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ABSTRACT 

Petroleum industry performance has been consistently below expectations. This 

underperformance has been attributed in part to the existence of cognitive biases in project 

evaluation, resulting in poor project valuation and selection. It was demonstrated in the 

literature that chronic overconfidence and optimism (estimated distributions of project 

value too narrow and shifted positively), both common in industry, produce substantial 

disappointment (realized portfolio values less than estimated). 

In this work, I aim to evaluate the impact of overconfidence as well as underconfidence 

(estimated distributions too wide) on portfolio performance, to determine if it is more 

beneficial to reduce biases and improve calibration or to reduce uncertainty, to provide a 

simple way of measuring biases from historical assessments, to determine the relationship 

between the number of probabilistic assessments and the accuracy of these measurements, 

and to determine guidelines for minimizing biases in new assessments using external 

adjustment. 

I simulated the performance of projects selected in a typical portfolio of O&G projects 

to determine the effects of biases on portfolio performance and to compare reducing biases 

against reducing uncertainty. Next, I generated calibration curves for historical 

probabilistic assessments and used these curves to calculate different reliability measures. 

Then I generated different numbers of biased assessments and used them to determine the 

relationship between the number of assessments and the accuracy of the bias 

measurements. Furthermore, I used the calibration curve to adjust new forecasts and 
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measured the reliability of the new forecasts after adjustment as a function of the number 

of historical assessments and other parameters. 

This research demonstrates that underconfidence is just as detrimental to portfolio 

performance as overconfidence. Decision error will be minimized and portfolio value will 

be maximized only when there is no bias in project estimation. Furthermore, I found that 

reducing biases consistently generates more value than reducing uncertainty. Moreover, 

this research shows that using more historical assessments to measure biases typically 

improves the accuracy of the bias measurements. However, even a low number of 

assessments is enough to detect moderate and extreme biases. Finally, this research shows 

that production forecasts that were updated frequently over time using newly available 

data and externally adjusted using the most recent bias measurements were superior in 

terms of calibration to forecasts that were not updated or externally adjusted. 

The methods presented in this work can be used to measure and improve the reliability 

of probabilistic assessments in many petroleum engineering applications. Implementing 

these methods will result, over the long run, in the best calibrated assessments. Well-

calibrated assessments result in better identification of superior projects and inferior 

projects, and ultimately, better investment decision making and increased profitability. 
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CHAPTER I 

INTRODUCTION* 

Several authors over several decades (Brashear et al. 2001, Capen 1976, Rose 2004) have 

observed that petroleum industry performance has been consistently below expectations. 

While this is painfully obvious during the industry downturn beginning in 2014, available 

evidence suggests that even when the industry is profitable, e.g., during the decade prior 

to the most recent downturn, it still performs substantially below expectations and its 

potential (Nandurdikar 2014). Many attribute this underperformance to cognitive biases 

in project evaluation, resulting in poor project valuation and selection. McVay and 

Dossary (2014) presented a simplified framework to estimate the cost of underestimating 

uncertainty. They demonstrated that chronic overconfidence and optimism (estimated 

distributions of project value too narrow and shifted positively), common in industry, 

produce substantial disappointment (realized portfolio values less than estimated), also 

common in industry. 

Status of the Question 

While many authors have cited the qualitative benefits of reliably assessing uncertainty, 

only a few studies tried to assess the impact quantitatively. Welsh et al. (2007) modeled 

                                                 

* Part of this chapter is reprinted with permission from Alarfaj, M. K., and McVay, D. A. 2016. Improved 
Framework for Measuring the Magnitude and Impact of Biases in Project Evaluation. Presented at the SPE 
Annual Technical Conference and Exhibition, Dubai, UAE 26-28 September. SPE-181430-MS. 
https://doi.org/10.2118/181430-MS. Copyrights [2016] by Society of Petroleum Engineers. 

https://doi.org/10.2118/181430-MS
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the impact of three individual biases commonly found in project evaluation—

overconfidence, trust, and availability. They showed that all three biases impact the 

estimated value of a project and result in a true net present value (NPV) considerably lower 

than its estimated NPV. However, they performed their analysis on a single-project basis 

and did not consider the overall impact of biases on a portfolio. 

Begg and Bratvold (2008) explored the impact of prediction errors caused by the 

Optimizer’s Curse or selection-mechanism systematic bias on an expected basis at the 

portfolio level. They found that this bias may not be as substantial as previously thought, 

especially when considering that the impact of other sources of bias may be significantly 

larger. 

McVay and Dossary (2014) proposed a framework to estimate the value of assessing 

uncertainty by quantifying the monetary impact of biases on a portfolio of O&G projects. 

The essence of their framework is that biases that affect judgement and estimation in 

project evaluation can be rolled into two primary biases: overconfidence (underestimation 

of uncertainty, where the estimated distribution of an uncertain quantity is too narrow) and 

directional bias (where the estimated distribution is shifted in the optimistic or pessimistic 

direction). Their study showed that even moderate levels of overconfidence and optimism, 

which are common in the industry, could result in as much as 30-35% reduction, on 

average, from the estimated to the realized portfolio value. However, their framework did 

not include the effects of underconfidence (overestimation of uncertainty, where the 

estimated distribution of an uncertain quantity is too wide). While underconfidence is not 

currently common, as the industry hopefully improves in uncertainty estimation, it is of 
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interest to assess the impact on portfolio performance of possible overcorrection of 

overconfidence into underconfidence. Moreover, the authors used estimated distributions 

that were limited to truncated probability distributions. In practice, estimated distributions 

could be full distributions such as normal and lognormal distributions. Furthermore, while 

they showed that reducing the overconfidence bias reduces disappointment and decision 

error, they did not address which has greater benefit: reducing biases to make better 

calibrated assessments, or reducing uncertainty by acquiring more information and/or 

using more complex and detailed models. 

Furthermore, none of these studies discussed in detail how to measure or eliminate 

these biases. McVay and Dossary (2014) suggested that the key to eliminating 

overconfidence is through a continual process of forecast tracking, lookbacks as actual 

values become available, checking calibration by comparing actual values to forecasts, 

and then using this calibration information to adjust new probabilistic assessments. Capen 

(1976) demonstrated how to use calibration results to externally adjust forecasts. For 

example, knowing from lookbacks and calibration that forecast P10-P90 ranges were too 

narrow, i.e., actually P30-P70 ranges, he simply plotted the forecast values versus the 

calibrated P30-P70 probabilities on probability paper (normal or lognormal) and extended 

the ranges to revised P10-P90 values. 

Fondren et al. (2013) demonstrated how a database tracking system was used to 

externally adjust shale-gas probabilistic production forecasts to improve their reliability. 

To measure calibration, they used calibration plots in which the frequency of outcomes is 

plotted against the assessed probability of outcomes. They then implemented a 
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methodology similar to the one suggested by Capen (1976) to externally correct these 

forecasts. Landman and Goddard (2002) used model output statistics, a multiple linear 

regression technique, to recalibrate rainfall forecasts for extreme seasons over southern 

Africa using predictor values from a general circulation model and historical record of the 

predictand (regional rainfall indices). Piani et al. (2010) assumed that both normalized 

observed and simulated (estimated) distributions are well approximated by a gamma 

distribution and used a transfer function that can be derived graphically to correct the 

simulated distributions. This is similar to using calibration plots to externally adjust 

assessments; however, the latter can be considered more general since it is not restricted 

to a specific distribution and the CDFs do not need to be normalized. Mandel and Barnes 

(2014) used Karmarker’s transformation, which utilizes a tuning parameter to improve the 

calibration of forecasts in strategic intelligence applications. Turner et al. (2014) used a 

combination of forecast aggregation and recalibration (adjustment) using a linear-in-log-

odds function to generate a less-biased forecast. There is very little, if anything, in the 

literature that addresses the accuracy of these measures of reliability, or of biases, as a 

function of the number of assessments available. 

Research Objectives 

In my research, I aim to: 

• evaluate the impact of confidence bias (including over and underconfidence) 

and directional bias on portfolio performance and determine which has greater 

benefit: reducing biases to make better calibrated assessments or reducing 

uncertainty by acquiring more information and/or using more complex models. 
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• determine the relationship between the number of probabilistic assessments and 

the accuracy of bias measurements. 

• determine guidelines for minimizing biases in new assessments using external 

adjustment. 

Dissertation Outline 

In Chapter II, I generalized the McVay and Dossary (2014) framework to include 

underconfidence in addition to overconfidence. I also generalized it to include full 

estimated distributions (e.g., normal or lognormal), in addition to the truncated 

distributions used in the original framework. Using the generalized framework, I 

simulated the performance of projects selected in a typical portfolio of O&G projects to 

determine the effects of the confidence bias (including over and underconfidence) and 

directional bias (including positive and negative) on portfolio performance and to compare 

reducing biases against reducing uncertainty. Finally, I showed a simple method for 

measuring confidence and directional biases from calibration curves. 

In Chapter II, I measured the reliability of probabilistic assessments by calculating and 

estimating the coverage rate, calibration score, confidence, and directional biases in biased 

probabilistic assessments that were generated using the generalized framework developed 

in Chapter II. I also used the generalized framework to generate different numbers of 

biased assessments and then determined the relationship between the number of 

assessments and the accuracy of the bias measurements. Next, I used the calibration curve 

to adjust new forecasts, and I measured the reliability of the new forecasts after adjustment 

as a function of the number of historical assessments and other parameters. I complete 
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Chapter III with a case study that compares different options for updating production 

forecasts and recommend the option that was superior to the others in terms of calibration. 

Finally, in Chapter IV, I summarize the conclusions of these chapters and suggest future 

work. 

 



7 
 

CHAPTER II 

IMPROVED FRAMEWORK FOR MEASURING 

THE MAGNITUDE AND IMPACT OF BIASES IN PROJECT EVALUATION* 

Overview 

Several authors over several decades (Capen 1976; Brashear et al. 2001; Rose 2004) have 

observed that petroleum industry performance has been consistently below expectations. 

While this is painfully obvious during the industry downturn beginning in 2014, available 

evidence suggests that even when the industry is profitable, e.g., during the decade prior 

to the most recent downturn, it still performs substantially below expectations and its 

potential (Nandurdikar 2014). Many attribute this underperformance to cognitive biases 

in project evaluation, resulting in poor project valuation and selection. McVay and 

Dossary (2014) presented a simplified framework to estimate the cost of underestimating 

uncertainty. They demonstrated that chronic overconfidence and optimism (estimated 

distributions of project value too narrow and shifted positively), common in industry, 

produce substantial disappointment (realized portfolio values less than estimated), also 

common in industry. 

 In this work, we generalized their framework to include full estimated distributions 

(e.g., normal or lognormal), instead of the truncated distributions they employed. In 

                                                 

* Part of this chapter is reprinted with permission from Alarfaj, M. K., and McVay, D. A. 2016. Improved 
Framework for Measuring the Magnitude and Impact of Biases in Project Evaluation. Presented at the SPE 
Annual Technical Conference and Exhibition, Dubai, UAE 26-28 September. SPE-181430-MS. 
https://doi.org/10.2118/181430-MS. Copyrights [2016] by Society of Petroleum Engineers. 

https://doi.org/10.2118/181430-MS


8 
 

addition, we extended their framework to model underconfidence (estimated distributions 

too wide), and demonstrate that underconfidence is just as detrimental to portfolio 

performance as overconfidence. Decision error will be minimized and portfolio value will 

be maximized only when there is no bias in project estimation—i.e., neither 

overconfidence nor underconfidence and neither optimism nor pessimism. We compared 

the value gained from reducing biases to that from reducing uncertainty and found that 

reducing biases consistently generates more value than reducing uncertainty. 

Using either framework, operators can quantitatively measure biases—overconfidence, 

underconfidence, optimism and pessimism—from lookbacks (comparing actual 

performance to probabilistic forecasts) and calibration plots. Once aware of the direction 

and magnitude of biases, operators have means for eliminating these biases in new 

forecasts through a combination of internal adjustment of uncertainty assessments, via 

training or ongoing feedback, and external adjustment of assessments using measurements 

of bias from calibration results. 

Introduction 

The industry has suffered massive losses in the recent oil price downturn. Xu and Bell 

(2016) reported that a sample of 59 US-based oil and gas producers and refiners posted 

combined net losses of nearly $102.9 billion in 2015 compared with net income of nearly 

$86.5 billion in 2014. Haynes and Boone (2018) reported that, as of March 2018, 144 

North American oil and gas producers filed for bankruptcy since the beginning of 2015 

with approximately $90.2 billion in cumulative secured and unsecured debt.  
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A cumulative body of evidence suggests that the severity of these losses can be 

attributed at least in part to unreliable uncertainty assessment caused by systematic biases. 

Literature review indicates that the difficulty and importance of assessing uncertainty were 

recognized early on. In his seminal work over 40 years ago, Capen (1976) warned about 

the difficulty of assessing uncertainty. He conducted several experiments with petroleum 

engineers and showed that they are chronically overconfident. When asked to produce 

90% confidence intervals, they produced intervals that corresponded to a 32% confidence 

interval on average.  He concluded that people tend to be a lot prouder (more confident) 

of their probability ranges than they should be. He reported that, even when people have 

been warned, probability ranges tend to be too small; they do slightly better but still cannot 

bring themselves to make their probability ranges wide enough. Finally, he warned against 

the negative consequences of poorly quantifying uncertainty. 

Unfortunately, it seems that the industry has realized little improvement in its ability to 

reliably assess uncertainty and perform in line with expectations. Industry performance in 

the last decade of the twentieth century was dismal. Brashear et al. (2001) noted that the 

average return of the largest U.S.-based E&P companies in the 1990s was around 7% 

despite using project-hurdle rates generally of 15% or more. Furthermore, Rose (2004) 

reported that exploration departments of most E&P companies delivered only about half 

of the new reserves they promised. In the Norwegian sector of the North Sea, all of the 

active participants delivered only 38% of the expected reserves. 

The industry’s financial performance may have improved in the years prior to the 

current oil slump, but this likely happened because of high oil prices rather than systematic 
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improvement in uncertainty estimation. It is possible that high oil prices may have caused 

the industry to relax and make even worse project-selection decisions. Indeed, Merrow 

(2012) reported that, since 2003, the success rate for petroleum megaprojects—those that 

exceed one billion USD—declined from 50% to 22%, while the success rate for non-

petroleum megaprojects stayed constant at around 50% for the same period.  Nandurdikar 

(2014) claimed the improvement in the industry’s financial performance was mainly 

because of unexpected high oil prices. In reality, the estimated ultimate recovery (EUR) 

updated 2 years after startup fell outside the 80% confidence range of the original EUR 

estimates 40% of the time—twice the expected rate and usually on the negative side. In 

other words, the updated EURs were usually less than promised. Moreover, he noted that 

most businesses did not recognize the value erosion because the actual oil price was higher 

than assumed at sanction. Therefore, it appeared that their financial results were better 

than expected, while in reality they left much on the table. 

These reports indicate that the industry continues to perform below expectations. Why 

does it continue to underperform? Brashear et al. (2001) argued that use of evaluation 

methods that do not account for the full range of uncertainty contributed to the industry’s 

underperformance. Rose (2004) attributed it mainly to chronic biases in estimating key 

evaluation parameters that control project evaluations. McVay and Dossary (2014) 

hypothesized that part of the reason the industry continues to underestimate uncertainty is 

lack of appreciation of the monetary (quantitative) impact of biases on industry 

performance.  
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While many authors have cited the qualitative benefits of reliably assessing uncertainty, 

only a few studies (Welsh et al. 2007; Begg and Bratvold 2008; Hdadou and McVay 2014; 

McVay and Dossary 2014) tried to assess the impact quantitatively. To address this 

problem, McVay and Dossary (2014) proposed a framework to estimate the value of 

assessing uncertainty. Their model estimated the monetary impact of overconfidence 

(underestimation of uncertainty, where the estimated distribution of an uncertain quantity 

is too narrow) and directional bias (where the estimated distribution is shifted in the 

optimistic or pessimistic direction). Their study showed that even moderate levels of 

overconfidence and optimism, which are common in the industry, could result in as much 

as 30-35% reduction, on average, from the estimated to the realized portfolio value. 

However, the McVay and Dossary framework did not include the effects of 

underconfidence (overestimation of uncertainty, where the estimated distribution of an 

uncertain quantity is too wide). Although underconfidence is not currently common, as 

the industry hopefully improves in uncertainty estimation, it is of interest to assess the 

impact on portfolio performance of possible overcorrection of overconfidence into 

underconfidence. Furthermore, the authors used estimated distributions that were limited 

to truncated probability distributions. While they applied various levels of biases to 

simulated portfolios similar to those available to a large E&P company, they did not 

attempt to measure biases quantitatively from actual probabilistic assessments post-

development. In this work, we propose a new framework for modeling both 

overconfidence and underconfidence in combination with directional bias, and which is 

not limited to truncated estimated distributions. In the remainder of this paper, we compare 
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results from the new framework to the previous framework, and we show also the effects 

of underconfidence on portfolio performance. We end by demonstrating how to measure 

over/underconfidence and directional bias from probabilistic assessments using 

calibration plots, and how to adjust new assessments using these measured values.  

Previous Framework 

We build on McVay and Dossary’s (2014) framework for modeling the impact of biases. 

The essence of their framework is that biases that affect judgement and estimation tend to 

affect the following: 

• The uncertainty or variability of the estimate (usually in the direction of 

overconfidence, or underestimation of uncertainty). 

• The central tendency of the estimate (usually in the direction of optimism) 

• Or, both the uncertainty and the central tendency of the estimate. 

Thus, all biases can be rolled into two primary biases: overconfidence and directional bias 

(optimism or pessimism). Overconfidence is the failure to consider all the possible 

outcomes. Optimism can manifest when one ignores or fails to consider possible negative 

outcomes or gives them less weight than equally probable positive outcomes. On the other 

hand, pessimism occurs when one ignores or fails to consider possible positive outcomes 

or gives them less weight than equally probable negative outcomes.  

Suppose that you were asked to provide an estimate for an unknown quantity, for 

example, project value. You can provide a single value as your estimated project value. 

You can also define your uncertainty about this value by providing a standard deviation 

(SD) or specifying a complete distribution. In this work, we call this the estimated project-
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value distribution. Such distributions result from typical limited-resources assessments 

and would include biases typically present in O&G project evaluations. These biases make 

the estimated project-value distribution different from your “true” project-value 

distribution. The “true” value distribution as defined by Smith and Winkler (2006) is the 

distribution that would result from an unlimited-resources assessment. In other words, the 

true project-value distribution would be obtained if you had unlimited time, money, and 

computational ability. McVay and Dossary (2014) clarified that these unlimited resources 

can only be used to analyze existing data and cannot be used to obtain further data. Begg 

et al. (2014) stated that uncertainty is related to the estimator’s state of information and 

that the state of information is particular to a person (or a company). Thus, the true project-

value distribution is personal; i.e., different estimators can have different knowledge and 

assessment processes and, thus, can have different “true” but valid unlimited-resources 

project-value distributions. McVay and Dossary (2014) clarified that, ultimately, “true” 

project-value distributions are those that are “reliable,” or perfectly calibrated. By reliable 

they mean that over a large number of similar estimations, the frequencies of the outcomes 

would correspond to their assigned probabilities. For example, events or assessments that 

has been assigned 10% probability should occur 10% of the time, those that has been 

assigned a 50% probability should occur 50% of the time, and those that has been assigned 

90% probability should occur 90% of the time. Calibration is discussed further in later 

sections. 

McVay and Dossary introduced two parameters to define the relationship between the 

true and estimated project-value distributions. The overconfidence parameter was defined 
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as a parameter that ranges from 0.0 to 1.0 and specifies the fraction of the true distribution 

not sampled by the estimated distribution in the limited-resources assessment. Therefore, 

a value of 0.0 denotes that the entire true distribution was sampled, and no biases are 

present. On the other hand, an overconfidence value greater than 0.0 denotes that only a 

subset of the true distribution is sampled. This results in an estimated distribution that is 

narrower than the true distribution.  

The directional bias parameter was defined as a parameter that ranges from -1.0 to 1.0 

and it specifies the location of the estimated distribution relative to the true distribution. 

A directional bias value of -1 means that only the lowest possible outcomes of the true 

distribution were considered; i.e., the estimated distribution is shifted to the left of the true 

distribution. On the other hand, a directional bias value of +1 means that only the highest 

possible outcomes of the true distribution were considered; i.e., the estimated distribution 

is shifted to the right of the true distribution (Fig. 2.1). In the McVay and Dossary model, 

there can be no directional bias if there is no overconfidence because, in this situation, the 

estimated distribution is the same as the true distribution.  

McVay and Dossary (2014) did not clearly distinguish between directional bias (DB) 

and optimism-pessimism bias (OPB). A bias in the positive direction could mean 

optimism or pessimism depending on the parameter. For example, for a value-based 

parameter such as Net Present Value (NPV), a positive DB value is considered optimism 

because expecting a greater value than reality is of benefit to the estimator. On the other 

hand, for a cost-based parameter such as Capital Expenditure (CapEx), a negative DB is 

considered optimism because expecting lower cost than reality is of benefit to the 
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estimator. While it is possible for some uncertain parameters to have no optimism-

pessimism bias associated with directional bias, virtually all uncertain parameters 

affecting petroleum project evaluation will have associated optimism-pessimism bias. 

 

Overonfidence=0.5 

Directional Bias=-1.0 Directional Bias=0.0 Directional Bias=1.0 

   

Fig. 2.1—In the McVay and Dossary (2014) framework, the overconfidence parameter specifies the fraction of the true 
distribution (black curve) not sampled by the estimated distribution (red area) and the directional bias specifies the location of 
the estimated distribution relative to the true distribution. 

 

Modeling overconfidence and directional bias in previous framework 

To model the estimated distribution, the true distribution is simply truncated at the tails. 

Fig. 2.2 shows the true and estimated probability distribution functions (PDF) assuming a 

normal distribution for the true. The truncated PDF fe represents the estimated distribution 

while the full PDF ft represents the true distribution. The cumulative distribution function 

(CDF) corresponding to ft is Ft (Fig. 2.3). 
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Fig. 2.2—True and estimated distributions for a directional bias value 
of 0.5 and overconfidence value of 0.5 assuming a normal true 
distribution. 

 

 
Fig. 2.3—CDF of the true distribution for a directional bias value of 0.5 
and overconfidence value of 0.5 assuming a normal true distribution. 

 

Mathematically, overconfidence can be calculated as the sum of the true-distribution 

areas not included in the estimated distribution (the sum of the unshaded areas under ft), 

while the directional bias can be calculated from the ratio of the left or right unshaded area 

to the sum of the unshaded areas. 
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Let a and b denote the truncation points for the estimated distribution (Fig. 2.2). Also, 

let AL denote the unshaded area on the left and AR denote the unshaded area on the right. 

Then, the confidence bias parameter for overconfident estimated distributions can be 

calculated as follows: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐿𝐿 + 𝐴𝐴𝑅𝑅 = 𝐹𝐹𝑡𝑡(𝑎𝑎) + [1 − 𝐹𝐹𝑡𝑡(𝑏𝑏)] = 1 + 𝐹𝐹𝑡𝑡(𝑎𝑎) − 𝐹𝐹𝑡𝑡(𝑏𝑏) ................................. (2.1) 

The directional bias parameter in the presence of overconfidence can be calculated 

using either the left or right unshaded area as follows: 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 = 2 � 𝐴𝐴𝐿𝐿
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

� − 1 = 1 − 2 � 𝐴𝐴𝑅𝑅
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

� ........................................................................ (2.2) 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 = 2 � 𝐹𝐹𝑡𝑡(𝑎𝑎)
1+𝐹𝐹𝑡𝑡(𝑎𝑎)−𝐹𝐹𝑡𝑡(𝑏𝑏)

� − 1 = 1 − 2 � 1−𝐹𝐹𝑡𝑡(𝑏𝑏)
1+𝐹𝐹𝑡𝑡(𝑎𝑎)−𝐹𝐹𝑡𝑡(𝑏𝑏)

� ................................................ (2.3) 

Modeling underconfidence and directional bias using truncated distributions 

McVay and Dossary (2014) did not include underconfidence in their framework. Because 

it is possible to have underconfidence and because there is potential value in considering 

the effects of underconfidence, we extended their truncated-estimated-distribution model 

to include it. For underconfidence, we simply flipped the distributions so that the full 

distribution is the estimated distribution and the truncated distribution is the true 

distribution. Fig. 2.4 shows the true and estimated PDFs assuming a normal distribution 

for the estimated. This time, the truncated PDF ft represents the true distribution while the 

full PDF fe represents the estimated distribution. The CDF corresponding to fe is Fe (Fig. 

2.5). 
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Underconfidence ranges from -1 for complete underconfidence (no information about 

the uncertain quantity) to 0 for no underconfidence, which is the same as 0 overconfidence 

(the estimated distribution is the same as the true distribution). 

 

 
Fig. 2.4—True and estimated distributions for a directional bias value of 0.5 
and underconfidence value of -0.5 assuming a normal estimated distribution. 

 

 
Fig. 2.5—CDF of the estimated distribution for a directional bias value of 0.5 
and underconfidence value of -0.5 assuming a normal estimated distribution. 
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Mathematically, underconfidence can be calculated as the negative of the sum of areas 

not included in the true distribution (the sum of the unshaded areas under fe), while the 

directional bias can be calculated from the ratio of the left or right unshaded area to the 

sum of the unshaded areas. 

Let a and b denote the truncation points for the true distribution (Fig. 2.4). Also, let AL 

denote the unshaded area on the left and AR denote the unshaded area on the right. Then, 

the confidence bias parameter for underconfident estimated distributions can be calculated 

as follows: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 = −(𝐴𝐴𝐿𝐿 + 𝐴𝐴𝑅𝑅) = −{𝐹𝐹𝑒𝑒(𝑎𝑎) + [1 − 𝐹𝐹𝑒𝑒(𝑏𝑏)]} = 𝐹𝐹𝑒𝑒(𝑏𝑏) − 𝐹𝐹𝑒𝑒(𝑎𝑎) − 1 ..................... (2.4) 

For underconfidence, we change the directional bias equation to: 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 + 2 � 𝐴𝐴𝐿𝐿
𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈

� = −2 � 𝐴𝐴𝑅𝑅
𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈

� − 1 ..................................................................... (2.5) 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 + 2 � 𝐹𝐹𝑒𝑒(𝑎𝑎)
𝐹𝐹𝑒𝑒(𝑏𝑏)−𝐹𝐹𝑒𝑒(𝑎𝑎)−1

� = −2 � 1−𝐹𝐹𝑒𝑒(𝑏𝑏)
𝐹𝐹𝑒𝑒(𝑏𝑏)−𝐹𝐹𝑒𝑒(𝑎𝑎)−1

� − 1 ............................................ (2.6) 

As with overconfidence, a negative DB value means that the estimated distribution is 

shifted to the left relative to the true distribution. Conversely, a positive DB value means 

that the estimated distribution is shifted to the right relative to the true distribution. 

Generalized Framework 

The truncated estimated distribution used in the previous framework provides an easy way 

to visualize and understand over/underconfidence and directional bias. It also simplifies 

the mathematical computations. However, in practice, we typically do not work with 

truncated distributions in project evaluation or probabilistic estimates in general. We need 

a framework that can handle the kinds of probabilistic distributions we commonly use in 
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assessments. Thus, we generalized the McVay and Dossary (2014) framework to accept 

both truncated and full distributions for the estimated distribution in the case of 

overconfidence, and both truncated and full distributions for the true distribution in the 

case of underconfidence. The new framework does not change the definitions of 

directional bias and over/underconfidence, but rather introduces a new way of calculating 

them that allows both truncated and full distributions. It also combines the overconfidence 

and underconfidence portions of the confidence bias (CB) parameter so that CB values 

from -1 to 0 denote underconfidence and values from 0 to 1 denote overconfidence. 

Modeling overconfidence in new framework 

In Fig. 2.2, if the estimated distribution starts at point a and ends at point b, the confidence 

bias parameter for overconfident distributions is equal to the cumulative area under the 

true distribution from -∞ to a plus the area from b to ∞. However, this model cannot be 

applied to estimated distributions that are not bounded, such as the normal distribution, 

which ranges from -∞ to ∞ (Fig. 2.6) and the lognormal distribution which ranges from 0 

to ∞. Therefore, we propose a slightly more general definition for calculating the areas for 

overconfident distributions. Overconfidence is the area under the true distribution PDF 

that is not included in the area under the estimated distribution PDF (Fig. 2.6). Let ft denote 

a PDF of the true distribution and fe a PDF of the estimated distribution. The shaded area 

in Fig. 2.6 is the area under both PDFs. It is called the overlapping coefficient (AOVL) and 

it can be calculated as follows (Bradley 2006): 

𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 = ∫ min[𝑓𝑓𝑡𝑡(𝑥𝑥),𝑓𝑓𝑒𝑒(𝑥𝑥)]∞
−∞ 𝑑𝑑𝑑𝑑 ................................................................................ (2.7) 
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Since AOVL is equal to the shaded area, we can define the overconfidence portion of the 

confidence bias parameter using AOVL as: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 − 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 ......................................................................................................... (2.8) 

Directional bias is calculated the same as before for overconfident estimates: 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 = 2 � 𝐴𝐴𝐿𝐿
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

� − 1 = 1 − 2 � 𝐴𝐴𝑅𝑅
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

� ........................................................................ (2.9) 

For overconfident estimates: 

𝐴𝐴𝐿𝐿 = ∫ max[𝑓𝑓𝑡𝑡(𝑥𝑥) − 𝑓𝑓𝑒𝑒(𝑥𝑥), 0]𝑀𝑀𝑀𝑀𝑓𝑓𝑒𝑒
−∞ 𝑑𝑑𝑑𝑑 ....................................................................... (2.10) 

𝐴𝐴𝑅𝑅 = ∫ max[𝑓𝑓𝑡𝑡(𝑥𝑥) − 𝑓𝑓𝑒𝑒(𝑥𝑥), 0]∞
𝑀𝑀𝑀𝑀𝑓𝑓𝑒𝑒

𝑑𝑑𝑑𝑑 ........................................................................ (2.11) 

𝑀𝑀𝑀𝑀𝑓𝑓𝑒𝑒 = Mode(𝑓𝑓𝑒𝑒) ....................................................................................................... (2.12) 

Note that these definitions will not change CB and DB parameter values for truncated 

distributions. Fig. 2.7 shows that the area under the true normal distribution ft that is not 

included in the estimated truncated-normal distribution fe is the same as the cumulative 

area under the true distribution from -∞ to a plus the area from b to ∞. In other words, 

calculating CB and DB parameters for a truncated estimated distribution using the 

generalized framework equations will produce the same values as the McVay and Dossary 

(2014) equations. Therefore, the generalized framework is backward compatible with the 

previous framework. 

Fig. 2.8 shows the relationship between the estimated distribution and the true 

distribution as a function of overconfidence and directional bias parameters using both 

truncated and full estimated distributions, for a true standard-normal distribution with 

mean of 0 and SD of 1. There are no differences in the estimated expected value (EV) for 
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full versus truncated distributions when the DB is zero because of the symmetry. The 

differences in estimated EV between full and truncated distributions increase as the DB 

value becomes more extreme (both in the positive and the negative directions) because of 

the increased difference in distribution shapes at the extremes.  

 

 
Fig. 2.6—Under the new framework, overconfidence is calculated from 
the overlapping area between the true distribution ft and the estimated 
distribution fe. 

 

 
Fig. 2.7—The overlapping area between the true distribution ft and the 
truncated estimated distribution fe is the same as the shaded area in the 
previous framework. 
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Est SD=0.087 

 
Est EV=-0.603 
Est SD=0.053 

Directional 
Bias=-1.0 

  
Est EV=-0.195 
Est SD=0.844 

 
Est EV=-0.230 
Est SD=0.923 

  
Est EV=-0.798 
Est SD=0.603 

 
Est EV=-1.067 
Est SD=0.660 

  
Est EV=-1.755 
Est SD=0.411 

 
Est EV=-2.259 
Est SD=0.421 

Fig. 2.8—Relationship between the estimated (red curve) and the true (black curve) distributions in the generalized 
framework as a function of confidence bias and directional bias parameters. The “Truncated” columns show the relationship 

between a truncated estimated distribution and a full true distribution similar to the previous framework while the “Full” 
columns show the relationships between two full distributions [adapted from McVay and Dossary (2014)].  

 

 

Modeling underconfidence in new framework 

Modeling the underconfident portion of CB will follow similar principles to modeling the 

overconfident portion. Also, although we have not shown them, there will be similar but 

inverted relationships between true and estimated distributions for underconfidence as was 

shown for overconfidence in Fig. 2.8. For underconfident portion of CB, the estimated 

distribution fe is wider than the true distribution ft (Fig. 2.9). We start by calculating the 
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overlapping coefficient (AOVL) just as we did previously. Then, the underconfidence 

portion of the confidence bias parameter is defined as:  

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 = 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 − 1....................................................................................................... (2.13) 

The directional bias parameter is calculated the same way we did in the truncated 

underconfidence model, that is: 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 + 2 � 𝐴𝐴𝐿𝐿
𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈

� = −2 � 𝐴𝐴𝑅𝑅
𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈

� − 1 ................................................................... (2.14) 

For underconfident estimates: 

𝐴𝐴𝐿𝐿 = ∫ max[𝑓𝑓𝑒𝑒(𝑥𝑥) − 𝑓𝑓𝑡𝑡(𝑥𝑥), 0]𝑀𝑀𝑜𝑜𝑓𝑓𝑡𝑡
−∞ 𝑑𝑑𝑑𝑑 ....................................................................... (2.15) 

𝐴𝐴𝑅𝑅 = ∫ max[𝑓𝑓𝑒𝑒(𝑥𝑥) − 𝑓𝑓𝑡𝑡(𝑥𝑥), 0]∞
𝑀𝑀𝑜𝑜𝑓𝑓𝑡𝑡

𝑑𝑑𝑑𝑑 ........................................................................ (2.16) 

𝑀𝑀𝑜𝑜𝑓𝑓𝑡𝑡 = Mode(𝑓𝑓𝑡𝑡) ....................................................................................................... (2.17) 

Fig. 2.10 shows an underconfident estimated distribution with a positive directional 

bias fep, and an underconfident estimated distribution with a negative directional bias fen 

relative to the true distribution ft. 

 

 
Fig. 2.9—Underconfidence is calculated from the overlapping area 
between the true distribution ft and the estimated distribution fe. 
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Fig. 2.10—The relationship between the true distribution ft and an 
underconfident estimated distribution with positive DB fep and an 
underconfident estimated distribution with negative DB fen. 

 

Generalized framework summary 

In summary, a confidence bias parameter can be defined as follows: 

𝐶𝐶𝐶𝐶 = �1 − 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂,      𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  
𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 − 1,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ............................................................. (2.18) 

and the directional bias parameter is: 

𝐷𝐷𝐷𝐷 = �
2 �𝐴𝐴𝐿𝐿

𝐶𝐶𝐶𝐶
� − 1 = 1 − 2 �𝐴𝐴𝑅𝑅

𝐶𝐶𝐶𝐶
� ,          𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  

1 + 2 �𝐴𝐴𝐿𝐿
𝐶𝐶𝐶𝐶
� = −2 �𝐴𝐴𝑅𝑅

𝐶𝐶𝐶𝐶
� − 1,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

 .............................. (2.19) 

Although we used normal distributions to demonstrate the relationship between the true 

and the estimated distributions in Fig. 2.8, these equations would also apply to lognormal 

distributions and potentially any unimodal distribution that can be defined by a continuous 

PDF. 

We remind the reader of the difference between directional bias (DB) and optimism-

pessimism bias (OPB). Just like with overconfident distributions, with underconfident 



26 
 

distributions, a value-based parameter such as Net Present Value (NPV) would have a 

positive DB value for optimistic estimates and a cost-based parameter such as Capital 

Expenditure (CapEx) would have a negative DB for optimistic estimates (Table 2.1).  

 

Parameter Positive DB Negative DB 

Value-based parameter Optimism Pessimism 

Cost-based parameter Pessimism Optimism 

Table 2.1—The relationship between directional bias and optimism-pessimism bias. 

 

Modeling the Impact of Biases 

We started by modeling the McVay and Dossary (2014) project selection experiments. 

The most significant change we made was to use full lognormal distributions to represent 

estimated distributions, instead of the truncated lognormal distributions they used. Each 

experiment began by generating a pool of 100 projects typical of those available to a large 

O&G company. For each project, we generated a true Capital-Expenditure (CapEx) 

distribution and a true Present-Value-of-Operating-Cash-Flow (PVOCF) distribution. We 

assumed that the CapEx and PVOCF distributions are lognormal and independent 

(uncorrelated). The means of the PVOCF and the CapEx distributions were sampled from 

global distributions with the parameters in Table 2.2. The standard deviations of the 

CapEx and the PVOCF distributions were generated by multiplying the sampled means 

by a fraction sampled from a PERT distribution with minimum 0.3, mode 0.8, and 

maximum 1.3.  
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Parameter Global Distribution Mean Standard Deviation Shift 

PVOCF mean Shifted lognormal 750 MM 750 MM 300 MM 

CapEx mean Shifted lognormal 600 MM 600 MM 100 MM 

Table 2.2—The PVOCF and CapEx means are sampled from a shifted lognormal distribution [from McVay 
and Dossary (2014)]. 

 

 

Next, for each project, we applied CB and OPB to the distributions of true CapEx and 

PVOCF to obtain the distributions of estimated CapEx and PVOCF. Similar to McVay 

and Dossary, we applied the same amount of bias to both CapEx and PVOCF. For 

example, in cases with CB of 0.5, we have applied CB=0.5 to both CapEx and PVOCF. 

We also applied OPB equally to both distributions using the relationship between DB and 

OPB explained in Table 2.1. From the CapEx and PVOCF distributions, we calculated 

Net Present Value (NPV=PVOCF-CapEx) and Investment Efficiency (IE=NPV/CapEx) 

distributions for use in project selection, for both the true and estimated distributions.  

Next, we conducted unconstrained-budget and constrained-budget project selections 

from the pool of 100 projects. For the unconstrained-budget scenario, we selected projects 

that had an estimated expected NPV (EV) > 0. For the constrained-budget scenario, 

projects were ranked in terms of decreasing estimated expected IE. Top projects were 

successively selected until a CapEx budget of $5 billion was exhausted. For the last project 

selected, we took an appropriate percentage of the project to exactly fill the CapEx budget. 

For each scenario (unconstrained and constrained budgets), we calculated the estimated 

portfolio EV by adding the estimated EVs of the individual projects selected based on 
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their estimated EV or E(IE). We also calculated the realized portfolio EV by adding the 

true EVs of the individual projects selected based on their estimated EV or E(IE). Finally, 

we calculated the best-possible portfolio EV by adding the true EVs of projects selected 

based on their true EV and E(IE) rather than estimated EV and E(IE), i.e., projects that 

estimators would have selected if they were unbiased.    

For each experiment, we calculated the portfolio’s expected disappointment (ED) and 

expected decision error (EDE). Expected disappointment was defined as the estimated 

portfolio EV minus the realized portfolio EV. It can be positive (disappointment) or 

negative (pleasant surprise). It was calculated as a percentage of the estimated portfolio 

EV as follows:  

𝐸𝐸𝐸𝐸%𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸

× 100% .................................... (2.20) 

Expected decision error was defined as the best-possible portfolio EV minus the 

realized portfolio EV; this is the portion of disappointment that results from selecting the 

wrong projects. It was also calculated as a percentage of the estimated portfolio EV as 

follows: 

𝐸𝐸𝐸𝐸𝐸𝐸%𝐸𝐸 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸

× 100% ............................. (2.21) 

To help illustrate the impact of biases on portfolio EV, we introduce the portfolio EV 

attainment, which is the realized portfolio EV as a percentage of the best-possible portfolio 

EV: 

𝐸𝐸𝐸𝐸𝐸𝐸%𝐵𝐵𝐵𝐵 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝐸𝐸

× 100% ........................................................... (2.22) 

Finally, we repeated this process in a Monte Carlo simulation to determine the expected 
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values of ED%E, EDE%E, and EVA%BP over thousands of different 100-project pools. 

For simplicity, we left the parameter names the same instead of adding another expectation 

operator. 

Overconfidence 

Figs. 2.11 and 2.12 show ED%E for the unconstrained and constrained budget cases using 

the new framework. As noted by McVay and Dossary (2014), ED%E increases 

monotonically as optimism increases. With pessimism, the estimator experiences negative 

expected disappointment (post-decision pleasant surprise). However, this pleasant 

surprise does not come without a cost. Although a pessimistic estimator realizes more EV 

than estimated (Figs. 2.11 and 2.12), the pessimism combined with overconfidence results 

in reduced value from the best possible (Figs. 2.13 and 2.14) because of decision error 

(Figs. 2.15 and 2.16). That is, the estimator makes incorrect project selections because of 

the biases and, as a result, the realized portfolio value is lower than the best-possible value 

(i.e., with projects selected using the true, unbiased distributions). The results also show 

that the realized EV is maximized, and expected disappointment and expected decision 

error are minimized, when CB=0. 

The results of our simulations assuming overconfidence were close to McVay and 

Dossary (2014), even though we used different distribution shapes (full instead of 

truncated) for the estimated CapEx and PVOCF. Figs. 2.17 and 2.18 show the differences 

in ED%E and EVA%BP between using full and truncated estimated distributions for a 

confidence bias value of 0.5 for both the constrained and unconstrained budget scenarios. 

The differences are more pronounced at extreme values of directional bias. However, it is 



30 
 

obvious from the plots that the differences are not significant in either scenario. The 

similarity of results from the previous framework and our framework are as expected. 

Projects were selected based on their EVs, and Fig. 2.8 shows that the EVs for different 

values of CB and OPB are similar in both frameworks except at extreme values of OPB. 

The interested reader can compare the ED%E and EDE%E results to those of the previous 

framework by comparing Figs. 2.11, 2.12, 2.15 and 2.16 in this paper to Figs. 3, 4, 7 and 

8 in McVay and Dossary (2014). 

 

 
Fig. 2.11—Expected disappointment for the unconstrained budget 
scenario and overconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.12—Expected disappointment for the constrained budget 
scenario and overconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 

Fig. 2.13—Expected value attainment for the unconstrained budget 
scenario and overconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.14—Expected value attainment for the constrained budget 
scenario and overconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.15—Expected decision error for the unconstrained budget 
scenario and overconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.16—Expected decision error for the constrained budget scenario 
and overconfidence using the new framework with OPB ranging from -
1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.17—A comparison of ED%E resulting from using full and 
truncated estimated distributions for an overconfidence value of 0.5 
with OPB ranging from -1 (complete pessimism) to +1 (complete 
optimism). 
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Fig. 2.18—A comparison of EVA%BP resulting from using full and 
truncated estimated distributions for an overconfidence value of 0.5 
with OPB ranging from -1 (complete pessimism) to +1 (complete 
optimism). 

 

Figs. 2.11 and 2.12 show only the expected value of the portfolio percentage 

disappointment and not the range of possible portfolio outcomes. Figs. 2.19 and 2.20 

show that, with zero CB and OPB, it is possible to be disappointed or pleasantly surprised 

with an individual portfolio, while on average over many portfolios the estimator 

experiences zero percentage disappointment. Figs 2.19 and 2.20 also show that it is 

possible to experience zero or negative disappointment for an individual portfolio with 0.5 

CB and 0.5 OPB. However, it is more likely that the estimator will be disappointed on 

average over many portfolios. 

Biases affect not only the expected value of the estimated portfolio NPV, but also the 

uncertainty (or risk) of the estimated portfolio, as reflected in the SD. Fig. 2.21 shows the 

best-possible, realized, and estimated portfolio NPV distributions for a CB value of 0.5 

and OPB values of -0.5, 0.0, and 0.5, respectively. These figure show that the estimated 
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portfolio distribution is narrower than that of the realized and best-possible. That is, the 

estimator is underestimating the portfolio uncertainty (or risk) because of biases. 

 

 
Fig. 2.19—Distribution of portfolio percentage disappointment for 0 
CB and 0 OPB (red curve) and 0.5 CB and 0.5 OPB (blue curve) for the 
unconstrained budget scenario. 

 

 
Fig. 2.20—Distribution of portfolio percentage disappointment for 0 
CB and 0 OPB (red curve) and 0.5 CB and 0.5 OPB (blue curve) for the 
constrained budget scenario. 

 

 
— Best-possible — Estimated — Realized 

 

Fig. 2.21—Best-possible, realized, and estimated portfolio NPV distributions for a CB value of 0.5 and 
OPB values of-0.5 (left), 0.0 (middle), and 0.5 (right). 
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Underconfidence 

While underconfidence is rare, it is possible. However, unlike overconfidence, it is 

unlikely to be highly underconfident because this results in extremely wide ranges. Thus, 

we limited our simulations of underconfidence to low-to-moderate levels of 

underconfidence.  

ED%E with underconfidence (Figs. 2.22 and 2.23) is similar in character to ED%E 

with overconfidence (Figs. 2.11 and 2.12); ED%E increases monotonically as optimism 

increases. However, the OPB crossover point between disappointment and pleasant 

surprise occurs at OPB of about -0.25 to -0.75 (pessimism) for underconfidence (Figs. 

2.22 and 2.23) versus OPB of about 0.1 to 0.2 (optimism) for overconfidence (Figs. 2.11 

and 2.12). We attribute this asymmetric behavior to the use of lognormal distributions for 

CapEx and PVOCF. Similarly, the EVA%BP behavior with underconfidence (Figs. 2.24 

and 2.25) is similar to its behavior with overconfidence (Figs. 2.13 and 2.14), at least for 

the unconstrained budget case. One noticeable difference is that the EVA%BP goes to 

nearly 100% at 0 OPB for all CB in the case of overconfidence but not in the case of 

underconfidence. This is because the estimated expected NPV remains close to the true 

expected NPV (within 5-10%) regardless of the overconfidence level, while the estimated 

expected NPV with underconfidence varies significantly because of the extreme width (or 

more precisely, dispersion) of the estimated distributions (remember that the standard 

deviation of the estimated distribution approaches ∞ as CB approaches -1). The extreme 

width of lognormal estimated distributions results in significant differences in estimated 

EV, which causes more projects with positive NPV to be rejected and more projects with 
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negative NPV to be accepted, which increases decision error and lowers value attainment. 

Behavior is complicated further for the constrained-budget scenario; as the magnitude of 

underconfidence increases, CapEx distributions become so large that they exhaust the 

budget limit quickly and, as a result, fewer projects are selected.  

Finally, just like EDE%E with overconfidence (Figs. 2.15 and 2.16), the EDE%E with 

underconfidence (Figs. 2.26 and 2.27) decreases as OPB increases from -1 to 0 and largely 

increases as OPB increases from 0 to 1 for the unconstrained budget case, and largely 

decreases as OPB increases from -1 to 1 for the constrained budget case.  

In summary, just as with overconfidence, underconfidence in combination with 

optimism-pessimism bias results in decision error (incorrect project selections), 

disappointment, and reduced portfolio value. Just as pessimism is not the remedy for 

optimism, underconfidence is not the remedy for overconfidence. An operator will make 

the best decisions, eliminate disappoint, and maximize portfolio value when completely 

unbiased—i.e., when neither overconfident nor underconfident, and neither optimistic nor 

pessimistic (Figs. 2.28 and 2.29). These figures show that expected disappointment is 

minimum and expected value attainment is maximum near 0 CB and 0 OPB. 
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Fig. 2.22—Expected disappointment for the unconstrained budget 
scenario and underconfidence using the new framework with OPB ranging 
from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.23—Expected disappointment for the constrained budget 
scenario and underconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.24—Expected value attainment for the unconstrained budget 
scenario and underconfidence using the new framework with OPB ranging 
from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.25—Expected value attainment for the constrained budget 
scenario and underconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.26—Expected decision error for the unconstrained budget 
scenario and underconfidence using the new framework with OPB 
ranging from -1 (complete pessimism) to +1 (complete optimism). 

  

 
Fig. 2.27—Expected decision error for the constrained budget scenario 
and underconfidence using the new framework with OPB ranging from 
-1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.28—Expected disappointment using unconstrained budget 
scenario and CB from -0.5 (moderate underconfidence) to 1 (complete 
overconfidence), and OPB from -1 (complete pessimism) to 1 (complete 
optimism). 

 

 
Fig. 2.29—Expected value attainment using unconstrained budget 
scenario and CB from -0.5 (moderate underconfidence) to 1 (complete 
overconfidence), and OPB from -1 (complete pessimism) to 1 (complete 
optimism). 

 

Eliminate biases or reduce uncertainty?  

In the previous section, we showed the detrimental effects of biases on portfolio 

performance. It follows that reducing these biases should subsequently reduce 
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disappointment and improve value attainment. In the industry, however, the typical path 

taken when faced with uncertainty is to try to reduce it by acquiring more information 

and/or by using more complex and detailed analysis methods. Considering this, a question 

arises: when making decisions under uncertainty, would we gain more benefit if we try to 

reduce biases and make better calibrated assessments, or try to reduce uncertainty by 

acquiring more information and/or using more complex models? In this section, we seek 

to provide insights into the answer to that question. 

We do that by comparing the results of our previous simulations (which show the 

impact of reducing biases) to a number of scenarios which have reduced uncertainty in the 

estimated distributions. We assume that acquiring more information or using more 

complex models will reduce uncertainty (represented by the SD) in the true PVOCF 

distribution (leaving the CapEx distribution unchanged). In this analysis, we assumed that 

no additional biases were added to the estimate in the uncertainty reduction process; i.e., 

we assumed that CB and OPB remained the same when the true SD decreased. We believe 

that this is a conservative assumption and that it is possible, if not likely, that biases will 

increase as true SD decreases (e.g., as a result of anchoring to the previous biased estimate) 

and the benefits of reducing uncertainty may be eroded. To keep the same global portfolio 

properties after reducing uncertainty, we sampled the PVOCF mean for the reduced-

uncertainty distribution (ft-reduced) from the original true PVOCF distribution (ft) that we 

used in the previous section. Next, we reduced the standard deviation of the new 

distribution (ft-reduced) by a specified percentage in each scenario. Reduction in uncertainty 

ranged from 10% to 90% (Fig. 2.30). This simulates a case where acquiring more 
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information or increasing analysis/model complexity moves the expected value of the new 

PVOCF distribution (ft-reduced) closer to the true value and reduces the uncertainty about it. 

After we calculate the reduced-uncertainty true PVOCF distribution (ft-reduced) properties, 

we calculate the corresponding estimated distributions (fe and fe-reduced) by applying biases, 

as described in the previous section (Fig. 2.31).  

 

 
Fig. 2.30—The original true PVOCF distribution (ft) is sampled from 
the global distribution (Table 2.2). Then, the reduced uncertainty 
PVOCF distribution (ft-reduced) mean is randomly sampled from ft. 
Finally, the standard deviation of ft-reduced is reduced by a specific 
percentage for each scenario (25% in this figure). 
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Fig. 2.31—The estimated distributions (fe, and fe-reduced) corresponding 
to each true distribution is calculated using the generalized framework. 
In this figure, both estimated distributions have a CB = 0.5 and OPB = 
0.5 relative to their corresponding true distributions. 

 

Figs. 2.32 and 2.33 show the changes in ED%E and EVA%BP, respectively, as 

functions of the amount of uncertainty reduction. Reducing uncertainty reduces expected 

disappointment and increases expected portfolio value attainment, as expected. However, 

the improvement is insignificant with moderate overconfidence and optimism-bias levels 

(around 0.5 CB and 0.5 OPB), which are apparently common in industry. That is, the value 

attained from reducing uncertainty with moderate levels of biases is small given global 

portfolio properties assumed in this work. Comparing Figs. 2.32 and 2.33 to Figs. 2.11 

and 2.13, it is apparent that reduction in disappointment and improvement in value 

attainment is significantly greater if operators focus on reducing biases rather than 

reducing uncertainty. Indeed, disappointment can be decreased to zero and value 

attainment can reach 100% with elimination of biases, but not by reducing uncertainty 
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(except by reduction to zero uncertainty, which is unachievable in practice). Similar 

ED&E reductions and EVA%BP improvements are observed at other CB levels; they are 

less pronounced at lower CB levels (Figs. 2.34 and 2.35 for CB=0.1) and more amplified 

at higher CB levels (Figs. 2.36 and 2.37 for CB=0.9), but they are still less than the 

improvements from reducing biases. While this analysis is based on a single set of 

assumed global portfolio properties and would benefit from further research, it appears 

that there is more to gain from eliminating biases than from reducing uncertainty. This by 

no means suggests that operators should not attempt to reduce uncertainty (if value-of-

information calculations demonstrate there is benefit in doing so). However, these results 

do suggest that, to improve decision making, operators should focus first on eliminating 

biases and second on reducing uncertainty. As demonstrated in the previous section, 

operators will make the best decisions and maximize portfolio value only when they are 

completely unbiased in project evaluation. 
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Fig. 2.32—Expected disappointment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.5, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.33—Expected value attainment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.5, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.34—Expected disappointment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.1, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.35—Expected value attainment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.1, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 
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Fig. 2.36—Expected disappointment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.9, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 
Fig. 2.37—Expected value attainment as a function of uncertainty 
reduction using unconstrained budget scenario with CB equals 0.9, and 
OPB ranging from -1 (complete pessimism) to +1 (complete optimism). 

 

 

Measuring Confidence and Directional Biases  

In previous sections, we showed that both overconfidence and underconfidence, 

particularly in combination with optimism and pessimism, can produce decision error and 
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disappointment, and significantly erode portfolio value. Considerable petroleum industry 

evidence suggests that chronic overconfidence and optimism have resulted in long periods 

of large disappointment and significant underperformance of the industry. This suggests 

that operators should seek with all diligence to eliminate these biases from forecasts and 

assessments. How can operators eliminate biases? First, they need to be aware that they 

are biased. This requires recording and tracking of probabilistic forecasts and lookbacks 

to compare actual performance to forecasts. With this information they can then measure 

the direction and magnitude of their biases and the reliability of their forecasts using 

calibration plots. In a calibration plot (Fig. 2.38), the frequency of outcomes—the 

proportion of estimates that became true (labeled “Proportion Correct” in the plot) —is 

plotted against the assessed probability of outcomes. The proportion correct can be 

calculated by dividing the number of true forecast assessments assigned a specific 

probability (e.g., the number of times the actual value is less than or equal to the P10 

value) by the total number of forecasts assigned that same probability (e.g., the total 

number of P10 assessments). We are using a cumulative probability convention where the 

P10 is the low number and the P90 is the high number. A group of probabilistic forecasts 

are probabilistically reliable if the actual values are less than or equal to the P10 estimates 

about 10% of the time, are less than or equal to the P90 estimates about 90% of the time, 

and the same for all other cumulative probabilities. Thus, reliable probabilistic forecasts 

that quantify the “true” uncertainty will fall on the unit-slope line on a calibration plot. 

Fig. 2.38 shows the calibration for a set of forecasts that are both overconfident (slope is 

less than 1 because the distributions are too narrow) and directionally biased in the positive 
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direction (shifted upward, relative to the unit-slope line). Overconfidence increases as the 

slope decreases, and directional bias increases as the upward shift increases. This figure 

represents optimism bias if the forecasts are all value-based forecasts; optimistic cost-

based forecasts would be shifted downward (Table 2.1). Thus, calibration plots provide a 

quick, visual indication of the types and degrees of the major types of bias—

overconfidence, underconfidence, optimism and pessimism.  

Measuring CB and DB using the previous framework 

In addition to visual indication, we can estimate these biases quantitatively with 

calibration plots. One of the advantages of the McVay and Dossary (2014) framework is 

that it provides convenient interpretation of these plots. If the true distributions are normal 

or lognormal and the estimated distributions are truncations of these distributions, then the 

calibration curve in the extreme (very large number of forecasts) will be a straight line 

(e.g., Fig. 2.38). Furthermore, one can easily derive the relationships between the slope 

and intercept of the line and the confidence and directional bias parameter values. Let m 

be the slope of the calibration line and a its intercept. For overconfident forecasts—slope 

less than 1—the confidence bias parameter is: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 ........................................................................................................... (2.23) 

and the directional bias parameter is: 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 = 2𝑎𝑎
1−𝑚𝑚

− 1 = 2𝑎𝑎
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

− 1 ..................................................................................... (2.24) 

Using the truncated framework described earlier, we generated a very large number of 

estimated distributions using CB = 0.4 and DB = 0.3. Then, we created the calibration plot 

in Fig. 2.38 for this set of forecasts by randomly sampling from the true distributions to 
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get the actual values. The calibration line has slope of 0.6 and intercept of 0.26. 

Substituting these values into Eqs. 2.23 and 2.24, we back calculate the input confidence 

and directional biases values used to generate this set of forecasts: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 = 1 − 0.6 = 0.4 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 =
2𝑎𝑎
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

− 1 =
2 × 0.26

0.4
− 1 = 0.3 

In practice, we will have only one actual value for each of a finite number of 

probabilistic forecasts and the estimated distributions will typically consist of a finite 

number of percentiles, e.g., P10, P50 and P90. Fig. 2.39 shows a calibration plot we 

created using 30 probabilistic forecasts with truncated estimated distributions and one 

actual value—sampled from the true distribution—for each forecast. The estimated 

distributions were generated using CB = 0.4 and DB = 0.3. Calculating the slope and 

intercept from the least-squares best fit of the calibration curve in Fig. 2.39 and 

substituting the values into Eqs. 2.23 and 2.24, we get: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 = 1 − 0.5682 = 0.4318 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 =
2𝑎𝑎
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

− 1 =
2 × 0.283

0.4318
− 1 = 0.31 

These are good approximations of the input CB and DB parameter values. Of particular 

interest is the number of forecasts required to obtain reasonable estimates of the calculated 

CB and DB parameter values, or more generally, the relationship between number of 

forecasts and accuracy of the calculated parameter values. This should be investigated in 

future work. 

Similar relationships between calibration-line properties and bias-parameter values can 

be derived for underconfidence as well, because underconfidence also produces straight-

line calibration plots under the McVay and Dossary framework. Again, let m be the slope 
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of the calibration line and a its intercept. For underconfident forecasts—slope greater than 

1—the confidence parameter is: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 = 1
𝑚𝑚
− 1 ............................................................................................................ (2.25) 

and the directional bias parameter is: 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 − 2𝑎𝑎
1−𝑚𝑚

 ........................................................................................................ (2.26) 

We created the calibration plot in Fig. 2.40 using CB = -0.4 and DB = 0.3 assuming a 

very large set of forecasts. Fitting a trend line yields a slope of 1.6667 and intercept of -

0.2333. Substituting these values into Eqs. 2.25 and 2.26, we back calculate the input 

confidence and directional bias values: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 =
1
𝑚𝑚
− 1 =

1
1.6667

− 1 = −0.4 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 −
2𝑎𝑎

1 −𝑚𝑚
= 1 −

2 × −0.2333
1 − 1.6667

= 0.3 
Fig. 2.41 shows a calibration plot we created using 30 truncated estimated forecast 

distributions and one actual value—sampled from the true distribution—for each forecast. 

The estimated distributions were generated using CB = -0.4 and DB = 0.3. Calculating the 

slope and intercept from the least-squares best fit of the calibration curve in Fig. 2.41 and 

substituting the values in Eqs. 2.25 and 2.26, we get: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 =
1
𝑚𝑚
− 1 =

1
1.6154

− 1 = −0.3810 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 −
2𝑎𝑎

1 −𝑚𝑚
= 1 −

2 × −0.2205
1 − 1.6154

= 0.2834 
These are good approximations of the input CB and DB parameter values. Note that in 

this exercise we used P20, P40, and P60 instead of the usual P10, P50, and P90. This is 

because, in this underconfident case, the proportion correct for P10 is 0 and the proportion 

correct for P90 is 1, which are uninformative about the actual slope of the calibration curve 
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(see Fig. 2.40). If underconfidence was common (it is not), it would be a challenge to 

measure moderate to extreme underconfident assessments (CB < -0.1), since many 

assessors provide only P10, P50, and P90 values. Assessors should generate values at more 

cumulative probabilities (e.g., at P20, P30, P40, P60, P70, and P80) if they are worried 

that their assessments may cross over into the underconfidence region. 

 

 
Fig. 2.38—Calibration plot using McVay and Dossary (2014) 
framework and assuming known true and estimated distributions 
(created using CB = 0.4 and DB = 0.3). 
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Fig. 2.39—Calibration plot using McVay and Dossary (2014) 
framework and assuming 30 forecasts and one actual value for each 
forecast (created using CB = 0.4 and DB = 0.3). 

 

 
Fig. 2.40—Calibration plot using McVay and Dossary (2014) 
framework and assuming known true and estimated distributions 
(created using CB = -0.4 and DB = 0.3). 
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Fig. 2.41—Calibration plot using McVay and Dossary (2014) 
framework and assuming 30 forecasts and one actual value for each 
forecast (created using CB = -0.4 and DB = 0.3). 

 

Measuring CB and DB using the new general framework 

Under the new general framework, both estimated and true distributions can be full 

distributions, such as normal or lognormal. In this situation, calibration plots will generally 

result in curves rather than straight lines (Fig. 2.42), and calculating confidence and 

directional bias parameter values is more challenging.  

In an effort to devise a calculation method, we first assumed that we know the true and 

the estimated distributions. If both distributions are either normal or lognormal, then the 

calibration curve in the extreme (very large number of forecasts), will produce an S-shaped 

curve similar to Fig. 2.42. We calculate a least-squares best fit of that curve. If the number 

of forecasts at each cumulative probability is not the same, then we should use a weighted 

least-square method where each point on the calibration plot is weighted by the number 
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of forecasts used to generate this point. Let m be the slope and a be the intercept of the 

best fit. The CB and DB parameter values can be approximated using Eqs. 2.23 and 2.24, 

since the calibration curve exhibits overconfidence. 

For example, we created the calibration plot in Fig. 2.42 using CB = 0.4 and DB = 0.3. 

Fitting a least-squares best-fit line yields a slope of 0.5594 and intercept of 0.2856. 

Substituting these values into Eqs. 2.23 and 2.24 yields: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 = 1 − 0.5594 = 0.4406 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 =
2𝑎𝑎
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

− 1 =
2 × 0.2856

0.4406
− 1 = 0.2964 

 

which are good approximations for the input CB and DB values of 0.4 and 0.3. 

Again, in practice we will have a finite number of assessments, with only one actual 

value for each assessment and a finite number of percentiles for the estimated 

distributions, e.g., P10, P50 and P90. We repeated the exercise assuming these conditions 

with 30 probabilistic forecasts, again using CB of 0.4 and DB of 0.3, which resulted in the 

calibration chart in Fig. 2.43. Finding a best-fit straight line and substituting the slope and 

intercept into Eqs. 2.23 and 2.24 yields: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 = 1 − 0.5645 = 0.4355 

𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 =
2𝑎𝑎
𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂

− 1 =
2 × 0.2876

0.4355
− 1 = 0.32 

 

Similarly, one can apply the same methodology to underconfident assessments, should 

this ever become a problem. We created the calibration plot in Fig. 2.44 using CB = -0.4 

and DB = 0.3. Fitting a trend line yields a slope of 1.6156 and intercept of -0.2092. 

Substituting these values into Eqs. 2.25 and 2.26, we back calculate the confidence and 

directional bias values: 
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𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 =
1
𝑚𝑚
− 1 =

1
1.6156

− 1 = −0.3810 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 −
2𝑎𝑎

1 −𝑚𝑚
= 1 −

2 × −0.2092
1 − 1.6156

= 0.3203 
 

Fig. 2.45 shows a calibration plot we created using 30 forecast distributions, with three 

percentiles, and one actual value—sampled from the true distribution—for each forecast. 

The estimated distributions were generated using a CB of -0.4 and DB of 0.3. Calculating 

the slope and intercept from the best fit of the calibration curve in Fig. 2.45 and 

substituting the values into Eqs. 2.25 and 2.26 yields: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 =
1
𝑚𝑚
− 1 =

1
1.6071

− 1 = −0.3778 

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 −
2𝑎𝑎

1 −𝑚𝑚
= 1 −

2 × −0.1964
1 − 1.6071

= 0.3530 
Note that in this exercise we used the proportion correct P20, P40, and P60 instead of 

the usual P10, P50, and P90 for the same reasons mentioned previously. 

In all cases, we back calculated reasonable approximations to the input CB and DB 

parameter values. We do not believe it is critical to know the exact values of confidence 

and directional biases. Remember that one can measure these bias values only for groups 

of forecasts, not for individual forecasts. It is only necessary to know the directions 

(overconfidence versus underconfidence, optimism versus pessimism) and approximate 

magnitudes of the biases to make beneficial use. Lookbacks, calibration and quantification 

of biases is so seldom practiced that any reasonable approximation of these biases will be 

quite useful and valuable if the measurements are used to reduce or eliminate biases in 

new assessments. Capen (1976) made similar points about the value of approximate 

adjustment methods in his paper.  
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Fig. 2.42—Calibration plot using the generalized framework and 
assuming known true and estimated distributions (created using CB = 
0.4 and DB = 0.3). 

 

 
Fig. 2.43—Calibration plot using the generalized framework and 
assuming 30 forecasts and one actual value for each forecast (created 
using CB = 0.4 and DB = 0.3). 
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Fig. 2.44—Calibration plot using the generalized framework and 
assuming known true and estimated distributions (created using CB = 
-0.4 and DB = 0.3). 

 

 
Fig. 2.45—Calibration plot using the generalized framework and 
assuming 30 forecasts and one actual value for each forecast (created 
using CB = -0.4 and DB = 0.3). 
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Eliminating Biases and Improving Probabilistic Forecasts 

In the previous section, we showed that lookbacks and calibration plots can be used to 

detect and quantify the directions and magnitudes of biases. How does one make use of 

this information to eliminate biases? There are a variety of ways, including training versus 

monitoring processes, as well as internal versus external adjustment methods.  

The first process is training, particularly of individuals involved in making probabilistic 

assessments. Training often takes place in a formal training setting, and usually involves 

making a series of probabilistic estimates of quantities uncertain to the estimator, but for 

which the actual values are known. The assessments do not necessarily have to be related 

to one’s work or even the petroleum industry in general. Assessing uncertainty is a 

different skill from petroleum engineering, geology, astrophysics, or any other skill. 

Because it is a separate skill, it has to be learned. Because it is a separate skill, it can be 

learned using questions on any topic. For an example of an uncertainty assessment training 

quiz, see the 10-question quiz in Capen (1976). The advantage of these types of training 

questions is that immediate feedback can be provided. The trainee completes a series of 

assessments, the actual values are revealed, calibration plots are generated, and biases are 

identified and measured. Usually, the primary problem is overconfidence; ranges and 

distributions are too narrow because much of our uncertainty comes from options or 

outcomes that we do not consider (unknown unknowns). Another round of assessments is 

then made. Knowing the directions and degrees of biases, the trainee in some cases may 

learn on his or her own how to adjust assessments accordingly to eliminate the biases. 

Several rounds of training may be required to achieve perfect calibration. If not, it may be 
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necessary to introduce de-biasing techniques and other mental tricks to help trainees 

become well calibrated. Hubbard (2014) dedicated a whole chapter of his book to 

calibration training. Instead of a one-time training exercise, training can also be distributed 

over time. Fondren et al. (2013) reported on improvement in calibration of students 

resulting from training distributed over the course of a semester. One can also train oneself 

without a formal training program. Capen (1976) suggested setting up a personal program 

where one makes some predictions about the future every month, assigns probabilities to 

the predictions, and checks the results religiously. The process is the same—compare 

actual to forecasted, check the calibration, measure bias parameter values quantitatively if 

desired, and then make appropriate adjustments in new assessments. Note that training 

processes involve internal adjustment of probabilities. That is, with training, one is 

adjusting one’s internal ability to assess uncertainty.  

While training is beneficial and we recommend it to become well calibrated, we do not 

believe one-time training is sufficient. Old bias habits can return over time. We believe it 

is necessary to demonstrate that one remains well calibrated over time. This requires 

monitoring—a continual process of forecast tracking, lookbacks as actual values become 

available, checking calibration by comparing actual values to forecasts, quantifying bias 

directions and magnitudes, and then using this calibration information to adjust new 

probabilistic assessments. Fondren et al. (2013) presented a relational database system to 

facilitate tracking probabilistic assessments and checking calibration. If biases are 

detected, one can then use the calibration results to make adjustments in new forecasts and 

assessments. Ideally, the individuals or team involved in making the assessments will 
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internally self-adjust to eliminate the biases detected. This could involve adjusting 

parameter distributions input to models, or it could involve making adjustments to the 

probabilistic methodology that is being used, e.g., moving from a scenario-based method 

to a Monte Carlo method to better assess uncertainty.  

If internal adjustment is insufficient or impractical, it may be appropriate to apply 

external adjustment of probabilistic assessments to eliminate biases. Capen (1976) 

demonstrated how to use calibration results to externally adjust forecasts. For example, 

knowing from lookbacks and calibration that forecast P10-P90 ranges were too narrow, 

i.e., actually P30-P70 ranges, he simply plotted the forecast values versus the calibrated 

P30-P70 probabilities on probability paper (normal or lognormal) and extended the ranges 

to revised P10-P90 values. Fondren et al. (2013) demonstrated how a forecast-tracking 

system was used to externally adjust shale-gas probabilistic production forecasts to 

improve their reliability. External adjustment of probabilistic forecasts can be made by the 

team making the forecasts, or by other parties. For example, if management has historical 

calibration evidence demonstrating that a particular asset team is biased, e.g., 

overconfident and optimistic, it can use this calibration information to externally adjust 

probabilistic forecasts from the asset team prior to making decisions. Eliminating biases 

and moving to consistent generation of well-calibrated probabilistic forecasts may require 

a combination of internal and external adjustment of forecasts. If forecast tracking, 

lookbacks, calibration, and adjustment are maintained as a continual process over time, it 

is expected that less external adjustment will be required with time as individuals and asset 

teams learn to adjust for their biases internally. 
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In a previous section, we showed that eliminating biases was more beneficial than 

reducing uncertainty for improving decision making and maximizing portfolio value. 

However, in our analysis we did not consider the relative costs of eliminating biases versus 

reducing uncertainty. There will likely be some cost associated with changing corporate 

culture, and possibly changing incentive structures, to include a focus on bias reduction 

and reliable uncertainty assessment. Once established, however, the cost is primarily that 

of bookkeeping—tracking forecasts and doing periodic lookbacks. We anticipate that the 

costs of bias reduction will be significantly less than the costs of uncertainty reduction—

acquiring additional data and increasing modeling complexity. Furthermore, the costs of 

reducing uncertainty can increase exponentially as uncertainty is further reduced. Given 

the relative benefits and relative costs, we suggest that it is more important to focus on 

reducing biases first, then work on reducing uncertainty if needed. 

 
Conclusions 

A new generalized framework for quantifying the value of reliable uncertainty assessment 

(or quantifying the cost of biased estimation) that allows full, non-truncated estimated 

distributions replicates well the results and conclusions from a previously presented 

simplified framework that used truncated estimated distributions. Moderate 

overconfidence and optimism can easily produce average portfolio disappointment 

(estimated value minus realized value) of 30-35% of estimated portfolio EV or more. 

Extension of the new generalized framework to underconfidence demonstrates that 

underconfidence, in combination with directional bias, is similarly detrimental to portfolio 
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performance as overconfidence. Thus, as operators seek to eliminate overconfidence bias, 

they should be wary of overcorrecting into underconfidence.  

Gains from reducing uncertainty are small given moderate levels of confidence and 

directional biases. At higher levels of confidence and directional biases, reducing 

uncertainty will result in greater reduction in expected disappointment and increase in 

expected value attainment. However, these improvements are still less than those that 

result from reducing biases. The lowest expected disappointment and the highest expected 

value attainment can be achieved only by eliminating biases.  

Biases in project estimation—overconfidence, underconfidence, optimism and 

pessimism—can be detected and quantified by conducting lookbacks (comparing actual 

performance to probabilistic forecasts) and constructing and analyzing calibration plots. 

Armed with quantitative measurements of biases, operators can then make efforts to 

eliminate these biases in new forecasts through a combination of internal adjustment of 

uncertainty assessments—via assessment training and/or monitoring—and external 

adjustment of forecasts using measurements of biases from calibration.  
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 CHAPTER III 

MEASURING AND IMPROVING THE RELIABILITY 

OF PROBABILISTIC ASSESSMENTS IN PETROLEUM ENGINEERING 

Overview 

Previous work on the impact of biases on portfolio optimization showed that decision error 

will be minimized and portfolio value will be maximized only when there are no biases in 

project estimation. If operators track probabilistic forecasts and perform lookbacks, biases 

can be measured from calibration charts. Operators can then use these bias measurements 

to mitigate and eliminate biases in new estimates. In this work, we aim to determine the 

relationship between the number of probabilistic assessments and the accuracy of bias 

measurements, and to determine guidelines for minimizing biases in new assessments 

using the external adjustment. 

We generated calibration curves for historical probabilistic assessments and used these 

curves to calculate different reliability measures such as the coverage rate, the calibration 

score, and confidence and directional bias parameters. We used a generalized biases 

framework presented in previous work to generate different numbers of biased 

assessments and then determined the relationship between the number of assessments and 

the accuracy of the bias measurements. Furthermore, we used the calibration curve to 

adjust new forecasts, and we measured the reliability of the new forecasts after adjustment 

as a function of the number of historical assessments and other parameters.  
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Our research indicates that, in general, using more historical assessments to measure 

biases improves the accuracy of the bias measurements. However, even a low number of 

assessments (as low as 10) is enough to detect moderate biases. An even lower number of 

assessments (2 or 3) is enough to detect extreme biases. Furthermore, our research shows 

that production forecasts that were updated frequently over time using newly available 

data and externally adjusted using the most recent bias measurements were superior in 

terms of calibration to forecasts that were not updated or externally adjusted. 

The methods presented in this paper can be used to measure and improve the reliability 

of probabilistic assessments in many petroleum engineering applications. Implementing 

these methods in a continual process of tracking assessments, looking backs as actual 

values become available, checking calibration by comparing actual values to forecasts, 

quantifying biases, and using these bias measurements to improve new assessments will 

result, over the long run, in the best calibrated assessments. Well calibrated assessments 

result in a better identification of superior projects and inferior projects, and ultimately, 

better investment decision making and increased profitability. 

 
Introduction 

A number of authors (Capen 1976; Brashear et al. 2001; Rose 2004) noted the consistent 

underperformance of the petroleum industry. Much of this underperformance is attributed 

to cognitive biases that result in uncertainty ranges that are usually too narrow and too 

optimistic. 

McVay and Dossary (2014) proposed a framework to quantify these biases and 

estimate the value of assessing uncertainty. Their model estimated the monetary impact of 
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overconfidence, i.e., underestimation of uncertainty, where the estimated distribution of 

an uncertain quantity is too narrow, and directional bias (DB), where the estimated 

distribution is shifted in the optimistic or pessimistic direction. Mathematically, they 

started with the true distribution (the reliable distribution given the assessor’s state of 

information) and truncated it at the tails to model the estimated distribution. The 

magnitude of and location of the truncation is determined by the overconfidence and 

directional bias values. The overconfidence parameter ranges from 0.0 to 1.0 and specifies 

the fraction of the true distribution not sampled by the estimated distribution. Therefore, 

a value of 0.0 denotes that the entire true distribution was sampled. On the other hand, an 

overconfidence value greater than 0.0 denotes that only a subset of the true distribution 

was sampled. The DB parameter ranges from -1.0 to 1.0 and it specifies the location of 

the estimated distribution relative to the true distribution. A DB value of -1.0 means that 

only the lowest possible outcomes of the true distribution were considered. On the other 

hand, a DB value of +1.0 means that only the highest possible outcomes of the true 

distribution were considered (Fig. 3.1). 
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Overconfidence=0.5 

Directional Bias=-1.0 Directional Bias=0.0 Directional Bias=1.0 

   

Fig. 3.1—In McVay and Dossary (2014) framework, the overconfidence parameter specifies the fraction of the true distribution 
(black curve) not sampled by the estimated distribution (red area) and the directional bias specifies the location of the estimated 
distribution relative to the true distribution [from Alarfaj and McVay (2018)]. 

 

Alarfaj and McVay (2018) generalized the framework to allow the use of non-truncated 

estimated distributions and included the effects of underconfidence, i.e., overestimation 

of uncertainty, where the estimated distribution of an uncertain quantity is too wide. While 

underconfidence is not currently common, as the industry hopefully improves in 

uncertainty estimation, it is possible to overcorrect overconfidence into underconfidence. 

The underconfidence parameter ranges from -1.0 for complete underconfidence (no 

information about the uncertain quantity) to 0.0 for no underconfidence, which is the same 

as 0.0 overconfidence. The overconfidence and underconfidence parameters were 

combined into the confidence bias (CB) parameter that ranges from -1.0 to 1.0, where the 

negative values indicate underconfidence and positive values indicate overconfidence. 

Furthermore, Alarfaj and McVay (2018) distinguished between directional bias and 

optimism-pessimism bias (OPB) by clarifying that a directional bias in the positive 

direction could mean optimism or pessimism depending on the evaluated parameter. For 

example, for a value-based parameter such as Net Present Value (NPV), a positive DB 
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value is considered optimism because expecting a greater value than reality is of benefit 

to the estimator. On the other hand, for a cost-based parameter such as Capital Expenditure 

(CapEx), a negative DB is considered optimism because expecting lower cost than reality 

is of benefit to the estimator. 

Fig. 3.2 shows a summary of the relationship between the expected value (EV) and the 

standard deviation (SD) of the estimated distribution and the true distribution as a function 

of confidence and directional bias parameters for a true standard-normal distribution (EV 

of 0 and SD of 1) using the generalized framework. 

  



70 
 

 
Fig. 3.2—Relationship between the estimated distribution (red) and the true distribution (black curve) as a function of 
confidence and directional bias parameters using the generalized framework.  

 

Reliability of Probabilistic Assessments Can Be Measured 

An assessor’s degree of belief in a proposition is quantified by the probability of it being 

true (Lichtenstein et al. 1977). In our work, an assessor is a person who is issuing those 

propositions but could also mean a probabilistic model, or a probabilistic assessment 

methodology, used to issue these propositions. A forecast is a proposition for a quantity 
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to be known in the future. An assessment is a group of one or more propositions that are 

related to the same quantity or event. For example, if an assessor is trying to assess the 

cost of a gas well and issues forecasts at P10, P50, and P90, then each forecast is a 

proposition, and all three are part of one assessment.  

Probabilistic assessments can be discrete or continuous. Discrete assessments can take 

only specific values and can be categorical (such as dry hole, oil, or gas) or numeric (such 

as the number of wells required). The number of possible outcomes may be finite or 

infinite but the distinguishing feature is that there are no possible outcomes in between. 

For example, you cannot have seven and a half wells. Probabilistic assessments can also 

be continuous, i.e., they are not restricted to specific values but can take any value over a 

continuous range. Continuous assessments are always numeric. Most assessed quantities 

in the petroleum industry are continuous, including but not limited to porosity, 

permeability, reserves, oil price, and capital expenditure. Ultimately, all continuous 

assessments can be represented by a number of binary outcome (true or false) propositions, 

as we will show in the next section. In this paper, we are focusing on measuring and 

improving the reliability of continuous assessments. 

Suppose that an assessor proposed that the probability of a project’s cost being less 

than or equal to $10 million is 90% (or P90). Suppose that the project’s cost turned out to 

be $15 million. This in itself will tell us little, if anything, about the validity and the 

reliability of the assessment because the assessor did assign a 10% chance of the project 

cost exceeding $10 million. In most cases, we cannot evaluate the reliability of such an 

assessment in isolation (except if the assessor proposed that there is a 0% or a 100% 
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chance of an event happening). If, however, the assessor assigned a 90% probability that 

the cost will be less than or equal a certain value in 200 independent projects, and only 7 

of those propositions turned out to be true, there must be something wrong with this 

assessor’s assessments. We can conclude then, that these probabilistic assessments were 

biased and unreliable. 

There are a number of methods to measure the reliability of probabilistic assessments. 

Capen (1976), Gonzalez et al. (2012; 2013), Fondren et al. (2013), and Gong et al. (2014) 

used the empirical coverage of the central prediction interval—i.e., the coverage rate 

(CR)—to measure the reliability of probabilistic assessments. The CR indicates the 

percentage of outcomes falling within a specified prediction interval. For example, if we 

specify an 80% central prediction interval, then CR will be the percentage of outcomes 

falling between the P10 and P90 values. A CR value (e.g., 80%) equivalent to the width 

of the central prediction interval (e.g., 80%) is a necessary but not sufficient condition for 

a reliable probabilistic assessment. It indicates only that the width of the prediction interval 

is reliable but it does not tell us anything about the reliability of specific propositions, or 

percentiles (e.g., P50 or P95).  

If for all propositions (e.g., actual ≤ P10, actual ≤ P50), the relative frequency of true 

propositions is equal to the probability assigned, we can say that the assessor is perfectly 

calibrated (Lichtenstein and Fischhoff 1977) and his or her assessments are reliable. The 

degree of calibration can be evaluated by comparing the proportion of true propositions 

(proportion correct) to the probability assigned. A graph (Fig. 3.3) that shows the 

proportion correct for each probability assigned is called a calibration curve or a 
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calibration plot (Lichtenstein and Fischhoff 1977). Gonzalez et al. (2012; 2013) used the 

calibration plot to measure the reliability of the Markov-Chain-Monte-Carlo (MCMC) 

method using different decline-curve-analysis (DCA) models on 197 Barnett-shale gas 

wells. Fondren et al. (2013) proposed an assessment-tracking database system and used 

calibration plots to measure the reliability of probabilistic assessments.  Alarfaj and 

McVay (2018) showed that CB can be estimated from the slope of the least-squares best-

fit line of the calibration curve and DB can be estimated from the slope and the intercept 

of the same line.  

 

 

Fig. 3.3—A calibration curve shows the proportion of correct propositions at each 
assigned probability. 
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Calibration plots provide valuable insights into the reliability of the assessor or the 

probabilistic assessment method. However, when comparing the reliability of a large 

number of assessors, or assessor groups, it is often more practical to use a single value 

rather than the calibration plot. Fondren et al. (2013) used the calibration score (CS), a 

component of the Brier Score commonly used in weather forecasting, strategic 

intelligence, and behavioral sciences (Murphy 1973).   

All of these measures of reliability, or of biases, require a sufficiently large number of 

assessments to be evaluated with a high degree of confidence. While grouping assessments 

is necessary for measuring the reliability of probabilistic assessments, grouping can 

obscure individual differences in biases among members of the group (Lichtenstein et al. 

1977). For example, if you evaluate probabilistic assessments issued by a group of some 

reliable and some biased assessors, the reliability measure (CR, CS, CB, or DB) will be a 

composite of the reliability measures of both types of assessors. The evaluator will not be 

able to distinguish between the reliable and biased assessors. If differences in reliability 

of group members are suspected, reliability may be assessed by subgroups. However, this 

may be constrained by the number of assessments available. There will be a trade-off 

between resolution of the subgrouping and number of assessments available per subgroup, 

which impacts the accuracy of the reliability measurements as we will discuss in a later 

section. There is very little, if anything, in the literature that addresses the accuracy of 

these measures of reliability, or of biases, as a function of the number of assessments 

available. 
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New Assessments Can Be Improved 

Assessors can and should use the results of reliability measurements as feedback to 

internally adjust their assessments. Often, however, internal adjustments may not be 

sufficient. Capen (1976) observed that people still gave narrow ranges (albeit slightly 

improved) even after they were warned that assessments are usually too narrow. In this 

case, it is beneficial to use reliability measurements results to externally adjust 

assessments. Capen (1976) demonstrated how to use the CR value to externally adjust 

forecasts. For example, knowing from look-backs and calibration that forecast P10-P90 

ranges were too narrow—CR=0.40 rather than 0.80—and were actually P30-P70 ranges, 

he simply plotted the forecast values at the P30-P70 probabilities on probability paper 

(normal or lognormal) and extended the ranges to revised P10-P90 values (Fig. 3.4). 

Capen (1976) did not explicitly state that he assumed that the coverage rate was centrally 

located, but this assumption can be inferred from the examples he provided. This 

methodology can improve the coverage rate, but the assumption that the coverage rate is 

centrally located ignores directional bias and, thus, makes this method (with the centrality 

assumption) unsuitable for mitigating directional biases. 



76 
 

 

Fig. 3.4—External adjustment using lognormal probability paper [from Capen (1976)]. 

 

Fondren et al. (2013) used their assessment tracking system to externally adjust shale-

gas probabilistic production forecasts to improve their reliability. They implemented a 

methodology similar to the one suggested by Capen (1976), but which uses calibration 

curves instead of centrally-located coverage rates to externally adjust these forecasts. 

However, their work was limited to estimated distributions defined only at P10, P50, and 

P90, and did not consider calibration curves for fully defined continuous distributions. 

They used only lognormal distributions to externally adjust new forecasts, which may 

limit the flexibility of the adjustment process.  

In this paper, we will use the calibration plot to measure the reliability of probabilistic 

assessments and we will show that CR, CS, CB, and DB can be measured or estimated 

from the calibration plot. Then we will discuss the level of confidence in those reliability 
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measures and how many assessments are needed to get a specific confidence level for 

these measures. Next, we will show how to implement external adjustment using 

calibration curves in a continual process of assessment tracking, look-backs, calibration, 

and adjustments to improve probabilistic forecasts and reduce biases. Then, we will 

discuss the accuracy and the limitations of this external adjustment method.  

 
Measuring the Reliability of Probabilistic Assessments 

Calibration Plots Are Used to Measure the Reliability of Probabilistic Assessments 

Continuous probabilistic assessments are usually defined in terms of a cumulative 

distribution function F, where the cumulative probability P assigned to a specific outcome 

value xP is: 

𝑃𝑃 = 𝐹𝐹(𝑥𝑥𝑃𝑃) .................................................................................................................... (3.1) 

or alternatively xP is the value which there is a P chance that the observed outcome will 

be less than or equal to xP, 

𝑥𝑥𝑃𝑃 = 𝐹𝐹−1(𝑃𝑃) ................................................................................................................ (3.2) 

where F-1 is the inverse of the cumulative distribution function or the quantile function. 
In many instances, F is not fully defined across the probability range but rather is 

defined at specific cumulative probability values, such as 0.1, 0.5, and 0.9, and the values 

assigned to them are usually called P10, P50, and P90, respectively. These are called 

percentiles (or more generally quantiles) where the number corresponds to P × 100. In 

other cases, such as reserves estimates, these values are presented using the de-cumulative 

probability notation (where P10 is the high number and P90 is the low number); in this 



78 
 

case the number corresponds to (1 – P) × 100 and P90 means that there is a 90% chance 

that the actual value will be greater than or equal to the assigned value. 

A calibration plot can be constructed by plotting the proportion of true propositions 

(proportion correct) at each cumulative probability value P versus that probability. If the 

probabilistic assessments were defined at specific percentiles (e.g., P10, P50, and P90), 

we evaluate all propositions that have the same assigned cumulative probability together. 

If on the other hand, the probabilistic assessments were fully defined, then it is more 

practical to bin the probabilities into a limited number of cumulative probability 

subintervals and evaluate all propositions that are assigned to each subinterval together. 

Then we calculate the cumulative probability assigned to that subinterval as the average 

cumulative probability assigned to all propositions inside that cumulative probability 

subinterval. The proportion correct (ct) of the t’th cumulative probability or subinterval is: 

𝑐𝑐𝑡𝑡(𝑃𝑃𝑡𝑡) = 1
𝑛𝑛𝑃𝑃𝑡𝑡

∑ 𝐼𝐼
𝑛𝑛𝑃𝑃𝑡𝑡
𝑖𝑖=1 (𝑥𝑥𝑖𝑖) ................................................................................................ (3.3)  

where Pt is the t’th cumulative probability or the average cumulative probability of the 

t’th subinterval, 𝑛𝑛𝑃𝑃𝑡𝑡 is the number of propositions defined at the t’th cumulative 

probability or subinterval, xi is the value of the observed outcome, and the indicator 

function I is a binary function defined as follows: 

𝐼𝐼(𝑥𝑥) ≔ �1, 𝑥𝑥 ≤ 𝐹𝐹−1(𝑃𝑃)
0, 𝑥𝑥 > 𝐹𝐹−1(𝑃𝑃)

 ............................................................................................ (3.4)  

where x is the value of the observed outcome of the quantity assessed, and P is the 

cumulative probability assigned to the proposition. 
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We recommend using points in graphing calibration plots of continuous assessments 

that are defined by specific percentiles (Fig. 3.5) and lines for continuous assessments that 

are completely defined (Fig. 3.6). 

 

 

Fig. 3.5—Calibration plot for continuous assessments defined by the 10th, 50th, and the 
90th percentiles. 
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Fig. 3.6—Calibration plot for continuous assessments that are completely defined over 
the probability range. 

 

 

Confidence and Directional Biases Can Be Measured from Calibration Plots 

A group of perfect, or completely reliable, probabilistic assessments will fall on the unit-

slope line on a calibration plot. That is, propositions that have been assigned a 10% 

probability will occur 10% of the time, propositions that have been assigned a 50% 

probability will occur 50% of the time, and those that were assigned 90% will occur 90% 

of the time. A least-squares best-fit line of the calibration curve with a slope less than 1 

indicates that the probabilistic assessments are on average overconfident and have 

narrower ranges than they should. On the other hand, a slope greater than 1 indicates 

underconfident probabilistic assessments on average with ranges that are wider than they 
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should be (Fig. 3.7). Probabilistic assessments with positive directional bias will shift the 

curve upward, while probabilistic assessments with negative directional bias will shift it 

downward (Fig. 3.8). 

 

 

Fig. 3.7—The calibration curve of reliable probabilistic assessments will fall on the 
unit-slope line, overconfident assessments will have an average slope less than 1, and 
underconfident assessments will have an average slope greater than 1 [modified from 
Gonzalez et al. (2012)]. 
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Fig. 3.8—The calibration curve of reliable probabilistic assessments will fall on the 
unit-slope line, positively biased assessments will shift it upward, and negatively biased 
assessments will shift it downward. 

 

Alarfaj and McVay (2018) demonstrated that the magnitudes of the confidence and 

directional biases (CB and DB) can be estimated graphically from calibration plots. They 

noted that the calibration curve is a straight line when assessments consist of truncated 

estimated distributions. The confidence bias can be calculated from the slope m of that 

line. If the slope is less than 1, then the assessor is overconfident. In this case the 

confidence and directional bias parameters can be calculated from the slope m of 

calibration curve and its intercept a at P = 0 as follows: 

𝐶𝐶𝐵𝐵𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 ............................................................................................................. (3.5)  
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𝐷𝐷𝐵𝐵𝑂𝑂𝑂𝑂 = 2𝑎𝑎
1−𝑚𝑚

− 1 .......................................................................................................... (3.6)  

If on the other hand the slope is greater than 1, then the assessor is underconfident and 

the confidence and directional bias parameters can be calculated using: 

𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 = 1
𝑚𝑚
− 1 .............................................................................................................. (3.7)  

𝐷𝐷𝐵𝐵𝑈𝑈𝑈𝑈 = 1 − 2𝑎𝑎
1−𝑚𝑚

 .......................................................................................................... (3.8)  

They also found that these equations can also reasonably estimate CB and DB using 

their generalized framework. The estimates can be made using the slope and the intercept 

of the least-squares best-fit line of the calibration curve. If the number of observations at 

each cumulative probability is not the same, then a weighted least-square method should 

be used where each point on the calibration curve is weighted by the number of 

observations used to generate this point. Because this is a best-fit line of a curve (Fig. 3.6), 

there will be some information loss. Consequently, these simplified equations will not 

calculate the exact biases. However, the differences between the measured and the actual 

biases are not significant. In fact, more variation in the bias measurement will be caused 

by a low number of assessments than by the information loss. Moreover, because of the 

information loss, the directional bias equation may result in values that are more than +1 

or less than -1. In these cases, we use the limit (+1 or -1) instead of the calculated value. 

The Coverage Rate Indicates the Existence and the Severity of Over or Underconfidence 

A simple measure that can indicate the existence and severity of bias is the empirical 

coverage of the central prediction interval or the coverage rate (CR). The CR for an 80% 
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central prediction interval can be calculated directly from the calibration plot by taking 

the difference between the proportion correct values at P=0.9 and P=0.1. 

We used the generalized framework to generate biased estimated distributions defined 

at P10, P50, and P90 assuming various CB and DB values. Then we calculated the 

theoretical (asymptotic) CR for each pair of CB and DB. Fig. 3.9 shows the relationship 

between confidence and directional biases and the 80% prediction interval coverage rate 

for overconfident estimates. The higher the confidence bias, the smaller is the coverage 

rate. This is expected because overconfidence results in a narrower distribution than it 

should be. We also note that the directional bias has no significant effect on the coverage 

rate except at extreme DB values (near -1 or +1). 

Finally, Fig. 3.10 shows that low to moderate underconfidence (negative CB) will have 

coverage rates higher in values than their corresponding prediction interval. However, 

probabilistic assessments that have extreme DB (near -1 or +1) and extreme 

underconfidence (< -0.5) will have coverage rates that are smaller (sometimes much 

smaller) than their corresponding central prediction interval. This is because most 

observed outcomes are less than the assigned P10 (in the case of positive directional bias), 

or greater than the assigned P90 (in the case of negative directional bias). 

What do these values mean for the analyst? In general, CR values lower than the 

assumed prediction interval indicate overconfidence, while CR values higher than the 

assumed prediction interval indicate underconfidence. Extreme underconfidence coupled 

with extreme DB is very rare and it is unlikely in practice that a low CR value would 

indicate underconfidence. 
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Fig. 3.9—The relationship between confidence and directional biases and the coverage 
rate of the 80% central prediction interval assuming overconfidence. 

 

 

Fig. 3.10—The relationship between confidence and directional biases and the coverage rate 
of the 80% central prediction interval assuming underconfidence. 
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Lower Calibration Scores Indicate Lower Biases Overall 

The Brier score was originally developed to assess the reliability of weather forecasts 

(Brier 1950). It was developed to assess probabilistic assessments tied to discrete, binary 

outcomes (e.g., rain or no rain). Murphy (1973) decomposed the Brier score into three 

components: calibration, knowledge, and resolution. The calibration component measures 

the weighted average of the mean-square difference between the assigned probability and 

the proportion of correct responses at each probability value or subinterval. The 

knowledge component is an inverse measure of the event predictability, and it is a property 

of the evaluated event and not the assessor. The resolution component describes how well 

an assessor can assign different probability values to different assessments. The 

knowledge and resolution components are not as significant for continuous assessments 

as for discrete assessment (Fondren et al. 2013); thus, we will focus on only the calibration 

component. The calibration score can be calculated using the following equation [adapted 

from Lichtenstein and Fischhoff (1977)].  

𝐶𝐶𝐶𝐶 = 1
𝑁𝑁
∑ 𝑛𝑛𝑡𝑡(𝑃𝑃𝑡𝑡 − 𝑐𝑐𝑡𝑡)2𝑇𝑇
𝑡𝑡=1  ............................................................................................ (3.9)  

where N is the total number of propositions, nt is the number of propositions in the t’th 

cumulative probability or probability subinterval, and T is the number of defined 

cumulative probabilities or probability subintervals. Pt and ct were defined previously in 

the calibration plots subsection. For continuous assessments, the calibration score ranges 

between 0 and 1/3, where 0 denotes a perfectly calibrated assessor who assigns 

probabilities corresponding to the actual frequencies of outcomes. That means the lower 
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the CS, the better is the assessor. Reduction in confidence and directional biases results in 

reduction of the calibration score. 

The calibration score can also be directly calculated from calibration plots if the number 

of propositions in all assessments is the same. We read the ct values form the calibration 

curve at each corresponding assigned cumulative probability Pt and substitute the values 

into: 

𝐶𝐶𝐶𝐶 = 1
𝑇𝑇
∑ (𝑃𝑃𝑡𝑡 − 𝑐𝑐𝑡𝑡)2𝑇𝑇
𝑡𝑡=1  ..................................................................................... (3.10)  

The calibration score measures the sum of the squared differences between the 

calibration curve and the unit slope line. Therefore, a calibration score of 0 indicates a 

calibration curve equal to the unit slope line (a perfect assessor). 

Similar to the previous subsection, we used the generalized framework to generate 

biased estimated distributions defined at P10, P50, and P90 assuming various CB and DB 

values. Then we calculated the theoretical CS value for each pair of CB and DB. Fig. 3.11 

shows the relationship between confidence and directional biases and the calibration score 

for overconfident estimates. Any deviation in confidence or directional bias from ideal (0 

CB and 0 DB) will cause the calibration score to increase. The effects of directional bias 

on the calibration score increases as the confidence bias increase. It is noted that the 

calibration score does not distinguish between positive or negative directional biases; that 

is, positive and negative directional biases with the same magnitudes will affect the 

calibration score similarly. 

Fig. 3.12 shows the relationship between confidence and directional biases and the 

calibration score for underconfident estimates. The shape of the CS values in this plot is 
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an artifact of evaluating estimated distributions defined only at P10, P50, and P90. For 

many underconfident distributions, the proportion correct at P10 is 0 and the proportion 

correct at P90 is 1 regardless of the underconfidence level, which make them 

uninformative to the calibration score calculation. To overcome this issue, we calculated 

the CS value for each pair of CB and DB using fully defined estimated distributions. Fig. 

3.13 shows CS curves of the underconfident distributions are very similar to those of 

overconfident distributions (Fig. 3.12). 

In summary, the calibration score does not discriminate underconfidence from 

overconfidence nor positive from negative directional biases. Similar remarks about the 

calibration score and over/underconfidence were made by Lichtenstein et al. (1977). This 

is a disadvantage of using traditional reliability measures such as CS or CR as compared 

to using CB and DB. Using CS or CR does not provide guidance to assessors on how to 

internally adjust their assessment models. On the other hand, CB will indicate whether the 

assessments should be wider or narrower and DB will indicate whether the assessments 

should be shifted positively or negatively. Ultimately, while it is not possible to distinguish 

optimism from pessimism or underconfidence from overconfidence using the CS, the 

lower the CS, the less biased the assessor overall. Furthermore, actions that reduce the CS 

will also reduce the overall confidence and directional biases. 
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Fig. 3.11—The relationship between confidence and directional biases and the 
calibration score assuming overconfident distributions using the generalized 
framework and estimated distributions defined at P10, P50, and P90 only. 

 

 

Fig. 3.12—The relationship between confidence and directional biases and the 
calibration score assuming underconfident distributions using the generalized 
framework and estimated distributions defined at P10, P50, and P90 only. 
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Fig. 3.13—The relationship between confidence and directional biases and the 
calibration score assuming underconfident distributions using the generalized 
framework and fully defined estimated distributions. 

 

More Probabilistic Assessments Lead to a More Accurate Bias Measurement 

In the previous section, we calculated CB, DB, CR, and CS assuming that we knew both 

the true and estimated distributions. In reality, however, we know only one actual value 

for each of a finite number of probabilistic assessments. We can only estimate those 

reliability measures using pairs of probabilistic assessments and their corresponding actual 

observations. Therefore, it is of particular interest to learn how many probabilistic 

assessments are required to obtain reasonable estimates of the calculated reliability 

measurements. In other words, we are interested in the relationship between number of 

probabilistic assessments and level of confidence in the calculated parameter values such 

as CB and DB. 
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We first generated a number (varied between 2 and 1000) of truncated estimated 

distributions defined at P10, P50, and P90 assuming moderate confidence and directional 

biases (CB = 0.5 and DB = 0.5) and extreme confidence and directional biases (CB = 0.9 

and DB = 0.9). Next, we sampled one value from each corresponding true distribution and 

measured the reliability of the estimated distributions (via CS, CB and DB measurements) 

as explained in the previous section. We repeated these steps 5000 times in a Monte Carlo 

simulation to determine the confidence intervals for these measurements. We plotted the 

expected value, the 80% confidence interval as the shaded area for the bias measurement, 

and the 99% confidence interval as the error bar (Fig. 3.14). 

Fig. 3.14 shows that the accuracy of the reliability measures increases as the number of 

evaluated assessments increases. Moreover, it shows that even having low numbers of 

probabilistic assessments (as low as 10 in the case of moderate confidence and directional 

biases and as low as 2 or 3 in the case of extreme confidence and directional biases) is 

enough to give an indication of the existence and direction of confidence and directional 

biases. 

Can assessors tell if they have moderate or extreme biases if they have only 2 or 3 

assessments? Assessors can use the second row of Fig. 3.14 in addition to Fig. 3.15 to 

qualitatively assess if they have moderate or extreme biases. Suppose that the assessors 

measured their CB using 2 or 3 assessments and it turned out to be 0.5 or greater. Fig. 3.14 

shows that if the assessors’ biases were extreme, there is about an 80% chance that their 

measured CB value is greater than 0.5 and if they were moderate, there is slightly more 

than 50% chance that the measured CB value is greater than 0.5. Furthermore, Fig. 3.15 
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shows that there is less than 1% chance that the measured CB value is equal to or greater 

than 0.5 if assessors have low or no bias. Therefore, in the case of measuring a CB of 0.5 

or greater with 2 or 3 assessments, it is likely that they have moderate to extreme biases 

but they cannot tell if it is moderate or extreme until they evaluate more assessments. 

Consider, on the other hand, that the assessors’ measured CB value was 0.25 or lower. 

The assessors can discount the possibility of having extreme biases since there is less than 

1 percent chance that they will measure a CB value of 0.25 or lower if extreme biases 

existed (Fig. 3.14). However, they cannot totally discount the possibility of moderate 

biases since there is about a 30-35% chance of measuring a CB of 0.25 or lower in the 

existence of moderate biases (Fig. 3.14). They will need to evaluate more assessments to 

find out if this measured CB is reflecting actual overconfidence or if they are actually well 

calibrated. 

The directional bias measurement gets less accurate as the confidence bias gets closer 

to 0.0 (calibrated assessor with no confidence bias). Fig. 3.16 shows the accuracy of the 

directional bias measurement of a number of assessors with directional bias of 0 (left 

column) and 0.9 (right column) and confidence bias of 0.1 (first row), 0.5 (second row), 

and 0.9 (last row). The plots show that for the assessors with low CB (first row), even a 

very large number of assessments (1000) was not enough to get a reasonably accurate 

measure of directional bias. This is in contrast to assessors with moderate to extreme CB 

(second and last rows). The reason is that at very low confidence bias values, the estimated 

distribution looks essentially the same regardless of the directional bias value (Fig. 3.17). 

This is also evident in the EVs (Fig. 3.2); the difference between EVs for different DB 
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scenarios decreases as CB decreases. Thus, this issue has little practical significance at 

low CB. 

 

 

Fig. 3.14—Confidence level in the CS, CB, and DB measurements 
with respect to numberof assessment/observation pairs. 

 

 

Fig. 3.15—Confidence level in the CB measurement with respect to 
number of assessment/observation pairs assuming low confidence bias. 
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Fig. 3.16—The confidence in directional bias measurement decreases as the confidence bias gets closer to 0. 

 

 
Fig. 3.17—The estimated distribution looks essentially the same at very low confidence bias values. 

 
 
 



95 
 

External Adjustment Improves the Reliability of Probabilistic Assessments 

In the previous sections, we showed that look-backs and calibration plots can be used to 

detect and quantify the directions and magnitudes of biases. How does one make use of 

this information to eliminate biases? We discussed generally the process for eliminating 

biases in Alarfaj and McVay (2018). In summary, eliminating biases starts with training 

individuals involved in making probabilistic assessments. Next, probabilistic assessments 

should be monitored in a continual process of assessment tracking, look-backs as actual 

values become available, checking their calibration by comparing actual outcomes to 

forecasts and quantifying bias directions and magnitudes, and then using these 

measurements to improve new probabilistic assessments. If biases are detected, the 

individuals or the teams making the probabilistic forecasts should try to internally adjust 

their assessments to mitigate or eliminate biases. However, sometimes internal adjustment 

is not sufficient. In that case, external adjustment can be applied statistically.  

There are a number of ways to externally adjust probabilistic assessments. As we 

mentioned in the Introduction, Capen (1976) used the coverage rate and probability plots 

to adjust forecasts. Fondren et al. (2013) expanded upon Capen’s (1976) method and used 

calibration curves instead of the coverage rate. Landman and Goddard (2002) used model 

output statistics, a multiple linear regression technique, to recalibrate rainfall forecasts for 

extreme seasons over southern Africa using predictor values from a general circulation 

model and historical record of the predictand (regional rainfall indices). Piani et al. (2010) 

assumed that both normalized observed and simulated (estimated) distributions are well 

approximated by a gamma distribution and used a transfer function that can be derived 
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graphically to correct the simulated distributions. This is similar to using calibration plots 

to externally adjust assessment; however, the latter can be considered more general since 

it is not restricted to a specific distribution and the CDFs do not need to be normalized. 

Mandel and Barnes (2014) used Karmarker’s transformation, which utilizes a tuning 

parameter to improve the calibration of forecasts in strategic intelligence applications. 

Turner et al. (2014) used a combination of forecast aggregation and recalibration 

(adjustment) using a linear-in-log-odds function to generate a less-biased forecast.  

In this section, we will explain the statistical adjustment method suggested by Capen 

(1976) and improved by Fondren et al. (2013). The improved method uses the calibration 

curve to adjust new assessments made by the assessor.  Next, we will show in a case study 

that combining this method with a continual process of assessment tracking, look-backs, 

calibration, and external adjustments will improve CS significantly while keeping the 

uncertainty relatively low. 

External Adjustment Using the Coverage Rate 

Capen (1976) used the coverage rate to externally adjust forecasts. Assume that we have 

the CR of an assessor, from historical assessments and observations, and further suppose 

that the assessor has issued a probabilistic assessment assuming an 80% central prediction 

interval. In other words, the assessor gave the P10 and P90 values. To adjust the 

assessment for bias, we plot the P10 and P90 values on a probability plot (normal or 

lognormal) at P=0.5 ± CR/2. To get the adjusted range, we simply draw a line between 

the values and extend it to P=0.1 and P=0.9 to read the adjusted P10 and P90 values, 

respectively. This method assumes that the coverage rate is centrally located and therefore, 
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one disadvantage of this method is that it is insensitive to directional bias; thus, using this 

method will not be effective in adjusting for the directional bias of the probabilistic 

assessment. 

To illustrate this method, suppose that an assessor estimated that the NPV of a certain 

project was between $80 million and $120 million with 80% confidence. Suppose that we 

have calculated the assessor’s calibration curve from look-backs and calibration of 

historical assessments (Fig. 3.18). From the calibration plot, we can calculate the coverage 

rate: 

𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑡𝑡(0.9) − 𝑐𝑐𝑡𝑡(0.1) = 0.83 − 0.42 = 0.41 

 

 

Fig. 3.18—Calibration curve of the assessor from look-backs and calibration. 
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If we assume that the project’s NPV is normally distributed, we plot the unadjusted 

P10 and P90 values on a normal probability plot at P=0.5 ± 0.41/2. In other words, we 

plot $80 million at P ≈ 0.3 and $120 million at P ≈ 0.7. Finally, we draw a line between 

the two points and extend the line to read the adjusted P10 and P90 values as P10adj ≈ $52 

million and P90adj ≈ $148 million (Fig. 3.19). Note that this method does not make use of 

the P50 value. 

 

 

Fig. 3.19—Graphical demonstration of external adjustment using a centrally located 
coverage rate and assuming a normal underlying distribution. 

 



99 
 

If, on the other hand, we assume that the project’s NPV is lognormally distributed, then 

we plot $80 million at P ≈ 0.3 and $120 million at P ≈ 0.7 on a lognormal probability plot. 

Next, we draw a line between the two points and extend the line to read the adjusted P10 

and P90 values as P10adj ≈ $60 million and P90adj ≈ $159 million (Fig. 3.20). 

 

 

Fig. 3.20—Graphical demonstration of external adjustment using a centrally located 
coverage rate and assuming a lognormal underlying distribution. 

 

Because computational tools are used more commonly than probability paper these 

days, Dossary (2016) derived the mathematical formulation of the coverage rate external 

adjustment method assuming that the underlying parameter is normally distributed. 
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Suppose that we are interested in the 80% prediction interval, then for probabilistic 

assessments that use the cumulative probability convention, the adjusted P10 and P90 

values can be calculated [adapted from Dossary (2016)]: 

𝑃𝑃10𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃90+𝑃𝑃10−

Erf−1�𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ�
Erf−1[𝐶𝐶𝐶𝐶] ∙(𝑃𝑃90−𝑃𝑃10)

2
 .................................................................. (3.11) 

𝑃𝑃90𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃90+𝑃𝑃10+

Erf−1�𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ�
Erf−1[𝐶𝐶𝐶𝐶] ∙(𝑃𝑃90−𝑃𝑃10)

2
 .................................................................. (3.12) 

where PIwidth is the width of the prediction interval (0.80 in our case). The inverse error 

function can be calculated in Microsoft® Excel™ using the following formula: 

𝐸𝐸𝐸𝐸𝑓𝑓−1(𝑥𝑥) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥, 0.5,1)) ............................................................ (3.13) 

We extended Dossary’s (2016) work and derived the mathematical formulation 

assuming that the underlying parameter is lognormally distributed. Then, the adjusted P10 

and P90 values can be calculated as: 

𝑃𝑃10𝑎𝑎𝑎𝑎𝑎𝑎 = exp�
ln(𝑃𝑃90)+ln(𝑃𝑃10)−

𝐸𝐸𝐸𝐸𝐸𝐸−1�𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ�
𝐸𝐸𝐸𝐸𝐸𝐸−1[𝐶𝐶𝐶𝐶] ∙[ln(𝑃𝑃90)−ln(𝑃𝑃10)]

2
� .................................. (3.14) 

𝑃𝑃90𝑎𝑎𝑎𝑎𝑎𝑎 = exp�
ln(𝑃𝑃90)+ln(𝑃𝑃10)+

𝐸𝐸𝐸𝐸𝐸𝐸−1�𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ�
𝐸𝐸𝐸𝐸𝐸𝐸−1[𝐶𝐶𝐶𝐶] ∙[ln(𝑃𝑃90)−ln(𝑃𝑃10)]

2
� .................................. (3.15) 

If we assume that the underlying distribution is normal in the last example, then Eqs. 

2.11 and 2.12 can be applied to calculate the adjusted P10 and P90 values directly without 

using a probability plot: 

𝑃𝑃10𝑎𝑎𝑎𝑎𝑎𝑎 =
120+80− Erf−1[0.8]

Erf−1[0.41]∙(120−80)

2
≈ 52  

𝑃𝑃90𝑎𝑎𝑎𝑎𝑎𝑎 =
120+80+ Erf−1[0.8]

Erf−1[0.41]∙(120−80)

2
≈ 148  
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in million dollars, which are the same results we got from using the probability plot. 

If, on the other hand, we assume that the underlying distribution is lognormal in the 

last example, then Eqs. 2.142.15 and 2.15 can be applied to calculate the adjusted P10 and 

P90 values directly without using a probability plot: 

𝑃𝑃10𝑎𝑎𝑎𝑎𝑎𝑎 = exp�
ln(120)+ln(80)− 𝐸𝐸𝐸𝐸𝐸𝐸−1[0.8]

𝐸𝐸𝐸𝐸𝐸𝐸−1[0.41]∙[ln(120)−ln(80)]

2
� ≈ 60  

𝑃𝑃90𝑎𝑎𝑎𝑎𝑎𝑎 = exp�
ln(120)+ln(80)+ 𝐸𝐸𝐸𝐸𝐸𝐸−1[0.8]

𝐸𝐸𝐸𝐸𝐸𝐸−1[0.41]∙[ln(120)−ln(80)]

2
� ≈ 159  

in million dollars, which are again the same results we got using the probability plot. 

External Adjustment Using the Calibration Curve 

Fondren et al. (2013) extended Capen's (1976) work by plotting the P10, P50, and P90 

propositions on a lognormal probability plot at the corresponding proportion-correct 

values (from the calibration curve) and then fitting a lognormal distribution through these 

three points using least-squares regression. This best-fit lognormal distribution is then 

used to calculate the adjusted P10, P50, and P90 values. In Fig. 3.21, we show that the 

corresponding graphical technique for this method is very similar to Capen’s (1976) but, 

instead of using a centrally-located coverage rate, Fondren et al. (2013) used the 

proportion correct values from the calibration curve and fit a least-squares best-fit line to 

these propositions. Since the calibration curve is sensitive to directional bias, it can be 

more effective than using the centrally-located coverage rate in adjusting for directional 

bias. We note that they assumed that the number of observations is similar at each 

cumulative probability value. If the number of forecasts at each cumulative probability is 
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not the same, then, similar to measuring biases from the calibration curve, a weighted 

least-square method should be used where each point on the calibration plot is weighted 

by the number of forecasts used to generate this point. 

For example, consider the assessor from the previous example. However, this time we 

will use the proportion correct values corresponding to P10 and P90 in the calibration 

curve. That is, in this example, we are plotting the P10 value ($80 million) at a cumulative 

probability of 0.42 (instead of 0.40) and the P90 value ($120 million) at a cumulative 

probability of 0.83 (instead of 0.70). Just like in the previous method, we fit a straight line 

through these points (assuming a lognormal distribution) and extend the line to read the 

adjusted values as P10adj ≈ $55 million and P90adj ≈ $135 million. The adjusted values 

obtained using this method are less than the adjusted values obtained using the centrally-

located coverage rate ($60 million and $159 million) because in this method we accounted 

for the positive directional bias indicated in the calibration curve. 
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Fig. 3.21—Graphical demonstration of external adjustment using the calibration 
curve and assuming a lognormal underlying distribution defined by P10 and P90 only. 

 

So far, we have used only the P10 and P90 values in our external adjustment procedure. 

Suppose that the same assessor from the last example has also proposed that the NPV of 

the project has a P50 value of $100 million. On Fig. 3.21, we add the P50 value at a 

cumulative probability of 0.63. Finally, we draw a best-fit line through these three points 

and extend the line to read the adjusted values as P10adj ≈ $56 million, P50adj ≈ $87 million 

and P90adj ≈ $135 million (Fig. 3.22). Note, that in this case, adding the P50 values only 

slightly changed the adjusted P10 value. However, if the P50 value was more extreme, its 

effect on the adjusted values would be more pronounced.  
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Fig. 3.22—Graphical demonstration of external adjustment using the calibration 
curve and assuming a lognormal underlying distribution defined by P10, P50, and P90. 

 

Of course, the same methodology can be applied on a normal probability plot if the 

estimated parameter is normally distributed. Furthermore, we can use more P values (e.g., 

P10, P20, P30, …, and P90) if needed and if a calibration curve defined at these percentiles 

is available. 

In mathematical form, our objective is to fit a distribution using least-squares 

regression. In other words, we find the distribution that will minimize the sum of the 

squares of the differences between the cumulative probabilities of the proposed values and 

their corresponding proportion correct values: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    ∑ (𝐹𝐹(𝑥𝑥𝑡𝑡) − 𝑐𝑐𝑡𝑡)2𝑇𝑇
𝑡𝑡=1  ....................................................................... (3.16)  
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where F is the cumulative distribution function of the fitted distribution, ct is the 

proportion correct from the calibration curve, and T is the number of defined cumulative 

probabilities or probability subintervals. F can be normal, lognormal, or any kind of 

distribution that describes the underlying parameter adequately. If insufficient information 

is available about the estimated parameter distribution, we suggest using a PERT 

distribution. A PERT distribution is flexible and can approximate both normal and 

lognormal distributions. However, unlike normal and lognormal distributions, fitting a 

PERT distribution will require the estimated distribution to be defined by at least three 

points (because it is defined by 3 parameters) in comparison to at least two points for the 

normal and lognormal distributions (because they can be defined by 2 parameters only). 

Furthermore, the PERT distribution is bounded, unlike normal and lognormal 

distributions, which may or may not be a desirable trait depending on the quantity 

assessed. After we find the distribution using least-squares regression, we can use it to 

calculate the adjusted percentiles. 

The example in Fig. 3.22 can be solved numerically by using a solver (such as the 

Solver add-in in Microsoft® Excel™). We solved for a lognormal distribution such that 

the unadjusted P10, P50, and P90 values would be closest to its 42nd, 63rd, and 83rd 

percentiles, respectively. The minimization of the function in Eq. 2.16 results in a 

lognormal distribution with a mean of $92.5 million and a standard deviation of $32.5 

million. The cumulative distribution function (CDF) of the fitted lognormal function is 

shown in Fig. 3.23a. We used the quantile function (the inverse of the CDF; in Microsoft® 

Excel™: NORM.INV for the normal distribution, and LOGNORM.INV for the lognormal 
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distribution), to calculate the adjusted P10, P50, and P90. Fig. 3.23b shows that the 

adjusted P10, P50, and P90 values are $56 million, $87 million, and $135 million, 

respectively, which are the same results we got graphically. Table 3.1 shows a summary 

of the results. For completeness, we added the results of external adjustment using the 

calibration curve and assuming a normal underlying distribution. 

The adjustment process is done on new assessments one assessment at a time and will 

likely produce adjusted new assessments that are significantly better calibrated than the 

unadjusted new assessments, particularly if (1) the historical biases are large and, thus, the 

adjustments are large, and (2) the new assessments are similar in kind to the group of 

historical assessments that were used to generate the calibration curve. However, 

improvement in calibration is not automatically assumed. Rather, assessors should apply 

the same rigorous process of assessment tracking, look-backs, calibration, and 

quantification of biases to the adjusted new probabilistic assessments going forward. 
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Fig. 3.23—(a) Least-squares regression is used to fit a lognormal distribution to assessment percentiles that are plotted 
at probabilities corresponding to their proportion correct value from the calibration curve. (b) New percentiles are 
calculated from the fitted distribution. 

 

Method Function 
Adjusted (Million $) 

P10 P50 P90 

Centrally located 
coverage rate 

Normal 52 100 148 

Lognormal 60 98 159 

Calibration curve 

Normal using P10 and P90 Only 43 87 131 

Normal using P10, P50 and P90 43 88 132 

Lognormal using P10 and P90 Only 55 86 135 

Lognormal using P10, P50 and P90 56 87 135 

Table 3.1—A comparison of forecast adjustment methods assuming normal and lognormal 
distributions. The choice of distribution type for fitting the calibration curve and the new 
estimates is important. 

 

We note that this method assumes that both the new and historical distributions can be 

well approximated by the same distribution type (such as normal or lognormal). 



108 
 

Incidentally, many of the processes in petroleum engineering (and nature in general) can 

be well approximated by a normal or lognormal distribution (Capen 1976). Also, a PERT 

distribution can roughly approximate both normal and lognormal distributions. 

Furthermore, this method assumes that the biases measured from historical probabilistic 

assessments reflect the assessor’s overall biases. Using a larger number of historical 

probabilistic assessments increases the confidence that these measured biases reflect the 

overall biases of the assessor. The evaluator can use Figs. 3.14-3.16 as a qualitative guide 

for how many assessments are needed for a specific level of confidence in the measures 

of biases. Finally, this method assumes that the assessor will have similar levels of biases 

in his/her historical and new assessments. One reason for why the levels of biases might 

differ between historical and new assessments is that the assessor is evaluating different 

types of assessments (such as estimating the ultimate recovery versus estimating the net 

present value). Ensuring that the historical and new assessments are similar in type should 

eliminate this as a possible cause of error in the adjustment process. However, there can 

be other reasons why the levels of biases might differ between historical and new 

assessments. For example, the assessor could be internally self-adjusting over time with 

information gained from look-backs and calibration. However, if assessors follow a 

continual process of assessment tracking, look-backs, calibration, and adjustment, they 

will eventually incorporate these differences into the external adjustment process.  

The examples above show that externally adjusting assessments (in the case of 

overconfidence, which is more common) typically results in wider distributions (higher 

SD). We showed in our previous work (Alarfaj and McVay 2018), that there is more to 
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gain from eliminating biases than from reducing uncertainty. Therefore, the first priority 

is improving calibration and the second priority is reducing uncertainty (smaller width or 

SD). That is, if comparing two assessment methods, the evaluator should select the method 

with better CS if the CS values differ significantly. If the CS values are not significantly 

different, then the evaluator should pick the one with the lower uncertainty.  

Case Study 

In the previous sections, we showed how to measure calibration of probabilistic 

assessments and how to externally adjust new assessments to improve their probabilistic 

reliability. In this section, we will apply the methods described in this paper on 

probabilistic decline-curve analysis (DCA) from the literature and assess the effectiveness 

of externally adjusting probabilistic forecasts using calibration curves. 

Gonzalez et al. (2012) evaluated the performance of the Markov Chain Monte Carlo 

(MCMC) method using different DCA models on 197 Barnett shale gas wells. They 

performed a hindcast study where only a portion of the hindcast period (the time period 

for which historical data was available) was matched, predictions were made for the 

remainder of the hindcast period, and comparison was made between the predicted and 

actual cumulative production at the end of the hindcast period (CPEOH). They varied the 

portion of historical data that was matched between 6 months and 36 months. They used 

MCMC coupled with a number of different DCA models. In this case study, we will 

evaluate the performance of external adjustment using a subset of the DCA models they 

examined, specifically Arps (Arps) with 5% minimum decline and the power-law (Ilk et 

al.) models.  
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External Adjustment of Long-Term Probabilistic Assessments 

To test the external adjustment procedure, Fondren et al. (2013) evaluated and generated 

a calibration curve for a set of hindcasts and used it to adjust the same set. This process is 

somewhat circular because we expect to get nearly perfect calibration when we use the 

calibration curve to adjust the same assessments that were used to generate it. Indeed, 

Fondren et al. (2013) showed that the external adjustment process improved the 

probabilistic assessments markedly and resulted in a nearly perfect calibration curve. 

Furthermore, they noted that improving the calibration of the same set, other than to verify 

the calibration/adjustment procedure, is not particularly helpful because it is necessary to 

have the actual production data to do calibration and, therefore, the adjusted assessments 

do not add value because we already know the outcomes. The external adjustment process 

potentially adds value only when we use calibration results of historical probabilistic 

assessments to adjust new probabilistic assessments. 

For a better test of the effectiveness of external adjustment, we picked a set of 197 

hindcasts generated using 6 months of production data and randomly divided it into two 

groups. We used the first group (100 wells) to measure the calibration and generate the 

calibration curve. Then we used the calibration curve of the first group of hindcasts to 

externally adjust the second group (97 wells) of hindcasts assuming a PERT distribution. 

Finally, we measured the calibration of the hindcasts of the second group with and without 

adjustment. We did this for two distinct sets that were generated using power-law and 

Arps-with-5%-minimum-decline models. 
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One potential issue with this approach is that improvement (or deterioration) in the 

calibration of the adjusted hindcasts of the second group could be affected by selection 

bias. In other words, if we randomly divided the two groups again, we will probably get 

different calibration curves for both the unadjusted and the adjusted hindcasts. From one 

iteration, we will likely not be able to distinguish between differences in calibration caused 

by random selection versus that which was caused by the external adjustment process. To 

mitigate the effects of selection bias, we repeated the steps presented in the previous 

paragraph for 1000 iterations using Monte Carlo simulation. From these iterations, we 

calculated the expected calibration curve (the average proportion correct at each assigned 

probability value for all of these iterations). Therefore, any improvement or deterioration 

in calibration caused by the selection bias should cancel out. 

Fig. 3.24 shows the expected calibration curves for the second group of hindcasts 

before and after external adjustment assuming a PERT distribution for (a) the power-law 

and (b) the Arps-with-5%-minimum-decline models. External adjustment for the power-

law model improved the CS from 0.0129 to 0.0021 (Table 3.2). However, this 

improvement in calibration resulted in a significant increase in the average width (AW) of 

the 80% CI from 1,143 MMSCF for the unadjusted to 1,673 MMSCF for the adjusted 

hindcasts. Note that reducing the CS does not necessarily increase the AW. We have 

shown in a previous section that the CS value does not distinguish between over and 

underconfidence. Therefore, external adjustment should reduce both the CS and the AW 

in the case of underconfidence. Furthermore, CS can also be reduced by reducing the 

magnitude of DB while keeping CB constant (Fig. 3.11), which keeps the AW roughly 
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constant (since CB and AW are correlated). For the Arps-with-5%-Minimum-Decline 

model, external adjustment reduced the CS significantly from 0.0318 to 0.0025. 

Furthermore, in doing so, the AW was slightly reduced from 772 MMSCF to 747 

MMSCF. Fig. 3.24 shows that most of the improvement in calibration came from the 

reduction of directional bias as suggested by the significant shift downward of the 

calibration curve.  

The choice of fitted distribution type affects the external adjustment process. Table 3.2 

shows that, in terms of CS and AW, external adjustment using a PERT distribution did 

slightly better than using a lognormal distribution. We reiterate here our recommendation 

to use a PERT distribution for adjustment rather than normal or lognormal, especially if 

the analyst is not sure of the shape of the estimated parameter. Table 3.2 also shows that 

while using a normal distribution for the external adjustment process also improves the 

calibration, the benefits in both CS and the AW are not as significant as when using a 

lognormal or a PERT distribution. In particular, using a normal distribution with the Arps-

with-5%-Minimum-Decline model caused a significant increase in the AW that is not 

observed when using PERT or lognormal distributions. Ultimately, using a normal 

distribution fit to externally adjust these specific models is not optimum. 
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Fig. 3.24—Expected calibration curves of the (a) the power-law model, and the (b) Arps-with-5%-minimum-decline 
model externally adjusted by fitting a PERT distribution. 

 

 

 Fitted 
Distribution 

Calibration 
Score 

Average 80% 
CI Width (MMSCF) 

Power law 

Unadjusted 0.0129 1,143 

normal 0.0055 1,598 

Lognormal 0.0051 2,003 

PERT 0.0021 1,673 

Arps with 5% 
minimum decline 

Unadjusted 0.0318 772 

normal 0.0136 1,778 

Lognormal 0.0029 772 

PERT 0.0025 747 

Table 3.2—A comparison of the performance of external adjustment using normal, lognormal, and PERT 
distributions. The choice of distribution type for fitting the calibration curve and the new estimates affects 
the method’s performance. 
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Effects of Using a Lower Number of Historical Probabilistic Assessments 

In the previous experiments, we used nearly half the wells (100) from the data set for 

calculating the calibration curve and adjusted the remaining half. How would the results 

be affected by using a much lower number of wells to generate the calibration curve? One 

of the key assumptions of this external adjustment process is that we have enough 

probabilistic assessments to measure the calibration curve accurately. We have shown in 

a previous section that using a number of assessments as low as 10 in the case of moderate 

confidence and directional biases and as low as 3-5 in the case of extreme confidence and 

directional biases would result in a calibration curve that adequately describes the 

magnitude and direction of bias. However, would these low numbers of assessments 

produce calibration curves that are accurate enough to significantly improve the reliability 

of new assessments? 

To answer this, we repeated the previous experiment three more times using 50, 25, 

and 10 wells to generate the calibration curve and applied external adjustment to as many 

wells using a PERT distribution. To allow easier comparison between the experiments, 

we plotted the net calibration score defined as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ....................................................................... (3.17)  

where a negative net calibration score means that the adjusted assessments were more 

reliable than the unadjusted assessments because CS is negatively oriented (the lower the 

number, the better). 

 Fig. 3.25 shows the net calibration score for the (a) power-law and (b) Arps-with-5%-

Minimum-Decline hindcasts, where the middle curve shows the expected net calibration 
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score, the shaded area signifies an 80% CI and the error bars signifies a 99% CI. Fig. 3.25a 

shows that there is a chance that external adjustment produces worse adjusted assessments 

when using a lower number of historical probabilistic assessments (more likely than not 

for the power-law model when using only 10 historical assessments). However, this 

chance reduces significantly as more historical assessments are used. Furthermore, 

increasing the number of probabilistic assessments used to generate the calibration curve 

will also increase the chance that the adjustment process will improve calibration. Fig. 

3.25 also shows that fewer historical probabilistic assessments are needed to improve the 

calibration score of the Arps-with-5%-minimum-decline model than the power-law 

model. This is because the Arps model is more biased than the power-law model (Fig. 

3.24) and, therefore, the bias can be more easily measured (Fig. 3.14). Therefore, the Arps 

model stands to benefit more from the adjustment process, because its biases are measured 

more accurately with fewer historical assessments. 
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Fig. 3.25—Net calibration score for (a) the power-law model, and the (b) Arps-with-5%-minimum-decline 
model externally adjusted by fitting a PERT distribution. The middle curve shows the expected net 
calibration score, the shaded area signifies an 80% CI and the error bars represent 99% CI. 

 

Using Short-Term Assessments to Externally Adjust Long-Term Assessments 

The probabilistic DCA assessments discussed in the previous example are considered 

long-term. That is, for most wells in this dataset, it will take years before we can measure 

their calibration and use it as a feedback for new assessments. It is possible that most of 

the field would have been fully developed by the time we get feedback and the calibration 

results will add very little value. McVay et al. (2005) suggested generating short-term and 

long-term assessments, and then adjusting the long-term assessments using calibration 

information from the short-term assessments. In this subsection, we follow the Fondren et 

al. (2013) example in evaluating four possible options (explained in the next paragraph) 

that the operator will be faced with when acquiring new data. We will then introduce a 

fifth option and compare the performance of each option. We did our analysis on a 
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normalized-to-time-zero basis. Thus, we assumed that all of the 197 wells start producing 

at the same time and we measured their 24-month calibration at the same time. 

We used the same two sets (power law and Arps with 5% minimum decline) of 197 

long-term hindcast assessments introduced in the previous subsections (see for example 

Well 37 in Fig. 3.26). These hindcasts were generated by fitting only the first 6 months of 

production data. Using these long-term assessments, we generated a number of short-term 

assessments, which are essentially subsets of the long-term assessments (see the 24-month 

assessment example of Well 37 in Fig. 3.27). At 24 months (after the passage of 18 months 

from the time the short and long-term assessments were generated), the actual production 

for these 24 months is available. At this point in time, the operator has at least four options 

for how to treat the long-term assessments. Option 1 is to keep the initial assessments and 

do nothing with the newly acquired data. Option 2, which is what is typically done in the 

industry when updating assessments, is to use the same method to generate new 

assessments using the 24 months of production data without measuring or relying on 

calibration information. Option 3 is to use the calibration information to externally adjust 

the original long-term assessments made using only 6 months of production data. Finally, 

Option 4 is to generate new assessments by fitting the 24 months of production data and 

then externally adjust these new assessments using the calibration information from the 

short-term assessments generated using only 6 months of production data. 
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Fig. 3.26—Long-term probabilistic production hindcast for well 37. 

 

 
Fig. 3.27—Short-term probabilistic production hindcast for well 37. 
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We ran each of these possible options and then checked the reliability of the long-term 

assessments. Table 3.3 shows that not adjusting the assessments (Option 1) produced the 

worst long-term assessment CS and second-worst AW, for both power law and Arps with 

5% minimum decline. Measuring the calibration at 24 months and using it to update the 

long-term assessments that were generated using 6 months of production data (Option 2) 

improved the CS significantly, especially in the case of Arps with 5% minimum decline. 

However, it also resulted in a larger AW, which is not unexpected given that the short-

term assessments were overconfident (CB is 0.28 and 0.18 for the Power Law and the 

Arps, respectively). Updating the forecasts by running the MCMC DCA models using 24 

months of data (in contrast to 6 months) without adjustment (Option 3) improved the CS 

and the AW over Option 1. Updating the long-term forecasts by running the MCMC DCA 

models using 24 months of data combined with external adjustment (Option 4) improved 

both the CS and the AW over Option 1; however, the AW was not improved as much as 

in Option 3 because typically (in the case of overconfidence), there is a tradeoff between 

the CR/CS and the AW (AW increases as CR/CS decrease). Even though Option 3 has 

lower AW, Option 4 is more preferable because it has lower CS, which indicates lower 

biases. We mentioned in the previous section that best decisions are made and portfolio 

value is maximized when biases are minimized. Operators would benefit most from 

reducing biases (inferred from CS) first, then reducing uncertainty (inferred from AW) 

second. Later in this section, we introduce a fifth option that will reduce biases while 

maintaining a relatively low AW. 
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Method Forecast Update Option at 24 Months 

Proportion Correct 

CR CS 
AW 

(MMSCF) 0.10 0.50 0.90 

Power 
law 

Option 1: Do nothing 0.2767 0.6070 0.8546 0.5779 0.0149 15,214 

Option 2: External adjustment of original 
forecasts 0.1912 0.5363 0.8411 0.6499 0.0044 20,180 

Option 3: Update MCMC using 24 months of 
production data but no external adjustment 0.1874 0.5325 0.8282 0.6408 0.0046 8,957 

Option 4: Update MCMC using 24 months of 
production history with external adjustment 0.1079 0.4325 0.8408 0.7329 0.0027 12,591 

Arps 
with 5% 

min 
decline 

Option 1: Do nothing 0.2776 0.7383 0.9310 0.6534 0.0298 10,286 

Option 2: External adjustment of original 
forecasts 0.1163 0.5510 0.9101 0.7938 0.0010 13,348 

Option 3: Update MCMC using 24 months of 
production data but no external adjustment 0.1951 0.5969 0.8530 0.6579 0.0069 6,065 

Option 4: Update MCMC using 24 months of 
production history with external adjustment 0.1036 0.3852 0.8252 0.7216 0.0063 7,497 

Table 3.3—Proportion correct, CR, CS, and AW for the MCMC long-term assessments. 

 

Why did the external calibration method improve the CS of the long-term assessments 

more in Option 4 than Option 3 in the case of power law (from 0.0046 to 0.0027) but not 

as much in the case of Arps with 5% minimum decline (from 0.0069 to 0.0063)? One of 

the key assumptions of this external adjustment procedure is that the assessor will have 

consistent levels of biases over time, similar to what is shown in the hypothetical true and 

estimated distributions in Fig. 3.28. The procedure will not perform as well when the bias 

levels are changing (Fig. 3.29a), or worse, changing from overconfidence to 

underconfidence or vice versa (Fig. 3.29b). We suggest that more frequent look-back, 

calibration, and external adjustment will improve the results of this process. Suppose that 
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we are trying to improve the reliability of the estimated distribution in Fig. 3.30a where, 

as defined in the Introduction, the true distribution is a hypothetical distribution and 

represents the perfectly reliable distribution; i.e., not affected by biases. In Fig. 3.30a, the 

long-term forecast (at t = 54) is underconfident while the corresponding short-term 

forecast (at t = 12) is overconfident. Adjusting the long-term forecast using the calibration 

curve of a short-term forecast will result in an even more underconfident long-term 

forecast (Fig. 3.30b). However, it will also cause the newly adjusted forecast to be less 

overconfident (moving towards underconfidence) at the next time step (see the difference 

between the unadjusted and adjusted estimates at t = 18 in Fig. 3.30b). So, at the next 

round (at t = 18), we measure the calibration of the estimate adjusted at t = 12 and use the 

calibration information to adjust the newly updated model that uses the data available up 

to t = 18. After calibration measurement, model updating and external adjustment, the 

long-term forecast will be less underconfident (moving away from underconfidence, Fig. 

3.30c). We repeat the same process at t = 24 and we get an even better calibrated long-

term estimate (Fig. 3.30d) After few rounds of calibration measurements and external 

adjustment, the long-term estimate should be better calibrated.  
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Fig. 3.28—True and estimated distributions in a time series that exhibit relatively 
consistent overconfidence bias values over time. 

 

 

Fig. 3.29—True and estimated distributions in a time series that exhibit (a) increasing/decreasing bias values over 
time, and (b) bias values that switches from overconfidence to underconfidence over time. 
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Fig. 3.30— more frequent look-back, calibration, and external adjustment mitigate the issue of having different biases 
over a time series. 

 

We compared frequent look-back, calibration, and adjustment to the one-time external 

adjustments that we did in the previous example. In Figs. 3.31 and 3.32, we compare the 

CS and AW of the long-term assessments generated by applying the 5 different options 

with the power law and the Arps models, respectively. In the first option, the assessor 

keeps the initial assessments made using 6 months of production data and does not make 

use of calibration results or new production data to update the model (red curves in Figs. 
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3.31 and 3.32). In the second option, the assessor measures the calibration at given time t 

(12, 18, 24, 30, or 36 months in this figure) and uses the calibration measurements to 

externally adjust the initial assessments that were made using 6 months of production data 

(yellow curves). In the third option, all the available production data at time t are used to 

update the MCMC model and generate a new set of probabilistic assessments without 

measuring calibration or applying external adjustment (green curves). In the fourth option, 

the assessor updates the probabilistic assessments using all the production data available 

at time t and externally adjusts them using the calibration measurement of the initial 

assessments (that were generated using 6 months of production data) for the same period 

(blue curves). Note that the first 4 options here are essentially the same 4 options 

investigated above (Table 3.3) and involve no more than one update; the difference being 

that here the one update is performed at different times. The fifth option investigated is to 

continuously update the assessments with new production data every 6 months and 

externally adjust the updated assessments using the calibration curves of the adjusted 

assessments of the last time period (purple curves). Note that in the first four options, the 

CS and AW measurements at any given time t are independent of the CS and AW 

measurements at other times. That is, suppose we wanted to calculate CS for the fourth 

option at 30 months. We will need the probabilistic assessments generated using 6 months 

of production data and all the production data up to 30 months. We do not need to know 

the CS value at 18 months (for example) to calculate the CS value at 30 months. In 

contrast, for the fifth option, we use the calibration score of the assessments generated at 

the last time step to externally adjust the assessments generated at the current time step. 
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Fig. 3.31—Calibration score and the average width of the 80% confidence interval of the long-term probabilistic 
assessments following different look-back, calibration, and external adjustment options for the power-law 
probabilistic assessment method. 

 

 

Fig. 3.32—Calibration score and the average width of the 80% confidence interval of the long-term probabilistic 
assessments following different look-back, calibration, and external adjustment options for the Arps-with-5%-
minimum-decline probabilistic assessment method. 

 

Figs. 3.31 and 3.32 show that neither updating the model nor using external adjustment 

results in the worst possible calibration score and a high AW (Option 1, red). External 
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adjustment without updating the MCMC model with the new production data results in 

significant reduction in CS (Option 2, yellow). However, this is coupled with a 

pronounced increase in AW because the historical assessments are mostly overconfident 

and the option does not benefit from the AW reduction that results from incorporating 

more production data. Updating the MCMC model with new production data without 

applying look-back, calibration, and external adjustment (Option 3, green) results in the 

lowest AW, but it produces more biased estimates than Options 2 and 5. Updating with 

new production data and adjusting new assessments using calibration information (Option 

4, blue) produced low CS initially; however, it started to increase beyond 18 and 12 

months for the power-law and the Arps-with-5%-minimum-decline models, respectively. 

This is caused by the difference in biases of the assessments generated using 6 months of 

data measured at time of update t and the long-term biases of the assessments generated 

using all the production data available at the time of update t. When we applied periodic 

updating with external adjustment (Option 5, purple), we got the benefits of both using all 

the available production data (low AW) and externally adjusting assessments (low CS). It 

almost always resulted in the best (lowest) CS with a relatively low AW (but not the 

lowest; Option 3 has lower AW but only because it has higher CS). Ultimately, 

periodically updating the probabilistic model with new production data and external 

adjustment appears to be ideal; it will result in one of the best possible CS coupled with a 

relatively low AW. 

In this case study, we did our analysis on a normalized-to-time-zero basis and thus we 

assumed that all of the 197 wells start producing at the same time and we measured their 
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24-month calibration at the same time. When we do our analysis in such a fashion, we 

may not be able to utilize all of the available production data at a particular time in the 

field history, since these wells have varying lengths of production data and we will be 

limited to the length of production data of the most recent well. It would not be wise to 

use only 6 months of production data for all wells if the most recent well has only 6 months 

of production data. One possible solution that should be investigated in future work is to 

divide the wells into groups that are not mutually exclusive, where the first group contains 

all the wells that have 6 months of production data or more, the second group contains all 

the wells that have 12 months of production data or more, and so on. Then external 

adjustment can be used in combination with aggregation methods such as those explained 

in Turner et al. (2014) to generate an aggregated probabilistic assessment for each of the 

wells in the field. 

Conclusions 

The reliability of probabilistic assessments in petroleum engineering can be detected and 

quantified by conducting look-backs (comparing actual performance to probabilistic 

forecasts) and constructing and analyzing calibration plots. Confidence and directional 

biases can be measured from calibration plots. However, the accuracy of these bias 

measurements is dependent on the number of probabilistic assessment/observation pairs 

available. In general, the more assessments available, the more accurate the measure of 

probabilistic reliability. However, even a low number of assessments (as low as 10) is 

enough to detect the existence and the direction of biases in cases of moderate levels of 

confidence and directional biases. An even lower number of assessments (2 or 3) is enough 
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to indicate the existence and direction of biases in cases of extreme levels of confidence 

and directional biases. 

Measurement of confidence and directional biases (CB and DB) from calibration plots 

offers advantages over more traditional measures of probabilistic forecast reliability, such 

as coverage rate and calibration score. The coverage rate is insensitive to directional biases 

although it is sensitive to confidence biases. Coverage-rate values lower than the assumed 

prediction-interval width typically indicate overconfidence while values that are larger 

typically indicate underconfidence. Furthermore, while the calibration score is insensitive 

to the direction of biases (positive vs negative directional biases and overconfidence vs. 

underconfidence), it is sensitive to the magnitude of these biases. While lower calibration 

scores indicate lower overall levels of biases present in the probabilistic assessments, they 

are not helpful in providing feedback to assessors who want to internally adjust their 

assessment models. On the other hand, CB provides guidance on whether the assessment 

distributions should be wider or narrower and DB provides guidance on whether the 

assessments should be shifted positively or negatively. 

Measuring the calibration of historical probabilistic assessments and using it to 

externally adjust new assessments reduces biases and improves calibration. A continuous 

process, at an appropriate frequency, of look-back, calibration, model update, and external 

adjustment will result, over the long run, in the best possible calibration while minimizing 

the average width of probabilistic assessments. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

A new generalized framework for quantifying the value of reliable uncertainty assessment 

(or quantifying the cost of biased estimation) that allows full, non-truncated estimated 

distributions replicates well the results and conclusions from a previously presented 

simplified framework that used truncated estimated distributions. Moderate 

overconfidence and optimism can easily produce average portfolio disappointment 

(estimated value minus realized value) of 30-35% of estimated portfolio EV or more. 

Extension of the new generalized framework to underconfidence demonstrates that 

underconfidence, in combination with directional bias, is similarly detrimental to portfolio 

performance as overconfidence. Thus, as operators seek to eliminate overconfidence bias, 

they should be wary of overcorrecting into underconfidence.  

Gains from reducing uncertainty are small given moderate levels of confidence and 

directional biases. At higher levels of confidence and directional biases, reducing 

uncertainty will result in greater reduction in expected disappointment and increase in 

expected value attainment. However, these improvements are still less than the 

improvements that result from reducing biases. The lowest expected disappointment and 

the highest expected value attainment can be achieved only by eliminating biases.  

The reliability of probabilistic assessments in petroleum engineering can be detected 

and quantified by conducting look-backs (comparing actual performance to probabilistic 
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forecasts) and constructing and analyzing calibration plots. Confidence and directional 

biases can be measured from calibration plots. However, the accuracy of these bias 

measurements is dependent on the number of probabilistic assessment/observation pairs 

available. In general, the more assessments available, the more accurate the measure of 

probabilistic reliability. However, even a low number of assessments (as low as 10) is 

enough to detect the existence and the direction of biases in cases of moderate levels of 

confidence and directional biases. An even lower number of assessments (2 or 3) is enough 

to indicate the existence and direction of biases in cases of extreme levels of confidence 

and directional biases. Armed with quantitative measurements of biases, operators can 

then make efforts to eliminate these biases in new forecasts through a combination of 

internal adjustment of uncertainty assessments—via assessment training and/or 

monitoring—and external adjustment of forecasts using measurements of biases from 

calibration.  

Measurement of confidence and directional biases (CB and DB) from calibration plots 

offers advantages over more traditional measures of probabilistic forecast reliability, such 

as coverage rate and calibration score. The coverage rate is insensitive to directional biases 

although it is sensitive to confidence biases. Coverage-rate values lower than the assumed 

prediction-interval width typically indicate overconfidence while values that are larger 

typically indicate underconfidence. Furthermore, while the calibration score is insensitive 

to the direction of biases (positive vs negative directional biases and overconfidence vs. 

underconfidence), it is sensitive to the magnitude of these biases. While lower calibration 

scores indicate lower overall levels of biases present in the probabilistic assessments, they 
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are not helpful in providing feedback to assessors who want to internally adjust their 

assessment models. On the other hand, CB provides guidance on whether the assessment 

distributions should be wider or narrower and DB provides guidance on whether the 

assessments should be shifted positively or negatively. 

Measuring the calibration of historical probabilistic assessments and using it to 

externally adjust new assessments reduces biases and improves calibration. A continuous 

process, at an appropriate frequency, of look-back, calibration, model update, and external 

adjustment will result, over the long run, in the best possible calibration while minimizing 

the average width of probabilistic assessments. 

Future Work 

In Chapter II, I introduced a method for calculating DB and CB from the least-squares 

best-fit line of the calibration curve. This method, while simple and fast, will often have 

some information loss because it is based on the best-fit line of a curve. Consequently, 

these simplified bias equations will not calculate the exact biases. While the differences 

between the measured and the actual biases are not significant in typical settings, it may 

be desirable to develop a bias-measurement method that provides more accurate 

measurements of biases using the entire calibration curve (all the proportion-correct values 

available) and not just the best-fit line of the calibration curve. 

In the second subsection of the case study in Chapter III (using short-term assessments 

to externally adjust long-term assessments), the analysis was done on a normalized-to-

time-zero basis and, thus, it was assumed that all of the 197 wells started producing at the 

same time. I did not investigate how to analyze wells when they start producing on 



132 
 

different dates and have varying lengths of historical production data. It would be valuable 

to determine how to update and externally adjust wells that start producing on different 

dates and have different lengths of production data given that the probabilistic forecasts 

for these wells have different levels of biases, as shown by Gonzalez et al. (2012). 

Furthermore, it would be beneficial to show the value added and the difference in results 

between performing the analysis using a normalized-to-time-zero basis versus performing 

it with the wells starting to produce on their respective dates. 

 

 

 



133 
 

NOMENCLATURE 

a Lower bound of truncated distributions; or first intersection 
between two distributions; or intersection with the y-axis 

AL Area to the left 

AOVL The overlapping area between two distributions 

AR Area to the right 

AW Average width of the prediction interval 

b Upper bound of truncated distributions; or second intersection 
between two distributions 

BS Brier score 

CapEx Capital expenditure, dollars spent or committed at the beginning 
of the project or portfolio 

CB Confidence bias 

CBOC The overconfidence portion of the confidence bias 

CBUC The underconfidence portion of the confidence bias 

CDF Cumulative density function 

CI Confidence interval 

CPEOH Cumulative production at the end of the hindcast period 

CR Coverage rate or the empirical coverage of the central prediction 
interval 

CS Calibration score 

ct The proportion correct of the t’th cumulative probability or 
subinterval 

DB Directional bias 
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DBOC The directional bias value assuming overconfident estimated 
distribution 

DBUC The directional bias value assuming underconfident estimated 
distribution. 

DCA Decline curve analysis 

E&P Exploration & Production 

ED Expected disappointment, the average of disappointment values 
over a number of Monte-Carlo iterations. 

ED%E Expected disappointment as a percentage of estimated distribution 

EDE Expected decision error, the average of decision error values over 
a number of Monte-Carlo iterations. 

EDE%E Expected decision error as a percentage of estimated distribution. 

EUR Expected ultimate recovery 

EV Expected value 

EVA%BP Expected value attainment as a percentage of best possible 
portfolio value 

fe The PDF of the estimated distribution 

fe-reduced The PDF of the estimated distribution with reduced uncertainty 

fen The PDF of an estimated distribution with negative directional 
bias 

fep The PDF of an estimated distribution with positive directional bias 

Fe The CDF of the estimated distribution 

ft The PDF of the true distribution 

F A cumulative distribution function 

Ft-reduced The PDF of the true distribution with reduced uncertainty 

Ft The CDF of the true distribution 
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I Indicator function 

IE Investment efficiency 

m Slope of the best fit line 

MCMC Markov Chain Monte Carlo 

Moe Mode of the estimated distribution 

Mot Mode of the true distribution 

N The total number of propositions 

NPV Net present value 

nPt The number of propositions defined at the t’th cumulative 
probability or subinterval 

OPB Optimism-pessimism bias 

P Cumulative probability assigned to the proposition 

Pt The t’th cumulative probability or the average cumulative 
probability of the t’th subinterval 

PDF Probability density function 

PVOCF Present value of operating cash flow 

SD Standard deviation 

T The number of defined cumulative probabilities or probability 
subintervals 

x The value of the observed outcome of the quantity assessed 

xP The value which there is a P chance that the observed outcome 
will be less than or equal to xP 
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