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ABSTRACT

Link prediction in social networks is to infer the new links likely to be formed next or to

reconstruct the links that are currently missing. Link prediction is of great interest recently

since one of the most important goals of social networks is to connect people, so that they

can interact with their friends from real world or make new friend through Internet. So the

predicted links in social networks can be helpful for people to have connections with each

others. Other than the pure topological network structures, social networks also have rich

information of social activities of each user, such as tweeting, retweeting, and replying

activities.

Social science theories, such as social influence, suggests that the social activities could

have potential impacts on the neighbors, and links in social networks are the results of the

impacts taking place between different users. It motivates us to perform link prediction by

taking advantage of the activity information.

There has been a lot of proposed methods to measure the social influence through

user activity information. However, traditional methods assigned some social influence

measures to users universally based on their social activities, such as number of retweets

or mentions the users have. But the social influence of one user towards others may not

always remain the same with respect to different neighbors, which demands a personalized

learning schema. Moreover, learning social influence from heterogeneous social activities

is a nontrivial problem, since the information carried in the social activities is implicit and

sometimes even noisy.

Motivated by time-series analysis, we investigate the potential of modeling influence

patterns based on pure timestamps, i.e., we aim to simplify the problem of processing

heterogeneous social activities to a sequence of timestamps. Then we use timestamps
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as an abstraction of each activity to calculate the reduction of uncertainty of one users

social activities given the knowledge of another one. The key idea is that, if a user i has

impact on another user j, then given the activity timestamps of user i, the uncertainty in

user j’s activity timestamps could be reduced. The uncertainty is measured by entropy

in information theory, which is proven useful to detect the significant influence flow in

time-series signals in information-theoretic applications.

By employing the proposed influence metric, we incorporate the social activity infor-

mation into the network structure, and learn a unified low-dimensional representation for

all users. Thus, we could perform link prediction effectively based on the learned repre-

sentation. Through comprehensive experiments, we demonstrate that the proposed method

can perform better than the state-of-the-art methods in different real-world link prediction

tasks.
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NOMENCLATURE

SN Social Networks

DSN Directed Social Network

JC Jaccard Coefficient

PSI Personalized Social Influence

|| · ||2 the ℓ2 norm of a matrix

|| · ||F the Frobenius norm of a matrix

NS Negative Sampling

BPR Bayesian Personalized Ranking

AUC Area Under the Curve

NLP Natural Language Processing

MCM Markov Chain Model

DI Directed Information

LR Logistic Regression

MDL Minimum Description Length

KL Kullback-Leibler

ASGD Asynchronous Stochastic Gradient Descent

R&M Retweet and Mention

CN Common Neighbor

MF Matrix Factorization

ELLR Efficient Latent Link Recommendation
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TI Temporal Influence

SWR Supervised Random Walk

MAP Mean Average Precision

IC Independent Cascade
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1. INTRODUCTION

1.1 The Overall Review of Link Prediction in Social Networks

With social networks becoming increasingly popular, predicting and reproducing the

social network structure draws lots of attentions in recent years [1]. Among different

problems in social networks, link prediction especially directed link prediction is of great

interests [2], because in social networks users most often have directed links with each

other, including in-links (followed by others) and out-links (following others). Link pre-

diction is either to infer the links that are likely to occur in the near future or to reconstruct

the existing links that are missing in the current snapshot of the social network.

1.2 Traditional Insights of Link Prediction in Social Networks

Due to its practical value, link prediction has become an effective computational tool

for many real-world applications, such as friend recommendation [3], and community rec-

ommendation [4]. Traditional methods for link prediction can be roughly categorized into

several groups. First, some methods use neighbor-based metrics to infer the missing links

[5], where the similarity function can be the counts of common neighbors or some varia-

tions, such as Jaccard Coefficient of common neighbors. Second, some methods employ

path-based metrics for link prediction, in which random walk is designed to traverse the

paths between two users to calculate the proximity, with one hop or multiple hops [6]. As

we can observe, existing work usually focused on the topological network structure for

link prediction, while ignoring the fact that the links are actually from the social networks,

where exists a rich set of social information of online users.
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1.3 Motivation of Considering Social Influence

The various kinds of social activities carry abundant information of social media users,

where one user’s activities are complicatedly intertwined with other user’s activities, through

social influence [7] [8]. Social influence in social networks is defined as the phenomenon

where we can observe “alteration of an attitude or behavior by one network actor in re-

sponse to another” [9]. Therefore we can infer the existence of social influence by observ-

ing the changing pattern of social activities, which in turn means social influence is not

equivalent to social activities, but some sort of quantification of social activities.

Social influence has been demonstrated useful for many applications, such as infor-

mation diffusion study [10], and emotion contagion study [11], where social influence is

quantified from social activities and thus has rich information of online users.

Although pure topological network structure has been intensively studied for link pre-

diction, making use of both network structure and social influence remains an open prob-

lem. This motivates us to further investigate how to collectively model the two sources of

information to improve the performance of link prediction in social networks.

1.4 The Challenges to Incorporate Social Influence to Link Prediction

However, it is non-trivial to integrate different types of social activities to infer social

influence for link prediction. The challenges are as follows.

(1) The social activities are heterogeneous. In a social network like Twitter, users can

tweet, retweet, reply, and mention others. The reasons for occurrences of various kinds

of activities are different. Traditional methods tend to conduct prolonged feature selection

processes on different social activities to extract useful information, which is not only

time-consuming but also domain-specific, since each kind of activity needs a specifically

designed feature selection algorithm.

(2) The manifestation of social influence is implicit. Users in social networks will
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not explain who influences them or how they are influenced. Although we know users

in social networks will receive social influence from people that they are following, it is

implicit to quantify the influence she receives. According to social science theories, the

following relationship is formed most likely after social influence has happened [12]. So

the difficulty of inferring social influence will pose a challenge on predicting the links in

social networks.

(3) The social influence of each user are neighbor-dependent, i.e. the social influence is

not necessarily consistent with respect to different neighbors. Traditional social influence

methods assigned the influence score exclusively to each user, i.e. one user only has

one kind of influence score all the time, such as PageRank score [13] or Burt’s network

constraint score [14]. But that cannot represent the subtle difference when a user interacts

with different neighbors. For example, in different scenarios of Pagerank, it has been

shown that users have different directionality towards other users, i.e. one user can take

the role as ‘hub’ with some users, but she may take the role as ‘authority’ with others. But

universal social influence assignment can’t preserve the subtle changes of personalized

directionality in social networks, which, however, is the essential characteristic of directed

link prediction.

1.5 High-level Idea of Proposed Method

Therefore, in this paper, we first simplify the complicated social activities into a time-

series of timestamps as abstraction. And then we propose to use information-theoretic

method to calculate the reduction of uncertainty of one user’s activities given the knowl-

edge of another one in a pair-wise manner, and use the entropy as the quantification of

social influence. The learned social influence is later used as a regularization for a person-

alized learning framework, so that the link prediction will benefit from the personalized

characteristics of each user. We call our method as PSI (Personalized Social Influence link

3



prediction).

We propose each user should take two representations in a pair-wise social influence

schema, which are Source and Target1, so that each user is no longer represented by a

single unchanging influence score, but two vector representations carrying information

of network structure and social influence. In this case, the user’s directionality towards

others can be preserved in two personalized representations individually, so that the subtle

differences of one user’s preference or popularity among others are learned. The pipeline

of our method is shown in Figure 1.1.

u1 u2 u3 u4

u1

u2

u3

u4

Extract friendships

Infer social causality

Directed social network

User activities Asymmetry of influence

Adjacent matrix

Learn source and 
target representation 

in a unified framework

u1

u2

u3

u4

S

T
u1

u2

u3

u4

User representation

Use two 
vectors to 

predict 
links

Si

Tj

×

Link prediction

Figure 1.1: Pipeline of proposed framework

1.6 Summary of Main Contributions

The main contributions of this paper are:

• We propose a framework to incorporate social influence model into directed link

prediction problem, where social influence can reflect rich set of user activity infor-

mation.

• Our method gives each user two representations for a personalized social influence

schema. It preserves the subtle differences of each user’s interactions with different
1Source represents one user to follow others, characterizing the features as a follower; Target represents

one user being followed by others, characterizing the features as a friend.
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neighbors, which cannot be reflected by traditional method with a universal influ-

ence assignment.

• We propose to use an information-theoretic method to integrate heterogeneous so-

cial activities for inferring social influence in a general model without employing

any domain-specific feature selection process.

• We conduct extensive experiments to verify that the proposed method can preserve

rich information in directed social media better than the traditional methods, and

therefore could be better used in directed link prediction.

1.7 Problem Statement

In this section, we introduce the notations and terminologies used in the paper and then

formally define the link prediction problem in social networks. We use boldface uppercase

letters (e.g. X) to denote matrices and boldface lowercase letters to denote vectors (e.g.

x). We use X i to denote the ith row of the matrix, and X i,j to signify the element in the

ith row and jth column of X . The transpose of X is represented as X⊤. The ℓ2-norm of

a vector is represented by || · ||2, and the Frobenius norm of a matrix is denoted as || · ||F .

Let G = {U , E} be a directed network, where U indicates a set of N users {u1, u2, ..., uN}

and E ⊆ U × U indicates the corresponding edge set. We denote a directed edge from ui

to uj as (i, j) ∈ E . Let A be a set of N sequences of timestamps. For each user ui, the

timestamp sequence A(i) = {ti,1, ti,2, ...} records the occurrence time of all his/her online

social activities. The time intervals of these activities could vary from seconds to months.

Based on the terminologies defined above, we formally define the link prediction problem

in social networks as follows:

Given a directed graph G associated with a set of edges E and a set of timestamp

sequences A that records the occurrence of all users’ social activities, we aim to predict

5



the probability of having a directed edge from any user ui to any other user uj , jointly

based on the network topological structure in G and social activity information in A.

6



2. RELATED WORK

For link prediction in social networks, people have been drawn attentions to it after the

innovative work by Liben-Nowell and Kleinberg [5]. In general, most of the approaches

are designed to calculate different kinds of proximity on social networks as prediction

features [31, 1], where the learning framework includes supervised [32] and unsupervised

[5]. In social networks, directed links are of great interest in many studies. Valverde-

Rebaza and Lopes [33] proposed to combine community information with topology to

predict links in a directed and asymmetric social network. Hopcroft and Tang [34] studied

the reciprocal relationship prediction in directed social networks.

Methods with social influence model are well-studied in various domains, such as

sociology and marketing literature [35, 36]. The social influence study often focuses on

finding the most influential nodes, which has been applied to different applications, such

as emotional contagion [11], and information diffusion by using IC (Independent Cascade)

model [37].
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3. METHODOLOGY: LINK PREDICTION WITH PERSONALIZED SOCIAL

INFLUENCE (PSI)

3.1 Overview of PSI

To jointly model the topological structure and social activity information, we propose

a link prediction framework named Personalized Social Influence (PSI).

The main idea is to learn two low-dimensional vector representations for each user ui,

i.e., Source representation Si ∈ R1×d and Target representation T i ∈ R1×d, such that all

the social influence among linked users is well preserved. The influence is directional and

its strength depends on the social activity information in A. Thus, we have two vector

representations for each user, aiming to represent its roles in being affected and giving

impacts respectively.

The proposed framework PSI could be separated into three major components as fol-

lows. First, it quantifies the strength of social influence based on the underlying patterns

in the occurrence time of user activities. Second, it jointly embeds the directional network

structure and the learned social activity information into two low-dimensional represen-

tations S and T . Third, it accelerates the optimization via the Negative Sampling tech-

nique [15]. As a result, we could predict the probability of having a link from any user ui

to any other user uj based on the inner product of two representations SiT j , as shown in

Figure 1.1.

For the rest of this chapter, we will first introduce the intuition of our method that uses

two personalized vector representations. Next we will introduce how to quantify the social

influence from the heterogeneous social activity information. Then we will introduce how

to jointly model social activity information and network structure information together. At

last, we will introduce the acceleration of our model by using Negative Sampling.
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3.2 Intuition Behind Using Two Personalized Vector Representations

In our method, we need to learn two low-dimension representations of each user for

link prediction, so that we can multiply these two representations to get the quantification

of proximity, as shown in Figure 1.1. Next we will introduce the intuition of making use

of two vector representations.

In a partially observed social network, the positive instances in the adjacency matrix

(i.e., the edge set E) are usually extremely sparse [16], which renders a low rank structure.

In light of this, the adjacency matrix can be approximated by two low rank matrices. We

define these two matrices as Source representation matrix S ∈ Rn×d and Target represen-

tation matrix T ∈ Rn×d. If the adjacency matrix is symmetric, it’s usually accepted that

S = T . But since we are approximating a directed graph, which doesn’t have a symmetric

adjacency matrix. That’s why we make use of two distinct matrices. Our goal is to use the

learned representations to approximate the proximity as accurate as possible.

On a user to user basis, when measuring the affinity of one user towards another user,

we propose to use the product of the Source representation S and Target representation T .

We therefore define the rating of user ui following user uj:

r̂(ui, uj) = SiT j (3.1)

r(·, ·) means the rating of two users having a directed link, from the first user to the second

user. We aim to distinguish the true friend of one user from a random user, i.e., the rat-

ing between two friends (positive instance) should be larger than the rating between two

random users (negative instance). So that condition characterizes the following inequality:

r̂(ui, uj) > r̂(ui, un) (i, j) ∈ E , (i, n) /∈ E ,∀ui ∈ U (3.2)

9



It means for any user as ui, the rating with true friends uj should be larger than the rating

with negative users un. We use a probabilistic model to describe the intuition behind the

link prediction using two personalized vectors of each user. The model is formulated as

a Bayesian form to output the vectors, which are calculated in a pair-wise comparison

manner. We can rewrite the optimization for the inequality in Eq. (3.2) as maximizing the

posterior distribution:

P (S,T | >u,G) ∝ P (>u,G|S,T )P (S)P (T ) (3.3)

where >u means the order of rating described in Eq. (3.2) as the intrinsic property in graph

G. Specifically, a user will prefer her true friend than a random user. Assume each user

acts independently and each pair of users is compared independently, then the last term

above can be written as:

P (>u,G|S,T )P (S)P (T )

=Πui
Π(i,j)∈EΠ(i,n)/∈EP (>ui

,G|Si,T j,T n)P (Si)P (T j)P (T n).

(3.4)

The probabilistic model is not intuitive to calculate due to that the greater-than sign >u

doesn’t have connection to two vector representations S and T , so we adopt the concept

of AUC (Area Under the Curve) to explain it. The greater-than sign is compared in a pair-

wise manner, i.e., given two potential friends, the better model will predict the true friend

over the random user. When we apply this pair-wise comparison to the scale of the whole

network, we then can get the AUC value:

AUC =

∑
ui∈U

∑
(i,j)∈E

∑
(i,n)/∈E

I(r̂(ui, uj) > r̂(ui, un))∑
ui∈U

|Pui
||Nui

|
, (3.5)
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where |Pui
| and |Nui

| represents the number of positive instance and negative instances

w.r.t user ui. Specifically, the set |Pui
| contains the true friends of ui and the set |Nui

|

contains users that are not friends of ui. I() is the indicator function. The greater-than

sign inside the indicator function represents the user preferences in the whole network,

which is equal to Eq. (3.2). So the above optimization of probabilistic equation can be

explained as optimizing the AUC curve.

Therefore, we build the connection between the greater-than sign in probabilistic model

in Eq. (3.4) and two vector representations S, T . So, to achieve the probability distribu-

tion in Eq. (3.4) is equal to optimize the indicator function I(SiT j > SiT n). Specifically,

when the condition inside the indicator function I(·) holds true, it will give possibility

as 1, and 0 otherwise. When we need to maximize the posterior probability in Eq. (3.4),

we should apply the continuous probability function for calculating the derivatives. Some

previous work such as that of Rendle et al. [17] suggests using sigmoid function to derive

a probabilistic outcome,

σ(x) = 1/(1 + e−x), (3.6)

which is the ideal smooth version of 0/1 loss. So the indicator function in Eq. (3.5) can be

rewritten as,

Π(i,j,n)σ(SiT j − SiT n) (i, j) ∈ E , (i, n) /∈ E ,∀ui ∈ U (3.7)

After we ignore some constants, the objective can be written as,

max
S,T

J0 =P (S,T | >u,G)

∝
∏

(i,j)∈E,(i,n)/∈E,∀ui∈U

σ(SiT j − SiT n).
(3.8)

So we can see, the original probabilistic model will be transformed as optimizing through
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a sigmoid function, which is essentially optimizing a AUC curve. Since the multiplication

operator will suffer the problem of zero entries (i.e., if one entry is zero, the whole multi-

plication will be zero), we add a log in front of it. Therefore, the objective can be further

rewritten as:

max
S,T

J0 =
∑
(i,j,n)

log σ(SiT j − SiT n). (3.9)

So we explain the intuition behind using two personalized vector representations of each

user. I.e. we can conduct a pair-wise comparison of users when they interact with different

neighbors by taking different roles, which can be Source or Target in a directed network.

But we haven’t incorporated social activities of each user into the model. So next, we will

introduce the quantification of social influence derived from social activities, and incorpo-

rate that information into the framework of using two personalized vector representations.

3.3 Social Influence Quantification

We now introduce how to model the social activity information. In this paper, we focus

on the timestamp information, and the main reason is that other types of information of

social activities could be heterogeneous and usually text-based, whose processing is com-

putationally expensive. This is a trade-off between information of each user and the sheer

quantity of the users available. I.e. if we want to incorporate more information from each

user, which is usually the text-based information, we then can’t incorporate a large quan-

tity of users, since we need to design the Natural Language Processing (NLP) algorithms

to text-based information to extract features for each individual user. The methods that use

text-based information usually don’t have large scale of online users. For example, Weng

et al. [18] tried to find out the topical leaders in Twitter, and their dataset has 6748 users.

Zhu et al. [19] were aiming to measure influence among users based on user generated

content, and they consider 4013 users.

However, in this paper, we aim to incorporate as many online users as possible so
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that we can understand the hidden reasons for the formation of links in social networks

panoramically.

To model the timestamp information, an intuitive solution is to consider the timestamps

as feature vectors and stack up every user’s vector into a big feature matrix. However, this

solution is not applicable to our problem since the feature matrix would be extremely

sparse, due to that some users’ may only have a few activity timestamps in their sequence

A, but some others may have a rich set of activity information. It implies that we can’t

treat every user’s timestamps universally.

To quantify the social influence based on user activity information, we first personalize

the timestamp sequence set A as a matrix A(i) for each user ui, so each user will have a

unique matrix, which is later used in personalized learning.

3.3.1 Timestamp sequence modeling

For each user ui, we have a timestamp sequence {ti,1, ti,2, ...} that records the occur-

rence time of all his/her activities. Since the active periods of different users are quite

diverse, we define a personalized time interval ∆ti for user ui as follows.

∆ti = (tmax − tmin)/M, (3.10)

where tmin and tmax denote the timestamps of the first and last activities of ui, and M is a

predefined maximum number of time intervals that is unique to each user, i.e. each user’s

maximum number of activities.

In order to quantify the personalized social influence one user receives, we will use

his/her personalized time interval to separate all other users’ timestamps sequences, so that

we can apply some quantifications to calculate the personalized social influence specific

to that user.

Next we will introduce the personalization of the activity matrix. We define the activity
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frequency of ui in the mth interval as A(i)
i,m, given her own personalized time interval ∆ti.

Note the activity matrix has been personalized based on the time interval ∆ti as A(i),

which will be used to calculate the personalized social influence that user ui receives.

Similarly A
(j)
i,m denotes ui’s activities at mth time interval, which is derived from uj’s

personalized time interval. Then the sequence set A is personalized as a set of matrices

A(i) ∈ RN×M for each user. It should be noted that, for different users, their activity

time intervals are different, varying from seconds to months. Thus, we have N different

personalized social activity matrices {A(i)}, for i = 1, 2, ..., N .

3.3.1.1 Metric of social influence

We now introduce a pair-wise manner to calculate personalized social influence. We

focus on a pair of linked users, with a directional edge (i, j) denoting ui following uj ,

where the influence is actually from uj to ui. We quantify this social influence by mea-

suring the reduction of uncertainty of A(i)
i given the knowledge of A(i)

j . Note we use the

personalized time interval of the user being influenced, which is ui. And A
(i)
i , A(i)

j are the

time-series vectors in the personalization of ui. We infer the influence by comparing two

scenarios.

(1) We aim to calculate the dependency of ui on herself. By considering vector A(i)
i as

a Markov chain with M variables, we could infer the activity frequency A
(i)
i,m+1 based on

the historical record A
(i)
i,m. We denote the probability as,

p1 =
{

P(A(i)
i,m+1 ̸= 0|A(i)

i,m)
}
, for m = 1, ...,M−1. (3.11)

So we could get a probability distribution p1 with M−1 probability values. The intuition

of p1 is the probability that we can use ui’s own history to predict her future activities.

(2) We assume that user uj has influence on user ui. This influence could often be re-

flected as the dependency from activity frequency A
(i)
i to A

(i)
j [20]. Mathematically, the
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probability of having influence between the two is now defined as follows,

p2 =
{

P(A(i)
i,m+1 ̸= 0|A(i)

i,m,A
(i)
j,m)

}
, for m = 1, ...,M−1. (3.12)

Thus, we get another probability distribution p2, which measures how well we can predict

ui’s activity based on her own history and a potential influencer uj .

It should be noted that we only consider the influence among adjacent time intervals,

e.g. m and m+1, since the influence is often stronger than the non-adjacent one. Motivated

by the study of influence flow [21], we employ the entropy reduction of p1 from p2 as a

metric of social influence from uj to ui, i.e.,

Ij�i,H(p1)−H(p2)

=−
M−1∑
m=1

P(A(i)
i,m+1 ̸= 0|A(i)

i,m) log P(A(i)
i,m+1 ̸= 0|A(i)

i,m)

+
M−1∑
m=1

P(A(i)
i,m+1 ̸= 0|A(i)

i,m,A
(i)
j,m) log P(A(i)

i,m+1 ̸= 0|A(i)
i,m,A

(i)
j,m),

(3.13)

where H(p1) and H(p2) denote the entropy of distributions p1 and p2. The key idea of

metric Ij�i is that, when uj has influence on ui, then A
(i)
j could reduce the uncertainty

of predicting A
(i)
i . Therefore, we have mathematically calculated social influence in a

personalized schema.

3.3.1.2 Computation of p1 and p2

It should be noted that p1 and p2 are two sets of conditional probabilities. First, we

employ a logistic regression model to calculate the conditional probability of ui being

active given her own history,

P(A(i)
i,m+1 ̸= 0|A(i)

i,m) =
1

1 + e−α0−α1f(A
(i)
i,m)

, (3.14)
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where α0 and α1 are coefficients learned from the entire record. Specifically, we employ

the sequence {A(i)
i,1,A

(i)
i,2, ...,A

(i)
i,M−1} as M −1 training inputs, and the binary sequence

{sgn(A(i)
i,2), sgn(A(i)

i,3), ..., sgn(A(i)
i,M)} as corresponding labels, where function sgn(·) is

the sign function. We also employ a discount function f(x) for each activity frequency,

which is defined as follows.

f(x) =

 x, if x ≤ 2,

1 + ⌈log(1 + x)⌉, o/w.
(3.15)

The basic idea behind f(x) is that as more activities occurred during only one time interval

∆ti, the number of activities actually seen by people would not increase linearly. For

instance, in Twitter, the activity frequency could be the number of tweets that a user uj has

posted during one time interval ∆ti. If uj posts a large number of tweets in a short period,

his/her follower ui may not check all of them [22]. Thus we employ a discount function

f(x) to estimate the actual number of activities that could be perceived by ui.

Similarly, we could calculate p2, with pre-trained coefficients α0, α1, and α2, i.e.,

P(A(i)
i,m+1 ̸= 0|A(i)

i,m,A
(i)
j,m)=

1

1+e−α0−α1f(A
(i)
i,m)−α2f(A

(i)
j,m)

. (3.16)

By substituting p1 and p2 into Eq. (3.13), we can calculate the reduction of uncertainty

of ui’s activities given the knowledge of uj’s activities, which is defined as the personalized

social influence in this paper.

3.4 Jointly Modeling Social Activity and Network Structure

Since each user ui could both be influenced by others and give influence to others,

we employ two vector representations to represent ui, i.e., Source representation Si and

Target representation T i. In such way, we could predict the probability of having a link
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from any user ui to any other user uj based on the inner product of two representations,

SiT j . The main goal is to make sure SiT j > SiT n for any pair of existing edge (i, j) ∈ E

and non-existent edge (i, n) /∈ E .

A traditional method is to focus on existing edges and make the estimated probability

of ui following uj approach the probability determined by the edge weights [23]. However,

it could not be directly applied to our problem, since it could not take advantage of user ac-

tivity information. To jointly embed the social activity information and network structure,

we propose to estimate the linking probabilities based on the learned social influence.

We now define an empirical probability of having a directed edge from user ui to uj as

follows. The main idea is to calculate the amount of influence solely from uj towards ui,

comparing with all other potentially influential users.

p̂(uj|ui) = Ij�i/d
out
i , (3.17)

where douti =
∑

(i,l)∈Ê Il�i is the out-degree of user ui
1, which in social influence scenario,

is the set of users who influence ui. Note we define a new set of edges Ê that only includes

node pairs with significant influence, i.e., we only consider node pairs with social influence

greater than a threshold,

Ij�i >
log2(

∑M
m=1Ai,m)

2
∑M

m=1Ai,m

. (3.18)

The threshold is motivated by Minimum Description Length penalty (MDL) [24]. The

main reason for applying a threshold here is that more active users will be more likely to

overfit the model, but less active users may not be learned properly.

We employ the softmax function to calculate the probability of having a directed edge

1Out-degree of ui represents the set of users that ui is following.
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from user ui to uj through their representations,

p(uj|ui) =
eSiT

⊤
j∑N

l=1 e
SiT

⊤
l

. (3.19)

The key idea is to determine the linking probability based on the contribution of user ui to

uj comparing with all other users.

Therefore, by minimizing the Kullback–Leibler divergence of p(uj|ui) and its empiri-

cal counterpart p̂(uj|ui), we can get the objective function:

min J1 =
∑

(i,j)∈Ê

douti DKL(p̂(uj|ui)||p(uj|ui))

= −
∑

(i,j)∈Ê

Ij�i log p(uj|ui) +
Ij�i

douti

log
Ij�i

douti

,

(3.20)

where douti represents the prestige of user ui in the network, which is defined before. After

ignoring the constant, the objective can be simply rewritten as:

max Ĵ1 =
∑

(i,j)∈Ê

Ij�i log p(uj|ui). (3.21)

Since we want to minimize the divergence, it is equivalent to maximizing the objective by

omitting the negative sign.

3.5 Acceleration via Negative Sampling

We can see optimizing Ĵ1 is computationally expensive since by calculating Eq. (3.21)

we need to calculate one softmax as Eq. (3.19), i.e., every pair of users needs to compare

with all the users. So before we optimize Ĵ1, we would like to rewrite Eq. (3.19) as
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follows.

p(uj|ui) =
1

1 +
N∑

l=1,l ̸=j

e−(SiT
⊤
j −SiT

⊤
l )

. (3.22)

It follows the format of Eq. (3.19), just by dividing both numerator and denominator by

eSiT
⊤
j . Note the form of sigmoid function σ(x) = 1/(1 + e−x), we can define a new

conditional probability in the similar form of Eq. (3.22):

p(uj > un|ui) = σ(SiT
⊤
j − SiT

⊤
n ) =

1

1 + e−(SiT
⊤
j −SiT

⊤
n )
. (3.23)

The above conditional probability can be interpreted as instead of directly optimizing Ĵ1

over all users, we update Eq. (3.23) with respect to a small set of noise samples in U\j,

where an individual sample is denoted as un [25]. It can be easily verified that:

p(uj|ui) >
∏

un∈U\j

p(uj > un|ui). (3.24)

Therefore, instead of optimizing Ĵ1, we can optimize a tight lower bound of p(uj|ui) in Ĵ1.

So if we combine Eqs. (3.23) and (3.24) and put them back to objective Ĵ1 in Eq. (3.21),

we can get a new objective function:

max J2 =
∑

(i,j)∈Ê

Ij�i

∑
un∈U\j

log σ(SiT
⊤
j − SiT

⊤
n ). (3.25)

It should be noted that the Ij�i needs to satisfy Eq. (3.18). To accelerate the learning

process, here we adopted Negative Sampling in [15]. All the negative samples will be
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drawn from a noise distribution. So the probability part can be further rewritten as:

∑
un∈U\j

log σ(SiT
⊤
j − SiT

⊤
n )

∝
K∑
n

Eun∼Pn(u) log σ(SiT
⊤
j − SiT

⊤
n ).

(3.26)

where K is the number of negative instances, sampled from noise distribution of Pn(u) ∝

d
3/4
u , and du is the out-degree of user u. Thus, there is no need to go through all users to

get the conditional probability, but just fewer noise samples.

We can then write the final objective function in a unified from, incorporating network

structure and social influence with acceleration learning schema:

max J =
∑

(i,j)∈Ê

Ij�i

K∑
n

Eun∼Pn(u) log σ(SiT
⊤
j − SiT

⊤
n )

− β1

2
||S||2F − β2

2
||T ||2F ,

(3.27)

The last two terms ||S||2F and ||T ||2F are employed to avoid overfitting. Since we aim to

maximize the objective, the overfitting term will take negative sign. β1 and β2 are the

regularization coefficients.

3.6 Computation of S and T

Next we will derive the update rules of each model parameter Θ = S or T . In each

iteration, we can update model parameter according to asynchronous stochastic gradient

descent (ASGD), which is a fast optimization algorithm in many machine learning appli-

cations. For each model parameter Θ, we derive the gradient from Eq. (3.27) as follows.

∂J
∂Θ

=
∑

(i,j)∈Ê

Ij�i

K∑
n

Eun∼Pn(u)
∂L(ui, uj, un)

∂Θ
− βΘΘ, (3.28)
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where we define L(ui, uj, un) = log σ(SiT
⊤
j − SiT

⊤
n ). Therefore, we only need to cal-

culate the derivative of L(ui, uj, un) w.r.t. each Θ = S or T since other calculation is the

same for each model parameter. So for user Source representation S, we have,

∂L(ui, uj, un)

∂Si

= ϵ
∂σ(SiT

⊤
j − SiT

⊤
n )

∂Si

, (3.29)

where ϵ is defined as ϵ = 1/σ(SiT
⊤
j − SiT

⊤
n ). As for user Target representation T , we

have,

∂L(ui, uj, un)

∂T j

= ϵ
∂σ(SiT

⊤
j − SiT

⊤
n )

∂T j

,

∂L(ui, uj, un)

∂T n

= −ϵ
∂σ(SiT

⊤
j − SiT

⊤
n )

∂T n

.

(3.30)

For simplicity, we omit the writing of regularization term βΘΘ of each model parameter.

The whole process to learn the user representation is shown in Algorithm 1.

3.7 Complexity Analysis

We only need O(|U |d + |E|) space overheads since we adopt the per-observation

stochastic gradient updates on the fly, where |U | is the user set, d is the representation

dimension, E is the edge set. As for time complexity, since we use negative sampling, the

posterior possibility can be largely reduced from O(|E|) to O(1), because we repeatedly

draw negative samplings from the same noise distribution. So for the negative samples of

each edge, we need O(d×(|K|+1)) time, where K is the negative samplings. Usually the

number of iterations needed for optimization is proportional to the number of edges. So

the final time complexity for our model would be O(d|K||E||L|), where L is the average

friends of one user.
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Algorithm 1: Representation Learning Algorithm
Input : edge set E , user set U , user activities A
Output: user source representation S and user target representation T
Initialize S, T
while not converge do

for each ui ∈ U do
Derive personalized time interval of ui as ∆ti using Eq. (3.10)
Separate all other user’s time sequence A to personalized matrix A(i)

using ∆ti

for each uj in (i, j) ∈ [E ] do
Calculate two probability distributions of Eq. (3.11) and Eq. (3.12)
Based on two distributions, calculate the difference of two entropy
using Eq.(3.13)

end
Draw K negative samples from distribution Pn(u)
for each n ∈ K do

Update user source representation Si and user target representations
T j , T n according to Eq.(3.28), Eq. (3.29) and Eq. (3.30)

end
end

end
return S and T

22



4. EXPERIMENT

In this section, we empirically evaluate our method by comparing it with the state-of-

the-art methods. We aim to answer two questions: (1) What is the impact of learning social

influence on performing link prediction? (2) How effective is our method in modeling

social activity information, especially when it is sparse?

4.1 Datasets

We use two publicly available datasets in our experiment: URL Twitter dataset [26]

and Higgs Twitter dataset [27]. The URL dataset was collected by tracking the tweets

with diffrent URL links on Twitter. The users that posted all the predefied set of URLs are

crawled, with their following relationship with each other. The second dataset is the Higgs

Twitter dataset. It was built after monitoring the spreading processes on Twitter before,

during and after the announcement of the discovery of a new particle with the features

of the elusive Higgs boson. It collects all the tweets discussing this discovery, containing

each users retweeting, replying and mentioning with others. The users IDs have been

anonymized. The details of these two datasets are shown in Table 4.1.

Dataset URL dataset Higgs dataset

# of users 736,930 456,626
# of user activities 2,859,764 563,069
# of directed links 36,743,448 14,855,842

Table 4.1: Statistics of Experimental Dataset
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4.2 Baseline Methods

We compare our algorithm in the directed link prediction problem with the state-of-the-

art methods, which could be separated into three categories, specifically as methods with

only social activities, methods with only network structure, and methods with both sources

of information. First, we want to investigate the effectiveness of our method in learning

the network structure, so we compare it with methods that learn from social activities, i.e.

R&M. Second, we want to investigate the impact of considering social activity information

for link prediction problem. We compare our method with baselines that only consider

network structure, i.e. CN, BPR-MF, and ELLR. Third, we want to study the effectiveness

of the proposed method in jointly learning social activities and network structure, so we

compare our method with TI and SWR. The details of baselines are shown as follows.

• R&M [28]: The directed links are inferred by the counts of retweet and mention of

each pair of users.

• CN [5]: The Common Neighbor method is widely adopted for link prediction prob-

lem, due to its simplicity for implementation.

• BPR-MF [17]: It is the Bayesian Personalized Ranking in matrix factorization

framework for predicting the links between users.

• ELLR [2]: It uses a generalized AUC for an Efficient Latent Link Recommendation.

• TI [29]: The method exploits Temporal Influence for link prediction by using matrix

factorization. The temporal information is based on time delay of each pair of users,

where smaller delay means higher influence.

• SRW [6]: The Supervised Random Walks method learns the edge weights to let the

random walker more likely to traverse nodes that have edges with current nodes. We
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use concatenation of two users’ activities record as an edge vector between them.

4.3 Experimental Setup and Evaluation Metrics

We conduct our experiment from two aspects which are well established in link pre-

diction problems to test the algorithm performance, i.e. pair-wise accuracy and list-wise

accuracy [30].

First, to test pair-wise accuracy, each test instance is a tuple with three users, i.e. a

user, her true friend (positive instance) and a random user (negative instance). We aim to

measure whether the algorithm can distinguish a positive link from the negative one, i.e.

pair-wise accuracy. And we average the accuracy of all the test instances to have the final

pair-wise accuracy. The metric we adopted is AUC (Area Under the Curve),

AUC =

∑
ui∈U

∑
(i,j)∈E

∑
(i,n)/∈E

I(r̂(ui, uj) > r̂(ui, un))∑
ui∈U

|Pui
||Nui

|
, (4.1)

where |Pui
| and |Nui

| represents the number of positive instance and negative instances

w.r.t user ui. I() is the indicator function. AUC is suitable for test the data which is highly

imbalanced, since in our dataset the negative instances are more ubiquitous than positive

instances. In terms of separating training and testing set, we randomly select different

subset of tuples from dataset (i.e., 10%, 20%, 40%, 60%) to train the model. For each

fraction of training set, all the remaining instances will be used as test set.

Second, the list-wise accuracy measures the portion of true friends in a ranked list of

recommended friends returned by the algorithms, where better algorithm intuitively will

give true friends higher rank in the list. So we adopt Precision@k to measure the accuracy

in the ranked list of users in different positions,

Precision@k =
# of positive instances in the top k

# of positive and negative instances in the top k
, (4.2)

25



and MAP (Mean Average Precision) which is averaged by all users in different positions

from Precision@k for each dataset.

MAP =

∑
ui∈U

∑m
k=1 Precision@k

m

|U|
, (4.3)

where k is the positions at the estimated rank list, U is the set of all users. We evaluate

the precision at the first 10 positions of the ranked list. In terms of separating training and

testing set, all the directed links are randomly divided into two groups, where 60% is for

training the model, and 40% is for testing the list-wise accuracy.

4.4 Hyper-Parameter Discussion

(1) Learning rate and regularization parameters. We conduct a grid search over candidate

set of learning rate and regularization parameters. So we set the learning rate as 0.01 and

regularization parameters of representations as 0.025.

(2) Likelihood function coefficients. Numerically, the coefficients α = {α0, α1, α2} in

Eq. (3.16) can take positive or negative values. Intuitively, a positive coefficient α2, for

instance, corresponds to user j boosting user i’s number of activities in next time point

m + 1. However, a negative coefficient was more likely because of over-fitting than the

situation that user j will suppress user i’s activities. Therefore, if any coefficient happens

to be negative in likelihood function, it will be rejected.

4.5 Experimental Results

We evaluate the results based on the questions that we asked before, by comparing the

proposed method PSI with the baseline methods. Next we will discuss the experimental

results in detail.
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Figure 4.1: AUC on URL dataset

Figure 4.2: AUC on Higgs dataset

4.5.1 Effectiveness of jointly learning

We now answer the first question, i.e. how effective can our method jointly learn social

activity and network structure information compared to other methods. We investigate this
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question by looking into the two accuracy metrics.

A. Pair-wise accuracy. The results of pair-wise accuracy in terms of AUC metric are

shown in Figure 4.1 and Figure 4.2. Note that URL dataset does not have information of

retweet and mention, so we only conduct R&M on Higgs dataset with AUC metric. We

have several observations as follows.

(1) Methods that only consider one source of information perform the worst in both

datasets. For example, CN was out performed by others in a large margin, due to the fact

that it only the neighbors of each user.

(2) In general, the methods which consider both user activity and network structure

information outperformed the methods that only consider one of those. For instance, SWR

achieves 18.7% and 20.3% gain over R&M and CN respectively with 60% training set in

Higgs dataset. However, our method further achieves 6.68% gain over SWR, indicating

that the PSI can better integrate social activities with network structure information.

(3) The proposed method PSI has better performance with smaller training set. For

example, in URL dataset, with only 40% of training set our method has higher accuracy

than most of the baselines with 60% training set. In Higgs dataset, our method even only

requires 20% of training to outperform most of the baselines with 60% training set.

(4) Methods generally have better performance in URL dataset than in Higgs dataset.

We infer that is due to the sparsity of Higgs dataset in terms both following relationships

and user activities.

(5) While all other baseline methods can’t perform stably across datasets, the proposed

method PSI can consistently outperform other baseline methods in both datasets, which

indicates its robustness in different real-world scenarios.

B. List-wise accuracy. We now investigate the results of list-wise accuracy by using the

Precision@k which is shown Figure 4.3 and Figure 4.4. And MAP is shown in Figure 4.5

and Figure 4.6. We draw several observations as follows.
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Figure 4.3: Precision@k on URL dataset

Figure 4.4: Precision@k on Higgs dataset

(1) Methods that combine both network structure and user activities generally outper-

form the methods that consider only one of those. But the improvement is more salient in
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URL dataset than in Higgs dataset, again partially due to the sparsity of data.

(2) Our method performs relatively stable in different positions in Precision@k metric

in Figure 4.3 and Figure 4.4, while some of the baselines did not, such as ELLR in URL

dataset in position 4 to 9 as shown in Figure 4.3, and BPR-MF in Higgs dataset in position

6 to 9 as shown in Figure 4.4. We can see these two methods have drastic changes in those

positions. We infer that without using social activities as the extra information to regularize

the model, those methods with only network structure information will be largely affected

by the noisy instances in recommending a list of users.

Figure 4.5: MAP on URL dataset

(3) The social activity information affects the models in an evident way. As shown

in Figure 4.5 and Figure 4.6. In URL dataset, ELLR performs worse than TI and SRW

with respect to MAP metric. However, in Higgs dataset where the social activities are

relatively sparse, EllR even performs slightly better than these two methods, indicating

these two methods cannot properly learn from sparse data. But our method consistently
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outperforms those methods, meaning that it can better learn useful information from sparse

social activities.

Figure 4.6: MAP on Higgs dataset

In a nutshell, our method PSI consistently achieves better performance in link predic-

tion by jointly modeling social activity and network structure, which answers first ques-

tion.

4.5.2 Impact of sparsity of social activities

We now answer the second question, i.e., how effective of our method in modeling

social activity information, especially when it is sparse. We have two baseline methods,

TI and SRW, which consider both network structure and user activity information. So we

will compare our method with these two methods here.

We first sequentially (time sequence from oldest to newest) sample different portions

of each user’s activities, e.g., if we sample 10% of user activities, it means only the first

10% of social activities are included. We use MAP as the evaluation metric. The results
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10% (gain) 25% (gain) 50% (gain) 100% (gain)

TI 0.4813 (N.A.) 0.5187 (N.A.) 0.5323 (N.A.) 0.5647 (N.A.)
SRW 0.4998 (+3.87%) 0.5453 (+5.12%) 0.5738 (+7.79%) 0.6165 (+9.15%)
PSI 0.543 (+12.91%) 0.596 (+14.97%) 0.633 (+18.94%) 0.691 (+22.51%)

Table 4.2: Model Sensitivity on User Activity Size of URL dataset

10% (gain) 25% (gain) 50% (gain) 100% (gain)

TI 0.3925 (N.A.) 0.4364 (N.A.) 0.4854 (N.A.) 0.5327 (N.A.)
SRW 0.4303 (+9.63%) 0.4455 (+2.08%) 0.4922 (+1.40%) 0.5250 (-1.44%)
PSI 0.453 (+15.61%) 0.505 (+15.78%) 0.532 (+9.64%) 0.602 (+13.12%)

Table 4.3: Model Sensitivity on User Activity Size of Higgs dataset

are shown in Table 4.2 and 4.3. Each column represents how much user activities are

used, and ‘gain’ means the percentage improvement of the methods as compared to TI.

The result shows the robustness of our method with sparse user activities. In URL dataset,

compared with TI and SRW, when only 10% of user activities are considered, our method

already outperforms TI and SRW by 12.91% and 8.80%, respectively. When we include all

social activity information, our method can achieve 22.51% and 12.23% gain at maximum

over TI and SWR. In Higgs dataset, we can observe the similar outcome, for only 10%

activities considered, our method outperforms TI and SRW by 15.61% and 5.46%, and the

maximum gain is achieved in 25% training set.

In summary, our method can properly learn useful information from social activities

better than baselines methods, and thus performs better in link prediction, even with sparse

activities data, which answers the second question before.
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5. CONCLUSION

In this paper, we study link prediction in social networks by considering the social

influence model. While link prediction has been intensively studied with pure network

structures, we prove that by incorporating social influence measure into network topo-

logical structure, our method can perform better in link prediction. The quantification

of social influence is learned from social activities through information-theoretic method,

and the personalized social influence is further preserved in the user Source representation

and Target representation, which can individually represent the users’ personalized char-

acteristics. In link prediction task, our method outperforms the state-of-the-art methods

in directed link prediction, indicating the effectiveness of PSI in jointly learning social

activity information and network topological structure in a unified framework.
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