c)J=−24.343, ‖u‖∞ = 3.51

at (−0.3897,−0.3953), r = 0

(d)J=−0.0303, ‖u‖∞ = 0.68

at (0.4978, 0.5000), r = 0

(e)J=−295.49, ‖u‖∞ = 9.60

at (−0.0005,−0.0032), r = 1

(f)J=−48.728, ‖u‖∞ = 4.72

at (−0.4541,−0.0038), r = 1

(g)J=−41.908, ‖u‖∞ = 4.72

at (0.3403, 0.3443), r = 1

(h)J=−0.0420, ‖u‖∞ = 0.80

at (0.4978, 0.5000), r = 1

(i)J=−4016.9, ‖u‖∞ = 61.3

at (−0.0000,−0.0000), r = 4

(j)J=−203.94, ‖u‖∞= 11.5

at (0.4077,−0.0025), r = 4

(k)J=−180.13, ‖u‖∞=11.4

at (0.2938, 0.2905), r = 4

(l)J=−0.0914, ‖u‖∞=1.18

at (−0.4955,−0.4955), r = 4

Figure 2.4: Saddles of (1.7) in W-type Case 1 presented in Table 2.4.
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LMM Newton (‖d‖ <1e-6) Refer
r ‖d‖ ε ‖J ′(·)‖∞ J NIt ‖J ′(·)‖∞ NIt Fig. 2.5

A 0-saddle 0 7.9501e-5 8e-5 0.0042 -505.8232 91 4.5026e-5 5 (a)
1-saddle 1 0 3.9487e-4 4e-4 0.0176 -318.1268 73 4.2338e-5 6 (b)
1-saddle 2 0 0.0662 7e-2 0.9063 -230.4368 59 7.5605e-6 12 (c)
A 2-saddle 0 0.0225 3e-2 0.6271 -198.2357 67 9.2134e-6 10 (d)
A 0-saddle 1 2.4181e-4 3e-4 0.0114 -847.5466 75 2.7377e-5 6 (e)
1-saddle 1 1 7.3727e-4 8e-4 0.0379 -432.6320 65 3.3335e-5 7 (f)
1-saddle 2 1 0.0618 7e-2 0.8864 -329.5703 56 1.9102e-5 11 (g)
A 2-saddle 1 0.0384 4e-2 0.5264 -238.7583 58 5.3654e-6 10 (h)
A 0-saddle 4 0.0019 2e-3 0.0521 -6753.9 180 1.6776e-5 8 (i)
1-saddle 1 4 0.0579 6e-2 0.7365 -1219.4 63 1.1637e-5 11 (j)
1-saddle 2 4 0.0187 2e-2 0.2899 -1051.9 71 1.2514e-5 10 (k)
A 2-saddle 4 0.0763 8e-2 1.2755 -421.113 52 5.3671e-5 13 (l)

Table 2.5: Numerical data of Case 2 using quadratic curves/surfaces.

(a)J=−505.82, ‖u‖∞=5.93

at (−0.6455,−0.6462), r = 0

(b)J=−318.13, ‖u‖∞=5.84

at (−0.6590,−0.6473), r = 0

(c)J=−230.44, ‖u‖∞ = 5.91

at (0.6486, 0.6479), r = 0

(d)J=−198.25, ‖u‖∞=5.74

at (−0.6654,−0.6604), r = 0

(e)J=−847.55, ‖u‖∞=10.27

at (−0.0005,−0.0032), r = 1

(f)J=−432.63, ‖u‖∞=6.45

at (−0.5035, 0.0038), r = 1

(g)J=−329.58, ‖u‖∞=6.60

at (−0.4226,−0.4269), r = 1

(h)J=−238.77, ‖u‖∞=6.12

at (−0.6091,−0.6119), r = 1

(i)J=−6754.0, ‖u‖∞=67.12

at (−0.0005,−0.0032), r = 4

(j)J=−1219.4, ‖u‖∞=16.77

at (−0.3897, 0.0019), r = 4

(k)J=−1051.9, ‖u‖∞=16.73

at (−0.2785,−0.2755), r = 4

(l)J=−421.12, ‖u‖∞=9.10

at (−0.4617,−0.4583), r = 4

Figure 2.5: Saddles of (1.7) in W-type Case 2 presented in Table 2.5.
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For the M-type problem. We set κ = −1 and λ < λ1 in model problem (1.6), then it

is obvious that ur = 0 is the only local minimum and upt can be easily selected as (1) a

moving point along each direction with J(upt) < J(0) = 0, or (2) a fixed point up with

J(up) < J(0) = 0, or (3) mixing (1) and (2), i.e., in LMM, we fix upt for several steps

and then change it for the next several steps. For (1), the first few saddles can be found by

using lines and planes, etc. as described in Section 2.5.1. While for (3), we present here

numerical 1-saddles and 2-saddles found surprisingly by LMM using quadratic curves

and surfaces as described in Section 2.5.2. First an initial guess u0 ∈ H1
0 (Ω) can be easily

selected by solving

−∆u0(x) = c(x), (2.29)

where c(x) = −1, 0, 1, respectively, are used to control the concavity of u0 at x and

consequently its peak(s) or symmetry. For example, in Case 3 and Case 4, we only need

one peak location (x̃1, x̃2) when searching for the 1-saddle. Thus we set c(x1, x2) = −1 if

|(x1, x2)−(x̃1, x̃2)| ≤ rpeak and c(x1, x2) = 0 otherwise, where rpeak is used to control the

shape of the peak. The peak looks flat when rpeak is large and sharp when rpeak is small.

Then we set up = t0u0 where t0 > 0 is selected s.t. J(up) < J(0) = 0. The initial curve

P (0, s) = ur + sup is actually a straight line and P (0, s(0)) = s0up where s0 > 0 can be

easily computed by 〈J ′(s0up), up〉 = 0.

Once a 1-saddle us is found, to find a 2-saddle, we need a direction u0 ⊥ us. This

can be obtained by solving (2.29) and following a normalization. For Case 3 and Case

4 below, we should control the right-hand side c(x) of (2.29) and generate the initial

guess u0 with two peak locations (x̃1, x̃2) and (x̃′1 x̃′2). Thus we set c(x1, x2) = −1 if

|(x1, x2)−(x̃1, x̃2)| ≤ rpeak, c(x1, x2) = 1 if |(x1, x2)−(x̃′1 x̃′2)| ≤ rpeak and c(x1, x2) = 0

otherwise.

Note that the term |x|r plays a significant role in the property of the solution and r is
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usually called a bifurcation parameter. In detail, when r is not greater than certain value,

the ground state solution is positive, symmetric and has one peak centered at the origin.

Bifurcation occurs when r goes beyond certain value. Then the ground state solution

bifurcates to multiple asymmetric positive solutions and the peak moves further away from

the origin as r increases if λ is a constant. When λ is not a constant, such as λ(x) = −e|x|2

in Case 4, we can observe a combined effect of λ and r on the symmetry and shape of

the solution. For the reason above, the peak location of the initial guess will be chosen

depending on λ and r, e.g., when we find 1-saddles in the implementation, the single peak

of the initial guess is placed further away from the origin as r increases. The detailed

setting will be presented in Remark 2.6.3 when we do the implementation.

Case 3. In (1.6), we set p = 3, κ = −1, λ = −1, r = 0, 1, 4 respectively, and the domain

Ω = (−1, 1)2. We could use lines and planes as in the original LMM [14]. Here we use the

new LMM using quadratic curves and surfaces. A 1-saddle and two 2-saddles are found

by LMM and shown in Table 2.6 and Figure 2.6.

Case 4. In (1.6), we set p = 3, κ = −1, λ = −e|x|2 , r = 0, 1, 4 respectively, and the

domain Ω = (−1, 1)2. A 1-saddle and two 2-saddles are found by LMM and shown in

Table 2.7 and Figure 2.7.

Remark 2.6.3. To solve the problem, we firstly need an initial guess. Since the initial

guess depends on the peak location(s) and rpeak, it is necessary to choose them appropri-

ately in order to make the search faster and more accurately.

For finding 1-saddles in Case 3 and Case 4, when r = 0, there is no bifurcation, so

we set (x̃1, x̃2) = (0, 0). It is known that the bifurcation takes place when r > 0.5.

The peak needs to be placed further away from the origin as r increases. Thus we set

(x̃1, x̃2) = (0.4, 0.4) for r = 1 and (x̃1, x̃2) = (0.7, 0.7) for r = 4 respectively. Since

2-saddle 1 is expected to be odd symmetric to the line y = −x, we need one positive
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peak and one negative peak. The initial guess should possess the same symmetry and

the two peaks of it will be further away from the origin as r increases. For r = 0, we

could set (x̃1, x̃2) = (0.4, 0.4) and (x̃′1 x̃′2) = (−0.4,−0.4). If r = 1, we could set

(x̃1, x̃2) = (0.5, 0.5) and (x̃′1 x̃′2) = (−0.5,−0.5). When r increases to 4 we could move

the centers of the two peaks to (0.7, 0.7) and (−0.7,−0.7) respectively. For the second 2-

saddle, which is expected to be odd symmetric to the y-axis (it can also be odd symmetric

to x-axis but the result would be equivalent due to symmetry of the space as we discussed),

we need an initial guess with one positive peak and one negative peak which possesses the

same symmetry. For r = 0, there is no bifurcation, we let the two peaks stay on the x-axis

such that the initial guess is also even symmetric to the x-axis, so (x̃1, x̃2) = (0.4, 0) and

(x̃′1 x̃′2) = (−0.4, 0). For r = 1 or r = 4, the bifurcation occurs, so we move the peaks

near the corner but still guarantee the initial guess possesses the odd symmetry about the

y-axis. Thus we set (x̃1, x̃2) = (0.5, 0.5) and (x̃′1 x̃′2) = (−0.5, 0.5) for r = 1, and

(x̃1, x̃2) = (0.7, 0.7) and (x̃′1 x̃′2) = (−0.7, 0.7) for r = 4.

In terms of rpeak, we expect the peaks of the solutions in Case 4 would be less flatter,

so we set it to be 0.3 and 0.1 for Case 3 and Case 4 respectively.

LMM Newton (‖d‖ <1e-6) Refer
r ‖d‖ ε ‖J ′(·)‖∞ J NIt ‖J ′(·)‖∞ NIt Fig. 2.6

A 1-Saddle 0 9.7252e-6 1e-5 1.0660e-4 13.2090 93 3.5382e-9 1 (a)
2-Saddle 1 0 9.8132e-6 1e-5 2.0675e-4 56.1941 193 8.4482e-9 1 (b)
2-Saddle 2 0 0.0048 5e-3 0.0895 61.3218 89 9.1912e-8 2 (c)
A 1-Saddle 1 9.7564e-7 1e-6 3.3929e-5 36.0202 123 0 (d)
2-Saddle 1 1 9.7928e-6 1e-5 2.7780e-4 88.2231 137 1.5337e-9 1 (e)
2-Saddle 2 1 9.7972e-6 1e-5 2.9769e-4 97.8379 238 1.9698e-8 1 (f)
A 1-Saddle 4 5.7653e-6 6e-6 5.7845e-4 68.6985 103 1.9634e-9 1 (g)
2-Saddle 1 4 9.8790e-6 1e-5 7.1571e-4 139.9717 107 6.3743e-9 1 (h)
2-Saddle 2 4 1.9687e-5 2e-5 0.0011 142.8282 137 3.3462e-8 1 (i)

Table 2.6: Numerical data of Case 3 using quadratic curves/surfaces.
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(a) J = 13.209, ‖u‖∞ = 3.72

at (−0.0005,−0.0032),r = 0

(b) J = 56.194, ‖u‖∞ = 5.57

at (0.3972, 0.3990),r = 0

(c) J = 61.322, ‖u‖∞ = 5.76

at (0.5003, 0.0031),r = 0

(d) J = 36.020, ‖u‖∞ = 6.20

at (0.3972, 0.3990),r = 1

(e) J = 88.224, ‖u‖∞ = 7.00

at (−0.4964,−0.5015),r = 1

(f) J = 97.838, ‖u‖∞ = 7.37

at (−0.5626, 0.4793),r = 1

(g) J = 68.699, ‖u‖∞ = 8.81

at (0.6835, 0.6838),r = 4

(h) J = 139.97, ‖u‖∞ = 8.91

at (−0.6958− 0.6921),r = 4

(i) J = 142.83, ‖u‖∞ = 9.00

at (0.7064, 0.6983),r = 4

Figure 2.6: Saddles of (1.7) in M-type Case 3 presented in Table 2.6.

LMM Newton (‖d‖ <1e-6) Refer
r ‖d‖ ε ‖J ′(·)‖∞ J NIt ‖J ′(·)‖∞ NIt Fig. 2.7

A 1-Saddle 0 1.8566e-5 2e-5 2.1878e-4 14.1291 87 1.2554e-8 1 (a)
2-Saddle 1 0 9.6554e-6 1e-5 2.1932e-4 60.0645 286 4.8347e-6 1 (b)
2-Saddle 2 0 0.0021 3e-3 0.0363 64.6885 116 1.2222e-5 8 (c)
A 1-Saddle 1 1.9405e-5 2e-5 4.9654e-4 39.4887 149 1.2125e-8 1 (d)
2-Saddle 1 1 5.6344e-5 6e-5 8.7060e-4 96.0489 143 2.0887e-5 5 (e)
2-Saddle 2 1 4.9929e-5 5e-5 7.4802e-4 106.097 256 1.3427e-5 5 (f)
A 1-Saddle 4 9.3046e-6 1e-5 9.6464e-4 75.577 129 9.0770e-9 1 (g)
2-Saddle 1 4 9.6804e-5 1e-4 0.0096 153.4179 203 6.3072e-5 5 (h)
2-Saddle 2 4 4.7882e-5 5e-5 0.0033 156.0568 271 5.9592e-5 4 (i)

Table 2.7: Numerical data of Case 4 using quadratic curves/surfaces.
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(a) J = 14.129, ‖u‖∞ = 3.85

at (−0.0005,−0.0032),r = 0

(b) J = 60.065, ‖u‖∞ = 5.72

at (0.3869, 0.3870),r = 0

(c) J = 64.689, ‖u‖∞ = 5.90

at (0.4928, 0.0017),r = 0

(d) J = 39.489, ‖u‖∞ = 6.43

at (0.3869, 0.3870),r = 1

(e) J = 96.050, ‖u‖∞ = 7.22

at (0.4929, 0.4883),r = 1

(f) J = 106.10, ‖u‖∞ = 7.59

at (−0.5562, 0.4634),r = 1

(g) J = 75.577, ‖u‖∞ = 9.12

at (0.6949, 0.6911),r = 4

(h) J = 153.42, ‖u‖∞ = 9.20

at (−0.6991,−0.6985),r = 4

(i) J = 156.057, ‖u‖∞ = 9.29

at (−0.7057, 0.7040),r = 4

Figure 2.7: Saddles of (1.7) in M-type Case 4 presented in Table 2.7.
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3. FINDING SADDLES WITH THE NEHARI MANIFOLD

3.1 Abstract Setting of the Nehari Manifold

Let us list some assumptions of λ in the main problem (1.3). For M-type problems, we

assume λ < λ1. Under this assumption, 0 is a local minimum and all the nontrivial saddles

have MI≥ 1. They are called definite problems in the literature. For W-type problems, we

assume λk < λ < λk+1, where we usually let k be at least greater than 3 in our numerical

examples since all the nontrivial saddles have MI < k and such a k will enable us to test

our algorithm for finding multiple solutions.

As we discussed in the last section, the geometric objects P (t, s) are virtual and we do

not have to know their expressions. This advantage gives us a great flexibility to choose

preferred geometric objects for different purposes. To further explore such an advantage,

let us observe the definitions of the quadratic curves (2.13)-(2.16) and quadratic surfaces

(2.17)-(2.20) closely, we can see that those geometric objects are defined by the inter-

sections of two types of geometric objects, where (2.13)/(2.17) defines a 2D-plane/3D-

space passing through certain required points, while (2.14)/(2.18) can be viewed as certain

constrained manifolds on which those points stay. Thus to find the point P (t, s(t)), it

is not necessary to find an explicit expression (2.15)/(2.19), we can simply do 2D/3D-

maximization on (2.13)/(2.17) subject to the constraint (2.14)/(2.18). It is quite natural to

think about if a special type of geometric objects can be used to speed up algorithm con-

vergence. Since all nonzero critical points are on the Nehari manifold N , it actually puts

no extra constraints to the problem, and we hope it helps us find the solutions faster. In

addition, the PS condition stated in Definition 2.3.1 is guaranteed on the Nehari manifold,

as we will discuss in Section 4. Thus we use N to replace (2.14)/(2.18) as an auxiliary

constraint to define geometric objects whose explicit expressions are not available.
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The definition of the Nehari manifold is motivated by the work of Zeev Nehari [29, 30]

N = {tvv : tv > 0, ‖v‖ = 1, 〈J ′ (tvv) , v〉 = 0}. (3.1)

For the main problem (1.3),

〈J ′ (tvv) , v〉 =

∫
Ω

[
tv |∇v(x)|2 − tvλv2(x) + κf(x, tvv)v(x)

]
dx, (3.2)

and for the model problem (1.6),

〈J ′ (tvv) , v〉 =

∫
Ω

[
tv |∇v(x)|2 − tvλv2(x) + κ |x|r tpv |v(x)|p+1] dx, (3.3)

where tv can actually be solved.

In the implementation, the Nehari manifold is defined in the following equivalent way:

N = {u ∈ H\{0} | 〈J ′ (u) , u〉 = 0}, (3.4)

where by the Green’s identity, we have

〈J ′ (u) , u〉 =

∫
Ω

[
|∇u(x)|2 − λu2(x) + κf(x, u)u(x)

]
dx

=

∫
Ω

[
−u(x)∆u(x)− λu2(x) + κf(x, u)u(x)

]
dx, (3.5)

and the expression in the last line above is used in our implementation. By doing so, we

can avoid computing∇u in the implementation.

For the model problem (1.6), we have

〈J ′ (u) , u〉 =

∫
Ω

[
−u(x)∆u(x)− λu2(x) + κ |x|r |u(x)|p+1] dx. (3.6)
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Then in Step 3 of the algorithm, we let

P (tk + t′, s) = L(tk, t
′, s) ∩N , (3.7)

where L(tk, t
′, s) is defined in (2.13)/(2.17) and can be easily expanded to form a (k+1)D-

space, whileN remains the same as in (3.4). A local maximum of J on P = L∩N can be

found by low-dimensional equality constrained optimization methods, such as the Matlab

subroutine "fmincon" in L subject to N . Other steps in the algorithm remain the same.

Thus a k-saddle can be found by this method. We can also easily extend this method for

finding saddles with higher MI since we do not need to acquire the complicated explicit

expression of P (t, s) and N does not change for computing different saddles.

3.2 Numerical Implementation and Examples

For the W-type problem. It is the same as in Section 2.6.2, except that we use the

constraint N to replace the equation (2.14)/(2.18) in Step 3 of the algorithm, i.e., we let

upk,t′ = up = −ur and

P (tk + t′, s) = L(tk, t
′, s1, s2) ∩N , (3.8)

be the implicit expression of the curve where

L(tk, t
′, s1, s2) = ur + s1(uk(t

′)− ur) + s2(upk,t′ − ur). (3.9)

A local maximum of J on P is found by the Matlab subroutine "fmincon" through min

−J on L over s = (s1, s2) subject to the constraintN . After we find the two 1-saddles us1
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and us2 , we can pick either one of them, denoted by us, to compute a 2-saddle, i.e., we let

P (tk + t′, s) = L(tk, t
′, s1, s2, s3) ∩N , (3.10)

be the implicit expression of the surface where

L(tk, t
′, s1, s2, s3) = ur + s1(uk(t

′)− ur) + s2(upk,t′ − ur) + s3(us − ur). (3.11)

A local maximum of J on P can be found by the Matlab subroutine "fmincon" through

min −J on L over s = (s1, s2, s3) subject to the constraint N . This method can be easily

extended to find saddles with higher MI if exist. We re-do the Cases 1 and 2 in this way and

document their numerical data in Tables 3.1 and 3.2 for computation speed comparison.

Note that we do not list the figures of solutions again here since they can be found through

the column "Refer" in Tables 3.1 and 3.2.

r ‖d‖ ε ‖J ′(·)‖∞ J NIt Refer
A Local Min 0 8.3234e-05 1e-4 1.5439e-03 -125.7122 13 Fig. 2.4(a)

1-saddle 1 0 0.0009 1e-3 0.0063 -28.5326 14 Fig. 2.4(b)
1-saddle 2 0 0.0019 2e-3 0.0162 -24.3429 14 Fig. 2.4(c)
2-saddle 0 8.0899e-05 1e-4 0.0011 -0.0303 6 Fig. 2.4(d)

A Local Min 1 3.8283e-04 4e-4 2.7002e-02 -295.4945 10 Fig. 2.4(e)
1-saddle 1 1 4.8885e-04 5e-4 3.7831e-03 -48.7282 12 Fig. 2.4(f)
1-saddle 2 1 3.1071e-04 4e-4 2.8164e-03 -41.9083 19 Fig. 2.4(g)
2-saddle 1 2.2167e-04 3e-4 2.0852e-03 -0.0420 9 Fig. 2.4(h)

A Local Min 4 7.2575e-04 1e-3 1.6138e-02 -4016.9000 19 Fig. 2.4(i)
1-saddle 1 4 6.0710e-04 8e-4 1.2526e-02 -203.9375 32 Fig. 2.4(j)
1-saddle 2 4 6.1039e-04 7e-4 1.1783e-02 -180.1284 35 Fig. 2.4(k)
2-saddle 4 3.6015e-04 5e-4 2.8650e-03 -0.0914 12 Fig. 2.4(l)

Table 3.1: Numerical data of Case 1 using geometric objects on N .
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r ‖d‖ ε ‖J ′(·)‖∞ J NIt Refer
A Local Min 0 0.0004 1e-3 0.0147 -505.8239 18 Fig. 2.5(a)

1-saddle 1 0 1.9806e-4 2e-4 0.0107 -318.1348 34 Fig. 2.5(b)
1-saddle 2 0 0.0031 5e-3 0.0647 -230.4429 41 Fig. 2.5(c)
2-saddle 0 0.0175 2e-2 0.2287 -198.2465 32 Fig. 2.5(d)

A Local Min 1 1.8581e-04 2e-4 1.0533e-02 -847.5476 25 Fig. 2.5(e)
1-saddle 1 1 4.4257e-04 5e-4 1.8674e-02 -432.6319 53 Fig. 2.5(f)
1-saddle 2 1 0.0083 1e-2 0.1218 -329.5795 44 Fig. 2.5(g)
2-saddle 1 0.0303 0.05 0.3451 -238.7703 32 Fig. 2.5(h)

A Local Min 4 0.0008 1e-3 0.0315 -6753.9851 26 Fig. 2.5(i)
1-saddle 1 4 0.0097 0.01 0.1252 -1219.4057 40 Fig. 2.5(j)
1-saddle 2 4 0.0536 0.06 1.4855 -1051.9000 56 Fig. 2.5(k)
2-saddle 4 0.0197 0.06 0.8036 -421.1175 20 Fig. 2.5(l)

Table 3.2: Numerical data of Case 2 using geometric objects on N .

For the M-type problem. Since 0 is the only local minimum of J but not on the Nehari

manifold N , it cannot be used. Thus this part is different from the corresponding part in

Section 2.6.2. A preprocessing is required to use the Nehari manifold N . We first use the

Matlab subroutine "fmincon" to minimize J subject to the constraint N to find a solution

ur which is actually a 1-saddle of J . By the symmetry of the problem, upk,t′ = up = −ur

is another 1-saddle of J or another local minimum of J on N .

To find a 2-saddle, an initial direction u0 is constructed as the same as in Section 2.6.2,

by solving (2.29). We use three point ur, up and u0 to construct an initial space

L(0, 0, s1, s2) = ur + s1(u0 − ur) + s2(up − ur),

which is obviously a 2D-space. Taking an intersection of this space and the Nehari man-

ifold will define the initial implicit curve, i.e., P (0, s) = L(0, 0, s1, s2) ∩ N . The Mat-

lab subroutine "fmincon" can be used to minimize −J on L over s = (s1, s2) subject

to the constraint defined in N so that the initial local maximum point P (0, s(0)) can be
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found. Then the LMM starts to run. The curve in Step 3 of our algorithm is defined by

P (tk + t′, s) = L(tk, t
′, s1, s2) ∩N , where the space

L(tk, t
′, s1, s2) = ur + s1(uk(t

′)− ur) + s2(up − ur).

Note that we have already preprocessed uk(t′) by multiplying it with a scalar such that

it is on N . Then the local maximum point uk+1 = P (tk+1, sk+1) can be computed by

the Matlab subroutine "fmincon" to minimize −J on L over s = (s1, s2) subject to the

constraint N . The rest parts of the algorithm are the same. Finally LMM can find two

2-saddles u2
s1

and u2
s2

, where the superscripts indicate the MI, with two different initial

guesses u0.

After we find two 2-saddles u2
s1

and u2
s2

, we can use one of them, denoted by u2
s, to

find a 3-saddle. The initial guess u0 is obtained in the same way as we did for finding

2-saddles, by solving (2.29). Then the four points ur, up, u2
s and u0 are used to construct

an initial 3D-space

L(0, 0, s1, s2, s3) = ur + s1(u0 − ur) + s2(up − ur) + s3(u2
s − ur),

and an initial curve P (0, s) = L(0, 0, s1, s2, s3) ∩ N . Then the initial maximum point

P (0, s(0)) can be found by the Matlab subroutine "fmincon" to minimize−J on the space

L over s = (s1, s2, s3) subject to the constraint N . Then LMM starts to run. In Step 3,

through the four points ur, up, us and uk(t′), we construct a 3D-space

L(tk, t
′, s1, s2, s3) = ur + s1(uk(t

′)− ur) + s2(up − ur) + s3(u2
s − ur)

where the point uk(t′) has been multiplied by a scalar so that it is on N and the sur-

face is implicitly defined by P (tk + t′, s) = L(tk, t
′, s1, s2, s3) ∩ N . The point uk+1 =
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P (tk+1, s(tk+1)) can be computed by the Matlab subroutine "fmincon" to minimize−J on

L over s = (s1, s2, s3) subject to the constraint N . Other steps are the same. The method

can be easily extended to find more saddles. It is significant to note that finding saddles

with high MI might be complicated. Some problems do not have 3-saddles or too difficult

to compute numerically, e.g. the 3-saddle with r = 1 in Case 3 and Case 4 below. For

finding a 4-saddle, we need 2 previous solutions chosen from 2-saddles and 3-saddles to

construct the space in our implementation. We do not have a general pattern of choos-

ing the previous solutions, so we can only use our experience and even do the numerical

experiment in a way of trial and error.

Note that u0 and uk(t
′) are preprocessed in each iteration by multiplying it with a

scalar because the geometric object is required to be onN so all the points connecting this

geometric object should also be on N , including u0 and uk(t′).

We re-do Cases 3 and 4, and document their numerical data in Tables 3.3 and 3.4 for

convergence speed comparison. It is obvious that the Nehari manifold is advantageous in

computation speed. Note that we only list figures of 3-saddles and 4-saddles in Figure 3.1

and 3.2 to show the method’s capability of computing saddles with higher MI, while the

figures of 1-saddles and 2-saddles can be found through the column "Refer" in Tables 3.3

and 3.4.

48



r ‖d‖ ε ‖J ′(·)‖∞ J NIt Refer
A 1-saddle 0 4.1321e-06 1e-5 1.4708e-04 13.2091 16 Fig. 2.6(a)
2-saddle 1 0 9.8800e-06 1e-5 2.0394e-04 56.1944 92 Fig. 2.6(b)
2-saddle 2 0 1.6885e-03 2e-3 5.4989e-02 61.3222 45 Fig. 2.6(c)
A 3-saddle 0 2.5059e-03 3e-3 1.4332e-01 189.3313 60 Fig. 3.1(j)
A 4-saddle 0 9.5865e-05 1e-4 2.2767e-03 165.5144 61 Fig. 3.1(l)
A 1-saddle 1 6.1166e-07 1e-6 4.9142e-04 36.0204 31 Fig. 2.6(d)
2-saddle 1 1 9.6298e-06 1e-5 2.9491e-04 88.2238 114 Fig. 2.6(e)
2-saddle 2 1 9.6702e-06 1e-5 2.6417e-04 97.8384 183 Fig. 2.6(f)
4-saddle 1 9.7850e-05 1e-4 2.8846e-03 218.6623 165 Fig. 3.1(m)

A 1-saddle 4 4.5127e-06 5e-6 4.5167e-04 68.6989 20 Fig. 2.6(g)
2-saddle 1 4 9.7707e-06 1e-5 6.3297e-04 139.9730 108 Fig. 2.6(h)
2-saddle 2 4 9.4499e-06 1e-5 7.9035e-04 142.8290 106 Fig. 2.6(i)
A 3-saddle 4 9.4652e-04 1e-3 5.0519e-02 207.8980 133 Fig. 3.1(k)
A 4-saddle 4 9.7361e-05 1e-4 5.1396e-03 291.0134 133 Fig. 3.1(n)

Table 3.3: Numerical data of Case 3 using geometric objects on N .

(j)J =189.3313, ‖u‖∞ = 8.3087 at

(−0.0005,−0.0032), r = 0

(k)J=207.8980, ‖u‖∞ = 9.1169 at

(−0.7056,−0.7112), r = 4

(l)J = 165.5144, ‖u‖∞ = 6.8296 at

(−0.5012, 0.4955), r = 0

(m)J=218.6623, ‖u‖∞ = 7.8534 at

(−0.5702, 0.5689), r = 1

(n)J=291.0134, ‖u‖∞ = 9.0912 at

(−0.7094,−0.7047), r = 4

Figure 3.1: Saddles (j)-(n) in Case 3 presented in Table 3.3.
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r ‖d‖ ε ‖J ′(·)‖∞ J NIt Refer
A 1-saddle 0 9.5946e-06 1e-5 3.5777e-04 14.1293 14 Fig. 2.7(a)
2-saddle 1 0 9.5560e-06 1e-5 1.8326e-04 60.0649 77 Fig. 2.7(b)
2-saddle 2 0 8.6285e-04 1e-3 3.2653e-02 64.6892 38 Fig. 2.7(c)
A 3-saddle 0 1.6977e-03 2e-3 1.1597e-01 194.6572 62 Fig. 3.2(j)
A 4-saddle 0 9.9318e-05 1e-4 2.4290e-03 176.8576 103 Fig. 3.2(l)
A 1-saddle 1 8.6822e-06 1e-5 1.2469e-03 39.4887 26 Fig. 2.7(d)
2-saddle 1 1 4.9282e-05 5e-5 1.5380e-03 96.0497 124 Fig. 2.7(e)
2-saddle 2 1 4.8666e-05 5e-5 1.6039e-03 106.0977 213 Fig. 2.7(f)
A 4-saddle 1 9.8955e-05 1e-4 3.1237e-03 236.6930 178 Fig. 3.2(m)
A 1-saddle 4 2.5312e-06 5e-6 4.0241e-04 75.5768 21 Fig. 2.7(g)
2-saddle 1 4 4.9550e-05 5e-5 3.8147e-03 153.4184 84 Fig. 2.7(h)
2-saddle 2 4 4.7336e-05 5e-5 3.4085e-03 156.0572 102 Fig. 2.7(i)
A 3-saddle 4 9.5584e-04 1e-3 5.3110e-02 228.3316 101 Fig. 3.2(k)
A 4-saddle 4 9.4778e-05 1e-4 5.7656e-03 317.0536 107 Fig. 3.2(n)

Table 3.4: Numerical data of Case 4 using geometric objects on N .

(j)J =194.6572, ‖u‖∞ = 8.4312 at

(0.6636,−0.0008), r = 0

(k)J=228.3316, ‖u‖∞ = 9.3851 at

(−0.7089,−0.7176), r = 4

(l)J = 176.8576, ‖u‖∞ = 7.0013 at

(−0.4915, 0.4895), r = 0

(m)J=236.6930, ‖u‖∞ = 8.0780 at

(−0.5617,−0.5596), r = 1

(n)J=317.0536, ‖u‖∞ = 9.3670 at

(0.7070, 0.7126), r = 4

Figure 3.2: Saddles (j)-(n) in Case 4 presented in Table 3.4.
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3.3 Extension for the Mixed M and W Type Problems

We are concerned with the following concave-convex elliptic problem

−∆u− λ(x)u− a(x) |u(x)|q−1 u(x)− b(x) |u(x)|p−1 u(x) = 0, (3.12)

where u ∈ H = H1
0 (Ω), 0 < q < 1 < p < 2∗, λ, a, and b are non-negative functions in Ω.

Its energy functional is

J(u) =

∫
Ω

[
1

2
|∇u(x)|2 − 1

2
λ(x)u2(x)− a(x)

q + 1
|u(x)|q+1 − b(x)

p+ 1
|u(x)|p+1

]
dx.

(3.13)

This problem has a combined effect of concave and convex nonlinearities [31], and it has

various applications in mathematical physics and population dynamics [32]. The sublinear

and superlinear terms together make problem (3.12) be a combination of the focusing and

defocusing problems. The function profile is given in Figure 3.3, and it is clear that both

the locally W-type and M-type profiles can be found in it. The previous methods, including

the local minimax method [14] and the local min-max-min method [33] could not handle

this case.

locally M−type

locally W−type

Figure 3.3: Function profile of the mixed M and W type problem.

51



3.3.1 Numerical implementation and example

For the mixed M and W type problem (3.12), it is difficult to implement LMM in the

same way as we find saddles for the typical M or W problem by the Nehari manifold since

the Nehari manifold for this problem consists of two layers and the saddle point may jump

between these two layers. Thus we need a small modification of our original method based

on the Nehari manifold. From the function profile, we know J < 0 on the inner Nehari

manifold and J > 0 on the outer Nehari manifold, so these two constraints can be added

to the local maximum search respectively when we solve the locally W-type and locally

M-type problems. This is feasible in programming as the Matlab subroutine "fmincon"

gives us a great flexibility to manipulate such constraints.

As a numerical example, we set λ(x) = 0, a(x) = 1.4, b(x) = 1, p = 4, q = 0.05, and

the domain Ω = (−1, 1)2 in (3.12).

Saddles on the inner Nehari manifold (J < 0)

We run the code then generate Table 3.5 and Figure 3.4.

‖d‖ ε ‖J ′(·)‖∞ J NIt

A Local Min 6.7713e-05 1e-4 1.8550e-03 -0.4314 2
1-saddle 1 6.0396e-05 1e-4 4.5517e-03 -0.1589 12
1-saddle 2 1.4349e-03 2e-3 1.7296 -0.1445 10
2-saddle 1 6.4994e-04 1e-3 1.8041 -0.0930 2
2-saddle 2 3.8810e-04 1e-3 1.6591 -0.0671 2
3-saddle 1 3.1093e-04 1e-3 1.7061 -0.0756 3
3-saddle 2 9.7327e-04 1e-3 1.8123 -0.0732 5

Table 3.5: Numerical data for the locally W-type saddles using the Nehari manifold.
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J = −0.4314, ‖u‖∞ = 0.3896 at

(−0.0005,−0.0032)

(a) A local min

J = −0.1589, ‖u‖∞ = 0.1425 at

(0.5002,−0.0001)

(b) 1-saddle 1

J = −0.1445, ‖u‖∞ = 0.1478 at

(0.3944, 0.3906)

(c) 1-saddle 2
J = −0.0930, ‖u‖∞ = 0.0900 at

(0.5000,−0.5015)

(d) 2-saddle 1

J = −0.0671, ‖u‖∞ = 0.0713 at

(0.0018,−0.6103)

(e) 2-saddle 2

J = −0.0756, ‖u‖∞ = 0.0659 at

(−0.6659,−0.0042)

(f) 3-saddle 1
J = −0.0732, ‖u‖∞ = 0.1026 at

(−0.0001,−0.0005)

(g) 3-saddle 2

Figure 3.4: Saddles on the inner Nehari manifold with J < 0.

Saddles on the outer Nehari manifold (J > 0)

We run the code then generate Table 3.6 and Figure 3.5.
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‖d‖ ε ‖J ′(·)‖∞ J NIt

1-saddle 7.1195e-05 1e-4 2.5866e-03 2.1680 8
2-saddle 1 1.9724e-03 2e-3 1.7803 18.0417 33
2-saddle 2 8.0313e-04 1e-3 4.9448e-02 19.5636 31
3-saddle 2.9454e-03 3e-3 1.7360 56.6545 44

4-saddle 1 9.7078e-04 1e-3 1.4056 53.2726 39
4-saddle 2 2.8994e-03 3e-3 1.6513 65.1720 45
5-saddle 0.0045 5e-3 0.9794 76.8336 204

Table 3.6: Numerical data for the locally M-type saddles using the Nehari manifold.

J = 2.1680, ‖u‖∞ = 2.1994 at

(−0.0005,−0.0032)

(a) 1-saddle

J = 18.0417, ‖u‖∞ = 3.3580 at

(0.3927, 0.3951)

(b) 2-saddle 1

J = 19.5636, ‖u‖∞ = 3.4560 at

(0.5001, 0.0031)

(c) 2-saddle 2
J = 56.6545, ‖u‖∞ = 4.6180 at

(−0.0005, 0.0032)

(d) 3-saddle

J = 53.2726, ‖u‖∞ = 5.3273 at

(0.4978, 0.5000)

(e) 4-saddle 1

J = 65.1720, ‖u‖∞ = 4.3353 at

(0.6056, 0.0019)

(f) 4-saddle 2
J = 76.8336, ‖u‖∞ = 5.7446 at

(−0.0001,−0.0005)

(g) 5-saddle

Figure 3.5: Saddles on the outer Nehari manifold with J > 0.
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4. THE METHOD OF THE GENERALIZED NEHARI MANIFOLD

4.1 Introduction of the Generalized Nehari Manifold

Let us return to the main problem which is a non-autonomous nonlinear elliptic PDE:

−∆u− λu+ κf(x, u(x)) = 0, (4.1)

where f satisfies the assumptions AS defined in Section 1 and κ < 0 such that it is an

M-type problem. We also assume that λ is greater than λ1. Under this assumption, 0 is a

saddle instead of a local minimum. The problem is called indefinite in the literature.

The Palais-Smale (PS) condition defined in Definition 2.3.1 is a crucial condition in

the literature to prove the existence of solutions to nonlinear elliptic PDEs and also a basic

assumption to establish the convergence results for the previously developed LMM type

algorithms. However, it is also known that many nonlinear elliptic PDEs do not satisfy the

PS condition and others satisfy the condition only on certain manifold rather than in the

whole space. Thus for the success of numerical computation of the multiple solutions, an

algorithm must be carried out on that manifold. So far the literature does not provide any

such numerical algorithms. However, LMM with virtual geometric objects developed in

Section 2 provides us with such possibilities. In this section we will further explore such

techniques.

In the following certain manifold will be introduced that all the non-trivial solutions

of the indefinite problem (4.1) are on it and the PS condition can be verified only on it

[20, 34], called the generalized Nehari manifold defined in (4.7). Our purpose is to apply

the LMM with virtual geometric objects where those objects will be defined only on the

generalized Nehari manifold. However, a correction technique must be carried out in order
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to keep all the numerical computations on the generalized Nehari manifold. It changes the

convergence behavior of the original method. Thus the correction must be well-understood

and a proper modification has to be developed. After our analysis on the correction, see

Lemma 4.2.3, the original algorithm is generalized accordingly so that its convergence

will be guaranteed with such a type of corrections.

Let E = H1
0 (Ω) and E = E+ ⊕ E0 ⊕ E− be the orthogonal spectral decomposition

of −∆ − λ with respect to the positive, zero, and negative part of the spectrum. We may

assume λk < λ = λk+1 = · · · = λm < λm+1, where 1 ≤ k < m, then the spectral

decomposition provides us

E− = span{e1, . . . , ek} and E0 = span{ek+1, . . . , em}. (4.2)

It is easy to see that the definite M-type problems we have solved are special cases in which

E− = {0} and E0 = {0}. For any u ∈ E, we can decompose it as u = u+ + u0 + u− ∈

E+ ⊕ E0 ⊕ E− = E, so it is natural to introduce an equivalent norm ‖ · ‖E:

‖u‖2
E = −

∫
Ω

(|∇u(x)|2 − λu2(x))dx for u ∈ E−,

‖u‖2
E =

∫
Ω

(|∇u(x)|2 − λu2(x))dx for u ∈ E+,

‖u‖2
E = 0 for u ∈ E0.

Thus for u ∈ E, we have

∫
Ω

(|∇u(x)|2 − λu2(x))dx = ‖u+‖2
E − ‖u−‖2

E . (4.3)
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In this way, the energy functional J(u) can be expressed by

J(u) =
1

2
‖u+‖2

E −
1

2
‖u−‖2

E + κI(u), (4.4)

where

I(u) =

∫
Ω

F (x, u)dx. (4.5)

For model problem (1.6), we have

I(u) =

∫
Ω

1

p+ 1
|x|r |u(x)|p+1 dx. (4.6)

Let V = E0⊕E−, the following generalized Nehari manifold was proposed by Pankov

[18]:

M = {u ∈ E\V : 〈J ′(u), u〉 = 0 and 〈J ′(u), v〉 = 0 for all v ∈ V }, (4.7)

which contains all the non-trivial critical points of functional J . Zhou [35] gave a very

general definition of the solution manifold in the perspective of orthogonal mapping and

the support set formed by previously found critical points which is a general closed sub-

space. Inspired by his definition, the solution manifold is constructed by using the spectral

decomposition above in our research. Let

c := inf
u∈M

J(u). (4.8)

Szulkin and Weth [17] showed that c > 0 is attained and if u0 ∈ M such that J(u0) = c,

then u0 is a critical point and hence it must be a ground state solution for J ′(u) = 0, i.e. c

is the lowest level for J where there are nontrivial solutions of the main problem (4.1).

Let us introduce the minimax characterization of the least energy value c in the per-

spective of the generalized Nehari manifold before applying it to our algorithm based on
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virtual curves and surfaces. For u ∈ E\V , the following two subspaces are defined:

E(u) := V ⊕ Ru = V ⊕ Ru+ and Ê(u) := V ⊕ R+u = V ⊕ R+u+, (4.9)

where R+ is the nonnegative real number set and u+ ∈ E+. The unit sphere set on E+ is

also defined:

S+ := S ∩ E+ = {u ∈ E+ : ‖u‖E = 1}, (4.10)

where S is the unit sphere in E.

The following theorem was proven in [17] and shows that the intersection of Ê(u) and

M actually is a point which is the unique global maximum point of J on Ê(u). A minimax

characterization could be deduced from this theorem. Besides, our correction technique

which keeps all the numerical computations onM is based on it. The correction technique

will be discussed in detail when we introduce the algorithm.

Theorem 4.1.1. (Szulkin and Weth) For any u ∈ E\V , Ê(u) ∩M consists of precisely

one point which is the unique global maximum of J on Ê(u).

As a consequence of Theorem 4.1.1, the minimax characterization of the ground state

solution was proposed in [17]:

c = inf
v∈E+\{0}

max
u∈Ê(v)

J(u). (4.11)

Moreover, if f(x, u) is odd with respect to u, for an instance, the model problem (1.6) with

odd p, then the minimax characterization reduces to the following:

c = inf
v∈E+\{0}

max
u∈E(v)

J(u). (4.12)

Note that the infima and the maxima are taken in a global sense in (4.11) and (4.12), and
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they are only for existence issue in mathematical analysis. Thus it is impossible to imple-

ment them numerically. In [14], Li and Zhou developed a new minimax method. In their

algorithm, peak selection was used to take the local maximum and the local minimizer

was approximated by a gradient descent search. Their new local minimax method is able

to find not only the ground state solution but also saddle points with higher MI, which was

very challenging at that time. Besides, they provided a solid convergence analysis in a

subsequent paper [15].

The following lemma proven by Szulkin and Weth in [17] shows thatM is bounded

away from zero and V .

Lemma 4.1.2. (Szulkin and Weth)

• Define SR := {u ∈ E+ : ‖u‖E = R}, there exists α > 0 such that c = inf
M
J ≥

inf
Sα
J > 0.

• For any u ∈M, there exists a constant δ > 0 such that ‖u+‖E ≥ δ.

Theorem 4.1.1 actually defines a map m̂ : E\V 7→ M, m̂(u) = Ê(u)∩M. This map

will be used to carry out the correction in our algorithm. In the next lemma, it was shown

by Szulkin and Weth [17] that m̂ is continuous if it is restricted on E+\{0}.

Lemma 4.1.3. (Szulkin and Weth) m̂ is continuous on E+\{0}.

Next the inverse map m̌ of m̂ on S+ is considered in [17]:

m̌ :M 7→ S+, m̌(u) =
u+

‖u+‖E
. (4.13)

Lemma 4.1.4. (Szulkin and Weth) The map m̌ defined in (4.13) is Lipschitz continuous.

Consider the map m̂ restricted on S+. For any u ∈ M, we can always find a point

m̌(u) ∈ S+ since u+ 6= 0 by Lemma 4.1.2. Thus the map m̂ restricted on E+\{0} is

59



onto. It can also be easily shown that the map is one-to-one, so it is a bijection. Thus it

is a homeomorphism from S+ toM by Lemma 4.1.3 and Lemma 4.1.4, thenM is path

connected since S+ has this property. Furthermore, Pankov[36] proved that M is a C1

manifold, then any two distinct points onM can be connected by a smooth path.

4.2 A Local Minimax Characterization of 1-saddles Based on Curves onM

For simplicity, in our local minimax characterization, we assume k = 1 and m = k,

i.e., λ1 < λ < λ2, then V = E− = {e1} and 0 is the only 1-saddle in E, so all the

non-trivial saddles have MI > 1, i.e., we only have 2-saddles and saddles with higher MI

in E. Since we are seeking critical points onM, it is convenient and reasonable that we

call the local minimum onM be a 0-saddle onM, which is actually a 2-saddle in E. In

this way, the index of a saddle onM is the dimension of the subspace contained onM

where J attains its local maximum at this point, so the 3-saddle in E is a 1-saddle onM

and the 4-saddle in E is a 2-saddle onM. Same to the previous notations, let ur be a local

minimum of J onM and upt ∈M be another local minimum or a fixed or a moving point

such that J(upt) ≤ J(ur) and ‖ur − upt‖ > δ > 0. SinceM is a connected C1 manifold,

for each t ≥ 0, there exists a smooth curve P (t, s) connecting ur and upt in the variable s

onM. We may assume 0 ≤ s ≤ 1 with P (t, 0) = ur and P (t, 1) = upt . For each t ≥ 0,

let s(t) ∈ (0, 1) be the first local maximum of J(P (t, s)) in s. Such an s(t) always exists

with 0 < δ < s(t) < 1 for some δ > 0 and nondegenerate ur since ur is a local minimum

of J(P (t, s)) in s and J(upt) ≤ J(ur). Then we have

dJ(P (t, s))

ds
|s=s(t) = J ′(P (t, s(t)))P ′s(t, s(t)) = 0. (4.14)

Once the value s(t) and the direction P ′s(t, s(t)) are specified as in (4.14), for the t-

parametrized family of curves P (t, s) to evolve in t in a regular way or to avoid a slid-

ing, we need to assign a moving direction. We know that P ′t(t, s(t)) defines the di-
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rection of the t-parametrized family of curves P (t, s) moving away locally from the

point P (t, s(t)). It is significant to note that in our research we are actually going to

propose a system which is a dynamics of t-parametrized points P (t, s(t)) starting from

an initial point P (0, s(0)), rather than a dynamics of t-parametrized family of smooth

curves P (t, s). When the t-parametrized family of smooth curves P (t, s) evolves in t, we

need to move P (t, s(t)) ∈ M to a new point which is also on M and construct a new

smooth curve joined by this new point, ur and upt . In Section 2, since we expect that

the value of J(P (t, s(t))) will be strictly decreasing or obey the energy dissipation law,

the moving direction was set to be along certain negative gradient flow and it was given

by P ′t(t, s(t)) = −J ′(P (t, s(t)))/Ct ∈ Ht. However, we can not repeat what we did in

Section 2 because only moving P (t, s(t)) along the negative flow will not necessarily give

us a new point on M. Since the negative gradient flow is a descent direction, we could

firstly move P (t, s(t)) along the negative gradient flow to a point P1, and carry out a small

correction in order to move the point P1 to P2 ∈ M. It is obvious to see the direction

from P (t, s(t)) to P1 is just along the negative gradient flow, but P ′t(t, s(t)), which repre-

sents the direction from P (t, s(t)) to P2, is not easy to get directly because of the small

correction which moves P1 to P2 in order to make sure the new point P2 is also onM.

By the idea above, we propose the following 1-saddle search system:

〈J ′(P (t, s(t))), P ′s(t, s(t))〉 = 0, (4.15)

〈J ′(P (t, s(t))), P ′t(t, s(t))〉 = −‖J ′(P (t, s(t)))‖2/Ct (4.16)

starting from an initial point P (0, s(0)) onM on a given initial smooth curve P (t, s) on

M which connects ur, P (0, s(0)) and up0 . The dynamic system (4.15) - (4.16) is a gener-

alization of the system (2.2) - (2.3) we proposed for finding 1-saddles with virtual curves.

(4.15) is the same as (2.2) and it is achieved by taking a local maximum of J(P (t, s))
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in s, while (4.16) includes (2.3), i.e., (2.3) is a special case of (4.16). Actually (4.16)

gives us infinitely many choices of the direction of moving point P (t, s(t)). The nega-

tive gradient flow is an ideal choice since the functional J is strictly decreasing on it, but

itself alone could not guarantee the point P (t, s(t)) always stays on M, thus we need

another descent direction satisfying this requirement. Note that this direction from (4.16)

may not be an explicit one. (4.16) implies that we could move the point P (t, s(t)) along

the negative gradient flow and do a small correction forcing the point back on M, i.e.,

P (t + t′, s(t)) = m̂(u− t′J ′(P (t, s(t)))/Ct). In the following we will show that such an

implementation satisfies the generalized dynamic system (4.15) - (4.16).

Lemma 4.2.1. For a fixed u ∈ E, define the symmetric bilinear form B2 : E × E 7→ R

which is given byB2(v1, v2) =
∫

Ω1
f ′u(x, u)v1v2dx−

∫
Ω1
u−1f(x, u)v1v2dx, where Ω1 ⊂ Ω

s.t. u 6= 0 on Ω1, then it satisfies the Cauchy-Schwarz inequality, i.e., B2
2(v1, v2) ≤

B2(v1, v1)B2(v2, v2).

Proof. By the assumption (AS.6), there exists θ ∈ (0, 1) s.t. 0 < u−1f(x, u(x)) ≤

θf ′u(x, u(x)) for every x ∈ Ω1, then we have

B2(v, v) ≥ (1− θ)
∫

Ω1

f ′u(x, u)v2dx ≥ 0, (4.17)

B2(v, v) ≥ (
1

θ
− 1)

∫
Ω1

u−1f(x, u)v2dx ≥ 0. (4.18)

Without loss of generality, suppose B2(v1, v1) = 0, then it is easy to see that

∫
Ω1

f ′u(x, u)v2
1dx = 0 and

∫
Ω1

u−1f(x, u)v2
1dx = 0

from (4.17) and (4.18). Since f ′u(x, u) and u−1f(x, u) are positive by the assumption
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(AS.6), ∫
Ω1

f ′u(x, u)v1v2dx = 0 and
∫

Ω1

u−1f(x, u)v1v2dx = 0,

then B2(v1, v2) = 0. We have the equality immediately.

If B2(v1, v1) 6= 0 and B2(v2, v2) 6= 0, let v = v1 −
B2(v1, v2)

B2(v2, v2)
v2, then

B2(v, v2) = B2

(
v1 −

B2(v1, v2)

B2(v2, v2)
v2, v2

)
= B2(v1, v2)− B2(v1, v2)

B2(v2, v2)
B2(v2, v2) = 0.

We have

B2(v1, v1) = B2(v +
B2(v1, v2)

B2(v2, v2)
v2, v +

B2(v1, v2)

B2(v2, v2)
v2)

= B2(v, v) + 2B2(v,
B2(v1, v2)

B2(v2, v2)
v2) +B2(

B2(v1, v2)

B2(v2, v2)
v2,

B2(v1, v2)

B2(v2, v2)
v2)

= B2(v, v) + 2
B2(v1, v2)

B2(v2, v2)
B2(v, v2) +

(
B2(v1, v2)

B2(v2, v2)

)2

B2(v2, v2)

= B2(v, v) +
B2

2(v1, v2)

B2(v2, v2)

≥ B2
2(v1, v2)

B2(v2, v2)
,

so we can get the inequality immediately after the multiplication by B2(v2, v2).

For a given point u0 ∈M, define a map

m̃u0 : R+ 7→ R+ × R, m̃u0(t) = (C1, C2) s.t. C1(u0 − tv0) + C2e1 ∈M, (4.19)

where v0 = J ′(u0)/Cu0 and Cu0 = max{‖J ′(u0)‖, 1}.

Lemma 4.2.2. For any given point u ∈ M, the corresponding map m̃u is C1 in a right

neighborhood of zero (the intersection of a neighborhood of zero and the domain R+).

63



Proof. Consider a map M : R+ × R+ × R 7→ R2 defined by

M(t, C1, C2) = (M1(t, C1, C2),M2(t, C1, C2))

= (〈J ′(C1(u− tv) + C2e1), (C1(u− tv) + C2e1)〉,

〈J ′(C1(u− tv) + C2e1), e1〉),

where v = J ′(u)/Cu, and M1 and M2 map R+ × R+ × R to R.

Since u ∈M, M(0, 1, 0) = (0, 0), then we consider the Jacobian matrix JM,y(0, 1, 0),

where y = (C1, C2) and JM,y is with the form:

JM,y =

∂M1

∂C1

∂M1

∂C2
∂M2

∂C1

∂M2

∂C2


Denote the (i, j)th element in JM,y(0, 1, 0) by Ji,j , then we obtain

J1,1 =
∂M1

∂C1

(0, 1, 0) = 2B(u, u) + κ[

∫
Ω

f(x, u)udx+

∫
Ω

f ′u(x, u)u2dx],

J1,2 =
∂M1

∂C2

(0, 1, 0) = 2B(u, e1) + κ[

∫
Ω

f(x, u)e1dx+

∫
Ω

f ′u(x, u)ue1dx],

J2,1 =
∂M2

∂C1

(0, 1, 0) = B(u, e1) + κ

∫
Ω

f ′u(x, u)ue1dx,

J2,2 =
∂M2

∂C2

(0, 1, 0) = B(e1, e1) + κ

∫
Ω

f ′u(x, u)e2
1dx,

where B : E × E 7→ R is a symmetric bilinear form given by

B(v1, v2) :=

∫
Ω

(∇v1 · ∇v1 − λv1v2)dx, where v1, v2 ∈ E. (4.20)
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Since u ∈M, by the definition of the generalized Nahari manifold, we have

〈J ′(u), u〉 = B(u, u) + κ

∫
Ω

f(x, u)udx = 0, (4.21)

〈J ′(u), e1〉 = B(u, e1) + κ

∫
Ω

f(x, u)e1dx = 0. (4.22)

Let Ω1 ⊂ Ω such that u 6= 0 on Ω1, we know that Ω1 can not be empty since u ∈ M.

Besides, f(x, u) = 0 on Ω\Ω1 by the assumption (AS.2). Then the 4 elements of the

Jacobian matrix can be rewritten as

J1,1 = κ[

∫
Ω

f ′u(x, u)u2dx−
∫

Ω

f(x, u)udx]

= κ[

∫
Ω1

f ′u(x, u)u2dx−
∫

Ω1

u−1f(x, u)u2dx] = κB2(u, u),

J1,2 = κ[

∫
Ω

f ′u(x, u)ue1dx−
∫

Ω

f(x, u)e1dx]

= κ[

∫
Ω1

f ′u(x, u)ue1dx−
∫

Ω1

u−1f(x, u)ue1dx] = κB2(u, e1),

J2,1 = κ[

∫
Ω

f ′u(x, u)ue1dx−
∫

Ω

f(x, u)e1dx]

= κ[

∫
Ω1

f ′u(x, u)ue1dx−
∫

Ω1

u−1f(x, u)ue1dx] = κB2(u, e1),

J2,2 = B(e1, e1) + κ

∫
Ω

f ′u(x, u)e2
1dx

= B(e1, e1) + κ

∫
Ω\Ω1

f ′u(x, u)e2
1dx+ κ

∫
Ω1

f ′u(x, u)e2
1dx

= B(e1, e1) + κ

∫
Ω\Ω1

f ′u(x, u)e2
1dx+ κ

∫
Ω1

u−1f(x, u)e2
1dx+ κB2(e1, e1),
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where B2(·, ·) is defined in Lemma 4.2.1. Thus the determinant of the Jacobian matrix is

|JM,y(0, 1, 0)| = J1,1J2,2 − J1,2J2,1

= κB2(u, u)B(e1, e1) + κ2B2(u, u)

∫
Ω\Ω1

f ′u(x, u)e2
1dx

+ κ2B2(u, u)

∫
Ω1

u−1f(x, u)e2
1dx+ κ2

[
B2(u, u)B2(e1, e1)−B2

2(u, e1)
]

≥ κB2(u, u)B(e1, e1) + κ2
[
B2(u, u)B2(e1, e1)−B2

2(u, e1)
]

> κ2
[
B2(u, u)B2(e1, e1)−B2

2(u, e1)
]

≥ 0.
(4.23)

We would like to give more details for the three inequalities above. It is not difficult to

obtain that Ω1 6= ∅ and B2(u, u) ≥ (1 − θ)
∫

Ω1
f ′u(x, u)u2dx > 0. Besides, by the as-

sumption (AS.6), f ′u(x, u) is continuous in u and f ′u(x, u) > 0 for u(x) 6= 0, then we have

f ′u(x, u) ≥ 0 for all u(x) ∈ R, so the first inequality holds since the two integrals are non-

negative, the second inequality holds since B(e1, e1) is negative, and the last inequality is

directly from Lemma 4.2.1. Finally the implicit function theorem applies and leads to the

conclusion.

It is convenient that the 1st and 2nd elements of m̃u(t) are denoted by m̃1
u(t) and m̃2

u(t)

respectively. Now we claim that (4.16) implies the implementation with the correction we

mentioned, so the generalized dynamic system (4.15) - (4.16) is satisfied.

Lemma 4.2.3. (4.16) is satisfied when the correction step (P (t + t′, s(t)) = m̂(u −

t′J ′(P (t, s(t)))/Ct)) is taken.
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Proof. Consider the moving direction at u = P (t, s(t)):

P
′

t (t, s(t)) = lim
t′→0

P (t+ t′, s(t))− P (t, s(t))

t′

= lim
t′→0

m̂(u− t′J ′(P (t, s(t)))/Ct)− u
t′

= lim
t′→0

m̃1
u(t
′)(u− t′J ′(P (t, s(t)))/Ct) + m̃2

u(t
′)e1 − u

t′

= lim
t′→0

(m̃1
u(t
′)− 1)u+ m̃2

u(t
′)e1 − m̃1

u(t
′)t′J ′(P (t, s(t)))/Ct

t′

= lim
t′→0

[(m̃1
u(t
′)− m̃1

u(0))u+ (m̃2
u(t
′)− m̃2

u(0))e1

t′

− m̃1
u(t
′)t′J ′(P (t, s(t)))/Ct

t′
]

= lim
t′→0

[(m̃′1u(0)t′ + o(t′))u+ (m̃′
2

u(0)t′ + o(t′))e1

t′

− (1 +O(t′))t′J ′(P (t, s(t)))/Ct
t′

]
=m̃′

1

u(0)u+ m̃′
2

u(0)e1 − J ′(P (t, s(t)))/Ct

=m̃′u(0)[u, e1]T − J ′(P (t, s(t)))/Ct,

(4.24)

where m̃′
1

u and m̃′
2

u are the 1st and 2nd element of m̃′u respectively. Note that m̃u is locally

C1 at zero by Lemma 4.2.2, so m̃′u(0) is bounded for a given u. Thus it is easy to see

〈J ′(P (t, s(t))), P ′t(t, s(t))〉 = 〈J ′(P (t, s(t))), m̃′
1

u(0)u+ m̃′
2

u(0)e1 − J ′(P (t, s(t)))/Ct〉

= m̃′
1

u(0)〈J ′(P (t, s(t))), u〉+ m̃′
2

u(0)〈J ′(P (t, s(t))), e1〉

− 〈J ′(P (t, s(t))), J ′(P (t, s(t)))/Ct〉

= −‖J ′(P (t, s(t)))‖2/Ct,
(4.25)

where the first two terms in the second equality above vanish since 〈J ′(P (t, s(t))), u〉 = 0

and 〈J ′(P (t, s(t))), e1〉 = 0 according to the definition of M. Hence (4.16) is satisfied

when the correction is taken in the implementation.
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It is important to note that for the definite problem a small correction is also taken by

multiplying the point with a scalar such that it is on the Nehari manifold after moving it

along the negative gradient flow. We did not prove the dynamic system same as (4.15) -

(4.16) is satisfied when the method was introduced in Section 3. However, it is not difficult

to see that our proof for Lemma 4.2.3 covers the similar result of the method of the Nehari

manifold.

From the 1-saddle search system defined above, we note that we do not need to know

the explicit expressions of the curves P (t, s) on M as long as the points P (t, s(t)) can

be found on M, so we call those curves virtual. This distinctive feature will be clearer

in the algorithm. It reduces the complexity of the problem, speeds up the convergence of

algorithm and enables us to easily extend the method to find saddles with higher MI. In

addition, we assume that the scalar function 0 < s(t) < 1 is locally Lipschitz continuous.

Since for each t ≥ 0, the equation (4.15) can be used to solve s(t), a local maximum

of J(P (t, s))) in s, by using the implicit function theorem, a condition can always be

proposed such that s is locally C1.

It looks like we are finding equality constrained saddles in our model problem even

though the constraints from the definition of the generalized Nehari manifold are actually

natural. However, it is significant to note that our dynamic system is different from the

Constrained Local Minimax Method (CLMM) proposed in [37], which actually evolves

the point P (t, s(t)) in just one step with an orthogonal projection. In [37], Li and Zhou

used the gradient of constraints G to construct an orthogonal projection operator PT (u) at

u by the classical projection theorem, where u = P (t, s(t)) is on the constrained manifold.

Then they applied the operator to the negative gradient flow −J ′(P (t, s(t))) to obtain the

direction of the t-parametrized family of smooth curves P (t, s) moving along the con-

strained manifold in t away locally from the point P (t, s(t)) which is exactly P ′t(t, s(t)).

In our research, the explicit expression of the constraints from the generalized Nehari
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manifold is complicated, so the gradient of these constraints is difficult to compute nu-

merically. Besides, the constraints from the generalized Nehari manifold are not extra and

all the non-trivial critical points should be on it theoretically. In addition, in our two-step

point evolution, the point P (t, s(t)) is moved along the negative gradient flow just a little

bit, and it is still very close toM, so the correction actually is not very large, especially

when error is sufficiently small, i.e., P1 and P2 are very close for small gradient of J . Thus

we prefer LMM followed by an additional small correction since it not only generally fol-

lows a regular non-slid search direction and obeys the energy dissipation law, but also has

a big advantage to implement numerically.

In the 1-saddle search system, (4.15) is achieved by taking a local maximum of J

along the curve P (t, s) ⊂ M in s, while (4.16) indicates that this system follows a nega-

tive gradient flow and the evolution of points P (t, s(t)) is done onM so it leads to a local

minimum of J(P (t, s(t))) in t. Thus the system (4.15)-(4.16) is a new local minimax

principle for a 1-saddle. Modifications of the system (4.15)-(4.16) can be developed for

other purposes. Also different discrete realizations of this system in tmay lead to different

numerical algorithms for finding a 1-saddle of different types of functionals. When a dis-

cretization is used along t, since a 1-saddle is an unstable solution, we do not want to go

too fast to lose algorithm stability in the search process. It is known that the energy dissi-

pation law is important for algorithm stability, but it alone is not enough for an algorithm

to converge when a numerical approximation of the dynamics is involved. We need to set

up a stepsize rule, a stronger version of the energy dissipation law.

Lemma 4.2.4. (Stepsize Rule) If P (t0, s(t0)) is not a critical point, then there exists s0 > 0

s.t. when 0 < t′ < s0, we have a stepsize rule

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 .
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Furthermore, if P (tk, s(tk))→ P (t0, s(t0)) as tk → t0, then there exists N > 0 s.t. when

0 < t′ < s0/2, k > N , we have a uniform stepsize rule

J(P (tk + t′, s(tk + t′)))− J(P (tk, s(tk))) <
−t′

4
‖J ′(P (tk, s(tk)))‖2/Ctk .

Proof. We first note that

P (t0 + t′, s(t0 + t′))− P (t0, s(t0))

=P ′t(t0, s(t0))t′ + P ′s(t0, s(t0))(s(t0 + t′)− s(t0)) + o(t′ + |s(t0 + t′)− s(t0)|).
(4.26)

Then we assume that s(t) is locally Lipschitz continuous, i.e., |s(t0 + t′) − s(t0)| ≤ `0t
′.

Since P (t0, s(t0)) is on the smooth curve P (t, s), it is bounded and we point out that

P ′t(t0, s(t0)) is bounded for bounded point P (t0, s(t0)), which is shown in convergence

analysis below. It follows that o(‖P (t0 + t′, s(t0 + t′)) − P (t0, s(t0))‖) = o(|t′|) and we

have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0)))

=〈J ′(P (t0, s(t0))), P (t0 + t′, s(t0 + t′))− P (t0, s(t0))〉

+ o(‖P (t0 + t′, s(t0 + t′))− P (t0, s(t0))‖)

=〈J ′(P (t0, s(t0))), P ′t(t0, s(t0))t′ + P ′s(t0, s(t0))(s(t0 + t′)− s(t0))〉+ o(|t′|)

=− t′‖J ′(p(t0, s(t0)))‖2/Ct0 + o(|t′|) (by (4.15) and (4.16)). (4.27)

Then it is easy to see there exist s0 > 0 such that when 0 < t′ < s0,

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 . (4.28)

Since J and J ′ both are continuous, the second conclusion follows directly from
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P (tk, s(tk))→ P (t0, s(t0)) as tk → t0 and the stepsize rule in the first part.

Theorem 4.2.5. (Local Minimax Characterization) If t0 = arg loc- mint>0 J(P (t, s(t))).

Then P (t0, s(t0)) is a saddle point.

Proof. Arguing by contradiction, suppose P (t0, s(t0)) is not a saddle point, since it is a

local maximum of J along the smooth curve P (t0, s) in s, it cannot be a local minimum

of J either. Then by Lemma 4.2.4, there exists s0 > 0 s.t. when 0 < t′ < s0, we have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 , (4.29)

which yields a contradiction to t0 = arg loc- mint>0 J(P (t, s(t))).

Remark 4.2.1. This local minimax characterization implies a two-level optimization. In

the inner local maximum level, the local maximum is taken along the smooth curve con-

necting ur and a flexible point upt . In programming, this can be done by some subroutines.

For the outer local minimum level, the local minimum can be obtained by the gradient de-

scent method. We present the following new algorithm.

4.3 A Local Minimax Method onM

Assume that ur is a local minimum of J and up0 is either another fixed local minimum

of J or any point onM with J(up0) ≤ J(ur). We can use the negative gradient method

to find the local minimum point ur on M. Given λ, ε, τk > 0 with τk → 0 as k →

∞,
∑∞

k=0 τk = +∞, and an initial guess u0 on M, the following steps serve as a flow

chart of our algorithm.

Step 1: Let P (0, s) be a smooth curve onM connecting ur, u0 and up0 such that

P (0, 0) = ur, P (0, 1) = up0 and s(0) be the first local maximum of J(P (0, s)) on

M, namely, s(0) = arg maxs>0 J(P (0, s)), s.t. P (0, s) is onM. Set k = 0, t0 = 0,

and uk = P (tk, s(tk));
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Step 2: Evaluate dk = J ′(uk). If ‖dk‖ < ε, then output uk and stop, otherwise continue.

Step 3: For t′ = λ
2m
,m = 1, 2, ..., let uk(t′) = P (tk, s(tk)) − t′dk/Ctk . Let upk,t′ ∈ M

be a local minimum of J or chosen in a continuous way in t′ s.t. J(upk,t′) ≤ J(ur).

Construct a smooth curve P (tk + t′, s) ⊂ M passing through ur, m̂(uk(t
′)), upk,t′ .

Use s(tk) as an initial guess to solve for s(tk + t′) = arg maxs>0 J(P (tk + t′, s)) s.t.

P (tk + t′, s) is onM. Denote

t′k = max{t′ = λ

2m
≤ τk|m ∈ N+,

J(P (tk + t′, s(tk + t′)))− J(uk) ≤ −
t′

4
‖dk‖2/Ctk},

tk+1 = tk + t′k and uk+1 = P (tk+1, s(tk+1)) ∈M;

Step 4: Set k = k + 1 and go to Step 2.

Remark 4.3.1. Some remarks regarding the algorithm are given to make it clearer.

(1) We do not set limit to the total length of stepsizes, so
∑∞

k=0 τk = +∞;

(2) In the numerical implementation, the construction of the smooth curve connecting

three points onM is actually done by taking the intersection of the space formed by the

three points and the generalized Nehari manifold. As we know, the dimension of the

geometric object would be one which is just a curve since the co-dimension ofM is two

while the space formed by the three points is 3-D;

(3) When we take local maximum of J on s, there can be multiple selections along the

smooth curve. Each one is called a peak selection. It is significant to avoid the oscillation

among different peak selections since we need to guarantee the continuity of P in s. Using

the previous value s(tk) could help us to avoid such an unnecessary oscillation. On the

other hand, in Step 1, by starting with a small s > 0, we intend to choose the peak selection

which is closest to the local minimum ur;
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(4) Note that the smooth curve passes through m̂(uk(t
′)) ∈M. Here the domain of m̂

is E\V instead of E+\{0}, so m̂ indicates a small correction to uk(t′) to force it back to

M.

We will give more details about the algorithm in the numerical implementation section.

4.4 Convergence Analysis

Before doing the convergence analysis, it is crucial to point out the fact that J is coer-

cive onM as this property will be used in the proof of convergence.

Lemma 4.4.1. (Szulkin and Weth) J is coercive onM, i.e., J(u) → ∞ as ‖u‖E → ∞,

u ∈M.

Using the notation in the new algorithm, we have the following convergence result.

Theorem 4.4.2. Let tk+1 = tk + t′k where 0 < t′k ≤ τk, τk → 0,
∑∞

k=0 τk = +∞ and

uk = P (tk, s(tk)) be the sequence generated by the algorithm with ε = 0. Then

(a) lim
k→∞

t′kJ
′(uk)/Ctk = 0;

(b) there is a subsequence ukj → u∗ a saddle of J;

Denote K = {u ∈ H : J ′(u) = 0, J(u) = J(u∗)}, then

(c) any convergent subsequence of {uk} converges to a point of K;

(d) Let {uk} be all the limiting points of {uk}. If furthermore ‖P ′s(tk, s(tk))‖ is bounded

and the scalar function s(t) is Lipschitz continuous, then {uk} ∩K 6= ∅ is connected and

dis(uk, K)→ 0 as k →∞.

Proof. Since J(ur) < J(uk+1) < J(uk) by the stepsize rule, limk→∞ J(uk) exists and

J(ur)−J(u0) ≤ lim
k→∞

J(uk)−J(u0) =
∞∑
k=0

(J(uk+1)−J(uk)) < −
1

4

∞∑
k=0

t′k‖J ′(uk)‖2/Ctk ,

where Ctk = max{1, ‖J ′(uk)‖}. Thus t′k‖J ′(uk)‖2/Ctk → 0. Then we get
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t′kJ
′(uk)/Ctk → 0 if ‖J ′(uk)‖ > 1 or ‖J ′(uk)‖ ≤ 1 and 0 < t′k < τk → 0. So (a) is

verified.

To prove (b), there are totally only two Cases for {uk}, (1) there is η > 0 s.t.

‖J ′(uk)‖ > η, k = 1, 2, ..., or (2) there is a subsequence J ′(uki)→ 0.

If Case (1) holds, we may assume η < 1
2
. Thus −‖J ′(uk)‖ < −η < −η2 and

J(ur)− J(u0) < −1

4

∞∑
k=0

t′k‖J ′(uk)‖2/Ctk ≤ −
η2

4

∞∑
k=0

t′k = −η
2

4

∞∑
k=0

|tk+1 − tk|. (4.30)

That is, {tk} is a Cauchy sequence. We obtain tk → t∗. By the continuity, we have

uk = P (tk, s(tk))→ u∗ = P (t∗, s(t∗)) and ‖J ′(P (t∗, s(t∗)))‖ ≥ η, i.e., u∗ is not a critical

point. Then Lemma 4.2.4 states that there exist s0 > 0, N > 0 s.t. when k > N , we

have s0
2
≤ t′k < τk → 0, a contradiction. Thus Case (2) must hold true. Since {J(uk)} is

bounded and J ′(ukj)→ 0, by the PS condition, (b) is proven.

To establish (c), let {ukj} ⊂ {uk} be any convergent subsequence with ukj → u′.

If J ′(u′) 6= 0, we can pass to a subsequence if necessary, then t′kJ
′(uk)/Ctk → 0 and

‖J ′(ukj)‖ > η > 0 lead to t′kj → 0, a contradiction to Lemma 4.2.4 under ukj → u′. Thus

J ′(u′) = 0 must hold. Since limk→∞ J(uk) exists, we have J(u′) = J(u∗), i.e., u′ ∈ K.

To prove (d), we have

uk+1 − uk = P (tk+1, s(tk+1))− P (tk, s(tk))

= P ′t(tk, s(tk))t
′
k + P ′s(tk, s(tk))(s(tk+1)− s(tk))

+ o(|t′k|+ |s(tk+1)− s(tk)|).

Since {J(uk)} is bounded and J is coercive onM by Lemma 4.4.1, then {uk} must be

bounded as well. Then there exists a constant number R > 0 such that ‖m̃′uk(0)‖ ≤ R
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since m̃uk is locally C1 at zero. By (4.24), we have

‖P ′t(tk, s(tk))‖ ≤ max(‖uk‖, ‖e1‖)R + 1 ≤M1,

where M1 > 0 is a constant number. The scalar function s(t) is Lipschitz continuous, as

k → ∞ we have 0 < t′k ≤ τk → 0, then ‖P ′s(tk, s(tk))‖ ≤ M2, |s(tk+1) − s(tk))| ≤

`(t′k)→ 0. Thus there is an `1 > 0 s.t.

‖uk+1 − uk‖ = ‖P (tk+1, s(tk+1))− P (tk, s(tk))‖ ≤ `1(t′k)→ 0 as k →∞. (4.31)

From (b), we have {uk} ∩K 6= ∅. Let I ⊂ N+ = {1, 2, ...} and call
∑

i∈I ‖ui+1 − ui‖ the

total distance traveled by the subsequence {ui}i∈I . For any given η > 0, let i ∈ I ⊂ N+

denote the whole index set in N+ with ‖J ′(ui)‖ > η. Since J(ur) < J(uk+1) < J(uk),

similar to (4.30), we have

−∞ < J(ur)− J(u0) ≤
∞∑
k=1

[J(uk+1)− J(uk)] ≤
∑
i∈I

[J(ui+1)− J(ui)]

< −1

4

∑
i∈I

t′i‖J ′(ui)‖2/Cti ≤ −
η2

4

∑
i∈I

t′i. (4.32)

By (4.31), it leads to ∑
i∈I

‖ui+1 − ui‖ ≤ `1

∑
i∈I

t′i < +∞, (4.33)

i.e., the total distance traveled by {ui}i∈I is finite.

Suppose there is δ3 > 0 s.t. there are infinitely many points u in {uk} with ‖u−u∗‖ >

δ3. By the inequality (4.31), for any 0 < δ1 < δ2 < δ3, there is M > 0 s.t. when k > M ,

‖uk+1 − uk‖ < 1
4
(δ2 − δ1), i.e., two consecutive points uk, uk+1 cannot jump over the

region R = {u ∈ H : δ1 < ‖u − u∗‖ < δ2}. Since u∗ is a limit point and there are

infinitely many points u in {uk} such that ‖u− u∗‖ > δ3, there must exist infinitely many
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points {uki} ⊂ {uk} in the regionR. However, each time the sequence entered this region

R, it has to travel at least 1
2
(δ2 − δ1) distance before it pass the region into another region.

Thus the total distance traveled by uki is infinite, which contradicts with (4.33). Thus there

must be a subsequence {uki′} ⊂ {uki} s.t. J ′(uki′ )→ 0 and J(uki′ )→ J(u∗). By the PS

condition, there is a subsequence, denoted by {uki′} again, s.t. uki′ → u′ with J ′(u′) = 0

and J(u′) = J(u∗). Thus u′ ∈ K ∩ R. It leads to a contradiction since 0 < δ1 < δ2 < δ3

can be any numbers and u∗ can be any limit point of {uk}. Thus for any δ3 > 0, there are

at most a finite number of points u ∈ {uk} s.t. dis(u,K) > δ3, i.e., dis(uk, K) → 0 and

also, {uk} ∩K must be connected. Finally (d) is verified.

Remark 4.4.1. (1) To obtain a sequence convergence (d) from a subsequence conver-

gence (b) in Theorem 4.4.2, it is crucial to assume the bounded scalar function s(t) to

be locally Lipschitz continuous. Observe that if s(t) ∈ (0, 1) is only continuous with

unbounded |s′(tk)|, it must oscillate infinitely many times. Then there could be subse-

quences of {s(tk)} converging to different points in [0, 1]. Consequently we can have only

the subsequence convergence (b) but not the sequence convergence (d). The bounded-

ness of ‖P ′s(tk, s(tk))‖ will also be checked below. Conclusion (d) implies uk → u∗ if

u∗ is isolated. It is clear that this convergent result can be easily extended for k-saddles

and actually covers several different variational methods since the algorithm framework is

general.

(2) The curves P (tk, s) are a family of smooth curves passing through ur, upt and uk,

so ‖P ′s(tk, s(tk))‖ is bounded if and only if {uk} = {P (tk, s(tk))} is bounded. Since

J(ur) < J(uk) < J(u0) and J is coercive onM by Lemma 4.4.1, {uk} is bounded then

‖P ′s(tk, s(tk))‖ is bounded as well.
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4.5 Finding 2-saddles onM

Once LMM on the generalized Nehari manifold for finding 1-saddles is established

and justified mathematically, it can be easily extended for finding 2-saddles onM. It is

interesting to note that we do not need to acquire the complicated expression of surfaces

as ours are just virtual.

Let P (t, s1, s2) be a t-parametrized family of smooth 2D-surfaces onM in variables

s1, s2 connecting ur, upt , us where ur, upt are the same as before and us is a previously

found proper 1-saddle of J which is not a local maximum of J on P (t, s1, s2). We may

assume si ∈ [0, 1] for i = 1, 2 with P (t, 0, 0) = ur, P (t, 1, 0) = upt , P (t, 0, 1) = us.

Denote s = (s1, s2) and P (t, s(t)) = P (t, s1(t), s2(t)) where s(t) = (s1(t), s2(t)) is a

local maximum point of J on the surface P (t, s) ⊂ M closest to us. By the chain rule,

we have

J ′(P (t, s1(t), s2(t)))P ′s1(t, s(t)) = 0, J ′(P (t, s1(t), s2(t)))P ′s2(t, s(t)) = 0. (4.34)

Since P ′t(t, s(t)) is the direction of this t-parametrized family of surfaces moving away

locally from the point P (t, s(t)) and we want this evolution to be nonsliding and also to

follow a negative gradient flow. As we pointed out when finding 1-saddles, the dynamic

system we will propose is not a dynamics of t-parametrized family of smooth surfaces

P (t, s), instead it is a dynamics of t-parametrized points P (t, s(t)) starting from an initial

point P (0, s(0)). If we focus on the evolution of points P (t, s(t)), we know the idea of

finding 1-saddles can be applied on finding 2-saddles again, which is moving P (t, s(t))

to a point P1 along the negative gradient flow and then doing a small correction to move

P1 to P2 ∈ M. The correction of P1 to P2 makes sure that all points connecting the new
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surface are onM. Then the 2-saddle search system is as follows:

〈J ′(P (t, s(t))), P ′s1(t, s(t))〉 = 0, 〈J ′(P (t, s(t))), P ′s2(t, s(t))〉 = 0, (4.35)

〈J ′(P (t, s(t))), P ′t(t, s(t))〉 = −‖J ′(P (t, s(t)))‖2/Ct (4.36)

starting from an initial point P (0, s(0)) on an initial surface P (0, s). (4.35) is the result of

chain rule, while (4.36) implies a combination of moving point along the negative gradient

flow and a small correction forcing the point back onM. Such a claim can be proven in a

similar way as we did for 1-saddle search system (4.15) - (4.16). There are infinitely many

surfaces satisfying the system and we do not have to know their expressions so we call

these surfaces virtual. This feature helps us avoid acquiring complex expressions of geo-

metric objects. Since all the non-trivial critical points are onM, our method is natural and

speeds up the numerical computation. We denote P ′s(t, s(t)) = (P ′s1(t, s(t)), P
′
s2

(t, s(t)))

and assume s(t) to be locally Lipschitz continuous in t, since for each t ≥ 0, the equations

in (4.35) can be used to solve for s(t). Conditions can always be proposed so that s(t) is

locally C1 by the implicit function theorem. The stepsize rule and 2-saddle characteriza-

tion can be proven in a similar way as we do for 1-saddles, thus we only list them but omit

the detailed proof below.

Lemma 4.5.1. (Stepsize Rule) If P (t0, s(t0)) is not a critical point of J , then there exists

s0 > 0 s.t. when 0 < t′ < s0, we have

J(P (t0 + t′, s(t0 + t′)))− J(P (t0, s(t0))) <
−t′

4
‖J ′(P (t0, s(t0)))‖2/Ct0 .

Furthermore, if P (tk, s(tk))→ P (t0, s(t0)), then there exists s0 > 0 and N > 0 s.t. when
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0 < t′ < s0, k > N , we have the uniform stepsize rule

J(P (tk + t′, s(tk + t′k)))− J(P (tk, s(tk))) <
−t′

4
‖J ′(P (tk, s(tk)))‖2/Ctk .

Proof. Similar to that of Lemma 4.2.4.

Theorem 4.5.2. (Index-2 Saddle Characterization). Let t0 = arg loc-min
t≥0

J(P (t, s(t))).

Then P (t0, s(t0)) is a saddle point.

Proof. By Lemma 4.5.1 and follow a proof similar to that of Theorem 4.2.5.

A convergence result similar to Theorem 4.4.2 can be proven.

LMM for finding 2-saddles. We basically follow the description of LMM for finding

1-saddles and we note the changes by the order of steps in LMM. Denote the previously

found 1-saddle we are using by us.

In Step 1, let P (0, s) ⊂ M where s = (s1, s2), be a preferred initial smooth surface

connecting ur, up0 , us and u0 s.t. P (0, (0, 0)) = ur, P (0, (0, 1)) = up0 , P (0, (1, 0)) = us,

where ur and up0 remain the same and u0 ∈ M is an initial guess obtained from an

eigenfunction. Then we find a local maximum P (0, s(0)) ∈ M of J on P (t, s) closest to

us.

We do not make any changes in Step 2.

In Step 3, uk(t′) and m̂(uk(t
′)) are the same but the smooth surface P (tk + t′, s) ⊂M

passes through ur, m̂(uk(t
′)), upk,t′ and us instead of just 3 points ur, m̂(uk(t

′)) and upk,t′ .

Then use s(tk) as an initial guess to solve for s(tk + t′) . . ..

Other parts in LMM remain the same. By using different previous critical point us and

proper initial guess u0, we could find different 2-saddles.

In a similar way, LMM can be further modified to find saddles with higher MI if

necessary. The only difference is the geometric object is joined by more previously found
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critical points.

4.6 Numerical Implementation

4.6.1 Using curves for finding 1-saddles onM

From Remark 2.6.2 we can get the 1st Dirichlet eigenfunction e1 and the 1st eigenvalue

λ1 on H1
0 (Ω):

e1 = sin

(
π(x+ 1)

2

)
sin

(
π(y + 1)

2

)
and λ1 =

π2

2
,

where Ω = (−1, 1)2 in our most numerical examples. Since we assume λ1 < λ < λ2,

then V = {e1}, thus for every u in M, we have two Nehari constraints 〈J ′(u), u〉 =

0 and 〈J ′(u), e1〉 = 0. Firstly we have to use the eigenfunctions corresponding to the

second eigenvalue to find the local minima on M, which are the 2-saddles in E. From

our numerical experience, the second eigenvalue λ2 is doubled, i.e., there are two sets of

eigenfunctions e1
2 and e2

2 corresponding to λ2, and they are different in terms of geometric

symmetry. Let us list the second eigenfunctions and eigenvalue of −∆ for Ω = (−1, 1)2

here:

e1
2 = − sin(π(x+ 1)) sin

(
π(y + 1)

2

)
− sin

(
π(x+ 1)

2

)
sin(π(y + 1)),

e2
2 = − sin(π(x+ 1)) sin

(
π(y + 1)

2

)
and λ2 =

5π2

4
.

In the numerical implementation, we set e1
2 and e2

2 as the initial guess u0 respectively and

find the intersection point of Ê(u0) ∩M. Technically we just solve s1 ∈ R+ and s2 ∈ R

such that s1u0 + s2e1 meets the two Nehari constraints, namely, 〈J ′(s1u0 + s2e1), u0〉 = 0

and 〈J ′(s1u0 + s2e1), e1〉 = 0. Then we use a negative gradient method to locate the local

minimum. As a result, we get two different local minima onM with different geometric
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symmetry and denote them by ur and up, where J(up) < J(ur).

To find the 1-saddles onM, we need the eigenfunctions corresponding to the next few

eigenvalues. Note that there might be multiple 1-saddles corresponding to the different

choices of initial guesses which are different eigenfunctions with different eigenvalues,

e.g., in some of our implementations with Ω = (−1, 1)2, some of the eigenfunctions

corresponding to λ3 = 2π2 and λ4 = 5π2

2
can both be chosen as proper initial guesses

to find 1-saddles. Denote the initial guess we are taking by e3. Apparently e3 is not

necessarily onM, so we seek a point u0 = Ê(e3)∩M. According to Theorem 4.1.1, this

is done by finding the maximum point on Ê(e3). This step is crucial in our algorithm as we

require the smooth curve to be always onM then all the points on the curve should also

be onM. After we obtain u0, we consider the local maximum point on the smooth curve

connecting ur, up and u0. As we discussed in Remark 4.3.1, the curve actually is virtual

and it comes from an intersection of a space formed by these three points above andM.

In detail, for the inner maximum level, we actually use the Matlab subroutine "fmincon"

to find a local maximum point of J(s1ur +s2up+s3u0) over s = (s1, s2, s3) subject to the

two orthogonal constraints from the definition of the generalized Nehari manifold. Then

we find the gradient of J on this maximum point u1 and check if the norm of the gradient

is smaller than the criteria ε we set earlier. If yes, we stop the iteration and output u1

otherwise we move u1 along the direction of the negative gradient, so we have u1(t′) =

u1−t′J ′(u1)/Ct1 , where t′ is controlled by the stepsize rule. Since u1(t′) is not necessarily

on M as well, we repeat the step that we process e3, to seek m̂(u1(t′)) = E(u1(t′)) ∩

M. Then the new curve onM passes through ur, up and m̂(u1(t′)), and LMM starts to

run. In Step 3 of the algorithm in Section 4.3, we actually find the local maximum point

uk+1 = P (tk+1, s(tk+1)) by Matlab subroutine "fmincon" to minimize −J(s1ur + s2up +

s3m̂(uk(t
′))) over s = (s1, s2, s3) subject to the Nehari constraints. Other steps are the

same, we can continue the iteration until the gradient of J is less than the criteria ε. Note
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that for the subroutine "fmincon" in Matlab, we need to assign a starting point for searching

s = (s1, s2, s3). To avoid oscillation among different peak selections which would destroy

the continuity of P (t, s(t)) in t, it is significant to use m̂(uk(t
′)) as the start point of search

to consistently track a peak selection. In our numerical computation, we actually let the

"fmincon" subroutine search the maximum point starting from (s1, s2, s3) = (0, 0, 1).

4.6.2 Using surfaces for finding 2-saddles onM

Once 1-saddles on M are found, we can use one of them, denoted by us, with the

initial guess u0, which is obtained in a similar way as what we do for the initial guess of 1-

saddle, to construct a surface onM by taking the intersection ofM and the space formed

by ur, up, u0, and us. We have multiple previously found 1-saddles, and different choices

of us could lead to different 2-saddles, so we should choose a proper 1-saddle to be us

based on which eigenfunction we take to obtain the initial guess u0. It is hard to conclude

a pattern of the selection of us, so it is chosen based on our numerical experience in the

implementation. The dimension of the geometric object is two since the co-dimension of

M is two and four points are used to form the space, then it is a surface. The maximum

point of J(s1ur + s2up + s3us + s4u0) over s = (s1, s2, s3, s4) subject to the constraints

M is found by using the Matlab subroutine "fmincon". Then LMM starts to run. In

Step 3, we use the Matlab subroutine "fmincon" to minimize J(s1ur + s2up + s3us +

s4m̂(uk(t
′))) over s = (s1, s2, s3, s4) subject to the constraintsM to find the maximum

point uk+1 = P (tk+1, s(tk+1)). The rest parts are the same. 2-saddles can be found by

doing the similar minimax iteration as we do for 1-saddles. Note that (0, 0, 0, 1) serves as

the starting point for "fmincon" search in order to consistently trace the local maximum

and avoid unnecessary oscillation.

Remark 4.6.1. (1) An interesting observation in our numerical computation is: the cor-

rection of moving the point uk(t′) to m̂(uk(t
′)) ∈M actually decreases the gradient of J ,
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i.e., ‖J ′(m̂(uk(t
′)))‖ ≤ ‖J ′(uk(t′))‖. This is nice as it does a little help on the numerical

computation speed;

(2) Let us clarify the reason that we let s1 ∈ R+ when computing the local minima on

M. p is an odd number in most of our numerical examples, then J is even to u, so we

could theoretically just find the intersection point E(u) ∩M, i.e., s1 ∈ R. However, the

profile of the solution looks flipped as the coefficient s1 may oscillate between positive

and negative number. To make sure the solution we have in the current iteration has a

continuity with the one from the last iteration, s1 is limited to be non-negative;

(3) We call the curves or surfaces virtual since we do not know their explicit expres-

sions and here we only use the intersection of the space formed by some points and the

generalized Nehari manifold. As we pointed out before, there are infinitely many ways

to implement LMM since the geometric object are virtual. Some geometric objects with

explicit expressions were used, such as quadratic ones in Section 2 and [38], but the ex-

pression becomes more and more complicated when finding saddles with higher MI. After

consideration, we think we only need some geometric object passing through the given

points and it is not necessary to have an explicit expression. It is quite natural to think

about if there exists a special type of geometric objects can be used to speed up the nu-

merical computation. Since all the non-trivial critical points stay on M, it actually puts

no extra constraints to the problem, i.e., all the constraints in our algorithm are necessary

and natural. Hence, compared with using explicit geometric objects, our method could

accurately locate the critical points and it is easier to extend to seek saddles with higher

MI since we do not need to acquire the complicated expressions.

4.7 Numerical Example

Case 5. In the model problem (1.6), we set p = 3, κ = −1, λ = 9, and r = 0, and the

domain Ω = (−1, 1)2. The first and second Dirichlet eigenvalue are 4.9348 and 12.3370
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respectively, so all non-trivial saddles have MI > 1, i.e., we only have 2-saddles and sad-

dles with higher Morse indices. Then V = {e1} and we have two orthogonal constraints

fromM. It is easy to know we will not have the solution with 1 peak, so the 2-saddles

start from 2-peak solutions.

We run the code then generate Table 4.1 and Figure 4.1.

‖d‖ ε ‖J ′(·)‖∞ J NIt

2-saddle 1 0.0003 1e-3 0.0045 4.0664 7
2-saddle 2 0.0009 1e-3 0.0100 4.6964 5
3-saddle 1 0.0008 1e-3 0.0297 47.8666 8
3-saddle 2 0.0036 5e-3 0.0863 83.6811 20
3-saddle 3 0.0018 2e-3 0.0375 84.3115 13
4-saddle 0.0009 1e-3 0.0345 93.7847 32

Table 4.1: Numerical data of Case 5 using the generalized Nehari manifold.
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J = 4.0664, ‖u‖∞ = 2.5284 at

(0.3927, 0.3951)

(a) 2-saddle 1

J = 4.6964, ‖u‖∞ = 2.5387 at

(0.5003, 0.0031)

(b) 2-saddle 2

J = 47.8666, ‖u‖∞ = 4.6244 at

(−0.5012, 0.4955)

(c) 3-saddle 1
J = 83.6811, ‖u‖∞ = 6.1552 at

(−0.0005,−0.0032)

(d) 3-saddle 2

J = 84.3115, ‖u‖∞ = 5.7194 at

(−0.6056, 0.0019)

(e) 3-saddle 3

J = 93.7847, ‖u‖∞ = 8.0711 at

(−0.0005,−0.0032)

(f) 4-saddle

Figure 4.1: Saddles of Case 5 using the generalized Nehari manifold.
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5. NUMERICAL INVESTIGATION OF THE INDEFINITE BIFURCATION

PROBLEMS

5.1 Introduction

Let us return to the M-type model problem:

−∆u− λu+ κ |x|r |u(x)|p−1 u(x) = 0, (5.1)

where u ∈ E = H1
0 (Ω), κ < 0, p ∈ (1, 2∗) and r is a prescribed parameter. We assume

that 0 ∈ Ω.

The factor |x|r gives a different weight to the nonlinear term κ |u(x)|p−1 u(x) in (5.1)

depending on the distance between the point and the origin. As r increases, the term

|x|r pulls the peak of the ground state solution away from the origin, so the symmetry

of the solution will be broken if it has. In this section, we also assume that Ω is convex

and symmetric about the origin in order to observe not only the bifurcation, but also the

symmetry breaking phenomena.

"Symmetries exist in many natural phenomena, such as in crystals, elementary particle

physics, symmetry of the Schrödinger equation for the atomic nucleus and the electron

shell w.r.t. permutations and rotations, energy conservation law for systems which are

invariant w.r.t. time translation, etc." [21, 26, 39] Several researchers studied symmetry

characterized with compact group actions, which was used to prove the existence of multi-

ple solutions in the Ljusternik-Schnirelman theory [40–42]. Because of the nonlinear term

with non-zero r in (5.1), the system is non-autonomous, then the well-known Gidas-Ni-

Nirenberg theorem on symmetry proven in [43] is not applicable to the M-type problems

in our research. As the numerical examples presented in Section 2, for the definite M-type
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problems, i.e., λ < λ1, when r is less than certain value, the ground state solution has

only one peak, which is positive and possesses all the symmetry properties that Ω has.

Some of the symmetric properties are broken when r goes beyond certain value. The sin-

gle ground state solution bifurcates to multiple solutions with peak away from the origin.

Thus these ground state solutions do not preserve all the symmetric properties possessed

by the original one.

Since the indefinite problems are much more complicated, so far such bifurcation and

symmetry breaking phenomena have not been observed, even numerically. It is interesting

to know whether the indefinite problems have similar bifurcation phenomena with the

definite problems, as the solutions and the critical bifurcation value could not be found in

the literature. With the numerical algorithm developed in the previous sections, we are

ready to do some numerical investigations.

Due to the unstable nature of some critical points with high MI, certain symmetry of

the expected solution has to be used to capture the specific critical point. In [13], odd

symmetry is used and the initial guess was restricted in a particular symmetry subspace

to capture sign-changing solutions by a minimization on the Nehari manifold. Even ro-

tational symmetry is also enforced in [44], and the high-linking theorem is adopted to

obtain the sign-changing solutions. The reason that we should enforce certain symmetry

in a negative gradient-type minimax algorithm is the algorithm itself can only inherit the

symmetry, thus it is unstable. ∇J(u) is used in every numerical iteration and it can inherit

the symmetry. However, it is obtained by some numerical PDE solver and the computa-

tion error is inevitable. When the norm of the gradient is small, the asymmetric part of the

computation error will dominate and break the symmetry of∇J(u), then the symmetry of

the sequence collapses and the minimization search finds a slider away from the expected

saddle point. Finally the search leads to an unexpected solution.

It is proven that the local minimax method (LMM) is invariant to the symmetry [39].
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Our method is a new LMM with the small correction introduced in Section 4. It is known

that the correction is a linear combination of the point itself and V = E0 ⊕ E−. All the

points in V should possess all the symmetries that the non-trivial critical points do, since

these non-trivial critical points are in the form of linear combinations of E+ and V . Thus

our new LMM is also invariant to the symmetry. As long as the initial guess possesses

certain type of symmetry, the sequence will also have such type of symmetry. However,

such an invariance is sensitive to the numerical error from the computation of ∇J(u). To

deal with this issue, the Haar projection has been used to enforce the symmetry in [39]

such that ∇J(u) does not lose it. In our research, we will study the indefinite bifurcation

problems with the Haar projection in a similar way as [39], i.e., the asymmetric part of

∇J(u) will be removed by the Haar projection. In detail, the Haar operator H, used as

an projection from E onto EG in the literature, will be applied on ∇J(u) in our research,

where EG = {u ∈ E : gu = u,∀g ∈ G} is called the invariant subspace of E under

a compact group of linear isomorphisms G of E. Different types of symmetry will be

described byG in our implementation. This method has a great advantage as the efficiency

and stability of LMM are enhanced. When certain symmetry is enforced, we can solve the

problem in a symmetry invariant subspace in order to reduce the dimension of the virtual

geometric objects used for finding saddles possessing the symmetry. To cooperate with the

Haar projection, a symmetric mesh will be generated and used, which will be discussed

in detail when we do the numerical investigation. In this research, we will mainly focus

on the numerical investigation of bifurcation and symmetry breaking phenomena of the

indefinite M-type problems and the dependency of solutions on the parameter r in (5.1)

since the nature of bifurcation for such problems is still to be discovered. The objective is

to provide numerical evidence for PDE analysts for future study.
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5.2 Numerical Investigation

Since we will enforce different types of symmetry by the corresponding Haar projec-

tion for finding different saddles, developing a symmetric mesh grids on Ω is crucial. This

mesh should possess all types of symmetry we will enforce.

Figure 5.1: A sample symmetric mesh on Ω = (−1, 1)2.

Figure 5.1 is a coarse version of a sample symmetric mesh on the square domain Ω =

(−1, 1)2. It is symmetric with respect to the x-axis, the y-axis, the line y = x, the line

y = −x and etc., so our requirement for the symmetry can be satisfied by this mesh.

Let p = 3, κ = −1, λ = 9, and the domain Ω = (−1, 1)2 in the model problem

(1.6), then we investigate the bifurcation phenomena when r changes. When r = 0, it is

autonomous, so the Gidas-Ni-Nirenberg theorem is applicable. The problem is just Case

5 in Section 4, so the solutions without bifurcation can be found in Figure 4.1. In the next

several subsections, various solutions with different r will be discovered. Although some

solutions have the similar profiles shown in Figure 4.1, their MI actually have increased

since there is another branch with lower MI. Some other solutions with higher MI, which
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are hard to be computed by the usual LMM, are easily found by using the symmetry on

the other hand.

5.2.1 Solutions with even reflection about the line y = x

When r = 0, the problem is autonomous, so there is no bifurcation, and the solution

can be found in Figure 4.1 (a). We list the solutions with other r in Figure 5.2.

J = 14.9883, ‖u‖∞ = 4.6931

at (0.4635, 0.4583)

(a) r = 3, no bifurcation

J = 20.0728, ‖u‖∞ = 5.3137

at (−0.4740,−0.4792)

(b) r = 4, no bifurcation

J = 21.6647, ‖u‖∞ = 5.4779

at (0.4896, 0.4792)

(c) r = 4.3, no bifurcation
J = 23.5928, ‖u‖∞ = 6.2424

at (0.5677, 0.5729)

(d) r = 4.7, branch 1

J = 24.8134, ‖u‖∞ = 6.4214

at (0.5885, 0.5833)

(e) r = 5, branch 1

J = 29.1304, ‖u‖∞ = 6.5108

at (0.7135, 0.7083)

(f) r = 8, branch 1
J = 23.8019, ‖u‖∞ = 5.6798

at (−0.4948,−0.4896)

(g) r = 4.7, branch 2

J = 25.3999, ‖u‖∞ = 5.8149

at (−0.5052,−0.4948)

(h) r = 5, branch 2

J = 38.1921, ‖u‖∞ = 6.3073

at (−0.5885,−0.5833)

(i) r = 8, branch 2

Figure 5.2: Solutions with even reflection about the line y = x.
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When r > 4.5, the solutions bifurcate to two branches. The first branches are shown

in Figure 5.2 (d) - (f). Compared to the solutions without bifurcation shown in Figure

5.2 (a) - (c), the first branches are still even symmetric about the line y = x, but lose the

odd symmetry about the line y = −x. Note that the first branches are still sign-changing

solutions, as the indefinite M-type problems could not have positive solutions. When the

bifurcation takes place, the solutions easily slide to the first branches, so the Morse indices

of the solutions with odd reflection about the line y = −x increase by one. We have two

ways to obtain these solutions, namely, the second branches. If we only use LMM in an

usual way discussed before, we have to compute the first branch beforehand, then construct

a geometric object passing through it and the initial guess to solve the expected solution.

However, it can be observed that the first branch does not possess all the symmetries that

the second branch possesses, so we can reduce the dimension of the space dramatically

by using the symmetry. To compute the solution in an efficient and stable way, the Haar

projection (Hu)(x, y) = 1
2
(u(x, y) − u(−y,−x)) is used to enforce the odd reflection

symmetry about the line y = −x. For the second branches shown in Figure 5.2 (g) - (i), we

could observe that the energy levels are higher than those of the first branches respectively.

In addition, the peak and valley move further away from the origin as r increases.

5.2.2 Solutions with odd reflection about the y-axis

When r = 0, there is no bifurcation, so the solution can be found in Figure 4.1 (b). We

list the solutions with other r in Figure 5.3.
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J = 20.6671, ‖u‖∞ = 4.9529

at (−0.5417, 0.0052)

(a) r = 3, no bifurcation

J = 29.6629, ‖u‖∞ = 5.7167

at (−0.5521,−0.0104)

(b) r = 4, no bifurcation

J = 32.6152, ‖u‖∞ = 5.9221

at (−0.5521, 0.0104)

(c) r = 4.3, no bifurcation
J = 34.9049, ‖u‖∞ = 6.1262

at (−0.5729, 0.4271)

(d) r = 4.7, branch 1

J = 37.1353, ‖u‖∞ = 6.2465

at (−0.5833, 0.4635)

(e) r = 5, branch 1

J = 49.8647, ‖u‖∞ = 6.3886

at (−0.6771, 0.6510)

(f) r = 8, branch 1
J = 36.8706, ‖u‖∞ = 6.1780

at (−0.5521, 0.0104)

(g) r = 4.7, branch 2

J = 40.1936, ‖u‖∞ = 6.3499

at (−0.5521, 0.0104)

(h) r = 5, branch 2

J = 71.9021, ‖u‖∞ = 6.5726

at (0.5677, 0.3542)

(i) r = 8, branch 2

Figure 5.3: Solutions with odd reflection about the y-axis.

When r > 4.5, the solutions bifurcate to two branches. The first branches are shown

in Figure 5.3 (d) - (f). Compared to the solutions without bifurcation shown in Figure

5.3 (a) - (c), the first branches are still odd symmetric about the y-axis, but lose the even

symmetry about the x-axis. When the bifurcation takes place, the solutions easily slide

to the first branches, so the Morse indices of the solutions with even reflection about the

x-axis increase by one. We have two ways to obtain these solutions, namely, the second

92



branches. If we only use LMM in an usual way discussed before, we have to compute the

first branch beforehand, then construct a geometric object passing through it and the initial

guess to solve the expected solution. However, it can be observed that the first branch

does not possess all the symmetries that the second branch possesses, so we can reduce

the dimension of the space dramatically by using the symmetry. To compute the solution

in an efficient and stable way, the Haar projection (Hu)(x, y) = 1
2
(u(x, y) + u(x,−y)) is

used to enforce the even reflection symmetry about the x-axis. For the second branches

shown in Figure 5.3 (g) - (i), we could observe that the energy levels are higher than those

of the first branches respectively.

5.2.3 Solutions with even reflection about the y-axis

J = 65.4644, ‖u‖∞ = 6.6800

at (−0.6927, 0.7135)

(a) r = 7.5

J = 64.8858, ‖u‖∞ = 6.6191

at (−0.7240, 0.7292)

(b) r = 8

J = 61.1166, ‖u‖∞ = 6.3353

at (−0.7552, 0.7604)

(c) r = 9

Figure 5.4: Solutions with even reflection about the y-axis.

The solution does not exist when r < 7.5. To compute the solutions shown in Figure

5.4 in an efficient and stable way, the Haar projection (Hu)(x, y) = 1
2
(u(x, y)+u(−x, y))

is used to enforce the even reflection symmetry about the y-axis. Note that these solu-

tions are sign-changing ones, as the indefinite M-type problems could not have positive

solutions.
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5.2.4 Solutions with even reflection about the line y = −x

J = 67.7038, ‖u‖∞ = 5.2301

at (0.8333, 0.8385)

(a) r = 12

J = 62.0362, ‖u‖∞ = 4.9902

at (0.8490, 0.8542)

(b) r = 12.5

Figure 5.5: Solutions with even reflection about the line y = −x.

The solution does not exist when r < 12. To compute the solutions shown in Figure

5.5 in an efficient and stable way, the Haar projection (Hu)(x, y) = 1
2
(u(x, y)+u(−y,−x)

is used to enforce the even reflection symmetry about the line y = −x. Note that these so-

lutions are sign-changing ones, as the indefinite M-type problems could not have positive

solutions.

5.3 Summary

We have observed some more complicated bifurcation phenomena for the indefinite

problems compared with the definite problems. From Case 3 and Case 4 studied in Section

2 and Section 3, as well as the numerical examples in [22], the bifurcation takes place after

r > 0.5 for the definite M-type problems.

While for the indefinite problems, the critical bifurcation value increases from 0.5 to

some larger number, e.g. in the case we just investigated, it is 4.5. The change of MI for

solutions after bifurcation has also been observed. As r further increases beyond certain
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values, more solutions with multiple positive peaks appear, which actually do not exist

when r is small.

95



6. CONCLUSIONS

A local minimax method (LMM) using virtual geometric objects has been developed

for finding saddles of the main problem (1.3). A dynamic saddle search system was pro-

posed and it is a dynamics of points on virtual geometric objects such as curves, surfaces,

etc. Our method covers several existing algorithms in the literature as the algorithm frame-

work is general. Its mathematical validations, including the stepsize rule and convergence

result, were established. The new algorithm was firstly implemented and tested on several

benchmark problems. Then we implemented the LMM with quadratic curves and surfaces

on some infinite-dimensional numerical examples and successfully found some critical

points.

It was shown that those virtual geometric objects can be easily defined without know-

ing their explicit expressions and extended to find k-saddles so there is a great flexibility

to choose preferred geometric objects for some purposes, such as convergence accelera-

tion. Inspired by this feature, since all the non-trivial critical points stay on the Nehari

manifold, it was used to accelerate the numerical computation. We also compared the

computation speed between using the Nehari manifold and quadratic geometric objects to

solve the same semilinear elliptic PDE, and it can be seen that using the Nehari manifold

is advantageous in computation speed. A special problem, mixed M and W type problem

was introduced. All the previous methods could not handle this case due to the combined

effect of concave and convex nonlinearities. From our study, the Nehari manifold of this

problem consists of two layers so we modified the LMM and computed the saddles in a

locally M-type and locally W-type separately.

For the indefinite M-type problems, 0 is not a local minimum anymore, instead it is a

saddle, so the Nehari manifold could not be used. The Palais-Smale (PS) condition is a
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basic assumption to establish the convergence results for the previously developed LMM

type algorithms. However, many nonlinear elliptic PDEs only satisfy the condition only

on certain manifold. It is interesting to note that the generalized Nehari manifold is such

a manifold that the PS condition can be verified on it. It was introduced in detail and a

more general dynamic system of points with a correction technique on it was proposed.

We proved that the generalized dynamic system is satisfied when the correction technique

is carried out. The corresponding local minimax method was justified by establishing a

strong energy dissipation law and showing the convergence of the algorithm. The new

algorithm with the generalized Nehari manifold was then applied to solve an indefinite

M-type case.

Note that the term |x|r in the model problem (1.6) plays a significant role in the prop-

erty of the solution and r is usually called a bifurcation parameter. We observed the sym-

metry breaking phenomena of the solutions when r goes beyond certain value. The orig-

inal solution bifurcates to multiple ones which lose some symmetries. The MI of the

solution with the original symmetries increases. There are two ways to compute it. One

is the usual LMM with computing the symmetry-losing solution beforehand. Another one

is using the symmetry, which is efficient and stable. The Haar projection was used to

enforce the symmetry and some numerical examples with profiles were given. Some so-

lutions appearing when r goes beyond certain value were also given. We also discussed

the difference of bifurcation between definite and indefinite problems. The objective is to

provide numerical evidence for PDE analysts for future study.
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