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ABSTRACT 

Current methods of production forecasting, such as Decline Curve Analysis and Rate 

Transient Analysis, require years of production data, and their accuracy is affected by the 

artificial choice of model parameters. Unconventional resources, which usually lack long-

term production history and have hard-to-determine model parameters, challenge 

traditional methods.  

This paper proposes a new method using principal components Analysis to estimate 

production with reasonable certainty. PCA is a statistical tool which unveils the hidden 

patterns of production by reducing high-dimension rate-time data into a linear 

combination of only a few principal components. 

This paper establishes a PCA-based predictive model which makes predictions by 

using information from the first few months’ production data from a well. Its efficacy has 

been examined with both simulation data and field data.  

Also, this study shows that the K-means clustering technique can enhance predictive 

model performance and give a reasonably certain future production range estimate based 

on historical data.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The unconventional resources revolution is the biggest energy story in the 21st 

century (Wang et al. 2014). The application of hydraulic fracturing and horizontal drilling 

makes possible unconventional oil and gas extraction from extremely low-permeability 

reservoirs (Arthur, Langhus, and Alleman 2008). Rapidly developing commercial projects 

increase the need for proper production forecasting and reserves estimation techniques for 

unconventional resources (Walsh et al. 2009). 

Current production forecasting approaches include decline curve analysis (DCA), 

type curve analysis, analytical/numerical reservoir simulation, and flow regime analysis 

(Clarkson 2013). DCA methods were first established  to estimate conventional resources 

(Arps 1945). In attempts to modify Arps’ model to accommodate unconventional 

resources (Long and Davis 1987), new models have been proposed such as Duong’s model 

(Duong 2011).  

Type curve methods introduced by Fetkovich (1987) compared pressure or decline 

curves with predefined type curves. Later engineers improved these curves to fit 

hydraulically fractured reservoirs (Agarwal et al. 1998, Araya and Ozkan 2002, Fraim 

1987, Marhaendrajana and Blasingame 2013).  

Numerical simulation generates production forecasting by simulating hydrocarbon 

flowing conditions. Oil companies widely use it in hydraulically fractured reservoirs, 
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coalbed methane and many other unconventional resources (Cipolla et al. 2010, Aanonsen 

et al. 2009, Fan, Thompson, and Robinson 2010, Floris et al. 2001, Soleng 1999).  

Straight-line analysis or flow-regime analysis helps determine key formation 

parameters. By plotting the logarithm of production versus time, it can define the flow 

regime by analyzing a straight-line segment of the plot (Araya and Ozkan 2002, Clarkson 

2013, Cox et al. 2015, Ilk et al. 2010, Lee, Rollins, and Spivey 2003) . 

 Recently, the trending concept of data mining and machine learning has gained 

attention in the oil and gas industry. Researchers have tried to use techniques such as fuzzy 

neural networks, a support vector machine, a K-nearest neighbor algorithm, and principal 

components Analysis to analyze production data, geological setting, and reservoir 

characteristics and do production forecasting (Bravo et al. 2014, Cao et al. 2016 , Denney 

2015, Floris et al. 2001, Khazaeni and Mohaghegh 2013, Moridis et al. 2013, Soleng 1999, 

Bhattacharya and Nikolaou 2013, Duong 2011, Honorio et al. 2015) 

This research applies the principal components analysis (PCA) algorithm into 

unconventional gas production data analysis. By applying this mature, widely applied 

algorithm into unconventional gas rate-time data, we can better understand data and make 

predictions. PCA can lower data dimensions, perform clustering, and do factor analysis. 

By combing PC linearly and doing a regression called principal components regression 

(PCR), we can capture the well’s decline trend with much shorter production time data 

while not losing accuracy.  
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1.1 Production Data Analysis 

Oilfield production can generate different types of data including rate-time data, 

pressure data, and well log data. Those data can be used to describe reservoir characteristic 

and further predict production, estimate reserves, and enhance well performance (Ilk et al. 

2010).  

Engineers can use analytic production data in either an analytical way or an empirical 

way (Clarkson 2013). Analytical ways including rate-transient analysis (RTA) and 

pressure-transient analysis (PTA) are performed on rate-time data/reservoir-flow pressure 

data. Empirical ways including decline curve analysis (DCA) and type curves are 

performed by fitting curves to past rate-time decline trends.  

In this section, we focus on reviewing analysis methods on rate-time data, because 

rate-time data is the most available data. The first step of data processing begins at 

collecting consistently and reliable data. In some situations, such as short well life or initial 

production stages, certain types of data are not acquirable (Cheng et al. 2010). For example, 

in fields, pressure data is often incomplete, unreliable, and absent from daily records (Ilk 

et al. 2010). In comparison, rate-time data can have accurate, coherent and reliable records 

from daily or monthly sales sheets.  
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Decline curve analysis is a classical and common practice which analyzes the decline 

trending of a well’s production history to predict future production and Estimated Ultimate 

Recovery (EUR). This method was first introduced by the U.S. Internal Revenue Service 

(Arnold and Darnell 1920) and then after several improvements (Lewis and Beal 1918, 

Cutler 1924, Johnson and Bollens 1927), was finally well established by Arps (1945).  

 𝑞𝑡 = 
q

i

(1+bDit)
1
𝑏

 
(1-1) 

In Arp’s equation, q
i
 is the initial production rate, 𝑞𝑡 is time t production rate, and 𝐷𝑖 

and b are constant parameters. D is defined as the loss ratio and b is defined as a loss-ratio 

derivative. 

 1

𝐷
= −

𝑞

𝑑𝑞/𝑑𝑡
 

 (1-2) 

With b setting as 0, 1 or any value between them, the equation represents an 

exponential, harmonic, or hyperbolic curve.  

 
𝑏 =

𝑑

𝑑𝑡
[−

𝑞

𝑑𝑞/𝑑𝑡
] 

(1-3) 

First set up for conventional oil and gas, the b value should not exceed the upper limit 

of 1. Different b value settings also reflect different reservoir characteristics and their drive 

mechanisms (Bhattacharya and Nikolaou 2013).  

With the exploration of unconventional resources, the industry began to use larger-

than-unit b values to fit the decline curve (Long and Davis 1987), in what is called a 

superhyperbolic equation. These adaptation attempts catch the unique decline patterns in 

shale reservoirs: the superhyperbolic equation fits the rapid, steep initial decline trend and 
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an exponential equation fits the gentle decline in later boundary-dominated-flow (BDF) 

stages. It somehow causes trouble and inconvenience for reservoir engineers to predict 

long-time well production. 

A sample is shown below. The initial segment curve is fitted with a larger-than-unit 

b value to catch the steep decline trends. When shale gas is produced in transient flow, the 

rate declines rapidly. After it reaches the boundary, it goes to BDF. The production rate 

would turn shallower and can then be fitted with an exponential b value. This is shown in 

Figure 1-1. 

 

 

Figure 1-1: Two segment b-value in shale resource DCA (Zhang et al. 2015) 

Ilk et al. (2008) proposed a power law exponential decline model (PLE). This model 

gives a new definition to the D and b values to fit the decline trends of shale resources. In 

this model, he used a power-law function to model the initial-stage decline-loss ratio. Then, 

the loss ratio would go constantly.  

𝑫 = 𝑫∞ + 𝑫𝟏𝒕
−(𝟏−𝒏)  (1-3) 

 

𝒃 =
−𝑫𝟏(𝒏−𝟏)𝒕𝒏

(𝑫∞𝒕+𝑫𝟏𝒕𝒏)𝟐
  (1-4) 
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The production rate could be expressed as: 

𝒒 = 𝒒𝒊𝐞𝐱𝐩 (−𝑫∞𝒕 −
𝑫𝟏

𝒏
𝒕𝒏)  (1-5) 

 

Valkó and Lee (2010) proposed stretched exponential decline model (SEPD). This 

model is designed to estimate technically recoverable hydrocarbons. It points out two new 

parameters: a dimensionless exponent n and the ratio of time, 𝜏.  

𝝉 = (
𝒏

𝑫𝟏
)

𝟏

𝒏  (1-6) 

For rate-time, it has following equations: 

𝒒 = 𝒒𝒊𝐞𝐱𝐩 [−
𝒕

𝝉

𝒏
]  (1-7) 

 

For cumulative production, it has following equations: 

𝑸 =
𝒒𝒊𝝉

𝒏
{𝚪 [

𝟏

𝒏
] − 𝚪 [

𝟏

𝒏
, (

𝒕

𝝉
)
𝒏

]}  (1-8) 

 

Duong (2011) proposed a new DCA method that focuses on the transient flow period. 

He asserted that in traditional practice, Arps’ model would not work for shale resources, 

but proposed instead a log-log plot method that generates a unit straight-line slope to 

determine initial rate 𝑞𝑖 and infinite rate, 𝑞∞. He defined new time parameters t(a,m). The 

equation of his methods is written as follows: 

𝒕(𝒂,𝒎) = 𝒕−𝒎𝐞𝐱𝐩 [
𝒂

𝟏−𝒎
(𝒕𝟏−𝒎 − 𝟏)]  (1-9)   

 

The rate time equation could be written as: 

𝒒 = 𝒒𝟏𝒕(𝒂,𝒎) + 𝒒∞  (1-10) 
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Zhang et al. (2015) argued that Arps methods could generate more valid production 

forecasts in certain reservoir and flow regimes (e.g., tight reservoirs in BDF flow).  Their 

practice is to apply a combination of methods. Before setting Dmin, a superhyperbolic 

method or Duong method is applied to acquire an estimate in the transient flow regime. 

After the switching point, usually Arps’ exponential model would be applied to estimate 

production in the BDF flow regime.  

 

1.2 Computer-Assisted Production Data Analysis 

Two revolutions happened at the same time: shale gas and Artificial Intelligence (AI). 

Shale gas evaluation presents challenges and opportunity to the traditional production data 

analysis. As was argued above, the classic Arps model has difficulties in proper evaluation 

if long-term well performance. At the same time, the characteristics of unconventional 

resources also present new challenges: heterogeneous formations, extremely low 

permeability, and unknown flow mechanism (Cao et al. 2016). New methods are needed 

to satisfy increasing need and new demands. 

AI brings the world potentials for solving this. Big data, machine learning, deep 

learning, data mining—all those terms have become big hits in recent years. Businessmen, 

engineers, and operators wish to maximize the power of data into design, construction, 

drilling and production. AI can do those because it is strong at pattern recognition and 

automatic data processing where humans might require years-long experience and human 

bias. 
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The oil and gas industry is not unfamiliar with AI or computer-assisted production 

analysis approaches. In the last century, Dakshindas, Ertekin, and Grader (1999) proposed 

a way to combine AI with well testing. Bradley (1994) proposed a computer-assisted oil 

field economic forecasting method. Surguchev and Li (2000) and Alvarado et al. (2002) 

did extensive work in combing machine learning and neural networks with enhanced oil 

recovery (EOR). Brown (1991) used machine learning to study recovery efficiency.  

AI methods have gained extensive attention from both academia and industry. Fuzzy 

logic and neural networks serve as powerful tools for analyzing unconventional resources 

(Grujic, Mohaghegh, and Bromhal 2010, Kulga 2010, Sondergeld et al. 2010, Clarkson et 

al. 2012, Keshavarzi and Jahanbakhshi 2013). Machine learning has also regained 

attention. Its power in recognizing patterns and its rapid processing have been 

acknowledged and accepted. As the Figure 1-2 indicates, there is a dramatically increasing 

trend in publishing machine learning-related papers in SPE associated conference and 

journals. 
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Figure 1-2: Each Year AI Related Literature in OnePetro (Ani et al. 2016) 

 

A detailed literature review provides an understanding of future performance, 

reservoir characteristics, production forecasting and reserve estimation. This review 

includes the following factors: neural networks, machine learning/deep learning, time 

series analysis and multivariate statistical approaches.  

 

 

1.2.1 Neural Networks 

A neural network (NN) or artificial neural network (NN) is a computation model that 

enables the computer to mimic the way the human brain works. By connecting different 

processing neural units, the whole system can respond to input data and self-adapt its inner 

connection structure. This feature is beneficial for reservoir engineering to analyze the 

performance of hydrocarbon resources. NN can respond to the historical performance data 
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and catch hidden patterns or trends beneath the raw data. Further, it can be applied to do 

fitting, regression or predictions (Figure 1-3). 

 

 

Figure 1-3: Layers Neural Network structure (Ma et al. 2015) 

 

 

Mohaghegh (1995) asserted the potentials of neural networks in predicting well 

performance. Al-Fattah and Startzman (2001) first proposed three-layer neural network 

methods to predict U.S. natural gas production. At the same time, Texas A&M researchers, 

He et al. (2001) also introduced an NN method to forecast oil well performance based on 

historical performance. Queipo, Goicochea, and Pintos (2002) extended the application of 

ANN into steam-assisted gravity drainage (SAGD) production predictions. Lechner and 

Zangl (2005) combined Monte-Carlo simulation and ANN to assess the uncertainty of 

reservoir performance. 
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Bansal et al. (2013) applied ANN to predict well performance from discontinuous 

tight oil reservoirs. They found that it could help enhance tight oil development and avoid 

drilling less-productive wells. Rebeschini et al. (2013) improve ANN with nodal and time-

series analysis to deal with real field data and acquire short-time production forecasts. 

Combinations of methods also have been proposed to coordinate neural networks 

with other classic methods to gain deep insight into data. Jia and Zhang (2016) combined 

NN with traditional Arps decline curve analysis. Ma et al. (2015) combined ANN with 

principal components analysis, cluster analysis, and uncertainty analysis to predict SAGD 

well performance.  

Like other data-mining techniques, NN does encounter some disadvantages at large 

data sets requirements. Mohaghegh et al. (2011), Oliver and Chen (2011), and 

Rwechungura, Dadashpour, and Kleppe (2011) gave some opinions on its limitations. The 

training of neural networks requires large amounts of effort and time to have the optimal 

parameters. The data need more than five years’ production history and around 40 wells. 

Those disadvantages limit the real commercial application of neural networks to shale gas 

production forecasting. 
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1.2.2 Machine Learning/Deep Learning 

Machine learning is a combination of algorithms that share a common characteristic: 

learning from data. It has supervised learning, unsupervised learning and reinforcement 

learning (Figure 1-4). 

 

 

 

 

 

Fulford et al. (2016) proved machine learning is a reliable technology for evaluating 

rate-time performance in unconventional wells. Machine learning can serve as a reliable 

technology accepted by the U.S. Securities and Exchange Commission (SEC).  

Figure 1-4: Machine learning algorithm overview (Brownlee 2013) 
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This work concludes that machine learning can largely enhance the production 

forecast process in a wide range of unconventional wells. This research soundly proves 

the great potential of machine learning for reserves engineers and oil companies.  

Currently, academia is focused on some potential supervised learning algorithms. 

Researchers at Texas A&M University (Gong et al. 2014) combined Markov-chain Monte 

Carlo (MCMC) with probabilistic DCA to analyze forecast uncertainties. MCMC has 

served as a tool to examine the difference between prediction results and real data. The 

difference is measured by a statistical parameter called Bayesian inference. 

Gonzalez, Gong, and McVay (2012) also applied MCMC techniques with 

probabilistic DCA to analyze shale gas reserves. This work used prior distribution to 

calibrate the posterior distribution. In this way, they could acquire desirable long-term 

production forecasting. They recommended production time of at least 18 months.  

Crnkovic-Friis and Erlandson (2015) analyzed 800+ wells with more than 200,000+ 

geological data input using deep neural networks (DNN). The results, validated by data 

from the Eagle Ford Shale, were quite promising—significantly better than other methods 

in volumetric estimates and type curve predictions. These results demonstrate the potential 

of applying DNN into handling large amounts of data and give admirable predictions with 

a fast process. 
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Honorio et al. (2015) presented a way of integrating plur-principal components 

analysis (P-PCA) with piecewise reconstruction from a dictionary (PRaD) into assisted 

history matching. Their workflow would be practical to handle real problems.  

 

 

1.2.3 Multivariate Statistical Analysis 

The multivariate statistical approach applies statistical methods to analyze variable 

probability distribution, do classification, run clustering and analyze patterns. Those 

methods can be useful for recognizing data structures and unveil their hidden patterns. 

Traditional methods can combine with a multivariable statistical approach to have better 

process efficiency or accuracy Bhattacharya and Nikolaou (2013).  

Multivariate statistical approaches have some advantages. First, their process does 

not require time-consuming and laborious human work to train and get optimal parameters. 

For most techniques, they can be done automatically, which is called unsupervised 

learning. For dealing with large sets of unconventional resources data, automatic 

processing is important to save time. Second, most multivariate statistical approaches can 

be made on an open-source platform and open-source community. Existing R packages 

can help users save time in reinventing wheels. Third, the multivariate approaches can 

cooperate with many existing reliable techniques such as probabilistic reserves estimation 

and probabilistic decline curve analysis (Sinha and Deka 2016).  
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Lawrence Berkeley National Lab (Moridis et al. 2013) has built a self-teaching 

system to dynamically process unconventional resources data. It applied principal 

components analysis (PCA) to lower data dimensions and do clustering to analyze which 

wells perform similarly and which wells perform distinctly from others. Their research 

was limited to a small number of well data; only 13 shale gas wells were analyzed. 

Sinha and Deka (2016) presented a comprehensive analysis with the application of 

multivariate statistical analysis to Eagle Ford shale. Their data scope involved 1500 wells 

with light oil and different levels of mature gas. Their assessments included principal 

components analysis (PCA), clustering, regression and self-organizing maps (SOM). 

Those methods cooperating with traditional Arps model can have better predictions. 

Lolon (2016) gave insights on how to judge the results of multivariate statistical 

approaches. He tested several regression methods to find the impact of completions and 

fracture stimulation on production. His data was based on field data in the North Dakota 

Three Forks formation in the Williston Basin. He argued that the best prediction model is 

often overfitted. Second, the best R-square score model had the worst prediction ability 

with some specific datasets. To overcome those disadvantages, he concluded that 

prediction methods should be tested on a “hold-out” dataset.  
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Singh (2017) introduced classification-and regression tree (CART) techniques to 

automatically diagnose gas well performance. This technique is based on a traditional 

decision tree but adds cross-validation to ensure to robustness and reliability of the 

prediction model. The testing was run on a gas well dataset and got good results (Figure 

1-5). 

 

 

 

1.3 Motivation and Scope 

This research investigated the potential of combing a multivariate statistical approach 

with a machine learning algorithm into production data. The production data type I 

focused on is production rate-time data. It provides an efficient and automatic approach to 

process data. I compare the results with an existing DCA model to illustrate the new 

method’s advantages and disadvantages. 

The main tool for analyzing production data was principal components analysis 

(PCA). PCA proposes a new automated regression model other than linear regression 

whose coefficient is artificial chosen. Its prediction result is compared with currently 

Figure 1-5: Workflow of CART (Singh 2017) 
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applied methods, and commercial software can lower data dimensions and establish a 

regression model based on data patterns.  

  

 This research had the following objectives: 

 

• Validate the potential application range of PCA methods in 

production forecasting 

• Determine the critical amount production length and well amounts 

• Propose a comprehensive workflow and procedure in applying PCA 

methods into production data analyzing 

• Propose a practical automated regression model based on PCs 

• Exam the potential of coupling pressure data, completion data with 

rate time data into enhancing prediction results. 
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CHAPTER II  

PRINCIPAL COMPONENTS ANALYSIS 

In this chapter, we first review the basic concept of principal components analysis 

(PCA). Second, we introduce the fundamental math knowledge of applying PCA into the 

analysis of multiple-well rate-time production history data analysis. Third, we explain the 

characteristics and applications of PCA. 

 

2.1 Principal Components Analysis Concept 

Principal components analysis (PCA) is a statistical method first published by 

Pearson (1901) and improved by Hotelling (1933). The concepts and applications have 

more recently been organized by Jolliffe (2002). 

The concept of PCA is described like this:  

Supposed we have a random sample 𝑋1, 𝑋2,⋯ , 𝑋𝑛 , with standard deviation 

𝑆, 𝑆2, ⋯ , 𝑆𝑛. We have: 

 𝑃𝐶𝑖 = 𝑎𝑖1𝑋1 + 𝑎𝑖2𝑋2 + ⋯𝑎𝑖𝑛𝑋𝑛 𝑗 = 1,2…𝑛 (2-1) 

 𝑃𝐶1 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯+ 𝑎1𝑛𝑋𝑛 (2-2) 

1. If Var(𝑃𝐶1) is the largest, then, we called it the first principal component (PC). 

2. If 𝑃𝐶2 = 𝑎21𝑋1 + 𝑎22𝑋2 + ⋯+ 𝑎2𝑛𝑋𝑛 and it is perpendicular to (𝑎11, 𝑎12, ⋯ , 𝑎1𝑛) 

and makes Var(𝑃𝐶2) second large, it is called the second PC. 

3. The following PC is limited up to n. For their characteristics, the most important one 

is: 
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 𝐶𝑜𝑟𝑟(𝑃𝐶𝑖, 𝑃𝐶𝑗) = 0 0 ≤ 𝑖 ≤ 𝑛 0 ≤ 𝑗 ≤ 𝑛 (2-3) 

It can lower data dimensions by orthogonally transforming the correlated variables 

into linear uncorrelated variables. Those linear uncorrelated variables are called principal 

components (PC). Selecting large numbers of PCs accounts for the large variance of the 

original data matrix, which can be reduced to lower dimensions and reconstructed with 

the combinations of a few PCs. By plotting the original data with the first few PCs, the 

data can be graphically represented in a clear manner to show its inside patterns and hints 

for further analysis such as clustering and classification (Bhattacharya and Nikolaou 2013). 

By omitting those less important PCs (we usually apply Kaise’s(1960) rule to drop any 

PC which variance less than 1.0), we can save important data characteristics without losing 

much accuracy. The multiple variables can be reconstructed to fewer new linear 

uncorrelated variables, helping to reduce data space dimensions. 

 

 

Figure 2-1: 2D plot of PCA-conducted iris data 
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Figure 2-1 was generated by R, an open-source statistical software. R contains a 

sample data set called iris flower data (Fisher 1936). This data contains 50 samples of 

3 species of iris with 4 different variables (sepal length, sepal width, petal length, petal 

width). With these data, if we found a new iris flower but did not know what species it 

was, we might wish to study its sepal/petal length/width to predict. However, it’s hard to 

generate a common regression rule with 50 samples, and each has 4 variables. This gives 

us a framework for plotting PCs, which can help us solve our iris flower problem. 

A panel plot can be drawn by plotting the values of the greatest variance in accounting 

PC (PC1) on the X-axis and the second largest on the Y-axis, as in the figure above. If a 

user wishes to increase the dimensions to a 3D plot, they could plot third biggest variance 

in accounting PC (PC3) on the Z-axis, as in Figure 2-3.  

 

 

Figure 2-2: 3D plot of PCA-conducted with iris data 
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The different colors of dots show up as different species of iris. By rotating the 3D 

plot in R, we can view different panels showing the distribution of dots (samples). The 

clearest one without any overlap shows the linear uncorrelated combination of data, as in 

Figure 2-4. 

 

 

Figure 2-3: Labeled 2D plot of PCA-conducted iris data 

 

 

By the example above, we can have a perceptual intuition toward to idea of PCA. 

PCA can lower the number of variables to one or two PCs. By reconstructing the data with 

2 PCs, we can plot the PCA data, which will show the distinct difference of different iris 

flowers. 

This exact the idea of PCA is that a single variable in an observation might be hard 

to use to define samples, but by reconstructing high-dimension variables with low-

dimension PCs, we can have an aggregative indicator for defining the sample. Usually, 
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we hope this indicator has a distinct difference between different observations, as in Figure 

2-5. 

 

 

The concept of PCA can be described more clearly in math equations. Given the 

following data matrix Z (the following vectors are all row vectors), 

 Z = {𝑍1
⃗⃗⃗⃗ , 𝑍2

⃗⃗⃗⃗ , ⋯ , 𝑍𝑛
⃗⃗ ⃗⃗ } (2-5) 

After centralization, it can be represented as 

 Z = {𝑍1
⃗⃗⃗⃗ , 𝑍2

⃗⃗⃗⃗ , ⋯ , 𝑍𝑛
⃗⃗ ⃗⃗ } (2-6) 

 = {𝑍1
⃗⃗⃗⃗ − 𝑢⃗ , 𝑍2

⃗⃗⃗⃗ − 𝑢⃗ ,⋯ , 𝑍𝑛
⃗⃗ ⃗⃗ − 𝑢⃗ } (2-7) 

𝑢⃗  is the average vector that is defined by the following: 

Figure 2-4: Explanation of data variable projection to PC (Ringnér 2008) 
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𝑢⃗ =

1

𝑛
∑𝑍𝑖

⃗⃗  ⃗

𝑛

𝑖=1

 (2-8) 

Here, considering the definition of PCA, with the transformation trying to find 

maximum variables to describe data, we are looking for variables as follow: 

 1

𝑛
∑|𝑋𝑖

⃗⃗  ⃗ ∙ 𝑢𝑖⃗⃗  ⃗|

𝑛

𝑖=1

 (2-9) 

which is the same as: 

 1

𝑛
∑|𝑋𝑖

⃗⃗  ⃗ ∙ 𝑢1⃗⃗⃗⃗ |
2

𝑛

𝑖=1

=
1

𝑛
∑(𝑋𝑖

⃗⃗  ⃗ ∙ 𝑢1⃗⃗⃗⃗ )
2

𝑛

𝑖=1

 (2-10) 

 𝑋𝑖
⃗⃗  ⃗ ∙ 𝑢1⃗⃗⃗⃗ =  𝑋𝑖

𝑇𝑢1  (2-11) 

So, the target function can be expressed as follows: 

 1

𝑛
𝑢1

𝑇(∑𝑋𝑖

𝑛

𝑖=1

𝑋𝑖
𝑇)𝑢1  (2-12) 

for ∑ 𝑋𝑖
𝑛
𝑖=1 𝑋𝑖

𝑇, because 𝑋 = [𝑋1 𝑋2 ⋯ 𝑋𝑛] and 𝑋𝑇 = [

𝑋1

𝑋2
⋯
𝑋𝑛

] 

The function is finally written as: 

 1

𝑛
𝑢1

𝑇𝑋𝑋𝑇𝑢1  (2-13) 

We have two approaches to find our maximum value and its directions. 
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2.1.1 Method 1 LaGrange Method 

The target function and bound equation can be written as: 

 max{𝑢1
𝑇𝑋𝑋𝑇𝑢1} (2-14) 

 𝑢1
𝑇𝑢1 = 1  (2-15) 

if the matrix 𝑋𝑋𝑇 eigenvalue is λ and the corresponding eigenvector is ε.  

We can construct a LaGrange function: 

 𝑓(𝑢1) = 𝑢1
𝑇 𝑋𝑋𝑇𝑢1 + λ(1 − 𝑢1

𝑇𝑢1) (2-16) 

Now we can take the derivative of 𝑢1: 

 𝜕𝑓

𝜕𝑢1
= 2 𝑋𝑋𝑇𝑢1 − 2λ𝑢1 = 0 → 𝑋𝑋𝑇𝑢1 = λ𝑢1 (2-17) 

Therefore, obviously, 𝑢1 is the eigenvector corresponding to λ. 

So, the function could be written into: 

 𝑢1
𝑇𝑋𝑋𝑇𝑢1 = λ𝑢1

𝑇𝑢1 = λ (2-18) 

And the proof is that, if we wish to find the biggest variance-explanation variable, it 

should also work with the biggest eigenvalue. The direction is the eigenvector direction 

of the biggest eigenvalue. 
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2.1.2 Single-Value Decomposition Methods 

For single-value decomposition methods, the target equation is 

 𝑢1
𝑇𝑋𝑋𝑇𝑢1 = (𝑋𝑇𝑢1)

𝑇(𝑋𝑇𝑢1) 

=< 𝑋𝑇𝑢1, 𝑋
𝑇𝑢1 > 

= ‖𝑋𝑇𝑢1‖2
2 

(2-19) 

Recall that A is a random matrix: 

 ‖𝐴𝑥‖

‖𝑥‖
≤ 𝜎1(𝐴) = ‖𝐴‖2 (2-20) 

𝜎1(𝐴) is the largest eigenvalue of Matrix A. So from this, we can find the maximum 

possible value of the Matrix A eigenvalue. Now we need to define the direction: 

 𝐴𝑇𝐴 ∈ 𝐶𝑛×𝑛 (2-21) 

Suppose we have the following as their eigenvalue: 

 𝜆1 ≥ 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0 (2-22) 

The corresponding eigenvector is 

 𝜉1, 𝜉2, ⋯ , 𝜉𝑛 (2-23) 

Picking random vector x, 

 
x = ∑𝑎𝑖𝜉𝑖

𝑛

𝑖=1

 (2-24) 

So we have 

 ‖𝑥‖2
2 =< 𝑥, 𝑥 >= 𝑎1

2 + ⋯+ 𝑎𝑛
2  (2-25) 

 ‖𝐴𝑥‖2
2 =< 𝐴𝑥, 𝐴𝑥 >= (𝐴𝑥)𝑇𝐴𝑥 =< 𝑥, 𝐴𝑇𝐴𝑥 >  (2-26) 
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Substitute with 𝑥 = ∑ 𝑎𝑖𝜉𝑖
𝑛
𝑖=1 : 

 
< 𝑥, 𝐴𝑇𝐴𝑥 > = < ∑ 𝑎𝑖𝜉𝑖

𝑛

𝑖=1
,∑ 𝜆𝑖𝑎𝑖𝜉𝑖

𝑛

𝑖=1
> 

= ∑ 𝜆𝑖𝑎𝑖
2

𝑛

𝑖=1
 

(2-27) 

So we have: 

 
∑ 𝜆𝑖𝑎𝑖

2
𝑛

𝑖=1
≤ 𝜆1 (∑ 𝑎𝑖

2
𝑛

𝑖=1
) = 𝜆1‖𝑥‖2

2 (2-28) 

So: 

 ‖𝐴𝑥‖2

‖𝑥‖2
≤ √𝜆1 = 𝜎1 (2-29) 

It is obvious that when x=𝜉1, it picks it a maximum value 𝜎1.  

So  

 𝑢1
𝑇𝑋𝑋𝑇𝑢1 (2-30) 

𝑢1 is the biggest eigenvalue direction.  
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2.2 Applying PCA to Production Data Analysis 

In a former section, I introduced the basic concept and math meaning of PCA and 

PC. With the ability to lower data dimensions, PCA can be illustrative for investigating 

production rate-time data. Bhattacharya and Nikolaou (2013) first introduced this 

technique into analyzing rate-time data. They tested PCA on Holly Branch unconventional 

gas wells with approximately 1100-ft effective production length. A regression model 

based on a linear combination of principal components was found to fit the decline curve. 

The fit results errors are less than 2%, which shows a high potential value of PCA 

application to production rate-time data. This is shown in Figure 2-6. 

 

  

Figure 2-5: Actual data and PCA prediction data (Bhattacharya and Nikolaou 2013) 
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2.2.1 Rate-Time Data as Time-Series Data 

Before applying PCA to rate-time data, first we discuss whether we can apply 

principal components analysis on rate-time data. It is improper to use PCA without 

discussing its proper application ranges. To discuss this, first, the data type of rate-time 

data need be clarified.  

Rate-time data can be classified as time-series (TS) data. This type data has different 

statistical characteristics from traditional data. The traditional statistical data usually has 

following data structure (Table 2-1):  

 

 

In this table, for sample 1 to sample n, each sample has several variables, 𝑋1 to 𝑋𝑚. 

What traditional PCA is trying to do is to lower the variables in m to p linearly uncorrelated 

PCs (p <m).  

However, production rate-time data has a unique data structure for a stochastic 

sequence {𝑍1
⃗⃗⃗⃗ , 𝑍2

⃗⃗⃗⃗ , ⋯ , 𝑍𝑛
⃗⃗ ⃗⃗ }. Each of them can only acquire one observation at one arbitrary 

time step. 𝑍𝑡 is a time-related variable. This is shown in Table 2-2. 

 

Table 2-1: Traditional data structure 
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Looking at a typical unconventional gas well decline curve, the production rate-time 

shows a typical time-series data characteristic. The rates at different days are only 

observed at the given date. This is shown in Figure 2-7. 

 

  

Table 2-2: Time-Series data structure 
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Figure 2-6: Rate-time data plot 
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Those rate time data could also be a list, like Table 2-3: 

 

Table 2-3: Rate-Time data structure 

 

 

 

 

The above plot and table prove that the O&G production rate-time data can be treated 

as time-series data when applying PCA. 

 

2.2.2 Rate-Time Data Influence Factors 

After defining the statistical category of rate-time data, we also need to investigate 

the data given other than rate-time data. Usually, when we assess a certain well in certain 

fields, we can locate the following data:  

 Rate-time data. These data are usually continuous and reliable. They may 

contain some outliers and noise, which are caused by measurement error or 

instrumental error. 

 Pressure data. As explained in the literature review, pressure data may not 

be continuous, and their value is doubtful. In some cases, due to maintenance 

or shut wells, those data may not be acquirable.  

 Well-design data. Those data contain well depth, design diagrams, casing 

size, horizontal length, etc.  

t_1

1

r(t_1)

Rate
Well

𝑡1 𝑡2 ⋯ 𝑡𝑛

r(𝑡1) r(𝑡2) r(𝑡𝑛)⋯
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 Reservoir characteristics. Data usually contains initial pressure, reservoir 

temperature, net pay, porosity, gas saturation, permeability, fracture 

conductivity, and fracture half-length.  

 

To understand these data and make physically reliable production forecasts, we need 

to review the drive mechanism that controls production rate and decline trends. Wang   

(2016) provided a comprehensive review and judgment on shale gas production patterns. 

Those factors/mechanisms include: 

 Adsorption gas desorption  

 Apparent permeability of the shale matrix 

 Nonstimulated reservoir volume 

 Fracture network conductivity  

From those control factors, we find that, to understand the rate-time data, the 

reservoir data should include fracture half-length, fracture conductivity, permeability, 

porosity, and initial pressure. Those parameters control the decline trends and production 

rates. 
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2.2.3 Math Fundamentals of Applying PCA 

This section introduces the math fundamentals of principal components analysis into 

production rate-time data analysis. Because well-production rate-time data can be treated 

as time series data, we can combine multiple wells into a data matrix. 

Suppose we have n wells and m producing days. m days are simultaneous on each 

well among n wells. For each well we have: 

 [𝑟(𝑡1) 𝑟(𝑡2) … 𝑟(𝑡𝑚)] （2-31） 

where 𝑟(𝑡𝑖) means the production rate on arbitrary i day.  

Listing each well on each row, we have  

 

[

𝑟1(𝑡1) 𝑟1(𝑡2) ⋯ 𝑟1(𝑡𝑚)
𝑟2(𝑡1) 𝑟2(𝑡2) ⋯ 𝑟2(𝑡𝑚)

⋯ … ⋮ ⋮
𝑟𝑛(𝑡1) 𝑟𝑛(𝑡2) … 𝑟𝑛(𝑡𝑚)

]

𝑛×𝑚

 （2-32） 

We can write this matrix as follows: 

 [𝑍]𝑛×𝑚 （2-33） 

From the concept of singular value decomposition, for arbitrary matrix A, we can 

write it as: 

 𝐴 = 𝑈Σ𝑉𝑇 （2-34） 

where 𝑈𝑛×𝑛 is an n×n unitary matrix, Σ𝑛×𝑚 is an n×m rectangular diagonal matrix (the 

element on diagonal is eigenvalue of matrix A), 𝑉𝑚×𝑚
𝑇  is an m×m unitary matrix and also 

the conjugate transpose matrix. 

 

In our case, data matrix Z can be express as: 
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 [𝑍]𝑛×𝑚 = 𝑈𝑛×𝑛Σ𝑛×𝑚𝑉𝑚×m
𝑇   (2-35) 

 

Σ𝑛×𝑚 = [
𝜆1

⋱
𝜆𝑛

]  (2-36) 

 𝜆𝑖 is the i th eigenvalue of matrix Σ and: 

 𝜆1 ≥ 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0  (2-37) 

From the definition of PCA, we know that: 

 [𝑍]𝑛×𝑚 = 𝜆1[𝑢1]𝑛×1[𝑉1
𝑇]1×𝑚 + ⋯

+ 𝜆n[𝑢n]𝑛×1[𝑉𝑛
𝑇]1×𝑚 

= 𝑃𝐶1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝑃𝐶𝑛[𝑉𝑛

𝑇]1×𝑚 

(2-38) 

 𝑛 = 𝑟𝑎𝑛𝑘 (𝑍) (2-39) 

So, by selecting r eigenvalues that could explain enough variance, we have: 

 𝜆1 ≥ 𝜆1 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0  (2-40) 

 [𝑍] ≈ [𝐾] = 𝜆1[𝑢1]𝑛×1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝜆r[𝑢r]𝑛×1[𝑉𝑟

𝑇]1×𝑚 

= 𝑃𝐶1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝑃𝐶𝑟[𝑉𝑟

𝑇]1×𝑚 

(2-41) 

 𝑟 = 𝑟𝑎𝑛𝑘 (𝐾) (2-42) 

 𝑟 < 𝑛 (2-43) 

Therefore, the data matrix has been successfully lowered in dimensions from n to r. 

For the ith well in the data matrix until j time steps 

 well𝑖 = 𝑃𝐶1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝑃𝐶𝑝[𝑉𝑗

𝑇]
1×𝑚

 

 

(2-44) 
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2.3 PCA Functions to Rate-Time Data 

For the function of PCA, Bhattacharya and Nikolaou (2013) proposed questions that 

could be answered with PCA. 

 How to do factor analysis? 

 How to do clustering? 

 How can learning from existing wells be applied to predict new wells? 

Besides those three questions, PCA also can detect outliers in time-series data. 

Outliers are observations performed differently than other observations, or they might be 

due to measurement error or human record error. However, those outliers need to be 

removed from the dataset. By combing k-nearest neighbor with PCA, this method can also 

remove outliers. So, PCA can also answer a new question: 

• How to remove outliers/noise?

This section provides a fundamental and essential review of the algorithm for the 

next step. First, I review the factor analysis of PCA. Second, I explain the combination 

method of k-means clustering with PCA process data. Third, I introduce the linear 

regression model. In the end, I illustrate the approach of combing k-nearest neighbor and 

PCA. 
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2.3.1 Factor Analysis 

Principal components analysis can include analysis of either the rate-time data alone 

or rate-time data combined with reservoir characteristics. Usually, we need a complex 

geological model or analytical model to investigate the influence of reservoir 

characteristics. PCA can give us a new way to investigate the dynamic influence of 

reservoir characteristics on production rate. This section provides the mathematic 

fundamentals of factor analysis with PCA. 

Suppose PCA can generate m PCs from p original variables by m linear combinations. 

We have 𝑥  as a 𝑝×1 random vector; its mean equals 𝜇, and its covariance matrix equals 

Σ = (𝜎𝑖𝑗). 𝑥  is affected by k factors. So 𝑥  could be express by the following equation: 

 𝑥 = 𝜇 + Λ𝑓 + 𝑢⃗  (2-46) 

where: Λ= 𝑝×𝑘 is a constant-number matrix. 

𝑓 = 𝑝×𝑘, 𝑢⃗ = 𝑝×1 is a random vector. 𝑓  is called a public factor. 𝑢⃗  is called the 

factor-loading matrix. To do factor analysis, we need the relationship equation as follows: 

 Σ =∧∧′+ Ψ (2-47) 

where Σ is the covariance matrix of the original data matrix and Ψ is the covariance matrix 

of the original factor loading matrix. So we have: 

 x =  𝜇 + (ΛΓ)(Γ′𝑓 ) + 𝑢⃗  (2-48) 

Here, ΛΓ is the new loading factor matrix, and Γ′𝑓  is the new factor. 

So we can transform our initial matrix x to generate a new, easy-to-explain factor and 

observe how those factors contribute to rate-time data performance. 
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2.3.2 K-means Clustering with PCA 

In the application of Principal Components analysis, there is an important part called 

clustering. After PCA, rate-time data for multiple wells can be reduced to low-dimension 

space. To judge their distribution and find which wells perform similarly, we need to do 

clustering.  

The definition of clustering varies by algorithm. In general, clustering means placing 

those that behave similarly in one cluster and those that are different in other clusters. A 

widely-applied clustering algorithm is called k-mean clustering. In k-mean clustering, we 

define k points in data space, and build clusters to categorize nearest observations. The 

steps can be listed as follows (MacQueen 1967): 

1. Determine the number of clusters k      

2. Generate arbitrary k cluster and determine the cluster’s center 

3. Calculate cluster’s center for each observation 

4. Recalculate the new cluster’s center 

5. Repeat these steps until cluster centers do not change 

An important step in clustering is calculating the distance among points. In Euclidean 

space, we use Euclidean distance to judge their distance: 

If 𝑗 = (𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑛) and 𝑘 = (𝑘1, 𝑘2, 𝑘3, ⋯ , 𝑘𝑛) their distance is: 

 𝑑(𝑗, 𝑘) = 𝑑(𝑘, 𝑗) = √(𝑗1 − 𝑘1)2 + (𝑗2 − 𝑘2)2 + ⋯+ (𝑗𝑛 − 𝑘𝑛)2 

= √∑(𝑗𝑖 − 𝑘𝑖)2

𝑛

𝑖=1

 

(2-49) 
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In our processing of rate-time data. Usually, we can represent data in a 2D panel 

(Bhattacharya and Nikolaou 2013), as in Figure 2-8. 

Figure 2-8 shows a real case of 13 unconventional gas wells represented by first and 

second PCs in a scatter plot. Because of limited data, this plot shows a relatively 

concentrated distribution. Most wells could be clustered into 1 cluster. However, in most 

cases, we need figure out a more dispersed situation. So we need to investigate the math 

fundamentals of k-means clustering. 

Figure 2-7: Scatter plot of 13 wells with 2 PC panel 
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Suppose we have N data points divided by k clusters. Our target function is 

 

 

(2-50) 

It is same as finding the minimum of the center of clusters with 

 

 
(2-51) 

When we begin our calculation, the distance between points is: 

 
𝐷𝑖

(𝑡)
= ｛𝑥𝑝: ‖𝑥𝑝 − 𝑚𝑖

(𝑡)‖
2

≤ ‖𝑥𝑝 − 𝑚𝑗
(𝑡)‖

2

∀j, 1 ≤ j ≤ k (2-52) 

On each updating step, the new center is calculated as: 

 

 

(2-53) 

 

2.3.3 K-nearest Neighbor Outliers Detection 

Outliers and the approach to remove them are important to data processing. 

Numerous technical papers have addressed the essentiality for removing outliers in data 

preparation (Chaudhary and Lee, 2016a, b, Seidle 2016). Researchers argue that outliers 

can decrease diagnostic value and prediction reliabilities. Therefore, in our process to 

evaluate unconventional gas well rate-time data, it is critical to remove them before we 

make predictions (Figure 2-9). 
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Figure 2-8: Field data containing outliers (Chaudhary and Lee 2016) 

 

 

The definition of outlier given by Hawkins (1980) is an observation deviating so 

much from most other observations. It contains two points: 

 It departs a great deal from mainstream data. 

 It appears to have been generated by a mechanism other than random error. 

We can remove and recognize those outliers by applying k-nearest neighbor (K-NN) 

together with PCA, as shown in Figure 2-10. 

 

Figure 2-9: Workflow of PC K-NN outlier recognition 
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First, the distance of K-NN, k-dist(q), can be defined as follows:  

 At minimal k points o ∈ D \{p}, 𝑑(𝑝, 𝑜) ≤ 𝑘 − dist(𝑝) 

 At maximum k-1 points o ∈ D \{p}, 𝑑(𝑝, 𝑜) ≤ 𝑘 − dist(𝑝) 

 

This is illustrated in Figure 2-11: 

 

Figure 2-10: When k=3, k-dist(p)=d(p,o) (Guo, Li, and Song 2012) 

 

Then, we can calculate the local reachability distance: 

 
lrd(q) =

𝑘

∑ 𝑟 − distk(𝑞, 𝑝)𝑝∈𝐾(𝑞)
 (2-54) 

Finally, we need to calculate the local outlier factor: 

 
LOF(𝑞) =

∑ lrd(𝑞)𝑝∈𝐾(𝑞)

𝑘 ∗ lrd(𝑞)
 (2-55) 
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LOF(q) value reflects the sparsity situation in q points of k domain. The higher the 

LOF(q) value, the higher sparsity will be in this local domain. After we calculate the LOF, 

we can apply the advantage of PCA to reduce the original data dimensions and generate a 

clear recognition of outliers (Figure 2-11). 

 

Figure 2-11: PC K-NN recognition on US arrest data 

 

  



 

42 

 

2.3.4 Linear Regression Model 

The build-up of prediction models has following workflow (Figure 2-13): 

 

 

When only limited amounts of rate-time data from producing wells are available, as 

less than 30 wells, we prefer using a linear regression model to catch to the pattern of 

production history. In this case, the model is efficient and precise. 

As we have shown, 

 [𝑍]𝑛×𝑚 ≈ [𝐾] = 𝜆1[𝑢1]𝑛×1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝜆r[𝑢r]𝑛×1[𝑉𝑟

𝑇]1×𝑚 

= 𝑃𝐶1[𝑉1
𝑇]1×𝑚 + ⋯+ 𝑃𝐶𝑟[𝑉𝑟

𝑇]1×𝑚 

(2-56) 

The production data matrix can also be expressed by several PC and loading matrixes. 

Therefore, it can be written as: 

 𝑞𝑡 = 𝛽1𝑃𝐶1𝑉1
𝑇 + 𝛽2𝑃𝐶2𝑉2

𝑇 + 𝛽3𝑃𝐶3𝑉3
𝑇 (2-57) 

The approximation is shown in Figure 2-14. 

Figure 2-12: Workflow of PC prediction 
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Figure 2-13: Prediction results of linear regression 

 

In our processing of data, we have two ideas for testing the quality of prediction. In 

one case, the linear regression parameter is learned from the whole data matrix. In another 

case, the linear regression parameter is learned from the clustered data. By comparing the 

R square value, we can figure out the optimal regression parameter. 
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CHAPTER III  

APPLYING PCA ON SIMULATION DATA  

The first step is testing PCA on simulation data to establish a predictive model. The 

reason for using simulation data first is that it is usually smoother and has fewer outliers 

or noise than real field data.  

The simulation data was generated by Kappa Ecrin. Kappa is a world-famous well 

testing interpretation software providing service from history matching to dynamic data 

analysis. Ecrin is a module built inside Kappa software that can be used for simulating 

wells performance. The operation window is shown in Figure 3-1. 

 

 

Figure 3-1: Kappa Ecrin operation window 
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3.1 Simulation Data Generation 

In our case, the simulation data was generated from the following parameters: 

permeability, porosity, half-length, fracture conductivity and formation pressure. The 

ranges of those parameters are listed in Table 3-1 and Figure 3-2. 

 

Table 3-1: The range of setting parameter  
Permeability, 

md 
Porosity Half Length, 

ft 
Frac Conduct, 

md-ft 
Pressure, 

psia 
Max 0.1125 0.095371 433.4508 406.1634 6000 
Min 0.0017 0.069167 94.6663 84 3460 

 

 

Figure 3-2: The setting parameters for each well 
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The simulation data contain 100 wells, and each has 2000 days of production history. 

That would be sufficient for building a testing interpretation and prediction center (Figure 

3-3). 

 

 

3.2 Workflow of Applying PCA 

From these twp techniques, we can move to the establishment of our predictive model. 

The overall workflow can be expressed as in Figure 3-4. 

 

Figure 3-4: Workflow of simulation data 
 

Figure 3-3: Production history for 100 wells plotted in semi-log plot 
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After we generated the data from Kappa Ecrin, the first step was to sort it into a data 

matrix. Because principal component analysis/singular value decomposition (PCA/SVD) 

can only be conducted with data as a matrix, in statistical software R, we can use the 

function as.matrix() to change the data type. The data matrix is established in the 

following manner: the n wells are listed by rows, and each daily production rate is listed 

by column. Currently, our model can only analyze the information from the rate-time 

matrix. However, other data such as pressure data, log data, wellbore design diagram and 

fracture procedure could also be used in data mining with PCA.  

The next step is conducting PCA of the data matrix. In R, we can use function svd() 

to decompose the data matrix with three matrixes. 

 [𝑍]𝑛×𝑚 = 𝑈𝑛×𝑛Σ𝑛×𝑚𝑉𝑚×m
𝑇  (3-1) 

The workflow of PCA can be described as in Figure 3-5: 

 

The 𝑉𝑚×𝑚
𝑇  is the eigenvector matrix consisting of principal components. We can 

extract PCs from this matrix by listing their variance and picking desirable amounts of PC. 

The amounts of PC are usually defined by a scree plot.  

Figure 3-5: The work flow of PCA 
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A scree plot can display the variance of PC on the y-axis and their indexes on the x-

axis. By applying the elbow criterion, we can define the desired amounts of PC used in 

building up of the predictive model. This is shown in Figure 3-6. 

 

  

Figure 3-6: Scree plot of principal components 
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The elbow criterion (Ketchen and Shook 1996) is a way to pick up the proper number 

of clusters. It can also be applied in defining the number of principal components. The 

elbow means the point of the change in gradient—the point where not much variance 

would be added when adding more clusters or principal components. This is shown in 

Figure 3-7. 

 

 

Figure 3-7: Illustration of elbow criterion 
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Another useful figure to define the number of principal components is a pareto plot. 

The y-axis is the accumulation of variance; the x-axis is the number of principal 

components or clusters. From Figure 3-8, we can see that when it goes to PC 4, not much 

variance would be added by increasing PC amounts.  

 

Figure 3-8: Example of pareto plot 
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Clustering is also an important technique that can be used with PCA. In our study, a 

clustering algorithm is chosen as k-means. The user can define the desired amounts of k, 

which is the reason for the name k-means. The number of k is usually defined by a WCSS 

(within-cluster sum of squares) plot and also with the elbow criterion.  

The combination of PCA and k-means can be used for defining the performance 

distinction between different wells. In Figure 3-9, 100 wells are clustered into 4 clusters. 

Each cluster is represented by different color. Each different well in the plot is defined by 

its scores in PC1 and PC2.  

 

  

 

Figure 3-9: Illustration of k-means and PCA combination  
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3.3 Case Study of Simulation Data 

The simulation data for 100 shale gas wells each with 2,000 days of production 

history can be used to establish a data matrix. The data matrix lists wells by row and 

production by column. This is shown in Table 3-2. 

 

Table 3-2: Simulation data matrix 

 Day1 Day2 … Day 2000 

Well 1 268369.7993 164624.7104 … 1332.686 

⋮ ⋮ ⋮ ⋱ ⋮ 

Well 100 135382.0989 86176.6028 … 1303.603 

 

 

After the establishment of the data matrix, we can conduct SVD on it. By plotting the 

eigenvalue of the data matrix, we create the scree plot (Figure 3-10). 

 

Figure 3-10: Scree plot of the simulation data matrix 
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We can also plot the pareto plot to look at the desirable number of PCs. This is 

shown in Figure 3-11. 

 

 

By applying the elbow criterion, choosing four principal components would be 

enough for explaining the variance of the whole matrix. The accumulation variance goes 

to 99.93% of the whole matrix variance. In this way, we can reduce the matrix from 100 

dimensions to 4 dimensions while not losing its important features and information.  

Figure 3-11: Pareto plot of the simulation data matrix 

 



 

54 

 

 

Figure 3-12: 2D visualization of PCA results 

 

Figure 3-12 is a plot of 100 wells by their scores on PC1 and PC2. Two principal 

components would account for 98.75% of the variance of the matrix. This figure can give 

the audience a visualized understanding of well performance distribution.  

We can also plot it in 3D; Figure 3-13 illustrates a similar distribution as Figure 3-

12: 

 

Figure 3-13: 3D visualization of PCA results 
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From these two figures, we find that parts of wells look closer than others. We can 

apply the k-means clustering algorithm on the dimension-reduced result to validate this 

assumption. Before applying k-means, we first need to determine the number of k from 

the WCSS plot in Figure 3-14: 

 

  

Figure 3-14: WCSS plot of simulation data 
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By applying the elbow criterion, we find that six would be a desirable number of 

components. The result of k-means is illustrated in Figure 3-15. 

 

 

 

Figure 3-15: 2D K-means clustering of simulation data 
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The clustering result is displayed in Table 3-3. 

 

 

Table 3-3: Clustering result of simulation data 

 

 

 

  

19 32 42 45 57 59 63 64 69 70

72 73 76 79 81 82 83 90 96 97

3 6 18 27 29 33 37 38 44 46

49 50 61 65 66 67 68 75 80 85

86 89 92 93

1 4 8 13 15 17 21 58 87 56

24 25 39 40 43 48 51 54

2 7 9 10 16 20 84 91 94 99

28 31 34 36 41

5 11 12 14 22 23 26 60 62 71

30 35 47 52 53 55

6 74 77 78 88 95

1

3

4

5

2
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We could also plot this with 3 PCs and remain unchanged (Figure 3-16). 

 

 

Figure 3-16: 3D k-means clustering of simulation data 

 

 

With the PC dimension reduction, we can also investigate the effect of different 

variables on the performance of wells and acquire a visualization. This is called factor 

analysis. When we combine the input data (formation parameter) and output data (rate-

time data) and explain it by PC, we have Figure 3-17. 
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Figure 3-17: Factor analysis of simulation data 

 

Now, we can build the predictive model with the clustering results and PCA data. 

From Chapter 2, we know that each well in the data matrix can be explained by several 

principal components that we have: 

 𝑞𝑡 = 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2 + 𝛽3𝑃𝐶3 + ⋯+ 𝛽𝑛𝑃𝐶𝑛 (3-2) 

In our case, the number of n is defined as 4, so each well from the data matrix can be 

explained by the following equation: 

 𝑞𝑡 ≈ 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2 + 𝛽3𝑃𝐶3 + 𝛽4𝑃𝐶4 (3-3) 

The prediction matrix can be explained as follows: 

 [𝑍prediction] = [βcoefficent matrix][𝑃𝐶eigenvector matrix] (3-4) 
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The linear coefficient matrix is defined by the partial least squares (PLS) technique. 

It can be done in R using the lm() function. It allows the ith row in data matrix Z to be 

written as follows:  

 𝑍𝑖 ≈ 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2 + 𝛽3𝑃𝐶3 + 𝛽4𝑃𝐶4 + 𝑐 (3-5) 

c is the intercept. 

By calculating the intercept, we have the coefficient matrix as follows: 

 

𝛽coefficent matrix = [

𝛽1,1 𝛽1,2 𝛽1,3 𝛽1,4

⋮ ⋮ ⋱ ⋮
𝛽100,1 𝛽100,2 𝛽100,3 𝛽100,4

]

100×4

 (3-6) 

The prediction result is validated by manual examination of the percentage of overlap 

with the original data and 𝑅2 . 𝑅2  is an indicator reflecting how well the variance of 

dependent variables can be predicted from predictor variables. It is widely applied in the 

examination of linear regression. 

First, we train this predictive model by fitting the data themselves. This validates the 

ability of principal components regression to reconstruct the data from only a few 

variables. The input data is the whole simulation data matrix, and we choose four principal 

components.  
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The prediction result is plotted in Figure 3-18: 

 

 

Figure 3-18: Self-fit principal components regression 

 

 

We can see most wells get near 1.0 𝑅2, which means their variance can almost be 

explained with our four principal components. This is reasonable because most curves are 

smooth and without noise or outliers. We can plot the prediction results and original curve 

in the same plot to see their overlap ratio. Well 12 is the lowest scoring well in all 100 

wells; it has 0.97 𝑅2.  

The well 12 prediction results and the original curve are compared in Figure 3-19. 

From this figure, we can see that the prediction result fits with an original curve most of 

the time but has a difference in the transient period.  
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Figure 3-19: Prediction results and original curve of well 12 

 

Then, as we formerly proposed, the addition of k-means clustering should enhance 

the prediction results and R squared score. This time, we trained the model with data from 

different clusters but all with 2000 days of production. The predictive model was then 

used to predict the original curve with four principal components.  
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 Figure 3-20 is the predicted result. 

 

 

 

Figure 3-20: Prediction result at Clusters 1, 2, 3, 4, 5, and 6 
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We summarize the resultS of k-means plus principal components linear regression 

in Table 3-4. 

 

 
Table 3-4: 𝑹𝟐 summary of k-means and PCR 

 

 

 

From the summary figure, we find that: 

• Using only a few principal components can precisely catch the hidden 

patterns of the unconventional gas well’s decline curve. 

• Linear regression with few principal components can reconstruct the decline 

curve, neatly fitting the original curve. 

• With the addition of k-means clustering, the prediction result has an 

increasing 𝑅2 score.  
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3.4 Performance Forecasting with PCA 

Besides fitting history data with principal components, industries are interested in 

another ability of PCA: capturing the hidden patterns from wells with long production 

histories and forecasting new well performance. 

As discussed above, the optimal number of principal components was chosen as 4. 

At first, by random sampling, we separated 80 wells as the training set. This was done 

with the sample() function of R. Then we extracted 4 PCs from the training data matrix 

(80 rows, 2000 columns).  

Then, we calculated the coefficient matrix from the testing data matrix. This was 

done by applying least squares regression between the original data matrix and first 4 rows 

of the transposed eigenvector matrix. We used the lm() function in R. For the testing set, 

we used two conditions (300 days, 200 days) to do a sensitivity analysis. 
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3.4.1 Condition 1: Testing Set With 300 Days 

The coefficient matrix of 300 days is listed in Table 3-5. 

 

Table 3-5: Coefficient matrix of condition 1 

 

 V1 V2 V3 V4 

well 1 -418292 -5324.84 32257.76 5236.338 

well 2 -382472 -40490 17620.8 1957.607 

well 3 -445911 -24257.6 18944.29 3300.045 

well 4 -340760 -75951.2 10693.21 -14780.7 

well 5 -456313 -1026.13 50254.94 -3310.18 

well 6 -270626 -91376.2 -21085.7 -19450.9 

well 7 -207099 -52697.5 -52803.9 -1787.96 

well 8 -358113 -34555.7 8854.801 6391.824 

well 9 -489051 43370.92 19046.94 -7217.47 

well 10 -222266 -20344.2 -8639.12 7589.838 
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Then we used the first four PCs to multiply it and get the prediction result. The fitting 

results are shown in Figures 3-21, 3-22, and 3-23. 

 

 

Figure 3-21: Prediction results from testing set condition 1 
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Figure 3-22: Wells 1-9 comparison 
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Figure 3-23: Wells 10-19 comparison 
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3.4.2 Condition 2: Testing Set With 200 Days 

In condition 2, we reduced the testing set to 200 days. The training set is still the 

same 80 wells with 2000 days of production time. By reducing production history, we can 

test the robustness and capability of linear principal components regression. This is shown 

in Table 3-6. 

 

Table 3-6: Coefficient matrix of condition 2  
V1 V2 V3 V4 

1 -401467 -8814.78 -36794.7 -6839.53 

2 -378519 27789.65 -14728.9 -832.165 

3 -428589 12683.23 -29028.7 -3724.8 

4 -359574 58508.95 19881.21 5425.119 

5 -439935 -21909.2 -47467.1 -11648.6 

6 -272817 81532.52 16321.76 -8095.79 

7 -193059 64320.32 25034.27 -6021.51 

8 -351469 26974.9 -11169.9 4903.497 

9 -477806 -46541.8 8690.307 8664.429 

10 -213364 22184.65 -1650.64 2609.787 

 

 

The R-square scores were also calculated, as  shown in Figure 3-24. 

 

Figure 3-24: Prediction results of testing set condition 2 
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We can examine the results in Figures 3-25 and 3-26. 

 

Figure 3-25: Wells 1-12 comparison condition 2 
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From the above figure, we can find that when learning history is decreasing, the 

prediction result is affected. The linear regression of Principal Components still shows the 

ability to catch the performance patterns and fit the original curve. 

 

Figure 3-26: Wells 13-20 comparison condition 2 
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3.5 Conclusion 

In this chapter, we tested the ability of PCA and linear regression with simulation 

data. The testing result proves that PCA can effectively reduce original data matrix 

dimensions and reconstruct the matrix from a few principal components.  

We also tested the ability of linear regression to predict the performance of new 

producing wells with a short history. Linear regression of the principal components 

learned the curve of performance history from the pattern from producing wells with long 

histories. Even with short-term history, PCA extracted hidden patterns and found the 

coefficient matrix. This coefficient matrix can convey the information for predicting a 

well’s longer future performance.  
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CHAPTER IV  

APPLYING PCA ON FIELD DATA 

After testing PCA and linear regression methods on simulation data, in this chapter, 

we verified the model on field data. Different from simulation data, field data usually are 

subject to real production situations and therefore harder to predict. Because we had 

successfully used simulation data to validate PCA, which learned from the very early 

production stage and acquired a good fit for prediction, we wanted to prove the ability of 

PCA to predict real production data.  

The data decline curve is shown in Figure 4-1. Most of those wells are horizontal 

wells stimulated with a multistage hydraulic fracture. 

 

Figure 4-1: Field data decline curve 

 



 

75 

 

The producing length varied from a minimum of 45 months to a maximum of 93 

months. The histogram is shown in Figure 4-2. Data were collected from online public 

access datasets.  

 

 

  

Figure 4-2: Histogram of producing length 
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The wells were selected from adjacent counties: McMullen, Webb, Dewitt, Bee, and 

Karnes. The data has the following information: monthly production, API gravity, location, 

operator, and owner. No further production design or geological information is available. 

The operating area is shown in Figure 4-3. 

 

 

 

Figure 4-3: Wells located in adjacent counties 

  



 

77 

 

4.1 Date Pre-Processing 

The original 100 wells each started producing at a different date. We eliminated the 

first few months’ data before the wells reached their peak. The data matrix was established 

with only a partial decline history.  

 Before using PCA, we pre-processed the original data matrix to make it smoother. 

We chose a popular algorithm in well testing called the Bourdet derivative. It can  

approximate a day’s production rate from monthly accumulated production. The 

comparison between the original wells’ decline curves and the Bourdet derivative decline 

curves are illustrated in Figures 4-4 and 4-5. 

 

 

Figure 4-4: Original decline curve of well 88 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Bourdet derivative curve of well 88 
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After applying the Bourdet derivative algorithm to the original data matrix, we had a 

smoother data matrix, plotted as Figure 4-6. 

 

 

Figure 4-6: Bourdet derivative data matrix 
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4.2 Workflow of Applying PCA 

 The general workflow on field data is similar to that for simulation data. It has the 

following steps: 

1. Split data between the training set and the testing set 

2. Apply PCA to both the training set and the testing set 

3. Decide the number of PCs  

4. Establish a coefficient matrix from the testing set (linear regression) 

5. Establish a 𝑉𝑡 matrix from the eigenvector matrix in the training set 

6. Predict results from 𝑍estimate = 𝜃×𝑉𝑡 

However, there are still some differences between simulation data and field data. The 

first thing is the split of the training set and testing set. In simulation data, all wells have 

the same production history. The split is conducted by random sampling. In field data, 

only a few wells have the longest production history. This is shown in Figure 4-7. 

 

Figure 4-7:  Field data matrix production length 
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In this case, the size of the training sets varied by the length of wells’ production 

history. For example, the longest well has 93 months of production history. If we set this 

well as the only training set, many of testing wells would not have a good fit with the real 

situation. So, we need multiple training set samples to ensure we have a balance between 

the size of the training set and the length of production history.  

▪ Training 1: 3 wells, 86 months 

▪ Training 2: 20 wells, 79 months 

We order all wells by their production length. Training set 1 contains the first 3 

longest wells; all have 86 months of production history. Training set 2 contains the first 

20 wells that all have 79 months of production history. Training set 1 has a relatively small 

sample for training (3% of the total wells) while training set 2 has a larger sample for 

training (20% of the total wells). 

Also, we set up multiple testing sets with different production times. The industry 

wishes to have a production forecasting of new wells with limited production history. 

Therefore, we established five different testing sets to establish a sensitivity analysis. 

▪ Testing 1: 100 wells (all), 45 months 

▪ Testing 2: 100 wells (all), 24 months 

▪ Testing 3: 100 wells (all), 18 months 

▪ Testing 4: 100 wells (all), 12 months 

▪ Testing 5: 100 wells (all), 6 months 
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4.3 PCA Prediction Model on Field Data 

 The decline curves of training set 1 are shown in Figure 4-8. 

 

Figure 4-8: Decline curves of training set 1 

 

The decline curves of training set 2 are shown in Figure 4-9: 

 

Figure 4-9: Decline curve of training set 2 
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Conducting PCA on both training 1 and training 2, we constructed the scree plot in 

Figures 4-10 and 4-11. 

 

Figure 4-10: Scree plot of training set 1 

Figure 2 Scree plot of training set 2 

Figure 4-11: Scree plot of training set 2 
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So, for training set 1, which has only 3 principal components, we took all of them. 

For training set 2, we used the elbow criterion and took four principal components (95.32% 

variance). 

We plotted five testing set decline curves (Figure 4-12). 

 

 

  

Figure 4-12: Decline curve of testing set 1 to 5 
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We conducted PCA on them and created the scree plots shown in Figure 4-13. We 

observe that from testing 1 to testing 5, four principal components would be enough to 

account for matrix variance.  

 

Figure 4-13: Scree plot of testing sets 1 to 5 

 

 

4.3.1 Prediction from Training Set 1 

 The coefficient matrix of testing sets 1 to 5 was established by using linear least 

squares regression between the data matrix and the four principal components of the 

testing set matrix. The coefficient matrix was then multiplied with the principal 

components of the training set matrix, and the prediction results were generated. 

 [Z]Test ≈ [β]coefficient×[Vtest,1
T Vtest,2

T Vtest,3
T ] (4.1) 

 
{

[Z]Train 1 = U×Σ×[Vtrain 1,1
T Vtrain 1 ,2

T Vtrain 1,3
T ]

[Z]Train 2 = U×Σ×[Vtrain 2,1
T Vtrain 2 ,2

T Vtrain 2 ,3
T Vtrain 2 ,4

T ]
 

 

 (4.2) 
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{

[Z]predict 1 = [β]coefficient×[Vtrain 1,1
T Vtrain 1 ,2

T Vtrain 1,3
T ]

[Z]predict 2 = [β]coef×[Vtrain 2,1
T Vtrain 2 ,2

T Vtrain 2 ,3
T Vtrain 2 ,4

T ]
 (4.3) 

 

 We conducted the same linear regression on 100 wells with the same training set 

(3 wells, 88-month production history) on 4 different testing sets (first 24/18/12/6 months). 

Because of the size of samples (100 wells, 4 different sets), the majority of comparisons 

are listed in Appendix A. Here, we only pick 8 wells for illustration. Those wells are well 

5, well 20, well 30, well 50, well 65, well 75, well 80 and well 95. The red line is the 

original curve while the black line is the predicted curve. The fits are shown in Figure 4-

14 to Figure 4-18. 
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Figure 4-14: Testing set 1 (45 months) 
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Figure 4-15: Testing set 2 (24 months) 
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Figure 4-16: Testing set 3 (18 months) 
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Figure 4-17: Testing set 4 (12 months) 
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Figure 4-18: Testing set 5 (6 months) 
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Figure 4-19 is the log-log plot of the 8 wells. 

 

Figure 4-19: Log-log diagnostic plot of sample wells 
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By comparing the 400 cases (100 wells in 4 testing sets), we find that: 

1. Prediction result accuracy has a positive correlation with the length of input 

time. With the increasing production time of the testing set, prediction results 

have visible improvement. 

2. Testing only data in the linear flow period can also give PCA regression 

reasonable certain prediction accuracy.  
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4.3.2 Prediction from Training Set 2 

 Training set 1 included only the three longest-producing wells to learn their history. 

This might be too few samples. Therefore, in training set 2, we increased the sample to 20 

wells (79 months of history).  

Some of the sample wells and their prediction results appear in Figures 4-20 to 4-24. 

 

Figure 4-20: Testing set 1 (45 months) 
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Figure 4-21: Testing set 2 (24 months) 
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Figure 4-22: Testing set 3 (18 months) 
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Figure 4-23: Testing set 4 (12 months) 
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Figure 4-24: Testing set 5 (6 months) 
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Because of the increased number of wells, we supposed that the prediction results 

should have an enhanced performance. However, by only applying the linear regression 

of the PCA prediction method, some of the production forecasting for the test wells shows 

an even worse fit than results in training set 1. This is shown in Figure 4-25. 

 

Their distribution in plots is calculated by k-means clustering. Different colors of 

points represent different clusters. By investigating the clustering result, we saw both 

training set 2 and the field dataset showing a varied distribution of each well’s 

performance.  

  

Figure 4-25: Field dataset k-means clustering 
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By only picking those wells with longest production history, the historical pattern 

would not fit the new wells’ decline trends. If we wish apply linear regression of PCA to 

predict new wells, new wells should have history data similar to the same cluster (Figures 

4-26 and 4-27).  

 

Figure 4-26: Training set 2 k-means clustering 
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Figure 4-27: Each cluster wells decline curve 

 

To verify this hypothesis, we conducted the prediction with clustered data. For each 

cluster, according to their size, we pick the first wells to have production history longer 

than 79 months as a training set, which included the longest 12, 3, 3, and 6 wells for 

clusters 1, 2, 3, and 4. The length of 79 months was picked to keep continuity with the 

former training set 2 predictions. For cluster 3, because of its relatively small size, we 

reduced the required training length from 79 months to 74 months so it could have 3 wells 

for training instead of only one well. 
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The same prediction method was applied to generate prediction results. Principal 

components were learned from the training set in each cluster. The linear regression 

coefficient of principal components was calculated from each different well. The only 

difference was that each cluster of the dataset had its own training set. In this way, new 

wells could be predicted with patterns learned from similar history datasets.  

In the following comparison, we also did a sensitivity analysis with the numbers of 

principal components. In some cases, a scree plot might have had an ambiguous turn point, 

which makes it hard to use the elbow criterion. So we compared the prediction results after 

applying three principal components and five principal components. We found that  

increasing the number of principal components gave the prediction result an enhanced fit, 

especially to some wells that had fluctuations in early production history.  
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 The prediction results are shown in Figures 4-28 and 4-29. 

 

Figure 4-28: Learn 45 months history to predict 79 months (3PC) 
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Figure 4-29:  Learn 45 months history to predict 79 months (5PC) 
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4.4 Discussion of k-Means Physical Meaning 

 Both k-means clustering and PCA are well-recognized techniques in machine 

learning and statistics. In Chapter 2, we discussed their mathematicas meanings and 

workflow. In this section, I discuss their physical meaning and relationship with some 

petroleum engineering concepts. 

Before the discussion, I would like to review some basic concepts of k-means and 

PCA. The dataset for analyzing is rate-time data. The rate at different time steps (day, 

month) is subject to the influence of certain physical parameters such as pressure, 

permeability, formation, half-length and so on. In reality, those physical parameters are 

difficult to measure accurately. Therefore, it brings importance to principal components 

analysis, which catches hidden patterns under production rate-time data when exact 

physical parameters are unknown.  

Principal components are eigenvalues of the data matrix. They are not directly 

affected by certain physical parameters. Their value is defined by the overall variance of 

the data matrix, which is a linear combination of data matrix features. If proper numbers 

of PCs are picked, the original data matrix can be reconstructed and expressed by only a 

few PCs without losing much information. Based on this characteristic, in our analysis, 

we could usually reconstruct simulation or a field data set with only three to five PCs. For 

example, if we reconstruct a dataset with three PCs, each well (row) in the data matrix can 

be expressed with a coordinate system (PC1, PC2, and PC3).  
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k-means is a clustering technique that can be applied with after the data set has been 

reconstructed with PCA and the original data matrix dimensions have been reduced to 

only three to five dimensions.  

Each well’s performance distinction could be calculated by the Euclidean distance. 

This distance only matters with different wells score in each PC. Therefore, the distance 

does not have certain correlations with physical parameters. According to the clustering 

result, we can see each cluster’s log-log plot as shown in Figures 4-30 to 4-37. 

 

Figure 4-30: Cluster 1 log-log plot (part 1) 
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Figure 4-31: Cluster 1 log-log plot (part 2) 
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Figure 4-32: Cluster 1 log-log plot (part 3) 
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Figure 4-33: Cluster 2 log-log plot  
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Figure 4-34: Cluster 3 log-log plot (part 1) 
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Figure 4-35: Cluster 3 log-log plot (part 2) 
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Figure 4-36: Cluster 4 log-log plot (part 1) 
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Figure 4-37: Cluster 4 log-log plot (part 2) 
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Another application of k-means is that it can forecast production based on Euclidean 

distance. For each well, it has a score on each principal component. Therefore, their 

similarity can be judged with Euclidean distance. One characteristic of k-means clustering 

is that it has stable clustering results with changing time.  

Using simulation data, we plotted multiple 2D k-means plots with a PC1 and PC2 

figure. We used 100 days, 250 days, 500 days, 1000 days, and 2000 days to verify this 

characteristic. We found that the distribution of each cluster changes a little bit with time, 

but it is basically kept unchanged. This is shown in Figures 4-38 to 4-42. 

 

 

 
Figure 4-38: Simulation data K-means (100 Days) 



 

114 

 

 
Figure 4-39: Simulation data K-means (250 Days) 

 

 

 

Figure 4-40: Simulation data K-means (500 Days)  
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Figure 4-41: Simulation data K-means (1000 Days) 

 

 

Figure 4-42: Simulation data K-means (2000 Days) 
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Therefore, in a field data set, we can apply k-means to give a range of future 

production from new wells (Figure 4-43). The upper limit and lower limit can be derived 

from wells similar to the new wells. This prediction can be made with as little as 6 months 

of data. It could give a reasonable certain estimation with new developing fields.  

 

 

Figure 4-43: Estimation range of well 11 (6 months of history) 
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A more detailed comparison could be viewed in Figures 4-44 to 4-46. 

 

Figure 4-44: k-means clustering prediction range (6 months) 
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Figure 4-45: k-means clustering prediction range (12 months) 
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Figure 4-46: k-means clustering prediction range (18 months) 
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4.5 Discussion and Conclusion  

In this chapter, we verified the applicability of PCA and linear regression in field 

data. 100 Eagle Ford gas wells served as a testing dataset. The overall prediction result is 

satisfying. The k-means clustering enhanced the prediction fit ratio.  

We also discussed the physical meaning of principal components and k-means 

clustering techniques. A new method based on k-means to predict future performance of 

new wells has been established. It can learn from as little as 6 months of data to produce 

a reasonably certain forecast. 
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CHAPTER V 

 SUMMARY AND CONCLUSIONS 

 

In this thesis, we first reviewed current practices on analyzing unconventional gas 

production data. Because many new, fast-growing unconventional fields are developing, 

they usually have a short history and limited production data. That causes difficulties for 

traditional practices in forecasting new wells.  

Principal components analysis (PCA) and its predictive model were applied to solve 

this problem. In Chapter 2, we reviewed the mathematical proof of PCA, which can 

transform a data matrix to a linear combination of a few principal components. The 

prediction model can learn from old historic wells and apply their patterns to similar new 

wells. With only short history production data, it generated reasonably certain estimates.  

In Chapter 3, we applied the predictive model on simulated gas well data. The 

simulation dataset was generated by Kappa Ecrin. It has 100 wells, each with 2000 days 

of production history. By learning performance history from the training set, a predictive 

model has an R-square 0.97 average prediction results.  

 In Chapter 4, we applied the prediction model as well as k-means on Eagle Ford field 

data. The dataset was picked from 6 adjacent counties in the Eagle Ford field. It has 100 

gas wells with 45 to 83 months of production history. With as short as 6-month data, PCA 

and its predictive model generated satisfying prediction results. For a sample with a large 

set of wells, k-means could be applied to increase prediction performance. k-means could 

also make a future production range estimation based on a historical database.  
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In conclusion, PCA and its predictive model are promising for predicting production 

history in unconventional gas. Their prediction results match future performance of testing 

wells. k-means clustering could also give an estimation of a well’s future performance 

with only limited data. PCA could also be illustrative for next step of research and 

investigation of a combination of reserves estimation with machine learning. Because of 

its ability to reduce the number of required dimensions, it could be set as a pre-processing 

step for further analysis through approaches such as neural networks, deep learning, and 

support vector machines.  

 

  



 

123 

 

GLOSSARY 

 

AI Artificial intelligence 

ANN Artificial neural network 

DNN Deep neural network 

EOR Enhanced oil recovery 

EUR Estimated ultimate recovery 

MCMC Markov-chain Monte Carlo 

ML Machine learning 

NN Neural network 

PC Principal components 

PCA Principal components analysis 

PCR Principal component regression 

PRaD Piecewise reconstruction from a dictionary 

PTA Pressure-transient analysis 

RTA Rate-time analysis 

SAGD Steam-assisted gravity drainage 

SEC Securities and Exchange Commission 

SoM Self-organizing maps 

SVD Singular value decomposition 
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NOMENCLATURE 

 

A Drainage area,  acre/Random matrix 

a Duongs’ model constant 

b Derivative of loss-ratio (Arps’ decline exponent), dimensionless 

𝛽 Linear regression coefficients 

D Loss-ratio (Arps’ decline constant), Days−1 

𝐷1 Loss-ratio at (t=1), Days−1 

𝐷∞ Loss-ratio at (t= ∞), Days−1 

𝐷𝑖 Initial loss-ratio, Days−1 

Σ𝑛×𝑚 n×m rectangular diagonal matrix 

𝑆𝑖 Standard deviation 

q Flow rate, STB/Day or Mscf/Day  

𝑞1 Flow rate at (t=1), STB/Day or Mscf/Day 

𝑞∞ Flow rate at (t= ∞), STB/Day or Mscf/Day 

𝑞𝑐 Critical flow rate 

𝑞𝑖 Flow rate at (t=0), STB/Day or Mscf/Day 

𝑟(𝑡𝑖) production rate on arbitrary i day. 

t Time, days/months/years 

t(𝑎,𝑚) Duong’s time function 

𝑡1 First timestep, days/months/years 

𝑡𝑖 Aribitary timestep, days/months/years 
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𝜎1(𝐴) Largest eigenvalue of arbitray matrix A 

n Time exponent (hyperbolic exponent) 

Q Cumulative production, Mscf or STB 

Λ constant-number matrix 

λ Eigenvalue of matrix  

τ the ratio of time 

𝑢⃗  Average vector 

𝑢1 Largest eigenvalue directions 

𝑈𝑛×𝑛 n×n unitary matrix 

𝑉𝑚×𝑚
𝑇  m×m unitary matrix 

𝑋𝑖 Arbitary random samples 

Z Data matrix 

 



 

126 

 

REFERENCES 

Aanonsen, S.I. and Geir N.D., Oliver, D.S. et al. 2009. The Ensemble Kalman Filter in 

Reservoir Engineering—A Review. SPE J.14 (03): 393-412. SPE-117274-PA. 

https://doi.org/10.2118/117274-PA 

 

Agarwal, R.G., Gardener, D.C., Kleinsteiber, S.W., et al. 1998. Analyzing Well Production 

Data Using Combined Type Curve and Decline Curve Analysis Concepts. J Pet 

Technol 50 (10): 76 – 77 SPE-1098-0076-JPT 

 

Al-Fattah, S.M. and Startzman R.A. 2001. Predicting Natural Gas Production Using 

Artificial Neural Network. Presented at the SPE Hydrocarbon Economics and 

Evaluation Symposium, Dallas, Texas, 2-3 April, SPE-68593-MS. 

https://doi.org/10.2118/68593-MS 

 

Alvarado, V. and. Ranson, A., Hernandez, K., et al. 2002. Selection of EOR/IOR 

Opportunities Based on Machine Learning. Presented at the European Petroleum 

Conference, Aberdeen, United Kingdom, 29-31 October, SPE-78332-MS. 
https://doi.org/10.2118/78332-MS 

 

Ani, M., Oluyemi, G., Petrovski, A., et al. 2016. Reservoir Uncertainty Analysis: The 

Trends from Probability to Algorithms and Machine Learning. Proc. SPE Intelligent 

Energy International Conference and Exhibition, Aberdeen, Scotland, UK, 6-8 

September, SPE-181049-MS, https://doi.org/10.2118/181049-MS 

 

Araya, A. and. Ozkan, E. 2016. An Account of Decline-Type-Curve Analysis of Vertical, 

Fractured, and Horizontal Well Production Data. Presented at the SPE Annual 

Technical Conference and Exhibition, San Antonio, Texas, 29 September-2 October. 

SPE-77690-MS. https://doi.org/10.2118/77690-MS 

 

Arnold, R. and Darnell, J.L. 1920. Manual for the Oil and Gas Industry Under the 

Revenue Act of 1918. New York. 

 

Arps, J.J. 1945. Analysis of Decline Curves. Transactions of the AIME 160 (01): 228-247. 

 

Arthur, J.D., Langhus, B., and Alleman, D. 2008. An Overview of Modern Shale Gas 

Development in the United States. All Consulting. http://www.all-llc.com/ 

publicdownloads/ALLShaleOverviewFINAL.pdf 

 

Bansal, Y., Ertekin, T., Karpyn, Z., et al. 2013. Forecasting Well Performance in a 

Discontinuous Tight Oil Reservoir Using Artificial Neural Networks. Presented at 

the SPE Unconventional Resources Conference-USA, The Woodlands, Texas, USA, 

10-12 April, SPE-164542-MS, https://doi.org/10.2118/164542-MS 

https://doi.org/10.2118/117274-PA
https://doi.org/10.2118/68593-MS
https://doi.org/10.2118/78332-MS
https://doi.org/10.2118/181049-MS
https://doi.org/10.2118/77690-MS
http://www.all-llc.com/
https://doi.org/10.2118/164542-MS


 

127 

 

Bhattacharya, S. and Nikalaou, M. 2013. Analysis of Production History for 

Unconventional Gas Reservoirs with Statistical Methods. SPE J.18 (05): 878 - 896. 

SPE-147658-PA. https://doi.org.ezproxy.library.tamu.edu/10.2118/147658-PA 

 

Bradley, M.E. 1994. Forecasting Oilfield Economic Performance. J Pet Technol 46 (11): 

965-971. 

 

Bravo, C.E., Saputelli, L., Rivas, F., et al. 2014. State of the Art of Artificial Intelligence 

and Predictive Analytics in the E&P Industry: A Technology Survey. SPE J.19 (04): 

547-563. SPE-150314-PA. https://doi.org/10.2118/150314-PA  

 

Brown, J.P. A Machine Learning Approach to Studies of Recovery Efficiency. Society of 

Petroleum Engineers. Presented at the Petroleum Computer Conference, Dallas, 

Texas, 17-20 June. SPE-22304-MS. https://doi.org/10.2118/22304-MS 

 

Brownlee, J. 2017. A Tour of Machine Learning Algorithms. Machine Learning Mastery. 

http://machinelearningmastery.com/a-tour-of-machine-learning-lgorithms/ 

(accessed 19 Sep 2017). 

 

Cao, Q., Banerjee, R., Gupta, S., et al. 2016.Data Driven Production Forecasting Using 

Machine Learning. Presented at the SPE Argentina Exploration and Production of 

Unconventional Resources Symposium, Buenos Aires, Argentina, 1-3 June. 2016 

SPE-180984-MS. https://doi.org/10.2118/180984-MS 

 

Chaudhary, N.L. and Lee, W. J. 2016a. An Enhanced Method to Correct Rate Data for 

Variations in Bottom-Hole Rate-Pressure Deconvolution. Presented at the SPE/IAEE 

Hydrocarbon Economics and Evaluation Symposium, Houston, Texas, USA, 17-18 

May. SPE-179959-MS. https://doi.org/10.2118/179959-MS 

 

Chaudhary, N.L. and Lee, W.J. 2016b. Detecting and Removing Outliers in Production 

Data to Enhance Production Forecasting. Presented at the SPE/IAEE Hydrocarbon 

Economics and Evaluation Symposium, Houston, Texas, USA, 17-18 May. SPE-

179958-MS. https://doi.org.ezproxy.library.tamu.edu/10.2118/179958-MS 

 

Cheng, K., Wei, Y., Wu, W., et al. A Novel Optimization Model for Analyzing Production 

Data. Presented at the SPE Western Regional Meeting, Anaheim, California, USA, 

27-29 May, SPE-132545-MS, https://doi.org/10.2118/132545-MS 

 

Cipolla, C.L., Lolon, E.P., Erdle, J.C., et al. 2010. Reservoir Modeling in Shale-Gas 

Reservoirs. SPE Res Eval & Eng 13 (04): 638-653. SPE-125530-PA. 

https://doi.org/10.2118/125530-PA 

 

Clarkson, C.R. 2013. Production Data Analysis of Unconventional Gas Wells: Review of 

Theory and Best Practices. International Journal of Coal Geology 109: 101-146. 

https://doi.org.ezproxy.library.tamu.edu/10.2118/147658-PA
https://doi.org/10.2118/150314-PA
https://doi.org/10.2118/22304-MS
http://machinelearningmastery.com/a-tour-of-machine-learning-lgorithms/
https://doi.org/10.2118/180984-MS
https://doi.org/10.2118/179959-MS
https://doi.org.ezproxy.library.tamu.edu/10.2118/179958-MS
https://doi.org/10.2118/132545-MS
https://doi.org/10.2118/125530-PA


 

128 

 

Clarkson, C.R., Nobakht, M., Kaviana, D., et al. 2012. Production Analysis of Tight-Gas 

and Shale-Gas Reservoirs Using the Dynamic-Slippage Concept. SPE J.17 (01): 230-

242. SPE-144317-PA. https://doi.org/10.2118/144317-PA 

 

Cox, S.A., Lee, J., Sutton, R.P., et al. 2015. A Comprehensive Approach to Rate-Time 

Production Analysis for Unconventional Resources. Presented at the SPE/CSUR 

Unconventional Resources Conference, Calgary, Alberta, Canada, 20-22 October, 

SPE-175993-MS. https://doi.org/10.2118/175993-MS  

 

Crnkovic-Friis, L. and Erlandson, M. 2015. Geology Driven EUR Prediction Using Deep 

Learning. Presented at the SPE Annual Technical Conference and Exhibition 

September, Houston, Texas, USA, 28-30 September. SPE-174799-MS. 

https://doi.org/10.2118/174799-MS 

 

Cutler, W.W. (1924). Estimation of Underground Oil Reserves by Oil-Well Production 

Curves (Vol. 225). Govt. print. off. 

 

Dakshindas, S.S. 1999. Virtual Well Testing. Presented at the SPE Eastern Regional 

Conference and Exhibition, Charleston, West Virginia, 21-22 October, SPE-57452-

MS. https://doi.org/10.2118/57452-MS. 

 

Denney, D. 2011. Modeling, History Matching, Forecasting, and Analysis of Shale-

Reservoir Performance with Artificial Intelligence. J Pet Technol63 (09): 60-63. 
SPE-0911-0060-JPT. https://doi.org/10.2118/0911-0060-JPT 

 

Duong, A.N. 2011. An Unconventional Rate Decline Approach for Tight and Fracture-

Dominated Gas Wells. Presented at the Canadian Unconventional Resources and 

International Petroleum Conference, Calgary, Alberta, Canada, 19-21 October, SPE-

137748-MS, https://doi.org/10.2118/137748-MS 

 

Fetkovich, M.J., Vienot, M.E., Bradley, M.D. et al. 1987. Decline Curve Analysis Using 

Type Curves: Case Histories. SPE Form Eval 2 (04): 637-656. SPE-13169-PA. 

https://doi.org/10.2118/13169-PA 

 

Fisher, R.A. 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals of 

Human Genetics, 7 (2), 179-188. 

 

Floris, F.J.T., Bush, M.D., Cuypers, M., et al. 2001. Methods for Quantifying the 

Uncertainty of Production Forecasts: A Comparative Study. Petroleum Geoscience 7 

(S): S87-S96. 

 

Fraim, M.L. 1987. Gas Reservoir Decline-Curve Analysis Using Type Curves with Real 

Gas Pseudopressure and Normalized Time. SPE Form Eval. 2 (04): 671-682. SPE-

14238-PA. https://doi.org/10.2118/14238-PA 

https://doi.org/10.2118/144317-PA
https://doi.org/10.2118/175993-MS
https://doi.org/10.2118/174799-MS
https://doi.org/10.2118/57452-MS
https://doi.org/10.2118/0911-0060-JPT
https://doi.org/10.2118/137748-MS
https://doi.org/10.2118/13169-PA
https://doi.org/10.2118/14238-PA


 

129 

 

Fulford, D.S., Bowie, B., Berry, M.E., et al. 2016. Machine Learning as a Reliable 

Technology for Evaluating Time/Rate Performance of Unconventional Wells. SPE 

Econ & Mgmt. SPE-174784-PA. https://doi.org/10.2118/174784-PA 

 

Gong, X., Gonzalez, R., McVay, D.A., et al. 2014. Bayesian Probabilistic Decline-Curve 

Analysis Reliably Quantifies Uncertainty in Shale-Well-Production Forecasts. SPE 

J. 19 (06): 1,047 - 1,057 SPE-147588-PA https://doi.org/10.2118/147588-PA 

 
Grujic, O.S., Mohaghegh, S.D., and Bromhal, G.S. 2010. Fast Track Reservoir Modeling 

of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in 

Eastern Kentucky. Presented at the SPE Eastern Regional Meeting, Morgantown, 

West Virginia, USA, and 13-15 October. SPE-139101-MS. https://doi.org/ 

10.2118/139101-MS 

 

Guo, X.F., Feng, L., and Song, XN. 2012. The Outlier Detection Approach for Multivariate 

Time Series Based on PCA Analysis. Journal of Jiangxi Normal University (Natural 

Sciences Edition) 36 (3): 280-283. 

 

Hawkins, D.M. 1980. Identification of Outliers (Vol. 11). London: Chapman and Hall.  

 

He, Z., Yang, L., Yen., J., et al. 2001. Neural-Network Approach To Predict Well 

Performance Using Available Field Data. Presented at the SPE Western Regional 

Meeting, Bakersfield, California, 26-30 March, SPE-68801-MS, https://doi.org/ 

10.2118/68801-MS 

 

Hotelling, H. 1933. Analysis of a Complex of Statistical Variables into Principal 

Components. Journal of Educational Psychology, 24(6), 417.  

 

Ilk, D.,  Rushing, J.A., Parego, A.D., et al. 2008. Exponential vs. Hyperbolic Decline in 

Tight Gas Sands: Understanding the Origin and Implications for Reserve Estimates 

Using Arps’ Decline Curves. Presented at the SPE Annual Technical Conference and 

Exhibition, Denver, Colorado, USA, 21-24 September, SPE-116731-MS. 

https://doi.org/10.2118/116731-MS 

 

Ilk, D., Anderson, D.M., Stotts, G.W.J., et al. 2010. Production Data Analysis—

Challenges, Pitfalls, Diagnostics. SPE Res Eval & Eng 13 (03): 538-552. SPE-

102048-MS. https://doi.org/10.2118/102048-MS 

 

Honorio, J., Chen, C., Gao, G., et al. 2015. Integration of PCA with a Novel Machine 

Learning Method for Reparameterization and Assisted History Matching 

Geologically Complex Reservoirs. Presented at the SPE Annual Technical 

Conference and Exhibition, Houston, Texas, USA, 28-30 September, SPE-175038-

MS. https://doi.org/10.2118/175038-MS 

 

https://doi.org/10.2118/174784-PA
https://doi.org/10.2118/147588-PA
https://doi.org/10.2118/139101-MS
https://doi.org/10.2118/139101-MS
https://doi.org/%2010.2118/68801-MS
https://doi.org/%2010.2118/68801-MS
https://doi.org/10.2118/116731-MS
https://doi.org/10.2118/102048-MS
https://doi.org/10.2118/175038-MS


 

130 

 

Jia, X .and. Zhang, F. 2016. Applying Data-Driven Method to Production Decline Analysis 

and Forecasting. Presented at the SPE Annual Technical Conference and Exhibition, 

Dubai, UAE, 26-28 September, SPE-181616-MS, https://doi.org/10.2118/181616-

MS 

 

Johnson, R.H, and Bollens, A.L. 1927. The Loss Ratio Method of Extrapolating Oil Well 

Decline Curves. Transactions of the AIME 77 (01): 771-778. 

 

Jolliffe, I. T. 2002. Principal Component Analysis, Second Edition. Springer.  

 

Keshavarzi, R. and Jahanbakhshi, R.  2013. Real-Time Prediction of Complex Hydraulic 

Fracture Behaviour in Unconventional Naturally Fractured Reservoirs. Presented at 

the SPE Unconventional Gas Conference and Exhibition, Muscat, Oman, 28-30 

January. SPE-163950-MS. https://doi.org/10.2118/163950-MS 

 

Ketchen, D.J. 1996. The Application of Cluster Analysis in Strategic Management 

Research: An Analysis and Critique. Strategic management journal: 441-458. 

 

Khazaeni, Y. and Mohaghegh, S.D. 2013. Intelligent Production Modeling Using Full 

Field Pattern Recognition. SPE Res Eval & Eng. 14 (06): 735-749. SPE-132643-PA. 

https://doi.org/10.2118/132643-PA 

 

Kulga, I.B. 2010. Development of an Artificial Neural Network for hydraulically fractured 

horizontal wells in tight gas sands, MS thesis. Pennsylvania State University, State 

College, PA (Apr 2010). 

 

Lechner, J.P. and Zangl, G. 2006. Treating Uncertainties in Reservoir Performance 

Prediction with Neural Networks. Society of Petroleum Engineers. SPE J. 58(06):69-

71 SPE-0606-0069-JPT. https://doi.org/10.2118/0606-0069-JPT 

 

Lee, W.J., Rollins, J.B., and Spivey, J. P. 2003. Pressure Transient Testing (Vol. 9). Henry 

L. Doherty Memorial Fund of AIME Society of Petroleum Engineers. 

 

Lewis, J.O. and Beal, C.H. 1918. Some New Methods for Estimating the Future 

Production of Oil Wells. Transactions of the AIME 59 (01): 492-525. 

 

Fan, L., Thompson, J.W., and Robinson, J.R. 2010. Understanding Gas Production 

Mechanism and Effectiveness of Well Stimulation in the Haynesville Shale Through 

Reservoir Simulation. Presented at the Canadian Unconventional Resources and 

International Petroleum Conference, Calgary, Alberta, Canada, 19-21 October, SPE-

136696-MS, https://doi.org/10.2118/136696-MS 

 

  

https://doi.org/10.2118/181616-MS
https://doi.org/10.2118/181616-MS
https://doi.org/10.2118/163950-MS
https://doi.org/10.2118/132643-PA
https://doi.org/10.2118/0606-0069-JPT
https://doi.org/10.2118/136696-MS


 

131 

 

Lolon, E. and. Hamidieh K., Weijers, L., et.al. 2016. Evaluating the Relationship Between 

Well Parameters and Production Using Multivariate Statistical Models : A Middle 

Bakken and Three Forks Introduction to Statistical Modeling. Presented at the SPE 

Hydraulic Fracturing Technology Conference, 9-11 February, Woodlands, Texas, 

USA, 9-11 February, SPE-179171-MS. https://doi.org/10.2118/179171-MS 

 

Long, D.R. and Davis, M.J.1987. A New Approach to the Hyperbolic Curve. Society of 

Petroleum Engineers. Presented at the SPE Production Operations Symposium, 

Oklahoma City, Oklahoma, 8-10 March, SPE-16237-MS, 
https://doi.org/10.2118/16237-MS 

 

Ma, Z., Liu, Y., Leung, J.Y., et al. 2015. Practical Data Mining and Artificial Neural 

Network Modeling for SAGD. Presented at the SPE Canada Heavy Oil Technical 

Conference, Calgary, Alberta, Canada, 9-11 June, SPE-174460-MS, 

https://doi.org/10.2118/174460-MS 

 

MacQueen, J. 1967. Some Methods for Classification and Analysis of Multivariate 

Observations. Proc., the Fifth Berkeley Symposium on Mathematical Statistics and 

Probability 1 (14):281-297 

 

Marhaendrajana, T. and Blasingame, T.A. 2013. Decline Curve Analysis Using Type 

Curves—Evaluation of Well Performance Behavior in a Multiwell Reservoir System. 

Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, 

Louisiana, 30 September-3 October, SPE-71517-MS, https://doi.org/10.2118/71517-

MS 

 

Mohaghegh, S.D., Grujic, O., Zargari, S., et al. 2011. Modeling, History Matching, 

Forecasting and Analysis of Shale Reservoirs Performance Using Artificial 

Intelligence Top-Down, Intelligent Reservoir Modeling for Shale Formations. 

Presented at the SPE Digital Energy Conference and Exhibition, The Woodlands, 

Texas, USA. 19-21 April, SPE-143875-MS, https://doi.org/10.2118/143875-MS 

 

Mohaghegh, S. 1995. Neural Network: What It Can Do for Petroleum Engineers. J Pet 

Technol 47(01):42-42. SPE-29219-PA. https://doi.org/10.2118/29219-PA 

 

Moridis, G.J., Kuzma-Anderson, H., Reagan, M.T., et al. 2013. A Self-Teaching Expert 

System for the Analysis, Design, and Prediction of Gas Production From 

Unconventional Gas Resources. Proc. Presented at the Canadian Unconventional 

Resources Conference, Calgary, Alberta, Canada, 15-17 November, SPE-149485-MS, 
https://doi.org/10.2118/149485-MS 

 

Oliver, D.S. and Chen, Y. 2011. Recent Progress on Reservoir History Matching: A Review. 

Computational Geosciences 15 (1): 185-221. 

 

https://doi.org/10.2118/179171-MS
https://doi.org/10.2118/16237-MS
https://doi.org/10.2118/174460-MS
https://doi.org/10.2118/71517-MS
https://doi.org/10.2118/71517-MS
https://doi.org/10.2118/143875-MS
https://doi.org/10.2118/29219-PA
https://doi.org/10.2118/149485-MS


 

132 

 

Pearson, K. 1901. LIII. On Lines and Planes of Closest Fit to Systems of Points in 

Space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science, 2 (11): 559-572. http://dx.doi.org/10.1080/14786440109462720. 

 

Queipo, N.V., Goicochea, J.V., and Pintos, S. 2002. Surrogate Modeling-Based 

Optimization of SAGD Processes. Journal of Petroleum Science and Engineering 35 

(1): 83-93. 

 

Rebeschini, J., Querales, M., G. A. Carvajal, G.A., et al. 2013. Building Neural-Network-

Based Models Using Nodal and Time-Series Analysis for Short-Term Production 

Forecasting. Proc. Presented at the SPE Middle East Intelligent Energy Conference 

and Exhibition, Manama, Bahrain, 28-30 October, SPE-167393-MS. 
https://doi.org/10.2118/167393-MS 

 

Ringnér, M. 2008. What Is Principal Component Analysis? Nature Biotechnology 26 (3): 

303. 

 

Rwechungura, R.W., Dadashpour, M., and Kleppe, J. 2011. Advanced History Matching 

Techniques Reviewed. Society of Petroleum Engineers. Presented at the SPE Middle 

East Oil and Gas Show and Conference, Manama, Bahrain, 25-28 September, SPE-

142497-MS, https://doi.org/10.2118/142497-MS 

 

Seidle, J. 2016. SPEE Monograph 4—Estimating Developed Reserves in Unconventional 

Reservoirs: Knowledge Gained. Society of Petroleum Evaluation Engineers. 

 

Singh, A. 2017. Application of Data Mining for Quick Root-Cause Identification and 

Automated Production Diagnostic of Gas Wells With Plunger Lift. SPE Prod & 

Oper.32(03):279-293.SPE-175564-PA. https://doi.org/10.2118/175564-PA 

 

Sinha, S., Devegowda, D., and Deka, B. 2016. Multivariate Statistical Analysis for 

Resource Estimation in Unconventional Plays: Application to Eagle Ford Shales. 

Presented at the SPE Eastern Regional Meeting, Canton, Ohio, USA, 13-15 

September, SPE-184050-MS, https://doi.org/10.2118/184050-MS 

 

Soleng, H.H. 1999. Oil Reservoir Production Forecasting With Uncertainty Estimation 

Using Genetic Algorithms. Evolutionary Computation,Vol. 2, 1217-1223: IEEE. 

 

Sondergeld, C.H., Newsham, K.E., Comisky, J.T., et al. 2010. Petrophysical 

Considerations in Evaluating and Producing Shale Gas Resources. Presented at the 

SPE Unconventional Gas Conference, SPE Unconventional Gas Conference, 23-25 

February, 23-25 February, SPE-131768-MS. https://doi.org/10.2118/131768-MS 

 

  

http://dx.doi.org/10.1080/14786440109462720
https://doi.org/10.2118/167393-MS
https://doi.org/10.2118/142497-MS
https://doi.org/10.2118/175564-PA
https://doi.org/10.2118/184050-MS
https://doi.org/10.2118/131768-MS


 

133 

 

Surguchev, L. and Li, L. 2000. IOR Evaluation and Applicability Screening Using 

Artificial Neural Networks. Presented at the SPE/DOE Improved Oil Recovery 

Symposium, Tulsa, Oklahoma, 3-5 April, SPE-59308-MS, 
https://doi.org/10.2118/59308-MS 

 

Valkó, P.P. and Lee, W.J. 2010. A better way to forecast production from unconventional 

gas wells. Society of Petroleum Engineers. Presented at the SPE Annual Technical 

Conference and Exhibition, Florence, Italy, 19-22 September, SPE-134231-MS, 

https://doi.org/10.2118/134231-MS 

 

Walsh, M.R., Hancock, S.H., Wilson, S.J., et al. 2009. Preliminary Report on the 

Commercial Viability of Gas Production from Natural Gas Hydrates. Energy 

Economics 31 (5): 815-823. 

 

Wang, H.Y. 2016. What Factors Control Shale-Gas Production and Production-Decline 

Trend in Fractured Systems: A Comprehensive Analysis and Investigation. SPE J. 22 

(05): 562 – 581 SPE-179967-PA https://doi.org/10.2118/179967-pa 

 

Wang, Q., Chen, X., Jha, A.N., et al. 2014. Natural Gas From Shale Formation–The 

Evolution, Evidences and Challenges of Shale Gas Revolution in United States. 

Renewable and Sustainable Energy Reviews 30: 1-28. 

 

 

https://doi.org/10.2118/59308-MS
https://doi.org/10.2118/134231-MS
https://doi.org/10.2118/179967-PA



